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Abstract—This paper presents a simple and general mathemat-
ical formulation for the determination of the differential leakage
factor for both symmetrical and asymmetrical full and dead-
coil windings of electrical machines. The method can be applied
to all multi-phase windings and considers Görges polygons in
conjunction with masses geometry in order to find an easy and
affordable way to compute the differential leakage factor, avoiding
the adoption of traditional methods that refer to the Ossanna’s
infinite series, which has to be obviously truncated under the bound
of a predetermined accuracy. Moreover, the method described in
this paper allows the easy determination of both the minimum and
maximum values of the differential leakage factor, as well as its
average value and the time trend. The proposed method, which
does not require infinite series, is validated by means of several
examples in order to practically demonstrate the effectiveness and
the easiness of application of this procedure.

Index Terms—Differential leakage factor, dead-coil windings,
asymmetrical windings, concentrated windings, multi-phase wind-
ings, Görges polygon, moment of inertia.

LIST OF MAIN SYMBOLS

N Number of slots;
p Number of pole pairs;
m Number of phases;
N The set of integer numbers;
G The set of the even numbers;
U The set of the odd numbers;
γ Number of coils per phase;
g Number of phasors with different phases;
Q Number of slots per pole and per phase;
t Time variable;
kwν Winding factor for the ν-th harmonic order;
I, Ix Phase current (RMS and peak value).

I. INTRODUCTION

Nowadays, most of the design procedures for electrical ma-
chines are based on the fundamental wave theory, which is
focused on the achievement of a sinusoidal distribution of the
air-gap flux density with the lowest possible harmonic content
[1]–[6]. However, depending on specific targets, other design
criteria can be adopted, such as, for instance, the optimization
of concentrated windings [7], the structural mass minimization

of direct-drive generators [8] or the use of no rare-earth magnet
machines [9]. In any case, the differential leakage factor is an
important parameter that can be considered as a measure for
the distortion rate that affects the magneto motive force (MMF)
distribution in the air-gap of an electrical machine. Moreover,
it has been demonstrated that this parameter depends on the
harmonic distribution of winding factors and, consequently, on
the type of winding pattern chosen for a particular machine [2],
[10]–[18].

Therefore, an exact knowledge of the differential leakage
factor (from which average torque, parasitic torques and forces,
copper and eddy current losses can be determined [17], [19]) is
a significant aid to design also fractional-slot single and double
layer windings with low torque ripple, from symmetrical to
asymmetrical configurations (at least if they have a low degree
of unbalance) [19], [20], even in the case of the so called
“dead coil windings” (dead coil windings contain one or more
empty slots in single-layer or non wound coils in double-layer
windings). Regarding asymmetrical windings, the formula for
the determination of differential leakage factors becomes more
complex with respect to symmetrical ones and only few authors
dealt with this particular topic [21], [22].

Asymmetrical windings are commonly adopted in three-
phase, pole-changing induction machines with speed ratios
equal to 2:3 [22], 4:6 [21] and so on, in machines with Pole
Amplitude Modulation (PAM) [2], or when the use of the same
stator laminates for more slot/pole number combinations [23]
is required. Other possible applications can be associated to
the rewinding of an old machine for a new synchronous speed
[24] (e.g. 3000 or 1500 to 1000 rpm at f = 50 Hz [22]), or
the optimization of the motor performances by reducing the
effects of slot harmonics [25], [26]. However, the adoption
of slightly asymmetrical windings can also be an interesting
choice during the design stage of electrical machines. In fact,
the use of this type of winding configuration in several case
studies can even provide benefits and advantages if compared
with symmetrical topologies, significantly increasing the pos-
sibility of choice in terms of slot/pole number combinations
and improving the industrial automated manufacturability of all
electrical machines, even in the case of automotive applications.
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For instance, either a 24 slots/6 poles or a 30 slots/6 poles three-
phase machine is composed by slightly asymmetrical windings;
however, due to the light degree of unbalance, the electrical
and magnetic properties can be comparable to the symmetrical
ones [20]. In fact, it can be stated that even windings designed
to be perfectly symmetrical present slight asymmetries due to
unavoidable manufacturing tolerances.

