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1. Abstract 

Rapid growing in urbanization and miles driven in the city will triple urban mobility by 2050. This 

explosion in demand requires switching to Mobility-as-a-Service (MaaS) models, such as Car-

sharing. However, a critical issue for Car-sharing one-way free-floating services is the imbalance 

problem that requires to solve the conflict between the positioning of vehicles “at the right place and 

time” and the freedom for customers to return vehicles where and when they want.  

To better understand the impact of the imbalance problem, we propose to use a grid partition of the 

served city into zones with different demand potentials. To this aim as first step of the research real 

data related to vehicle positions of three Car-sharing services have been collected for approximately 

three months in the cities of Rome, Milan, Turin and Florence (Italy). In the experimental results data 

of the city of Rome have been used.  

This part of the research focuses on analysing user behaviour by using the number of stops in selected 

city zones (Stop Density) and the duration of any stop (Average Stop Duration); in fact, all the stops 

of each vehicle belonging to any car-sharing operator, are uniquely associated and mapped to exactly 

one cell of the city grid representing the Urban Areas, also tracking stop start/end time and trip 

start/end time. This spatial association is used to calculate Stop Density and Average Stop Duration 

of each urban area and to map stops to specific time-slots.  

Consequently, in each urban area, the Urban Area Value is calculated as a function of Stop Density 

and Average Stop Duration belonging to the urban area; the results of this research confirm that Urban 

Area Value is high where high values of Stop Density and low value of Average Stop Duration occurs. 

Urban Areas are ranked using the Urban Area Value calculated by considering all Car-sharing 

services operating in the eco-system; a spatial analysis with a thermographic map of Urban Area 

Value allows to visualize the existence of city zones with crucial different demand potentials. 

The analysis derived from such Urban Area Value and from a time-slot dynamic of the Urban Areas 

Values themselves, that suggested to split the standard operating day in five hourly ranges, is then 

used to construct a flexible and dynamic pricing mathematical programming model that has been used 

to derive an optimal setting of tariffs and to perform a validation phase. 

In this model the trip fare is defined, based on a trip planning trigger, applying a bonus/malus 

mechanism to a basic tariff, which considers vehicle service cost, staff relocation saving and the 

difference of demand value between origin and destination Urban Areas. If the user desired 

destination is planned in an urban area which is adjoining urban areas with higher values, alternatives 

with lower fees are proposed. This approach is applicable, in the reality, to several Car-sharing 

operators and mobility-sharing aggregators such as Urbii. 

The model and the outcomes of Urban Area Values have been validated in a study based on real data 

collected in the city of Rome (Italy) during an observation period of 49 days from April 28th to June 

16th, in 2016, and where 287.975 stops observation referring to 1.271 distinct vehicles have been 

collected. All the stops have been observed in the city of Rome whose grid representation has been 

partitioned in 636 cells. These results have been presented to the 2017 COMPSAC Conference, July 

7th, 2017 in the Workshop “Smart Sharing Mobility in Smart Cities” 1. These data have been used to 

                                                
i Urbi (https://www.urbi.co/) è una mobile app che aggrega la mobilità urbana e permette di trovare e prenotare la 

miglior soluzione per raggiungere una determinata destinazione attraverso car/scooter/bike sharing, taxi e ride sharing e 

trasporto pubblico. 

https://www.urbi.co/
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construct an integer linear programming model where only a grid of 25 cells has been considered 

over the same period of 49 days. The resulting model (which has 84.500 variables and 87.750 

constraints) has been solved using AMPL/CPLEX and validated by simulating a trip demand over an 

observed period. The result of this pricing scheme seems to produce interesting results with a business 

applicability in urban car–sharing market. 

The thesis is organized as follows.  

Chapter 1 is focused on the analysis of main challenges of urban mobility, and the role that car-

sharing systems can play. Chapters 2, 3, 4 are devoted to the introduction and a systematic review of 

the literature. In Chapter 5 the data collection and cleaning are described and the final Data set is 

presented. Chapter 6 includes the grid partition of a city and the procedure to evaluate the Urban Area 

Value. Chapter 7 presents a review of the up-to-date pricing models for Car sharing that are used for 

defining some parameters in the optimization model presented in Chapter 8. Finally, in Chapter 9 the 

results obtained on the available Data set for the city of Rome are presented. 

 

Keywords: profit optimization, one-way free-floating car-sharing, user-based relocation strategy, 

dynamic pricing, urban area value, vehicle-sensor data.  
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2. Importance of sharing-mobility 

2.1. Future of Urban Mobility  

The Globalization process and the study of global phenomena have long shown that the world's 

population is becoming increasingly concentrated in cities; in 2014, a UN study showed that 53% of 

the population lives in urban areas; this percentage is expected to reach 60% by 2030, with urban 

areas growing at a rate of 1.3 million people every week2, and 66% in 2050. 

 

 

Figure 1 - Global urban and rural population, 1950-20503 

From the movement point of view, a recent study has calculated that 64% of miles driven today, 

covers trips made within the city, and it is estimated that the number of miles driven in the city will 

triple by 20504, growing to 105 billion kilometres globally5, forcing every citizen to spend in traffic 

about 106 hours/year (twice today). 

This phenomenon will be even more important in European cities, where 74% of the population lives 

and works in the city, with an increase of the concentration of population in urban areas in 2050 to 

82%. 

Furthermore, the current trend of urban mobility indicates, globally, a growth of private transport, 

with an estimated over 6.2 billion daily trips made by private vehicles. 

This explosion in demand for urban mobility will be difficult to sustain without a profound change in 

habits and infrastructure. 

For example, it is estimated that by 2025, the urban transport systems will be responsible for an 

increase of 30% of greenhouse gas emissions compared to 2005. 
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Particularly in Europe, the urban expansion and the strong dependence on the transport of cars and 

trucks are carrying more and more congestion in urban areas. 

The inefficiency of private travel and the resulting congestion will lead cities in the world to a "dead 

end" in terms of mobility and urban planning, resulting in increased complexity of shift, rendering 

inefficient public transport system, for sustainability of citizens (simple mobility, environmentally 

friendly, reasonable cost, improved safety and lower stress levels). 

Such a scenario will require a total rethink of models and systems of urban mobility worldwide with 

a special focus in Europe. 

The priority is therefore to create urban transport systems capable of satisfying the requirements of 

mobility and social and economic sustainability to ensure the people and goods movements in safety. 

One of the most logical answer to this requirement is to enhance and develop existing mobility 

infrastructure and networks to achieve an integrated mobility platform, which can provide new tools 

and services to the public and, especially, to provide the tools for strategic planning of urban 

mobility that can allow involved operators to optimize the distribution and allocation of resources. 

 

 

Figure 2 - urban trends in future cities 

 

In fact, doubling the public transport market share Worldwide by 2025, cities will be able to stimulate 

growth, to help combat climate change and create urban environments more liveable and comfortable. 

Doubling the market share of public transport will also allow the stabilization of greenhouse gas 

emissions in urban transport and energy consumption despite the overall increase in mobility. 

In addition to the increasing demand for urban mobility, the mobility requirements themselves are 

evolving. 
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Figure 3 - priority of investing in effective smart mobility models 

Changing demand for urban mobility services to meet the needs of citizens - that evolve from one 

side to the increased convenience, speed and predictability of journey times, the other towards greater 

personalization, economic and environmental sustainability - will require a significant expansion and 

evolution of the portfolio of services, with massive investments, strategic and structural, in the very 

near future, making Mobility a priority for infrastructure development and investments6. 

The challenge then is to find strategies to provide citizens with effective alternatives to private cars 

that are able to motivate the citizens themselves to adopt more sustainable mobility alternatives. 

According to research conducted by Arthur D. Little4, the European systems of urban mobility are 

now the most mature in terms of mobility performance. 

In fact, despite the presence of effective solutions and business models available in theory, few of 

them have been able to integrate all mobility platforms and express the full potential of the business 

model. 

For this to happen it is necessary in addition to a strategic vision for the ecosystem of urban mobility, 

collaboration among all actors to pursue innovative business models and integrated offer. 

Considering the cities of Western Europe, the strategic imperatives for success in this initiative are: 

• Rethinking the System: cities in mature economies are characterized by a high percentage 

of use of private transportation modes, with ineffective use of space (one individual per car) 

or time (two way travel origin to destination per day); this behaviour will require to radically 

redesign last mile urban mobility system to improve use of public modes instead of private 

and improve sharing of resources to increase number of passenger per trip and minimize 

number of vehicles per user to guarantee a better economic and environmental sustainability.  

• Integrate actual Transportation Modes and Networks: another characteristic of mature 

cities is the presence large but not integrated public transportation networks; evolution of 

urban mobility will require to integrate, end to end, the transportation value chain to enable a 
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multimodal and interoperable city transportation platform, also known as intermodal mobility, 

to increase attractiveness and use of public transportation systems to citizens (and city users).  

The pursuit of these challenges will request Public Administration, City Institutions and 

Transportation Operators to cooperate at a strategic planning level, using both levers of valorisation 

of current infrastructures and analysis of insights available from the huge volume of data and 

information available about mobility, traffic, citizens’ behaviours. 

To respond to citizens’ needs with optimized allocation of transportation modes and hubs is necessary 

to:  

1. analyse and profile urban mobility demand, including mobility behaviours and needs per 

transport mean, frequency of use, origin to destination trips, trip time and duration, etc. 

2. monitor the urban mobility offer through public transportation networks (means, city 

areas, frequency, capacity by origin-destination etc., …) 

3. evaluate action to maximize the optimal distribution of urban transportation capacity within 

defined goals and constraints. 

Thanks to the actual diffusion of data services in people communication data (P2P), process 

generated data (M2P and P2M) and machine generated data (M2M) citizen access, more and more, 

with connected mobile devices to digital mobility services. 

This explosion in demand for urban mobility will be unsustainable without a profound change in 

habits and infrastructures, and such a scenario will require a total rethink of models and systems of 

urban mobility, and of parking lot occupation, globally and particularly in Europe.  

An opportunity to rethink the mobility model is represented by Car-sharing services which, allowing 

more drivers to share the same vehicles during the day, will reduce the number of circulating vehicles, 

increase the number of daily users per vehicle, reduce traffic and pollution, and increase parking 

availability, so that citizens’ time, stress and costs of urban trips are strongly reduced.  

 

2.2. Mobility as a Service and Car-sharing 

Car-sharing Market has reached worldwide in 20157 more than 86.000 vehicles with over 5.8 million 

users, 2.5 million of minutes booked and 0.65 billion revenues. Only in Europe Car Sharing services 

reached 31.000 vehicles and 2.1 million users, covering more than 36% of the vehicles and users of 

the global market. Additionally, the market is growingly very fast (CAGR of 30%) and expected 

revenues are 3.7-5.6 Billion Euro in 20208. 

 

 

Figure 4 - Car-sharing global trends 
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2.3. Car-sharing sustainability contribution 

The growing penetration of Car-sharing in urban mobility can help to improve environmental and 

social sustainability. As research studies demonstrate, Car-sharing can generate a significantly 

positive sustainability impact in: 

- Saving gas and oil consumption by reducing pollution and CO2 emissions and the 

number of kilometres driven by in private trips. In fact, according to a recent study from 

University of California, Berkeley, 1 Car-sharing Vehicle can replace from 9 to 13 private 

vehicles reducing Green-house Gas (GHG) emissions by 34%-41% per household9 and the 

Vehicle Miles Travelled (VMT) by 27%-43% per year. 

- Decreasing the need of parking areas10 with 36-84 sqm of public spaces freed-up per 

vehicle. 
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3. State of the art 

3.1. Definition of Car-sharing 

Car-sharing is a membership based globally diffused car rental model where people rent cars, for 

short periods, often by the minute, from Car-sharing companies promoting the service, who generally 

own a fleet of vehicles that make available to people for sharing11. Membership subscription give the 

user access to the rental service and a usage fee is paid for time and distance travelled, which already 

embeds fuel and insurance. Membership enable users to have immediate access to the available 

vehicles whenever they want, without needing to fill a rental agreement each time a car is used12. 

Generally, Car-sharing operational models are based on specific characteristics of location of vehicles 

and allowed movements.  

Considering pick-up and return of vehicles, the model can be “station based” or “free floating”. The 

“station based” model requires vehicles to be picked-up and returned in predefined locations 

(stations); the “free floating” model allow the driver to pick-up the vehicle where it is available and 

return it wherever he wants, respecting a pre-defined service area. Station-based car-sharing services 

requires that vehicle booking has to be completed before usage. Free floating system vehicles have 

on-board GPS equipment to ease management and allow users to locate them by using a 

smartphone13 and allow users to book the vehicle in real-time. 

Considering allowed movements the model can be generally defined “round trip” or “one way”. 

“Round Trip” models require the users to return the vehicle at the same location of pick-up.  

“One Way” models, on the other hand, allow the user to return the vehicle to a different destination 

from pick-up location, which means that there is no imposition to return the car to any place14, giving 

the user a high flexibility in optimizing his movements, since the only constraint is to return the 

vehicle with legal public access, inside the service area. 

In the following thesis two different operating models are recalled: the station-based model, which 

includes both round-trip and one-way movements, and the free-floating model, which considers only 

one-way movements, being round trip an exception to the standard free-floating movement. 

The round-trip service model is very simple, requires few staff and can be easily performed with a 

small number of vehicles; on the other hand, the flexibility for users to adapt the service to their needs, 

especially if compared with private car usage, is very limited.  

The one-way station-based model is a hybrid solution between round trip and private car usage, since 

it gives the user as many options to trip flexibility as many stations are used to manage the service. 

In fact, one-way movements give more flexibility to users, being a critical factor to attract new clients 

to the system15. Additionally, it lets a higher utilization of vehicles as they do not need to be idle 

during the rental period as it happens when clients are forced to a roundtrip. 

Between above described business models, the free-floating Car-sharing is the service that can better 

replace the use of private cars in urban areas. This model is the most flexible and in theory maximizes 

the opportunity using the vehicle multiple times, between one rental and the other. 

3.2. Car-sharing experiences in and extra Europe 
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Car-sharing systems can be classified, considering their business model in 3 different generations16, 

characterized by different level of maturity and features. 

3.2.1. First Generation of Car-sharing systems 

Car-sharing origin can be linked to the shared use vehicle systems is in 1948, in Zurich, which has 

been performed by a cooperative called “Sefage”. 

Others shared vehicle models raised in early 1970s and in the 1980s, but all of them were 

unsuccessful. Their business model required members to return the vehicle at pick-up location (Round 

Trip), book the vehicle in advance, specifying, while booking, drop-off time (fixed-period 

reservation). This model generated problem when for unpredictable events, such as incidents or traffic 

jam the return time could not be respected. 

In general, first generation model of car-sharing systems can be seen as tradition Car-rental systems 

with a higher degree of flexibility consisting in the possibility to book the vehicle per hour instead of 

per day. 

One of most successful initiatives worldwide is ZipCar, founded in 2012. In Italy, most known 

initiative is the ICS (Car-Sharing Initiative). 

ICS17 is a Convention of Municipalities and other Local Authorities, supported and financed by the 

Ministry for the Environment and Protection of the Territory and the Sea, whose mission is to promote 

and support the diffusion of car sharing as a tool for sustainable urban mobility. 

The aim is to contribute in designing, in Italian served cities, a more intelligent, more efficient and 

less impacting mobility system on the environment, where car sharing, and more generally the shared 

mobility techniques, are integrated with the public transport and other innovative ways of urban 

transport. 

ICS is also connected to the public initiative “Io Guido”18 still active in 8 Italian cities. 

3.2.2. Second Generation of Car-sharing systems 

Some years later a new generation, called the second generation, of Car-sharing systems was 

developed providing a different service model to overcome the limits imposed, to users, by the first 

generation, by the introduction of three new features: 

• real-time access to the vehicle, that does not need to be reserved in advance, 

• open-ended reservation, allowing the user to close the rent at drop-off time, that can be 

decided by himself according to his real-time needs 

• one-way movement, sine the car could be returned in a different destination from pick-up 

location. 

These new features, if on one side provided greater flexibility to consumers, on the other side create 

imbalance of vehicles available at the various stations. 

This problem, also known as the imbalance problem12, will require relocation strategies to mitigate 

the impact of having concentration of vehicles in stations with low demand and lack of vehicles in 

stations with high mobility demand. 



17 
 

The imbalance problem and the relocation strategies will be discussed in detail since their efficient 

management represents the main goal of this thesis. 

3.2.3. Third (new) Generation of Car-sharing systems 

After 2010, a third generation of car sharing systems (3G-CS)ii, also known as one-way free-floating 

systems has been proposed to users by Car-sharing operators. Key features of these models are: 

• vehicles can be picked-up along the roadsiii 

• vehicles can be identified using a mobile app with location features 

• reservation is immediate and made via mobile app or website 

• vehicles pick-up can be done without Car-sharing staff involvement 

• vehicles can be returned at any point and any time inside the service area.  

This sharing mobility model has been designed to target users who live in residential areas where 

population is poorly served, in terms of frequency, capacity and destination flexibility by public 

transport systems. 

The main challenge of 3G-CS is the capillarity defined as the degree of diffusion of vehicles within 

the application area of the transport system defined by Ciari et al.19 and Schwieger 20 

One of more representative case studies of free-floating one-way Car-sharing services is Car2Go, 

founded in Germany in 2008, with headquarters in Stuttgart, Germany and fully owned by Daimler 

AG.  

Car2Go offers its car-sharing services in 8 countriesiv in Europe, North America and Asia, and as of 

July 2017, is the largest Car-sharing company in the world with 2,500,000 registered members, a fleet 

of 14,115 vehicles in 25 cities, as of November 2017. 

In Amsterdam, Madrid and Stuttgart the service is managed using a fleet of 1,400 of full electric 

vehicle (FEVs), representing about 10% of the fleet. 

The business model of Car2Go requires a paid membership to access the service and a rent by the 

minute with tariffs that may vary from country to country.  

In Italy, where the Car2Go covers four cities (Milan, Rome, Turin and Florence/Prato) the tariff 

scheme requires the registration to the service that may be done online or via mobile App, with a one-

shot validation fee of 9 € per user. To complete the subscription process, it is required to validate the 

driving licence of the new member, to register and validate a credit card and to accept the term of 

service agreement.  

Once the registration is completed a personal account is activated and the vehicle can be rented by 

the minute with a tariff depending by the vehicle type. The tariff scheme includes the parking cost 

inside the service area even if additional parking tariff can be applied if the driver uses specific 

interconnection parking hubs such as airports, railway stations or city hubs. 

                                                
ii Examples of 3G-CS are Car2Go, DriveNow, ReachNOw, Enjoy andSharen’go. 
iii In urban zone with parking slots shortage Car-sharing allow users to drop-off in affiliated private parking areas by 

paying an addition fee. 
iv Car2Go served countries are: Austria, Canada, China, Germany, Italy, Netherlands, Spain, United States 
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The service steps that a driver has to perform to access the Car-sharing service are:  

1. Search and reserve a vehicle; in case of Car2Go the first 20 minutes of reservation are 

included in the rental cost, while additional time is billed by the minute at the same fare of the 

trip, 

2. Open the Vehicle, when the driver is next to it; at this point if the reservation time is lower 

than 20 minutes, starts the fare counter, 

3. Drive to destination (drive period can be assisted with navigation features to minimize trip 

time and distance) 

4. Park and close the rent, which requires to leave the vehicle inside the allowed service area, 

5. Billing and Payment of the service. 

All the process can be performed via mobile App. 

3.2.4. ZipCar 

Zipcar is an American car-sharing company, founded in 2000 by Antje Danielson and Robin Chase, 

then acquired for approximately US$500 million by Avis Budget Group21, providing vehicle 

reservations to its members, billable by the minute, hour or day; its members pay a monthly or annual 

membership fee in addition to car reservations charges.  

In June 2018, Zipcar22 claims to have reached “over million members across 500 cities in offering 

more than 12,000 vehicles in urban areas on college campuses and at airports” in ten countries, in 

Belgium, Canada, Costa Rica, France, Iceland, Spain, Taiwan, Turkey, the United Kingdom and the 

United States., making it one of the world's leading car rental networks23. 

 

Figure 5 – ZipCar Home page 

Zipcar members can reserve vehicles at any time with Zipcar's mobile app or website at any time. 

Members can use Zipcar's Android or iPhone app to locate a Zipcar. 

Vehicle door is unlocked directly by the user; in fact, access to the vehicle is available by using a 

proprietary access card (Zipcard), or, for mobile users, a mobile app which unlocks the door; the keys 

are located inside the vehicle. Zipcar charges an annual fee and a rental hourly charge. Fuel, parking, 

insurance, and maintenance are included in the rental fee. 

The user-experience provided by Zipcar can be synthetically descried with: 
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• JOIN – online application to receive a Zipcard to access vehicles worldwide. 

• RESERVE – booking of a vehicle (minimum time: one hour; maximum time: seven days). 

• TAP – use of Zipcard to access the vehicle. 

• DRIVE – Zipcars can be picked-up and parked in reserved spot. 

Zipcar is a first-generation round-trip model, which means the car must be reserved in advance 

declaring the rental slot and returning the vehicle at the pick-up station. 

To improve flexibility of its model Zipcar, allow users to book the car shortly in advance (near real 

time), and, in case of necessity extend the booking period. 

3.2.5. DriveNow 

DriveNow24 car sharing is the mobility concept from BMW and MINI for Europev, created as a joint 

venture between BMW Group and Sixt SE holding with 50% of shares each.  

In March 2018, DriveNow became a wholly owned subsidiary of BMW after that in January 2018, 

BMW announced that Sixt SE will sell its 50% stake for €209 million25. 

With a fleet of the very latest BMW and MINI models, DriveNow offers a third-generation free-

floating system not binding the consumer to any station for car pick-up or return. 

  

Figure 6 – DriveNow Home page 

 

In April 2018, BMW Group and Daimler AG agreed to combine their mobility services, including 

their car sharing devices DriveNow and car2go, to shape sustainable urban mobility for the future.  

DriveNow car sharing operates with more than 6.000 vehicles in 13 cities across 8 countriesvi and has 

reached more than 1.000.000 users26.  

                                                
v A similar model is implemented in United States under the brand ReachNow (https://reachnow.com/en/) 
vi DriveNow is present in Germany (Munich, Berlin, Hamburg, Düsseldorf and Cologne), Austria (Vienna), Belgium 

(Brussels), Italy(Milan), Sweden(Stockholm), Denmark(Copenhagen), Portugal(Lisbon), Finland(Helsinki) and UK 

(London) 

https://en.wikipedia.org/wiki/BMW_Group
https://en.wikipedia.org/wiki/Sixt
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DriveNow cars are rent, in real-time, per minute rate and services are included in the price: insurance, 

parking, road taxes and fuel. 

The user-experience provided by DriveNow can be synthetically descried with: 

• SUBSCRIBE – register and download the app. 

• RESERVE – booking of a vehicle real-time. 

• DRIVE – pick-up and drive a BMW or MINI. 

• RETURN – vehicles can be returned everywhere inside the served area. 

3.3. State of the art in Revenue Management and Dynamic Pricing 

According to Robert Cross (1997)27 Revenue Management is “the application of disciplined tactics 

that predicts consumer behaviour at micro-market level and optimizes availability and price to 

maximize revenue growth.  

Profitability is the main cause of utilization of Revenue Management. Companies need to maximize 

profitability and need to perform demand forecasts, market segmentation, price setting and inventory 

management to reach this goal. 

Revenue management is born in the airline industry in 1978 with the Deregulation Act in the USA. 

American Airlines was the first to apply such a strategy to control inventories and maximize 

revenues28,29.  

Later it has been applied with success in other sectors, such as: 

• hotel management30,  

• rail transportation31, 

• car rental32.  

Revenue Management principles derive from the economic theories of “demand and supply theory, 

equilibrium, invisible hand”, firstly introduced by Adam Smith33, which focus on self-regulation 

behaviour of systems. The main objective of Revenue Management is to increase companies’ 

productivity and margins. It can be applied whenever decision must be taken about allocation of 

scarce resources, to match supply and uncertain demand. In fact, “Revenue Management ensures that 

companies will sell the right product (e.g. seat) to the right customer at the right time”34 “for the right 

price”35.   

An extensive overview of Revenue Management can be found at Talluri and Van Ryzin36 (2006), 

McGill and Van Ryzin37 (1999), Chiang et al.38 (2007) and Walczak et al.39 (2012). 

Before discussing key features of Revenue Management in Car-sharing it is important to illustrate the 

main aspects of Revenue Management systems 

3.3.1. Revenue Management systems in Airline industry 

Revenue Management in Airline industry has been crucial, in the last 40 years, for Airline Companies 

to reach and maintain profitability in a highly competitive market40. 
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Since the massification of power-controlled man flight and the rise of low-cost vectors, market share 

are gained and consumer are attracted mainly with application of lower pricing than competitors and 

tariff flexibility for the traveller to choose to pay only desired services. 

Additionally, airline pricing works on the concept of maximizing flight profit (or minimize flight 

cost) using seat occupation and urgency to buy so that, in general, lower tariffs are proposed when 

aircraft occupation is lower and boarding date is far, while higher tariffs are sold with less available 

seats and close departure date. 

Personalization of tariff having the goal to meet both no-frillsvii consumers and business travellers 

require complex dynamic pricing systems that aim to achieve revenue maximization by leveraging 

huge amount of data and more complex algorithms. 

A new frontier of Revenue Management to capture customer behaviour and to respond to the 

flexibility need of consumers’ in choosing between different alternatives, with respect to airline 

booking strategy, is to incorporate a Costumer Choice Model into the Revenue Management problem 

statement41.  

The Customer Choice Model (or CCM) is an individual response model that allows companies to 

analyse and understand the choices of individual customers in the market. Company can apply this 

model to marketing and sales analysis and decision making with the goal to better respond with their 

products and services to customer behaviours. In transportation, “under a CCM framework, market 

share of an itinerary is proportional to the attractiveness of that itinerary. In turn, the itinerary’s 

attractiveness depends on multiple factors affecting customer preferences and their relative 

importance.”42 

At the state-of-the-art two main CCMs are used in Revenue Management: the Basic Attraction 

Model43 (BAM) and the General Attraction Model44 (GAM). Including CCMs, two main Revenue 

Management models have been proposed in literature Choice-Based model (CBM) and Sales-Based 

model (SBM). 

One of must known CBMs is the Choice-Based Linear Programming (CBLP) model proposed by 

Gallego and Phillips45 (2004) and Liu and Van Ryzin46 (2008). In CBLP, decision variables represent 

the period in which a certain offer-set of flight options can be booked. Considering m the number of 

flight options, the model lead to exponential complexity given that the worst case is characterized by 

are 2m variables (offer-sets). 

Sales-Based models (SBMs) have been proposed more recently by Guillermo et al.47 (2011) and 

Gallego et al. (2015)44. In SBM48s the decision variables are represented by the seats to be allocated. 

