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Abstract 

Chronic lung disease and admissions due to acute respiratory failure (ARF) are becoming 

increasingly common. Consequently, there is a growing focus on optimizing respiratory 

support, particularly non-invasive respiratory support, to manage these conditions. High flow 

nasal therapy (HFNT) is a noninvasive technique where humidified and heated gas is 

delivered through the nose to the airways via small dedicated nasal prongs at flows that are 

higher than the rates usually applied during conventional oxygen therapy. HFNT enables to 

deliver different inspired oxygen fractions ranging from 0.21 to 1. Despite having only 

recently become available, the use of HFNT in the adult population is quite widespread in 

several clinical settings. The respiratory effects of HNFT in patients with respiratory failure 

may be particularly relevant for clinicians. In this narrative review, we discuss the main 

pathophysiological mechanism and rationale for using HFNT in the acute and chronic setting. 

Keywords: acute respiratory failure; high flow nasal therapy; noninvasive ventilation; high 

flow nasal cannula; chronic obstructive pulmonary disease 
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Abbreviations 

Acute respiratory failure, ARF  

High flow nasal therapy, HFNT  

Conventional oxygen therapy, COT  

Long-term oxygen therapy, LTOT 

Acute hypercapnic respiratory failure, AHRF   

Chronic obstructive pulmonary disease, COPD 

Noninvasive ventilation, NIV  

Positive airways pressure, PAP 

Tidal volume, TV 

Respiratory rate, RR 
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1. Introduction 

The incidence of acute respiratory failure (ARF) among hospitalized patients and the 

prevalence of chronic lung conditions in the general population have been increasing steadily 

in the last decades [1, 2]. As  result, in recent years there has been a growing interest in  

optimizing techniques to provide adequate respiratory support, particularly by using non-

invasive means. 

Conventional oxygen therapy (COT) includes systems to deliver oxygen such as standard 

nasal cannulae, face masks, and Venturi masks. Traditionally, COT has been the first-line 

treatment in patients with hypoxemia in both the acute and chronic settings [3–5]. In patients 

with mild acute hypoxemia, COT can to improve oxygenation and outcomes [102]. Similarly, 

long-term oxygen therapy (LTOT) is the only treatment proven to reduce mortality in patients 

with chronic obstructive pulmonary disease (COPD) and chronic respiratory failure [6, 7].  

Non-invasive ventilation (NIV) is a ventilation delivery mode used routinely in the treatment 

of acute hypercapnic respiratory failure (AHRF)  secondary to exacerbation of COPD [8],  in 

ARF in immunocompromised patients [9] and ARF secondary to cardiogenic pulmonary 

edema [10]. NIV has been shown to reduce intubation rate and improve outcomes [10]. 

Conversely, its role in de novo hypoxemic ARF is still controversial, with conflicting results 

on its efficacy and poorer outcomes in this group of patients [11–13]. In the chronic setting, 

there is good evidence to support the long-term domiciliary use of NIV in both 

neuromuscular and extra-pulmonary restrictive disease [14, 15]. More recently, a growing 

body of evidence has become available to support the already widespread use of long term 

NIV in patients with COPD and chronic ventilatory failure [14, 16]. In these patients, NIV 

has been shown to improve gas exchange, quality of life, and reduce exacerbation and 

readmission rate [17–21].  
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Both COT and NIV suffer from known limitations. In particular, COT is unable to deliver 

accurate FIO2, while NIV is associated with poor tolerability, patient-ventilator asynchrony 

due mainly to air leaks, and skin damage [8]. It is not unexpected, therefore, that new devices 

which could overcome some of these drawbacks are gaining increasing attention as an 

alternative form of respiratory support.  

Among these is high flow nasal therapy (HFNT). This was initially developed for and 

extensively studied in the pediatric population [22], and recently has also been shown to be 

advantageous in adults, initially in the acute setting and more recently for long-term 

domiciliary use [23, 24]. HFNT devices generate and deliver high flows (up to 60 L/min) of 

oxygen-enriched gas, at varying FIO2 between 21% and 100%, through large non-occlusive 

nasal prongs. The delivered gas mixture is actively heated to core temperature and humidified 

to full saturation, via a heated humidifier connected to the interface through a single-limb 

non-condensing insulated circuit. Despite having only recently become available, the use of 

HFNT in the adult population is becoming more widespread. Several studies have shown the 

possible application of HFNT in de novo hypoxemic ARF [13, 25–30], in 

immunocompromised patients [31], in the treatment and prevention of post-extubation 

respiratory failure [32, 33], and in peri-operative medicine [34–38]. 	