In this context, this paper presents a simple and effective
method for the computation of the differential leakage factor
suitable for all types of winding configurations: symmetrical,
asymmetrical, including dead-coil ones. This method is based
on the construction of Görges polygons. The adoption of this
procedure allows the computation of only the winding factor of
the working harmonic (the one having p pole pairs), together
with the moment of inertia matrix of the Görges polygons
associated to the winding, avoiding traditional procedures that
involve very complex and troublesome computations. Moreover,
the proposed method allows the easy determination of both the
minimum and maximum values of the differential leakage factor,
as well as the average value and its trend over time. By adopting
this fast procedure, the design space could be improved by
performing several variations of a base-winding configuration
in order to optimize its performances (i.e. varying the number
of slots or pole pairs or phases by using zone widening or
imbrication techniques, shortened pitch coils, etc). Therefore, an
online re-assembly of the base winding and a fast procedure for
the calculation of the related leakage factor could significantly
reduce the time of computing and it can immediately determine
the performance improvement.

It has to be highlighted that the main paper in literature
dealing with this topic was presented by the Authors in [27].
However, that method was directed only for asymmetrical
windings without dead-coils and it was not demonstrated its
applicability towards reduced poly-phase systems (such as dual
symmetrical six-phase windings [28]). In fact, the procedure
presented in [27] has been significantly modified in order to ex-
tend the method to all possible types of winding configurations.
Thus, this paper proposes a simple and general method that
can be applied to all symmetrical and asymmetrical windings
both distributed and concentrated, even for normal and reduced
multi-phase systems, including those having a number of phases
that is a power of two.

More in detail, this work is structured as follows: Section II
provides some definitions regarding the symmetry conditions
of winding configurations, whereas Section III describes the
equations proposed in the recent scientific literature for the com-
putation of the differential leakage factor. Section IV discusses
about the method based on the Görges polygon presented by
the Authors and some examples are given in Section V in order
to demonstrate the versatility and the ease of application of the
proposed procedure. Finally, Section VI proposes a comparison
between the results obtained with finite element analysis and
those achieved by means of the proposed method.

II. SYMMETRY CONDITIONS FOR WINDING DESIGN

This Section provides a possible general definition for both
symmetrical and asymmetrical windings.

For an electrical machine with N slots, m phases, nl layers,
and p pole pairs, the winding symmetry can be evaluated by
using the factors γ and g defined as [29]:

γ = nl
N − η
2m

(1)

g =

{
N
mr for normal and non−reduced systems
N

2mr for reduced systems,
(2)

where η represents the number of empty slots (for a dead-coil
winding) in the case of single layer windings and the number
of unwound coils in the case of double layer windings and:

r = gcd(N, p), (3)

is the greatest common divider between N and p.
The winding symmetry is defined as follows:{

γ ∈ N for coil windings

γ ∈ {N, N/2} for bar windings,
(4)

and {
g ∈ N for symmetrical windings

g /∈ N for asymmetrical windings,
(5)

If conditions (4) and the first of (5) are satisfied, the winding
is symmetrical; otherwise, it is asymmetrical. It has to be high-
lighted that condition 4 can be always verified by adequately
choosing η. Thus, possible asymmetries can be brought back
to condition 5, which refers to the phase-shift angles between
the phases (for more detail, see also [29]). These conditions
of symmetry can be applied to both normal (otherwise named
radially-symmetrical) systems, defined as multi-phase systems
having a no-loaded neutral point [28], and reduced systems.

III. DIFFERENTIAL LEAKAGE FACTOR: A LITERATURE
REVIEW

The leakage factor is defined with the following general
formula [1], [2], [11], [13]–[15], [17], [30]–[32]:

σ0 =
Wδ −Wp

Wp
=
Wδ

Wp
− 1 (6)

where Wδ is the whole magnetic energy stored in the air-
gap and Wp is the air-gap magnetic energy contribution limited
to the working harmonic. By manipulating (6), the following
equation can be derived:

σ0 =

(
p

kwp

)2 +∞∑
ν=1, ν 6=p

(
kwν
ν

)2

, (7)

where kwp is the winding factor at the working harmonic (ν =
p) [10], [13].

Nevertheless, equation (7) is limited only to symmetrical
windings, even if it can be applied for many winding configu-
rations, including integer and fractional types. In addition, the
summation (known as the Ossanna’s series [31]) has the form
of an infinite series that slowly converges [2], [11], [13] and its
computation, in many cases, results particularly troublesome.