The number of variables is polynomial and if m is the number of flight options the model will have 

m+1 variables. Gallego et al. (2015) proposed the linear formulation (SBLP) that it is equivalent to 

CBLP, having the same objective value at the optimum. 

Grani et. all41 (2018) proposed an integer version of the sales based model that can be incorporate 

within a post departure toolbox Revenue Opportunity Modelviii (ROM) that uses a metric to evaluate 

                                                
vii Definition of no-frills: offering or providing only the essentials – not fancy, elaborate, or luxurious a e.g. no-frills 

airline (Merriam-Webster) 
viii ROM is developed by the Sabre Airline Consulting group and it is delivered to Sabre customers 
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how the system performs once the full awareness about customers demand and airlines offer has been 

reached”. 

3.3.2. Revenue Management systems in Rail transportation industry 

Revenue Management in Rail Transportation industry offers a similar approach to revenue 

management in air transport sector. The analogy is linked, in the first instance, to the fact that the 

railway industry, like the air transport sector, manages passenger transport and the delivery of goods.  

On the other hand, historically, more simplified Revenue Management models have been applied in 

Rail Transportation, in some cases also for the low competition in the rail transportation sector. 

In literature there are two fields of application of Revenue Management principles to the Rail 

Transportation industry sectors: when operating on passengers’ models are classified as Railroad 

Passenger Revenue Management (also defined RPRM) while when things are transported from one 

origin to a destination models are classified as Railroad Freight Revenue Management (RFRM). 

In RPRM revenues optimization can be done by finding the maximum amount of revenues from 

tickets that can be sold to passengers by limiting tickets’ availability. 

On the other hand, the absence of the passenger in the freight rail transportation RFRM requires 

different optimization approaches that will not be considered for the dynamic pricing of this research.  

In passengers’ rail transportation “a service is defined as a train travelling from an origin to a 

destination at a specific time” 49.  

In general rail operators, to serve passengers, are forced to leverage divergent challenges50: 

- Maximize revenues 

- Maximizing load factor  

- Increasing total ridership 

- Meeting needs of different customer segments 

- Competing on market share with other transport modes 

- Optimizing seat allocation for origin-destination pairs 

- Respond to governmental local strategies (e.g. subsidy of regional trips) 

There is very little literature about Revenue Management for passengers in Rail Transportation 

industry (see e.g. Ciancimino et al.51 (1999)). 

Considering the challenges and the lower attention that Revenue Management had in the past it is 

frequent that RPRM of rail transport are, in some way, similar to (or derived from) Revenue 

Management Systems applied in Airline industry. 

3.3.3. Revenue Management systems in car-rental industry 

Car-rental companies have been applying Revenue Management for over 25 years, since National, a 

US car-rental firm52, developed the first Revenue Management process including Dynamic 

Pricing53,ix.  

                                                
ix Dynamic pricing is a pricing strategy in which businesses set flexible prices for product or service based on current 

market demands. In literature Revenue Management and Dynamic Pricing are sometimes considered as synonyms, while 
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In early 1990s National Car Rental faced economic crisis, liquidation and the loss of over 7.500 jobs. 

In 1993 the restructuring process included an extended and comprehensive revenue management 

program using analytic modelling to manage capacity, pricing, and reservation.  

“In July 1994 (National) implemented a state-of-the-art revenue management system, improving 

revenues by $56 million in the first year.”54 

The problem of efficiently managing car-rental fleets requires taking decisions on various levels 

(strategic, tactical and operational); main decisions affecting the fleet, as a whole, are the definition 

of the sizing, its composition, the distribution of cars across rental stations, the definition of reference 

prices for services, the management of reservations for rentals and the assignment of vehicles to 

customers. 

Compared to airline travelling car-rental requires to consider in addition to itineraries (round/one-

way trips) and the resources (cars) also capacity flexibility and rent length that vary for each specific 

customer. In a real context, these decisions are only linked by tight interactions and time horizons 

that require high flexibility. 

Contrary to expectations linked to over 25 of history of car-rental in the field, as stated by Oliveira B 

et al.55 (2016) literature in the area is scarce and somewhat concentrated in only a few of the 

problems. In the Revenue Management field solution to the following problems have been developed:  

• whether to accept or reject a booking request has been proposed by Guerriero and Olivito56 

(2014), Steinhardt and Gönsch57 (2012) and by Li and Pang58 (2016) using two heuristics to 

decompose a discrete-time stochastic dynamic program over an infinite horizon, 

• pricing decisions by Oliveira et al.59 (2015) updating prices for a car rental company in the 

websites of e-brokers that compare prices in the market 

A systematic improvement on use of analytics seems to rise from the companies; in fact, Europecar 

has been selected in the 2018 INFORMS Franz Edelman Award finalists60. 

3.3.4. Revenue Management systems in car-sharing industry 

The Revenue Management considers different interesting aspects, relevant to car sharing system: 

customer’s willingness to pay or to accept, that is related to price sensitivity, user reservation 

behaviour and attractivities of markets. Then, Revenue Management tries to allocate nodes’ 

capacities to satisfy the demand and to maximize profits61. 

Reading previous analysis by different authors, a relationship between cars sharing system and 

revenue management’s notions seems to be tricky. Car sharing is close to airlines in terms of 

Revenue Management when the booking is made in advance because the cars are subjected to 

depreciation, users can be partitioned and there are differentiations of the service. But, when the 

booking is made in real time, traditional models in Revenue Management seems to be inefficient for 

car sharing.  

In fact, there are some differences:  

• renting by minute despite by day, introduces a change of degree in temporal flexibility;  

                                                
in other cases Dynamic Pricing is considered as the possibility to flexibly define the price during the Revenue 

Management process. 
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• current Car-sharing is typically a one-way service, since according to Morency et al., (2011) 

only 5% of sold rides are two-way trips62, so it is in opposition with airline market;  

• a car’s booking is made in real time, while airplane’s reservation is made some days in 

advance.  

Despite all these negative reviews, the goal of this relation isn’t to find a relationship between them, 

but to exploit revenue management’s aspects that can be useful in car sharing system. 

Examples of these concepts are:  

• market segmentation;  

• market attractiveness;  

• willingness to pay or to accept;  

• price sensitivity;  

• alternative prices;  

• probability of selection;  

• large dimension of the network;  

• discrete nature of variables;  

• randomness of the environment;  

• complexity in characterizing real behaviour of users;  

• possibility for users to accept or reject a ride;  

• a set of alternatives for users;  

• possible unavailability of a means in a node;  

• possibility to recapture all the refused rides.  

3.4. The novel contribution of this thesis 

Novelty of this study is mainly based on the following four key research topics that, even if in some 

cases have been tackled singularly, they have not (or poorly) been developed in a unified framework 

to generate synergies and market opportunity for Car-sharing companies. They are: 

1. Dynamic Tariff application to relocation movement. The tariff is determined considering 

the relocation cost for the Car-sharing company and the access to saving by applying, during 

peak-hours, discounted fees for movements from colder to hotter spots, to incentive user-

based relocation, and application of penalties from hotter to colder spots to disincentive 

imbalance. 

2. User-based relocation using trip planning techniques. User-based relocation has been 

much less investigated than operator-based relocation; additionally, the traditional approach 

in user-based relocation is focused on convincing the user to change its destination, while in 

our case the relocation is based on user preference expressed by declaring its destination 

during reservation process; 
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3. Hot and cold spots have been calculated considering the frequency and the latency of 

movements in specific areas. The value metric associated to the area has been defined Urban 

Area Value; even if a similar approach has been used sometimes for one-way station-based 

car-sharing systems no evidence for this approach, have been found in one-way free-floating 

car-sharing systems, 

4. Urban Area Value has been calculated using data for all one-way free-floating Car-sharing 

systems operating in the city (car-sharing ecosystem), gathering additional precision and value 

form data variety and volume. 

The following chapters describe in detail the methodology and the model used to reach results and 

conclusions. 
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4. The imbalance problem 

4.1. Definition of imbalance problem 

Unfortunately, one-way Car-sharing model have a strong complexity given by characterization of 

users demand that leads to having a surplus of vehicles in stations with high demand as destination, 

and a lack of vehicles in stations with high demand as origin, unbalancing the demand and supply 

quotient63. 

Areas of lower individual mobility demand are defined cold spots, while zones of higher demand are 

defined as hot spots64. 

This phenomenon65, also known as the imbalance problem, requires solving the conflict between the 

positioning of vehicles “at the right place and time”, where the same vehicle can be used by different 

persons12 and the freedom for customers to return vehicles where and when they want. 

The imbalance problem needs to be solved because having vehicles unused for long time in areas of 

low demand cause a loss of money and impacts on the system diffusion among mobility users. 

4.2. Relocation and relocation strategies 

Relocation principle consist in moving vehicles from low demand areas (cold spots) to high demand 

areas (hot spots). 

Relocation strategies are criterion used to perform relocation more efficiently and effectively. 

A vehicle relocation is always accompanied by costs to perform the movement, so relocation can be 

done when benefits to the Car-sharing provider compensate relocation cost by additional earnings. 

The approach used to solve the imbalance problem is to apply relocation strategies having the goal to 

reduce the lack of vehicle in hot spots by using the saturation of cold spots. 

The relocation focus should especially be on high demand spots caused by a poor public transport 

connection, because Car Sharing Systems should not substitute existing efficient public transport 

systems. A good possibility for relocation is by night, when the demand is lower.64 

Main goals of a relocation strategy are:  

• reduce the Car-sharing service management costs 

• increase earnings, profits and service quality by providing users higher availability (or lower 

waiting times) and higher flexibility in vehicle pick-up. 

Controlling the system with optimization algorithms can lead to minimize service management 

costs and maximize earnings and profits. 

According to Cepolina66, the need for a relocation is triggered by the reach of one of the below defined 

threshold: 

• high critical threshold, representing the maximum number of vehicles that should be available 

in a station or area to support efficient model operability; above the threshold the area has 

reached its capacity  



27 
 

• low critical threshold, representing the minimum number of vehicles that should be available 

in a station/area; below the threshold the area has a lack of vehicles to properly fulfil users’ 

demand 

• low buffer threshold67, representing the minimum number of vehicles that a station/area need 

to have to be able to send a vehicle to another station 

• high buffer threshold67, representing the maximum number of vehicles that a station/area can 

have to be able to accept a new vehicle from another station. 

The relocation can be performed moving vehicles from stations/zones whose number of vehicles is 

higher than low buffer threshold to stations/zones where number of vehicles is closer or equal to the 

low critical threshold.  

Relocation criterion are different and in case of staff relocation can be: 

- shortest time consisting in relocating the vehicle in the fastest station/zone to reach 

- inventory balancing: consisting in relocating the vehicle in station/zone with fewer vehicle 

Relocation strategies are generally classified as: 

• Operator based, when is the operator that, with the intervention of its staff, manages 

according to some rules, the relocation of vehicles. The negative effect of this situation is that 

some trip occurs without users’ generating additional cost without any corresponding revenue. 

The additional cost is generated by vehicle movement cost and staff cost. 

• User-based, when the user directly carries out to the relocation, following the balancing needs 

of Car-sharing system. In user-based relocation the user is generally engaged with a bonus, a 

discount or even a free ride to support relocation strategies proposed by the Car-sharing 

operator, which generally requires the user to change his original destination to reach the 

nearest hot-spot identified by the relocation system. This relocation strategy is convenient for 

the Car-sharing operator from the financial point of view, avoiding the cost of staff to be 

involved in relocation. In case of free rides, the cost of movement still applies, since for 

discount based relocation the movement cost is covered by the discounted fee applied to the 

trip. In user-based relocation strategies also light maintenance cost such as refuel or driving 

to cleaning centres can be transferred to users. 

• Vehicle-based68 which is a new relocation model using AI/self-driving cars paradigm that in 

the future will allow the cars to relocate themselves based on Car-sharing relocation criterion 

defined by the Car-sharing operator. One example of vehicle-based relocation is the PICAVx 

Car-sharing69 where the vehicles are electrically powered, are able to recharge when they are 

idle at stations, can be available at the station and on the road and can move autonomously so 

that an automated vehicle-based relocation strategy is proposed. 

Most of Car-sharing systems use the operator-based relocation, because traditional user-based 

relocation strategies require the customer to change the desired destination, accepting the alternative 

proposed by the car-sharing system, or using trip-joining, to gather a discounted ride. It has been 

demonstrated that in practice it is difficult to engage the customer only suggesting him a different 

                                                
x PICAV: Personal Intelligent City Accessible Vehicles 
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destination in exchange for a discount, given that, especially in cities, car-sharing users value privacy 

and convenience over minor transport cost savings70. 

 

Relocation Strategy Advantages Disadvantages 

User-based • staff savings; 

• no additional vehicle movements 

• environmentally sustainable 

• difficulty to influence the end-

user (rejection ratio) 

• complexity of pricing/ model 

communication 

Operator-based • reliability of relocation 

• combination with periodic 

maintenance 

• staff cost of relocation 

• empty trips without revenues 

Vehicle-based • staff savings; 

• reliability of relocation; 

• avoidance of staff for periodic 

maintenance 

• environmentally sustainable 

• no need to influence the end-users 

• additional vehicle movements 

• loss of relocation discounts 

• model maturity. 

 

Table 1: relocation strategies maintenance. 

The performance of a relocation strategy is linked to vehicle availably (or user waiting time) and, 

according to Shaheen researches, to the capability of car sharing systems to attract users from private 

transport modes71. 

Car-sharing operators and researchers are strongly focused on analysing company historical data to 

develop deeper knowledge of their vehicles’ usage and the ability to reach an effective vehicle 

distribution in the city service area, mainly using models that optimize the company staff used to 

relocate poorly positioned vehicles and to perform vehicle maintenance. 

For instance, according to Santos and Correia (2015), a model can be defined to optimize staff activity 

in real-time, in a rolling horizon planning, managing simultaneously maintenance and relocation 

operations in a one-way Car-sharing12. 

This model in general does not allow to find solutions that significantly decrease the cost of the 

service and the actual pricing schemes and fees result not convenient for users of large crowded city 

to switch from existing transportation modes to car-sharing; this constitutes a barrier strongly 

affecting mass market scalability for Car-sharing operators. 

On the other side, there is a lack of knowledge of the urban market demand in terms of citizens’ 

service needs, urban areas potential, geo-clustering, pricing optimization, operational optimization, 

interoperability opportunities, which require the integration of data from various sources, with the 

goal of assembling a single homogeneous database with the information of all Car-sharing services. 

In fact, current optimization models proposed in the literature imply that if a car is located for too 

long in a specific place, or a vehicle is expected to be used more frequently in different place72, the 

vehicle is repositioned by company staff, at very high costxi. Consequently, the Total Cost of 

Ownership per City Fleet, impacted by vehicle productivity and lack of ability to increase the number 

                                                
xi Source: the cost estimated, in Italy, is up to 15 euro/movement; this value has been retrieved in an interview with a 

leading Car-sharing operator 
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of Users is a barrier to make the model scalable and cost-attractive especially if compared with Public 

Transport services. 

Therefore, it is critical for Car-sharing operators to act on different users’ demand needs to convince 

them to preferably switch to Car-sharing when the vehicle is poorly used, to reposition the vehicle in 

a more attractive location. The User-based relocation would in theory enable Car-sharing operators 

to reduce the cost of vehicle relocation simply discounting the price of the urban trip and saving cost 

on reducing or avoiding staff involvement dedicated to the task. 

In case of one-way free-floating systems, the concept of relocation should be considered at area level 

since the vehicles are distributed in a wider area and not concentrated in a geographically identified 

station. 

In this case, to reduce the impact of the imbalance problem relocation strategies must be developed 

to move vehicles from cold area characterized by an excess of vehicles compared to users’ needs, to 

hot area having a shortage of vehicles against booking requests. 

There are three main approaches to assist the daily system management in reducing the impact of 

imbalance problem via vehicle relocation (Jorge and Correia, 2013):  

• operator-based performing relocations by using operator’s staff,  

• user-based where balancing movements are performed by clients reacting to incentive 

mechanism based on price discounts, requiring the driver to change destination to fulfil 

operator’s need to relocate the vehicle in a hot area. Generally, users are poorly motivated to 

change their trip destination to receive a price discount. 

• trip selection performing demand control to allow only trips matching operator’s balancing 

criteria. 

The “MIP model” presented in the work of Santos and Correia12 (2015) is an operator-based 

relocation model that is used to optimize the staff activity in real time acting on a rolling horizon 

where staff uses vehicle to perform simple maintenance (e.g. cleaning) or refuelling procedures and 

to execute relocation movement. In case of refuelling staff drove to the nearest gas station and left 

the vehicle inside or next to the gas station. 

User-based relocation model generally require the user to accept the optimal destination for the 

operator and need to be influenced to reach the relocation objective64  

Research for flexible pricing models has been performed in a station-based model for electric vehicles 

but not on a free-floating model; in this study pricing is not carefully analysed due to lack of data, an 

elastic demand formulation is seen as a potential future work73. 

Similarly, a novel technique called FDP (Feedback Dynamic Pricing) for tackling the problem of 

vehicles balancing in one-way VSSs has been presented for an electric station based operating 

model74. 

Differently from the largest part of previously described models, our research focuses in solving the 

flexibility-tariff problem, with the application of flexible pricing schemes, based on Urban Area 

Demand, where both the Car-sharing end-user and the service provider find a mutual win-win 

situation, with the service provider reducing cost of vehicle relocation and the city user spending a 

lower fee to reach his destination.  
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The most complex operational set up is one way and free floating. This allows individuals to use a 

vehicle of the system as if it was their own vehicle. However, it doesn’t mean complete freedom, 

since vehicles need to be delivered inside an operating area75. 

The imbalance problems created by one-way movements need to be solved by the operator to 

minimize the rejected demand and increase vehicle availability levels. This can be done by 

intervening on the demand side or on the supply side70. The amount of vehicle usage in a one-way 

system, implies the need for daily maintenance operations, such as vehicle cleaning and refuelling. 

Therefore, the use of staff to perform both maintenance and relocation operations should be regarded. 

Car-sharing operators and researchers are strongly focused on analysing company historical data to 

develop deeper knowledge of their vehicles’ usage and the ability to reach an effective vehicle 

distribution in the city service area, mainly using models that optimize the use of company staff to 

relocate poorly demanded vehicles and perform vehicle maintenance. 

For instance, the model can optimize staff activity in real-time, in a rolling horizon planning approach, 

managing simultaneously maintenance and relocation operations in a one-way Car-sharing72. 

The approach of using Car-sharing provider employed staff with a multi-skill role covering ordinary 

maintenance, cleaning and vehicle repositioning represents a way to decrease the cost of the service 

and it can represent a solution to support sustainability of actual pricing schemas and service fees; 

unfortunately the actual cost of Car-sharing is considered too expensive for the large crowd of city 

users and represents a barrier, for a larger use, switching to Car-sharing from private cars. This barrier 

is consequently affecting mass market scalability of Car-sharing operators preventing a larger 

coverage of the service due to lack of sustainability. 

The definition of a reliable User-based relocation model in one-way free-floating Car-sharing requires 

a critical quantity of data enabling a very precise knowledge of the urban mobility-sharing demand 

for each urban area, to be able to assign a demand value to each of the covered urban area; Car-

sharing operators tend to investigate only self-generated data which give them a partial view of their 

demand distribution in served cities. 

A more complete view of mobility demand would require the integration of data from diverse sources, 

with the goal to own a single homogeneous database including the information of all Car-sharing 

services operating in the city. 

4.3. Vehicle Relocation 

Ideally, independently from the Car-sharing service model the operator has decided to apply, only the 

user-based relocation model should apply.  

In fact, in case of Station based Car-sharing model both “round-trip” and “one-way” naturally use a 

user-based relocation model, being the end-user requested to bring back the vehicle to an approved 

delivery station, to close the vehicle rent. 

In one-way free-floating Car-sharing models, the relocation model is ideally similar to the Station-

based model, with the difference that the relocation is allowed in defined service area instead of a 

predefined set of allowed stations. On the other hand, one-way free-floating car-sharing models are 

affected by the imbalance problem that, as known, concentrates vehicle delivery where there is high 

destination demand and creates a lack of vehicles where there is a high departure demand.  
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In such situations Car-sharing operators involve staff to support vehicle relocation movements from 

high destination demand to high origin demand with an increase of cost including personnel cost, fuel 

cost and vehicle consumption cost. This relocation approach will be called Staff-based relocation 

model. 

To solve the problem of minimizing Staff-based relocation cost, several methods applied in research 

focus on creating synergies between vehicle relocation and planned maintenance cost such as vehicle 

washing or re-fuel; unfortunately, the impact of cost saving risk to be marginal considering the high 

cost-impact of personnel cost and the relatively minimal impact of planned maintenance events 

compared to vehicle need for high origin demand for relocation. 

4.4. Analysis of Urban Mobility Demand 

Several factors impact on the definition of Urban Mobility demand for an Urban Area, which strongly 

depends on the characteristics of the Urban Area itself. Generally Urban Mobility Demand is 

empirically analysed using historical data. 

For instance, all cities considered in this thesis have distinctive characteristics of Urban Demand 

distribution.  

Example of characteristics of Urban Mobility demand are: 

• Hourly range, since end users’ urban mobility demand varies in different hours of the day; 

• Seasonality, users’ demand varies in different period of the year; 

• Urban Areas, urban mobility demand changes in different places of the city; 

• Week-Day, since different day of the week are affected by diverse urban mobility needs. 

4.5. Pricing models in car-sharing 

In every business system, one of the most important and significant decisions from a profit’s point of 

view is the definition of a pricing model. Price can not only bring relevant revenues, but it can also 

influence users’ options. So, the challenge is to determine the value that each costumer is disposed to 

pay for the service, in order to generate high profits. It is necessary to remember that in every business 

model, the main objective is to satisfy customers.  

The price in Transportation modes is strictly connected to several factors. Pricing in Car-sharing 

mainly depends from:  

• travelled distances and rent time,  

• car model, 

• type and quality of the service;  

• other incentive factors defined by the operator. 

The choice for a simple pricing policy, in a specific transport mode, isn’t often an advantageous 

selection to reach success in business and consumers satisfaction. For example, is easy to demonstrate 

that Car Rental pricing modelxii, typically applied to round trip movements, which is based on a daily 

rental service with a flat day cost, is not convenient for the large consumer segment of city users who 

                                                
xii Generally, Car Rental services provide a flat daily tariff up to 150 kilometres per day with additional cost per 

kilometres over the threshold. Fuel cost is not included in car rental tariffs. 
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make few daily movements under 100 kilometres in total, which usually choose public transportation 

when are cost sensitive or taxi when time sensitive.  

A solution to this segment needs is the flexible pricing of a car sharing system, that allows companies 

to apply a Pricing Model based on time or distance travelled with the option to set a different a price 

during the day, depending on the current state of the system, and to guarantee flexibility to customers. 

From a system’s state point of view, types of variable pricing can be:  

- static, where the unit cost of the service (e.g. flat cost per minute) is independent from the 

system’s state and it is constant during the day, with a pay-per-use model where the price 

variation depends on the time consumption of the service;  

- dynamic, when the price derives from system’s state and it is variable during the day; it can 

be considered a balance between supply and demand.  

The literature presents an example of dynamic pricing known as locally dynamic pricing76, with a 

pricing model depending on the states of the station (full parking spots). 

Locally dynamic pricing in defined by Waserhole as “a station state dependent pricing policy can set 

the price to take a trip from a station A to a station B in function of the current states of stations A 

and B (parking filling and number of vehicles in transit toward them).” 

For Car-sharing systems, in this research, is applied a variable tariff scheme, that can be called 

system’s saturation dependent variable pricing. In this model the price is set to a standard tariff which 

is applied in a pre-defined range of saturation of the system, generally off-peak and it is variable in 

peaks during a day.  

More precisely, when a positive peak occurs during the day a certain level of addition can be applied 

to the standard tariff; on the other hand, discounts can be applied to negative peaks to incentivize 

service usage. 

The pricing model can be characterized by:  

• continuous pricing, if it is a real number included in a range from a minimum to a maximum 

value p ∈ {pmin; pmax};  

• discrete pricing, if there are some discrete values to choose from p ∈ {p1, p2,…, pn}.  

In this study the second pricing characteristics are applied to respect a certain level of pricing 

simplification that can be easily understood by Car-sharing consumers. Consequently, a pricing 

package composed by different pricing option is defined. Every price depends from the alternative 

trip and user can choose the best for his aims.  

Generally, main factors influencing the price are:  

• time-based pricing, when it depends on the time of booking (there are different prices for long 

and short time of reservation); this kind of price fits well in rental-car system, but in this relation, 

it isn’t considered because one-way car sharing systems are characterized by short trips;  

• distance-based pricing, when price depends on travelled distances (e.g. for long distances there 

is a tariff rate lower than for short distances); this isn’t considered in this thesis because the 

model describes a limited city and there isn’t a relevant difference among travelled distances;  



33 
 

• location-based pricing, if the price depends on the state of stations in terms of requests and 

available parking lot; this is a kind of pricing closest to our idea of dynamic pricing: if there is 

a high request in a node, the price is modelled in a way that users are stimulated to locate cars 

in that station; instead, the thesis doesn’t consider the problem of parking congestion: to 

simplify the analysis, the nodes have infinite parking spots, so there isn’t a maximum threshold; 

only at the end of the day, with relocation activities, it is assumed that in the zones there can’t 

be more than a certain percentage of cars;  

• customer segmentation, when there are different prices for users’ requirements and needs: for 

business customers, the price is low because of their utilization frequency, for individual 

customer, there is a higher price and for family or small group there is an average price;  

• quality-based pricing, consisting in setting a higher price for frequent travellers, willing to pay 

more for a better service and a lower price for a basic service; this kind of differentiation isn’t 

considered here because in one-way car sharing there isn’t the possibility to characterize 

customers’ attitude, economic situation and reasons; so, the price is unique for all the users’ 

typologies;  

• type of vehicle, if there is a fleet formed by kinds of cars with different performances and an 

associated price (a family car is less expensive than a sports car); in our model, all types of 

vehicle are considered as a homogeneous fleet including the same type of vehicles.  

The users can access to the service respecting a specific booking protocol scheme: 

 

 

Figure 7 – proposed booking scheme 

Actual pricing model in Car-sharing business is similar between one-way free-floating Car-sharing 

operators in Italy. Analysingxiii three mainstream operators in Italy: Car2Go, Enjoy and Sharen’go, 

                                                
xiii Analysis date October 15th, 2017 on three main Car-sharing operators in Italy. 
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the tariff application resulted similar with small difference in pricing, but substantially applying the 

same model. In fact, Car-sharing tariff analysis for the Italian market denoted the following pattern 

described in below paragraph. 

4.6. Comparison of operating models 

This paragraph compares the operating models of the three operators involved in the research. 

