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Abstract—Dense deployment of small base stations (SBSs) is
one of the main methods to meet the 5G data rate requirements.
However, high density of independent SBSs will increase the
interference within the network. To circumvent this interference,
there is a need to develop self-organizing methods to manage the
resources of the network. In this paper, we present a distributed
power allocation algorithm based on multi-agent Q-learning in
an interference-limited network. The proposed method leverages
coordination through simple message passing between SBSs to
achieve an optimal joint power allocation. Simulation results
show the optimality of the proposed method for a two-user case.

I. INTRODUCTION

Ultra-densification through the use of smaller base stations

is a promising technology in the next generation of cellular

networks (5G) [1]. The small base stations (SBSs) might be

mounted by users in a plug-and-play fashion, and their back-

haul may be supported by broadband connections. The user-

mounted feature, introduces unplanned deployment of SBSs,

which may result in unavoidable co-channel interference.

The problem of power allocation in an interference-limited

network has been investigated widely in the literature. In [2]

and [3], the optimal power allocation for a two-user inter-

ference channel is derived for sum and individual power

constraints, respectively. In [4] a more general solution is

proposed for multi-transmitter systems with individual power

constraints. The solution depends on the signal-to-interference-

plus-noise ratio (SINR) value. In high SINR regime, the

optimal solution is derived through transforming the problem

into a geometric programming (GP) problem, while in the low

SINR regime, a heuristic solution based on solving multiple

GPs is used. It is important to note that all of these prior

approaches are based on interior point methods. Hence, they

require a centralized network management approach which

may be impossible in dense networks. In [4], a distributed

method based on decomposing the optimization problem into

local problems is proposed. The solution is based on message-

passing and applies to high SINR case with full channel

state information (CSI). Nonetheless, in a dense plug-and-play

network, with a changing architecture, the assumptions of high

SINR and the availability of full CSI at all nodes may not hold.

In an ultra-dense network, in which the architecture of the

network changes sporadically, a self-organizing method is a

viable solution to manage the network resources. To this end,

cooperative multi-agent reinforcement learning (MARL) meth-

ods have been used in resource management of communication

networks [5]–[9]. Radio measurements such as SINR, are part

of the Big data in cellular network [10], and one of the main

advantages of MARL solutions is to utilize the measured SINR

values. Generally most of the classic optimization solutions

are based on channel coefficients. Thus, the prior methods

require full CSI to find the solution while the MARL methods

only need access to existing radio measurements, i.e., the mea-

sured SINR values. However, the existing MARL approaches

in communication network management do not address the

optimality of their cooperation methods. This is an important

research topic to address since finding the optimal joint power

allocation is directly impacted by the nature of the cooperation

approach.

In this paper, we find an optimal joint power allocation

solution via coordination between deployed SBSs. To address

the optimality of the MARL approach, we model the whole

system as a Markov decision process (MDP) with the SBSs

being represented as the agents of the MDP. Subsequently,

the value function of the MDP is approximated by a linear

combination of local value functions of the SBSs. As we

mentioned before, in order to remove the need for access

to CSI, and develop an adaptable algorithm that handles a

changing network architecture, each SBS uses a model-free

reinforcement learning approach, i.e., Q-learning. Q-learning
is used to update the SBS’s local value function. Subsequently,

we leverage the ability of SBSs to communicate over the

backhaul network to build a simple message passing structure

to coordinate them, based on variable elimination [11]. Finally,

we propose a distributed algorithm which finds an optimal

joint power allocation in an interference-limited network.

The paper is organized as follows. In Section II, the system

model is presented. Section II-A first introduces the optimiza-

tion problem, then analyzes the convexity of the problem.

Section III presents the general framework of the proposed

solution. Section IV outlines the proposed solution while

Section V presents simulation results. Finally, Section VI

concludes the paper.

II. NETWORK MODEL

This paper considers downlink transmission in a dense

deployment of N small base stations (SBSs). We assumed each

SBS supports one user equipment (UE), and all SBSs share

the same frequency resource block. This system can represent
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a single cluster of a large network, which uses different fre-

quency in each cluster to avoid interference between clusters.

It is also assumed the SBSs are interconnected via a backhaul

network supported by, for example, a broadband connection.

