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Abstract 

 

This thesis compares the performance of ten well-known asset-pricing models for cross-sectional 

returns of various portfolios from January 1967 to December 2016. We rely on the distance-based 

metrics as the primary performance measure and use quantile regressions to compare models at a 

wide range of quantiles of the asset return distribution. The model performance is examined from 

both statistical and economic perspectives. We find that the Fama and French (2018) six-factor 

model reliably outperforms other competing models in pricing the selected portfolios. In particular, 

both the momentum factor and the value factor are necessary in asset-pricing models to explain 

the return variations in different quantiles. We also find that the performance of Barilla and 

Shanken (2018) six-factor model exhibits strong explanatory power in medium to high quantiles, 

despite some existing findings that their model performs poorly in OLS regressions. Overall, we 

show that the distance-based metrics coupled with quantile regressions provide a consistent and 

robust model-comparison methodology that largely enhances the existing OLS-based statistical 

measures.  
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1. Introduction 

As the asset pricing literature continues to develop, numerous multi-factor models 

are proposed to explain the average returns for a wide range of cross-sectional assets. The 

Capital Asset Pricing Model (CAPM) introduced by Sharpe (1964) and Lintner (1965) 

describes the relationship between a single market factor of systematic risks and expected 

returns. Fama and French (1993) develop a three-factor model (FF3) that includes the 

market factor, the size factor, and the value factor. Carhart (1997) introduces an additional 

momentum factor to the FF3, and the four-factor model dubbed Carhart4 has become the 

benchmark model in empirical asset pricing and performance evaluation during the first 

decade of the new millennium. In the current decade, Fama and French (2015) augment 

two additional factors, namely, the profitability factor and the investment factor to the FF3 

to introduce their five-factor model (FF5). Fama and French (2018) further add the 

momentum factor so that their six-factor model (FF6) has now become the state-of-the-art 

benchmark model. In the meantime, inspired by the neoclassical q-theory, Hou, Xue and 

Lu (2015) construct the q-factor model (QF) that consists of alternative investment and 

profitability factors to the Fama-French models; Recently, they propose their new version 

of the five-factor model (Q5) by taking an expected growth factor into consideration. As 

for other factor models, Stambaugh and Yuan (SY, 2016) suggest that mispricing factors 

can be used in explaining the expected returns. Barillas and Shanken (2018) believe that 

the timely updated value factor can provide additional values to the descriptive power of 

multi-factor models. 

All the multifactor models cited above are designed to explain expected returns of 

a cross-section of Left-Hand-Side (RHS) assets using a set of Right-Hand-Side (RHS) 
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factors. Given the variety of portfolio-based factors that have been examined by researchers, 

it is important to understand how to best combine them in a parsimonious asset-pricing 

model for expected returns, one that excludes redundant factors. Fama and French (2018) 

caution that the multiple comparisons problem may arise in undisciplined searching for the 

best combination in a long list of potential factors, and the set of model factors should be 

limited to ensure the robustness of results. The main objective of this thesis is to compare 

the relative performance of the above-mentioned asset-pricing models, using quantile 

regressions based on the distance-based metrics recently developed by Goyal, He and Huh 

(2019). 

In empirical asset pricing, there are standard econometric techniques (e.g., the GRS 

test) to evaluate the adequacy of a single model. However, a satisfactory statistical 

methodology to identify the best factor-pricing model(s) among several competing models 

has drawn research attention only in recent years. Some studies mention that traditional 

methods may not be suitable in comparing asset-pricing models. For example, the GRS-

statistic, generally regarded as the authoritative statistical method, may induce the power 

problem, i.e., models that produce economically insignificant pricing errors tend to be 

over-rejected while models that produce large pricing errors with inflated residual 

covariance matrices tend to be under-rejected (Fama and French, 1993; Harvey, 2017). In 

addition, the alpha-based statistics is another widely used method that ignores the power 

problem but causes the extreme-error problem. The undisciplined use of the GRS and 

alpha-based statistics often leads to contradicting and counter-intuitive model choices. 

To address the conflicting inferences caused by the power and extreme-error 

problems, in this thesis, we use distance-based metrics (Goyal, He and Huh, 2019) as the 
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comparing metrics to measure model performance for a wide range of portfolios that 

consist of all NYSE, AMEX, and NASDAQ average stock returns from January 1967 to 

December 2016. The distance-based metrics proposed by Goyal, He and Huh (2019) 

measure model performance as the Euclidean distance between two distributions using the 

OLS regressions to estimate the mean and standard error of the mispricing parameter 

(alpha). However, the OLS approach only estimates model performance at the mean of 

returns. This is a valid method if alphas follow a normal distribution. Moreover, the 

assumption of normal distribution is often severely rejected for asset returns and alphas, 

which are widely known to exhibit skewness and fat tails. How do we compare models 

under the more general distributional assumption of alphas? Do we still obtain consistent 

model rankings across a wide range of LHS assets as documented in Goyal, He and Huh 

(2019) for different quantiles of the alpha distribution? In light of these questions, the 

motivation of this thesis is to test the distance-based metrics under a more general 

distributional assumption, checking whether the model ranking results are still consistent 

across different quantiles of the distribution of alphas. To this end, a more appropriate 

method is the quantile regression (QR) introduced by Koenker and Bassett (1978). The QR 

method is more robust to non-normal errors and outliers as it provides a richer 

characterization of data, allowing us to consider the impact of a covariate on the entire 

distribution of returns, not merely its conditional mean. 

The contributions of this study are threefold. First, we employ the recently 

developed distance-based metrics (Goyal, He and Huh 2019) as the main performance 

measures and use quantile regressions instead of OLS regressions. In this regard, this thesis 

is the first to combine the two empirical methodologies in a systematic way. Specifically, 
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as shown in Goyal, He and Huh (2019), the distance metrics effectively address the power 

problem and the extreme-error problems in empirical asset pricing. And the quantile-

regression approach allows us to not only evaluate model performance by the mean returns, 

but also consider how the models perform at various quantiles of the entire distribution of 

asset returns. Second, the combined methodology of distance metrics and quantile 

regressions generates a comprehensive set of empirical results that largely expand the 

model-comparison findings in the existing literature. Overall, we find that the Fama and 

French (2018) six-factor model reliably outperforms other alternative models, including its 

close competitors such as the Q5 model (Hou, Mo, Xue and Zhang, 2018), the q-factor 

model (Hou, Xue and Zhang, 2015), and the SY model (Stambaugh and Yuan, 2017). The 

third contribution is with regard to the performance of some controversial factors in the 

extant asset-pricing literature. In particular, the FF5 model (Fama and French, 2015) does 

not include the momentum factor, which is reluctantly added by Fama and French (2018) 

to their FF6 model. Furthermore, Fama and French (2015) and Hou, Xue and Zhang (2015) 

find that the value factor is redundant. However, these findings are based on the statistical 

measures about the average returns. To what extent are the momentum factor and the value 

factor important if other distributional quantiles are considered by the distance metrics? 

The combined methodology allows us to answer this question. We find that both the 

momentum and the value factors (HML) are important in asset-pricing models. Specifically, 

the momentum factor shows its most descriptive power around the medium quantiles; and 

the value factor exhibits some significant pricing ability in some high quantiles. These 

findings are new to the existing asset-pricing literature and carry important implications to 

the performance evaluation of actively managed portfolios and risk management. 
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The remainder of the paper is structured as follows: Section 2 conducts the literature 

review. Section 3 presents the distance-based metrics and quantile regressions. Section 4 

describes the data for the factors and test portfolios. Section 5 presents the empirical results 

of the comparison of asset-pricing models at various percentiles and analyzes them from 

both statistical and economic perspectives. Section 6 concludes and summarizes the main 

findings on model comparison. 

2. Literature Reivew 

2.1. Asset-Pricing Models 

The development of asset-pricing models aims to explain cross-sectional expected 

returns using a small number of factors with high precision. The pioneer work of Sharpe 

(1964) interprets the relationship between an individual asset expected return and 

systematic risks and propose the original concept of a capital asset pricing model (CAPM). 

Lintner (1965) converts this conception into the corresponding formula and refines some 

important properties of the formula. Later researches realize that CAPM fails to describe 

the cross-sectional returns while some unmentioned variables in asset-pricing theory are 

able to provide additional explanatory power for average returns. Indeed, Ball (1978), Banz 

(1981), Basu (1983) and Lakonishok, Shleifer and Vishny (1994) confirm the existence of 

a relationship between average stock returns and firm size, book-to-market equity, 

earnings-to-price ratio, cash flow-to-price ratio and past sales growth. The follow-up 

research of Fama and French (1993) constructs a three-factor model (FF3) based on CAPM 

with the addition of the size and value factors as its second and third factors. 
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Numerous empirical researches assert that FF3 outperforms CAPM and better 

describes the cross-section of asset returns (Griffin & Lemmon, 2002; Liew & Vassalou, 

2000). This makes the FF3 the benchmark model to price the variation in cross-sectional 

asset returns; many later proposed models tend to expand the FF3 with other additional 

factors. 

Carhart (1997) finds that the common factors in stock returns and persistent 

differences in mutual fund expenses and transaction costs can explain almost all of the 

predictability in mutual fund returns, and takes the factors affecting mutual fund into 

consideration. Hendricks, Patel and Zeckhauser (1993), Goetzmann and Ibbotson (1994), 

Brown and Goetzmann (1995), and Wermers (1996) find evidence of persistence in mutual 

fund performance over short-term horizons of one to three years, and they attribute the 

persistence to the "hot hand" phenomenon or common investment strategies. Following 

these studies, Carhart (1997) indicates that Jegadeesh and Titman (1993) one-year 

momentum in stock returns accounts for the “hot hand” effect in mutual fund performance, 

and thus constructs a four-factor model (CAR4) that includes the FF3 factors and the 

momentum factor. 

With regard to stock returns, Novy-Marx (2013) identifies a proxy for expected 

profitability that is strongly related to average returns. Aharoni, Grundy, and Zeng (2013) 

document a weaker but statistically reliable relation between investment and average return. 

Fama and French (2015) augment the previous FF3 with a new five-factor model (FF5) 

which further captures profitability and investment patterns in describing average stock 

returns. Although FF5 does not include any factors capturing momentum or anomalies, the 

necessity of these factors is mentioned in later studies. Meanwhile, the argument first 
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proposed in Fama and French (2015) that whether the value factor (HML) is a redundant 

factor raises further concerns in empirical studies. 

Hou et al. (2015) show that HML’s high average return is fully captured by its 

exposures to the investment and profitability factors. Inspired by the neoclassical q-theory 

of investment, they construct their four-factor model (QF), which consists of the market, 

size, investment and profitability factors. The market factor is the same as the CAPM, while 

remaining factors are estimated by their methods. The authors believe that these additional 

factors not only capture the effect of HML, but also outperform FF3 and CAR4 in 

describing portfolio returns sorted on various variables. In contrast to Fama and French 

(1993, 2015), Hou et al. (2015) are primarily concerned with explaining the returns 

associated with anomaly variables not used to construct their factors, and they focus on 

value-weight portfolios from univariate sorts on each variable. Moreover, motivated by the 

theoretical model of Cochrane (1991), Hou et al. (2018) propose the Q5 model as their new 

version of the asset-pricing model. The Q5 model improves the QF model with a new 

expected growth factor, which adds additional explanatory power in the cross-section. 

Importantly, the authors claim that Q5 outperforms all versions of the Fama-French models. 

Stambaugh and Yuan (2017) argue that given the proliferation of anomalies, an 

alternative factor model that can accommodate more anomalies is required. Similar to Hou 

et al. (2015), they construct a four-factor model (SY) with the market factor of CAPM and 

their construction of the size factor. Unlike FF5 and QF, the SY model does not include 

any profitability factors; instead, their new model attempts to capture both the value and 

momentum factors with two mispricing factors. 
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Fama and French (2018) compare all existing factors in the previous literature and 

emphasize the importance of using theory to limit the set of competing models. They argue 

that in the ideal case, the theory provides fully specified models that lead to precise 

statements about the relation between an asset’s measurable characteristics and its expected 

returns. By ranking the maximum squared Sharpe ratio for various combinations of model 

factors, they find that the winner is the six-factor model (FF6): the FF5 plus the momentum 

factor. They show that the FF6 model outperforms other factor combinations; however, 

they argue that the momentum factor is somewhat suspicious due to the absence of 

theoretical justification. 

Following Fama and French (2018), Barillas and Shanken (2018) examine the best 

combination of portfolio-based factors in a parsimonious asset-pricing model. The winner 

in their Bayesian asset pricing test is the six-factor model (BS) consisting of the market, 

the size and the momentum factors of CAR4 model, plus the investment and the 

profitability factors of QF model and a newly constructed value factor. The new value 

factor HMLm introduced in Asness and Frazzini (2013) is based on book-to-market 

rankings using the most recent monthly stock prices in the denominator. Barillas and 

Shanken (2018) emphasize that by substituting HMLm to HML, the value and the 

momentum factors are not redundant in their model. 

2.2. Frequentist vs. Bayesian Views 

To estimate how competent a set of selected factors explain cross-sectional returns, 

we compare the intercepts and the error terms from regressions of an asset’s excess returns 

on the factor returns. An asset-pricing model is said to explain expected returns when the 

intercepts are indistinguishable from zero (Fama & French, 2015). While a flawless 
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prediction on the basis of regression equations seems impractical, the asset-pricing theory 

suggests that models that generate smaller alphas have smaller pricing errors hence induce 

better pricing competency. The error terms indicate the precision of the estimated alphas. 

The smaller the value of the error terms, the less dispersed of the pricing errors in the time-

series regressions thus the higher power of the model. 

t-statistics for a single asset and the F-statistics for multiple assets (GRS henceforth) 

in Gibbons, Ross and Shanken (1989) are the most widely used statistical measures in 

testing asset-pricing models. They test whether the single intercept (t-statistic) or the joint 

intercepts (GRS) from regressions is (are) equal to zero. However, GRS-statistics tend to 

over-reject prominent models such as the Fama and French (2015) five-factor model (FF5). 

The terminology “too much power” describes the case where the GRS test over-rejects 

models that produce economically insignificant pricing errors. Another type of the "power 

problem” happens when the GRS-statistic fails to reject models that produce large pricing 

errors with inflated residual covariance matrices (dubbed "lack of power"). For instance, 

Fama and French (2012, 2018) report that GRS cannot reject global models in pricing 

Japanese stock returns. Furthermore, GRS is not suitable for comparing performances of 

non-nested models (Fama & French, 2018). 

The mean absolute alpha (MAE), one of the alpha-based statistics, is another 

popular method frequently used jointly with the GRS statistic to compare model 

performance (Fama & French, 2018; Hou et al., 2015, Hou et al., 2018); Stambaugh & 

Yuan, 2017). It mainly focuses on model mispricing error, suggesting models with the 

lowest MAE value best describe returns. However, this method underestimates the impact 

of extreme alpha values on model performance. More importantly, MAE does not consider 
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the power problem as it does not take the residual covariance matrix into account. For the 

same reason, the power problem also persists in other model performance measures such 

as the number of significant alpha’s t-statistics, the number of GRS rejections (Hou et al, 

2015, 2016), the number of alphas and the mean absolute t-statistics (Stambaugh & Yuan, 

2017). 