- Car2Go77 is the main one-way free-floating Car-sharing operator in Italy covering four cities 

(Milan, Rome, Turin and Florence) with a fleet of 572xiv made up of Fortwo and Forfour 

produced by Smart. 

 

Figure 8 – Car2Go Italy home page (city of Rome selected) 

- Enjoy78 is the first challenger one-way free-floating Car-sharing operator in Italy covering 

five cities (Milan, Rome, Turin, Florence and Catania) with a fleet of 60479 cars made up of  

500 and 500L produced by Fiat Chrysler Automobiles (FCA).  

 

 

Figure 9 – enjoy home page 

- Share’ngo is the full-electric one-way free-floating Car-sharing operator in Italy covering 

four cities80 (Milan, Rome, Florence and Modena) with a fleet of 40081 vehicles of type ZD1 

produced by Xin Da Yang Electric Vehicles.  

                                                
xiv Number of vehicles calculated on the basis of April 2016 analysis 
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Figure 10 – Sharen’go home page 

4.6.1. Car-sharing operating model benchmark 

 Car2go Enjoy Share’ngo 

Subscription fee (€) 9,00 Free 5,00xv 

Tariff (€/min) 0,24-0,29
xvi

 0,25 0,22-0,28xvii 

Discounts Hourly Packagesxviii Prepaid Packagesxix 

Distance included (km) 200xx 50xxi Unlimited 

Free reservation (min) 20 15xxii 20 

Full-day rent (€) 60 50 50 

User – refuelling  YESxxiii YESxxiv -- 

Table 2 – car-sharing operators comparison 

4.7. Integrating Data of Different Car-sharing Operators  

                                                
xv Includes 15 minutes ride for free 
xvi The tariff if differentiated on the basis of vehicle model including: smart Fortwo (0,24 €/min), smart Forfour (0,26 

€/min), smart fortwo cabrio (0,29 €/min) – smart fortwo cabrio is present only in Rome; minutes are rounded to the 

upper value.  
xvii Declared average of 0,24 €/min; minutes rounded to the upper value after 31seconds 
xviii Hourly packages provide discounted fees for 2/4/6 hours’ time-slots. 
xix Prepaid minute packages and Woman Night Vouchers. 
xx A long-distance fee of 0,29 €/min is applied to kilometres exceeding the included distance. 
xxi A long-distance fee of 0,25 €/min is applied to kilometres exceeding the included distance. 
xxii Extended reservation 0,10 €/min (after the first 15 free minutes, up to 90 minutes).  
xxiii If fuel level is lower than 25%, a 4 € bonus of car2go credit is given the user for complete refuel. 
xxiv Only vehicles with a low fuel level can be refilled; user will receive a €5 voucher to use for rentals and Enjoy will 

pay the whole cost of the fuel 
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In the experiment data coming from the three different Italian one-way free-floating Car-sharing 

operators have been collected, used and analysed. 

The three operators considered in the analysis had differences in Service Coverage Area, which have 

been recorded at time of data gathering. 

The following map illustrates, in light blue, the Urban Area served by Car2Go during data gathering 

period. 

 
Figure 11 - Car2Go Coverage Area (date: April 2016) 

Similarly, the below map illustrates, in light blue, the Urban Area served by Enjoy vehicle during 

data gathering period. In this case two different coverage areas can be recognized: 

• light blue the Car-sharing coverage; 

• light brown the Scooter-sharing coverage (also included in gathered data) which has been 

closed. 

 

Figure 12 - Enjoy Car & Scooter Coverage Area (date: April 2016) 

Finally, the third map illustrates, in light green, the Urban Area served by Share’ngo during data 

gathering period.  
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Figure 13 - Share 'ngo Coverage Area (date: April 2016) 

The first key issue to be solved in collecting data from different Car-sharing operators’ sources is to 

identify a common data model with homogeneous data to be used for the Data Analysis to identify 

Urban Area Demand Value Pattern. 

Analysing data structure of each of the identified source the immediate evidence is that, even if all 

data are stored in json format, data structures and storage fields are different between each other and 

need to be re-organized and/or reprocessed to effectively converge in a common data model enabling 

a resilient data analysis. Additionally, data are subject to continuous refresh considering that vehicle 

status changes are highly frequent since end-users continue to book, use and leave the vehicle.  

Potentially also the volume of data can be an issue considering the experimental environment. To 

manage these issues connected to data collection and processing, some big data management 

techniques such as distributed computing, cloud platforms and switching data processing between in-

database and in-memory tasks have been used. 

The following paragraphs describe in detail the data structure collected from Car-sharing sources for 

the services involved in the analysis. 
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5. Defining and building a Homogeneous Data Model  

As mentioned before to reach a homogeneous convergent data structure where to store the raw dataset, 

all the heterogeneous data formats of involved data sources need to be converted to a target data 

model. In fact, one of main challenges of “Urban Informatics” is the capability to integrate data 

belonging to various sources with different data formats and visualization languages, to be able to 

use data analytics algorithms and techniques to discover hidden patters and receive insights that may 

support business decisions. This analysis will be possible after data normalization to a Homogeneous 

Data Model (or HDM), to be reached after a normalization of available data sources of vehicle-sharing 

transportation modes. 

In this case each operator of each Car-sharing one-way free-floating service has a proprietary, 

independently defined data record, focused on solving the operator data requirements for its 

proprietary mobility platform, which is obviously different in each case. 

To create and fulfil a HDM containing data for all involved Car-sharing operators it is necessary to 

follow a Data Collection Cycle which is composed by the 7 steps illustrated in the following Figure 

14 consisting in: 

1. Data Analysis 

2. Data Mapping 

3. Data Injection Cycle 

 
Figure 14 - description of the data collection process 

Data Collection Process will be supported by the following Data Collection Architecture described 

in Figure 15 

 

 

Figure 15 - Data Collection Architecture 

1. Data Source 
Analysis

2. Data 
Mapping 

3. Data 
Injection Cycle 

(iterative)
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Data collection architecture is composed by 4 main layers: 

• Data sources, including the various json structured databases of three Car-sharing 

operators, 

• Data collection, including a dedicated collection agent to each source, in order to 

manage peculiarity of each database 

• Data storage and processing layer, where processed and post-process data are 

maintained; due to large amount of data a cloud database based on Aruba technologies 

has been used for this research. 

• Data analytic layer, where data are analysed. 

More in details, the Data collection cycle consisting in data retrieving, data processing, data 

transformation and data injection in the homogeneous data structure (the cloud-based database) 

requires to be performed in each iteration to update continuously generated data about Car-sharing 

vehicles.  

Obviously, a Homogeneous Data Model will require flexibility to extend data collection to new or 

largest smart urban mobility services to insist in single, standardized dataset. 

5.1. Data Source Analysis 

Main objective of this first step of Data Source Analysis is to identify available sources for data 

collection, to analyse dataset accessibility by identifying how to connect to the database to retrieve 

data, to understand how data are stored and what is their structure. 

In the case of Car-sharing, Data Structure of the three operators of interest have been analysed and 

the results are illustrated in the following paragraphs. 

As will be explained below there are some similarities between the three data sources, in fact all data 

sources are accessible via company website and data are displayed using a json key/value pair data 

structure. 

5.1.1. Car2Go Data Structure  

The following table describes Car2Go vehicle presence data structure, available in json format, at the 

sourcexxv. Each vehicle which is available to the end-user has the following data structure: 

{ 

"address":"Via Pietro Capparoni, 3, 00151 Roma", 

"coordinates":[12.43952,41.86871,0], 

"engineType":"CE", 

"exterior":"GOOD", 

"fuel":45, 

                                                
xxv Car2go offers an Open API interface https://code.google.com/archive/p/car2go/  

 

https://code.google.com/archive/p/car2go/
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"interior":"GOOD", 

"name":"194/ET836WT",  

"smartPhoneRequired":false, 

"vin":"WME4513341K740507" 

} 

 

Consequently, Car2Go record data description is: 

 

Field Name Description Sample data 

Name Vehicle id containing number and plate  194/ET836WT 

Vin Unique vehicle identification number WME4513341K740507 

Fuel Level of fuel 45 

coordinates.0 Longitude  12.43952 

coordinates.1 Latitude  41.86871 

coordinates.2 Altitude 0 

Address Address at identified position Via Pietro Capparoni, 3, 00151 Roma 

engineType Type of engine CE (combustion engine) 

Exterior External quality of vehicle GOOD 

Interior Internal quality of vehicle GOOD 

SmartPhoneRequired -- False 

Table 3 - Car2Go data source description 

5.1.2. Enjoy Data Structure  

This paragraph describes Enjoy vehicle data structure, available in json format, with the below data 

structure described by a sample record: 

{ 

"car_name":"Fiat 500",  

"car_plate":"FF852SS",  

"fuel_level":30, 

"lat":41.81797,  

"lon":12.43961,  

"address":"Viale C. Sabatini, 138, 00144 Roma RM",  

"virtual_rental_type_id":2,  

"virtual_rental_id":479677,  

"car_category_type_id":1,  

"car_category_id":8,  

"onClick_disabled":false,  
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"carModelData":[99,100,141] 

} 

Consequently, Enjoy’s record data dictionary is: 

Field Name Description Sample value 

car_name Name of vehicle model Fiat 500 

car_plate Unique vehicle plate number FF852SS 

fuel_level Level of fuel in a range 0-100 30 

Lat Latitude coordinates 41.81797 

Lon Longitude coordinates 12.43961 

Address Address at identified position Viale C. Sabatini, 138, 00144 Roma RM 

virtual_rental_type_id Type of rental  2 [1=MP3, 2=500, 3=500 L] 

virtual_rental_id Rental identification number 479677 

car_category_type_id Type of vehicle  1 [1=Car, 2=Scooter]  

car_category_id Vehicle category  8 [7=MP3, 8=500, 9=500 L] 

onClick_disabled Not available False 

Table 4 - Enjoy data source description 

5.1.3. Sharen’go Data Structure  

This paragraph describes Share’ngo vehicle data structure, available in json format, with the below 

structure described by a sample recordxxvi: 

{ 

"plate":"EH24795", 

"manufactures":"Xindayang Ltd.", 

"model":"ZD 80", 

"active":true, 

"intCleanliness":"clean", 

"extCleanliness":"clean", 

"notes":"LJU70W1Z4GG001473", 

"longitude":"12.5144", 

"latitude":"41.89145", 

"damages":null, 

"battery":85, 

"busy":false, 

"hidden":false, 

"rpm":0, 

                                                
xxvi The data record documenting Share’ngo vehicle is very long, in this paragraph only relevant fields have been 

considered. 
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"speed":0, 

"km":164, 

"running":false, 

"parking":false, 

"status":"operative", 

"soc":85, 

"charging":false, 

"fleet":{---}, 

… 

} 

 

Similarly, to the others’ Car-sharing operators, Share’ngo’s record data dictionary is: 

Field Name Description Type of value 

Plate Unique vehicle plate number EH24795 

Manufactures Name of vehicle brand Xindayang Ltd. 

Model Name of vehicle model  ZD 80 

Active Vehicle activity True 

intCleanliness Internal quality of vehicle Clean 

extCleanliness External quality of vehicle  Clean 

Longitude Longitude coordinates 12.5144 

Latitude Latitude coordinates 41.89145 

Damages Description of damages Null 

Battery Level of charge in a range 0-100 85 

Busy Vehicle availability False 

Hidden Vehicle signal presence False 

Rpm Engine rotation per minute 0 

Speed Vehicle speed 0 

Km Total number of kilometres 164 

Running State of movement False 

Parking State of parking False 

Status Operativity status Operative 

Charging Charging process activated False 

Table 5 - Share'ngo data source description 

5.2. Data Mapping 

Data Mapping phase has the purpose to map multiple data sources to a common target data structure, 

identifying common fields to all available data sources, by matching exactly each original field to the 

target field of raw data structure; additionally, all unavailable fields can be analysed to be treated and 

integrated during this the Data Collection Cycle.  
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In fact, while some field can be simply mapped and copied from original data source to the target 

data source without any, or very low, intervention, other fields require a pre-injection data 

transformation activity to reliably generate the data for the target table. 

During the Data Mapping step, the following operations can be designed to generate the target data 

table: 

• Copy: data is collected as it is from the original dataset, and added to the record for the target 

table, without intervention 

• Load: data is created from a validated source, external to the original dataset, and is added 

to the record before it is inserted into target data table, 

• Parse: data is extracted from a record of the original dataset, and only its part of interest is 

added to the record before it is inserted into target data table, 

• Process: data generated during processing operation and is added to the record before the 

injection into the target table. 

In the following table in each of the first three columns, fields potentially covered by the specific 

dataset are marked in green (plain or light) with the source description inside the cell. In the “Mobility 

Sharing” case the homogenous data model to merge Car2Go, Enjoy and Share’ngo datasets is the 

following: 

Field Name Car2Go Enjoy Share’ngo Target data 

Plate Parse Copy Copy Required 

Operator Load Load Load Required 

Model Load Copy Copy Available 

Address Copy Copy n/a Available 

Interior Copy n/a Copy Available 

Exterior Copy n/a Copy Available 

Longitude Copy Copy Copy Required 

Latitude Copy Copy Copy Required 

Engine Type Load Load Load Available 

Damages n/a n/a Copy Unavailable 

Fuel/Battery Copy Copy Copy Required 

Date Process Process Process Required 

Time Process Process Process Required 

City Load Load Load Required 

Busy n/a n/a Copy Unavailable 

Hidden n/a n/a Copy Unavailable 

Rpm n/a n/a Copy Unavailable 

Speed n/a n/a Copy Unavailable 

Km n/a n/a Copy Unavailable 

Running n/a n/a Copy Unavailable 

Parking n/a n/a Copy Unavailable 

Status n/a n/a Copy Unavailable 

Charging n/a n/a Copy Unavailable 

Table 6 - data mapping for selected car-sharing services 

This mapping designs, for example, that: 
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- the field “plate” for Car2Go go vehicles can be extracted parsing the key/value “name”: 

“id/plate” to extract e.g. plate value “ET836WT” parsing the string “194/ET836WT” and 

saving the characters 5 to 11, 

- the fields “date” and “time” can be processed gathering current date and time from a 

reliable data source (e.g. TIMESTAMP) 

Finally, the Data Mapping step is completed by defining in the previous Table 4 which are the field 

of interest for the target data table; in this case fields have been mapped with: 

- Required: where the data are important for the Car-sharing analysis and enough data are 

available from original sources, 

- Available: where the data are available from original sources, 

- Unavailable: where few operators own the data and the analysis is inconsistent. 

5.3. Data Collection Cycle 

Data Collection Cycle, described in detail in the following paragraphs, is composed by the five 

following steps: 

1. Data Extraction, having the purpose to extract data from original data sources, 

2. Data Filtering, having the purpose to select only relevant data 

3. Data Transformation, having the purpose to generate additional data and prepare the 

appropriate data format 

4. Data integration, having the purpose to integrate all data belonging to the same vehicle in a 

single data record 

5. Data injection, having the purpose to insert data into the homogeneous target table.  

 

 

 

Figure 16 – the Data Collection Cycle 
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5.3.1. Data Extraction 

Data Extraction consist in retrieving data from each of involved source in a synchronized way so that 

source raw data needed to populate the HDM are available in a common timeframe. 

Original datasets had distinct sizes: 

• Car2Go, average size is about 110 KB/iteration 

• Enjoy, average size is about 145 KB/iteration 

• Share’ngo, average size is about 690 KB/iteration 

with a total size of about 1MB/iteration considering cycle of 3 minutes, between one iteration and the 

following. 

Considering 1 year of data extraction the total size of extracted data would be only for the city of 

Rome about 175 TB; about 700 TB of data for Italy. 

 

5.3.2. Data Filtering 

To avoid data volume ineffectiveness related to processing time and data overload, a data filtering 

step is applied so that only valuable fields required to the analysis are selected to be aggregated into 

a record that is injected in the HDM. 

The homogeneous target datasetxxvii  structure for Car-sharing homogeneous raw data record is the 

following: 

Plate Lon Lat City Operator Date Time Aut_lev Vehicle Model Engine 

R R R R R R R R A A A 

E/C/C C/C/C C/C/C L/L/L L/L/L P/P/P P/P/P C/C/C L/C/C L/L/C L/L/C 

Table 7 - target raw data record 

Legenda:  

• R: required 

• A: available 

• E: parsed 

• C: copied 

• L: loaded  

• P: processed 

 

Considering this filtering the target dataset in HDM has a total size per iteration, including newly 

generated data such as “operator”, “city”, “vehicle”, “date”, “time” of about 0,39 MB, versus the size 

of original data sources of about 1 MB per iteration, with a reduction of data occupancy of about 

60%. 

5.3.3. Data Processing 

During this step the operations of “copy”, “parsing”, “loading” and “processing” are performed, and 

all data records are formatted to fit the target homogeneous data row. 

                                                
xxvii In the homogeneous dataset size of each entry is about 0,31 kB, considering about 1271 vehicles (including scooters), 

0,39 MB about 60% of original raw data size, which was composed by 380.550 rows 
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Of course, considering the different nature of source data each source, representing data of vehicles 

of a specific Car-sharing operator performs dedicated set of transformations. 

5.3.4. Data Transformation 

Of course, considering the different nature of source data each source, representing data of vehicles 

of a specific Car-sharing operator performs dedicated set of transformations. 

5.3.5. Data Loading 

Last phase of the iteration is the Data Injection that inserts the data rows into the Target Data Table 

of the HDM. 

In this case it is critical to opportunely manage injection duration; in this case a frequency during the 

data acquisition cycle a period of 3 minutes per iteration has been set, while the performance filtering 

processing and injection cycle that was performed in less than 1 minute.  

The chosen trade-off is reliable enough because avoids the loss of vehicle movements, since only the 

check-in/check-out process requires 3 minutes, additionally the average error value in estimating the 

stop duration time is 1.5 minutes that considering the average stop duration will introduce an error of 

less than 1%.  

This choice has been made because it represents a good trade-off between the Data Refresh 

Frequency, Data Extraction Amounts and Data Collection Cycle duration; using less than 1 minutes 

versus 3 minutes extraction frequency allows an easy and quick data recovery in case of system fault 

during the Injection Cycle. 
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6. Defining the value of Urban Areas  

To calculate the value of Urban Areas four key steps process must be performed from the 

Homogeneous Data Table and others sources of information. 

1. Organizing the Urban Area in different cells representing the city space 

2. Processing vehicle data to extract data about Stops 

3. Performing a spatial analysis to join Urban Area and vehicle data 

4. Processing vehicle data to extract data about Trips 

6.1.1. Real data case study: City of Rome  

This case study experiments1 the previously described model applied to the city of Rome (Italy). 

The study is based on real data collected during the T observation period of 49 days (T=49) ranging 

from 2016, April 28th to 2016, June 16th, where the vehicles of three distinct free-floating one-way 

Car-sharing operators’ active in Rome have been monitored. 

During the observation period, we collected 287.975 stops observation referring to 1.271 distinct 

vehicles. All the stops have been observed in a geographical area (Gridk) that has been partitioned in 

636 cells (K = 636) 

Operator i Number of Vehicles Number of Stops Avg ASD (min) 

1 95 9.661 577.6 

2 572 126.093 258.4 

3 604 152.221 134.2 

Table 8 - Car-Sharing Vehicle Dataset 

All spatial analysis and algorithms have been performed using QGis Desktop 2.18.382.  

6.2. Urban Area Organization 

6.2.1. Urban Area definition 

In this case Gridk has been defined from existing Taxable Areas defined for the City of Rome by 

Rome Municipality83, aggregating them where, as in city centres, the taxable areas are too small, to 

be at least 1.500 square meters each, and build larger grid cell.  

Since cells defined by Taxable Areas can vary in different city zones (for instance we have very small 

cells of few hundred squared meters in the Centre of City while very large areas of several squared 

kilometres in more peripheral zones), a minimum surface of at least 1.500 square meters each has 

been defined to identify a consistent Urban Area that in those case will be built aggregating smaller 

cells. 

Additionally, the cells defined using Taxable Areas are generally irregular and the shape can in some 

cases be concave; these shapes might have the issue that the position of their centroids is outside the 

shape. To avoid this problem, each cell was converted in a convex polygon, using the specific QGis 

function, so to be sure that the centroid of each polygon falls inside the same cell area. 

Finally, the centroid of each cell can be calculated using the QGis function “Polygon Centroid” 
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The Grid for the city of Rome has been defined partitioning the city area in squared cells, using the 

QGis function “Grid”. 

Rome City Urban Area has been defined using the following GPS coordinates to define boundary 

layers of the map: 

• xmin: 12.2341551399 

• xmax: 12.8558382321 

• ymin: 41.6554062257 

• ymax: 42.1409693500 

The grid partition has been finally performed selecting the destination layer and setting x at 0.005 

degrees, corresponding to about 450 meters per cell side, and saving the result in new file.shp. 

Figure 17 shows the cell distribution of the Grid used to map the city of Rome. 

 
Figure 17 - grid definition for Rome case study 

6.3. Generating Stops  

6.3.1. Stop definition 

Let V be the number of different vehicles observed at list once during the observation window T. 

Let K be the number of different cells of the grid partition defined in the Urban Area. For each vehicle 

define Oj  as the number of observations of the j-th vehicle during T. Each vehicle observation is 

performed checking the vehicle position at predefined time intervals. In this study a time interval of 

3 minutes has been used. 

Let o the number of time slots in which can be portioned the day. 

A stop is defined as the i-th observation of the j-th vehicle formalized with the following tuple 

Stopij = < latij, lonij, autij, stij, etij, csoij> 
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where: 

-         latij is the latitude of the i-th stop of j-th vehicle 

-         lonij is the longitude of the i-th stop of j-th vehicle 

-         autij is the autonomy at the i-th stop of j-th vehicle 

-         stij is the timestamp, date and time, of start of the i-th stop of j-th vehicle 

-         etij is the timestamp, date and time, of the end of the i-th stop of j-th vehicle 

-         csoij is the car-sharing operator id at the i-th stop of j-th vehicle 

We consider the Stopij belonging to the k-th cell of the partition if the point defined by (latij, lonij) is 

contained in the k-th cell area. We refer to Stop(k) as the number of  tuples Stopij belonging to the k-

th cell. 

6.3.2. Stop data processing 

Vehicles positions are checked using GPS coordinates latitude (lat) and longitude (lon) of each of the 

vehicle, since there are several movements per vehicle during the day and positions of the vehicle 

evolve continuously. In this research the following assumptions have been made to address the right 

position evaluation. 

Problem 1: define the right frequency of data collection from original sources to have accurate 

evaluation of position changes. 

Solution 1: establish a minimal time interval to check if vehicle position has changed, considering 

that each movement must have a duration higher than n minutes to be considered an effectively valid 

trip. Consequently, extracting data from native sources with a frequency of n minutes all position 

changes are tracked. In this study the minimal trip duration has been set to 3 minutes (n = 3). 

Problem 2: avoid errors in position acquisition inducted by GPS precision defects. In fact, as 

known the GPS has a natural error in accurately defining vehicle positioning between 10 and 100 

meters. 

Solution 2: establish that each movement must have a distance higher than the maximum error 

of GPS sensor to be considered a valid trip.  

Consequently, extracting data from native sources with a position tolerance to evaluate vehicle 

position changes inaccuracies of GPS measurement system are avoided. 

During stop processing phase only, positions’ changes are stored in the STOP table and vehicle data 

record is updated.  

Vehicle position evaluation is conceptually performed using the following logic: 

RUN PERIOD t 
FOR EACH VEHICLE i  

IF (Pt(lat(i), lon(i)) - Pt-1(lat(i), long(i))) < gps_error 
 UPDATE (Vehicle Stop Duration) 

ELSE  
 UPDATE (Vehicle Trip Start) 

END 

Figure 18 - stop data calculation logic 
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Figure 19 – Example of GPS position tolerance analysis 

Considering n number of periods in which the vehicle maintains its position, d the duration of the 

interval between a position check and the following 𝑝𝑖 the i-th period, the Vehicle Stop Duration 

(vsd) is so calculated.   

𝑣𝑠𝑑 =  ∑ 𝑝𝑖 ∗ 𝑑

𝑛

𝑖=1

 

 

The following table show an example of the vehicle-stop table allowing the analysis of stop 

characteristics of Car-sharing Operators, Vehicle and Stop Events. 

  

Id vehicle_id city latitude longitude area_id fuel Soc status stop_time duration updated_at 

115275 EX591DK roma 41.89859 12.44271 1791 100 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115276 EX592DK roma 41.90328 12.42898 1512 81 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115278 EX594DK roma 41.91228 12.54697 1926 100 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115279 EX595DK roma 41.88136 12.47377 636 100 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115281 EX597DK roma 41.87847 12.50508 2671 54 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115284 EX601DK roma 41.89775 12.42997 2337 60 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115285 EX602DK roma 41.92498 12.48572 2238 81 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115286 EX603DK roma 41.90584 12.55395 889 39 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115287 EX605DK roma 41.88522 12.48227 629 100 0 0 25/04/2016 22:29 16 26/04/2016 10:51 

115288 EX605DK roma 41.83280 12.46279 138 100 0 0 25/04/2016 23:22 77 26/04/2016 10:51 

115289 EX606DK roma 41.82003 12.45438 806 100 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115290 EX607DK roma 41.92270 12.51363 1373 72 0 0 25/04/2016 22:53 73 26/04/2016 10:51 

115291 EX607DK roma 41.92942 12.51855 2244 72 0 0 26/04/2016 00:25 13 26/04/2016 10:51 

115292 EX608DK roma 41.86077 12.44812 1893 51 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115293 EX609DK roma 41.88124 12.47900 629 27 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115294 EX610DK roma 41.94473 12.53473 19 100 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

115295 EX612DK roma 41.86347 12.49271 2455 24 0 0 25/04/2016 22:29 120 26/04/2016 10:51 

115296 EX613DK roma 41.86262 12.43965 1885 100 0 0 25/04/2016 22:29 130 26/04/2016 10:51 

Table 9 - Stop data sample 

Table above has the following structure. 
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Field Name Description 

Id Unique stop identification number defined at data platform level 

Vehicle_id Vehicle plate unique identifier 

City Name of the city where the stop occurs 

Latitude Latitude of stop position 

Longitude Longitude of stop position 

Area_id Identifier of the urban area where the vehicle stopped 

Fuel  Fuel level in case of combustion engine 

Soc State of charge in case of electric vehicle 

Status Vehicle status 

Stop_time Day and time when stop started 

Duration Stop duration in minutes 

Updated_at Date and time last record updated 

Table 10 – Stop data dictionary 

6.4. Spatial Analysis 

A grid-matching operation now is performed in order to associate one of pre-defined centroids to 

each cell of the grid. Now that the Urban Grid is defined the Stop Data Table is associated to match 

each stop position to one grid cell and consequently to a defined urban area. All stops are consequently 

associated and mapped to a cell, belonging to an Urban Area which uniquely identified by its centroid. 