Here, we use the same model of interference as [2]. Thus, the

received signal at the ith UE, ri is given by

ri =
√

giPidi +
∑

j∈Di

√
giPjβjidj + ni, (1)

where gi represents the channel gain between the ith SBS and

the UE it is serving, di is the transmitted signal from the ith
SBS, Pi is the transmitted power at the ith SBS, Di represents

the set of interfering SBSs to the ith UE, βji (0 ≤ βji ≤ 1)
for 1 ≤ i ≤ N and j ∈ Di is the ratio of the unintended

power of the jth SBS when measured at the ith UE, and ni is

the zero mean additive white Gaussian noise (AWGN) at the

ith UE with variance σ2.
According to the signal representation in (1), the SINR at

the ith UE, SINRi, can be determined as

SINRi =
giPi∑

j∈Di
giPjβji + σ2

, (2)

and the throughput at the ith UE normalized by the transmis-

sion bandwidth, Ri, is calculated as

Ri = log2 (1 + SINRi) . (3)

A. Problem Analysis
Let us define P = {P1, P2, ..., PN} as the set containing the

transmitted power of the SBSs. The goal of the optimization is

to find the optimal joint power allocation between SBSs, P∗ =
{P ∗

1 , P
∗
2 , ..., P

∗
N}, that maximizes the total throughput of the

network. The optimization problem (OP1) can be formulated

as

maximize
P

N∑

i=1

Ri =
N∑

i=1

log2 (1 + SINRi) , (4a)

subject to Pi ≤ Pi,max, i = 1, . . . , N. (4b)

Here, the objective function in (4a) maximizes the sum

throughput of the network. The constraint (4b) refers to the

individual power limitation of every SBS.
The objective function in (4a) contains the interference term

in the denominator of SINR term. In a dense network the

interference term cannot be ignored [12]. Due to the presence

of the interference term, the objective function (4a) is a non-

concave function [13], which leads to non-convexity of the

optimization problem.

III. DISTRIBUTED COORDINATED Q-learning
In this section, the proposed optimal solution based on

the Markov decision process (MDP) is presented. Then, the

dimensionality issues of the optimal solution will be inves-

tigated. The dimensionality is important since it affects the

tractability of the problem. Next, we use the coordination

method introduced by [11] to solve the problem in a distributed

fashion. We show that the resulting method, provides a joint

solution for the MDP via message passing between the agents

of the network.

A. Optimal Solution via Q-learning

Consider a system with N agents, where each agent j
selects its actions from its action set, Aj . Further, X =
{X1, X2, ..., Xn} is the set of state variables which define

the state of the system. Let us denote x ⊂ X to represent a

single state of the system. In a fully cooperative game, we

look for an optimal joint solution that is a Pareto optimal

Nash equilibrium. One obvious solution to this problem is to

model the whole system as a large MDP with its action set

representing the joint action set of all the agents in the system.

We consider A as the joint action set of all the agents, and

a ⊂ A as a single joint action of this set.

The MDP framework will be modeled as (X,A, P r,R),
where X denotes the finite set of states of the system, A is

a finite set of joint actions, Pr is the transition model which

represents the probability of taking action a at state x and

ending up in state x′, Pr (x, a, x′), and R is the immediate

reward received by taking action a at state x, R (x, a).
A policy, π : x → a, for an MDP is defined as a strategy

which shows at state x, action π (x) will be taken. In order

to evaluate a policy, a value function V (x), is defined which

defines the value of policy at each state. In order to compute

the value function for a given policy, we need to calculate the

action-value function, also known as Q-function, defined as

follows

Q (x, a) = R (x, a) + γ
∑

x′
Pr (x′|x, a)V (x′) , (5)

in which γ ∈ [0, 1] is a discount factor. The optimal value at

state x is the maximum value that can be reached by taking

any action at this state. The optimal value function V ∗, which

gives the optimal policy π∗, satisfies the Bellman operation as

follows [14]

V ∗ (x) = max
a

Q∗ (x, a) . (6)

Q-learning is a model-free reinforcement learning, which

solves the Bellman equation through direct observations with-

out knowledge of the transition model. In Q-learning, the

agent observers the state, x, takes an action, a, receives a

reward, R, and ends in a next state, x′. Then, it will update

its Q-function as follows

Q (x, a) = Q (x, a) + α[R (x, a) + γmax
a′

Q (x′, a′)−Q (x, a)],

(7)

where, α is the learning rate of the algorithm. If any action-

state pair is repeatedly visited, the Q-function will converge

to the optimal value [15].