Huang [11] and Kron [31] proposed two similar procedures
for the calculation of (7) in a closed form. However, both
methodologies require the determination of the winding factors
within at least one period, which leads to complex computations.

With regards to asymmetrical windings, which present differ-
ent winding factors for each phase, Heller et al. [12] demon-
strated the following expression of the differential leakage,
which was also described and used by Cistelecan et al. [22],
[32]:

σ0 (t) = σ0m + σ0v · cos (2ωt+ ϕ) , (8)

where

σ0m =

(
p

kwp

)2 +∞∑
ν=1, ν 6=p

[(
kwdν
ν

)2

+

(
kwiν
ν

)2
]
, (9)

σ0v = 2

(
p

kwp

)2 +∞∑
ν=1, ν 6=p

kwdν · kwiν
ν2

, (10)

ν is the harmonic order, ω = 2πf and ϕ is a generic
angular phase. It can be noticed from (8) that the leakage factor
is time-dependent and it is composed by 2 components: (9),
which is constant in time, and (10), which is the amplitude
of a periodic function of twice the supply frequency. These
two terms have the same behavior as Ossanna’s series with a
very weak convergence. The alternative formulas, presented in
the next section, will provide a calculation method overcoming
this problem. It will also be demonstrated that, by applying the
Gorges polygon, it is possible to determine both σ0m and σ0v
without the need of complex equations.

IV. DETERMINATION OF THE DIFFERENTIAL LEAKAGE
FACTOR AND THE MOMENT OF INERTIA OF GÖRGES

POLYGONS

The proposed analysis is carried out by considering the
following assumptions:

1) The magnetic voltage drop is confined within the air-gap,
which implies that the flux density is radially directed.

2) The air-gap is considered with constant length, neglecting
the effects of proximity of the slots. Therefore, the mag-
netic energy is stored only in the air-gap and not in the
slots.

3) The winding phase currents are considered as a symmetric
multi-phase system with sinusoidal distribution in time.

4) The unipolar and the circulation flux density components
are neglected.

Therefore, the magnetic energy stored in the air-gap can be
expressed as follows:

Wδ =
1

2

∫
V

h (ξ) · b (ξ) dV =
µ0δ”li

2

∫ 2pτ

0

h2 (ξ) dξ (11)

where dV = δ”lidξ is the elementary air-gap volume,

h (ξ) =
b (ξ)

µ0
=
v (ξ)

δ”
, (12)

b (ξ) and h (ξ) are the spatial distributions of the air-gap flux
density and the air-gap magnetic field intensity, respectively, ξ
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Figure 1. Example of plane scheme from which the Görges polygon can be
derived.

is the spatial coordinate along the air-gap, µ0 is the permeability
of vacuum and air, δ” = kCksatδ is the fictive air-gap length
that accounts the slot opening (kC is the Carter factor [28],
[33], [34]) and the saturation of the magnetic circuit (ksat is
the saturation factor [2], [28]), li is the ideal axial length of the
machine and τ is its pole pitch. In (12) v(ξ) is the MMF spatial
distribution along the air-gap.

By considering a discrete MMF air-gap distribution, (11) can
be expressed as

Wδ =
µ0lipτ

δ”
· 1
N

N∑
i=1

ν2i , (13)

where vi is the instantaneous value of air-gap MMF at
a generic i-th slot. Moreover, the energy Wp is determined
through equation

Wp =
µ0li
2δ”

∫ 2pτ

0

ν2p (ξ) dξ =
µ0lipτ

2δ”
· V 2

p , (14)

where

vp (ξ) = Vp sin
(π
τ
ξ
)
.

Therefore, the differential leakage factor can be determined
with the following formula:

σ0 =
Wδ

Wp
− 1 =

2

V 2
p

· 1
N

N∑
i=1

ν2i − 1 (15)

where

Vp =
√
2
mwkwp
πp

I =
mwkwp
πp

Ix (16)

and w is number of series connected coil turns per phase.
The obtained formula can be applied to both symmetrical and
asymmetrical winding configurations; however, for asymmet-
rical types, the direct-sequence component of kwp, namely
kwpd, which is derived from the Fortescue’s theorem [35], is
considered.
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Figure 2. Example of Görges polygon construction and related MMF waveform
for an electrical machine with N = 12, p = 1 and m = 3.