 

Figure 20 - vehicle position mapping on Rome city grid. 

Once the table is associated to the map it will be possible to perform different position analysis with 

different Car-sharing Operators, or different Analysis in different time slots. 
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In this case study the above defined metrics SD(k, o), ASD(k, o) and UAV(k, o) have been calculated 

considering unique time slot, assuming a homogeneous pattern during all day, consequently ignoring 

daily peak hours in urban mobility demand. Additionally, seasonality has not been considered 

considering the partial timeframe of the available dataset. Further the study will also be focused in 

analysing results of the model using different time slots during the day and impact of seasonality. 

Urban Area Value (also mentioned as UAV) is a function of two spatial key metrics defined for each 

k-th cell of the grid of the city: 

a. Stop Density 

b. Average Stop Duration 

6.4.1. Defining Stop Density as a spatial key metric 

Stop Density (SD) for the k-th Grid Cell calculated as: 

 

𝑆𝐷(𝑘, 𝑜) =
𝑆𝑡𝑜𝑝(𝑘, 𝑜)

∑ 𝑆𝑡𝑜𝑝(𝑘, 𝑜)𝐾
𝑘=1

         𝑘 = 1, … , 𝐾 

 

This section describes the results of the research where the above described model has been applied 

using the collected data in the period T, to the case study of Rome urban area. 

Figure 13 shows the results of the vehicle Stop Density (SD) analysis performed on all collected data 

referring to the three operators together and identifying different level of density with the percentage 

of total stops belonging to each cell. 

The resulting spatial analysis clearly states a different status for Gridk cells ranging from hot zones 

(identified with dark red cells) to cold zones (identified with dark blue cells). The dark red area in the 

middle of the map is Termini railway station. 

 

  

Figure 21 - Stop Density map. 
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More precisely dark red areas identify zones with more than 4.000 stops during T (more than 50 stops 

in a day)) and dark blue cells identify zones with less than 1.000 during T (less than 12 stops in a 

day). The analysis confirms that the SD metric is important in evaluating the UAV of different Urban 

Areas. 

6.4.2. Defining Average Stop Duration as a spatial key metric 

Average Stop Duration (ASD): is the average duration of stops in the k-th Grid Cell, calculated as: 

 

 

𝐴𝑆𝐷(𝑘, 𝑜) =  

∑ ∑ {
(𝑡𝑒𝑖𝑗 − 𝑡𝑠𝑖𝑗) 𝑖𝑓 (𝑙𝑎𝑡𝑖𝑗,  𝑙𝑜𝑛𝑖𝑗) ∩ 𝐺𝑟𝑖𝑑𝑘 

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑂𝑗

𝑖=1
𝑉
𝑗=1

𝑆𝑡𝑜𝑝(𝑘, 𝑜)
   

 𝑘 = 1, … , 𝐾 

  

In the model, UAV depends on the two-main metrics defined as Stop Density associated to each 

specific Urban Area and Average Stop Duration associated to the same Urban Area. It very important 

to properly and effectively define the concept of Grid to accurately perform a proper Spatial Analysis. 

Elaborating the second key metric represented by the Average Stop Duration (ASD), calculated from 

all collected data referring of the three operators together, we obtain the results shown in Figure 22. 

Also, the spatial analysis on the ASD shows that Gridk cells have different status value. In fact, dark 

red areas identify hot zones where the Average Stop Duration is very short and dark blue zones 

identify cold zones where ASD is very long; all gradient ranging between dark red cells to dark blue 

cells identify cell status with gradually longer durations. 

This second analysis confirms that the ASD is also important in evaluating the UAV of different 

urban areas. 

  

Figure 22 - Average Stop Duration map. 
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Consequently, results confirm that with aggregated data of the three Car-sharing services it is possible 

to breakdown the city in uniquely defined cells belonging to a Gridk to which a UAV can be 

associated, based on end-user mobility behaviour. 

 

6.4.3. Defining Urban Area Value 

Consequently, it is possible to define Urban Area Value (UAV) as a function of the values that Stop 

Density (SD) and Average Stop Duration (ASD) assume in each k cell of Gridk. 

In this case the Urban Area Value (UAV) has been defined as the ratio between Stop Density and 

Average Stop Duration.  

 

𝑈𝐴𝑉(𝑘, 𝑜) =  
𝑆𝐷(𝑘, 𝑜)

𝐴𝑆𝐷(𝑘, 𝑜)
 

 

In fact, it is intuitive the UAV increases incrementing SD and decreasing ASD; consequently, high 

demand urban areas will have high SD and low ASD. 

Finally, UAV is calculated for each k cell of Gridk and classified, using a five-class representation, to 

distribute the UAV in a discrete scale of High, Medium-High, Medium, Medium-Low and Low value 

cells. Figure 23 below shows the results of the classified UAV distribution on a spatial thermographic 

map, obtained with aggregated data of all the three Car-sharing services analysed. 

This first result allows us to show the existence of urban zones with crucial different demand 

potentials. In such a way, it is possible to rank and sort distinct city zones from high to low demand 

potential areas, classified in five classes. 

 

  

Figure 23 - Five Classes Aggregated UAV thermographic map 

In figure 15 we can still recognize among dark red areas Termini railway station, Tiburtina railway 

station, Vatican City boundaries, Trastevere, Piazza Bologna and some others. 
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To clarify the difference in using aggregated data versus self-generated data it has also been 

performed the UAV analysis for the Car-sharing operator 2 (Op2) and the Car-sharing operator 3 

(Op3). Data about the third operator are not shown due to the small number of data available and the 

small coverage of urban area at time of the analysis. 

The following Figure 24 shows the five classes UAV analysis applied to SD_Op2 and ASD_Op2 

using data belonging only to the Car-sharing operator 2. 

  

 

Figure 24 - UAV thermographic map for Operator 2 data 

Reading the map above it is clear that the UAV(Op2) describes, for the Car-sharing operator a 

perceived mapping of Urban Area Value significantly different from the city aggregated UAV map 

(Figure 23) calculated considering all SD and ASD data. Consequently, it is possible to clearly see 

the lack of objective data regarding the Urban Area Value can drives to a wrong assignment of UAV 

to specific cells. 

Similarly, in Figure 25, are shown analysis results of the five classes UAV applied to SD_Op3 and 

ASD_Op3 using data belonging only to the Car-sharing operator 3. 

Reading the map, it clear that the UAV_Op3, even if similar to the city UAV, describes a different 

perception of Urban Area Value both from the city UAV map (Figure 23) and for the UAV_Op2 map 

(Figure 24). Additionally, comparing city UAV to individual UAV maps, it is also possible, for the 

Car-sharing operators, to assign a value to urban area not covered by their service, allowing them to 

evaluate the interest in extending service coverage to specific not-served urban area. 
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Figure 25 - UAV thermographic map for Operator 3 data 

6.5. Generating Trips 

6.5.1. Trip definition 

A trip is defined, as the l-th variation of j-th vehicle status between two consecutives stops (Stoplj, 

Stop(l+1)j) by the following tuple: 

Triplj = < clj, olj, dlj, tslj, telj, distlj,> 

where: 

-         clj is the city where the i-th trip of the j-th vehicle occurs 

-         olj is the identifier of the grid where (latij, lonij) belong (origin) 

-         dlj is the identifier of the grid where (lat(i+1)j, lon(i+1)j) belong (destination) 

-         tslj is the trip start corresponding to etij 

-         telj is the trip end corresponding to st(i+1)j 

-         distlj is the Euclidean distance between (latij, lonij) and (lat(i+1)j, lon(i+1)j) 

6.5.2. Trip data processing 

Trips are calculated as the difference between two consequent stops. All trips are stored in the TRIP_TABLE 

described in the following dataset sample.  

Trip_id Vehicle_id city prev_stop_id 

(ORIGIN) 

curr_stop_id 

(DEST) 

start_time arrival_date distance Dur cons refuel updated_at 

30383 EW776BJ roma 459 1931 25/04/2016 22:46 25/04/2016 23:34 5,09300  49 2 F 26/04/2016 10:51 

30384 EW776BJ roma 1931 531 25/04/2016 23:34 26/04/2016 00:06 2,45800  32 1 F 26/04/2016 10:51 

30385 EW783BJ roma 729 1266 25/04/2016 23:30 26/04/2016 00:10 2,35000  16 2 F 26/04/2016 10:51 

30386 EW796BJ roma 2502 1990 25/04/2016 22:30 25/04/2016 23:34 4,29400  37 2 F 26/04/2016 10:51 

30387 EW802BJ roma 908 1931 25/04/2016 22:30 25/04/2016 23:01 2,77700  28 1 F 26/04/2016 10:51 

30388 EW802BJ roma 1931 2243 25/04/2016 23:01 25/04/2016 23:26 1,62600  16 0 F 26/04/2016 10:51 

30389 EW804BJ roma 1792 1938 25/04/2016 22:30 25/04/2016 23:38 3,32800  33 -1 T 26/04/2016 10:51 

30390 EW804BJ roma 1938 785 25/04/2016 23:38 26/04/2016 00:10 2,02100  28 2 F 26/04/2016 10:51 

30391 EW810BJ roma 1089 1100 25/04/2016 22:42 25/04/2016 23:30 0,34300  45 3 F 26/04/2016 10:51 

30392 EW810BJ roma 1100 2459 25/04/2016 23:30 26/04/2016 00:29 6,14600  46 4 F 26/04/2016 10:51 
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Trip_id Vehicle_id city prev_stop_id 

(ORIGIN) 

curr_stop_id 

(DEST) 

start_time arrival_date distance Dur cons refuel updated_at 

30393 EW824BJ roma 1373 661 25/04/2016 22:34 25/04/2016 23:58 7,67200  28 2 F 26/04/2016 10:51 

30394 EW830BJ roma 2005 2848 25/04/2016 23:18 26/04/2016 00:14 7,91400  44 7 F 26/04/2016 10:51 

30395 EW835BJ roma 320 459 25/04/2016 22:30 26/04/2016 00:06 6,16100  31 3 F 26/04/2016 10:51 

30396 EW839BJ roma 848 1090 25/04/2016 22:34 26/04/2016 00:06 2,94700  31 -1 T 26/04/2016 10:51 

30397 EW842BJ roma 2896 721 25/04/2016 22:30 25/04/2016 23:34 7,53400  45 0 F 26/04/2016 10:51 

30398 EW845BJ roma 2257 2179 25/04/2016 22:30 25/04/2016 22:54 1,00200  20 2 F 26/04/2016 10:51 

30399 EW845BJ roma 2179 1030 25/04/2016 22:54 25/04/2016 23:23 2,95100  25 0 F 26/04/2016 10:51 

30400 EW845BJ roma 1030 161 25/04/2016 23:23 25/04/2016 23:50 1,90100  20 1 F 26/04/2016 10:51 

30401 EW862BJ roma 848 1715 25/04/2016 22:30 25/04/2016 23:30 4,69800  29 1 F 26/04/2016 10:51 

30402 EW869BJ roma 2459 20 25/04/2016 22:30 25/04/2016 23:06 0,89000  32 2 F 26/04/2016 10:51 

30403 EW869BJ roma 20 2625 25/04/2016 23:06 26/04/2016 00:10 7,77000  36 3 F 26/04/2016 10:51 

30404 EW873BJ roma 2671 662 25/04/2016 22:30 25/04/2016 23:14 6,04500  37 1 F 26/04/2016 10:51 

30405 EW873BJ roma 662 2842 25/04/2016 23:14 25/04/2016 23:54 4,01500  20 2 F 26/04/2016 10:51 

30406 EW873BJ roma 2842 2644 25/04/2016 23:54 26/04/2016 00:22 1,51800  16 2 F 26/04/2016 10:51 

30407 EW960BH roma 1373 1523 25/04/2016 22:54 25/04/2016 23:30 3,89700  29 0 F 26/04/2016 10:51 

Table 11 - trip sample dataset 

Previous table has the following data features: 

Field Name Description 

trip_id Unique trip identification number defined at data platform level 

vehicle_id Vehicle plate unique identifier 

City Name of the city where the stop occurs 

prev_stop_id Origin cell of the trip 

curr_stop_id Destination cell of the trip 

start_time Timestamp of beginning of trip 

arrival_date Timestamp of end pf trip 

Distance Estimate of distance between origin and destination 

Dur Trip duration as difference between start_time and arrival_date 

cons  Autonomy consumption 

Refuel Refueling of the vehicle 

updated_at Date of record update 

Table 12 - TRIP_TABLE dataset description 

The Origin-Destination Matrix (O-D Matrix) can be created, filtering from the TRIP_TABLE the 

columns vehicle_id, prev_stop_id, curr_stop_id. 

 

Each Vehicle Trip Duration (𝑣𝑡𝑑𝑖𝑗) of trip j with vehicle i can be approximately be calculated as 

the difference between [arrival_date] and [start_time] with the following formula 

 

𝑣𝑡𝑑𝑖𝑗 =  𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑑𝑎𝑡𝑒𝑖𝑗 −  𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒𝑖𝑗 
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7. Vehicle Commercial Model in Car-sharing services 

According to Revenue Management principles having the goal to maximize profit for the car-sharing 

service a commercial model for vehicles must be represented. 

In brief a commercial model, which is the evaluation of revenues, costs and profits of a vehicle during 

its operational period, can be based the Vehicle Lifetime Value (VLV).  

Vehicle Lifetime Value, in case of Sharing Mobility services such as Car-sharing, can be defined as 

the difference of Total Lifetime Incomes (TLI) and Total Cost of Ownership (TCO). 

 

VLV = TLI – TCO 

Where: 

- TLI is defined as the sum of all service incomes generated during the operational period, 

- TCO is defined as the evaluation of the total cost to own a vehicle for a predefined operational 

period, typically ranging from 2 to 5 years, which includes all type the expenses e.g. in fuel, 

insurance, maintenance, repairs, service, interest on loan payments as well as the losses 

incurred due to depreciation of the car at the end of the same period. 

7.1. Total Cost of Ownership in Car-sharing services 

TCO can be spilt in five main cost categories: 

- Acquisition Costs, which is the cost that the Car-sharing Operator pays the vehicle 

manufacturer for vehicles property after adjusting for discounts, incentives, closing costs and 

other necessary expenditures but before sales taxes84.  

- Recurring Fixed Costs, which are the costs non-dependent from the user behaviours, and are 

mainly related to assurance, taxes, fixed parking costs, traffic limited zones access fees, 

weekly cleaning and programmed maintenance; these costs can be calculated as an average 

cost per kilometre as average of fleet statistics (standard fixed costs) 

- Extraordinary Variable Costs, which are costs that cannot be programmed, and which partially 

depend from user behaviour (e.g. accidents); these costs can be, also, calculated as an average 

cost per kilometre based on the fleet population (standard extraordinary costs) 

- Variable Operational Costs, that are related to usage intensity and are impacted by users’ 

behaviour such as fuel 

- Relocation Cost, cost related to optimize vehicle demand/offer fitting Urban Areas, acting to 

reduce the imbalance problem. 

A vehicle commercial model with some similarities to the one introduced in the following chapter 

has been used by Boyac et al.  (2014) for different goals. 

TCO can be calculated using the following cost variables 

 

TCO = VIC(km, VRV(v, t, km)) + VMC(km, t) + VFC(km) + VLC(t) + VTC(t) + VPC(t, p) + 

Avg(VRC) + VCC(t) + VRLC (d, t, ve, fc, hsc) + VDC(v, t, km) 
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with   

- VIC: Vehicle Insurance Cost, is the recurring cost of annual insurance price that must be paid 

per each vehicle depending on the yearly distance performed in km, and the VRV; VIC is paid 

annually and will generally be the same for all fleet vehicles, 

- VRV: Vehicle Residual Value, which is the residual asset value when the vehicle is brought 

out of production; VRV depends on vehicle brand, model and duration of the operating period, 

- VMC: Vehicle Maintenance Cost, is a recurring cost based on distance (km) and age of 

vehicle, 

- VTRC: Vehicle Traction Cost, is a recurring cost based on the distance depending on vehicle 

efficiency based on fuel cost (FC), kilometres per fuel unit (kfu) and distance (d) (fuel can be 

electric charge or oil refill), 

- VTC: Vehicle Taxation Cost, recurring cost of annual taxes that must be paid per each vehicle 

depending on vehicle brand and model (n*tax), where n is the number of years and tax is the 

yearly tax amount, 

- VPA: Vehicle Purchase Amount, representing the purchase cost of the vehicle including the 

car-sharing setup and configuration. This is a one-time cost occurring when the vehicle is 

bought by the Car-sharing service provider and depends on the vehicle brand and model, 

- VPC: Vehicle Parking Cost, is the parking fee that annually must be paid to municipalities 

and/or parking hubs for usage of parking spaces, 

- VRC: Vehicle Repair Cost, is an extraordinary cost based on vehicle repair needs that can be 

estimated in average considering average fleet repair cost, 

- VCC: Vehicle Cleaning Cost, is the vehicle cleaning cost that is generally calculated on the 

basis of a total of 52 cleaning operations estimated with a unit cost of 7 € 

- VDC: Vehicle Depreciation Cost, is the loss of value of the vehicle during car-sharing service 

period  

- VRSC: Vehicle Relocation Staff Cost, is the cost that the Car-sharing operator must sustain 

to move the vehicle from a cold to hot spots and can be estimated by the product of the average 

number of relocation and the cost of a relocation movement (e.g in Rome about15 €/each).  

Supposing that a Car-sharing service fleet has N vehicles, with Y being the average number of vehicle 

operating years, for i-th vehicle the total cost of ownership can be calculated as 

𝑇𝐶𝑂𝑖 = 𝑉𝐷𝐶𝑖 +  ∑(𝑉𝑇𝐶𝑖𝑦

𝑌

𝑦=1

+ 𝑉𝐼𝐶𝑖𝑦 + 𝑉𝑃𝐶𝑖𝑦 + 𝑉𝐶𝐶𝑖𝑦) + 𝐴𝑣𝑔(𝑉𝑇𝑅𝐶𝑖) ∗ 𝑘𝑓𝑢 ∗ 𝐷 + 𝐴𝑣𝑔(𝑉𝑅𝐶𝑖)

+ 𝐴𝑣𝑔(𝑉𝑀𝐶𝑖) +  𝐴𝑣𝑔(𝑉𝑅𝑆𝐶𝑖) 

with 

𝑉𝐷𝐶𝑖 =  𝑉𝑃𝐴𝑖 − 𝑉𝑅𝑉𝑖 

 

Consequently, the Average Vehicle Cost per minute for the Car-sharing operator can be calculated 

with following equation. 

𝐴𝑉𝐶𝑝𝑚 =  
∑ 𝑇𝐶𝑂𝑖

𝑁
𝑖=1

𝑁 ∗ 𝑌 ∗ 𝑇
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being T the yearly average operating minutesxxviii.  

𝑇 =  
∑ ∑ 𝑚𝑖𝑗

365
𝑗=1

𝑁
𝑖=1

𝑁
 

so with: 

𝐴𝑉𝐶𝑝𝑚 =  
∑ 𝑇𝐶𝑂𝑖

𝑁
𝑖=1

𝑁 ∗ 𝑌 ∗
∑ ∑ 𝑚𝑖𝑗

365
𝑗=1

𝑁
𝑖=1

𝑁

=   
1

𝑌
∗

∑ 𝑇𝐶𝑂𝑖
𝑁
𝑖=1

∑ ∑ 𝑚𝑖𝑗
365
𝑗=1

𝑁
𝑖=1

 

 

Considering that vehicle fixed operating costs (VFOC) are calculated as: 

𝑉𝐹𝑂𝐶𝑖 = ∑(𝑉𝑇𝐶𝑖𝑦

𝑌

𝑦=1

+ 𝑉𝐼𝐶𝑖𝑦 + 𝑉𝑃𝐶𝑖𝑦 + 𝑉𝐶𝐶𝑖𝑦) +  
1

𝑁
∑ ∑ 𝑉𝑅𝐶𝑖𝑗𝑦

𝑌

𝑦=1

𝑁

𝑗=1

 

with 

𝐴𝑣𝑔(𝑉𝑅𝐶𝑖) =  
1

𝑁 ∗ 𝑌
∑ ∑ 𝑉𝑅𝐶𝑖𝑗𝑦

𝑌

𝑦=1

𝑁

𝑗=1

 

TCO can also be expressed as 

 

𝑇𝐶𝑂𝑖 = 𝑉𝐷𝐶𝑖 +  𝑉𝐹𝑂𝐶𝑖 + 𝐴𝑣𝑔(𝑉𝑇𝑅𝐶𝑖) ∗ 𝑘𝑓𝑢 ∗ 𝐷 + 𝐴𝑣𝑔(𝑉𝑀𝐶𝑖) +  𝐴𝑣𝑔(𝑉𝑅𝑆𝐶𝑖) 

 

7.2. Focus on the Relocation Cost (VRLC). 

It is also known that in case of staff relocation, vehicle movement is unproductive, so the formula 

based on variable cost can be split to evidence productive (user) and unproductive (staff) cost 

components, based on trip distance performed by the user and distance performed by staff for 

relocation. 

Considering the objective of this research, the positive contribution that the User-based Relocation 

Model can give to One-way Free-floating Car-sharing Operators (OFCOs) is focused in reducing the 

relocation cost and maximising revenues, active users and productive trips. 

Consequently, it is necessary to directly link VRLC to an optimization tariff model.  

The first step in achieving this goal requires to define a generalized formula to calculate the VRLC. 

As already expressed, VRLC is a function of: 

- distance (DStaff) driven during the relocation event, measured in kilometres,  

                                                
xxviii If the average cost per minute is calculated using every minute of the year an “Utilization Rate” k must be 

considered in determining the tariff per minute. Average Vehicle Utilization is the percentage of minutes of fleet usage 

in a defined period. In car-sharing fleet utilization is generally low, between 8-12%. 525.600 is the theoretical 

maximum number of minutes of vehicle operability. 
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- traction unit cost (Tuc) which is the cost per unit of traction source used to power the vehicle 

such as fuel or gas in case of endothermic vehicles or electric power in case of electric 

vehicles, 

- vehicle efficiency (Ve) calculated as the unit of traction per kilometre (tuc/km), which is the 

amount of traction source necessary to cover in average the distance of 1 kilometre; 

considering that vehicle used in OFCOs models by Car-sharing operators can have multiple 

engines types, even in the same fleet (e.g. Car2Go in Munich) this definition applies, for 

example, to l/km in case of petrol, m3/km in case of gas and uoc/km in case of electric vehicles,  

- service relocation cost (Src), which the cost per minute of personnel dedicated to relocation 

movements 

- and time (t) calculated in minutes. 

Considering below definitions and assumptions the i-th vehicle TCO formula can also be expressed 

as 

 

𝑇𝐶𝑂𝑖 = 𝑉𝐷𝐶𝑖 + 𝑉𝐹𝑂𝐶𝑖 + 𝐴𝑣𝑔(𝑉𝑀𝐶𝑖) + 𝐴𝑣𝑔(𝑉𝑇𝑅𝐶𝑖) ∗ 𝑉𝑒𝑖 ∗ 𝐷𝑖 +  𝐴𝑣𝑔(𝑉𝑅𝑆𝐶𝑖) 

 

with the total distance (𝐷𝑖) performed by the i-th vehicle considered as the sum of total distance 

performed by users (𝐷𝑖
𝑢) and the total distance performed by staff (𝐷𝑖

𝑠). 

 

𝐷𝑖 = 𝐷𝑖
𝑢 + 𝐷𝑖

𝑠 

 

the TCO of the i-th vehicle can be expressed as 

 

𝑇𝐶𝑂𝑖 = 𝑉𝐷𝐶𝑖 + 𝑉𝐹𝑂𝐶𝑖 + 𝐴𝑣𝑔(𝑉𝑀𝐶𝑖) + 𝐴𝑣𝑔(𝑉𝑇𝑅𝐶𝑖) ∗ 𝑉𝑒𝑖 ∗ 𝐷𝑖
𝑢 +  𝐴𝑣𝑔(𝑉𝑇𝑅𝐶𝑖) ∗ 𝑉𝑒𝑖 ∗ 𝐷𝑖

𝑠

+ 𝐴𝑣𝑔(𝑉𝑅𝑆𝐶𝑖) 

 

If the i-th vehicle is considered, 𝑉𝑀𝐶𝑖 can be expressed as: 

 

𝑉𝑀𝐶𝑖 =  𝑀𝐶𝑘𝑚 ∗  
𝐷𝑖

𝑢+ 𝐷𝑖
𝑠

𝐷𝑖
 = 

𝑀𝐶𝑘𝑚

𝐷𝑖
 * (𝐷𝑖

𝑢 +  𝐷𝑖
𝑠) = 

𝑀𝐶𝑘𝑚

𝐷𝑖
 * 𝐷𝑖

𝑢 +  
𝑀𝐶𝑘𝑚

𝐷𝑖
 ∗  𝐷𝑖

𝑠 

 

considering the 𝑉𝑀𝐶𝑘𝑚
𝑢  associated to the user and 𝑉𝑀𝐶𝑘𝑚

𝑠  associated to the staff 

 

𝑉𝑀𝐶𝑘𝑚
𝑢 =

𝑀𝐶𝑘𝑚

𝐷𝑖
 𝐷𝑖

𝑢 
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𝑉𝑀𝐶𝑘𝑚
𝑠 =

𝑀𝐶𝑘𝑚

𝐷𝑖
 𝐷𝑖

𝑠 

 

and the relocation cost of the i-th vehicle is: 

 

𝑉𝑅𝐿𝐶𝑖 = ((𝐴𝑣𝑔(𝑉𝑇𝑅𝐶𝑖) ∗ 𝑉𝑒𝑖) +  
𝑀𝐶𝑘𝑚

𝐷𝑖
) ∗ 𝐷𝑖

𝑠 + 𝐴𝑣𝑔(𝑉𝑅𝑆𝐶𝑖)  

 

This formula can be more explicit in evaluating Vehicle Relocation Service Cost, 𝑉𝑅𝑆𝐶𝑖 if staff 

relocation time is tracked at vehicle level. In this case, considering the: 

• 𝑆𝐶𝑚 as the minute cost of Staff in charge of relocation 

• 𝑡𝑖 as the time spent in relocation activities by dedicated staff 

 

𝑉𝑅𝑆𝐶𝑖 =  𝑆𝐶𝑚 ∗  𝑡𝑖 

 

𝑉𝑅𝐿𝐶𝑖 =  ((𝐴𝑣𝑔(𝑉𝑇𝑅𝐶𝑖) ∗ 𝑉𝑒𝑖) + 
𝑀𝐶𝑘𝑚

𝐷𝑖
) ∗ 𝐷𝑖

𝑠 + 𝑆𝐶𝑚 ∗  𝑡𝑖 

In user-based relocation models the staff involvement can be considered as cost saving while there 

might be an additional distance cost considering that the user might bring the vehicle to a farer place 

than the one planned by staff to relocate the vehicle. 