One issue with this method is that the size of the joint action

set is exponential with respect to the number of agents. If there

are N agents in the network, and each one has |A| number

of actions as the size of their action set, the size of the joint

action set, |A|, will be |A|N . The exponential size of the joint

action set makes the computation of the Q-function expensive

and in most cases intractable.
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B. Factored MDP

In most cases, for both representational and computational

advantages, the state and action sets of an MDP can be factored

into subsets based on the structure of the problem [16]. In large

MDPs, the global Q-function can be approximated by the lin-

ear combination of local Q-functions, i.e. Q =
∑

j Qj(aj) [11].

The jth local Q-function, Qj , has the joint action set which is

a subset of the global joint action set, A. Here, we will define

the joint action set of Qj by Scope [Qj ] ⊂ A for which aj is

a single joint action of this set.

In a communication network, each SBS plays the role of an
agent in the multi-agent network. The action of SBS j, is the
transmit power, Pj , that is used to transmit its signal to the
intended user. From this point, an agent in a communication
network, refers to the SBS. Generally, in wireless communi-
cation systems, each access point receives interference from
specific local access points. Therefore, the approximation of
global Q-function by linear combination of local Q-functions,
applies to interference-limited communication networks.

C. Decomposition of Global Q-function

The decomposition of the global Q-function, relies on the

dependencies between the agents of the network. These depen-

dencies can be represented by coordination graphs (CGs) [11].

Generally, there are two decomposition methods: agent-based

and edge-based. The agent-based decomposition provides a

suitable architecture for a distributed system with exact so-

lution, while the edge-based decomposition is recommended

for CGs with densely connected nodes [17] and provides

suboptimal solution. In this paper we will choose the agent-

based decomposition since we are focused on achieving the

optimal solution.

In a wireless network, the Scope [Qj ] for agent j, is de-

termined based on the interference model of the system,

which is related to set D in (1). For example, in Fig. 1,

four agents interfere with each other. Assume that agent A1,

receives interference from A2 and A3, and A4 receives its

interference from A2 and A3. Based on this model, the CG

of the system is shown in Fig. 1. Each edge between agents,

shows a dependency between the two agents.

Here, we assume that all agents have the same state x,

hence, Q (x, a) is written as Q (a). According to the CG in

Fig. 1, the global Q-function, Q (a), can be written as

Q(a) = Q1(a1, a2) +Q2(a2, a4) +Q3(a1, a3) +Q4(a3, a4).
(8)

D. Coordinated Action Selection

In multi-agent Q-learning, according to (7), the agents will

choose a joint action that maximizes the global Q-function. By

using the agent-based decomposition, the joint action selection

at state x, maxa Q (a), is written as

max
a1,a2,a3,a4

Q1(a1, a2) +Q2(a2, a4) +Q3(a1, a3) +Q4(a3, a4).

(9)

A1

A2

A4

A3

Q1

Q4Q2

Q3

Fig. 1: Coordination graph.

A1

A2

A4

A3

Q2

Q1

f2

f3

f4

a*
1,a*

2

a* 1

a* 2,a
* 3

a* 2

a *
4

Fig. 2: Message passing.

This maximization problem, can be solved via variable

elimination (VE) algorithm, which is basically similar to

variable elimination in a Bayesian network [18]. Here, we will

review this method for the network in Fig. 1. The key idea

is to maximize over one variable at a time, find conditional

solutions, passing conditional functions to other agents, and

sending back the results of local optimization to the related

agents to recover their joint action choices.
We start from agent A4. a4 influences Q2 and Q4, so the

maximization problem can be written as

max
a1,a2,a3

Q1(a1, a2) +Q3(a1, a3) + [max
a4

Q2(a2, a4) +Q4(a3, a4)].

