
Scaling up a Programmers’ Profile Tool1

Martinho Aragão1
2

Algoritmi R.C./Dep. of Informatics, Univ. of Minho, Portugal3

martinhoaragao@gmail.com4

Maria João Varanda Pereira5

Algoritmi R. C./ CeDRI/ DIC/ Polytechnic Inst. of Bragança, Portugal6

mjoao@ipb.pt7

Pedro Rangel Henriques8

Algoritmi R.C./Dep. of Informatics, Univ. of Minho, Portugal9

pedrorangelhenriques@gmail.com10

Abstract11

The style of programming, the proficiency on the programming language, the conciseness of the12

solution, the use of comments and so on, allow comparison of programmers through static analysis13

of their code. The Programmer Profiler Tool, which has been commonly named PP Tool, is an14

open source profiling tool for Java language where the programmer’s ability can be classified in15

one out of five possible profiles and the distinction among them falls upon the levels of both skill16

and readability. Taking a set of correct solutions the comparison between solutions for the same17

problems is fundamental to evaluate proficiency on the analysed criteria. As such, there was a need18

to tune the tool in order to handle, simultaneously, with a bigger amount of programs and with a19

wider scope of solutions. By scaling up PP Tool it will be possible to apply it in a far wider scope of20

situations as it will be able to cope with programmers from different geographies, with or without21

formal education, between 1 and 20 years of experience amongst other factors. For that, a set of22

features were implemented and tested and are described in this paper.23

2012 ACM Subject Classification General and reference → General literature; General and reference24

Keywords and phrases Programmers Profiling, Code Analysis, Programming Skills, Code Readability25

Digital Object Identifier 10.4230/OASIcs.SLATe.2019.26

Acknowledgements This work has been supported by COMPETE: POCI-01-0145-FEDER-00704327

and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.28

1 Introduction29

The PP Tool [6] is based on program analysis and can be applied in educational and30

professional contexts to compare the proficiency of a set of solutions. The main idea is31

to profile different programmers by using their solutions to the same problem in terms of32

bad-practices, ability to master a programming language and code readability (indentation,33

use of comments, descriptive identifiers). In this work only correct programs producing the34

desired output were used and the efficiency of the solution is not analysed. A programmer’s35

ability can be classified as one of a set possible profiles and the distinction among them falls36

upon the levels of both skill and readability that are evaluated based on code metrics. By37

aiming at proficiency on these criteria one can achieve a more experienced profile.38

The basic idea is to statically analyse Java source code and extract a selection of metrics.39

Some metrics can be directly extracted from source-code and provide a lot of information to40

understand the programmer proficiency like number of files, classes, methods and statements;41

number of lines code and comments, and their ratios; usage of control flow statements (if,42

1 Corresponding author

© Martinho Aragão and Maria João Varanda Pereira and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY

Symposium on Languages, Applications and Technologies (SLATe 2019).
Editors: Hugo Oliveira and Ricardo Rodrigues; Article No. ; pp. :1–:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martinhoaragao@gmail.com
https://orcid.org/0000-0001-6323-0071
mailto:mjoao@ipb.pt
https://orcid.org/http://orcid.org/0000-0002-3208-0207
mailto:pedrorangelhenriques@gmail.com
https://doi.org/10.4230/OASIcs.SLATe.2019.
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

XX:2 Programmers Profiling

while, for, etc); variable declarations and datatypes used; usage of advanced Java operators43

(bitshift, bitwise, etc); usage of repetitive patterns; usage of indentation and identifiers of44

good quality.45

Moreover, it is possible to detect automatically bad-practices using the PMD tool 2. PMD46

is a free source code analyser that finds common programming flaws like unused variables or47

code, empty catch-blocks, unnecessary object creation, poor identifier names, non-optimised48

code, inappropriate code size and so on.49

Based on the metrics described above and the number of violations detected by PMD50

Tool, values are given to the parameters skill and readability. Skill is defined as the language51

knowledge and the ability to apply that knowledge in an efficient manner and to measure52

that the most important metrics are: number of statements; use of control flow statements53