The power and extreme error problems of GRS and MAE statistics may induce 

contradicting model comparison results (Goyal, He and Huh, 2019), making model 

performance ranking ambiguous and challenging to interpret. Goyal, He and Huh (2019) 

point out that the root cause of these problems is that the two statistics are based on the 

Frequentist view of model tests, and they believe that their methods based on Bayesian 

view is more appropriate in comparing model performance. Their Bayesian view is 

consistent with the existing model comparison literature. For example, Pastor and 

Stambaugh (2000) propose utility-based metrics to examine the impact of varying degree 

of prior beliefs on portfolio choices from a Bayesian perspective. Recently, Barillas and 

Shanken (2018) use the Bayes factor to compute the posterior model probabilities and then 

choose the best set of factors. 

Goyal, He and Huh (2019) compare the difference between Frequentist and 

Bayesian views and introduce the distance-based metrics that have intuitive Bayesian 

interpretations. They argue that the distance-based metrics effectively address the power 

problems and the extreme-error problems described above as the distance measures treat 

the size of pricing errors and the size of mispricing uncertainty not as a ratio but as the 

square root of the sum of pricing errors and standard errors. 
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2.3. Quantile Regression 

All asset-pricing models mentioned in the previous section are based on the 

assumption that error terms are normally distributed. Hence, these studies use the ordinary 

least square (OLS) regressions to estimate the alphas and residual covariance metrics, 

which are then used to construct t-test and GRS test in asset pricing. 

However, with the development of the asset pricing literature, normally distributed 

asset returns are severely rejected. For example, early studies such as Officer (1972) 

document that the distribution of returns has fat tails as compared to normal distribution. 

Levhari and Levy (1977) indicate that the stock returns carry fat tails and the beta estimates 

using monthly data are not the same as the beta estimated using yearly data. Some asset-

pricing models’ unsustainable pricing ability also implies the asymmetry of stock returns. 

Horowitz, Loughran and Savin (2000) argue that the results of the size effect are not robust 

across different sample periods and it disappears since 1982. These studies, among many 

others such as Chan and Lakonishok (1992), suggest the usage of more robust methods 

instead of OLS regressions. 

The quantile regression method is proposed to be one of the favorable alternatives. 

Introduced in Koenker and Bassett (1978), quantile regression not only provides a complete 

coverage for the whole distribution of factor returns, but it also places no limitation on the 

distribution of asset returns (Mosteller & Tukey, 1977). Quantile regressions have been 

widely used in financial research. For example, Bassett and Chen (2001) use quantile 

regressions for portfolio analysis. Barnes and Hughes (2002) test the cross-sectional 

pricing ability of CAPM using quantile regressions. Ma and Pohlman (2008) analyze a 

similar relationship for different asset pricing factors. Chiang and Li (2012) employ 
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quantile regressions to examine the risk-return relation by applying high-frequency data 

from four major stock indexes in the US market and find that the relationship between the 

mean of the excess returns and expected risk moves from negative to positive as percentile 

increases. Autchariyapanitkul, Chanaim and Sriboonchitta. (2015) use quantile regressions 

under asymmetric Laplace distribution to predict stock returns. Chen, So and Chiang (2016) 

propose a nonlinear threshold quantile GARCH model to estimate the relationship between 

return and lagged abnormal volume. Yamaka, Autchariyapanitkul, Mennejuk, and 

Sriboonchitta (2017) introduce the generalized maximum entropy (GME) approach 

proposed by Golan, Judge, and Miller (1997) to estimate the quantile regression model for 

capital asset pricing. Sharama, Gupta and Singh (2016) test the roles of size, value and 

market factors in explaining the returns of 30 Dow Jones Industrial Average Stocks using 

quantile regressions for the period of global financial crisis starting from January 2005 to 

December 2008. 

Furthermore, the distributional assumption of OLS regressions leads some studies 

to cast doubt on the success of existing pricing models (Black, 1993; Kothari & Shanken, 

1995; Levhari & Levy, 1977; Officer, 1972; Knez & Ready, 1997; Horowitz et al., 2000). 

Along this line of empirical research, Allen, Singh, and Powell (2011) test the pricing 

ability of the Fama and French three-factor model using quantile regressions. Their study 

not only shows that the factor models do not necessarily follow a linear relationship but 

also shows that the traditional method of OLS is less effective in analyzing the extremes 

within a distribution, which is often of key interest to investors and risk managers. More 

recently, Sharama, Gupta and Singh (2016) test the pricing ability of Carhart (1997) four-

factor model using quantile regressions. The results of the study reveal that the quantile 
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regression model has superior fitting across all percentile levels to the OLS that fails to fit 

these four factors across all percentile levels. 

3. Methodology 

3.1. Distance-based metrics 

The distance metrics are derived from the classic research of optimal transportation 

theory rooted in mathematics and economics, with a wide range of applications in 

economics and econometrics. The optimal transportation problem was originally 

constructed in Monge (1781), where the author seeks to estimate the shortest distance or 

the minimum cost to move the mass of one probability distribution to another one by 

defining a quadratic Wasserstein distance between two probability distributions. 

Economically, the distance-based metric is the minimal cost of moving the mass of model-

implied distribution to data-based distribution of cross-sectional asset returns. In other 

words, it is the minimum cost of holding a dogmatic belief in the model from a Bayesian 

perspective. 

Let 𝑃𝐼 and 𝑃𝐼𝐼 be Gaussian measures on ℝ𝑛 with finite second moments such that 

𝑃𝐼  ~ 𝑁(𝛼𝐼 , 𝑉𝐼) and 𝑃𝐼𝐼  ~ 𝑁(𝛼𝐼𝐼 , 𝑉𝐼𝐼), where 𝛼𝐼 and 𝛼𝐼𝐼 are two 𝑛 × 1 vectors of mean, and 

𝑉𝐼  and 𝑉𝐼𝐼   are two 𝑛 × 𝑛  symmetric, positive-definite covariance matrices. Then, the 

quadratic Wasserstein distance (WD2) between 𝑃𝐼 and 𝑃𝐼𝐼  is given by Equation 1. 
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𝑊𝐷2 = √‖𝛼𝐼𝐼 − 𝛼𝐼‖2 + ‖𝑉𝐼𝐼 − 𝑉𝐼‖ (1) 

‖𝑉𝐼𝐼 − 𝑉𝐼‖ = Tr (𝑉𝐼 + 𝑉𝐼𝐼 − 2(𝑉𝐼

1

2𝑉𝐼𝐼𝑉𝐼

1

2)
1

2) (2) 

Where ‖𝛼𝐼𝐼 − 𝛼𝐼‖  is the Euclidean 2-norm of the mean difference vector, 

‖𝑉𝐼𝐼 − 𝑉𝐼‖ is the distance between the two covariance matrices, and 𝑉
1

2 is the square root 

of the covariance matrix such that 𝑉 = 𝑉
1

2 𝑉
1

2. 

To use this distance measure in Bayesian setting, the first two moments, (𝛼𝐼 , 𝑉𝐼) of 

𝑃𝐼 and (𝛼𝐼𝐼 , 𝑉𝐼𝐼) of 𝑃𝐼𝐼 are replaced with their model-generated posterior estimates of the 

alpha and its variance, (𝛼̃𝐼 , 𝑉̃𝛼𝐼
) and (𝛼̃𝐼𝐼 , 𝑉̃𝛼𝐼𝐼

), respectively, where 𝐼 and 𝐼𝐼 represent two 

distinct distribution specifications about prior mispricing uncertainty (𝜎𝛼) of for a given 

asset-pricing model. 

In particular, let prior specification I be set as 𝜎𝛼 = 0 (complete confidence in the 

model’s pricing ability); under such dogmatic beliefs, there is no mispricing uncertainty 

and hence the posterior estimate of the alpha shrinks to its theoretical value of zero: i.e., 

both (𝛼̃𝐼 and 𝑉̃𝛼𝐼
) are zero. On the other hand, let prior specification II be set as 𝜎𝛼 = ∞  

(complete skepticism about the model’s pricing ability), in which case the posterior 

estimates (𝛼̃𝐼𝐼 , 𝑉̃𝛼𝐼𝐼
) shrink to their sample estimates based entirely on the sample of data. 

Given such prior specifications, the quadratic distance metric reduces to  𝑊𝐷2 =

 √‖𝛼̃𝐼𝐼‖2 + 𝑇𝑟(𝑉̃𝛼𝐼𝐼
), which also defined as the total distance (TD). 

Given the non-informativeness in prior specification II, the posterior estimates 𝛼̃𝐼𝐼 

and 𝑉̃𝛼𝐼𝐼
 are identical to the maximum-likelihood estimates of the alpha, 𝛼̂ , and its 
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covariance matrix, 𝑉̂𝛼 , respectively. Hence, the previous equation has its frequentist-

equivalent form as 

𝑇𝐷 =  √‖𝛼̂‖2 + 𝑇𝑟(𝑉̂𝛼) (3) 

Where ‖𝛼̂‖2 =  ∑ 𝛼̃𝑖
2𝑛

𝑖=1  is the sum of squared alphas of the LHS returns in asset-

pricing test, and 𝑇𝑟(𝑉̂𝛼) =  ∑ 𝜎̃𝛼𝑖
2𝑛

𝑖=1 , where 𝜎̃𝛼𝑖 =  𝑉̂𝛼

1

2(𝑖, 𝑖) is the posterior estimate of the 

standard error of the alpha for asset 𝑖. 

The total distance (TD) is measured as the shortest distance between the theoretical 

and reality model results, representing the divergence of absolute confidence and 

skepticism of a certain model. Similar to the GRS statistics, TD estimates model overall 

performance in a single measure, yet contrast to its counterpart, distance-based metrics 

consider neither significant alpha dispersion nor mispricing uncertainty good news. 

We also include the average distance metric (AD) to compare model performance 

on average when the numbers of test assets are different: 

𝐴𝐷 = √𝑀𝑆𝐸(𝛼̃) + 𝑀𝑆𝐸(𝜎̃𝛼) =  √∑ (𝛼̃𝑖
2 +  𝜎̃𝛼𝑖

2)/𝑛𝑛
𝑖=1  (4) 

Where 𝑀𝑆𝐸(𝛼̃) =  ∑ 𝛼̃𝑖
2/𝑛𝑛

𝑖=1  and 𝑀𝑆𝐸(𝜎̃𝛼) =  𝜎̃𝛼𝑖
2/𝑛  are the mean squared 

errors of the pricing errors and their standard errors, respectively. 

Both AD and mean absolute alpha (MAE) measure average model performance. 

While the latter disregards model power, hence equally weighs different alpha magnitudes, 

the former penalizes extreme pricing errors severely and favors models with insignificant 

alphas and higher power with low alpha dispersion. 
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3.2. Quantile Regression  

Koenker and Bassett (1978) extend the conventional conditional mean least squares 

estimation to a range of models for various conditional quantile functions and derive the 

quantile regression that disregards OLS paramedic distributional assumption of the error 

terms. Quantile regression estimates the function of conditional median using the median 

estimation that minimizes the symmetrically weighted sum of absolute errors, in contrast 

to other conditional quantile functions where the weights are allocated accordingly to 

focused quantiles rather than 0.5, making it extremely potent when dealing with outliers. 

Overall, the quantile regression approaches excel in monitoring models for conditional 

functions of median as well as every other quantile. Such a mechanism allows quantile 

regression techniques to estimate the entire selection of conditional quantile functions, 

hence more comprehensively deriving statistical analyses of the inherent random 

relationships across distinct allocated weights or quantiles. Common quantile regression 

models minimize the weighted sum of absolute deviations, as expressed in the following 

Equation. 

min
𝛽𝜖𝑅𝑝

∑ 𝜌𝜏(𝛾𝑖 −  𝜉(𝑥𝑖 , 𝛽))𝑛
𝑖=1  (5) 

Where 𝜌𝜏 = 𝜇(𝜏 − 𝐼(𝜇) < 0)  is the check function as defined in Koenker and 

Bassett (1978). 
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We set 𝜏 to 
1

2
 for median regression, or any other percentiles for their respective 

weighted asymmetric regression. 

There are two major differences between QR and OLS. First, quantile regression 

focuses on different percentiles, whereas OLS regression only focuses on the mean 

estimation. Second, quantile regression seeks to minimize absolute deviations from the 

weighted values, whereas OLS regression aims to minimize squared deviations from the 

mean. 

4. Data 

Our empirical tests compare the performance of ten asset-pricing models in 

describing the distribution of returns on a wide range of sorted portfolios. The sample 

period of our data covers 600-month from January 1967 to December 2016. The data are 

provided by Kenneth French’s data library1 (for all test portfolios and most factor returns), 

Lu Zhang (for QF and Q5 factors) and AQR Capital Management (for HMLm). 

 
1 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  

Figure 1: Check function 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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4.1. LHS portfolios 

The left-hand-side (LHS) portfolios consist of four sets of bivariate-sorted 

portfolios, three sets of triple-sorted portfolios and four sets of univariate-sorted portfolios. 

A bivariate- or triple-sorted portfolio is based on a combination of two or three sort 

factors from a selection of the five factors: Size (market capitalization – price times shares 

outstanding), B/M (book-to-market ratio), OP (profitability or performance ratio from 

operations), INV (Annual asset growth rate), MOM (return spread of momentum). 

Consistent with the sample portfolios in Fama and French (2015, 2016b, 2018), the 

four sets of bivariate-sorted portfolios are from five 5*5 quantile sorts on Size and, 

independently, on B/M, OP or INV. For example, 5*5 Size-B/M portfolios include average 

monthly U.S one-month T-bill excess returns for 25 value-weight portfolios from 

independent sorts of stocks into five Size groups and five B/M groups. 

The three sets of triple-sorted (2*4*4) portfolios are 32 Size-B/M-OP, 32 Size-

B/M-Inv, and 32 Size-OP-Inv portfolios, respectively. They are formed by two Size groups, 

big and small, defined as the top half and bottom half of the market capitalization, and four 

quartiles groups for each of the other two sort variables. The breakpoints of all sort 

variables are based on NYSE stocks, while the portfolio sample also includes AMEX and 

NASDAQ stocks. Each set of LHS assets is individually and jointly examined over a cross-

section of 196 (25*4+32*3) pooled portfolios. 

In addition, following Fama and French (2016b) and Hou et al. (2015), we also 

examine 15 sets of univariate-sorted decile portfolios that cover numerous anomalies, most 

of which are not targeted by the respective factor model. The portfolios are also categorized 

into four groups: 1) the FF factors related, which contains 40 decile portfolios sorted on 
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market capitalization (Size), book-to-market ratio (B/M), operating profitability (OP), and 

investment ratio (INV); 2) the valuation related, which contains 30 decile portfolios formed 

on earnings-to-price (E/P), cash flow-to-price (CF/P), and the dividend yield (D/P); 3) the 

past return related, which contains 30 decile portfolios formed on momentum (MOM), 

short-term reversal (STR) and long-term reversal (LTR); and 4) other anomalies related, 

which contains 50 decile portfolios formed on accruals (AC), net share issues (NI), market 

beta (Beta), return variance (VAR) and groups individually as well as jointly as another 

broad cross-section of 150 (40+30*2+50) to augmented portfolios. The two broad cross-

sections of 196 and 150 pooled assets are used to cross-verify model ranking consistency 

generated by different performance metrics for the asset-pricing tests. The data on all LHS 

portfolios and definitions of the sorting variables are obtained from Kenneth French’s 

website. 