In these diverse clinical scenarios, HFNT has been studied in comparison to COT [25, 33] or 

NIV [13], and more recently as a complementary therapy to NIV [39]. A small number of 

studies has focused on the role of HFNT in patients with stable COPD, showing a reduction 

in exacerbation rate and improvement in gas exchange [40–42].  

Despite the need for further trials to confirm these results, the data available so far on HFNT, 

in both the acute and chronic settings, paint a very promising picture, and its use is anchored 

on a strong physiological rationale. In this narrative review, we discuss the main 
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pathophysiological mechanisms and the rationale for the use of HFNT in both the acute and 

chronic setting.  

2. Physiological mechanisms in acute respiratory failure 

By delivering a gas mixture heated to body temperature and fully humidified at high flow 

rates, HFNT is beneficial to patients with acute respiratory failure, irrespective of the 

underlying cause. This is owing to  its effects on muco-ciliary clearance, respiratory 

mechanics and work of breathing, and comfort (Table 1).  

2.1 Effects of HFNT on muco-ciliary clearance 

Muco-ciliary clearance is the first-line defense mechanism of the bronchial tree and depends 

on synchronous cilia movement and adequate water content in the mucus [43, 44]. In 

physiological conditions, the upper airways are responsible for heating and humidifying the 

inspired air, in part by extracting humidity from the expired gas [45]. This process ensures 

that in the main bronchi and peripheral parts of the bronchial system the inspired air reaches a 

temperature of 37 C, an absolute humidity of 44 mg/L and a relative humidity of 100%. 

These are optimal conditions for the functioning of cilia, and to maintain mucus hydration 

[45, 46]. Deviating from these conditions both with under- or over-humidification has been 

shown to  negatively affect lung muco-ciliary clearance [46, 47].  

In ARF the elevated respiratory rate (RR) and patients’ mouth breathing  can affect proper 

airway humification. This can cause mucus dehydration, impaired muco-ciliary clearance and 

eventually mucus retention [48].  In addition, medical gases, normally delivered through 

various forms of conventional respiratory support, contain only 6 parts per million of water 

vapour, contributing to airways dehydration [46]. Furthermore, the delivery of high flows of 

gases in tachypneic mouth-breathing patients under COT or NIV causes unidirectional nasal 

flows which lead the nasal mucosa to recover less moisture during expiration [49]. Therefore, 
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even if not bypassed, the upper airways cannot exert their heating and moisturizing effect and 

the lower airways mucosa become involved in the heating and humidification process, 

leading to increased mucosal inflammation, mucus dehydration with subsequent impaired 

cilia function and bronchial hyper-reactivity [46].  

While cold air humidification with COT cannot significantly prevent these adverse events, 

the use of humidification during NIV treatment either via in-line heater humidifier or heat 

and moisture exchanger can [50]. Unfortunately, the absolute humidity that these systems 

deliver ranges between 5 and 30 mg/L, below the optimal conditions outlined above [51]. 

Conversely, HFNT provides the same level of absolute humidity found in the alveoli (44 

mg/L) and it has been shown in vitro to be associated with lower level of inflammation and 

injury compared to conditions of under-humidification [46]. It is conceivable that this leads to 

restoration of the rheological properties of mucus, reducing the retention of secretions and the 

occurrence of atelectasis.  

2.2 Effects on respiratory mechanics and oxygenation 

Patients with acute respiratory failure present with increased work of breathing secondary to 

augmented inspiratory effort, respiratory rate(RR) and increased respiratory impedance. 

HFNT has been shown to reduce inspiratory effort compared to COT in patients with ARF, 

which translates clinically in improved outcomes on HFNT compared to both COT and NIV. 