Considering the j-th trip the 𝑉𝑅𝐿𝐶𝑖,𝑗
𝑢  formula can be expressed as 

 

𝑉𝑅𝐿𝐶𝑖𝑗
𝑢 =  ((𝐴𝑣𝑔(𝑉𝑇𝑅𝐶𝑖) ∗ 𝑉𝑒𝑖) +  

𝑀𝐶𝑘𝑚

𝐷𝑖
) ∗ (𝐷𝑖

𝑠 + (𝐷𝑖𝑗
𝑢 − 𝐷𝑖𝑗

𝑠 )) 

7.3. Base Tariff Calculation 

 

As known in main Car-sharing systems the business model is frequently based on Trip Revenue 

Amount (R) calculation as the product of vehicle rent time 𝑟𝑡 (which, in one-way free-floating 

services, is generally measured in minutes) and of a standard tariff (𝑡𝑆𝑇𝐷), with the following formula: 

 

𝑅 = 𝑡𝑆𝑇𝐷 ∗ 𝑟𝑡 

 

In this research, the first approximation of 𝑡𝑆𝑇𝐷 will be calculated starting from the Vehicle Cost, 

considering that revenues for the Car-sharing operator will also include a standard margin on the 

average cost of the service; in this case the formula can be written as follows: 

 

𝑅 = (𝑚𝑆𝑇𝐷 + 𝑐𝑆𝑇𝐷) ∗ 𝑟𝑡 
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or 

 

𝑅 = 𝑚𝑆𝑇𝐷 ∗ 𝑟𝑡 + 𝑐𝑆𝑇𝐷 ∗ 𝑟𝑡 = 𝑀 + 𝐶 

 

witht 

 

𝐶 = 𝑐𝑆𝑇𝐷 ∗ 𝑟𝑡 

 

 

which in this case is equal to 

 

𝐶 = 𝐴𝑉𝐶𝑝𝑚 ∗ 𝑟𝑡 

 

 

In case of Relocation Movements performed by staff  𝑅𝑠𝑡𝑎𝑓𝑓 = 0 and the margin M of the trip is 

negative  

 

0 = 𝑀𝑠𝑡𝑎𝑓𝑓 + 𝐶𝑠𝑡𝑎𝑓𝑓 

 

 

𝑀𝑠𝑡𝑎𝑓𝑓 = − 𝐶𝑠𝑡𝑎𝑓𝑓 =  − 𝑉𝑅𝐿𝐶𝑖 =  −(((𝐴𝑣𝑔(𝑉𝑇𝑅𝐶𝑖) ∗ 𝑉𝑒𝑖) +  
𝑀𝐶𝑘𝑚

𝐷𝑖
) ∗ 𝐷𝑖

𝑠 + 𝑆𝐶𝑚 ∗  𝑡𝑖) 

 

𝑀𝑠𝑡𝑎𝑓𝑓 = − 𝐶𝑠𝑡𝑎𝑓𝑓 =  − ((𝐴𝑉𝐶𝑝𝑚 ∗ 𝑟𝑡) + (𝑆𝐶𝑚 ∗  𝑡𝑖))

=  −(((𝐴𝑣𝑔(𝑉𝑇𝑅𝐶𝑖) ∗ 𝑉𝑒𝑖) +  
𝑀𝐶𝑘𝑚

𝐷𝑖
) ∗ 𝐷𝑖

𝑠 + 𝑆𝐶𝑚 ∗  𝑡𝑖) 

 

7.4. The user-based relocation tariff strategy. 

The tariff definition could be based, as generally happening in car-sharing on time and/or distance 

travelled and potentially on daily hourly-range and seasonality. 

Defining h as the origin of a car-sharing trip starting in a so-called Urban Areaxxix (U1) of departure 

of a vehicle starting and k as the destination to a Urban Area (U2) of arrival when finishing the 

movement, a trip will be identified as 𝑇ℎ,𝑘 represented as: 

 

𝑇ℎ,𝑘 = 𝑇(𝑈1, 𝑈2) 

 

                                                
xxix Representing an Urban Area, the location variable will be called Ui 
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Figure 26 - sample of origin to destination movements between Urban Areas 

In the case in which the departure and destination of the vehicle refer to the same Urban Area h = k. 

 

𝑇ℎ,ℎ = 𝑇(𝑈1, 𝑈1) 

 

Figure 27 - sample movements considering time slots and tariffs 

Considering that, as mentioned before, Rome is divided in taxable areas defined from Rome 

Municipality aggregated in 636 cells, and imagining the city like a graph, each area can be 

represented as a node with destinations represented by arcs linking bidirectionally each node to 

another.  

In other words, we should see the map of Rome made up of spots with different dimension and a 

dense network of lines which connect the spots.  

Remember that to simplify and make the experiment more flexible each zone has been collapsed to 

its centroid which can be considered as “station” which cars reach or leave.  

Even if the similarity with a station-based system seems to be in contrast with one-way free-floating 

systems this hypothesises makes the analysis computationally more tolerable to manage and to 

control, without losing the assumption that the user is free to drop the car whenever he wants inside 

the service area.  
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In fact, the high number of cells (636) give the experiment a very good approximation with a real 

free-floating system. 

To reduce the number of our grid’s cells and simplify the computation in the following experiment 

25 spots representing different type of Urban Area Value have been considered.  

The study made on Urban Areas permitted to identify five different groups of cells based on Urban 

Area Value:  

• Low identified by Dark Blue color (DB) 

• Medium-Low identified by Light Blue (LB);  

• Medium identified by Yellow (Y); 

• Medium – High identified by Orange (O); 

• High identified by Red (R).  

This groups of cells correspond to a segmentation of demand rate during the day.  

The so called Low zones are spots of the city in which there is a low percentage of users: this means 

that there are few bookings and the cars remains in their stationary position for a long time (the 

combined blue colour represents a kind of cold zone, namely it specifies that in those zones there is 

an abundance of means of transport and users can always find available cars).  

Instead, the High zones are places in which there is much demand from users and the cars’ stationarity 

time is low (the red color underlines “hot areas” where there is an under-capacity of vehicles and a 

user could not find an available car).  

The Medium zones are a middle way between the previous two. It can be considered the “normal” 

state of the system, because there are neither an under-utilization of the service nor a lack of cars in 

the nodes.  

7.4.1. Urban zones dependent discounts 

The problem of establishing a correct price and its discount thresholds, to optimize margins and 

incentives of the user-based relocation model, depends to the desired level of demand. We know that 

lower tariffs generate higher requests, but it is difficult to find a scientific correlation between them. 

Tariff discounts (bonus) and increases (malus) are treated as commercial correction coefficients (K), 

where the final tariff, proposed to the end user, is calculated by multiplying the standard tariff by 

these coefficients.  

Some systems consider an additive formula or a mixed form. In this study, the system offers to users’ 

different commercial coefficients based on the following considerations. 

The analysis of Car-sharing systems in Italy enables the validation of following assumptions: 

- service tariff is per minute; 

- the standard price is set to 0,25 €/minxxx.  

                                                
xxx This is choice is legitimated because current tariff per minute of main Car-sharing operators, which together cover 

about 90% of market share are: 0,24/0,26 for Car2Go; 0,25 for Enjoy. The pricing model doesn’t consider the subscription 
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- discounts directly depend on different value of Urban Areas as expressed in table 13, 

considering the following 5-level value scale. 

 

Urban Area Value Symbol UAV 

High R 1,20 

Medium-High O 1,08 

Medium Y 1,00 

Medium-Low LB 0,92 

Low DB 0,80 

Table 13 - Urban Area Value 

 

𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝑇𝑎𝑟𝑖𝑓𝑓ℎ,𝑘 = (1 − (𝑈𝐴𝑉ℎ − 𝑈𝐴𝑉𝑘)) ∗  𝑡𝑠𝑡𝑑 = (1 − 𝐾ℎ,𝑘) ∗  𝑡𝑠𝑡𝑑 

 

The prices reflect a specular symmetry around the standard value in terms of multiplicative factor (K-

matrix) and an increasing linear trend in terms of tariffs’ values.  

K Matrix (h,k) R O Y LB DB 

R 0,00 0,08 0,20 0,32 0,40 

O -0,08 0,00 0,08 0,20 0,32 

Y -0,20 -0,08 0,00 0,08 0,20 

LB -0,28 -0,20 -0,08 0,00 0,08 

DB -0,40 -0,28 -0,20 -0,08 0,00 

Table 14 - discount matrix (K-matrix) 

As an example, a vehicle moving from a DB to a R area, will have a 40% discount while a vehicle 

moving from R to DB area will have a 40% tariff increase based on the standard tariff. 

Discounts are applied when a user performs an attractive trip, moving from a non-attractive to a more 

attractive node. In the opposite way, increments are applied when user goes from an attractive to less-

attractive areas. Moving in the same class area is indifferent to discount or penalty application, so that 

standard tariff is applied to users going from a station to another with the same degree of attraction.  

Considering the attractiveness as a staircase with different steps, each corresponding to a level of 

attraction, the user can access the applied tariff as a “climber” who can go up or down the stairs. This 

means that to go from an attractive zone to a non-attractive one, price is higher. 

The choice of these tariffs can be motivated by the unit cost per minute of a ride, namely knowing 

the cost, the lowest discount is set equal to the cost, so that there is 0-margin for a user relocation 

Remember that discount has the purpose to stimulate relocation by user, then fixing a price equals to 

cost brings 0-profit, but it balances the system, avoiding further staff relocation costs (when there is 

a staff relocation, the companies must pay not only the movements, but also manpower). 

Therefore, the expectation is to reduce or avoid staff relocation and to increase user-relocation, 

varying tariffs during the day. The above-mentioned cost per minute includes both fixed costs (e.g. 

                                                
fee of each customer, but only the sold rides; considering this approximation doesn’t impact the standard pricing because 

Car2Go requires a una-tantum cost of 10 €/subscriber and Enjoy subscription is free. 
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insurance, taxes, reserved parking, cleaning) and costs depending on time (e.g. depreciation, 

reparation, maintenance, fuel). 

To simplify the analysis this cost comprehends all these expenses in a simple constant value per 

minute: 0,17 €/minxxxi. Now, it is clearer the choice of the lowest price: we expect that with a “near-

0-margin” strategy for user-based relocation, the customers are involved to select the best alternative 

to balance the system.  

A danger could be the possibility that users do not accept any variable tariff: this causes not only 

unbalancing, but also a reduction of the margin. As clarified later, this danger seems to be avoided 

according to model’s results.  

As mentioned in the next chapters, the day is divided into five time slots: two peaks and three off-

peaks, i.e. respectively parts of the day with high demand and parts of the day with few requests. 

During the off-peaks the system offers the classical standard tariff because there is a homogeneous 

distribution of the demand in the city. It is rare that the system can be unbalanced during off-peaks 

because there isn’t a tendency of customers, then a so-called flow’s semi-conservation constraint is 

always respected (in a node, all the entering rides are  almost equal to all the outgoing rides). During 

the peaks, the situation is opposite. There are particular patterns in users’ behaviour and needs: during 

the morning there is the so-called house-work wave and during the evening there is the opposite flow 

(work-house).  

In our first analysis, we haven’t considered other peaks such as lunch or dinner because they aren’t 

as relevant and distinct as the first cited ones. 

The expectation is that during peak hours, there is a higher price to discourage the demand, but during 

our peaks the systems offers different alternatives to user:  

• for users who cause imbalance, from attractive to less attractive zones, the alternatives are the 

desired trip at a higher price or closer destinations at lower prices;  

• for users who cause spontaneous balancing, the alternatives are the lowest prices;  

• for users who do not change the system equilibriumxxxii, the tariff is standard.  

As explained later, the presence of four discounts and four increments thresholds depend on the 

configuration of the demand during the day. During peaks, different trips are distinguished, from a 

Car-sharing operator point of view with different levels of attractiveness or not attractiveness. 

The idea is that the higher the unbalancing caused from the user, higher the price offered to him. 

After this digression the choice of only 25 zones can be justified. Observing the colored partition of 

the city, corresponding to a thermographic analysis, which takes a bearing of the demand rate during 

a day, it can be noticed that there is a symmetric distribution of the demand, that can be reduced to 

this “incorporated” nodes.  

                                                
xxxi It is a coherent average value. 
xxxii Because they go from attractive zones to attractive zones or from non-attractive zones to non-attractive zones.  
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Consequently, according to Urban Area Value definition where demand rate depends on frequency 

of travels and stop time of cars, the 636 areas have been aggregated in 25 cells, assigning to each cell 

a UAV representing the average of the aggregated cells.  

To better understand, in the picture below describes the “transformation”.  

As a first step a grid of 25 squared cells with a side wideness of 1 kilometre has been defined and has 

been superimposed on the thermographic map defining the UAV using data from all 3 Car-sharing 

operators. 

 

 

Figure 28 – Grip superimposed to the thermographic map 

Than a color had been assigned to each squared area, based on the average UAV of the original map. 

The following grid represents the reduced graph.  

 

Figure 29 – reduced graph 

This mode of detection of service areas is very faithful to reality, precisely because it is obtained by 

aggregating the original cells, reflecting, with the due, obvious, approximation, the distribution of the 

real cells, according to their value. 
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In fact, the red zones are in the central part of the city and they are separated from different medium 

nodes. In the peripheric area there are the blue and light blue spots and the medium cells are scattered 

among red and blue cells. In other words, there is a concentration of all the city’s areas in 25 cells. 

This means that the total demand level is the same of the real situation, but in each merged zone the 

requests’ frequency is higher, namely there are more rides.  

Note that this characteristic doesn’t affect the computation. To confirm this last sentence, we have 

built a model which reflects the real current condition, concentrating the analysis in these 25 reduced 

areas and the results show a strict correspondence between the two patterns’ solutions.  

This ideal model also assumes that travellers don’t pick up and leave cars at specified locations (like 

in free floating system) but in a restricted subarea, which is simply called area or zone or cell or node. 

This notation can cause confusion: what happens if a user asks for a ride from a station to the same 

one? In this case, it is assumed that he needs a car for a short trip inside the same area or, if you prefer, 

that he moves towards another station internal to the subarea. So, it is accepted a ride from a station 

to the same one because there isn’t the constraint that in each area there is only one station.  

Furthermore, a coherent and realistic percentage of cells’ groups can be respected with 25 nodes:  

• 11 dark blue spots for a percentage of 44%: this means that about half graph is composed from 

dark blue areas; 

• 5 light blue spots for a percentage of 20%, 

• 4 yellow spots for a percentage of 16%,  

• 3 orange spots for a percentage of 12%, 

• 2 red spots for a percentage of 8%.  

This distribution also highlights that about 2/3 of the spots (64%) are below the average UAV.  

 

Figure 30 - Pie Chart of the nodes distribution 

An important assumption is that all the areas have the same geometric form: every cell is a square 

with side of 1 km. This means that each node occupies 1 km2 of space and the squares’ diagonal 

measures (for Pythagorean theorem) √2 km, that is approximately 1,4 km.  

# Spots % Spots

Dark Blue 11 44%

Light Blue 5 20%

Yellow 4 16%

Orange 3 12%

Red 2 8%

Total 25 100%

11; 44%

5; 20%

4; 16%

3; 12%

2; 8%

Dark Blue

Light Blue

Yellow

Orange

Red
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Considering that the total surface of Rome is approximately 1.300 km2, the previous shrinking’s 

concept is confirmed: there is a scale reduction of 1:5  

A hypothesis of the model is that the distance from an origin h to a destination k is equal to the 

diagonal multiplied by the number of crossed zones between h and k. Mathematically speaking: dAB 

= √2 x nAB, where d is the distance, square of 2 is the diagonal and n is the number of zones between 

A and B. The choice of the diagonal as distance is made to adapt model to real case. For example, the 

maximum distance between the furthest cells (see the graph, Spot1 and Spot6) is: √2 x 5 ≅ 7,1 km. 

If origin and destination are the same station, the number of crossed zone is set to 1, then the distance 

is equal to √2 ≅ 1,4 km.  

Thinking the city of Rome as a simple geometrical figure, it can be approximated to a square of side 

36 km (≅ √1300), that is about equal to 7,1 x 5 km. Considering that car sharing companies have a 

more restricted area of service than the total surface and that Rome can’t be replaced with a 

geometrical figure, it legitimate to consider 36 km as the maximum distance. So, we establish that 

the multiplicative factor, that establishes a correspondence between real length and the model’s one, 

is the integer number 5.  

Another assumption is that users drive crossing the minimum number of cells. This is reasonable 

because customers tend to choose the fastest and shortest ride. Each time a user stops the car, turns 

off and gets out of it, a trip end. If the same user reuses the same car, the model considers a new ride.  

This is acceptable and coherent with car sharing principles: vehicle sharing is a public transport and 

it must guarantee the service to every member. In other words, there isn’t exclusivity.  

As a coin with two opposite sides, in this model a trip’s distance can be considered at the same time 

the worst and the best case: best case because it is assumed that user always choose the shortest route; 

the worst one because unit movement is fixed equal to the diagonal, that is the longest unit shift.  

 

Table 15 – representation fo a sample trip from h to k. 

Then, the pessimistic unit distance (√2) is compensated by the optimistic minimum number of 

passed nodes.  

Once identified and justified the spatial configuration of the problem, we can consider other 

characteristics. From a capacity’s point of view, the actual car sharing platform has a homogeneous 

fleet of 1248 vehicles, which must serve a lot of rides. 
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The total capacity of the system is sum of all the cars. This total capacity is distributed on the origin 

nodes in a certain manner (initially there is an equal distribution among the five colored zones, but 

other different options have been considered for a comparison). Each station has a finite number of 

cars and there isn’t the problem of parking’s lack.  

From a schedule’s point of view, the thesis is focused on a single day. The day is divided into 5 

different time-slots or hourly ranges: two peaks and three off-peaks. As defined before, a peak is the 

part of the day with a high demand rate, while an off-peak refers to a “semi-static” condition of the 

day with a low level of requests.  

 

Table 16 – hourly-ranges for 5 time-slots 

Note that durations of the slots are different: the first peak’s length (3 hours) equals the second peak’s 

one, but the first off-peak (7 hours) and the second one differs from the third one (4 hours).  

Although the initial goal was to maintain a model’s symmetry in terms of data’s representation, 

observing and analysing real data, this temporal distribution is coherent with current information. If 

the durations are different, there is constancy in the distribution of users willing to pay.  

This means that there isn’t a mathematical proportion between demand and slot’s duration, but during 

these slots some percentages of demand are respected (during peak one the demand is similar but not 

the same one of peak two, and so on). This explains the selection of 5 slots.  

We assume that all rides, which start in an hourly range, terminate in the same one or, if you prefer, 

that a ride, which crosses two adjacent slots, is split in two different trips, each for every temporal 

range. In other words, we don’t consider the possibility that a trip finishes in the following time slot. 

This confirm the complexity of modelling a real car sharing system. Although the dimension of 

temporal slots is excessively big, in this way we can avoid or decrease overlaps of cars. In an “old” 

version of the model there is an estimation of capacities taking into account cars in transit from a slot 

and the following one (trans-capacity).  

Another important hypothesis is that all cars can do only a trip for time slot. To make the analysis 

coherent with real case, the number of cars is quintupled. The choice of a 5-factor derives from the 

fact that in a real context, each car are expected to make about 5 runs during the day. Multiplying the 

capacity for 5, is not intended to say that there are 1248 x 5 = 6240 cars, but that each car makes 5 

runs, one per time-slot. Summarizing, for the model it’s like there are 6240 cars, but practically 

speaking there are 1248 cars that can make 5 trips each: this is an optimization problem and not a 

simulation that focuses on each single movement of all cars. 

Considering driving speed, we confirm the separation between peak periods and off-peak periods:  

• during peaks, the average speed is 10 km/h;  

• during off-peaks, the average speed is doubled to 20 km/h.  

Name of time slot Time range Day-time

1st Off-Peak 00:00-06:59 night

1st Peak 07:00-09:59 early morning

2nd Off-Peak 10:00-16:59 late morning - early afternoon

2nd Peak 17:00-19:59 evening

3rd Off-Peak 20:00-23:50 night
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This separation can justify also the presence of traffic congestion: during demand’s peak there is a 

high number of cars that involve congestion and the driving speed is lower; vice versa, during 

demand’s off-peak the lesser number of vehicles is linked to higher  driving speed. The speeds’ choice 

isn’t random: they are average values deriving from a characterization of real data85, 86.  

From a simple physical formula, we deduce the average driving time or rent time to go from a station 

h to a station k in the o hourly-range:  

𝑅𝑒𝑛𝑡𝑇𝑖𝑚𝑒ℎ𝑘
𝑜 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ℎ𝑘 ∗ 𝑆𝑝𝑒𝑒𝑑𝑜 

Then, the rent time is a parameter depending on distance, speed and hourly-range and it’s measured 

in hours (hrs) because Km/Km/hrs = hrs. To obtain the measure in minutes, RentTime is multiplied 

by 60 because 1 h = 60 min. Remember that unit price and cost depend on minutes of driving time.  

According to Revenue Management’s notions, car sharing is a system that can be divided in different 

markets. Each market corresponds to a trip from an origin A to a destination B for a total of 25 x 25 

= 625 markets and it has different rent time, tariff, demand and, above all, different alternatives.  

As mentioned before, in the peak periods, when there is a high probability of unbalancing on cars’ 

distribution, and in zones with many requests, the system raises the price of that desired trip and 

proposes to the user some alternatives to stimulate user-based relocation and to balance the system: 

an alternative is a closer less attractive station with a lower value of tariff.  

When a user access to protocol reservation e.g. from a smartphone application, the system provides 

alternatives and user can choose to accept or to reject a ride. This doesn’t mean that the system 

imposes to choose another trip, but simply that it directs user to select the alternative, which is useful 

to the system.  

The expectation is that the attractiveness of user for the alternatives increases when the tariff 

decreases, and he is discouraged by a higher price.  

All the markets and relative alternatives have a different attractivity, that in the model is called also 

willingness to pay or willingness to accept; it is a real number between 0 and 1 depending on tariff, 

market, alternative trips and alternate urban transport, quality of the service and specific hourly range.  

It represents the attractiveness of a trip or the probability that a user is willing to pay or to accept the 

ride.  

For a better explanation, we consider two ideal opposite situations as examples:  

1. in case there aren’t other public or private means of transport, the user hasn’t a private car and 

he must arrive to destination, that is far, the tariff is low, there isn’t traffic congestion, namely 

when all conditions are favourable to accept, we can assume that probability to pay a ride is 

equal to 1; 

2. in case there are public or private efficient transport, or the user has a private car, there isn’t 

traffic or there is the possibility to walk, the tariff is high, namely when all conditions are 

unfavourable to accept, then probability to pay is equal to 0.  

Obviously, these situations never happen, but they can be considered as two ideal borders: the optimal 

condition and the worst condition. All the middle ways between these two ideal cases provide a 

probability to accept between 0 and 1.  
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From the demand’s point of view, initially we can say that the daily sold trips are around 6.240. 

Contrary to some researchers87, the general assumption is that 6.240, namely the sold trips, doesn’t 

represent the effective users’ demand during a day. In other words, the historical data can partially 

represent demand, in fact there is a part of demand that is obscured.  

Users who want to go from A to B comprehend not only the members, but all the travellers between 

the two spots. It is important to consider the possibility of a service’s expansion and to face the 

consequent demand’s increment and a possible fleet’s increase. So, we can say that it is known only 

the number of sold trips, that is simply a part of the total possible demand: there are some traveller 

that actually prefer different kind of transport because of tariffs convenience or traffic congestion.  

To keep this aspect into account, it has been estimated that demand is equal to 1,6 x sold trips, which 

means that all the sold rides are 60% of the total demand. We know that this percentage can be an 

overestimation, but it is a computational choice to simplify the analysis and it is coherent with 

successive choices.  

Once defined demand and attractiveness, according to a study of Grani et al.[30], we define two 

parameters: not-demand and not-willingness. As explained later in the model and in the solutions, 

these two terms are important to allow users to accept or reject a ride.  

Not-demand includes not only travellers who choose other means of transport, but also all the users 

who refuse a ride and its alternatives. Not-willingness refers to the lack of attractiveness of a ride and, 

compared with the willingness, it defines the number of people that accept, and decline offers.  

So, we distinguish the sold trips from the refused or unsold rides.  

Providing the alternatives, the system offers to users the following tariff scheme 

 

Price Matrix R O Y LB DB 

R 0.25 0.27 0.30 0.33 0.35 

O 0.23 0.25 0.27 0.30 0.33 

Y 0.20 0.23 0.25 0.27 0.30 

LB 0.18 0.20 0.23 0.25 0.27 

DB 0.15 0.18 0.20 0.23 0.25 

Table 17 – Price Matrix
 

The lowest tariff is equal to the fixed unit cost per minute. This allows to balance system without 

staff’s costs, satisfying the customers, but obtaining near-0-profit (with the lowest tariff the margin 

slightly negative but very close to 0).  

7.4.2. Time dependent discounts 

The following results are developed on the hypothesis that discounts are time dependent, so that 

different discounts can be applied to the same origin-to-destination movement if performed in a 

different time-slot where origin and/or destination Urban Area Value changes during the day. 

Trip offering lets define Ch the demand capacity in the Origin Urban Area h, and Ck the offer capacity 

in the Destination Urban Area  
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𝑚𝑎𝑥 ∑ ∑ ∑ 𝑡ℎ𝑘
𝑜𝑗

𝑥ℎ𝑘
𝑜𝑗

ℎ𝑘𝑜𝑗

− ∑ 𝐶ℎ𝑘
𝑅 𝑦ℎ𝑘

𝑜𝑗

ℎ𝑘

 

defining: 

- o the hourly range  

- j the applicable tariff 

- 𝑡ℎ𝑘
𝑜𝑗

 as the jth tariff applied to the trip Oh → Dk at time o 

- 𝑥ℎ𝑘
𝑜𝑗

 the number of trips that can sold per origin/destination Oh → Dk at the jth tariff during the 

timeslot o 

- 𝑦ℎ𝑘 the number of relocation trips per origin/destination Oh → Dk  

The following formula should also include demand, flow and offer constraints. 

 

𝑥ℎ𝑘
𝑜𝑗

 ∈ 𝑍 

 

Figure below, shows an example of movement flow dynamics considering user movements x and 

staff movements y. 

 

Figure 31 - movement flow dynamic at k-node with user and staff movements 

Hourly tariffs can be calculated as discounted tariffs starting from a base standard tariff 𝑡𝑠𝑡𝑑 with the 

following formula. 