4.2. RHS models 

[Please insert Table 1 about here] 

We limit the comparative analyses to the ten asset-pricing models shown in Table 

1, with two groups of nested models and two non-nested models. 

The first group of nested models is FF6 versus FF6-hml, FF5, CAR4, FF3, and 

CAPM, including six factors at maximum. MKT (market factor) is the return on the value-

weight market portfolio minus the risk free return; SMB (size factor) is the return on a 

diversified portfolio of small stocks minus the return on a diversified portfolio of big stocks; 

HML (value factor) is the difference between the returns on diversified portfolios of high 

and low B/M stocks; RMW (profitability factor) is the difference between the returns on 

diversified portfolios of stocks with robust and weak profitability; CMA (investment factor) 
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is the difference between the returns on diversified portfolios of the stocks of low and high 

investment firms, which we call conservative and aggressive; and MOM (momentum 

factor) is the difference between the returns on diversified portfolios of up and down stocks. 

The capital asset pricing model (CAPM) has MKT as the only explanatory variable. 

FF3 adds SMB and HML based on the CAPM. On top of FF3, the CAR4 model adds MOM, 

and FF5 extends RMW and CMA separately. The FF6 model has the maximum number of 

factors among this group, with the MOM added to the FF5. FF6-hml is a new five-factor 

model that excludes HML from the FF6 model. 

The second group of nested models is Q5 versus QF, both of which are proposed 

by Hou et al. (2015, 2018). The QF model consists of MKT as the market factor, ME as 

the size factor, IA as the investment factor and ROE as the profitability factor. After that, 

EG as the expected growth factor added to the QF model to form a new five-factor model 

(Q5). The computation of MKT is the same as in the group of FF models, while other 

factors replaced by the authors’ own construction. 

In addition to comparing the factors in both FF models and q-factor models, Barillas 

and Shanken (2018) propose their version model by combining MKT of the CAPM model, 

MOM of the CAR4 model, IA and ROE of the QF model, SMBsy replacing SMB in FF 

model and HMLm as the monthly updated factor motivated by Asness and Frazzini (2013). 

As the new value factor, HMLm is based on book-to-market rankings that use the most 

recent monthly stock price in the denominator. This is in contrast to Fama and French 

(1993), who use annually updated logged prices in constructing HML. 

Furthermore, Stambaugh and Yuan (2017) combine the two mispricing factors 

(MGMT and PERF) with market and size factors to produce another non-nested four-factor 
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model (SY). They sort and rank each stock of NYSE, AMEX, and NASDAQ with respect 

to the available anomaly measures within each of the two clusters. Thus, each month a 

stock has two composite mispricing measures, P1 and P2. The computation of MGMT is 

the average returns on the two underpriced stocks (sorted by P1) minus the average returns 

on the two overpriced stocks (P1), and the computation of PERF is the same as MGMT but 

with stocks sorted by the P2 measurement. 

[Please insert Table 2 about here] 

Table 2 shows summary statistics for the total 14 factors mentioned above. Panel 

A of Table 2 describes the most common features in the distribution across the model 

factors. The average benchmark market excess return (MKT) factor is slightly above 0.5% 

with a small standard deviation of 4.53%. Among all factors, EG has the highest return 

spread at 0.82% and the lowest standard deviation of 1.88%, while SMB and RMW have 

lowest returns at 0.25% and 0.27% respectively. None of the remaining factors’ standard 

deviation surpasses that of market excess returns. About the quantiles, MOM factor 

registers a minimum return of -34.39%, making it the only factor that has a lower minimum 

return than the -23.24% of market excess returns. While CMA has the highest minimum 

return of -6.88%, it also records the lowest maximum return at 9.58%. The three factors of 

SMB, MOM, and RERF have the highest maximum returns of over 18% among the factors. 

Regarding the distributional center tendency and skewness, market excess return, MOM 

and ROE are the only factors that have higher medians than mean returns while at the same 

time reporting a skewness of less than -0.5, indicating that they have more extreme returns 

on the left tail and are left-skewed. Meanwhile, ME and HMLm factors are significantly 

right-skewed with skewness scores of 0.61 and 0.88, and the remaining 9 factors are fairly 
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symmetrical. Five factors, i.e., RMW, MOM, ME, ROE and HMLm, have kurtoses 

significantly greater than +3, with the first two exceeding +10, suggesting that their return 

distributions have less distinct central peaks and rather thick tails. SMB and RERF have 

kurtoses close to +3, indicating that their return distributions resemble a normal distribution, 

while other 7 low kurtoses imply sharper and higher central peaks. 

Panel B of Table 2 reports the correlations between each two pair of factors. The 

market factor shows the highest positive correlation of 0.28 with SMB and the most 

negative of -0.54 with MGMT. The four pairs/groups of SMB-ME-SMBsy (size factor), 

HML-HMLm (value factor), RMW-ROE (profitability factor) and CMA-IA (investment 

factor) all record high positive correlation coefficients, with 0.97 as the highest. Besides, 

value factors and investment factors have relatively high correlation coefficients: 0.70 of 

HML-CMA; 0.67 of HML-IA; 0.52 of HMLm-CMA and 0.5 of HMLm-IA. Some factors 

within the same model have relatively high correlation as well. The pair of EG-ROE in the 

Q5 model has a positive correlation coefficient of 0.52. In the BS model, the pair of MOM-

ROE shows a positive correlation (0.5), while the pair of MOM-HMLm shows a negative 

correlation (-0.65). The mispricing factor MGMT in the SY model shows a negative 

correlation to the market factor (MKT). Among all tested factors not in SY model, other 

three kinds of factors demonstrate a relatively high correlation to MGMT as well: value 

factors (HML-MGMT with 0.7 and HMLm-MGMT with 0.49), investment factors (CMA-

MGMT with 0.79 and IA-MGMT with 0.78) and the expected growth factor (EG-MGMT 

with 0.54). Another mispricing factor of the SY model, RERF, shows a relatively high 

correlation with the other three factors, which are momentum factor (MOM-RERF with 
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0.72), profitability factor (ROW-RERF with 0.64) and timely updated value factor 

(HMLm-RERF with -0.63) respectively. 

For each LHS portfolio, we explain excess returns (Ri-Rf)  of each model by 

running time-series regressions on the corresponding sets of factors of the ten models, with 

the quantile points increasing by 5% at each distributional level: 

𝑅𝑖𝑡 − 𝑅𝑓𝑡 = 𝛼𝑖 + 𝛽𝑖𝐹𝑡 + 𝜀𝑖𝑡  (6) 

Using the results from the time-series quantile regressions, we compute metrics for 

assessing the performance of asset-pricing models, such as TD, AD, RMSE(α̃), RMSE(σ̃α). 

We also use the GRS-statistic and the MAE-statistic as the basis for comparison. 

5. Empirical Results 

In this section, we present the performance comparison of asset-pricing models. 

First, we analyze the results generated by three performance metrics. The distance-based 

metrics are compared to the GRS-statistics and MAE-statistics in measuring model 

performance. In doing so, we examine whether the distance-based metrics effectively 

address the power and extreme-error problems. Afterwards, we rank the model pricing 

ability from both the quantile-based statistical perspective and the economic significance 

perspective. 

5.1. Performance Metrics 

A large number of test-portfolios can eliminate potential biases possibly induced 

by appointed sorting variables (Goyal, He and Huh, 2019), and may aggravate the 

consequence caused by power or extreme-error problems (Harvey & Liu, 2017). We first 

conduct asset-pricing tests using two broad cross-sections of 196 and 150 pooled portfolios. 
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According to Goyal, He and Huh (2019), 196 pooled portfolios are composed of four sets 

of double-sorted (5*5) portfolios (25 Size-B/M portfolios, 25 Size-OP portfolios, 25 Size-

Inv portfolios and 25 Size-Mom portfolios respectively) and three set of triple-sorted 

(2*4*4) portfolios (32 Size-B/M-Inv portfolios, 32 Size-B/M-OP portfolios and 32 Size-

OP-Inv portfolios respectively). Following Fama and French (2016b) and Hou et al. (2015), 

we form 150 pooled portfolios by combining four sets of univariate-sorted decile portfolios 

(40 FF-related portfolios, 30 valuation-related portfolios, 30 return-related portfolios, and 

50 anomalies-related portfolios). 

We report the performance results of the ten models for five quantile estimates (0.1, 

0.2, 0.5, 0.8 and 0.9) in Tables 3 and 4, where distance-based metrics and related 

components are contained in the second through sixth columns, together with the 

commonly used metrics (GRS and MAE) in the last two columns. 

As explained before, TD and AD are, respectively, the total and average cost of 

holding dogmatic beliefs in an asset-pricing model. 𝑅𝑀𝑆𝐸(𝛼̃), and 𝑅𝑀𝑆𝐸(𝜎̃𝛼) are the two 

components of AD: the square root of the mean squared posterior estimates of pricing 

errors (𝛼̃) , and their standard errors (𝜎̃𝛼)  generated by the data-based model. 𝐴|𝜎̃𝛼
2|/

A|𝛼̃2| measures the contribution of mispricing uncertainty to the cost relative to that of 

pricing errors (alphas). This ratio is identical to 𝐴𝑠2(𝑎𝑖)/𝐴𝑎𝑖 
2 proposed by Fama and 

French (2016b). However, we use it differently from them. That is, the ratio is not used to 

rank the models but to compare the explanatory power of the models: the higher the ratio, 

the more imprecisely a model estimates alphas. The last two columns show the GRS-

statistic and the mean absolute alpha (MAE) respectively. 

[Please insert Table 3 about here] 
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As for the model ranking in both tables, all performance metrics generate diverse 

results across different quantiles. Table 3 shows that the distance-based metric identifies 

FF6 as the top model for all quantiles, with the AD value being the lowest at the median, 

which means that the minimal cost of moving the mass of FF6 model-implied distribution 

to its data-based distribution is 0.153% per month.  The CAR4 model is ranked second at 

lower quantiles, replaced by FF6-hml at the median, while the BS model relatively 

outperforms FF6-hml at higher quantiles. 

The conventional MAE statistic generates rather similar results to the distance-

based metrics with some slight differences. MAE ranks FF5 higher than CAR4 at the 10th 

percentile and considers the performance of the BS model better than FF6 at the 80th 

percentile. SY is ranked third by MAE, while AD favors the Q-Factor model. On one hand, 

AD and MAE share nearly identical ranking in the best model because FF6 always 

produces the minimum level of pricing and sampling errors across all quantiles. On the 

other hand, the discrepancy is mainly attributed to the extreme-error problem: FF5 

generates more extreme alphas than CAR4 at the 10th percentile (2.177% of 𝑅𝑀𝑆𝐸(𝛼̃) for 

FF5 vs. 2.162% of 𝑅𝑀𝑆𝐸(𝛼̃) for CAR4); BS generates more extreme alphas than FF6 at 

the 80th percentile (1.302% of 𝑅𝑀𝑆𝐸(𝛼̃) for BS vs. 1.297% of 𝑅𝑀𝑆𝐸(𝛼̃), for FF6) and 

SY generates more extreme alphas than QF at the median (0.155% of 𝑅𝑀𝑆𝐸(𝛼̃) for SY vs. 

0.148% of 𝑅𝑀𝑆𝐸(𝛼̃) for QF). 

GRS statistic, however, produces radically different ranking results compared to 

the other two measures. Besides its result at the median, the Q5 model always produces the 

smallest GRS values, followed by SY and QF models. This result implies strong evidence 

that GRS fails to consider the estimation precision: these three models generate the largest 
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three values of 𝑅𝑀𝑆𝐸(𝛼̃) and 𝑅𝑀𝑆𝐸(𝜎̃𝛼) among all. The highest Ao/Aa value produced 

by Q5 model under these quantiles (0.008 at the 10th percentile, 0.010 at the 20th percentile, 

0.009 at the 80th percentile and 0.007 at the 90th percentile) show that the sampling error 

(mispricing uncertainty) contributes more to the cost (TD or AD) than the pricing error, 

confirming the lack of power problem of the GRS statistic from the Bayesian view. At the 

median, GRS ranks SY at the first place (2.725) and FF6 at the second (2.791). For the 

same reason, the SY model underperforms compared to the FF6 model with no 

comparative advantages of either sampling or pricing errors yet creates a smaller GRS 

value. 

[Please insert Table 4 about here] 

In contrast to the dominant performance of FF6 model in pricing 196 portfolios, 

Table 4 reports various ranking orders at different quantiles in pricing 150 portfolios. The 

AD value of FF6 is still the smallest at lower quantiles, whereas FF6-hml is ranked the top 

model at the median with the lowest AD value (i.e., 0.153% is the mimimum cost of 

holding a dogmatic belief in FF6-hml model from a Bayesian perspective), and BS model 

outperforms the rest at higher quantiles. Again, the ranking results produced by AD and 

MAE are similar to their selections of the best model are consistent, while the difference 

of the second and the third is still ambiguous. MAE statistic considers CAR4 better than 

FF6-hml at the 20th percentile, while the ranking of AD contradicts. The fact that CAR4 

model produces more extreme pricing error (1.265%) than FF6-hml model (1.259%) 

strengthens the testimony of the extreme-error problem. The similar situation occurs with 

SY and FF6 at the median, yet it is due to another reason. Indeed, the values of 𝑅𝑀𝑆𝐸(𝛼̃) 

indicate that SY model produces less extreme error than FF6 model, the values of 
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𝑅𝑀𝑆𝐸(𝜎̃𝛼) on the contrary, points out that the SY model has more mispricing uncertainty 

than the FF6 model. MAE statistic does not consider sampling errors, so it ranks the SY 

model higher than the FF6 model. 

Similarly, according to the GRS statistic ranking with 196 portfolios, SY and Q5 

models outperform others across most quantiles. The SY model is ranked the best model 

among four out of five quantiles in the table, and the second best at the remaining quantiles. 

Nonetheless, both 𝑅𝑀𝑆𝐸(𝛼̃) and 𝑅𝑀𝑆𝐸(𝜎̃𝛼) for SY model are relatively larger than the 

best model ranked by the distance-based metrics, implying the superior competence of 

distance-based metric over GRS when considering the impacts of both pricing and 

sampling errors. 

To conclude, the FF6 model incurs the minimum cost of holding a dogmatic belief 

in the model; BS and FF6-hml have similar performance across all quantiles, showing 

increasingly competitive advantages at higher quantiles compared to FF6. Although the 

ranking of the GRS statistic is largely different from the other two methods, there is no 

convictive evidence that any models it favors can produce significantly small sampling or 

mispricing errors at any quantiles. Overall, in evaluating the performance of models, the 

distance-based metric is a more comprehensive method that can simultaneously address 

the power and extreme-error problems. 

5.2. Mean Test 

Next, we integrate the results generated by the distance-based metric method across 

all quantiles, comparing the model overall performance and analyze the difference of 

significance level among models. 
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We compare 19 AD values generated from the 5th to 95th percentiles for each 

model in pricing two large pooled portfolios and each small set of portfolios separately by 

using the paired t-test. 