These benefits can be explained by four key characteristics of HFNT: positive airway 

pressure, wash out of dead space, reduction in airway resistance and heating and 

humidification of the delivered gas.  

2.2.1 Positive airway pressure 

In the pediatric population, HFNT is known to be associated to reduced respiratory effort due 

to the positive pressure generated in the upper airways [22]. Similarly, in adults, HFNT 
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generates a variable level of positive airways pressure (PAP) throughout the respiratory 

cycle. The PAP generated by HFNT depends on flow-rate and is higher at the end of 

expiration. During expiration, the PAP also depends on the volume of air leaked through the 

mouth, being higher when patients breathe with their mouth closed. During inspiration, the 

PAP does not however depend on the level of mouth closure [52–60]. It has been estimated 

that mean expiratory PAP can increase by 0.69 cmH2O for every 10 L/min of flow rate [56].  

The PAP generated by HFNT can be approximated to a low-level PEEP, being higher during 

expiration. This has been suggested to be the mechanism by which HFNT exerts a 

recruitment effect as shown by the increase in end-expiratory lung volume (EELV) in 

patients with acute and post-surgical respiratory failure [36, 61, 62]. In ARF, HFNT has not 

been associated with a significant increase in tidal volume (TV) [61, 63], unlike to what 

observed in stable patients. Therefore, HFNT could reduce the risk of ventilation-induced 

lung injury possibly by reducing transpulmonary pressure. This is in contrast to NIV which  

is often associated with high tidal volume in de novo hypoxemic ARF [61, 64].  

HFNT has also been shown to reduce patients’ inspiratory effort as observed clinically 

through a reduction in respiratory distress and use of accessory muscles [25–28]. 

Physiological studies [61, 63, 65] have shown, on HFNT compared to COT, a reduction of 

approximately  25% in the esophageal pressure swing, a measure of the inspiratory effort, and 

a decreased metabolic work of breathing as measured by trans-diaphragmatic pressure (Pdi) 

time product (PTPdi). PTPdi is the area under the Pdi signal from the onset of its positive 

deflection to its return to baseline [66]. These effects on respiratory mechanics, reported by 

one study to be most significant for flows of 60 L/min, do not show a clear dose-response 

with flow rates [61, 63, 65]. Current data seems to suggest that a tailored approach for each 

patient, consisting in bedside titration of the flows, could lead to optimal outcomes [62]. 

2.2.2 Increased inspiratory oxygen fraction and dead space wash out     
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HFNT delivers flow rates which match or are closer to patient peak inspiratory flow rate, 

usually between 30 and 120 L/min in ARF. Conversely, COT cannot meet the peak 

inspiratory flow rate, leading to the set FIO2 not being delivered due to dilution with 

entrainment of room air in the gas mixture. HFNT not only reduces this effect [52, 67, 68], 

but by delivering high flow rates, washes out the upper airways dead space. This increases 

the FIO2 and reduces the FICO2, minimizing the risk of re-breathing [69, 70]. As a result, the 

FIO2 delivered by HFNT is closer to the desired one, with mild discrepancies for flows lower 

than 40 L/min or in case of high peak inspiratory flow rates [71].  As an effect of this, 

alveolar   pO2 is increased, and oxygenation is improved. Similarly, CO2 is cleared more 

efficiently on HFNT than on COT with reduced work of breathing to ensure adequate 

ventilation.  

Finally, it is conceivable that dead-space wash-out can improve work of breathing in patients 

on HFNT as increasing dead-space, such as the instrumental one related to HME, has been 

associated with worsening work of breathing in patients treated with NIV [72]. 

2.2.3 Airway resistance 

Due to their distensibility, the upper airways, and especially the nasopharynx, create 

resistance to the air flow. This becomes particularly relevant in situations that lead to a 

contraction of the upper airways, such as with the increase of peak inspiratory flow rate in 

ARF. Noninvasive continuous positive pressure ventilation (CPAP) and intermittent positive 

pressure ventilation (NIPPV), through a splinting effect and by delivering an inspiratory 

pressure respectively, can overcome this resistance. HFNT reduces inspiratory resistance and 

the resistive component of the work of breathing by matching the peak inspiratory flow rate 

and possibly by triggering the activation of the alae nasae muscle, thereby stiffening the 

airway [73–75].   
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2.2.4 Humidification 

The energy expenditure for the human body to heat and humidify the inspired gas in 

physiological conditions (TV 500 ml and RR 12/min) has been estimated to be 156 

calories/min [75]. This increases significantly when patients are in ARF, tachypneic and 

breathing with their mouth open. HFNT provides a pre-conditioned gas mixture, reducing 

therefore the metabolic component of work of breathing. 