The construction of the Görges polygon can be clarified by
the following example, which considers a 3-phase machine with
p = 1 pole pair and equipped with a symmetrical, single-layer
winding located into N = 12 slots. The procedure starts from
the knowledge of the current distribution along the stator periph-
ery, as shown in Fig. 1, which depicts the planar scheme of the
coil sides located in the slots, each of them already characterized
by both their phase belonging (colors) and sign (up or down
arrows). By assuming a symmetrical three-phase current system
represented by the colored phasors in the same Figure, it can
be noticed that slot nr. 1 is characterized by a positive current
belonging to phase nr.1 (blue up arrow). Therefore, an oriented
segment (vector) with the same orientation of phase 1 vector is
drawn (segment 12− 1 in blue color), as shown in Fig. 2. The
point of application of this first oriented segment can be chosen
at own free will. The same current flows also in slot nr. 2 (see
Fig. 1) and, therefore, a second segment in-phase with phase 1
vector is plotted (segment 1− 2 in blue color), with its point of
application coincident with the end of the first vector (point nr.
1 in Fig. 2). Slot nr. 3 belongs to phase 3 and it is characterized
by a negative current (down arrow); therefore, a vector opposite
to phase 3 vector (segment 2− 3 in red color) is plotted with its
point of application at point nr. 2, and so on. By adding all the
characterized vectors in the graph of Fig. 2, the Görges polygon
can be closed. Finally, the coordinates of the center of mass are
calculated by means of the following formulas

xM =
1

N

N∑
i=1

xi and yM =
1

N

N∑
i=1

yi,

and the whole polygon is moved by xM and yM in their
respective directions in order to ensure that the flux density field
maintains the solenoidal property. For double layer windings the
same procedure is applied by considering the resultant MMF in
each slot, due to the presence of two coil sides.

The projections of the vertexes on the vertical axis y coincide
with the instantaneous values of the air-gap MMF distribution
at each stator slot, as shown in Fig. 2, which depicts the
Görges polygon together with the MMF spatial distribution for
the proposed example. The polygon and the related MMF are
determined considering a 3-phase symmetrical current system
at the time instant when the current flowing in phase 1 is
at its maximum instantaneous value. It can also be noticed

that the distances of the vertexes of the polygon with respect
to the horizontal axes x represent the MMF value related
to each slot (see Fig. 2). During time the Görges polygon
rotates counterclockwise at the angular speed ω = 2πf and,
meanwhile, the MMF changes its shape, traveling in the right
direction.

By taking into account the procedures previously described
(see also [27], [36] and [24]) and by inspection of Fig. 2, it can
be seen that the summation term

∑N
i=1 ν

2
i contained in (15) is

equal to the moment of inertia, calculated with respect to the
horizontal x axis, of a system of N unitary concentrated masses
displaced at the N vertexes of the Görges polygon.

In case of symmetrical winding configurations, the Görges
polygon has a gyroscopic geometry, which leads to the fact
that the moment of inertia computed with respect to a generic
axis passing through the center of mass assumes a constant
value, independently from the axis orientation: this means that
symmetrical windings are characterized by a constant differen-
tial leakage factor. On the contrary, in case of asymmetrical
winding configurations, the Görges polygon is not, in gen-
eral, a gyroscope and, therefore, the moment of inertia varies
dependently on the direction of the axis taken into account
for its computation. In this case, it can be demonstrated that
formula (8) is valid. Therefore, it is necessary to determine
the maximum and minimum values of the moment of inertia
during an electrical period (corresponding to one revolution of
the Görges polygon about its center of mass). The steps to
develop formulas to characterize the minimum and maximum
moments of inertia are reported below.