All tested values follow a normal distribution (meet the condition of t-test): i.e. w-

value of FF5 model with Size-B/M portfolios by using the Shapiro-Wilk normality test is 

0.92099 and the p-value is 0.1181. We report the testing results of two large pooled 

portfolios in Table 5. 

[Please insert Table 5 about here] 

As per the 196 portfolios in Panel A of Table 5, the paired t-value of the first group 

(CAPM vs FF3) is 5.634, with the p-value less than 0.001 and the mean of the difference 

of 0.628. This result indicates that the FF3 model significant outperforms CAPM on the 

portfolios, and the average cost of moving the mass of the model-implied distribution to 

the data-based distribution for CAPM is 0.628%, greater than for FF3 model on the 

monthly average. As the model with lower means outperforms the other, the top three 

models ranked by paired t-test are FF6, BS, and FF5 model, respectively. None of the p-

values between the FF6 model and other models is greater than 0.01, suggesting that the 

difference between the FF6 model and others is significant. Unlike FF6, the results of 

paired t-tests indicate that three models have insignificant difference from the BS model, 

which are FF5 (p-value = 0.615), FF6-hml (p-value = 0.184) and CAR4 (p-value = 0.090) 

respectively. Moreover, a total ofnine groups of the pairwise relationship among models 

(p-value >0.05) fail to reject the null hypothesis of no significant difference, implying that 

we cannot differentiate these models solely by the smaller AD values. 
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Mean-test results from Panel B of Table 5 yield even greater p-values of two pair 

models of over 90% (0.994 for FF5 and CAR4, 0.933 for BS and FF6-hml). Furthermore, 

FF6-hml model at the third place in the model ranking by mean of difference replaces the 

FF5 model. Since both the significant differences between models and the ranking order 

are inconsistent in pricing two large pooled portfolios, we cannot draw a consistent 

conclusion based on these large-portfolio results. For this reason, we conduct the paired t-

test for each small set of portfolios separately to check whether there exist more consistent 

results of individual portfolios. 

[Please insert Table 6 about here] 

Table 6 lists the ranking orders of the t-test for each portfolio. It is unsurprising that 

the FF6 model is ranked at the first place for most portfolios. Noticeably, consistent with 

OLS regression in Goyal et al. (2019), both FF5 and FF3 models fail to price the 

momentum-related portfolios: they are only ranked at the 8th and 9th places respectively 

in double-sorts on Size-MOM portfolios and in univariate-sorted on past return related 

portfolios. In contrast, all models considering the momentum factor (FF6, FF6-hml, BS, 

and CAR4) generate similar and relatively low AD values, consistent with the results in 

Barillas and Shanken (2018). The outperformance of the SY model in pricing the portfolios 

sorted on other anomaly variables is consistent with the original literature in Stambaugh 

and Yuan (2017). This may explain why the SY model is only ranked at the 10th  place in 

196 portfolios, but the 6th place in 150 portfolios. 

To identify the overall ranking of model performance, we assign 10 points for the 

best model in each group, 9 points for the second, and likewise until the last model (by 1-

point step). The points for each model under all portfolios are totaled (in parentheses) and 
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ranked in the following order: FF6(105), FF5(90), BS(79), FF6-hml(75), CAR4(64), 

Q5(52), FF3(50), SY(44), QF(35), CAPM(11). 

FF6 model is the best model with 105 points in total (6 first places and 5 second 

places: 6*10+5*9 = 105) and CAPM is the worst with 11 points in total (11 last places: 

11*1 = 11). 

[Please insert Table 7 about here] 

While the score difference between FF5 and FF6 remains the same as FF5 and FF6-

hml (15 points), we find that their difference in significance levels varies based on further 

comparison of the p-values. Tables 7 reports different levels of statistical significance 

between models. Panel A of Table 7 presents the numbers of portfolios where the p-value 

of tested models is greater than 0.05, indicating statistically insignificant differences. Panel 

B of Table 7 presents the numbers of portfolios whose the p-values for the tested models 

are less than or equal 0.05, but greater than 0.01, which indicates the difference is 

moderately insignificant in the statistical sense. We consider all situations where p-value 

of less than 0.01 may suggest either the difference between the models is significant or lack 

of evidence that the difference is insignificant. Noticeably, nine out of eleven p-values 

between FF5 and FF6 are greater than 0.05, indicating little evidence to support any distinct 

difference between the two. On the contrary, ten out of eleven p-values are less than 0.01 

in the comparison between FF5 and FF6-hml, evidence that the two models are 

significantly different statistically. 

The results of Panel A suggest compelling insignificant differences between the 

models in the combination of FF5-FF6, FF3-CAR4 and CAR4-BS, with 9, 8 and 7 p-values 

over 0.05 respectively, while both FF6-hml-BS and Q5-BS register 5 p-values over 0.05. 
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In Panel B, the two pairs of FF6-hml-BS and Q5-BS show moderately significant 

differences with 4 and 3 p-values over 0.01. Combining the two tables, the two pairs of 

FF6-hml-BS and Q5-BS aggregate for 9 and 8 p-values greater than 0.01 correspondingly. 

Consistent with the results generated from three performance metrics, BS model 

outperforms FF5 under the mean-test. This conclusion conflicts with our previous results 

under mean-test, as we find that the FF5 model has better performance on average (90 

points for FF5 but 79 points for BS). This situation is not caused by the larger number of 

test assets that can eliminate potential biases. First, although both ranking results of pooled 

portfolios suggest that BS outperforms FF5 and FF6-hml, the BS model shares significant 

similarities with the other two. Second, nine out of eleven times the mean of FF5 model is 

less than that of BS model, whereas the opposite only occurs twice. This means that most 

of the time FF5 performs better. Finally and importantly, we pinpoint the causes of the 

conflict to be precisely the two opposite circumstances (mentioned in the analysis of Table 

7): the 25 double-sorted Size-MOM portfolios in 196-pooled portfolios and the univariate-

sorted 30 past return portfolios in 150-pooled portfolios. With other portfolios, the mean 

difference between FF5 and BS is not greater than 0.1. However, the mean difference of 

the two models for Size-MOM portfolios is 0.411, considerably greater than others and 

dominates the results of 196-pooled portfolios. Similarly, the mean difference of the two 

models for 30 past return portfolios is 0.201, dominating the results of 150-pooled 

portfolios. 

5.3. Percentage Difference 

We now proceed to discuss the question of whether Q-factor models outperform 

Fama-French models. 
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From the previous ranking order and t-test results, we conclude that the FF6 model 

outperforms Q-factor models (both QF and Q5) in pricing all tested portfolios and the 

difference is statistically significant at below 1%. Since the current literature argues that 

economic significance has the same importance as the statistical significance in evaluating 

factors, we therefore compare the performance of Q-factor models with Fama-French 

models from economic significance. 

It can be seen that AD’s lowest value is at the median and its highest is at extreme 

percentiles (5th percentile and 95th percentile) where the most outliers reside. Therefore, 

if we only judge the economic significance by looking at the difference between AD values 

under each quantile, the economic significance may only be visible adjacent to the extreme 

quantiles. To eliminate the impact of AD values generated from different quantiles, we 

divide the difference of AD values between two models by the smaller AD to observe the 

percentage difference. 

Tables 8 and 9 show the percentage differences of the distances between Q-factor 

and two Fama-French models FF5 and FF6 in pricing differently sorted portfolios. Panel 

A consists of four sets of double-sorted portfolios, three sets of triple sorted portfolios and 

a combination of 196 pooled portfolios. Panel B consists of four sets of univariate-sorted 

portfolios and the combined 150 pooled portfolios. 

 

QF & FF5 

[Please insert Table 8 about here]  

As for 196 portfolios in Table 8, the AD value of QF is 10.6% higher than FF5 at 

the 5th percentile. In order to distinguish the percentage differences, we say that the two 
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models show a significant economic difference when the absolute value of the percentage 

difference between them is greater than 10%. The 10% threshold value is chosen intuitively 

based on the distribution of percentage differences on all tested percentiles. Thus, the 

percentage differences greater than 0.10 suggest that the latter (FF5 in Table 8) 

significantly outperforms the former (QF in Table 8) economically and are marked in pale 

pink, and those lower than -10% suggest the other way around and are marked in pale 

yellow, respectively. 

Consistent with what we observe above, the FF5 model underperforms the QF 

model in pricing double-sorted Size-MOM portfolios and univariate-sorted past return 

related portfolios due to its omission of prior-return related factors such as momentum. 

Nonetheless, FF5 exhibits its superiority and significantly outperforms QF in most 

portfolios at higher quantiles above the median. This means that the FF5 model is better at 

pricing the portfolios with higher returns. Additionally, the performance of the FF5 model 

in the portfolios sorted on B/M or OP significantly surpasses the QF model at low extreme 

quantiles. This means that the FF5 model can be more useful than the QF model in risk 

management since risk managers mostly pay attention to the extreme lower quantile cases. 

Conversely, the QF model demonstrates its obvious advantage on the median in the 

portfolios sorted on momentum factors, with the highest percentage distance difference 

being 83.4%. Moreover, the QF model outperforms the FF5 model in two large-pooled 

portfolios with significant economic differences. In particular, in the 150 large-pooled 

portfolios, the differences between the 45th percentile and the 70th percentile exemplify 

the superior pricing competency of the QF model. 
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QF & FF6 

[Please insert Table 9 about here] 

Compared to the QF and FF5 models, the differences between QF and FF6 models 

suggest  the FF6 model’s superiority and the importance of the momentum factor. First, 

when compared to the QF model, the performance of the FF6 model shows significant 

economic differences in momentum-sorted portfolios across all quantiles. In Table 8, the 

largest advantage of QF versus FF5 is 83.4% at the median, while in Table 9, the AD value 

of the FF6 model is 31.7% lower than the QF model at the same quantile. Second, judged 

by relative performance, FF6 outperforms QF in nearly all portfolios across all the 

quantiles. This dominance suggests FF6’s superior pricing competency to QF when 

analyzed from the economic perspective. 

Though QF considerably outperforms FF5 in momentum-sorted portfolios and 

shows similar competitiveness with Fama-French models in anomalies-related portfolios, 

it underperforms compared to the FF6 model at most quantiles. Recently, Hou et al. (2018) 

propose that the QF model overlooks the dimension of the expected return and they expand 

the QF model with the expected growth factor to form the Q5 model. The authors believe 

that the Q5 model shows stronger explanatory power in the cross section and outperforms 

the FF6 model. We therefore apply a similar approach to compare Q5 and the Fama-French 

models and present the results in Table 10 (for FF5) and Table 11 (for FF6). 

 

Q5 & FF5 

[Please insert Table 10 about here] 
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The differences between QF and FF5 models and between Q5 and FF5 models are 

quite similar. FF5 continues to outperform Q5 at percentiles above the median and low 

percentiles for certain divisions of portfolios, and Q5 still shows significant economic 

differences compared to FF5 in pricing two momentum-sorted portfolios. Remarkably, the 

addition of the expected growth factor increases the Q5’s advantages. Indeed, the number 

of significant differences that occur between Q5 and FF5 at low extreme quantiles 

decreases, particularly in the OP-sorted portfolios. Moreover, the predominance of FF5 at 

higher quantiles is weakened (though still significant), and the significant advantages of 

Q5 in two momentum-sorted portfolios are further magnified. Surprisingly, compared to 

QF and FF5, the percentage difference between Q5 and FF5 increases at and near the 

median in pricing Size-B/M, Size-MOM, Size-OP, Size-B/M-OP, and FF-related 

portfolios. This indicates Q5’s underperformance compared to QF in measuring the 

middle-level returns of these portfolios. Thus, this finding conflicts with Hou et al. (2018) 

who show that Q5 is significantly better than QF when using OLS regressions. One 

possible reason is that they ignore the possibility that the distribution of the value-weighted 

monthly returns of these portfolios is asymmetric, and the outliers that greatly influence 

OLS regression results could be another reason leading to the evalution bias. 

 

Q5 & FF6  

[Please insert Table 11 about here] 

Like in Table 11, the addition of the expected growth factor improves the pricing 

ability of the QF model at lower quantiles, narrowing the performance gap relative to the 

FF6 model. Hou et al. (2018) indicate that R&D expenses depress current earnings, but 

induce future growth, implying that firms with lower returns currently have a closer 
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relationship with the expected growth factor. This is consistent with the insignificant 

difference between Q5 and FF6 in investment-sorted portfolios. Firms with above-average 

returns, however, are less affected by the expected growth since they tend to be more stable 

and mature. This explains why the AD difference between Q5 and FF6 increases at the 

quantiles at and above the median in some portfolios. Therefore, Q5 shows similar or better 

performance than QF in pricing anomalies-related portfolios. Furthermore, compared to 

the Q5 and FF5 models, the FF6 model with the addition of the momentum factor mitigates 

its difference from the Q5 model in pricing anomalies-related portfolios.  

In summary, though the addition of expected growth factor makes Q5 capture more 

average returns than QF, FF6 outperforms both Q-factor models (QF and Q5) by a wide 

margin, more so at the higher quantiles. Consequently, we confirm that the differences 

between the two Q models (QF and Q5) and the two Fama-French models of FF5 and FF6 

have both statistical and economic significance. Furthermore, the existing literature (e.g., 

Goyal et al., 2019) show that both the Q-factor models and the Fama-French models 

outperform the BS model. It is remarkable that our previous mean-test results show that 

BS ranks the third, higher than the ranking of the Q-factor models. To explain this 

contradiction and examine the performance of BS from a comparative perspective, we 

compare the difference between BS and FF6, and present the results in Table 12. 

 

BS & FF6 

[Please insert Table 12 about here] 

Compared to the standard FF6 model, the performance of the BS model improves 

as quantile increases. BS underperforms FF6 with significant economic differences at 

lower quantiles of B/M-sorted and OP-sorted portfolios. That indicates that the joint effect 
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of HMLm, IA and ROE is rather negligible in the presence of HML, RMW, and CMA in 

capturing lower returns of these portfolios. Surprisingly, the performance of BS in 

capturing higher-than-median returns demonstrates its superior pricing ability, even better 

than the performance of FF6 in most portfolios. The following five percentage differences 

show BS’s significant outperformance over FF6: 12.2% and 11.4% in pricing Size-MOM 

portfolios at the 55th  and the 60th  percentile respectively; 17.9% in pricing Size-OP-INV 

portfolios at the 55th percentile, 14.3% in pricing past return-related portfolios at 55th 

percentile, and 12.3% in pricing value-related portfolios at the 60th percentile. The former 

two in the Size-MOM portfolios are the only significant economic differences between BS 

and FF6, confirming BS’s superior pricing ability to FF6 when considering the momentum 

factor. Unlike other models, the outperformance of the BS model exhibits its regularity in 

pricing slightly above median returns for all the portfolios. This is in contrast to its 

underperformance for under median returns. In particular, the pricing ability of BS is low 

when only the central tendency of returns is concerned; this possibly justifies the model’s 

low ranking in OLS regressions. 

Although we find the outperformance of the BS model in pricing higher than 

median returns, the FF6 model remains its superiority in the overall comparison. All of our 

previous results show that the FF6 model has the best performance among all models. 