2.3 Effects on respiratory pattern 

As a consequence of the mechanisms described above, HFNT can affect the respiratory 

pattern in patients in various clinical scenarios, including healthy people [74]. HFNT in ARF 

tends to reduce respiratory rate, relieving patients’ distress, and to increase tidal volume with 

reduction in dead space [61].  

2.4 Effects on comfort 

2.4.1 Heating and humidification  

Patients treated with low-flow oxygen report minimal or no discomfort on treatment, hence 

clinical guidelines do not recommend the routine use of humidification in such circumstances 

[3, 76]. However, critically ill patients in ARF, who are often treated with higher flows of 

oxygen via face mask, are known to report discomfort on oxygen therapy, including airway 

dryness, despite the use of humidification [77]. Similarly, critically ill patients on NIV often 

report mucosal dryness in the nose, mouth and throat and this limits their comfort , leading to 

a higher risk of treatment failure [78, 79].  The use of humidification appears to reduce the 

perceived dryness on NIV, although in a fashion not necessarily correlated with the level of 

delivered absolute humidity [48, 80].  
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HFNT has been consistently shown to provide greater overall comfort to patients compared 

to both COT and NIV, including to patients with de novo ARF or post-extubation respiratory 

failure. This has mostly been attributed to the delivery of warmed and humidified gas through 

an in-line heated humidifier, which reduces airway dryness. However, only a handful of 

studies directly assessed subjective or objective measures of airway dryness using numeric 

rating scales or specialist assessment by otorhinolaryngologists. While most studies show a 

noticeable reduction in the perceived or measured dryness in the nose, mouth and throat, 

results are not consistent across the studies. Studies comparing HFNT to NIV or COT with 

added in-line humidification show that a similar fraction of patients reported airway dryness 

[39]. This would suggest that the greater overall comfort consistently observed on HFNT is 

associated with factors other than humidification, such as comfort of the interface. 

2.4.2 Interface  

Critically ill patients usually receive COT via face masks or NIV via oronasal masks, full-

face masks, or helmets, depending on patients’ characteristics and needs [81, 82]. The 

interface plays a central role in the improvement of comfort of HFNT compared to NIV.  

The interfaces used for NIV in ARF suffer from several problems. One of them is the high 

instrumental dead space introduced by masks or helmets in NIV, which is almost negligible 

for nasal prongs used in HFNT. NIV interfaces suffer also from air leaks, which – in an 

attempt to be compensated by the clinician – cause the development of pressure sores, skin 

damage, and overall lead to poor tolerance. This, in turn, leads to the need for rotational 

strategies to be applied [50, 82, 83].  The nasal cannulae used on HFNT confer significant 

advantages to both COT and NIV. Not only the loose-fitting nasal prongs are reported to be 

more comfortable than those used for COT, but they are also associated with less 

displacement episodes, diminished eye irritation and greater ease  eating [32, 39].  



	 13	

Finally, it is conceivable that improving patient’s comfort by optimizing airway 

humidification and interfaces may in turn lead to reduced need for sedation thus decreasing 

the risk for delirium [84, 85].  

3. Physiological mechanisms in long term chronic setting 

Over the last few years, a small number of case reports and studies have started looking at the 

potential role of HFNT in patients with sleep-disordered breathing, COPD and 

bronchiectasis. While the clinical evidence for the use of HFNT in the chronic setting is still 

very limited, more convincing data are available on its physiological rationale. The main 

effects by which HFNT could confer any advantages over COT or NIV in long-term 

domiciliary use are the same as in the acute setting, including its role on muco-ciliary 

clearance, improvement of respiratory mechanics and gas exchange and comfort (Table 2).  