For this purpose, the “time axis” u is here defined as an axis
passing through the origin O, having a generic direction and
rotating clockwise at angular speed ω = 2πf . In this case, the
Görges polygon is considered stationary and the projections of
its vertexes on the time axis provide the instantaneous values of
the air-gap MMF at each slot. The moment of inertia Ju with
respect to the time axis u is defined as:

Ju = uT · J · u (17)

where

u =
[
cos (θ) sin (θ)

]T
(18)

is the unitary vector of axis u (θ = ωt is the angle of the
time axis with respect to the horizontal x axis, which depends
on time and on the supply frequency), whereas

J =

[
Jxx −Jxy
−Jxy Jyy

]
(19)

is the moment of inertia matrix. Moreover,

Jxx =

N∑
i=1

y2i (20)

is the moment of inertia of the mass system with respect to
the x axis (the principal moment of inertia with respect to x),

Jyy =

N∑
i=1

x2i (21)



is the moment of inertia of the mass system with respect to
the y axis (the principal moment of inertia with respect to y)
and

Jxy = Jyx =

N∑
i=1

xi · yi (22)

are the products of inertia of the same mass system. When the
masses constitute a gyroscopic system Jxx = Jyy , the products
of inertia vanish, i.e. Jxy = Jyx = 0, and matrix J becomes
diagonal. Here xi and yi represent the coordinates of the generic
i-th vertex of the polygon in the x− y plane, respectively.

For the computation of the moment of inertia of Görges
polygons for either symmetrical or asymmetrical multi-phase
windings, even with dead coils, the following formulas, derived
by carrying out the scalar products in (17), can then be adopted:

Ju = Jxx cos
2 (θ) + Jyy sin

2 (θ)− 2Jxy sin (θ) cos (θ) , (23)

which can be expressed in a more compact form as

Ju =
Jp
2

+

√(
Jxx − Jyy

2

)2

+ J2
xy · cos (2θ + ϕ) , (24)

by introducing the polar moment of inertia

Jp = Jxx + Jyy =

N∑
i=1

(
y2i + x2i

)
(25)

and the phase

ϕ = sign (Ixy) · arccos
Jxx − Jyy

2

√(
Jxx−Jyy

2

)2
+ J2

xy

.

Now, it can be demonstrated, following the steps outlined
in [27], that the relation between the moment of inertia of the
Görges polygon and the differential leakage factor σ0(t) is:

σ0(t) =
2Ju (t)

N · V 2
p

− 1 =
Ju (t)

pmQ · V 2
p

− 1, (26)

where Vp is the maximum value of the MMF working
harmonic distribution in the air-gap and Q = N/2pm is the
number of slots per pole and per phase.

An alternative expression of the differential leakage factor can
be obtained by introducing the concept of “radius of gyration”.
In this case

σ0(t) =
ρ2 (t)

V 2
p

− 1, (27)

where

ρ (t) =

√
Ju (t)

pmQ
=

√
2

N
Ju (t)

is the radius of gyration referred to the Görges polygon.
By comparing (24) with (8), it is possible to deduce the

following relations:

σ0m =
Jp

N · V 2
p

− 1, (28)
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Figure 3. Görges polygon of a simple single-layer winding with N = 7,
m = 3, p = 1, η = 1, Q = 1 + 1/6 and q = 1.

σ0v =
2

N · V 2
p

√(
Jxx − Jyy

2

)2

+ J2
xy, (29)

σ0min = σ0m − σ0v (30)

and

σ0max = σ0m + σ0v, (31)

These parameters are adopted in order to determine the
average, the minimum and the maximum differential leakage
factors, respectively.

To clarify the role of empty slots a simple example, referred
to a single-layer asymmetrical winding (this winding is con-
sidered only for demonstrative purpose) with one empty slot,
is considered, whose Görges polygon is shown in Fig. 3. The
winding is characterized by a number of wound slots per pole
and per phase q = N−η/2pm = 1 and by a number of slots per
pole and per phase Q = N/2pm = 1 + 1/6.

Even if the slot nr. 7 is assumed to be empty, the vertex
nr. 7 in the Görges polygon is also taken into account for
the computation of its moment of inertia, because this slot is
affected by the same MMF value of slot nr. 6. In this case, two
unitary masses must be considered as concentrated in the same
vertex. Therefore, it can be generally stated that the contribution
of an empty i-th slot will be equal to the contribution of the slot
i−1. As a consequence, even though the polygon still maintains
a symmetrical form, its center of mass does not coincide with the
polygon center. The computation of the principals moments of
inertia for the proposed example, for sake of clarity, are reported
in Appendix.