(10)

Agent A2 communicates Q2 to A4, and A4 solves its local
maximization, which results in two functions: f4 (a2, a3), and
b4 (a2, a3). These functions are defined as follows

f4 (a2, a3) = max
a4

Q2 (a2, a4) +Q4 (a3, a4) , (11)

b4 (a2, a3) = argmax
a4

Q2 (a2, a4) +Q4 (a3, a4) . (12)

At his stage, the A4 has a conditional solution for a4 based
on a2, and a3, represented as the function b4. Therefore, A4
keeps b4 and sends f4 to its connecting agent, A3. Then, A4
is removed from the CG, and the maximization problem is
translated to

max
a1,a2,a3

Q1 (a1, a2) +Q3 (a1, a3) + f4 (a2, a3) , (13)

f4 brings a new edge in the coordination graph, an induced
edge, which is shown with dashed line between A2 and A3 in
Fig. 2. The next agent to be removed is A3. The maximization
problem is rewritten as

max
a1,a2

Q1 (a1, a2) +

[
max
a3

Q3 (a1, a3) + f4 (a2, a3)

]
. (14)

With the same procedure, A3 introduces f3 (a1, a2), and
b3 (a1, a2). Accordingly, the problem reduces to

max
a1,a2

Q1 (a1, a2) + f3 (a1, a2) . (15)

Next agent to choose its action is A2, for which the problem
results in

f1 = max
a1

f2 (a1) , (16)

where, f2 (a1) = maxa2
Q1 (a1, a2)+ f3 (a1, a2). Finally, A1

chooses its action based on maximizing the function f2 (a1).
The results at this stage are f1, and a∗1. f1 represents the
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maximum value of the global Q-function over a1, a2, a3, and

a4, and a∗1 is the optimal joint action for A1. To recover the

joint action choices, A1 sends a∗1 to A2. Then A2 chooses its

action, a2 = b2(a
∗
1), and sends a∗1, a

∗
2 to A3. A3 and A4 will

choose their actions with the same procedure, a∗3 = b3(a
∗
1, a

∗
2),

and a∗4 = b4(a
∗
2, a

∗
3).

In general, the elimination algorithm maintains a set of

functions in each step. It starts with all local functions,

{Q1, Q2, ..., QN}, and eliminates agents one by one.

E. Local Update Rule
After finding the joint action, each agent will update its

local Q-function. The update rule in (7) can be written as

∑
j

Qj

(
x, aj

)
=

∑
j

Qj

(
x, aj

)
+

α

[∑
j

Rj

(
x, aj

)
+ γmax

a

∑
j

Qj

(
x′, a′)−∑

j

Qj

(
x, aj

)]
,

(17)

where, the joint maximization is solved through VE according

to the last section. By assuming a∗ as the solution to the VE,

and aj
∗ ⊂ a∗ as the optimal joint action set for Qj , the update

rule for each local Q-function can be derived as

Qj(x, aj) = Qj(x, aj) + α[Rj(x, aj) + γQj(x
′, aj

∗)−Qj(x, aj)].

(18)

The Fig. 2 illustrates all messages passed between the agents

to solve VE and update local Q-functions.

IV. POWER ALLOCATION USING COORDINATED

Q-Learning (Q-COPA)

To integrate the idea of coordinated multi-agent learning

into a communication network, we will model the SBS as an

agent, and the whole network as a multi-agent MDP. The goal

of the agents is to maximize total throughput of the network,

as a cooperative game.

A. Q-CoPA Algorithm

The proposed solution of this paper, Q-CoPA, can be

summarized as follows

The interference model of the network will be used to derive
the coordination graph of the agents. The entire network is
modeled as an MDP, and the global Q-function of the MDP is
approximated by linear combination of local Q-functions of the
agents. Each agent, based on the coordination graph, knows
its Scope. Local Q-functions are learned by the agents using
cooperative Q-learning. The cooperation method between the
agents is to maximize the summation of local Q-functions by
choosing an appropriate joint action. This action selection is
implemented using variable elimination and message passing
between the agents. The backhaul of the network is used as
the infrastructure of message passing.

The proposed method is represented in Algorithm 1.

In the Algorithm 1, the loops at lines 5 and 10 are indepen-

dent, and will be executed in parallel by the agents.