However, we have not demonstrated the effect of individual factors. In Section 2, we 

present the argument on the value and momentum factors of the FF6 model following the 

recent literature. Next, we compare the difference between FF5-FF6 and FF6-hml-FF6 to 

document the impact of the value factor and the momentum factor in each portfolio at 

different quantiles and examine to what extent these two factors are important in asset 
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pricing. Tables 14 and 15 present the results of percentage differences between FF5-FF6 

and FF6-hml-FF6, respectively. 

 

FF5 & FF6 

[Please insert Table 13 about here] 

In the previous sections, we have analyzed the importance of the momentum factor 

in pricing past-return-sorted portfolios. Table 13 shows that the differences between FF5 

and FF6 across all quantiles are significant for the Size-MOM portfolios. The largest 

difference between the two models is 141.6% at the median, which means that a 1.416 

times average cost is saved from choosing FF6 instead of FF5. While portfolios sorted on 

other past returns produce similar results, not all the generated differences are economically 

significant, indicating that the momentum factor cannot completely explain both short-term 

and long-term reversal. The lack of significant difference between 65th and 85th percentile 

levels reveals that a proportion of the larger value-weighted past return portfolios are rather 

unaffected by the momentum factor compared to lower returns, with the exclusion of the 

two highest extreme percentiles. The influences of the momentum factor between these 

two and other portfolios differ sharply. Consistent with Fama and French (2017), the 

inclusion of the momentum factor marginally affects Fama-French models’ portfolio 

pricing competence. 

Except for momentum portfolios, there is barely any significant economic 

difference between FF5 and FF6 in all other portfolios, suggesting that the addition of 

momentum factor does not significantly improve the model's pricing ability of the 

remaining portfolios from the economic perspective. 
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Overall, because the momentum factor plays a pivotal role in pricing momentum-

related portfolios while in the meantime it does not harm the performance of other 

portfolios, we conclude that the momentum factor is a necessary addition to the Fama-

French factor models. 

 

FF6-hml & FF6  

[Please insert Table 14 about here]  

Fama and French (2015) argue that the value effect is completely subsumed by the 

newly added profitability and investment factors; hence the value factor, HML, seems to 

become redundant in describing average returns. 

Nevertheless, we show that the value factor is necessary in pricing the B/M-sorted 

and dividend-related portfolios. Many differences between FF6 and FF6-hml in these 

portfolios are significant in the 196 large pooled portfolios between the 55th and 65th 

percentiles. This is evidence that the HML factor supplements additional explanatory 

power to the model and the value effefct is not fully captured by its exposures to the other 

factors of the five-factor model. We find that HML is essential in explaining average 

returns in the portfolios related to the company's valuation as both book-to-market ratio 

and dividend yield are highly associated with company's valuation. Indeed, the impact of 

HML is not that significant when we only focus on the central tendency at both mean and 

median. However, HML is indispensable at some other percentiles when we consider the 

whole distribution of returns. The significant difference between FF6 and FF6-hml at 

extreme percentiles shows that the inclusion of HML can be a favored choice in such 
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applications as risk management, in which the primary focus of risk managers is on the 

tails rather than the central tendency of the return distribution.  
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6. Conclusion 

This thesis compares the performance of ten selected asset pricing models using a 

combined methodology of the distance-based metrics and quantile regressions. Our main 

findings are summarized below. 

Overall, FF6 is the best model to describe the returns of each set of portfolios, 

followed by FF5. Specifically, FF6 has a significant comparative advantage in pricing low-

quantile returns and FF5 is more reliable in the case of high-quantile returns. Both models 

are superior to other competing models in pricing the distribution of returns for most 

portfolios. The comparison results of the percentage difference between FF6 and other 

models demonstrate the consistency and robustness of FF6’s pricing ability. Besides, we 

find that the BS model exhibits a superior pricing ability at some higher-than-median 

quantiles. These findings are generally consistent but differ from the OLS results of Goyal 

et al. (2019). They find that FF6 and FF6-hml are the two best models with 

indistinguishable performance, and that the BS model underperforms other competing 

models. In comparison with other performance measures, we find that the alpha-based 

statistics generates similar results to the distance-based metrics; however, the alpha-based 

statistics are subject to the extreme-error problems and do not consider the influence of 

estimation precision. The GRS-statistic, however, generates inconsistent model ranking 

results mainly due to its lack-of-power problem. The GRS test suggests that Q5 and SY 

can better explain the quantile returns of test portfolios than other models. 

To check the robustness of the results, we conduct pairwise mean tests, which 

further confirm the overall rankings of model performance. Among all test portfolios, FF6 

performs the best, followed by FF5 and BS. However, it should be cautioned that a pure 
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reliance on statistical interpretations of the model comparison results can be ambiguous. 

For example, the p-values of mean tests indicate that, although FF6 outperforms FF5 by 

economic significance, there is a lack of statistical evidence that the difference between the 

two models is significant in some quantiles. This result adds further support to Harvey’s 

(2017) argument against p-hacking. 

While showing some regularities in the comparison, we find that the BS model also 

bears certain weaknesses in explaining median or lower returns, yet is equally competent 

in explaining higher returns compared to FF6. The OLS regressions fail to capture the 

pricing ability of BS in the higher-than-median returns; that is why the BS model is ranked 

low by the OLS. It is interesting to find that the BS pricing ability in higher-than-median 

returns does not depend on the type of test portfolios. This provides a further research 

avenue in the future.  

Finally, in the evaluation of the momentum and value factors in FF6, we provide 

evidence that both factors significantly improve the pricing ability of a model. The 

momentum factor exhibits its absolute necessity in pricing test portfolios sorted by past 

returns. Something similar can be said about the value factor (HML) in pricing B/M-sorted 

and dividend-related portfolios. Although Fama and French (2015) indicate that HML is 

redundant and the value effect is mostly subsumed by the investment factor (CMA) and 

the profitability factor (RMW), we find that the pricing ability of the FF models in the 

absence of the value factor significantly underperforms in these specific portfolios. 

To conclude, FF6 is the model that best describes portfolio returns in our quantile-

based performance comparison. Compared to the conventional GRS and alpha-based 



43 
 

statistics, the distance-based metrics can be used as a robust performance measure that 

provides highly consistent model ranking results.  
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Tables 

Table 1: Ten Tested Asset-Pricing Models and Their Factors 

Model Factors 

CAPM  MKT      

FF3  MKT SMB HML    

CAR4 MKT SMB HML MOM   

FF5 MKT SMB HML RMW CMA  

FF6 MKT SMB HML RMW CMA MOM 

FF6-

hml 
MKT SMB RMW CMA MOM  

BS MKT SMB HMLm IA ROE MOM 

QF MKT ME IA ROE   

Q5 MKT ME IA ROE EG  

SY MKT SMBsy RERF MGMT     

Note: Table 1 reports the tested models and their factors. CAPM is the Capital 

Asset Pricing Model. FF3 is the Fama and French three-factor model. CAR4 

is the Carhart four-factor model. FF5 is the Fama and French five-factor model. 

FF6 is the Fama and French (2018) six-factor model. FF6-hml is the Fama and 

French six-factor model except for the value factor HML. BS is a six-factor 

model proposed by Barilla and Shanken (2018). QF is a four-factor model 

proposed by Hou, Xue and Zhang (2015). Q5 is a five-factor model proposed 

by Hou, Mo, Xue and Zhang (2018). SY is a four-factor model proposed by 

Stambaugh and Yuan (2017). MKT is the market factor. SMB, ME and SMBsy 

are size factors. HML is the value factor. MOM is the momentum factor. 

RMW and ROE are profitability factors. CMA and IA are investment factors. 

HMLm is the timely updated value factor in BS. EG is the expected growth 

factor. RERF and MGMT are two mispricing factors in SY.  
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Table 2: Descriptive Statistics of Factors 

Variable Mkt_rf SMB HML RMW CMA MOM ME IA ROE EG HMLm SMBsy MGMT RERF 

Panel A: Descriptive Statistics 

Mean 0.005 0.002 0.004 0.003 0.003 0.006 0.003 0.004 0.005 0.008 0.003 0.004 0.006 0.007 

Std 0.045 0.031 0.029 0.022 0.020 0.043 0.031 0.019 0.025 0.019 0.035 0.029 0.029 0.039 

Min -0.232 -0.149 -0.111 -0.180 -0.069 -0.344 -0.144 -0.072 -0.138 -0.062 -0.180 -0.111 -0.089 -0.215 

Q1 -0.022 -0.015 -0.012 -0.008 -0.010 -0.009 -0.015 -0.008 -0.007 -0.003 -0.016 -0.014 -0.011 -0.013 

Median 0.008 0.001 0.003 0.002 0.002 0.008 0.002 0.003 0.007 0.007 0.001 0.003 0.006 0.007 

Q3 0.036 0.021 0.018 0.013 0.016 0.029 0.021 0.016 0.019 0.019 0.019 0.022 0.023 0.028 

Max 0.161 0.184 0.129 0.128 0.096 0.184 0.221 0.092 0.104 0.109 0.269 0.160 0.146 0.185 

Skew. -0.517 0.403 0.070 -0.349 0.329 -1.334 0.607 0.116 -0.699 0.230 0.876 0.383 0.178 -0.082 

Kurt. 1.820 3.310 1.992 11.312 1.529 10.295 5.231 1.477 4.677 2.090 8.308 2.149 1.644 3.619 

Panel B: Correlation Matrix 

Mkt_rf 1.000              

SMB 0.277 1.000             

HML -0.270 -0.078 1.000            

RMW -0.233 -0.361 0.080 1.000           

CMA -0.397 -0.097 0.699 -0.014 1.000          

MoM -0.143 -0.054 -0.187 0.115 -0.001 1.000         

ME 0.267 0.973 -0.037 -0.370 -0.059 -0.022 1.000        

IA -0.385 -0.185 0.672 0.088 0.913 0.026 -0.146 1.000       

ROE -0.202 -0.373 -0.138 0.668 -0.084 0.502 -0.313 0.038 1.000      

EG -0.466 -0.419 0.199 0.431 0.335 0.343 -0.371 0.387 0.515 1.000     

HMLm -0.119 -0.011 0.775 -0.064 0.516 -0.648 -0.005 0.495 -0.451 -0.041 1.000    

SMBsy 0.260 0.942 -0.047 -0.285 -0.069 0.003 0.927 -0.145 -0.283 -0.334 -0.035 1.000   

MGMT -0.540 -0.341 0.705 0.218 0.786 0.041 -0.307 0.775 0.078 0.539 0.491 -0.289 1.000  

RERF -0.260 -0.151 -0.309 0.447 -0.063 0.721 -0.146 -0.055 0.642 0.464 -0.635 -0.088 0.008 1.000 

Note: Panel A of Table 2 reports descriptive statistics of all tested factors. MKT is the market factor. SMB, ME and SMBsy are size factors. HML is the 

value factor. MOM is the momentum factor. RMW and ROE are profitability factors. CMA and IA are investment factors. HMLm is the timely updated 

value factor. EG is the expected growth factor. RERF and MGMT is mispricing factors. Mean is the mean of factors. Sd is the log standard deviation of 

factors. Min s the minimum value of factors. Q1 is the first quantile of factors. Median is the median of factors. Q3 is the third quantile of factors. Max 

is the maximum value of factors. Skew the skewness of factors. Kurt is the kurtosis of factors. Panel B of Table 2 reports correlation coefficients. 
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Table 3: Performance Metrics for the 196 Pooled Portfolios  

Models TD AD RMSE (α̃) RMSE(σ̃α) Aσ̃α
2  /Aσ̃2 GRS A|α̃| 

Panel A: Model performance at 10th percentile 

CAPM 45.379 3.241 3.234 0.212 0.004 4.720 3.087 

FF3 32.178 2.298 2.292 0.167 0.005 4.527 2.154 
CAR4 30.351 2.168 2.162 0.161 0.006 4.366 2.062 

FF5 30.564 2.183 2.177 0.164 0.006 4.246 2.061 

FF6 28.767 2.055 2.049 0.152 0.005 4.149 1.965 

FF6-hml 30.513 2.179 2.173 0.165 0.006 4.159 2.077 

BS 30.914 2.208 2.201 0.174 0.006 4.144 2.111 

QF 32.973 2.355 2.347 0.197 0.007 3.923 2.246 

Q5 31.768 2.269 2.261 0.197 0.008 3.607 2.162 

SY 33.124 2.366 2.359 0.188 0.006 3.889 2.273 

Panel B: Model performance at 20th percentile 

CAPM 28.855 2.061 2.055 0.159 0.006 4.664 1.939 

FF3 20.488 1.463 1.459 0.112 0.006 4.437 1.360 

CAR4 19.244 1.375 1.370 0.113 0.007 4.327 1.296 

FF5 19.424 1.387 1.383 0.117 0.007 4.116 1.310 
FF6 18.264 1.305 1.300 0.111 0.007 4.034 1.249 

FF6-hml 19.250 1.375 1.370 0.120 0.008 4.086 1.305 

BS 19.768 1.412 1.406 0.128 0.008 4.101 1.350 

QF 20.436 1.460 1.453 0.138 0.009 3.931 1.388 

Q5 19.733 1.409 1.403 0.139 0.010 3.636 1.339 

SY 21.006 1.500 1.494 0.137 0.008 3.800 1.435 

Panel C: Model performance at 50th percentile 

CAPM 4.686 0.335 0.309 0.128 0.172 4.099 0.227 

FF3 3.669 0.262 0.247 0.089 0.129 3.368 0.165 

CAR4 2.787 0.199 0.177 0.091 0.267 3.130 0.130 

FF5 2.841 0.203 0.182 0.090 0.242 3.040 0.117 

FF6 2.136 0.153 0.123 0.090 0.539 2.791 0.091 

FF6-hml 2.298 0.164 0.134 0.095 0.509 2.935 0.096 
BS 2.549 0.182 0.152 0.100 0.429 3.196 0.118 

QF 2.534 0.181 0.148 0.104 0.489 3.310 0.112 

Q5 2.626 0.188 0.150 0.112 0.557 2.927 0.120 

SY 2.628 0.188 0.155 0.106 0.470 2.725 0.109 

Panel D: Model performance at 80th percentile 

CAPM 30.946 2.210 2.203 0.178 0.007 4.843 2.121 

FF3 19.605 1.400 1.395 0.117 0.007 4.591 1.343 

CAR4 19.442 1.389 1.384 0.118 0.007 4.409 1.333 

FF5 18.399 1.314 1.309 0.117 0.008 4.285 1.256 

FF6 18.159 1.297 1.292 0.116 0.008 4.164 1.243 

FF6-hml 19.483 1.392 1.387 0.119 0.007 4.109 1.328 

BS 18.228 1.302 1.296 0.126 0.009 4.207 1.236 

QF 21.101 1.507 1.501 0.135 0.008 4.290 1.438 

Q5 21.051 1.504 1.497 0.143 0.009 3.780 1.431 
SY 20.689 1.478 1.471 0.139 0.009 3.957 1.412 

Panel E: Model performance at 90th percentile 

CAPM 50.172 3.584 3.574 0.258 0.005 4.796 3.438 

FF3 31.870 2.276 2.270 0.173 0.006 4.609 2.185 

CAR4 31.431 2.245 2.238 0.173 0.006 4.436 2.158 

FF5 29.695 2.121 2.115 0.164 0.006 4.296 2.023 

FF6 28.996 2.071 2.065 0.161 0.006 4.228 1.985 

FF6-hml 31.082 2.220 2.214 0.167 0.006 4.272 2.119 

BS 29.586 2.113 2.106 0.175 0.007 4.232 2.009 

QF 33.673 2.405 2.397 0.192 0.006 4.129 2.292 

Q5 33.454 2.390 2.381 0.203 0.007 3.762 2.270 

SY 33.716 2.408 2.401 0.193 0.006 3.945 2.299 
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Table 4: Performance Metrics for the 150 Pooled Portfolios 