In this case, such as in almost all general cases of asymmet-
rical windings, the polygon is not a gyroscope and, therefore,
the moment of inertia will vary during a revolution around the
origin, as shown in Fig. 3, where the closed magenta curve
represents the radius of gyration locus. This curve has a minor
axis and a major one (the two eigenvectors of matrix J ) that
identify the directions and the values of the minimum and



the maximum moment of inertia, respectively. Thus, during
a complete revolution of the the Görges polygon (i.e. during
an electrical period), its moment of inertia assumes twice
the maximum and twice the minimum values. The red circle
represents the locus of the working harmonic of the air-gap
spatial MMF distribution (here ν = p = 1).

It has to be highlighted that the proposed method consider-
ably reduces the computational effort to determine the leakage
factor for asymmetrical windings with respect to other existing
approaches, such as [11] and [12]. In fact, the proposed method
allows the determination of both minimum and maximum values
of σ0 with only one configuration of the air-gap MMF for
any possible winding topology. On the contrary, equation (15)
requires at least two steps of computation related to two air-
gap space distribution of the MMF, whereas [12] requires the
solution of a series with infinite terms, which leads to an
approximated solution due to truncation, and the burden of
calculation for both direct and inverse winding factor harmonic
components. Moreover, the methodology presented in [11]
requires the knowledge of at least (N−1)/2 harmonic winding
factors, whereas the proposed method needs the computation of
only the winding factor at the working harmonic, or its direct
component in case of asymmetrical windings.

V. EXAMPLES

This Section presents some examples in order to demonstrate
the easiness of computation of the differential leakage factor
by means of the proposed procedure, which can be applied for
both symmetrical and asymmetrical windings, even in the case
of reduced, non-reduced, distributed or concentrated ones. The
pictures have been carried out by means of the ACWindSoft
6.3 software [37], [38]. The examples referring to asymmetrical
windings will consider only slight unbalances, i.e with a degree
of unbalance (D.U.%) equal to:

D.U.% =
kwpi
kwpd

· 100 ≤ 5 %, (32)

where kwpd and kwpi are the direct and inverse components
of the winding factor at the working harmonic, respectively,
which can be computed by applying Fortescue’s theorem to the
winding factors.

In the following, for all representations of the Görges poly-
gon, the magenta curves represent the radius of gyration,
whereas the red ones represent the locus of the air-gap spatial
MMF distribution working harmonic. Moreover, for each of the
proposed examples, the results in terms of differential leakage
factor have been compared with those obtained by means of
(15). However, it has to be highlighted that, in all cases involving
asymmetrical windings, this equation allows the determination
of only one instantaneous (actual) value of the leakage factor,
i.e for a specified assignment of the phase currents, avoiding
the possibility of predetermining exactly its maximum and
minimum values. On the contrary, as previously mentioned, the
method described in this work allows the easy determination of
both the minimum and maximum values of σ0, as well as its
average value and its trend over time by virtue of (26) or (27),
which is strictly dependent on the instantaneous values of the
supply currents that determine the spatial position of the Görges
polygon. In any case, by referring to (15), the instantaneous

values of the leakage factor for an entire electrical cycle have
been computed for any example in which the Görges Polygon
is not gyroscopic. It has to be highlighted that, for all the other
examples, the leakage factor is a constant value for the entire
cycle, leading to an equality in terms of minimum, maximum,
average and actual values.

A. Symmetrical Windings

Example 1. A seven-phase symmetrical double-layer winding,
located into N = 49 slots, with p = 1 pole pairs and q = 3+1/2
(γ = 7 ∈ N and g = 7 ∈ N), whose winding diagram is
depicted in Fig. 4a, is considered as a first validation example.
The related Görges polygon assumes the geometry represented
in Fig. 4b, whereas the resulting differential leakage factor is
equal to σ0 = 0.14 %, which is equal to the computed one by
means of (15) σ0(1lay)act = 0.14 %.

B. Asymmetrical Windings

Example 2. The first example taken into account for asymmetri-
cal windings is a 3-phase machine equipped with a double-layer,
fractional configuration with N = 31, p = 3, q = (N−η)/2pm =
1 + 2/3, Q = N/2pm = 1 + 13/18 and η = 1 (γ = 10 ∈ N and
g = 10 + 1/3 /∈ N). Here η = 1 means that a coil is missing,
namely the coil whose positive side is located into slot nr. 11.
The missing coil ensures that the first condition of (4) is verified.
Figs. 5a and 5b represent the winding connection scheme and
the Görges polygon, respectively, by which it is possible to see
clearly the effect of the winding asymmetry on the shape of the
Görges polygon. In addition, Figure 5b shows (together with the
Görges polygon) the locus representing the radius of gyration
(in magenta color) and the polar circle of gyration (red color)
related to the working harmonic (here ν = p = 3). The resulting
minimum and maximum differential leakage factor are respec-
tively: σ0min = 4.18 % and σ0max = 8.92 %, whereas the
unbalance factor of the winding is D.U.% = 1.96 %. The actual
leakage factor computed by means (15) is σ0act = 5.3717 %.
The variability of σ0act over an entire electrical cycle has been
determined and plotted in Fig. 6.