 

𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝑇𝑎𝑟𝑖𝑓𝑓ℎ𝑘
𝑜 = (1 − (𝑈𝐴𝑉ℎ

𝑜 − 𝑈𝐴𝑉𝑘
𝑜)) ∗  𝑡𝑠𝑡𝑑 =  (1 − 𝐾ℎ,𝑘

𝑜 ) ∗  𝑡𝑠𝑡𝑑 
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7.4.3. Applied relocation model  

The goal of the analysis is to maximize profit, considering the possibility of a partial user-based 

relocation. According to the price and the quality of service (distance from desired destination, traffic 

congestion, rent time), user can choose the preferred ride.  

There will be travellers who accept high tariff for a more comfortable service, travellers willing to 

pay low tariff and to go to destination by walk, and travellers who prefer other means of public 

transport such as bus and/or underground. The system provides a solution and let users decide.  

At the end of the day, if there is the imbalance, the staff can shift cars’ position to re-establish a 

correct distribution. The system provides only two operations: renting and relocating, ignoring 

refuelling and other activities generally performed by Car-sharing system staff that are are marginal 

to the results.  

The system can be considered a hybrid model between user-based and operator-based relocation, in 

which operators’ activities remain a necessity because of the demand’s stochasticity. The last 

statement means that the current service is characterized from randomicity and not that the model is 

stochastic, in fact we assume to know demand, requests’ rate, tariffs and other model’s parameters.  

The future expectation of the car sharing companies is that operator-based relocation can be 

completely substituted by user-based relocation setting to zero the relocation costs and creating a self-

regulating system. It is important to underline that this shouldn’t cause, with actual car-sharing 

systems, a strong impact on job loss for staff members because they will still be required for cleaning, 

maintenance and other tasks such as customer service.   
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8. The Optimization Model 

The optimization model is the core of the dynamic pricing application in this research thesis; it is 

defined by the mathematical model and has been applied with the implemented model using AMPL; 

both models are described in the detail the paragraph below.  

The mathematical model has been developed integrating spatial and time dynamics of the analysed 

car-sharing eco-system. In fact, the origin (h) and destination (k) have been defined in a spatial grid 

and cells have been obtained by aggregating a more atomic view of the detailed spatial analysis 

developed to define attractiveness of zones using Urban Area Value. 

On the other hand, also a time-grid of five time-slots has been defined to differentiate mobility 

behaviours during the operating day. 

Finally, user behaviour mainly focused on the willingness to pay typical of a Costumer Choice Models 

described in the Revenue Management chapter. In defining the willingness to accept of both 

discounted rates for desired destination or for close alternatives to planned destination have been of 

inspiration the work on the General Attraction Model proposed in literature as Sales-Based Model 

(SBM) and of Gallego et al.44 and Grani et al48. 

This approach has been already experimented in a simpler way in the MSc graduation thesis of Eng. 

Graziano Ciucciarelli “Applying Mathematical Programming Approaches to User-Relocation in a 

Station-based Car Sharing System with variable Tariffs”88 in which the Author of this thesis has 

contributed as Co-tutor. 

8.1. The Mathematical Model  

In this paragraph is described the mathematical model used for the optimization of profit by applying 

a user-relocation strategy. 

8.1.1. Sets and indices:  

• c ∈ Cell: set of all the cells and relative indices;  

• o ∈ HourlyRange: set of time slots and relative indices; it is a set of 5 hourly ranges HourlyRange 

≔ {1, 2, 3, 4, 5};  

• m ∈ Market: set of markets and relative indices; Market is the Cartesian product between Cell 

sets (Market = Cell x Cell); it is the set of all the pairs a and b, where a ∈ Cell and b ∈ Cell; 

• h ∈ Origin ⊆ Cell: set of origins and relative indices; it is the set of all the origin points, that can 

be seen as a subset of Cell (in this case we assume that they are coincident because all the cells 

are both origins and destinations); considering the Market set as a two-column set, one for Origin 

and another one for Destination, the Origin set can be extracted from the first column;  

• k ∈ Destination ⊆ Cell: set of destinations and relative indices;  

• db ∈ DB ⊆ Cell: auxiliaryxxxiii set of cells and relative indices representing all the zone less 

attractive areas (dark blue nodes); it is a subset of Cell;  

                                                
xxxiii This sets have been used to validate the model or to control computation behavior or during starting test models. 
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• lb ∈ LB ⊆ Cell: auxiliary set of cells and relative indices representing all the medium-low or light 

blue areas; it is a subset of Cell;  

• y ∈ Y ⊆ Cell: auxiliary set of cells and relative indices representing all the medium or yellow 

areas; it is a subset of Cell; 

• o ∈ O ⊆ Cell: auxiliary set of cells and relative indices representing all the medium-high or light 

blue areas; it is a subset of Cell;  

• r ∈ R ⊆ Cell: auxiliary set of cells and relative indices representing the areas with higher demand rate 

(red nodes); it is a subset of Cell.  

 

8.1.2. Model Parameters:  

The following parameters must be defined for the mathematical model: 

• 𝑛𝑜𝑑𝑒𝑠ℎ𝑘: determines the distance between nodes; 

• 𝑐𝑙𝑜𝑠𝑒ℎ𝑘: determines neighbour nodes including the node itself 

• 𝑐𝑙𝑜𝑠𝑒𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙ℎ𝑘
𝑜 : determines neighbour nodes with higher potential; it is managed using a matrix 

with cell value of {0,1} where value 1 identifies the neighbour nodes with higher potential. 

• 𝑎𝑙𝑡𝑒𝑟ℎ𝑘
0 : determines the neighbour nodes to destination with potential to be proposed as alternatives, 

and it is represented by the transpose of closepotential 

• 𝑑𝑒𝑚𝑎𝑛𝑑ℎ𝑘
𝑜  (or 𝑑𝑒𝑚𝑎𝑛𝑑𝑚

𝑜 ): estimated demand from origin h to destination k, or demand in market 

m, during the hourly range o; it is an integer value, greater than or equal to 0;  

• 𝑛𝑜𝑡𝐷𝑒𝑚𝑎𝑛𝑑ℎ𝑘
𝑜  (or 𝑛𝑜𝑡𝐷𝑒𝑚𝑎𝑛𝑑𝑚

𝑜 ): not-demand from origin h to destination k, or not-demand in 

market m, during the hourly range o; it is an integer value, greater than or equal to 0; it is an estimation 

of all the unsatisfied requests, or in other words an estimation of the number of drivers who doesn’t 

take a ride; 

• 𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑄ℎ𝑘
𝑜

 (or 𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑄𝑚
𝑜 ): attractiveness or probability to accept/pay a run; it depends 

on origin h and destination k, or market m, slot time o; it is a real value between 0 and 1;  

• 𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝐴ℎ𝑘
𝑜𝑎

 (or 𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝐴𝑚
𝑜𝑎): probability to accept an alternative destination; it depends 

on origin h and destination k, or market m, slot time o and alternative a; it is a real value between 0 

and 1;  

• 𝑛𝑜𝑡𝑊𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠ℎ𝑘
𝑜  (or 𝑛𝑜𝑡𝑊𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑚

𝑜 ): unattractiveness of destination or probability to reject 

the trip and its alternatives; it depends on origin h and destination k, or market m, and slot time o; it is 

a real value between 0 and 1;  

• 𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝑇𝑎𝑟𝑖𝑓𝑓ℎ𝑘
𝑜   (or 𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝑇𝑎𝑟𝑖𝑓𝑓𝑚

𝑜): it is the tariff’s value associated to a run hk during an 

hourly range o; it is a real value greater than 0; it is measured in €/min (euro per minute);  

• 𝑠𝑝𝑒𝑒𝑑: is the average speed of vehicle depending on the Hourly Range; speed has a value of 20 km/hr 

during off-peaks and a value of 10 km/hr during peaks 

• 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒: the unitary distance between two cells; distance is measured as the diagonal of the cells 

and has a value of sqrt(2), considering the cell width of 1 km. 
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• 𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒ℎ𝑘
𝑜

 (or 𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒𝑚
𝑜 ): it is the driving time to go from origin h to destination k during the 

time slot o; it depends on the level of traffic congestion and it is calculated as the ratio between 

distance and driving speed; it is a real number, greater than 0 and it is measured in minutes because 

the tariff depends on minute; 

• 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠: indicates the number of vehicles composing the fleet;  

• 𝑢𝑛𝑖𝑡𝐶𝑜𝑠𝑡: fixed unit cost (in the experiments 0,17 €/min); it includes fixed costs (purchase, 

insurance, taxes, reserved parking, cleaning) and costs depending on time (depreciation, reparation, 

maintenance, fuel);  

• 𝑐ℎ
1: starting (i.e. at the beginning of temporal slot number 1) capacity of node or origin h; it is an 

integer value greater than or equal to 0; considering all the cells, it represents the starting distribution 

of the model.  

8.1.3. Decision variables:  

• 𝑞ℎ𝑘
𝑜  (or 𝑞𝑚

𝑜 ) ∈ ℕ: number of sold or accepted trips from origin h to destination k during hourly 

range o; it is an integer value; 

• 𝑎ℎ𝑘
𝑜𝑎 (or 𝑎𝑚

𝑜𝑎) ∈ ℕ: number of sold or accepted trips, for alternative a, from origin h to destination 

k during hourly range; it is an integer value;   

• 𝑛𝑜𝑡𝑄ℎ𝑘
𝑜  (or 𝑛𝑜𝑡𝑄𝑚

𝑜 ) ∈ ℕ: total quantity of lost rides from origin h to destination k during slot o, 

because of rejection by users or lack of demand and capacity (in case there is capacity, but there 

isn’t enough demand and vice versa);  

• 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦ℎ
𝑜  ∈ ℕ: capacity of node h at the beginning of time slot o.  

 

8.1.4. Objective function:  

The objective function is the maximization of profit:  

 

𝑃𝑟𝑜𝑓𝑖𝑡 =  ∑ ∑ ∑{[𝑞ℎ𝑘
𝑜 ∙  𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒ℎ𝑘

𝑜 ∙ (𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝑇𝑎𝑟𝑖𝑓𝑓ℎ𝑘
𝑜 − 𝑈𝑛𝑖𝑡𝐶𝑜𝑠𝑡)]

𝑜∈H𝑘∈Dℎ∈0

+ ∑[𝑎ℎ𝑘
𝑜𝑎 ∙ 𝑎𝑙𝑡𝑒𝑟ℎ𝑎

𝑜 ∙ 𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒ℎ𝑎
𝑜 ∙ (𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝑇𝑎𝑟𝑖𝑓𝑓ℎ𝑎

𝑜 − 𝑈𝑛𝑖𝑡𝐶𝑜𝑠𝑡)]

𝑎∈D

} 

 

Abbreviations:  

- O is the set of Origins,  

- D is the set of Destinations,  

- H is the set of Hourly Ranges,  

- qℎ𝑘
𝑜  for quantity of sold trip from origin h to destination k, 

- aℎ𝑘
𝑜𝑎for alternative of sold trip from origin h to destination a.  
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The objective function is a linear function.  

8.1.5. Constraints:  

• Availability:  

 

 

(∑ qℎ𝑘
𝑜 + ∑ 𝑎ℎ𝑘

𝑜𝑎 ∙ 𝑎𝑙𝑡𝑒𝑟ℎ𝑎
𝑜

𝑎∈D𝑘∈𝐷

) ≤ capacityℎ
𝑜    ∀ h ∈ O, o ∈ H 

  

For each origin h and time slot o, the sold trips from h to every destination k and its alternatives must 

be lower than or equal to the capacity in the origin during the slot time o. It is an availability constraint 

or a capacity constraint (it is a linear inequality) meaning that the system cannot sell more trips than 

the number of cars in the origin area (not exceeding capacity). 

  

• Total Market Demand:  

 

 

qℎ𝑘
𝑜 + ∑ 𝑎ℎ𝑘

𝑜𝑎 ∙ 𝑎𝑙𝑡𝑒𝑟ℎ𝑎
𝑜

𝑎∈D

+ notQℎ𝑘
𝑜 = demandℎ𝑘

𝑜     ∀ h ∈ O, k ∈ D, o ∈ H 

 

It is a total market demand constraint and it is a linear equality constraint. For each market m (from 

origin h to destination k) and time slot o, the sum of sold trips from h to every destination and 

alternative and lost quantity is equal to the demand for that market and during that time slot. This 

means that demand is formed from sold quantities and lost quantities or that not-quantity is equal to 

the difference between demand and sold quantities. 

  

• Lower Bound:  

 

notQℎ𝑘
𝑜 ≥ notDemandℎ𝑘

𝑜 ∀ h ∈ O, k ∈ D, o ∈ H 
 
It is the lower bound (linear inequality) of not-quantity that considers demand recapture by not-

demand. This means that not-demand is always available for sale and there is the possibility to 

recapture refused trips. To better understand, we can consider notDemand as a pessimistic value of 

lost trips which indicates a minimum number of rides that will be not sold (it is estimated from real 

data).  

Combining constraints of “Total Market Demand” and “Lower Bound”, we obtain:  

 

qℎ𝑘
𝑜 + ∑ 𝑎ℎ𝑘

𝑜𝑎 ∙ 𝑎𝑙𝑡𝑒𝑟ℎ𝑎
𝑜

𝑎∈D

+ notQℎ𝑘
𝑜 = demandℎ𝑘

𝑜  
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notQℎ𝑘
𝑜 ≥ notDemandℎ𝑘

𝑜  

then 

notQℎ𝑘
𝑜 =  demandℎ𝑘

𝑜 − (qℎ𝑘
𝑜 + ∑ 𝑎ℎ𝑘

𝑜𝑎 ∙ 𝑎𝑙𝑡𝑒𝑟ℎ𝑎
𝑜

𝑎∈D

)  ≥ notDemandℎ𝑘
𝑜  

 

 

demandℎ𝑘
𝑜 − notDemandℎ𝑘

𝑜 ≥ (qℎ𝑘
𝑜 + ∑ 𝑎ℎ𝑘

𝑜𝑎 ∙ 𝑎𝑙𝑡𝑒𝑟ℎ𝑎
𝑜

𝑎∈D

) ≥ 0 

consequently   

 

demandℎ𝑘
𝑜 − notDemandℎ𝑘

𝑜 ≥ 0 
then,  

demandℎ𝑘
𝑜 ≥ notDemandℎ𝑘

𝑜  

and the sum of q and alternatives must be lower than or equal to the difference between demand and 

not-demand, that includes the number of users willing to accept that run. If the capacity of the node 

is 0, there could be people willing to pay who aren’t satisfied by the system and this is a missed 

opportunity to make profit. 

 

• WillingnessQ:  

 

notWillingnessℎ𝑘
𝑜 ∙ qℎ𝑘

𝑜 − notQℎ𝑘
𝑜 ∙ willingnessQℎ𝑘

𝑜 ≤ 0        ∀ ℎ ∈ 𝑂, 𝑘 ∈ 𝐷, 𝑜 ∈ 𝐻 
 

 

This is an acceptation or willingness constraint (linear inequality). Remember that user can choose 

to accept or reject a proposal of the system.  

We can simply see that:  

 

qℎ𝑘
𝑜  ≤

willingnessQℎ𝑘
𝑜

notWillingnessℎ𝑘
𝑜 ⋅ notQℎ𝑘

𝑜 ≤  
willingnessQℎ𝑘

𝑜

notWillingnessℎ𝑘
𝑜 ⋅ demandℎ𝑘

𝑜  

 

the meaning of the acceptation constraint is easily understood: if the probability to accept is greater 

than the probability to reject a ride, the sold quantity is lower than or equals to a value, greater than 

unsold trips (in fact, the ratio between willingness and notWillingness is greater than one); in the 

opposite situation, the sold quantity is lower than or equal to a number lower than unsold rides.  

In fact, the constraint states that in case of available capacity, if the probability to accept is high then 

the sold quantity can be high. 

• WillingnessA:  

 

notWillingnessℎ𝑎
𝑜 ∙ 𝑎ℎ𝑘

𝑜𝑎 ∙ 𝑎𝑙𝑡𝑒𝑟ℎ𝑎
𝑜 − notQℎ𝑎

𝑜 ∙ willingnessAℎ𝑘
𝑜𝑎 ≤ 0   ∀ ℎ ∈ 𝑂, 𝑘 ∈ 𝐷, 𝑜 ∈ 𝐻, 𝑎 ∈ 𝐷 

 

 

This is an acceptation or willingness constraint (linear inequality). Remember that user can choose 

to accept or reject a proposal of the system.  
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We can simply see that:  

 

𝑎ℎ𝑘
𝑜𝑎 ∙ 𝑎𝑙𝑡𝑒𝑟ℎ𝑎

𝑜 ≤
willingnessAℎ𝑘

𝑜𝑎

notWillingnessℎ𝑎
𝑜 ⋅ notQℎ𝑎

𝑜 ≤  
willingnessAℎ𝑘

𝑜𝑎

notWillingnessℎ𝑎
𝑜 ⋅ demandℎ𝑘

𝑜  

 

  

• Capacity Update:  
 
 

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦ℎ
𝑜+1

5
=

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦ℎ
𝑜

5
− ∑(qℎ𝑘

𝑜 + ∑ 𝑎ℎ𝑘
𝑜𝑎 ∙ 𝑎𝑙𝑡𝑒𝑟ℎ𝑎

𝑜

𝑎∈D

)
k∈D

+ ∑(q𝑘ℎ
𝑜 + ∑ 𝑎𝑘𝑎

𝑜ℎ ∙ 𝑎𝑙𝑡𝑒𝑟𝑎ℎ
𝑜

𝑎∈D

)
k∈O

 ∀ ℎ ∈ O, o

∈ H: o ≤ 4 

 
Where by 𝑎 ∈ A(j, o): 𝑎 = ℎ we denote that vehicle destination is h, and not every other alternative.  

This constraint represents a kind of flow conservation constraint. Considering a slot time, the capacity 

of the successive slot is equal to the current capacity minus every exiting run plus every entering car. 

This constraint allows to evaluate the distribution of cars at the end of a period as well as the 

distribution of cars at the beginning of the successive period. For example, capacity at the beginning 

of the second temporal slot is equal to the capacity at the end of the first range.  

In sustainable Car-sharing systems, as already mentioned, it is estimated that a vehicle performs 

between 4 and 5 trips per day, approximately 1 for each HourlyRange; consequently in the model it 

is assumed that the number of cars is quintuplicated because it is complex to model a single car’s 

state to reply real-time users’ behaviour in large hourly ranges and we are obliged to renounce some 

details, preferring a simple characterization.  

Then, multiplying by 5 we want to underline that each car can make 5 runs during an operational day. 

This is the cause of the division by 5 in the Capacity constraint.  

In the end, observe that the hourly range must be lower than or equal to 4 because the HourlyRange 

set is made of 5 elements, then the capacity of a sixth periodxxxiv doesn’t exist and the model would 

suggest the presence of an error.  

To overcome this drawback, the following constraint is introduced:  

• Upper Bound:  

 

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦ℎ
5

5
− ∑(qℎ𝑘

5 + ∑ 𝑎ℎ𝑘
5𝑎 ∙ 𝑎𝑙𝑡𝑒𝑟ℎ𝑎

5

𝑎∈D

)
k∈D

+ ∑(q𝑘ℎ
5 + ∑ 𝑎𝑘𝑎

5ℎ ∙ 𝑎𝑙𝑡𝑒𝑟𝑎ℎ
5

𝑎∈D

)
k∈O

≥ 0 ∀ ℎ ∈ O 

 

 

This upper bound constraint requires that the capacity of each node at the end of the fifth period is 

greater than or equal to 0.  

 

                                                
xxxiv The analysis is focused on an operational day, considering it independent from previous days and following ones. 

The model is like a frame of a long film, which can be an operational week, month or year.  
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• Non-negativity:  

 

1. 𝑞ℎ,𝑘
𝑜 ≥ 0 ∀ ℎ ∈ 𝑂, 𝑘 ∈ D, 𝑜 ∈ H  

2. 𝑛𝑜𝑡𝑄ℎ,𝑘
𝑜 ≥ 0 ∀ ℎ ∈ O, 𝑘 ∈ D, 𝑜 ∈ H 

3. 𝑞ℎ
𝑜 ≥ 0 ∀ ℎ ∈ O, 𝑜 ∈ H 

4. 𝑎ℎ,𝑘
𝑜,𝑎 ≥ 0 ∀ h ∈ O, k ∈ D, o ∈ H, a ∈ D 

 

The non-negativity constraint shows that all the variables are greater than or equal to 0.  

• Vehicles’ Number:  

 

∑ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦ℎ
𝑜

h ∈ O

= 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠   ∀ 𝑜 ∈ H 

 

It is an auxiliary constraint to control that the sum of capacities is equal to the number of vehicles.  

• Probability:  

 

 

𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑄ℎ𝑘
𝑜 + 𝑛𝑜𝑡𝑊𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠ℎ𝑘

𝑜 = 1   ∀ ℎ ∈ O, 𝑘 ∈ 𝐷 
 

𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝐴ℎ𝑘
𝑜𝑎 + 𝑛𝑜𝑡𝑊𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠ℎ𝑎

𝑜 = 1   ∀ ℎ ∈ O, 𝑘 ∈ 𝐷, 𝑎 ∈ 𝐷 
 

It is an auxiliary constraint to assert that willingness and not-willingness are probabilities.  

The model is a variation of a transport model: there are origins and destinations, customers and sold 

goods, unit costs and prices, the objective to maximize revenue and to satisfy customers, but there 

isn’t the constraint that availability must be equal to requests. This model represents an integer linear 

programming problem because of the linear nature of functions (objective and constraints) and the 

integer nature of variables.  

In the model there are some simplifications, that are expressed in the following assumptions or 

hypothesis:  

• it is focused on a single day;  

• an operating day is divided in 5 time-slots and each user completes trip before the end of the 

range;  

• there are relocations not during the day, but at the end of it;  

• the relocations are instantaneous;  

• each car can make 5 runs per day;  

• the initial distribution and the location of the zones is known a priori;  

• the desired final distribution is chosen a priori;  

• number of stations, cars, value of cost, price, demand and rent time are known;  

• user can take and leave cars only in the cells;  

• all cells are linked;  
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• all the areas have the same geometrical shape and dimension;  

• users always prefer the shortest route;  

• all the rides are completed in a specific hourly range;  

• infinite availability of parking spots;  

• the utilityxxxv of user depends from distance, tariff, alternative urban transport, alternatives 

proposed by system, operating day, time slot; 

• other concepts already expressed above.    

8.2. Implemented Model  

8.2.1. AMPL Modelling and Optimization tool 

This chapter describes in detail the optimization model implemented using the AMPL software, IDE 

Version: 3.1.0.201510231950. 

 

Figure 32 – AMPL Home Page 

AMPL89 is a sophisticated and user-friendly modelling tool that by using high-level representation 

promotes rapid development and reliable results, supporting end-to-end the optimization lifecycle:  

• development,  

• testing,  

• deployment,  

• maintenance. 

AMPL allows to write model in parametric form using the same concepts and syntax for streamlined 

application-building, integrating: 

• a modelling language for describing optimization data, variables, objectives, and constraints, 

• a command language for browsing models and analysing results, 

                                                
xxxv It is difficult to find a link between utility and all these influencing factors 
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• a scripting language for gathering and manipulating data and for implementing iterative 

optimization schemes, 

separating declaration (model file), assignment (data file) and resolution (run file). 

8.2.2. The Model file  

The model file, which has the extension .mod, loads the model. From AMPL’s console the model can 

be loaded with the instruction: model file.mod.  

In this paragraph the structure and the content of the model file is described 

 

### Definitions ###  

set Cell;   

set HourlyRange; 

set Market:= Cell cross Cell; 

set Origin := setof{(h,k) in Market} h; 

set Destination := setof{(h,k) in Market} k; 

 

## Urban Area Value definition ## 

set DB within Origin;  #Dark Blue  → low potential 

set LB within Origin;  #Light Blue  → medium-low potential 

set Y within Origin;  #Yellow → medium potential 

set O within Origin;  #Orange  → medium-high potential 

set R within Origin;  #Red   → high potential 

 

### parameters’ definition ### 

param nodes{h in Origin, k in Destination} 

param close{h in Origin, k in Destination} 

param closepotential{h in Origin, k in Destination, o in HourlyRange} 

param alter{h in Origin, k in Destination,o in HourlyRange}  
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param willingnessQ{(h,k) in Market, o in HourlyRange}  

param willingnessA{h in Origin, k in Destination, a in Destination, o in HourlyRange} 

param demand{(h,k) in Market, o in HourlyRange} 

param notDemand{(h,k) in Market, o in HourlyRange} 

param notWillingness{(h,k) in Market, o in HourlyRange} 

param speed{o in HourlyRange} 

param distance = sqrt(2) 

param valueOfTariff{h in Origin, k in Destination, o in HourlyRange} 

param rentTime{(h,k) in Market, o in HourlyRange} 

param c{h in Origin}  

 

### decision variables’ definition ###  

var quantity{(h,k) in Market, o in HourlyRange} integer, >=0 

var alternative{h in Origin, k in Destination, a in Destination, o in HourlyRange} 

integer, >= 0 

var notQ{(h,k) in Market, o in HourlyRange} integer, >= 0 

var capacity{h in Origin, o in HourlyRange} integer, >= 0 

 

### objective function’s definition ###  

maximize profit: sum{h in Origin, k in Destination, o in HourlyRange} (quantity[h,k,o] 

+sum {a in Destination} 

(alternative[h,k,a,o]*alter[k,a,o])*5*rentTime[h,k,o]*(valueOfTariff[h,k,o]-0.17));  

 

### constraint’s definition ###  

subject to availability_constraint{h in Origin, o in HourlyRange}: sum{k in 

Destination} (quantity[h,k,o]+sum {a in Destination} 

(alternative[h,k,a,o]*alter[k,a,o])) <= capacity[h,o] 
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subject to totalDemand_constraint{h in Origin, k in Destination,o in HourlyRange}: 

quantity[h,k,o] + sum {a in Destination} (alternative[h,a,k,o]*alter[a,k,o]) + 

notQ[h,k,o]  = demand[h,k,o] 

subject to lb_constraint{h in Origin,k in Destination, o in HourlyRange}: notQ[h,k,o]>= 

notDemand[h,k,o]; 

subject to willingness_constraint{(h,k) in Market,o in HourlyRange}: 

notWillingness[h,k,o]*quantity[h,k,o]- willingnessQ[h,k,o]*notQ[h,k,o] <= 0 

subject to willingness_constraint_alt{(h,k) in Market, a in Destination, o in 

HourlyRange}: notWillingness[h,a,o]*(alternative[h,k,a,o]*alter[k,a,o]) - 

willingnessA[h,k,a,o]*notQ[h,a,o] <= 0 

subject to capacityUpdate_constraint{h in Origin, o in HourlyRange: o <= 4}: 

capacity[h,o+1]/5 = capacity[h,o]/5 -sum{k in Destination} (quantity[h,k,o]+sum {a in 

Destination} (alternative[h,a,k,o]*alter[a,k,o])) + sum{k in Origin} 

(quantity[k,h,o]+sum {a in Destination} (alternative[k,a,h,o]*alter[a,h,o])) 

subject to upper_bound{h in Origin}: capacity[h,5]/5 - sum{k in Destination} 

(quantity[h,k,5]+sum {a in Destination} (alternative[h,a,k,5]*alter[a,k,5])) +sum{k in 

Origin} (quantity[k,h,5]+sum {a in Destination} (alternative[k,a,h,5]*alter[a,h,5])) >= 

0 
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8.2.3. Data file  

The data file has the extension .dat and it groups all the data. To load the file from AMPL’s prompt 

the instruction is: data file.dat.  

set Cell:= DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 Y1 Y2 Y3 
Y4 O1 O2 O3 R1 R2; 
 

There are 25 cells of which 11 Dark Blue (DB1 – DB11), 5 Light Blue (LB1-LB5), 4 Yellow (Y1-

Y4), 3 Orange (O1-O3), 2 Red (R1, R2). 
 
set DB:= DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11; 
set LB:= LB1 LB2 LB3 LB4 LB5; 
set Y:=  Y1 Y2 Y3 Y4; 
set O:=  O1 O2 O3; 
set R:=  R1 R2; 

 

The HourlyRange is definedby 5 elements:  

- 1 for off-peak1,  

- 2 for peak1,  

- 3 for off-peak2,  

- 4 for peak2 

- 5 for off-peak3. 

 
set HourlyRange:= 1 2 3 4 5; 

 

Close Matrix 

This matrix determines neighbour nodes including the node itself. 