Models TD AD RMSE (𝜶̃) RMSE(σ̃α) A𝝈̃𝜶
𝟐  /A𝝈̃𝟐 GRS A|𝜶̃| 

Panel A: Model performance at 10th percentile 

CAPM 29.587 2.416 2.411 0.159 0.004 5.476 2.248 

FF3 26.114 2.132 2.126 0.160 0.006 5.350 2.011 

CAR4 24.706 2.017 2.012 0.152 0.006 5.241 1.937 

FF5 25.401 2.074 2.068 0.158 0.006 5.026 1.977 
FF6 24.150 1.972 1.966 0.151 0.006 4.940 1.909 

FF6-hml 24.537 2.003 1.997 0.154 0.006 4.962 1.938 

BS 25.264 2.063 2.056 0.174 0.007 5.350 1.997 

QF 25.963 2.120 2.112 0.179 0.007 5.101 2.040 

Q5 25.240 2.061 2.053 0.184 0.008 4.450 1.987 

SY 24.971 2.039 2.032 0.165 0.007 4.464 1.965 

Panel B: Model performance at 20th percentile 

CAPM 18.817 1.536 1.532 0.117 0.006 5.405 1.409 

FF3 16.568 1.353 1.349 0.106 0.006 5.288 1.262 

CAR4 15.551 1.270 1.265 0.106 0.007 5.169 1.207 

FF5 16.233 1.325 1.321 0.111 0.007 4.890 1.258 

FF6 15.261 1.246 1.241 0.108 0.008 4.692 1.201 

FF6-hml 15.475 1.264 1.259 0.109 0.007 4.823 1.217 
BS 15.881 1.297 1.291 0.121 0.009 5.326 1.251 

QF 16.254 1.327 1.322 0.121 0.008 5.006 1.273 

Q5 15.752 1.286 1.280 0.127 0.010 4.389 1.236 

SY 15.631 1.276 1.271 0.119 0.009 4.150 1.227 

Panel C: Model performance at 50th percentile 

CAPM 3.095 0.253 0.236 0.091 0.148 3.348 0.147 

FF3 2.963 0.242 0.228 0.081 0.125 2.790 0.123 

CAR4 2.251 0.184 0.163 0.084 0.265 2.693 0.099 

FF5 2.441 0.199 0.180 0.086 0.230 2.508 0.111 

FF6 1.887 0.154 0.128 0.086 0.454 2.303 0.095 

FF6-hml 1.878 0.153 0.126 0.087 0.476 2.287 0.092 

BS 2.089 0.171 0.143 0.093 0.427 2.493 0.114 

QF 2.012 0.164 0.135 0.094 0.485 2.865 0.096 

Q5 1.996 0.163 0.129 0.100 0.603 2.535 0.100 
SY 1.917 0.156 0.125 0.094 0.567 2.066 0.094 

Panel D: Model performance at 80th percentile 

CAPM 18.288 1.493 1.488 0.124 0.007 5.548 1.431 

FF3 15.197 1.241 1.236 0.109 0.008 5.422 1.206 

CAR4 15.216 1.242 1.237 0.112 0.008 5.344 1.210 

FF5 14.554 1.188 1.183 0.110 0.009 4.991 1.148 

FF6 14.580 1.190 1.185 0.109 0.009 4.905 1.152 

FF6-hml 15.096 1.233 1.227 0.112 0.008 4.984 1.189 

BS 14.518 1.185 1.179 0.121 0.010 5.036 1.137 

QF 15.757 1.287 1.281 0.121 0.009 5.065 1.232 

Q5 15.703 1.282 1.275 0.132 0.011 4.581 1.223 

SY 15.569 1.271 1.265 0.123 0.009 4.281 1.219 

Panel E: Model performance at 90th percentile 

CAPM 30.393 2.482 2.474 0.193 0.006 5.467 2.368 

FF3 25.295 2.065 2.058 0.168 0.007 5.336 2.002 
CAR4 25.073 2.047 2.040 0.166 0.007 5.229 1.987 

FF5 24.223 1.978 1.971 0.167 0.007 5.058 1.900 

FF6 23.843 1.947 1.940 0.162 0.007 4.987 1.882 

FF6-hml 24.616 2.010 2.003 0.164 0.007 5.003 1.938 

BS 23.971 1.957 1.950 0.170 0.008 5.152 1.885 

QF 25.984 2.122 2.114 0.182 0.007 4.975 2.026 

Q5 25.851 2.111 2.102 0.191 0.008 4.592 2.006 

SY 25.551 2.086 2.079 0.176 0.007 4.340 2.001 
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Note: This table reports the distance-based metrics and alpha-based statistic generated by various models for 196 

and 150 large pooled portfolios. TD is the total distance. AD is the average distance. RMSE (𝛼̃) is the square root 

of the mean square pricing error. RMSE (𝜎̃𝛼) is the square root of the mean square error. A𝜎̃𝛼
2 /A𝜎̃2 is the ratio o to 

the mean square standard error to the mean square pricing error. A|𝛼̃| is the mean absolute pricing error (MAE). 

CAPM is the Capital Asset Pricing Model. FF3 is the Fama and French three-factor model. CAR4 is the Carhart 

four-factor model. FF5 is the Fama and French (2017) five-factor model. FF6 is the Fama and French (2018) six-

factor model. FF6-hml is the Fama and French six-factor model except for the value factor. BS is a six-factor model 

proposed by Barilla and Shanken (2018). QF is a four-factor model proposed by Hou, Xue and Zhang (2015). Q5 

is a five-factor model proposed by Hou, Mo, Xue and Zhang (2018). SY is a four-factor model proposed by 

Stambaugh and Yuan (2017).
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Table 5: Mean-Test Results  

  CAPM FF3 CAR4 FF5 FF6 
FF6-

hml 
BS QF Q5 SY 

Panel A: Mean-test Result for 196 Pooled Portfolios 

CAPM 0.000          

T. Value n/a          

FF3 -0.628*** 0.000         

T. Value -5.634 n/a         

CAR4 -0.688*** -0.06*** 0.000        

T. Value -5.970 -5.497 n/a        

FF5 -0.713*** -0.086*** -0.026** 0.000       

T. Value -5.834 -7.457 -2.189 n/a       

FF6 -0.771*** -0.143*** -0.083*** -0.058*** 0.000      

T. Value -6.007 -7.063 -6.155 -5.267 n/a      

FF6-hml -0.694*** -0.067*** -0.007 0.019 0.077*** 0.000     

T. Value -6.003 -5.469 -1.515 1.563 5.777 n/a     

BS -0.716*** -0.088*** -0.028* -0.003 0.055*** -0.021 0.000    

T. Value -5.827 -6.849 -1.791 -0.512 3.777 -1.383 n/a    

QF -0.597*** 0.031 0.091*** 0.116*** 0.174*** 0.097*** 0.119*** 0.000   

T. Value -6.169 1.735 4.557 4.264 5.335 4.978 4.137 n/a   

Q5 -0.622*** 0.006 0.066*** 0.091*** 0.149*** 0.073*** 0.094*** -0.025*** 0.000  

T. Value -6.171 0.318 4.129 3.518 5.182 4.506 3.269 -2.953 n/a  

SY -0.595*** 0.032** 0.092*** 0.118*** 0.176*** 0.099*** 0.120*** 0.002 0.026* 0.000 

T. Value -6.156 2.121 4.549 4.594 5.369 4.762 4.551 0.199 1.963 n/a 

Panel B: Mean-test Result for 150 Pooled Portfolios 

CAPM 0.000          

T. Value n/a          

FF3 -0.189*** 0.000         

T. Value -5.540 n/a         

CAR4 -0.239*** -0.051*** 0.000        

T. Value -6.354 -4.601 n/a        

FF5 -0.239*** -0.051*** 0.000 0.000       

T. Value -5.993 -6.690 0.007 n/a       

FF6 -0.288*** -0.099*** -0.049*** -0.049*** 0.000      

T. Value -6.222 -6.126 -5.016 -4.305 n/a      

FF6-hml -0.258*** -0.069*** -0.019*** -0.019* 0.03*** 0.000     

T. Value -6.398 -5.543 -4.887 -1.799 4.653 n/a     

BS -0.259*** -0.07*** -0.019* -0.02*** 0.029*** -0.001 0.000    

T. Value -6.135 -7.153 -1.778 -4.168 3.225 -0.085 n/a    

QF -0.196*** -0.008 0.043*** 0.043*** 0.092*** 0.062*** 0.062*** 0.000   

T. Value -6.907 -0.847 4.211 3.070 4.964 4.936 4.163 n/a   

Q5 -0.217*** -0.029** 0.022*** 0.022 0.07*** 0.041*** 0.041** -0.021*** 0.000  

T. Value -6.840 -2.445 3.371 1.475 4.485 4.330 2.705 -3.599 n/a  

SY -0.231*** -0.042*** 0.009 0.009 0.057*** 0.027*** 0.028* -0.034*** -0.013*** 0.000 

T. Value -6.967 -3.511 1.636 0.609 3.993 3.406 1.930 -4.863 -6.463 n/a 

Note: Panel A reports mean-test results for 196 pooled portfolios. Panel B reports mean-test results for 150 pooled 

portfolios. ***, **, and * indicates statistical significance at 1%, 5%, and 10%, respectively. T.V. stands for t-value. 

CAPM is the Capital Asset Pricing Model. FF3 is the Fama and French three-factor model. CAR4 is the Carhart four-
factor model. FF5 is the Fama and French (2015) five-factor model. FF6 is the Fama and French (2018) six-factor model. 

FF6-hml is the Fama and French six-factor model except for the value factor. BS is a six-factor model proposed by Barilla 

and Shanken (2018). QF is a four-factor model proposed by Hou, Xue and Zhang (2015). Q5 is a five-factor model 

proposed by Hou, Mo, Xue and Zhang (2018). SY is a four-factor model proposed by Stambaugh and Yuan (2017). 
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Table 6: Mean-Test Ranking Order 

Portfolios/Orders 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Size-B/M FF6 FF5 CAR4 FF3 BS 
FF6-

hml 
Q5 SY QF CAPM 

Size-INV FF6 FF5 
FF6-

hml 
BS Q5 CAR4 FF3 QF SY CAPM 

Size-MOM FF6 BS 
FF6-

hml 
CAR4 SY Q5 QF FF5 FF3 CAPM 

Size-OP FF6 FF5 
FF6-

hml 
BS Q5 CAR4 FF3 QF SY CAPM 

Size-B/M-INV FF5 FF6 BS FF3 CAR4 
FF6-

hml 
Q5 QF SY CAPM 

Size-B/M-OP FF5 FF6 BS CAR4 FF3 
FF6-

hml 
SY Q5 QF CAPM 

Size-OP-INV FF5 FF6 
FF6-

hml 
BS Q5 QF CAR4 FF3 SY CAPM 

FF-related FF6 FF5 
FF6-

hml 
BS CAR4 FF3 Q5 QF SY CAPM 

Anomalies SY FF6 FF5 
FF6-

hml 
Q5 BS QF CAR4 FF3 CAPM 

Past return FF6 
FF6-

hml 
BS CAR4 SY Q5 QF FF5 FF3 CAPM 

Value FF5 FF6 FF3 BS CAR4 SY 
FF6-

hml 
Q5 QF CAPM 

Note: This table reports mean-test ranking order. CAPM is the Capital Asset Pricing Model. FF3 is the Fama and 

French three-factor model. CAR4 is the Carhart four-factor model. FF5 is the Fama and French (2015) five-factor 

model. FF6 is the Fama and French (2018) six-factor model. FF6-hml is the Fama and French six-factor model 

except for the value factor. BS is a six-factor model proposed by Barilla and Shanken (2018). QF is a four-factor 

model proposed by Hou, Xue and Zhang (2015). Q5 is a five-factor model proposed by Hou, Mo, Xue and Zhang 

(2018). SY is a four-factor model proposed by Stambaugh and Yuan (2017). The 1st to 4th rows are 5*5 double-

sorted portfolios. Size-B/M is the portfolios sorted on size and book-to-market. Size-INV is the portfolios sorted 

on size and investment. Size-MOM is the portfolios sorted on size and momentum. Size-OP is the portfolios sorted 

on size and operation profitability. The 5th to 7th rows are 2*4*4 triple-sorted portfolios. Size-B/M-INV is the 

portfolios sorted on size, book-to-market and investment. Size-B/M-OP is the portfolios sorted on size, book-to-

market and operation profitability. Size-OP-INV is the portfolios sorted on size, operation profitability and 

investment. The 8th to 11th rows are four sets of univariate-sorted decile portfolios. FF-related is the portfolios 

related to Fama and French factors. Anomalies is the portfolios related to other anomalies. Past return is the 

portfolios related on past returns. Value is the portfolios related to valuation. 
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Table 7: Different Levels of Statistical Significance between Models 

 
FF6 FF5 SY BS 

FF6-

hml 
CAR4 FF3 Q5 QF CAPM 

Panel A: Numbers of portfolios where p > 0.05 

FF6 0          

FF5 9 0         

SY 1 1 0        

BS 2 1 1 0       

FF6-

hml 
2 1 2 5 0      

CAR4 1 1 1 7 0 0     

FF3 1 1 1 3 0 8 0    

Q5 1 1 2 5 3 2 2 0   

QF 0 0 2 0 0 2 3 0 0  

CAPM 0 0 0 0 0 0 0 0 0 0 

Panel B: Numbers of portfolios where 0.05 < p < 0.01 

FF6 0          

FF5 0 0         

SY 1 1 0        

BS 2 1 0 0       

FF6-

hml 
1 0 1 4 0      

CAR4 0 1 1 0 1 0     

FF3 0 1 1 3 0 0 0    

Q5 0 1 2 3 1 2 2 0   

QF 0 3 2 2 0 1 2 3 0  

CAPM 0 0 0 1 0 0 0 1 1 0 

Note: Tables 7 reports different levels of statistical significance between models. Panel A of 

table 7 presents the numbers of portfolios where the p-value of tested models is greater than 0.05, 

indicating strong insignificant difference statistically. Panel B of table 7 presents the numbers of 

portfolio where the p-value for the tested models is less than or equal 0.05, but greater than 0.01, 

which indicates the difference is moderately insignificant in statistical.  CAPM is the Capital 
Asset Pricing Model. FF3 is the Fama and French three-factor model. CAR4 is the Carhart four-

factor model. FF5 is the Fama and French (2015) five-factor model. FF6 is the Fama and French 

(2018) six-factor model. FF6-hml is the Fama and French six-factor model except for the value 

factor. BS is a six-factor model proposed by Barilla and Shanken (2018). QF is a four-factor 

model proposed by Hou, Xue and Zhang (2015). Q5 is a five-factor model proposed by Hou, 