3.1 Effects of HFNT on muco-ciliary clearance 

Impaired muco-ciliary clearance in chronic respiratory conditions can be caused by various 

mechanisms, including decreased water content (i.e. Cystic Fibrosis), increased airways 

inflammation (i.e. COPD) or structural cilia damage (i.e. primary ciliary dyskinesia), and 

feeds into a vicious cycle leading to recurrent infections [43, 44].  

The central role of temperature and humidification in optimizing cilia function and mucus 

hydration [46], discussed previously, has been validated in vivo by showing that patients with 

bronchiectasis in treatment with HFNT (20-25 L/min, FIO2 21% 3 hours/day for 6 days) had 

improved, but not normalized, lung clearance with no significant changes in cough frequency 

[86].  This improvement in the clearance index could explain how HFNT can reduce the rate 

of exacerbations in patients with bronchiectasis and COPD [42, 87].  

3.2 Effects on respiratory mechanics 



	 14	

In COPD, structural changes and airflow obstruction with subsequent increased respiratory 

resistance lead to dynamic hyperinflation. Elastic and resistive loads are responsible for the 

increased work of breathing, which tends to be particularly evident during exacerbations and 

exercise [88]. However, this can evolve to be apparent during rest as well, and patients 

develop chronic respiratory failure.  

3.2.1 Positive airway pressure 

In stable COPD, NIV improves alveolar ventilation altering the breathing pattern, and 

offloads the respiratory effort providing inspiratory pressure and counterbalancing the 

intrinsic PEEP [89]. The low-level PEEP effect exerted by HFNT has been described in 

stable patients with COPD and interstitial lung disease [54]. HFNT, used at relatively low 

flow rates in patients with stable COPD, leads to a reduction in Pdi swing, PTPdi and 

dynamic intrinsic PEEP compared to baseline, but in a lesser measure than NIV [90, 91]. 

These effects have been observed during wakefulness and in non-REM sleep [92]. This, 

together with the observed increase in TV [74, 92] and end-expiratory lung volume, suggest 

an increase in the residual functional capacity. Finally, the use of HFNT improves the I:E 

compared to COT, due to an increase in expiratory time. These effects have been observed 

for flow rates at 20 and 30 L/min with patients breathing with their mouth closed, but were 

more pronounce for higher flows. 

Patients with COPD often adopt strategies as pursued-lips breathing to increase the expiratory 

resistances as this can increase the expiratory time, reduce the respiratory rate and dynamic 

hyperinflation [93].  However, pursued-lips breathing may lead to an increased effort that the 

patient is not able to maintain over time. HFNT, by resembling the breathing pattern of 

pursued-lips breathing [74], may be a therapeutic tool for patients with COPD slowing 

respiratory rate and improving breathing pattern. Finally, the adoption of a deep and slow 
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breathing pattern may reduce atelectasis [74]. 

In stabilized patients with Cystic Fibrosis, no differences in work of breathing as measured 

by diaphragmatic activity were observed while patients were at baseline, on HFNT or on 

NIV. However, HFNT resulted in mild improvement in VT compared to NIV and reduced 

RR compared to COT [94].  

3.2.2 Dead space wash out 

Studies on animal models suggested that the improved ventilation on HFNT is a consequence 

of flow rather than pressure [95]. Higher flow rates, by washing out the dead space in the 

upper and lower airways, improve pCO2 or tcCO2 clearance, reduce rebreathing and work of 

breathing in a flow-dependent manner with better results for flows greater than 30 L/min. 

Furthermore, recent in vivo studies have confirmed that the reduction in pCO2 in patients with 

stable hypercapnia is flow-dependent, and this effect could be more relevant than that of the 

generated pressure. In a small physiological study, pCO2 dropped more significantly with 

higher flow rather than in those conditions where highest mean PAP was achieved [96].  

3.2.3 Airway resistance 

HFNT can reduce inspiratory resistance, leading to a reduction in dyspnea and respiratory 

rate. As aforementioned the effect on respiratory resistance exerted by HFNT is mainly due 

by meeting or exceeding the patient’s peak inspiratory flow rate by supplying gas at a high 

flow. In addition, HFNT can also reduce bronchoconstriction by reducing the muscarinic 

effect [97] resulting from nasal inhalation of cold air in patients undergoing oxygen therapy 

[98]. 