Example 3. An asymmetrical, double-layer fractional full-coil
three-phase winding is considered with N = 30, p = 3,
q = (N−η)/2pm = 1 + 2/3, Q = N/2pm = 1 + 2/3,
η = 0 (γ = 10 ∈ N and g = 3 + 1/3 /∈ N). Figs.
7a and 7b represent the winding connection scheme and the
Görges polygon, respectively. The resulting differential leakage
factor is: σ0min = σ0max = σ0 = 8.04 % (actual leakage
is σ0actmin = σ0actmax = σ0act = 8.04 %), whereas the
unbalance factor of the winding is D.U.% = 1.31 %. In this
case, although the winding results asymmetrical, the Görges
polygon is symmetrical, the locus of the radius of gyration be-
comes a circle and the differential leakage factor σ0 is constant.
Therefore, it can be stated that the choice of an asymmetrical
winding with a symmetrical Görges polygon can be even a
favorable option during the design stage of an electrical machine
in order to considerably decrease the differential leakage factor.

Example 4. An asymmetrical 5-phase winding is considered
with the following characteristics: N = 31 slots, p = 14,
m = 5, η = 1. The machine is equipped with an asymmetrical



Winding with 1 path.
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Figure 4. 7-phase machine with symmetrical double-layer winding: N = 49, p = 1.

Winding with 1 path.
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Figure 5. 3-phase machine with asymmetrical double-layer fractional winding: N = 31, p = 3, η = 1.

double-layer concentrated and non overlapping winding with
Q = 31/140, q = 3/14 (γ = 6 ∈ N and g = 6 + 1/5 /∈ N).
The winding diagram and the Görges polygon are represented
in Figs. 8a and 8b, respectively. It should be noted that also in
this case the polygon is symmetric and the resulting differential
leakage factor maintains a constant value in time, equal to
σ0min = σ0max = σ0 = 119.56 %, which is equal to the
value obtained through (15) σ0actmin = σ0actmax = σ0act =
119.56 %. This high differential leakage factor is typical for
concentrated windings, in which the spatial distribution of the
MMF at the air-gap is highly distorted.

Moreover, the coil whose sides should be located in slots nr.
12 and 13 is missing, due to condition (4). The unbalance factor
of the winding is relatively low and equal to D.U.% = 1.74 %.

Finally, the winding factors at the working harmonic for
all the proposed examples are summarized in Table I and

computed by means of the procedure described in [29]. In
case of asymmetrical configurations, the Fortescue’s theorem
has been applied in order to determine kwpd and kwpi [35].

VI. FEM VALIDATION

In order to strengthen the validity of the method described in
the previous Sections, the Finite Element Analysis is taken into
account. More specifically, an induction machine composed by a
six-phase, double-layer, reduced (otherwise named dual-three-
phase) winding with N = 36 and p = 2 (γ = 6 ∈ N and
g = 3 ∈ N) has been considered as a validation example.

The FEMM4.2 software has been used in order to create
the related model of the motor, whose winding scheme is
reported in Fig. 9a. This configuration is partially symmetrical,
due to the fact that, even if the two groups of three-phase
systems composing the winding are symmetrical, the phase-
shift between the two groups is 27.6° (slightly different from the



Table I
WINDING FACTORS FOR ALL OF THE PROPOSED EXAMPLES

N49, p1, m7 N36, p2, m6 N31, p3, m3 N30, p3, m3 N31, p14, m5

Phase nr .1 Ampl. 0.9508 0.9715 0.9582 0.9064 0.9737
ph. arg. 0° 0° 0° 0° 0°

Phase nr. 2 Ampl. 0.9508 0.9715 0.9582 0.9064 0.9737
ph. arg. 51.4° 120° 116.1° 115.4° 69.7°