(if, while, for, etc) and advanced Java operators; number and datatypes used. Readability is54

defined as the aesthetics and general concerns related with code legibility, so other metrics55

are taken into account: number of methods, classes and files; total number and ratio of code,56

comments and empty lines.57

The paper is organised as follows. In Section 2 the work done by others on profiling is58

reviewed and compared to ours. In Section 3 a brief introduction to the main components59

and techniques of the original PP Tool is presented. Also in this section the original profile60

classes are characterised, and a refinement of that initial classification is discussed; at last, the61

metrics used to measure programmers’ level of skill and readability, necessary to determine62

the profile class, are listed. After describing the problems encountered when PP Tool was63

applied to a big collection of programs gathered from a new source, in Section 4 we enumerate64

the various and important decisions taken to scale up the tool and cope properly with this65

kind of program sets. Then Section 5 will contain a detailed discussion on the results attained66

with the new version of PP Tool to enhance the gains. Section 6 concludes the paper with67

a summary of the work reported and a mention to the generation of detailed feedback on68

programmers improvement as a future research direction.69

2 Related Work70

Before deciding on pursuing improvements to a tool which uses a source code analysis, other71

alternatives of profiling were explored.72

Perhaps the most used way is actually through their experience. Often one of the first73

steps for companies when recruiting is in the form of a curriculum vitae. However, this has74

been known to be flawed, hence requiring other methods.75

One technique which has been growing in popularity employs the use of gamification.76

Particularly one can use the example of code challenge websites where programmers are77

ranked based on the number and difficulty of the challenges that they have solved. Scoring78

systems feed leaderboards and these approaches are also evidenced on [2]. However, this79

feeds on very particular knowledge as it completely disregards efficiency, how long it took80

to solve the exercise and code legibility as the only information it provides is how many81

challenges have been solved. It also only capable of profiling users after several exercises,82

while difficult exercises can take hours to be solved.83

In recent years, the surge of software communities has accumulated countless data of84

their users. GitHub tracks number of commits and their information as well as pull requests85

and even project popularity. StackOverflow also tracks number of answers divided by topics86

2 http://pmd.github.io/

http://pmd.github.io/

M.Aragão and M. J. Varanda Pereira and P. R. Henriques XX:3

and with a voting system on both the answers and the questions. In [4] the CPDScorer is87

introduced which aggregates the information of the platforms mentioned previously to claim88

very high precision. However, it once again requires a lot of information and is dependant on89

popularity.90

Pietrikova [7] also explores techniques aiming the evaluation of Java programmers’ abilities91

through the static analysis of their source code.They classify knowledge profiles in two types:92

subject and object profile. The subject profile represents the capacity that a programmer93

has to solve some programming task, and it’s related with his general knowledge on a94

given language. The object profile is the model to follow and refers to the actual knowledge95

necessary to handle those tasks. This work is also based on metrics whose values are compared96

with an optimal solution. In PP Tool [5] there is no need to define an optimal solution97

because it is based on the relative position between a set of solutions.98

There are other tools more concern with learning programming. The tool presented In99

[8], provides two types of analysis: software engineering metrics analysis to look for poor100

programming practices and logic errors in student programs and structural similarity analysis101

for comparing students’ solutions to a model solution. Flowers et al. present a tool, Gauntlet102

[1], that allows beginner students understanding their Java syntax errors. It is based on a set103

of the most common errors for these kind of students and it uses a very friendly and helpful104

way of displaying those errors. Also concerned with error handling, Expresso tool [3] is a105

reference on Java syntax, semantic and logic error identification.106

3 PP Tool at a glance107

PP Tool, whose architecture implementation and tests were described in detail in [6], uses108

language processing techniques for static analysis and automatically extracts metrics from109

programs aiming to profile their writers. As was said, this process will be complemented with110

the use of PMD Tool, to get information on the use of good Java programming practices.111