This could have significant clinical implications during exercise and in symptomatic patients 

[89, 99]. Alongside attenuating the inspiratory resistance, HFNT can increase the expiratory 

resistance  through pressure effects and via the provision of continuous flow.  
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3.3 Effects on gas exchange 

COT and NIV are used in the treatment of chronic respiratory failure to improve several 

significant outcomes, including quality of life, exacerbation rate, hospital readmission and 

mortality, through normalization or improvement in the gas exchange.  

In most chronic respiratory conditions, this requires correcting both hypoxemia and 

hypercapnia. However, the studies available so far are limited to stable COPD with mild-

moderate hypercapnia. In this setting, HFNT was consistently shown to decrease pCO2, as a 

consequence of the mechanisms above described, in both sleep and wakefulness. It has been 

suggested that changes in pulmonary mechanics, breathing pattern, flow rate, and higher 

baseline pCO2 can affect the response to HFNT, with an average fall in pCO2 by 10% for 

baseline values greater than 50 mmHg [100]. Conversely, results on oxygenation mostly 

show no changes in oxygen saturation, although a non-clinically-significant reduction in 

oxygenation has been observed during sleep and in short term physiological studies [92]. This 

could be because HFNT provides a more reliable delivery of a FIO2  than COT which could 

lead to a higher FIO2 being provided to patients. 

3.4 Effects on comfort 

Contrary to studies and results on ARF, results on comfort and dyspnea are inconsistent in  

patients with chronic respiratory failure who could be potential candidate for the domiciliary 

use of HFNT.  

Interestingly long-term studies have shown that HFNT is well tolerated, and reduces dyspnea 

compared to LTOT [41, 42], but when used in the short-term HFNT does not provide similar 

results in patients with COPD or CF [90, 91, 94]. Despite the lack of side effects, patients 

have reported overall comfort to be better or similar on LTOT and NIV compared to HFNT 
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[90, 91, 101]. On this treatment the highest level of tolerability appeared to be achieved when 

the delivered flow was 30 L/min [101].  

4. Summary and conclusion 

In conclusion, HFNT entails several physiopathological mechanisms which can lead to 

improve patient’s clinical condition both in acute and in chronic setting. Although these 

mechanisms have been demonstrated to improve patients’ outcomes in some clinical 

scenarios, other applications, particularly in the chronic setting,   require important issues to 

be resolved, such as timing of treatment and escalation plan to more invasive tools. Further 

studies are warranted to investigate these important issues.   
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Table 1. Potential mechanisms of benefit of HFNT in the acute setting 

Heating  Effects on muco-ciliary clearance 
Reduced metabolic cost of work of breathing 
Increased comfort 

 

Humidification Effects muco-ciliary clearance 
Reduced metabolic cost of work of breathing 
Reduced inflammation in vitro 
Increased comfort 

 

High-flow Positive airway pressure 
• Recruitment effect 
• Increase dynamic lung compliance 
• Reduced work of breathing 

Matching patients’ PIFR 
• Reliable delivery of FIO2 
• Reduced inspiratory resistance 
• Reduced resistive component of WOB 

Dead-space wash-out 
• Reliable delivery of FIO2 
• Reduced re-breathing 

 

 

Interface Minimal instrumental dead-space 
Increased comfort 
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Table 2. Potential mechanisms of benefit of HFNT in the chronic setting 

Heating  Effects on muco-ciliary clearance 
Increased comfort 
Reduced bronchoconstriction secondary to 
muscarinic activation 

 

Humidification Effects muco-ciliary clearance 
Reduced inflammation in vitro 
Increased comfort 

 

High-flow Positive airway pressure 
• Recruitment effect  
• Increased tidal volume 
• Reduced work of breathing 
• Increased expiratory resistance 

Matching patients’ PIFR 
• Reduced inspiratory resistance 
• Reduced resistive component of WOB 

Dead-space wash-out 
• Reliable delivery of FIO2 
• Reduced re-breathing 

 

 

Interface Increased comfort  
 

 

 