 

Table 18 – Close Matrix representation 

 

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 Y1 Y2 Y3 Y4 O1 O2 O3 R1 R2

DB1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

DB2 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

DB3 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0

DB4 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

DB5 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

DB6 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

DB7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

DB8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

DB9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

DB10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

DB11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

LB1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0

LB2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0

LB3 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0

LB4 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0

LB5 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

Y1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1

Y2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1

Y3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1

Y4 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1

O1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1

O2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1

O3 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Closepotential matrix 

These matrixes determine neighbour nodes with higher potential using cell value of {0,1} where value 

1 identifies the neighbour nodes with higher potential. 

In first, second and third hourly ranges, corresponding to first, second and third off-peaks, each 

destination hasn’t alternatives. This means that during off-peaks, the system provides user only the 

destination with standard tariff.  

To not make heavy and redundant the data representation, we omit the parameter closepotential for 

o equal to 3 and 5 that are analogous to the parameter for o equal to 1.  

 

Table 19 – Closepotential matrix for time-slots 1,3,5 
In the second time-slot, that corresponds to the first peak (morning), there is a general tendency to 

shift car from low zones to red ones. It is the so-called house-work trend, with a concentration of 

demand in the focus zones. In other words, there is the shift from suburbs to city’s centre. Coherently 

with the trend, the system proposes to user different alternatives for more requested zones.  

 

 Table 20– Closepotential matrix for time-slots 2 (first peak) 

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 Y1 Y2 Y3 Y4 O1 O2 O3 R1 R2

DB1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 Y1 Y2 Y3 Y4 O1 O2 O3 R1 R2

DB1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0

DB2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

DB3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0

DB4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

DB5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

DB6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

DB7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

DB8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

DB9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

DB10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

DB11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

LB1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0

LB2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

LB3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

LB4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

LB5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Y1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Y2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Y3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Y4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

O3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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In the second peak (evening) there is the opposite trend of morning peak. Demand goes from the 

central zones to the suburbs.  

 

Table 21 – Closepotential matrix for time-slots 4 (second peak) 

Capacity distribution at the beginning of operating day (parameter c)  

 
Table 22 – Vehicle distribution initialization 

The Nodes distribution is represented by the matrix below. 

 

Table 23 – Nodes distribution 

The starting distribution is a homogeneous-like split of cars in each area. This means that 

approximately 1248/5 ≅ 250 cars are in each colored area: high (20%), medium-high (20%), medium 

(20%), medium-low (20%), low (20%). 

In reality the applied distribution is Red: 260 (21%); Orange: 260 (21%); Yellow: 208 (16%); 

Light Blue: 260 (21%); Light Blue: 260 (21%).  

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 Y1 Y2 Y3 Y4 O1 O2 O3 R1 R2

DB1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB4 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB5 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Y2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Y3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y4 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

O1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0

O2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0

O3 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

R1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0

R2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10DB11 LB1 LB2 LB3 LB4 LB5 Y1 Y2 Y3 Y4 O1 O2 O3 R1 R2

23 23 24 23 24 24 23 24 25 24 23 52 52 52 52 52 52 52 52 52 86 86 88 130 130

 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 Y1 Y2 Y3 Y4 O1 O2 O3 R1 R2

DB1 1 5 5 5 4 4 5 5 5 5 5 2 3 4 4 5 2 3 3 4 2 3 4 4 3

DB2 5 1 2 3 4 4 4 5 5 5 5 4 3 2 4 5 5 3 5 4 4 3 3 2 4

DB3 5 2 1 2 5 3 3 5 4 4 4 4 3 2 3 4 5 3 5 4 4 3 2 2 4

DB4 5 3 2 1 5 3 2 5 3 3 3 4 3 3 2 4 5 3 5 4 4 3 2 2 4

DB5 4 4 5 5 1 3 5 2 3 4 5 4 4 4 4 2 3 3 2 2 3 3 4 4 2

DB6 4 4 3 3 3 1 3 3 2 2 3 4 4 4 2 2 3 3 3 2 3 2 2 3 2

DB7 5 4 3 2 5 3 1 5 3 2 2 4 4 4 2 4 5 3 5 4 4 3 2 3 4

DB8 5 5 5 5 2 3 5 1 3 4 5 5 5 5 4 2 4 4 3 2 4 3 4 4 3

DB9 5 5 4 3 3 2 3 3 1 2 3 5 5 5 2 2 4 4 3 2 4 3 3 4 3

DB10 5 5 4 3 4 2 2 4 2 1 2 5 5 5 2 3 4 4 4 3 4 3 3 4 3

DB11 5 5 4 3 5 3 2 5 3 2 1 5 5 5 2 4 5 4 5 4 4 3 3 4 4

LB1 2 4 4 4 4 4 4 5 5 5 5 1 2 3 4 5 2 2 3 4 2 3 4 4 3

LB2 3 3 3 3 4 4 4 5 5 5 5 2 1 2 4 5 3 2 4 4 2 3 3 2 3

LB3 4 2 2 3 4 4 4 5 5 5 5 3 2 1 4 5 4 2 4 4 3 3 3 2 3

LB4 4 4 3 2 4 2 2 4 2 2 2 4 4 4 1 3 4 3 4 3 3 2 2 3 3

LB5 5 5 4 4 2 2 4 2 2 3 4 5 5 5 3 1 4 4 3 2 4 3 3 4 3

Y1 2 5 5 5 3 3 5 4 4 4 5 2 3 4 4 4 1 3 2 3 2 3 4 4 2

Y2 3 3 3 3 3 3 3 4 4 4 4 2 2 2 3 4 3 1 3 3 2 2 2 2 2

Y3 3 5 5 5 2 3 5 3 3 4 5 3 4 4 4 3 2 3 1 2 2 3 4 4 2

Y4 4 4 4 4 2 2 4 2 2 3 4 4 4 4 3 2 3 3 2 1 3 2 3 3 2

O1 2 4 4 4 3 3 4 4 4 4 4 2 2 3 3 4 2 2 2 3 1 2 3 3 2

O2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 2 3 2 2 1 2 2 2

O3 4 3 2 2 4 2 2 4 3 3 3 4 3 3 2 3 4 2 4 3 3 2 1 2 3

R1 4 2 2 2 4 3 3 4 4 4 4 4 2 2 3 4 4 2 4 3 3 2 2 1 3

R2 3 4 4 4 2 2 4 3 3 3 4 3 3 3 3 3 2 2 2 2 2 2 3 3 1
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The choice isn’t random: we suppose that, before the beginning of operating day, staff have relocated 

cars to obtain a symmetric distribution. The starting capacity is a vector of 25 elements, one for each 

cell.  

Tariff matrixes. 

The tariff of all the off-peaks is the same one. For all the trips, there is the standard tariff of 0,25€/min, 

that is the current pricing scheme. The tariff parameter is formed by 5 (one for each time slot) squared 

matrixes of 25 rows and 25 columns (625 elements) for a total of 625 x 5 = 3125 elements. For period 

1, 3, 5 there is the same pricing pattern.  

 
Table 24 – Price-matrix during off-peaks 

 

 
Table 25 – tariff matrix during first peak in 2nd time-slot 

 

The tariff of the first peak (morning) reflects the demand’s level. Where there is a high request, there 

is a higher price. To go from a zone to another one with the same color, the tariff is standard. From 

an attractive to an unattractive zone there are two possible discounts, while in the opposite case there 

are two possible increments.  

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 Y1 Y2 Y3 Y4 O1 O2 O3 R1 R2

DB1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

DB2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

DB3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

DB4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

DB5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

DB6 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

DB7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

DB8 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

DB9 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

DB10 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

DB11 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

LB1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

LB2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

LB3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

LB4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

LB5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Y1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Y2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Y3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Y4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

O1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

O2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

O3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

R1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

R2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 Y1 Y2 Y3 Y4 O1 O2 O3 R1 R2

DB1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.30 0.33 0.33 0.33 0.35 0.35

DB2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.30 0.33 0.33 0.33 0.35 0.35

DB3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.30 0.33 0.33 0.33 0.35 0.35

DB4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.30 0.33 0.33 0.33 0.35 0.35

DB5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.30 0.33 0.33 0.33 0.35 0.35

DB6 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.30 0.33 0.33 0.33 0.35 0.35

DB7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.30 0.33 0.33 0.33 0.35 0.35

DB8 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.30 0.33 0.33 0.33 0.35 0.35

DB9 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.30 0.33 0.33 0.33 0.35 0.35

DB10 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.30 0.33 0.33 0.33 0.35 0.35

DB11 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.30 0.33 0.33 0.33 0.35 0.35

LB1 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.33 0.33

LB2 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.33 0.33

LB3 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.33 0.33

LB4 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.33 0.33

LB5 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.27 0.30 0.30 0.30 0.33 0.33

Y1 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.23 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.30 0.30

Y2 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.23 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.30 0.30

Y3 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.23 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.30 0.30

Y4 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.23 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.30 0.30

O1 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.20 0.20 0.20 0.20 0.20 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.27 0.27

O2 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.20 0.20 0.20 0.20 0.20 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.27 0.27

O3 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.20 0.20 0.20 0.20 0.20 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.27 0.27

R1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.18 0.18 0.18 0.18 0.18 0.20 0.20 0.20 0.20 0.23 0.23 0.23 0.25 0.25

R2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.18 0.18 0.18 0.18 0.18 0.20 0.20 0.20 0.20 0.23 0.23 0.23 0.25 0.25
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Table 26 – tariff matrix during second peak in 4th time-slot 

The pricing scheme of the second peak is opposite to the first peak’s one because of the inversion of 

demand’s tendency during evening. There is the so-called work-house trend.  

 

rentTime matrixes  

 

 
Table 27 – origin-destination rentTime example during off-peaks 

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 Y1 Y2 Y3 Y4 O1 O2 O3 R1 R2

DB1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18 0.18 0.15 0.15

DB2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18 0.18 0.15 0.15

DB3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18 0.18 0.15 0.15

DB4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18 0.18 0.15 0.15

DB5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18 0.18 0.15 0.15

DB6 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18 0.18 0.15 0.15

DB7 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18 0.18 0.15 0.15

DB8 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18 0.18 0.15 0.15

DB9 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18 0.18 0.15 0.15

DB10 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18 0.18 0.15 0.15

DB11 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.20 0.18 0.18 0.18 0.15 0.15

LB1 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.18 0.18

LB2 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.18 0.18

LB3 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.18 0.18

LB4 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.18 0.18

LB5 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.20 0.20 0.20 0.18 0.18

Y1 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.27 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.20 0.20

Y2 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.27 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.20 0.20

Y3 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.27 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.20 0.20

Y4 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.27 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.20 0.20

O1 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.30 0.30 0.30 0.30 0.30 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.23 0.23

O2 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.30 0.30 0.30 0.30 0.30 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.23 0.23

O3 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.30 0.30 0.30 0.30 0.30 0.27 0.27 0.27 0.27 0.25 0.25 0.25 0.23 0.23

R1 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.33 0.33 0.33 0.33 0.33 0.30 0.30 0.30 0.30 0.27 0.27 0.27 0.25 0.25

R2 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.33 0.33 0.33 0.33 0.33 0.30 0.30 0.30 0.30 0.27 0.27 0.27 0.25 0.25

[*,*,1] DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 4,2 21,2 21,2 21,2 17,0 17,0 21,2 21,2 21,2 21,2 21,2 8,5 12,7 17,0 17,0 21,2 8,5 12,7 17,0 17,0 12,7 8,5 12,7 12,7 17,0

DB2 21,2 4,2 8,5 12,7 17,0 17,0 17,0 21,2 21,2 21,2 21,2 17,0 12,7 8,5 17,0 21,2 17,0 12,7 12,7 8,5 17,0 21,2 12,7 21,2 17,0

DB3 21,2 8,5 4,2 8,5 21,2 12,7 12,7 21,2 17,0 17,0 17,0 17,0 12,7 8,5 12,7 17,0 17,0 12,7 8,5 8,5 17,0 21,2 12,7 21,2 17,0

DB4 21,2 12,7 8,5 4,2 21,2 12,7 8,5 21,2 12,7 12,7 12,7 17,0 12,7 12,7 8,5 17,0 17,0 12,7 8,5 8,5 17,0 21,2 12,7 21,2 17,0

DB5 17,0 17,0 21,2 21,2 4,2 12,7 21,2 8,5 12,7 17,0 21,2 17,0 17,0 17,0 17,0 8,5 12,7 12,7 17,0 17,0 8,5 12,7 12,7 8,5 8,5

DB6 17,0 17,0 12,7 12,7 12,7 4,2 12,7 12,7 8,5 8,5 12,7 17,0 17,0 17,0 8,5 8,5 12,7 8,5 8,5 12,7 8,5 12,7 12,7 12,7 8,5

DB7 21,2 17,0 12,7 8,5 21,2 12,7 4,2 21,2 12,7 8,5 8,5 17,0 17,0 17,0 8,5 17,0 17,0 12,7 8,5 12,7 17,0 21,2 12,7 21,2 17,0

DB8 21,2 21,2 21,2 21,2 8,5 12,7 21,2 4,2 12,7 17,0 21,2 21,2 21,2 21,2 17,0 8,5 17,0 12,7 17,0 17,0 12,7 17,0 17,0 12,7 8,5

DB9 21,2 21,2 17,0 12,7 12,7 8,5 12,7 12,7 4,2 8,5 12,7 21,2 21,2 21,2 8,5 8,5 17,0 12,7 12,7 17,0 12,7 17,0 17,0 12,7 8,5

DB10 21,2 21,2 17,0 12,7 17,0 8,5 8,5 17,0 8,5 4,2 8,5 21,2 21,2 21,2 8,5 12,7 17,0 12,7 12,7 17,0 12,7 17,0 17,0 17,0 12,7

DB11 21,2 21,2 17,0 12,7 21,2 12,7 8,5 21,2 12,7 8,5 4,2 21,2 21,2 21,2 8,5 17,0 17,0 12,7 12,7 17,0 17,0 21,2 17,0 21,2 17,0

LB1 8,5 17,0 17,0 17,0 17,0 17,0 17,0 21,2 21,2 21,2 21,2 4,2 8,5 12,7 17,0 21,2 8,5 12,7 17,0 17,0 12,7 8,5 8,5 12,7 17,0

LB2 12,7 12,7 12,7 12,7 17,0 17,0 17,0 21,2 21,2 21,2 21,2 8,5 4,2 8,5 17,0 21,2 8,5 12,7 12,7 8,5 12,7 12,7 8,5 17,0 17,0

LB3 17,0 8,5 8,5 12,7 17,0 17,0 17,0 21,2 21,2 21,2 21,2 12,7 8,5 4,2 17,0 21,2 12,7 12,7 12,7 8,5 12,7 17,0 8,5 17,0 17,0

LB4 17,0 17,0 12,7 8,5 17,0 8,5 8,5 17,0 8,5 8,5 8,5 17,0 17,0 17,0 4,2 12,7 12,7 8,5 8,5 12,7 12,7 17,0 12,7 17,0 12,7

LB5 21,2 21,2 17,0 17,0 8,5 8,5 17,0 8,5 8,5 12,7 17,0 21,2 21,2 21,2 12,7 4,2 17,0 12,7 12,7 17,0 12,7 17,0 17,0 12,7 8,5

O1 8,5 17,0 17,0 17,0 12,7 12,7 17,0 17,0 17,0 17,0 17,0 8,5 8,5 12,7 12,7 17,0 4,2 8,5 12,7 12,7 8,5 8,5 8,5 8,5 12,7

O2 12,7 12,7 12,7 12,7 12,7 8,5 12,7 12,7 12,7 12,7 12,7 12,7 12,7 12,7 8,5 12,7 8,5 4,2 8,5 8,5 8,5 12,7 8,5 12,7 8,5

O3 17,0 12,7 8,5 8,5 17,0 8,5 8,5 17,0 12,7 12,7 12,7 17,0 12,7 12,7 8,5 12,7 12,7 8,5 4,2 8,5 12,7 17,0 8,5 17,0 12,7

R1 17,0 8,5 8,5 8,5 17,0 12,7 12,7 17,0 17,0 17,0 17,0 17,0 8,5 8,5 12,7 17,0 12,7 8,5 8,5 4,2 12,7 17,0 8,5 17,0 12,7

R2 12,7 17,0 17,0 17,0 8,5 8,5 17,0 12,7 12,7 12,7 17,0 12,7 12,7 12,7 12,7 12,7 8,5 8,5 12,7 12,7 4,2 8,5 8,5 8,5 8,5

Y1 8,5 21,2 21,2 21,2 12,7 12,7 21,2 17,0 17,0 17,0 21,2 8,5 12,7 17,0 17,0 17,0 8,5 12,7 17,0 17,0 8,5 4,2 12,7 8,5 12,7

Y2 12,7 12,7 12,7 12,7 12,7 12,7 12,7 17,0 17,0 17,0 17,0 8,5 8,5 8,5 12,7 17,0 8,5 8,5 8,5 8,5 8,5 12,7 4,2 12,7 12,7

Y3 12,7 21,2 21,2 21,2 8,5 12,7 21,2 12,7 12,7 17,0 21,2 12,7 17,0 17,0 17,0 12,7 8,5 12,7 17,0 17,0 8,5 8,5 12,7 4,2 8,5

Y4 17,0 17,0 17,0 17,0 8,5 8,5 17,0 8,5 8,5 12,7 17,0 17,0 17,0 17,0 12,7 8,5 12,7 8,5 12,7 12,7 8,5 12,7 12,7 8,5 4,2
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Table 28 - origin-destination rentTime example during peaks 

The rent time or driving time is a parameter with the same characteristics of tariff parameter: it is 

formed by 5 squared matrixes because it depends from market (origin row and destination column) 

and the hourly range (one matrix for each slot). We distinguish two kinds of rent time: slow and fast.  

Slow rent time is the average driving time characterizing all peak periods because of traffic congestion 

which leads slowdowns in circulation, while fast rent time is the average driving time during off-

peaks hours.  

In this case that rent time is equal to the ratio between distance and speed. For example, a rent time’s 

value of 42 minutes during a peak corresponds to the ratio between 5 x √2 (distance) and 10 km/h 

(speed), multiplied by 60 (for the equivalence in minutes). To avoid heavy text these matrixes are not 

represented, but this choice drive to the evidence that all the peaks have the same slow rent time and 

all the off-peaks have the same fast rent time. 

 

Demand matrixes  

 

 
Table 29 – thermographic map of origin-destination demand matrix during first off-peak hours 

 

[*,*,2] DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 8,5 42,4 42,4 42,4 33,9 33,9 42,4 42,4 42,4 42,4 42,4 17,0 25,5 33,9 33,9 42,4 17,0 25,5 33,9 33,9 25,5 17,0 25,5 25,5 33,9

DB2 42,4 8,5 17,0 25,5 33,9 33,9 33,9 42,4 42,4 42,4 42,4 33,9 25,5 17,0 33,9 42,4 33,9 25,5 25,5 17,0 33,9 42,4 25,5 42,4 33,9

DB3 42,4 17,0 8,5 17,0 42,4 25,5 25,5 42,4 33,9 33,9 33,9 33,9 25,5 17,0 25,5 33,9 33,9 25,5 17,0 17,0 33,9 42,4 25,5 42,4 33,9

DB4 42,4 25,5 17,0 8,5 42,4 25,5 17,0 42,4 25,5 25,5 25,5 33,9 25,5 25,5 17,0 33,9 33,9 25,5 17,0 17,0 33,9 42,4 25,5 42,4 33,9

DB5 33,9 33,9 42,4 42,4 8,5 25,5 42,4 17,0 25,5 33,9 42,4 33,9 33,9 33,9 33,9 17,0 25,5 25,5 33,9 33,9 17,0 25,5 25,5 17,0 17,0

DB6 33,9 33,9 25,5 25,5 25,5 8,5 25,5 25,5 17,0 17,0 25,5 33,9 33,9 33,9 17,0 17,0 25,5 17,0 17,0 25,5 17,0 25,5 25,5 25,5 17,0

DB7 42,4 33,9 25,5 17,0 42,4 25,5 8,5 42,4 25,5 17,0 17,0 33,9 33,9 33,9 17,0 33,9 33,9 25,5 17,0 25,5 33,9 42,4 25,5 42,4 33,9

DB8 42,4 42,4 42,4 42,4 17,0 25,5 42,4 8,5 25,5 33,9 42,4 42,4 42,4 42,4 33,9 17,0 33,9 25,5 33,9 33,9 25,5 33,9 33,9 25,5 17,0

DB9 42,4 42,4 33,9 25,5 25,5 17,0 25,5 25,5 8,5 17,0 25,5 42,4 42,4 42,4 17,0 17,0 33,9 25,5 25,5 33,9 25,5 33,9 33,9 25,5 17,0

DB10 42,4 42,4 33,9 25,5 33,9 17,0 17,0 33,9 17,0 8,5 17,0 42,4 42,4 42,4 17,0 25,5 33,9 25,5 25,5 33,9 25,5 33,9 33,9 33,9 25,5

DB11 42,4 42,4 33,9 25,5 42,4 25,5 17,0 42,4 25,5 17,0 8,5 42,4 42,4 42,4 17,0 33,9 33,9 25,5 25,5 33,9 33,9 42,4 33,9 42,4 33,9

LB1 17,0 33,9 33,9 33,9 33,9 33,9 33,9 42,4 42,4 42,4 42,4 8,5 17,0 25,5 33,9 42,4 17,0 25,5 33,9 33,9 25,5 17,0 17,0 25,5 33,9

LB2 25,5 25,5 25,5 25,5 33,9 33,9 33,9 42,4 42,4 42,4 42,4 17,0 8,5 17,0 33,9 42,4 17,0 25,5 25,5 17,0 25,5 25,5 17,0 33,9 33,9

LB3 33,9 17,0 17,0 25,5 33,9 33,9 33,9 42,4 42,4 42,4 42,4 25,5 17,0 8,5 33,9 42,4 25,5 25,5 25,5 17,0 25,5 33,9 17,0 33,9 33,9

LB4 33,9 33,9 25,5 17,0 33,9 17,0 17,0 33,9 17,0 17,0 17,0 33,9 33,9 33,9 8,5 25,5 25,5 17,0 17,0 25,5 25,5 33,9 25,5 33,9 25,5

LB5 42,4 42,4 33,9 33,9 17,0 17,0 33,9 17,0 17,0 25,5 33,9 42,4 42,4 42,4 25,5 8,5 33,9 25,5 25,5 33,9 25,5 33,9 33,9 25,5 17,0

O1 17,0 33,9 33,9 33,9 25,5 25,5 33,9 33,9 33,9 33,9 33,9 17,0 17,0 25,5 25,5 33,9 8,5 17,0 25,5 25,5 17,0 17,0 17,0 17,0 25,5

O2 25,5 25,5 25,5 25,5 25,5 17,0 25,5 25,5 25,5 25,5 25,5 25,5 25,5 25,5 17,0 25,5 17,0 8,5 17,0 17,0 17,0 25,5 17,0 25,5 17,0

O3 33,9 25,5 17,0 17,0 33,9 17,0 17,0 33,9 25,5 25,5 25,5 33,9 25,5 25,5 17,0 25,5 25,5 17,0 8,5 17,0 25,5 33,9 17,0 33,9 25,5

R1 33,9 17,0 17,0 17,0 33,9 25,5 25,5 33,9 33,9 33,9 33,9 33,9 17,0 17,0 25,5 33,9 25,5 17,0 17,0 8,5 25,5 33,9 17,0 33,9 25,5

R2 25,5 33,9 33,9 33,9 17,0 17,0 33,9 25,5 25,5 25,5 33,9 25,5 25,5 25,5 25,5 25,5 17,0 17,0 25,5 25,5 8,5 17,0 17,0 17,0 17,0

Y1 17,0 42,4 42,4 42,4 25,5 25,5 42,4 33,9 33,9 33,9 42,4 17,0 25,5 33,9 33,9 33,9 17,0 25,5 33,9 33,9 17,0 8,5 25,5 17,0 25,5

Y2 25,5 25,5 25,5 25,5 25,5 25,5 25,5 33,9 33,9 33,9 33,9 17,0 17,0 17,0 25,5 33,9 17,0 17,0 17,0 17,0 17,0 25,5 8,5 25,5 25,5

Y3 25,5 42,4 42,4 42,4 17,0 25,5 42,4 25,5 25,5 33,9 42,4 25,5 33,9 33,9 33,9 25,5 17,0 25,5 33,9 33,9 17,0 17,0 25,5 8,5 17,0

Y4 33,9 33,9 33,9 33,9 17,0 17,0 33,9 17,0 17,0 25,5 33,9 33,9 33,9 33,9 25,5 17,0 25,5 17,0 25,5 25,5 17,0 25,5 25,5 17,0 8,5

[*,*,1] DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 7 2 1 2 1 0 1 1 0 1 1 8 1 2 1 2 7 1 0 0 0 8 1 2 1

DB2 0 7 0 1 1 2 2 0 1 0 0 1 0 7 2 0 1 1 1 8 1 1 1 1 0

DB3 0 2 6 1 0 1 0 2 2 1 1 1 2 8 0 1 0 1 5 5 1 1 0 0 1

DB4 0 1 1 7 0 1 2 0 2 0 1 0 1 7 2 0 1 0 0 6 1 2 0 0 2

DB5 2 1 2 2 5 2 0 1 1 1 0 1 0 7 0 2 0 0 0 8 1 2 2 0 0

DB6 1 2 2 1 1 5 0 2 1 0 2 2 1 7 2 0 1 1 1 7 2 0 2 1 2

DB7 2 0 2 0 1 0 5 0 0 2 2 2 1 1 7 1 0 2 7 2 2 2 1 1 2

DB8 1 2 0 0 2 1 1 5 0 1 1 2 0 1 2 6 1 2 1 0 2 0 1 1 8

DB9 2 0 1 1 2 2 1 0 7 2 2 2 1 1 8 7 1 0 0 1 2 1 1 2 7

DB10 0 0 2 1 2 1 0 2 0 6 2 0 2 1 7 2 1 0 2 0 0 1 1 1 2

DB11 2 1 2 0 1 0 2 2 2 2 6 2 2 2 8 1 2 2 1 0 1 0 2 1 1

LB1 8 0 1 2 2 1 0 1 0 2 2 8 6 0 0 2 8 0 1 2 1 6 8 0 1

LB2 1 0 0 2 0 1 2 0 1 2 0 8 5 7 0 0 7 0 0 5 0 0 5 0 1

LB3 2 8 5 1 0 1 0 2 2 2 0 0 8 5 1 2 1 1 0 8 0 2 8 0 2

LB4 2 0 2 5 1 6 8 0 7 6 5 1 2 2 7 2 0 6 7 0 2 0 1 1 0

LB5 2 2 0 1 6 6 0 7 8 0 0 1 1 1 0 6 0 2 1 1 2 0 2 1 8

O1 6 2 1 1 0 2 1 1 2 1 2 7 8 2 2 1 6 8 2 1 5 8 8 5 2

O2 1 1 2 2 0 6 2 2 2 0 2 1 1 0 8 1 7 8 8 8 7 2 6 1 5

O3 2 1 7 8 0 5 7 1 0 0 1 1 2 0 6 0 2 8 8 8 2 1 6 0 2

R1 0 2 0 2 1 0 0 1 2 1 1 2 0 2 2 1 2 0 2 6 2 2 2 0 0

R2 1 0 0 1 2 2 1 2 0 2 0 2 0 1 1 2 1 0 0 0 6 1 0 0 2

Y1 6 1 0 0 1 0 0 1 1 1 0 7 1 2 2 1 7 2 0 2 8 7 1 7 1

Y2 1 2 1 1 0 1 2 0 0 2 1 8 6 5 0 1 8 6 6 8 8 0 7 0 0

Y3 2 1 2 0 8 2 2 1 1 2 0 2 2 1 2 2 6 1 2 1 6 8 1 6 7

Y4 2 0 2 1 7 7 1 8 5 0 1 2 2 0 0 6 2 7 1 2 5 0 0 5 5
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The situation is different during peaks 

 

Table 30 – thermographic map of origin-destination demand matrix during first peak hours 

Table below describes, during the first peak, demand characteristics from origins (rows) to 

destinations (columns); to avoid long text, only some examples are commented.  