The PP Tool has two key moments for analysis, one for scoring and finally one for112

profiling. First, on the PP Analysis, metrics are extracted from the source code and stored113

on specially created class. On the second one, the PMD Analyser is used to identify common114

programming flaws which are also called violations. During scoring, both of the previously115

obtained information is transformed to impact in either skill or readability. Finally, all the116

solutions are provided profiles based on the comparison between their scores.117

3.1 Code analysis118

For each set of metrics a class with the purpose of extracting those metrics was created.119

These metrics can be customised on an auxiliary file such as whether they have a positive120

or negative effect to skill or readability, or even the weight of the impact.121

The PMD Analyser has a set of rules which can also be customised. Currently the122

quickstart set is used which provides a general list of rules which are valid for most situations.123

However if the PP Tool is to be applied on a controlled environment then it is recommended124

to set its own list of rules.125

Each rule has a priority associated with the penalty to be inflicted. When running126

the analyser, rule violations are registered with information regarding the line where they127

occurred. Violations are then summed up based on number of occurrences and the priority128

to inflict a penalty.129

SLATe 2019

https://pmd.github.io/latest/pmd_rules_java.html

XX:4 Programmers Profiling

Figure 1 Profiling Distribution

3.2 Profiling130

There are 4 main profiles. The novice profile (N) identifies a programmer that is not yet131

familiar with all the language constructs and usually does not show language readability132

or good programming practices concerns. The advanced beginner (AB) programmer shows133

variety in the use of language constructs and data-structures, starts showing some readability134

concerns but still writes programs in a safely manner. The proficient programmer is familiar135

with a great variety of language constructs, usually follows good programming practices, has136

readability and code-quality concerns. The expert programmer masters a great variety of137

language constructs and is focuses on producing efficient code usually without readability138

concerns.139

As time progressed, the profiles shifted a bit from the original idea. The Experts should140

be the ones with maximum focus on Skill, the Proficients on Readability, the Advanced141

Beginners were divided in three subsets and a new profile called Master was created to be142

associated to a high level of skill and readability.143

So the profiles used in this work are the following: Novice (N): Low Skill and Low144

Readability; Advanced Beginner (AB): Low-to-Average (LtA) Skill and Readability; Proficient145

(P): LtA Skill and High Readability; Expert (E): High Skill and LtA Readability; Master146

(M): High Skill and High Readability.147

Profiling is the last step of the tool. A grid is created with the lowest and highest values148

of skill and readability in mind, and all results are distributed in the grid. The grid is divided149

in 9 blocks of equal size as can be seen at Figure 1.150

4 Scaling Up151

When testing the scalability of the tool by using a big amount of programs, it lead to a152

great variety of results that are semantically different from the ones got from the analysis153

of a small amount of programs. One of the problems was the lack of distinction between154

solutions. Although each metric has different impact it was common to find very different155

M.Aragão and M. J. Varanda Pereira and P. R. Henriques XX:5

solutions that had practically the same readability and skill results. It was concluded that156

several metrics should be better calculated taking into account, for instance, the priority and157

the number of occurrences.158

Two important decisions were made:159

Refine some criteria, rules and values (to cope with a bigger variety of solutions):160

use only the percentage of blank lines and comment lines instead of also their absolute161

values;162

introduction of the notion of criterion weight;163

increase variety of violations;164

the profile is always based on solution comparison but "isolated" solutions (very very165

good or very very bad) must have lower impact on the results;166

assign weight and number of occurrences to each violation in order to tune the influence167

of it in skill and readability;168

change violations impact to be proportional to readability and skill score to remove169

negative values due to "isolated" solutions;170

adjust the number and the impact of each metric in order to balance both skill and171

readability results.172

Improve PMD performance (to cope with a bigger amount of solutions):173

introduce a new caching option that speed up the tool;174

turn easier the system maintenance associating the impact attribute to each group of175

violation rules and not to each violation individually;176

the violations belonging to the same type are grouped and it is much more easier to177

associate each group to the factors skill and readability;178

All of these changes lead to a more robust system that could handle the new multitude179

of scenarios. The scoring system changed considerably, as metrics became the only source180

of positive score, and violations the only source of negative ones. PMD violations now can181

