Department of Chemistry

Harnessing Model Diversity and Prediction  "e)er spier wofn B feivas
; ) Idaho State

ldaho State University

Similarity fOr SEIECting MUItiVa riate 921S. 8t Ave. STOP 8023 Pocatello, ID832090 U NIVERSITY
USA

Calibration Tuning Parameters spierob2@isu.edu, kalijohn@isu.edu
Methodology

Data Description

Abstract

LMC: Corn (Moisture m5-mp6)
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.. : g : 5 ] : : y' : diversity window Using model diversity and M Eta a ra m Ete r O nve r e n Ce T . selected (pink) across each
prediction similarity measures in order to determine the combination with — _ rediction similarity (MDPS) G H B | &8 - 1 _ ol undat oy
the lowest prediction error of new secondary samples across a variety of Take 100 co.mlc.)matl.ons with P y An algorithm was developed to LMC: Corn (m5-mpS5 Starch) - Pl E G B TS = = model Updating metho
o : : lowest prediction difference measures to select a subset - s T = i (LMC, FA-2A, NAR-C, NAR-D).
datasets and conditions. Results are presented showing the cosine of the of models from the total automatically find the region of 2 s 0.4 o d © L 1 L
angle. b.etwe.en models in combination yvith model vector 2-norms and Average the § interest to perform model selection in % " N ool L 817 R | 2 |
prediction differences are key to selecting models. Figure 1. Flowchart for model selection using % 5 e > . e oA e NARD
° ® model diversity and prediction similarity measures - g : : © 1oz &
O bjectlve This method confirms ’Fhe first quartile = | =
. and median of all possible models by 5 2 | (A) (B)
* Develop and analyze a new model selection method based on model Simi arltv Measures excluding repetitive models 530 °e LMC: Soil (OC Global-Montana) LWC: Soil (OC Global-Montana)
diversity and prediction similarity (MDPS) T - y f
Model Similarity T : O af gk o G 10
* Confirm robusticity by referencing against the first quartile of all models ot e Gie e bemmeen dhe ( o) ) (bj ) Differences Across Lambda Metaparameter e L bdg.ov | voe® e
ambda Value = o
in the calibration or updating sets th th ( ) _ I 300 2o
P 5 i and j* models COS 9 i j o Zj Figure 5 (above). Heatmap of RMSEV for all 250 1o g .
A roa C h bi b j ' models generated by LMC with white lines 200 i
_Ep v indicating the truncation of tuning parameter 2 :‘: 40
£

Frequency Selected

Five model generation methods are used:
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Figure 11. Histograms of models selected by MDPS and corresponding
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Results

Range-Scaled Weighted Fusion (®)
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Four model updating methods
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