Phase nr. 3 Ampl. 0.9508 0.9715 0.9582 0.8784 0.9737
ph. arg. 102.9° 240° 238.1° 237.7° 139.4°

Phase nr. 4 Ampl. 0.9508 0.9715 - - 0.9737
ph. arg. 154.3° 26.7° - - 214.8°

Phase nr. 5 Ampl. 0.9508 0.9715 - - 0.9737
ph. arg. 205.7° 146.7° - - 284.5°

Phase nr. 6 Ampl. 0.9508 0.9715 - - -
ph. arg. 257.1° 266.7° - - -

Phase nr. 7 Ampl. 0.9508 - - - -
ph. arg. 308.6° - - - -

kwpd 0.9508 0.9715 0.9578 0.8966 0.9733
kwpi 0 0 0.0189 0.0117 0.0170
kwpo 0 0 0.0185 0.0299 0.0104
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Proposed method

Figure 6. Variability of σ0 over an entire electrical period.

symmetry angle of 30°), which leads to a very slight asymmetry.
Fig. 9b shows the simulation results in terms of flux density plot
derived from the FEM analysis, whereas the Görges polygon
related to this example is depicted in Fig. 9c.

The differential leakage computed by means of the Görges
polygon varies between a minimum value σ0min = 0.99 % and
a maximum value of σ0max = 1.01 %, which are really close
to each other. The actual leakage factor computed with (15) is
σ0act = 1.00 %. The variability of σ0act over an entire electrical
cycle can be appreciated in Fig. 9d (crossed points), in which
the maximum and minimum values are equal to those obtained
with the proposed method (red trend). Moreover, by processing
the data acquired from the FEM analysis concerning the values
of air-gap flux density field over an entire electrical cycle and
by applying (13), (14) and (15), the values of σ0FEM have
been computed and compared with those obtained by means
of the proposed procedure and by (15). This comparison can
be appreciated in Fig. 9d, which confirms the validity of the
method proposed by the Authors.

VII. CONCLUSIONS

The method presented in this paper allows a significant
simplification regarding the computation of the Ossanna’s series
in order to obtain the exact solution for all possible topologies
of windings, even for dead-coil or reduced ones. In fact, the in-
troduced formulas allow to reduce this series to a sum of a finite
number of terms, requiring, furthermore, only the calculation of
the winding factor at the working harmonic. The method is very
flexible: it allows the easy determination of both the minimum
and maximum values of the differential leakage factor, as well
as its average value and the time trend. Moreover, it avoids the
burden of calculation of both direct and inverse winding factor
harmonic components and it can be easily applied by using a
computer, for any number of phases and independently from the
winding configuration, such as non-reduced, reduced, full-coil,
dead-coil, asymmetrical and symmetrical ones.

APPENDIX

By considering the example reported in Fig. 3, for which the
winding scheme is plotted in Fig. 10, the principal moments of
inertia and the products of inertia can be calculated by means
of (20), (21) and (22), respectively:

Jxx =0.74232 + 2 · 0.12372 + 2 · 0.98972 + 2 · 0.74232 =

=3.6426 A2,

Jyy = 0.57142 + 1.07142 + 0.57142 + 0.92862+

+ 3 · 0.42862 = 3.2143 A2,

Jxy = −0.7423 · 0.5714 + 0.1237 · 1.0714+
+ 0.9897 · 0.5714− 0.9897 · 0.4286+
− 0.1237 · 0.9286 + 2 · 0.7423 · 0.4286 = 0.3711 A2,

whereas (16) gives, considering a peak current value Ix = 1
A,

Vp =
3 · 1 · 0.9677

π · 1
· 1 = 0.9241 A.

Finally, the average value and the amplitude of the variable
part of the differential leakage factor are given, respectively, by:
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Figure 7. 3-phase machine with asymmetrical double-layer fractional winding: N = 30, p = 3, η = 0.
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Figure 8. 5-phase machine with asymmetrical double-layer fractional winding: N = 31, p = 14, η = 1.

σ0m=
Jp

N · V 2
p

− 1 =
3.6426 + 3.2143

7 · 0.92412
− 1 = 0.1471,

σ0v =
2

7 · 0.9242

√(
3.6426− 3.2143

2

)2

+ 0.37112 = 0.1433.
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