provoke up to 50% penalty in a given score (if the solution is the one with the most severe182

penalties) and metrics no longer reduce score.183

5 Testing the tool184

In order to ensure the Programmer Profiler Tool was ready to be used in a more generic185

environment, we needed to test it with a far more diverse input of exercises. As such, instead186

of requesting more exercises from a classroom we looked into platforms which provided187

hundreds of challenges and solutions. In that search, online programming exercise platforms188

came up as an ideal solution. These type of platforms have several years worth of exercise189

solutions from all experience levels and with users across the globe. Other services are often190

either tailored for specific use cases such Stack Overflow with just code bits or there is great191

difficulty in comparing solutions for profiling which is the context of whole Open Source192

projects like found in Github.193

By request CodeChef, a not-for-profit educational initiative, supplied the solutions.194

In order to test the results of the changes, an exercise of medium difficulty has been195

chosen. Specifically we will be looking at the following solutions: solution A, solution B,196

solution C.197

The Figure 2 represents the distribution at that stage of all 300 solutions. It’s clearly198

visible that almost all solutions are profiled as "Experts". With the average skill being199

higher than the average readability, which seems consistent with the programming challenges200

environment expectations. However, the distribution is also very tight with several points201

SLATe 2019

https://www.codechef.com/
https://www.codechef.com/viewsolution/18403997
https://www.codechef.com/viewsolution/20951241
https://www.codechef.com/viewsolution/19757960

XX:6 Programmers Profiling

Figure 2 Distribution of solutions without scaling changes

practically on top of one another. Solution A was profiled as Proficient while B and C were202

as Experts.203

On the Figure 3 the graph shows the final distribution after all the changes explained204

on the previous subsections. Now most of the profiles are considered Advanced Beginner S.205

There is still a larger influence on the skill score, but the distribution is slightly more spread206

about. Solution A was profiled as Expert, solution B as Advanced Beginner + while C as207

Proficient.208

To summarise the results of some of these changes Table 1 can be viewed. Only some209

of the key metrics have been listed. Solution A had been profiled as "Proficient", this is a210

profile leaning towards more readability than skill, however it has: The least number of skill211

penalties; The smallest number of statements; Far less total lines, almost a 1 to 10 factor212

compared to solution B; Just 2 methods and 1 class; Quite a few readability penalties and213

no comment lines.214

By looking at these factors it’s obvious the solution A leans towards skill instead of215

readability. In fact, we can make a direct contrast to solution C, in fact they swapped profiles.216

Solution C leans towards readability while keeping a good skill score, some of the factors217

for comparison with solution A: One skill penalty; Three more classes; Four time more the218

number of lines of code and of statements; 2.7 percent of lines of comment; Just 2 methods219

and 1 class; Quite a few readability penalties.220

Finally, solution B clearly is too long compared to the others, with the most penalties221

and no good points in its favour. However, it doesn’t necessarily lean more towards either222

skill or readability, hence the profile given is "Advanced Beginner +".223

M.Aragão and M. J. Varanda Pereira and P. R. Henriques XX:7

Figure 3 Final distribution of solutions

Finally, and just from a programmer’s direct point of view, there are some things that224

are easily noticeable and also serve as a validation of the adjustments made.225

Solution C is clearly the most readable, it has good descriptions, spacing, more classes226

and methods. Solution A, was able to solve the exercise in simply 25 lines of code, and227

one of the smallest number of statements. On the other hand Solution B is very long, it is228

more complex than necessary compared to other alternatives, it seems more the work of a229

beginner.230

To conclude, the comparison between the images shows that with this new version of PP231

Tool the results are more distributed across the chart.232

6 Conclusion233

We can anticipate several situations where it is necessary to carry out programmer’s profiling:234

programming contests, contracting of new programmers, evaluation of programming students,235

analysis of source code quality for some purpose and so on. As we presented in this paper, it’s236

possible to extract important information from the static analysis of source code in order to237

obtain values for parameters like skill and readability and following that approach, PP Tool238

infers the programmer’s profile. This profile varies from novice to master passing through239

advanced beginner, proficient and expert. PP Tool was tested in a different more demanding240

environment and it did not scale up conveniently. So we extended it with some new features241

to obtain a finer and more efficient metrics evaluation method (also weights were tuned) in242

order to cope with a bigger diversity of solutions for more complex problems. Some tests243