Algorithm 1 The proposed Q-CoPA algorithm

1: Initialize x
2: Initialize All Qj(x, aj) arbitrarily
3: for all episodes do
4: Choose a∗ according to VE
5: for all agents do
6: Take action aj , observe Rj

7: end for
8: Observe x′

9: Calculate maxa′ Q according to VE
10: for all agents do
11: Update local Q-function according to Eq. 18
12: end for
13: xj ← x

′
j

14: end for

B. Q-learning Parameters

In the following the actions, and the reward of the Q-

learning algorithm implemented by each agent is defined.

• Actions : Each SBS has a set of actions, which is

defined as the transmit power levels. We define this set

as
{
p1, p2, ..., pNpower

}
. The number of power levels is

defined as Npower.

• Reward : In each episode, SBS chooses a power level,

and transmits its data to its intended user. The user

measures the SINR of the signal, and will feedback it

to the SBS. Then the reward of the SBS j is calculated

as rj = log2 (1 + SINRj).

V. SIMULATION RESULTS

We consider two SBSs, each supporting one UE, with

interfering channels. Each transmitter has omni-directional

antenna and separate power source. The channel model is

assumed to be time-invariant, i.e. slow fading. The channel

gains are assumed to be g1 = 2.5, and g2 = 1.5. The

P1,max = 10 dBm, P2,max = 13 dBm, and σ2 = 0 dBm.

Without loss of generality we assume that β1,2 = β2,1 = β in

Eq. 1. The objective of the optimization is to find the power

allocation to maximize the sum throughput of the network

under individual power constraints.

In executing the Q-CoPA algorithm, each Q-function is

defined as a table, Q-table. The learning rate is α = 0.5,

the discount factor as γ = 0.9, Npower = 100, and the

maximum number of episodes is set to 50 times the size

of a Q-table. The MDP of this problem is assumed to be

stateless. The actions of agents are the transmit powers,

a1 = P1, and a2 = P2, Q-functions are defined as: Q1(P1, P2)
and Q2(P1, P2), and the global Q-function is defined as:

Q (P1, P2) = Q1(P1, P2) +Q2(P1, P2).
According to [3], the optimal power allocation to maximize

the sum-rate of the above network is derived as

(P ∗
1 , P

∗
2 ) =

⎧⎪⎨
⎪⎩
(P1,max, 0), if g1P1,max ≥ max

(
g2P2,max, 1/β

2
)
,

(0, P2,max), if g2P2,max ≥ max
(
g1P1,max, 1/β

2
)
,

(P1,max, P2,max), otherwise.
(19)
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First we will execute our proposed algorithm for β = 0.3.

According to the optimal solution, (0, P2,max) is the optimal

solution. According to Q-CoPA, the SBSs will choose the pow-

ers that maximizes the global Q-function. The learned global

Q-function, Q (P1, P2), is plotted in Fig. 3 with maximum

value at P1 = 0 and P2 = P2,max, which is optimal.

Fig. 3: Global action-value function.

In Fig. 4, the solution of the power allocation for different

values of the portion of interference between two channels,

β ∈ [0, 1], is plotted. The greedy approach is defined to

allocate full power to the transmitter with higher peak power,

and zero to the other one. The simultaneous allocation is

defined to use maximum power at both transmitters. According

to Fig. 4, the Q-CoPA finds the optimal solution for all values

of β.

Fig. 4: Normalized throughput versus portion of interference (β).

VI. CONCLUSION

In this paper we used message-passing and variable elim-

ination to coordinate the power allocation in order to maxi-

mize a common goal in an interference-limited network. The

proposed solution is based on Q-learning, and does not need

to know the model of the system, hence, it adapts itself if

the architecture or number of SBSs in the network changes.

Another advantage of this method is that the Q-functions

are learned by just measuring the SINR value at each node

(radio measurement), while the optimal solution depends on

the channel estimation, for example values of g1 and g2 in the

simulation in the section V.

The variable elimination algorithm is exact, so as long as the

local Q-functions’ action set covers all interfering SBSs, the

proposed solution is optimal. Although, when each node of the

CG gets densely connected, i.e., the size of action set of local

Q-function grows, for the sake of computational complexity

we need to approximate local Q-functions’ action set with

smaller sets, which results in suboptimal solution. Therefore,

the proposed solution is suitable for indoor applications, or

networks in which the number of interferes is low. As the

future work the authors will explore the edge-based decom-

position to support outdoor networks and highly dense CGs.
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