Mo, Xue and Zhang (2018). SY is a four-factor model proposed by Stambaugh and Yuan (2017). 
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Table 8: Percentage Differences between QF and FF5  

Panel A: 196 portfolios of QF and FF5 Panel B: 150 portfolios of QF and FF5 

Percentile 196P S-B/M S-INV S-MOM S-OP 
S-B/M-

INV 

S-B/M-

OP 

S-OP-

INV 
150P FF Anomaly Past Value 

5th 0.106 0.182 0.076 -0.034 0.136 0.147 0.166 0.102 0.043 0.115 0.030 -0.020 0.098 

10th 0.079 0.157 0.070 -0.101 0.128 0.136 0.125 0.110 0.022 0.100 0.014 -0.047 0.068 

15th 0.064 0.120 0.053 -0.105 0.093 0.113 0.120 0.078 0.018 0.082 -0.004 -0.024 0.064 

20th 0.052 0.089 0.043 -0.143 0.106 0.102 0.124 0.079 0.001 0.073 -0.015 -0.050 0.041 

25th 0.030 0.042 0.025 -0.183 0.089 0.089 0.082 0.074 -0.004 0.071 -0.012 -0.066 0.029 

30th 0.014 0.024 0.017 -0.248 0.105 0.073 0.084 0.060 -0.013 0.059 -0.018 -0.078 0.024 

35th -0.014 -0.008 -0.003 -0.283 0.070 0.041 0.088 0.047 -0.038 0.057 -0.012 -0.147 -0.021 

40th -0.070 -0.040 -0.033 -0.480 0.013 -0.002 0.013 0.040 -0.064 0.030 -0.017 -0.212 -0.036 

45th -0.151 -0.044 -0.135 -0.693 -0.057 -0.009 -0.038 0.037 -0.170 -0.032 -0.074 -0.405 -0.126 

50th -0.124 0.267 0.064 -0.834 0.064 0.145 0.360 0.090 -0.216 0.140 -0.152 -0.639 0.134 

55th 0.183 0.500 0.232 -0.298 0.359 0.378 0.543 0.164 0.080 0.280 0.102 -0.226 0.446 

60th 0.223 0.396 0.173 -0.004 0.240 0.291 0.365 0.145 0.121 0.202 0.072 0.016 0.290 

65th 0.192 0.317 0.129 0.079 0.235 0.223 0.308 0.134 0.118 0.168 0.071 0.069 0.217 

70th 0.170 0.297 0.144 0.082 0.187 0.194 0.278 0.124 0.104 0.128 0.092 0.068 0.148 

75th 0.154 0.250 0.112 0.076 0.179 0.183 0.220 0.122 0.085 0.134 0.076 0.043 0.109 

80th 0.147 0.243 0.091 0.045 0.175 0.171 0.205 0.112 0.083 0.125 0.068 0.049 0.113 

85th 0.138 0.243 0.112 0.045 0.168 0.172 0.175 0.104 0.071 0.110 0.047 0.042 0.114 

90th 0.134 0.230 0.106 0.054 0.177 0.164 0.172 0.111 0.073 0.124 0.056 0.033 0.113 

95th 0.120 0.194 0.101 0.012 0.172 0.167 0.175 0.114 0.050 0.134 0.047 -0.033 0.115 

Note: Panel A of Table 8 reports the percentage differences between QF and FF5 of 196 portfolios across 19 percentiles. 196P is 196 large pooled portfolios 

combining all the subset portfolios within the panel.  S-B/M is the portfolios double-sorted on size and book-to-market. S-INV is the portfolios double-sorted on 

size and investment. S-MOM is the portfolios double-sorted on size and momentum. S-OP is the portfolios double-sorted on size and operation profitability. S-

B/M-INV is the portfolios triple-sorted on size, book-to-market and investment. S-B/M-OP is the portfolios triple-sorted on size, book-to-market and operation 

profitability. S-OP-INV is the portfolios triple-sorted on size, operation profitability and investment. Panel B of Table 8 reports the percentage differences between 

QF and FF5 of 150 portfolios across 19 percentiles. 150P is 150 large pooled portfolios combining all the subset portfolios within the panel. FF is the portfolios 

related to the Fama and French factors. Anomaly is the portfolios related to other anomalies. Past is the portfolios related on past returns. Value is the portfolios 

related to valuation. We mark the percentage differences greater than 0.10 in pale pink, indicating that FF5 significantly outperforms QF economically, and those 

lower than -0.10 in pale yellow, indicating that QF is significantly better than FF5 economically.
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Table 9: Percentage Difference between QF and FF6 

Panel A: 196 portfolios of QF and FF6 Panel B: 150 portfolios of QF and FF6 

Percentile 196P S-B/M S-INV S-MOM S-OP 
S-B/M-

INV 

S-B/M-

OP 

S-OP-

INV 
150P FF Anomaly Past Value 

5th 0.176 0.213 0.076 0.389 0.152 0.144 0.180 0.101 0.105 0.132 0.040 0.183 0.107 

10th 0.146 0.169 0.075 0.328 0.141 0.136 0.129 0.111 0.075 0.102 0.023 0.143 0.069 

15th 0.130 0.142 0.065 0.301 0.113 0.121 0.126 0.079 0.076 0.097 0.012 0.174 0.066 

20th 0.119 0.094 0.055 0.269 0.121 0.113 0.128 0.090 0.065 0.085 0.011 0.151 0.052 

25th 0.103 0.071 0.031 0.224 0.118 0.098 0.112 0.081 0.065 0.076 0.023 0.138 0.052 

30th 0.095 0.072 0.020 0.208 0.115 0.085 0.115 0.068 0.065 0.068 0.027 0.157 0.032 

35th 0.083 0.022 0.021 0.260 0.087 0.049 0.141 0.055 0.054 0.078 0.028 0.138 -0.003 

40th 0.059 0.017 -0.007 0.198 0.037 0.027 0.074 0.039 0.058 0.057 0.048 0.144 -0.010 

45th 0.049 0.007 -0.097 0.250 -0.042 0.039 0.018 0.042 0.018 0.001 0.002 0.146 -0.072 

50th 0.188 0.280 0.046 0.317 0.040 0.221 0.337 0.081 0.063 0.128 -0.016 0.102 0.158 

55th 0.258 0.420 0.160 0.240 0.245 0.296 0.344 0.132 0.141 0.178 0.080 0.073 0.335 

60th 0.228 0.339 0.140 0.240 0.195 0.246 0.259 0.137 0.114 0.164 0.025 0.124 0.227 

65th 0.190 0.288 0.121 0.259 0.206 0.189 0.244 0.112 0.102 0.168 0.004 0.131 0.189 

70th 0.177 0.269 0.136 0.262 0.179 0.168 0.245 0.111 0.091 0.132 0.035 0.126 0.116 

75th 0.170 0.222 0.104 0.265 0.164 0.162 0.219 0.115 0.078 0.115 0.026 0.120 0.091 

80th 0.162 0.228 0.084 0.254 0.150 0.156 0.177 0.114 0.081 0.115 0.024 0.130 0.096 

85th 0.158 0.215 0.101 0.294 0.148 0.157 0.157 0.096 0.078 0.099 0.020 0.131 0.099 

90th 0.161 0.216 0.105 0.316 0.173 0.146 0.163 0.095 0.090 0.113 0.032 0.148 0.102 

95th 0.168 0.192 0.104 0.370 0.157 0.152 0.170 0.106 0.104 0.134 0.050 0.166 0.105 

Note: Panel A of Table 8 reports the percentage differences between QF and FF6 of 196 pooled portfolios across 19 percentiles. 196P is 196 large pooled 

portfolios combining all subset portfolios within the panel.  S-B/M is the portfolios double-sorted on size and book-to-market. S-INV is the portfolios double-

sorted on size and investment. S-MOM is the portfolios double-sorted on size and momentum. S-OP is the portfolios double-sorted on size and operation 

profitability. S-B/M-INV is the portfolios triple-sorted on size, book-to-market and investment. S-B/M-OP is the portfolios triple-sorted on size, book-to-market 

and operation profitability. S-OP-INV is the portfolios triple-sorted on size, operation profitability and investment. Panel B of Table 8 reports the percentage 

differences between QF and FF6 of 150 pooled portfolios across 19 percentiles. 150P is 150 large pooled portfolios combining all subset portfolios within the 

panel. FF is the portfolios related to the Fama and French factors. Anomaly is the portfolios related to other anomalies. Past is the portfolios related on past 

returns. Value is the portfolios related to valuation. We mark the percentage differences greater than 0.10 in pale pink, indicating that FF6 significantly 

outperforms QF economically, and those lower than -0.10 in pale yellow, indicating that QF is significantly better than FF6 economically.
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Table 10: Percentage Difference between Q5 and FF5  

Panel A: 196 portfolios of Q5 and FF5 Panel B: 150 portfolios of Q5 and FF5 

Percentile 196P S-B/M S-INV S-MOM S-OP 
S-B/M-

INV 

S-B/M-

OP 

S-OP-

INV 
150P FF Anomaly Past Value 

5th 0.063 0.129 0.046 -0.092 0.058 0.113 0.118 0.069 0.012 0.079 -0.007 -0.054 0.081 

10th 0.039 0.113 0.022 -0.198 0.058 0.100 0.097 0.078 -0.006 0.078 -0.021 -0.085 0.053 

15th 0.024 0.070 -0.008 -0.199 0.039 0.080 0.092 0.052 -0.015 0.052 -0.048 -0.061 0.043 

20th 0.016 0.042 -0.005 -0.232 0.052 0.066 0.090 0.052 -0.031 0.052 -0.065 -0.082 0.023 

25th -0.006 -0.009 -0.023 -0.260 0.013 0.055 0.071 0.036 -0.034 0.048 -0.063 -0.087 0.011 

30th -0.023 -0.027 -0.037 -0.331 0.030 0.031 0.059 0.037 -0.050 0.020 -0.077 -0.114 0.018 

35th -0.060 -0.067 -0.069 -0.449 -0.028 0.031 0.037 0.015 -0.079 0.033 -0.097 -0.178 -0.019 

40th -0.131 -0.116 -0.124 -0.613 -0.087 -0.036 -0.023 0.009 -0.131 0.016 -0.155 -0.251 -0.057 

45th -0.190 -0.070 -0.177 -0.931 -0.119 -0.021 -0.009 0.017 -0.237 -0.012 -0.270 -0.436 -0.079 

50th -0.078 0.284 0.084 -0.788 0.351 0.099 0.320 0.107 -0.217 0.232 -0.211 -0.589 0.118 

55th 0.254 0.524 0.338 -0.169 0.596 0.410 0.560 0.179 0.129 0.363 0.168 -0.135 0.409 

60th 0.242 0.409 0.228 0.064 0.348 0.268 0.361 0.118 0.141 0.198 0.150 0.026 0.239 

65th 0.204 0.287 0.164 0.107 0.257 0.187 0.300 0.121 0.133 0.180 0.131 0.064 0.183 

70th 0.174 0.270 0.130 0.109 0.196 0.174 0.233 0.099 0.097 0.121 0.114 0.043 0.114 

75th 0.157 0.256 0.123 0.079 0.169 0.159 0.211 0.093 0.083 0.121 0.089 0.045 0.087 

80th 0.144 0.236 0.087 0.049 0.169 0.164 0.197 0.092 0.079 0.126 0.071 0.050 0.089 

85th 0.130 0.227 0.089 0.046 0.166 0.138 0.171 0.085 0.064 0.097 0.063 0.035 0.077 

90th 0.127 0.211 0.090 0.050 0.153 0.129 0.168 0.091 0.067 0.111 0.060 0.030 0.095 

95th 0.112 0.157 0.082 0.024 0.139 0.142 0.163 0.084 0.040 0.116 0.044 -0.041 0.094 

Note: Panel A of Table 8 reports the percentage differences between Q5 and FF5 of 196 pooled portfolios across 19 percentiles. 196P is 196 large pooled 

portfolios combining all subset portfolios within the panel.  S-B/M is the portfolios double-sorted on size and book-to-market. S-INV is the portfolios double-

sorted on size and investment. S-MOM is the portfolios double-sorted on size and momentum. SOP is the portfolios double-sorted on size and operation 

profitability. S-B/M-INV is the portfolios triple-sorted on size, book-to-market and investment. S-B/M-OP is the portfolios triple-sorted on size, book-to-market 

and operation profitability. S-OP-INV is the portfolios triple-sorted on size, operation profitability and investment. Panel B of Table 8 reports the percentage 

differences between Q5 and FF5 of 150 pooled portfolios across 19 percentiles. 150P is 150 large pooled portfolios combining all subset portfolios within the 

panel. FF is the portfolios related to the Fama and French factors. Anomaly is the portfolios related to other anomalies. Past is the portfolios related on past 

returns. Value is the portfolios related to valuation. We mark the percentage differences greater than 0.10 in pale pink, indicating that FF5 significantly 

outperforms Q5 economically, and those lower than -0.10 in pale yellow, indicating that Q5 is significantly better than FF5 economically.
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Table 11: Percentage Difference between Q5 and FF6  

Panel A: 196 portfolios of Q5 and FF6 Panel B: 150 portfolios of Q5 and FF6 

Percentile 196P S-B/M S-INV S-MOM S-OP 
S-B/M-

INV 

S-B/M-

OP 

S-OP-

INV 
150P FF Anomaly Past Value 

5th 0.130 0.158 0.046 0.315 0.073 0.110 0.131 0.068 0.073 0.095 0.003 0.145 0.089 

10th 0.104 0.124 0.027 0.221 0.070 0.100 0.101 0.079 0.045 0.080 -0.012 0.102 0.053 

15th 0.088 0.091 0.003 0.200 0.058 0.088 0.098 0.053 0.041 0.066 -0.031 0.134 0.046 

20th 0.081 0.048 0.007 0.178 0.066 0.077 0.095 0.063 0.032 0.064 -0.038 0.117 0.035 

25th 0.065 0.018 -0.017 0.149 0.040 0.063 0.101 0.043 0.034 0.053 -0.027 0.116 0.034 

30th 0.056 0.020 -0.035 0.133 0.040 0.043 0.090 0.045 0.027 0.030 -0.030 0.120 0.026 

35th 0.037 -0.036 -0.044 0.116 -0.011 0.040 0.089 0.022 0.013 0.053 -0.055 0.108 -0.001 

40th 0.002 -0.055 -0.097 0.099 -0.063 -0.007 0.037 0.008 -0.005 0.042 -0.083 0.108 -0.030 

45th 0.014 -0.018 -0.138 0.096 -0.103 0.027 0.047 0.022 -0.038 0.021 -0.180 0.121 -0.027 

50th 0.238 0.297 0.065 0.351 0.321 0.172 0.298 0.098 0.061 0.219 -0.069 0.137 0.142 

55th 0.333 0.443 0.260 0.378 0.462 0.327 0.358 0.147 0.192 0.254 0.145 0.160 0.300 

60th 0.247 0.351 0.193 0.325 0.298 0.224 0.255 0.109 0.134 0.160 0.099 0.135 0.178 

65th 0.203 0.260 0.155 0.293 0.228 0.154 0.237 0.099 0.117 0.180 0.061 0.127 0.155 