SLATe 2019

XX:8 Programmers Profiling

Solution A Solution B Solution C
Skill PMD Penalty 0 1 1
Readability PMD Penalty 7 14 8
Classes 1 2 3
Methods 2 18 6
Statements 4 60 17
Lines of Code 13 99 52
Percentage of Comment 0 2.3% 2.7%
Total Lines 26 214 73
Declarations 4 16 10
Profile - Before Proficient Expert Expert
Profile - After Expert Advanced Beginner + Proficient

Table 1 Comparison 3 solutions before and after the PP Tool scaling adjustments

were made, as discussed in this paper, showing that the accuracy of the new version of our244

programmer’s profiling tool was actually improved. The direction for future research will245

include the generation of detailed feedback on programmers performance based on the bad246

practices detected. The idea is to open the possibility to use PP Tool not only for profiling247

but as a recommendation tool that will contribute to improve the quality of programmer’s248

code specially for students that are learning their first programming language.249

References250

1 T Flowers, Curtis Carver, and J Jackson. Empowering students and building confidence in251

novice programmers through gauntlet. pages T3H/10 – T3H/13 Vol. 1, 11 2004.252

2 Markus Fuchs and Christian Wolff. Improving programming education through gameful,253

formative feedback. 2016 IEEE Global Engineering Education Conference (EDUCON), pages254

860–867, 2016.255

3 Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. Identifying and correcting256

java programming errors for introductory computer science students. ACM SIGCSE Bulletin,257

35(1):153–156, 2003.258

4 Weizhi Huang, Wenkai Mo, Beijun Shen, Yu Yang, and Ning Li. Automat-259

ically modeling developer programming ability and interest across software com-260

munities. International Journal of Software Engineering and Knowledge Engineer-261

ing, 26(09n10):1493–1510, 2016. URL: http://www.worldscientific.com/doi/abs/262

10.1142/S0218194016400143, arXiv:http://www.worldscientific.com/doi/pdf/10.1142/263

S0218194016400143, doi:10.1142/S0218194016400143.264

5 Daniel Novais, Maria Joao Varanda Pereira, and Pedro Rangel Henriques. Program analysis265

for Clustering Programmers’ Profile. In Ganzha, M and Maciaszek, L and Paprzycki, M,266

editor, Proceedings of the 2017 Federated Conference on Computer Science and Information267

Systems (FedCSIS), pages 701–705. PTI; IEEE, 2017. FedCSIS, Prague, Czech Republic, Sep268

03-06, 2017. doi:{10.15439/2017F147}.269

6 Daniel José Ferreira Novais. Programmer profiling through code analysis. Master’s thesis,270

December 2016.271

7 Emília Pietriková and Sergej Chodarev. Profile-driven source code exploration. Computer272

Science and Information Systems (FedCSIS), pp. 929-934, IEEE., 2015.273

8 Nghi Truong, Paul Roe, and Peter Bancroft. Static analysis of students’ java programs. In274

Proceedings of the Sixth Australasian Conference on Computing Education-Volume 30, pages275

317–325. Australian Computer Society, Inc., 2004.276

http://www.worldscientific.com/doi/abs/10.1142/S0218194016400143
http://www.worldscientific.com/doi/abs/10.1142/S0218194016400143
http://www.worldscientific.com/doi/abs/10.1142/S0218194016400143
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0218194016400143
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0218194016400143
http://arxiv.org/abs/http://www.worldscientific.com/doi/pdf/10.1142/S0218194016400143
http://dx.doi.org/10.1142/S0218194016400143
http://dx.doi.org/{10.15439/2017F147}

	Introduction
	Related Work
	PP Tool at a glance
	Code analysis
	Profiling

	Scaling Up
	Testing the tool
	Conclusion