70th 0.182 0.242 0.122 0.292 0.188 0.149 0.201 0.086 0.084 0.124 0.056 0.100 0.083 

75th 0.173 0.229 0.115 0.269 0.153 0.138 0.210 0.086 0.076 0.103 0.039 0.123 0.069 

80th 0.159 0.221 0.080 0.259 0.144 0.149 0.169 0.094 0.077 0.115 0.027 0.131 0.072 

85th 0.150 0.200 0.079 0.295 0.145 0.124 0.153 0.077 0.072 0.087 0.036 0.123 0.062 

90th 0.154 0.198 0.089 0.310 0.149 0.112 0.159 0.076 0.084 0.101 0.036 0.145 0.084 

95th 0.160 0.155 0.084 0.387 0.125 0.128 0.158 0.077 0.093 0.116 0.048 0.157 0.084 

Note: Panel A of Table 8 reports the percentage differences between Q5 and FF6 of 196 pooled portfolios across 19 percentiles. 196P is 196 large pooled 

portfolios combining all subset portfolios within the panel.  S-B/M is the portfolios double-sorted on size and book-to-market. S-INV is the portfolios double-

sorted on size and investment. S-MOM is the portfolios double-sorted on size and momentum. S-OP is the portfolios double-sorted on size and operation 

profitability. S-B/M-INV is the portfolios triple-sorted on size, book-to-market and investment. S-B/M-OP is the portfolios triple-sorted on size, book-to-market 

and operation profitability. S-OP-INV is the portfolios triple-sorted on size, operation profitability and investment. Panel B of Table 8 reports the percentage 

differences between Q5 and FF6 of 150 pooled portfolios across 19 percentiles. 150P is 150 large pooled portfolios combining all subset portfolios within the 

panel. FF is the portfolios related to the Fama and French factors. Anomaly is the portfolios related to other anomalies. Past is the portfolios related on past 

returns. Value is the portfolios related to valuation. We mark the percentage differences greater than 0.10 in pale pink, indicating that FF6 significantly 

outperforms Q5 economically, and those lower than -0.10 in pale yellow, indicating that Q5 is significantly better than FF6 economically.
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Table 12: Percentage Difference between BS and FF6  

Panel A: 196 portfolios of BS and FF6 Panel B: 150 portfolios of BS and FF6 

Percentile 196P S-B/M S-INV S-MOM S-OP 
S-B/M-

INV 

S-B/M-

OP 

S-OP-

INV 
150P FF Anomaly Past Value 

5th 0.076 0.122 0.033 0.035 0.087 0.089 0.078 0.070 0.054 0.083 0.031 0.044 0.079 

10th 0.075 0.104 0.038 0.039 0.100 0.081 0.072 0.079 0.046 0.073 0.019 0.029 0.088 

15th 0.078 0.107 0.051 0.038 0.089 0.082 0.094 0.062 0.041 0.088 0.011 0.029 0.069 

20th 0.082 0.092 0.058 0.031 0.118 0.073 0.094 0.092 0.041 0.091 0.000 0.027 0.084 

25th 0.087 0.102 0.046 0.035 0.124 0.093 0.104 0.077 0.047 0.104 0.003 0.029 0.096 

30th 0.099 0.121 0.055 0.065 0.109 0.102 0.122 0.083 0.055 0.128 0.002 0.043 0.095 

35th 0.109 0.114 0.060 0.076 0.130 0.115 0.144 0.083 0.051 0.135 -0.027 0.055 0.108 

40th 0.154 0.191 0.093 0.089 0.142 0.177 0.206 0.104 0.061 0.180 -0.031 0.033 0.136 

45th 0.225 0.276 0.120 0.085 0.220 0.309 0.285 0.140 0.087 0.257 -0.037 0.036 0.209 

50th 0.198 0.206 0.009 -0.043 0.264 0.396 0.370 0.045 0.108 0.367 0.010 -0.064 0.338 

55th -0.061 -0.010 -0.053 -0.122 0.060 -0.019 -0.067 -0.179 -0.003 -0.024 0.069 -0.143 -0.006 

60th -0.062 -0.053 -0.058 -0.114 0.007 -0.063 -0.065 -0.066 -0.023 -0.037 0.043 -0.069 -0.123 

65th -0.042 -0.054 -0.042 -0.086 0.010 -0.041 -0.032 -0.056 -0.013 -0.016 0.019 -0.026 -0.064 

70th -0.016 -0.030 -0.008 -0.079 0.032 -0.040 0.011 -0.018 -0.014 -0.011 0.030 -0.036 -0.082 

75th -0.003 -0.023 -0.015 -0.059 0.021 -0.022 0.022 0.019 -0.008 -0.005 0.025 -0.017 -0.069 

80th 0.004 -0.001 -0.021 -0.045 0.026 -0.008 0.014 0.034 -0.004 0.002 0.018 -0.011 -0.045 

85th 0.010 0.013 -0.019 -0.039 0.028 -0.004 0.034 0.022 0.002 0.011 0.020 -0.015 -0.021 

90th 0.020 0.024 0.007 -0.024 0.044 0.005 0.042 0.024 0.005 0.029 0.013 -0.018 -0.002 

95th 0.026 0.032 0.020 -0.004 0.047 0.006 0.036 0.039 0.017 0.035 0.030 -0.004 0.000 

Note: Panel A of Table 8 reports the percentage differences between BS and FF6 of 196 pooled portfolios across 19 percentiles. 196P is 196 large pooled 

portfolios combining all subset portfolios within the panel.  S-B/M is the portfolios double-sorted on size and book-to-market. S-INV is the portfolios double-

sorted on size and investment. S-MOM is the portfolios double-sorted on size and momentum. S-OP is the portfolios double-sorted on size and operation 

profitability. S-B/M-INV is the portfolios triple-sorted on size, book-to-market and investment. S-B/M-OP is the portfolios triple-sorted on size, book-to-market 

and operation profitability. S-OP-INV is the portfolios triple-sorted on size, operation profitability and investment. Panel B of Table 8 reports the percentage 

differences between BS and FF6 of 150 pooled portfolios across 19 percentiles. 150P is 150 large pooled portfolios combining all subset portfolios within the 

panel. FF is the portfolios related to the Fama and French factors. Anomaly is the portfolios related to other anomalies. Past is the portfolios related on past 

returns. Value is the portfolios related to valuation. We mark the percentage differences greater than 0.10 in pale pink, indicating that FF6 significantly 

outperforms BS economically, and those lower than -0.10 in pale yellow, indicating that BS is significantly better than FF6 economically.
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Table 13: Percentage Difference between FF5 and FF6  

Panel A: 196 portfolios of FF5 and FF6 Panel B: 150 portfolios of FF5 and FF6 

Percentile 196P S-B/M S-INV S-MOM S-OP 
S-B/M-

INV 

S-B/M-

OP 

S-OP-

INV 
150P FF Anomaly Past Value 

5th 0.063 0.026 0.000 0.437 0.014 -0.003 0.012 -0.001 0.060 0.015 0.010 0.207 0.008 

10th 0.062 0.011 0.005 0.463 0.011 0.000 0.004 0.000 0.052 0.002 0.009 0.196 0.001 

15th 0.062 0.020 0.011 0.438 0.018 0.007 0.005 0.001 0.057 0.014 0.017 0.202 0.003 

20th 0.064 0.005 0.012 0.451 0.013 0.010 0.004 0.010 0.064 0.011 0.026 0.208 0.011 

25th 0.071 0.027 0.006 0.448 0.027 0.008 0.028 0.006 0.069 0.004 0.035 0.213 0.023 

30th 0.080 0.047 0.002 0.508 0.010 0.012 0.029 0.008 0.078 0.009 0.046 0.247 0.007 

35th 0.099 0.031 0.024 0.617 0.017 0.008 0.049 0.007 0.093 0.020 0.040 0.305 0.018 

40th 0.134 0.058 0.025 0.773 0.023 0.029 0.061 -0.002 0.125 0.026 0.066 0.386 0.026 

45th 0.207 0.051 0.035 1.116 0.015 0.049 0.057 0.005 0.191 0.033 0.077 0.610 0.051 

50th 0.335 0.010 -0.018 1.416 -0.023 0.066 -0.017 -0.008 0.292 -0.011 0.134 0.806 0.021 

55th 0.063 -0.057 -0.062 0.610 -0.092 -0.063 -0.149 -0.028 0.057 -0.087 -0.020 0.316 -0.084 

60th 0.004 -0.043 -0.029 0.246 -0.038 -0.036 -0.084 -0.007 -0.007 -0.033 -0.046 0.106 -0.051 

65th -0.001 -0.022 -0.007 0.167 -0.023 -0.028 -0.051 -0.020 -0.015 0.000 -0.067 0.058 -0.024 

70th 0.006 -0.022 -0.008 0.166 -0.007 -0.022 -0.027 -0.012 -0.012 0.003 -0.055 0.055 -0.029 

75th 0.014 -0.023 -0.007 0.176 -0.014 -0.018 -0.001 -0.006 -0.006 -0.017 -0.048 0.074 -0.017 

80th 0.013 -0.013 -0.006 0.200 -0.022 -0.013 -0.024 0.002 -0.002 -0.009 -0.043 0.077 -0.016 

85th 0.018 -0.023 -0.009 0.239 -0.018 -0.013 -0.016 -0.007 0.007 -0.010 -0.026 0.085 -0.014 

90th 0.024 -0.011 -0.002 0.248 -0.003 -0.016 -0.008 -0.014 0.016 -0.009 -0.023 0.112 -0.010 

95th 0.043 -0.001 0.002 0.354 -0.012 -0.013 -0.004 -0.007 0.051 0.001 0.003 0.204 -0.009 

Note: Panel A of Table 8 reports the percentage differences between FF5 and FF6 of 196 pooled portfolios across 19 percentiles. 196P is 196 large pooled 

portfolios combining all subset portfolios within the panel.  S-B/M is the portfolios double-sorted on size and book-to-market. S-INV is the portfolios double-

sorted on size and investment. S-MOM is the portfolios double-sorted on size and momentum. S-OP is the portfolios double-sorted on size and operation 

profitability. S-B/M-INV is the portfolios triple-sorted on size, book-to-market and investment. S-B/M-OP is the portfolios triple-sorted on size, book-to-market 

and operation profitability. S-OP-INV is the portfolios triple-sorted on size, operation profitability and investment. Panel B of Table 8 reports the percentage 

differences between FF5 and FF6 of 150 pooled portfolios across 19 percentiles. 150P is 150 large pooled portfolios combining all subset portfolios within the 

panel. FF is the portfolios related to the Fama and French factors. Anomaly is the portfolios related to other anomalies. Past is the portfolios related on past 

returns. Value is the portfolios related to valuation. We mark the percentage differences greater than 0.10 in pale pink, indicating that FF6 significantly 

outperforms FF5 economically, and those lower than -0.10 in pale yellow, indicating that FF5 is significantly better than FF6 economically.
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Table 14: Percentage Difference between FF6-hml and FF6  

Panel A: 196 portfolios of FF6-hml and FF6 Panel B: 150 portfolios of FF6-hml and FF6 

Percentile 196P S-B/M S-INV S-MOM S-OP 
S-B/M-

INV 

S-B/M-

OP 

S-OP-

INV 
150P FF Anomaly Past Value 

5th 0.071 0.159 0.013 0.021 0.027 0.113 0.087 0.030 0.031 0.068 0.008 0.011 0.063 

10th 0.061 0.127 0.013 0.007 0.022 0.102 0.081 0.016 0.016 0.043 0.000 -0.004 0.042 

15th 0.057 0.113 0.014 -0.006 0.011 0.087 0.094 0.016 0.021 0.051 0.007 0.002 0.038 

20th 0.054 0.090 0.009 -0.003 0.010 0.082 0.100 0.005 0.014 0.030 0.003 -0.005 0.041 

25th 0.044 0.071 -0.004 -0.005 0.005 0.054 0.096 0.005 0.015 0.024 0.007 -0.007 0.044 

30th 0.035 0.056 0.002 -0.015 0.001 0.055 0.074 0.005 0.012 0.015 0.016 -0.005 0.020 

35th 0.035 0.033 -0.018 -0.026 -0.009 0.052 0.106 -0.005 0.005 0.019 0.003 0.000 0.002 

40th 0.015 0.035 -0.031 -0.049 -0.014 0.019 0.071 -0.014 0.003 0.015 0.018 -0.018 -0.017 

45th 0.000 0.039 0.001 -0.035 -0.024 0.002 0.005 -0.011 -0.010 -0.006 0.012 -0.056 -0.025 

50th 0.083 0.239 -0.044 0.000 -0.016 0.070 0.149 0.088 -0.006 0.050 -0.002 -0.048 -0.008 

55th 0.156 0.290 0.014 0.067 0.093 0.171 0.275 0.049 0.072 0.123 0.022 0.046 0.165 

60th 0.132 0.233 0.019 0.044 0.029 0.192 0.228 0.032 0.057 0.083 0.001 0.031 0.167 

65th 0.103 0.183 0.040 0.026 0.041 0.152 0.167 0.022 0.049 0.088 -0.014 0.026 0.158 

70th 0.097 0.162 0.033 0.029 0.046 0.132 0.159 0.028 0.042 0.087 -0.003 0.012 0.112 

75th 0.083 0.166 0.039 0.019 0.031 0.116 0.125 0.024 0.036 0.073 0.002 0.006 0.096 

80th 0.073 0.163 0.025 0.010 0.017 0.098 0.111 0.027 0.035 0.074 -0.002 0.015 0.087 

85th 0.071 0.164 0.031 0.018 0.021 0.101 0.100 0.019 0.032 0.063 0.007 0.005 0.081 

90th 0.072 0.168 0.028 0.002 0.014 0.108 0.107 0.019 0.032 0.076 0.004 0.002 0.080 

95th 0.066 0.132 0.020 0.021 0.016 0.123 0.082 0.018 0.037 0.065 0.014 0.007 0.090 

Note: Panel A of Table 8 reports the percentage differences between FF6-hml and FF6 of 196 pooled portfolios across 19 percentiles. 196P is 196 large pooled 

portfolios combining all subset portfolios within the panel.  S-B/M is the portfolios double-sorted on size and book-to-market. S-INV is the portfolios double-

sorted on size and investment. S-MOM is the portfolios double-sorted on size and momentum. SOP is the portfolios double-sorted on size and operation 

profitability. S-B/M-INV is the portfolios triple-sorted on size, book-to-market and investment. S-B/M-OP is the portfolios triple-sorted on size, book-to-market 

and operation profitability. S-OP-INV is the portfolios triple-sorted on size, operation profitability and investment. Panel B of Table 8 reports the percentage 

differences between FF6-hml and FF6 of 150 pooled portfolios across 19 percentiles. 150P is 150 large pooled portfolios combining all subset portfolios within 

the panel. FF is the portfolios related to the Fama and French factors. Anomaly is the portfolios related to other anomalies. Past is the portfolios related on past 

returns. Value is the portfolios related to valuation. We mark the percentage differences greater than 0.10 in pale pink, indicating that FF6 significantly 

outperforms FF6-hml economically, and those lower than -0.10 in pale yellow, indicating that FF6-hml is significantly better than FF6 economically.