Main characteristics highlight, for instance, that demand is: 

• high (range: 24-30) from low (DBy) to high demand areas (Rx),  

• medium-high (range: 13-19) from low (DBy) to medium-high (Ox) demand areas and from 

medium-low (LBy) to high-demand areas (Rx),  

• very-low (range: 0-4) from low (DBy) to low (DBx). 
 

Demand changes again during the 4th time-slot characterising the second traffic peak. 
 

 

Table 31 – thermographic map of origin-destination demand matrix during second peak hours 

During the second peak there is the known inversion of trend. This means that all that areas that was 

attractive during the first peak become unattractive.  

 

[*,*,2] DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 0 2 2 2 1 1 0 1 1 1 2 4 2 4 2 5 16 15 16 26 28 11 11 11 12

DB2 1 3 0 4 4 2 4 1 1 0 1 5 3 4 6 3 18 16 19 30 28 9 11 10 12

DB3 2 1 4 4 1 1 3 3 3 3 3 2 8 7 4 5 17 17 14 28 28 12 9 11 10

DB4 0 2 0 4 2 4 1 3 0 4 0 5 5 3 3 4 18 14 14 26 28 9 11 11 10

DB5 1 1 2 4 2 1 2 2 3 0 4 2 6 8 2 7 17 15 15 30 27 10 10 11 11

DB6 2 1 3 2 1 1 2 1 3 0 2 8 3 7 4 8 15 17 18 23 26 12 10 9 9

DB7 4 2 2 3 1 1 3 1 1 1 4 6 3 5 8 7 18 16 18 24 28 10 9 12 10

DB8 0 2 4 3 0 3 3 4 3 1 0 4 3 4 2 3 13 19 13 25 27 12 11 11 9

DB9 0 1 2 2 0 4 0 3 0 2 0 2 5 3 4 4 17 13 16 29 27 12 11 10 10

DB10 3 0 0 1 4 3 3 4 3 3 3 3 8 2 7 3 18 17 14 23 24 12 10 10 12

DB11 2 3 1 0 4 4 0 0 1 4 3 6 8 4 3 2 13 18 18 25 27 9 9 12 12

LB1 2 2 1 1 0 3 1 1 3 2 3 0 1 4 2 0 9 9 12 15 18 6 5 3 2

LB2 1 0 0 3 3 1 0 3 3 2 1 0 0 0 2 2 11 9 11 19 19 5 7 3 3

LB3 1 1 3 0 0 2 3 1 2 3 1 1 0 3 0 2 10 10 11 14 14 7 5 6 4

LB4 3 0 2 3 1 2 1 1 3 2 3 4 4 1 2 3 10 12 11 14 17 2 6 4 6

LB5 3 0 2 2 0 0 0 0 0 0 0 2 4 0 0 1 9 11 12 16 16 8 6 5 7

O1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 2 2 2 3 3 8 8 0 2 3 3

O2 1 1 0 1 1 0 1 1 1 0 1 0 1 1 2 2 3 3 2 3 6 2 1 1 0

O3 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0 2 2 2 3 5 5 0 1 1 2

R1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 3 2 3 1 1 1 0 2 0

R2 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 2 3 2 1 2 1 2

Y1 2 2 0 0 1 2 2 0 0 2 0 2 3 3 0 0 5 3 2 9 12 3 0 2 2

Y2 2 1 2 2 0 0 2 2 2 2 0 0 3 1 3 1 5 8 5 12 12 2 4 1 2

Y3 0 1 0 1 2 2 1 2 1 0 2 3 2 0 2 3 3 4 7 9 11 1 3 3 3

Y4 1 0 0 2 0 0 2 2 0 2 2 1 2 3 1 1 3 7 8 9 12 0 4 3 0

[*,*,4] DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 4 1 1 3 2 3 2 2 1 3 4 3 2 1 0 0 0 1 1 0 1 0 1 1 2

DB2 2 4 3 4 4 4 2 0 0 2 0 2 2 0 1 3 1 0 1 1 0 2 1 2 2

DB3 2 3 2 1 1 0 0 0 4 0 4 3 2 0 0 1 1 1 1 1 0 2 1 0 0

DB4 1 0 1 4 1 2 2 0 1 4 4 3 2 1 3 2 1 1 1 1 1 2 0 0 2

DB5 2 1 4 1 3 2 4 1 2 4 2 1 3 1 3 0 0 0 0 0 0 0 0 2 0

DB6 2 0 1 3 1 3 4 4 3 2 1 1 2 2 2 1 1 1 0 0 0 0 2 0 2

DB7 4 0 0 0 2 2 3 4 0 0 0 2 2 3 0 1 0 1 0 1 0 0 2 1 1

DB8 4 4 3 1 2 2 3 3 0 4 1 2 1 3 1 1 1 1 0 0 0 1 1 0 0

DB9 0 4 0 0 4 1 1 4 2 0 3 3 2 2 0 0 0 1 1 0 0 2 2 0 1

DB10 2 1 4 4 4 4 1 4 4 2 1 1 0 0 0 1 1 0 1 1 0 2 1 2 2

DB11 4 1 2 2 2 4 4 3 1 0 0 3 1 3 3 1 0 0 1 0 0 2 0 1 2

LB1 4 5 8 3 6 5 3 6 3 5 3 4 2 3 2 2 1 0 2 0 0 0 2 0 1

LB2 5 5 6 2 8 8 5 4 6 6 8 0 4 1 1 3 2 0 1 0 0 0 1 0 0

LB3 3 3 7 5 4 8 4 2 8 7 7 1 3 1 3 4 0 2 0 1 0 0 2 3 1

LB4 8 5 4 2 6 2 4 6 2 7 6 1 2 2 4 3 0 1 0 0 1 0 2 1 3

LB5 8 4 6 4 2 4 3 7 2 3 6 3 3 2 3 4 1 0 1 0 0 1 2 1 2

O1 19 15 13 13 13 14 17 19 13 14 15 11 11 10 10 12 4 0 4 2 3 6 8 6 6

O2 18 18 14 13 19 17 19 18 15 15 14 9 9 12 11 9 3 3 2 0 0 7 8 8 4

O3 14 16 17 15 14 16 15 13 17 13 14 10 11 11 12 12 0 0 1 1 3 3 5 8 4

R1 28 27 29 24 29 25 30 29 23 26 30 13 17 19 15 13 6 5 4 4 1 11 10 12 9

R2 25 27 29 24 26 27 30 26 26 30 23 17 19 18 16 13 4 8 7 4 3 12 10 12 9

Y1 9 12 12 11 11 9 12 12 12 9 11 6 5 3 3 6 3 2 0 2 1 0 3 1 0

Y2 9 9 12 10 12 9 11 12 12 9 10 3 6 2 7 8 1 0 1 1 2 2 2 3 1

Y3 12 12 9 9 10 12 9 12 11 11 12 3 4 8 5 4 2 0 1 1 2 4 4 0 2

Y4 12 10 11 9 11 12 9 12 9 12 11 4 5 6 2 3 2 3 1 0 0 1 2 3 1
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notDemand matrixes 

 

 
 Table 32 – thermographic map of origin-destination notDemand matrix during second peak hours 

 

 

Table 33 – thermographic map of origin-destination notDemand matrix during first peak hours 

 

[*,*,1] DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 2 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 3 0 0 0

DB2 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0

DB3 0 0 2 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 2 0 0 0 0 0

DB4 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0

DB5 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0

DB6 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0

DB7 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0

DB8 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3

DB9 0 0 0 0 0 0 0 0 2 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 2

DB10 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

DB11 0 0 0 0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0

LB1 3 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 3 0 0 0 0 2 3 0 0

LB2 0 0 0 0 0 0 0 0 0 0 0 3 2 2 0 0 2 0 0 2 0 0 2 0 0

LB3 0 3 2 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 3 0 0 3 0 0

LB4 0 0 0 2 0 2 3 0 2 2 2 0 0 0 2 0 0 2 2 0 0 0 0 0 0

LB5 0 0 0 0 2 2 0 2 3 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3

O1 2 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 2 3 0 0 2 3 3 2 0

O2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 2 3 3 3 2 0 2 0 2

O3 0 0 2 3 0 2 2 0 0 0 0 0 0 0 2 0 0 3 3 3 0 0 2 0 0

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

Y1 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 3 2 0 2 0

Y2 0 0 0 0 0 0 0 0 0 0 0 3 2 2 0 0 3 2 2 3 3 0 2 0 0

Y3 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 3 0 2 2

Y4 0 0 0 0 2 2 0 3 2 0 0 0 0 0 0 2 0 2 0 0 2 0 0 2 2

[*,*,2] DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 2 7 7 7 13 14 4 4 4 5

DB2 0 1 0 1 1 0 1 0 0 0 0 2 1 1 2 1 8 7 9 15 14 3 4 4 5

DB3 0 0 1 1 0 0 1 1 1 1 1 0 4 2 1 2 8 8 6 14 14 5 3 4 4

DB4 0 0 0 1 0 1 0 1 0 1 0 2 2 1 1 1 8 6 6 13 14 3 4 4 4

DB5 0 0 0 1 0 0 0 0 1 0 1 0 3 3 0 2 8 7 7 15 14 4 4 4 4

DB6 0 0 1 0 0 0 0 0 1 0 0 3 1 2 1 3 7 8 8 11 13 5 4 3 3

DB7 1 0 0 1 0 0 1 0 0 0 1 2 1 2 3 2 8 7 8 12 14 4 3 5 4

DB8 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1 6 9 6 13 14 5 4 4 3

DB9 0 0 0 0 0 1 0 1 0 0 0 0 2 1 1 1 8 6 7 15 14 5 4 4 4

DB10 1 0 0 0 1 1 1 1 1 1 1 1 4 0 2 1 8 8 6 11 12 5 4 4 5

DB11 0 1 0 0 1 1 0 0 0 1 1 2 4 1 1 0 6 8 8 13 14 3 3 5 5

LB1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 3 5 7 8 2 2 1 0

LB2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 4 9 9 2 2 1 1

LB3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 6 6 2 2 2 1

LB4 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 4 5 4 6 8 0 2 1 2

LB5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 4 5 7 7 3 2 2 2

O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0

O3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 3 5 0 0 0 0

Y2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 2 5 5 0 1 0 0

Y3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4 0 0 0 0

Y4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 5 0 1 0 0
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Table 34 – thermographic map of origin-destination notDemand matrix during second peak hours 

The notDemand parameter has the same structure of demand and is defined by 5 matrixes. It 

represents the minimum number of people that aren’t willing to pay the offered tariff. Each term of 

the matrixes is determined by the lower rounding of the product between not-willingness and demand. 

In other words, it is the difference between demand and the minimum number of people willing to 

accept.  

Observing the three sample matrixes; it is important to note that in all off-peaks slots 40% of users 

isn’t willing to accept the tariff, because it has been supposed that nowadays 60% of the total demand 

is disposed to pay a standard tariff.  

Consequently, with a standard tariff, the estimated and expected unsold trips are equal to 40% of total 

demand. During peaks, there is a higher probability to reject rides with higher tariffs, and a lower 

probability to reject runs where the price is low.  

Then, from an attractive zone to an unattractive one, there is a high number of people willing to pay, 

despite the demand is low.  

Considering the proportion of users willing to accept compared to demand, we expect that attractive 

markets have a proportion lower than unattractive markets’ one.      

The parameter willingness depends from origin, destination, hourly range and alternative. The 

attractiveness depends on different factor, such tariff, distance from the desired destination, 

alternative urban transport, etc. and it represents the probability to accept or to pay a trip. In this 

simplified model, focused on variable prices, it is licit to think this parameter depending only on tariff. 

AMPL requires a specific notation to represent it: for each destination and hourly range, there is a 

matrix whose rows are the origin points and the columns are the alternatives.  

During off-peaks hourly ranges, the willingnessQ is equal to 0,60. This denotes that the probability 

to accept and pay the offered tariff for the proposed run is equal to 60% of the demand or, if you 

prefer, that a trip has a 60% of attractiveness. 

[*,*,4] DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB2 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB3 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB4 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB5 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB6 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB7 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB8 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB9 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB10 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB11 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB1 1 2 3 1 2 2 1 2 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

LB2 2 2 2 0 3 3 2 1 2 2 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0

LB3 1 1 2 2 1 3 1 0 3 2 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0

LB4 3 2 1 0 2 0 1 2 0 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0

LB5 3 1 2 1 0 1 1 2 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0

O1 9 7 6 6 6 6 8 9 6 6 7 4 4 4 4 5 1 0 1 0 0 2 3 2 2

O2 8 8 6 6 9 8 9 8 7 7 6 3 3 5 4 3 0 0 0 0 0 2 3 3 1

O3 6 7 8 7 6 7 7 6 8 6 6 4 4 4 5 5 0 0 0 0 0 1 2 3 1

R1 14 14 15 12 15 13 15 15 11 13 15 6 8 9 7 6 2 2 1 1 0 4 4 5 3

R2 13 14 15 12 13 14 15 13 13 15 11 8 9 8 7 6 1 3 2 1 1 5 4 5 3

Y1 3 5 5 4 4 3 5 5 5 3 4 2 2 1 1 2 0 0 0 0 0 0 0 0 0

Y2 3 3 5 4 5 3 4 5 5 3 4 1 2 0 2 3 0 0 0 0 0 0 0 0 0

Y3 5 5 3 3 4 5 3 5 4 4 5 1 1 3 2 1 0 0 0 0 0 1 1 0 0

Y4 5 4 4 3 4 5 3 5 3 5 4 1 2 2 0 1 0 0 0 0 0 0 0 0 0



96 
 

Note that this doesn’t mean that the sold trips are a 60% of the total demand, but that users willing to 

pay forms a 60% of demand and the system must satisfy the higher number of requests with the 

available capacity. Without this parameter, the solver would choose all the trips with the longest 

distance and the maximum margin, neglecting users’ behaviour. We omit other data of the off-peaks 

to not make redundant the text.  

During the first peak, a low (or dark-blue) origin, characterized by few requests, has one of the 

following willingness’ value: 

 

[*,*,2] DB(k) Tariff 

DB(h) 0,60 Standard 

LB(h) 0,70 Discount (1) 

Y(h) 0,75 Discount (2) 

O(h) 0,80 Discount (3) 

R(h) 0,85 Discount (4) 
Table 35 –willingnessQ to accept from DARK BLUE origin h (to destination k) 

First of all, it is important to comment the difference among values: 0,6 indicates a 60% probability 

to accept a ride; it is assumed that for a 20% unit discount (from 0,25 to 0,20) on the unit standard 

tariff, there is around a 30% increment (from 60% to 80%) of attractivity and that for a 32% discount 

(from 0,25 to 0,17), there is a 50% (from 60% to 90%) increment of attractiveness. Although 

increments of willingness seem to be overestimated, we must consider not only that there is a coherent 

difference (10%) between the twos, but also that this excessive difference from the “standard” (initial) 

willingness is compensated by its decreases (see later to better understand).  

To avoid excessive information about willingness only yellow and red destination will be commented 

considering that for additional details the full matrixes can be consulted below. 

 

[*,*,2] Y(k) Tariff 

DB(h) 0,45 Penalty (2) 

LB(h) 0,50 Penalty (1) 

Y(h) 0,60 Standard 

O(h) 0,70 Discount (1) 

R(h) 0,75 Discount (2) 
Table 36 – willingness to accept from YELLOW origin h (to destination k) 

 

[*,*,2] R(k) Tariff 

DB(h) 0,35 Penalty (4) 

LB(h) 0,40 Penalty (3) 

Y(h) 0,45 Penalty (2) 

O(h) 0,50 Penalty (1) 

R(h) 0,60 Standard 
Table 37 – willingness to accept from RED origin h (to destination k) 

 

The full willingness matrix is displayed below for the first peak (second time-slot) is illustrated 

below. 
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Table 38 – full matrix of willingnessQ in first peak slot (2nd time-slot) 

During peak one, the medium and high destinations are more attractive than low areas. For this, the 

system provides different alternatives for yellow, orange and red destinations. As mentioned in 

previous chapters, user who wants to go to an unattractive cell must decide if he want to pay an 

increased tariff to reach the desired destination or to choose an alternative with a discounted tariff, 

contributing to relocation.  

It is supposed that the probability to accept or to pay depends only on the price, according to this 

scheme, for example: 

• if a user goes from a red zone to a dark blue zone, the willingness is 0,35 (reduction of more 

than 41% from the standard attractiveness) because there is a 32% increment on the standard 

tariff (from 0,25 to 0,33); 

• if a user goes from a cell to another with the same color, willingness is still 0,6 because the 

tariff is standard; 

• if a user goes from dark blue to red area, the willingness increases to 85% thanks to the 20% 

discount.  

Once defined parameters of desired destination, we define the alternatives’ willingness.  

Considering n as the number of alternatives, if there at least one alternative (n > 0) the willingness to 

accept the alternative is so defined: 

 

𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝐴ℎ𝑘
𝑜𝑎 =  

0,2 × (1 − 𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑄ℎ𝑘
𝑜𝑘)

𝑛
      ∀ o, h, k, a ≠ k; 

 

Of course, if n = 0 then there aren’t alternatives and the willingness to accept the alternative is 0.  

This means that each exact alternative has a willingness that is equal to 
1

n
 -th of a certain percentage 

of the probability to reject the desired destination. This percentage is equal to 20%. The choice of 

20% derives from the supposition that only a 20% of users who don’t accept the increased tariff is 

disposed to pay a lower tariff for a less adaptable alternative ride. The other 80% prefer to reject the 

[*,*,2] DB1 DB10 DB11 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,50 0,50 0,50 0,50 0,50 0,40 0,40 0,40 0,35 0,35 0,45 0,45 0,45 0,45

DB10 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,50 0,50 0,50 0,50 0,50 0,40 0,40 0,40 0,35 0,35 0,45 0,45 0,45 0,45

DB11 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,50 0,50 0,50 0,50 0,50 0,40 0,40 0,40 0,35 0,35 0,45 0,45 0,45 0,45

DB2 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,50 0,50 0,50 0,50 0,50 0,40 0,40 0,40 0,35 0,35 0,45 0,45 0,45 0,45

DB3 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,50 0,50 0,50 0,50 0,50 0,40 0,40 0,40 0,35 0,35 0,45 0,45 0,45 0,45

DB4 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,50 0,50 0,50 0,50 0,50 0,40 0,40 0,40 0,35 0,35 0,45 0,45 0,45 0,45

DB5 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,50 0,50 0,50 0,50 0,50 0,40 0,40 0,40 0,35 0,35 0,45 0,45 0,45 0,45

DB6 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,50 0,50 0,50 0,50 0,50 0,40 0,40 0,40 0,35 0,35 0,45 0,45 0,45 0,45

DB7 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,50 0,50 0,50 0,50 0,50 0,40 0,40 0,40 0,35 0,35 0,45 0,45 0,45 0,45

DB8 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,50 0,50 0,50 0,50 0,50 0,40 0,40 0,40 0,35 0,35 0,45 0,45 0,45 0,45

DB9 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,50 0,50 0,50 0,50 0,50 0,40 0,40 0,40 0,35 0,35 0,45 0,45 0,45 0,45

LB1 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,60 0,60 0,60 0,60 0,60 0,45 0,45 0,45 0,40 0,40 0,50 0,50 0,50 0,50

LB2 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,60 0,60 0,60 0,60 0,60 0,45 0,45 0,45 0,40 0,40 0,50 0,50 0,50 0,50

LB3 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,60 0,60 0,60 0,60 0,60 0,45 0,45 0,45 0,40 0,40 0,50 0,50 0,50 0,50

LB4 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,60 0,60 0,60 0,60 0,60 0,45 0,45 0,45 0,40 0,40 0,50 0,50 0,50 0,50

LB5 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,60 0,60 0,60 0,60 0,60 0,45 0,45 0,45 0,40 0,40 0,50 0,50 0,50 0,50

O1 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,75 0,75 0,75 0,75 0,75 0,60 0,60 0,60 0,50 0,50 0,70 0,70 0,70 0,70

O2 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,75 0,75 0,75 0,75 0,75 0,60 0,60 0,60 0,50 0,50 0,70 0,70 0,70 0,70

O3 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,75 0,75 0,75 0,75 0,75 0,60 0,60 0,60 0,50 0,50 0,70 0,70 0,70 0,70

R1 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,80 0,80 0,80 0,80 0,80 0,70 0,70 0,70 0,60 0,60 0,75 0,75 0,75 0,75

R2 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,80 0,80 0,80 0,80 0,80 0,70 0,70 0,70 0,60 0,60 0,75 0,75 0,75 0,75

Y1 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,70 0,70 0,70 0,70 0,70 0,50 0,50 0,50 0,45 0,45 0,60 0,60 0,60 0,60

Y2 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,70 0,70 0,70 0,70 0,70 0,50 0,50 0,50 0,45 0,45 0,60 0,60 0,60 0,60

Y3 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,70 0,70 0,70 0,70 0,70 0,50 0,50 0,50 0,45 0,45 0,60 0,60 0,60 0,60

Y4 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,75 0,70 0,70 0,70 0,70 0,70 0,50 0,50 0,50 0,45 0,45 0,60 0,60 0,60 0,60
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ride and all its alternatives and to take another mean of transport. The number n has the goal to make 

uniform alternatives’ willingness.  

Note that if there are zones with more than a color, the percentages for the two colored areas are less 

than 20%, but in a way that their sum is 20.  

For example, if there are 3 alternatives then willingness is equal to: 

1/3 x 0,2 x (1-willingnessQ). 

 

In case of [DB4, *, *,2] the willingnessA to accept alternativesxxxvi is 

 

Table 39 – example of willingnessA to accept alternative destinations for lower tariffs 

In the second peak (evening), the same considerations of the first peak are valid, but it is important 

to remember that the most attractive areas are now the suburban nodes.  

During the second peak (fourth time-slot) the trend in inverted so that willingnessQ is the transposed 

of the matrix of the time-slot. 

 

Table 40 – full matrix of willingnessQ in second peak slot (4th time-slot) 

notWillingness matrixes 

                                                
xxxvi Non displayed rows and columns have a willingness to accept the alternative equal to 0. 

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 Y1 Y2 Y3 Y4

LB1 0,100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB3 0 0,050 0,050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB4 0 0 0 0,017 0 0,017 0,017 0 0,017 0,017 0,017 0 0 0 0 0 0 0 0 0 0 0 0

LB5 0 0 0 0 0,025 0,025 0 0,025 0,025 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O1 0,020 0 0 0 0 0 0 0 0 0 0 0,020 0,020 0 0 0 0 0 0 0,020 0,020 0,020 0

O2 0 0 0 0 0 0,030 0 0 0 0 0 0 0 0 0,030 0 0 0 0 0 0,030 0 0,030

O3 0 0 0,020 0,020 0 0,020 0,020 0 0 0 0 0 0 0 0,020 0 0 0 0 0 0,020 0 0

R1 0 0,016 0,016 0,016 0 0 0 0 0 0 0 0 0,016 0,016 0 0 0 0,016 0,016 0 0,016 0 0

R2 0 0 0 0 0,016 0,016 0 0 0 0 0 0 0 0 0 0 0,016 0,016 0 0,016 0,016 0,016 0,016

Y1 0,055 0 0 0 0 0 0 0 0 0 0 0,055 0 0 0 0 0 0 0 0 0 0 0

Y2 0 0 0 0 0 0 0 0 0 0 0 0,037 0,037 0,037 0 0 0 0 0 0 0 0 0

Y3 0 0 0 0 0,110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y4 0 0 0 0 0,022 0,022 0 0,022 0,022 0 0 0 0 0 0 0,022 0 0 0 0 0 0 0

[*,*,4] DB1 DB10 DB11 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,80 0,80 0,80 0,85 0,85 0,75 0,75 0,75 0,75

DB10 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,80 0,80 0,80 0,85 0,85 0,75 0,75 0,75 0,75

DB11 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,80 0,80 0,80 0,85 0,85 0,75 0,75 0,75 0,75

DB2 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,80 0,80 0,80 0,85 0,85 0,75 0,75 0,75 0,75

DB3 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,80 0,80 0,80 0,85 0,85 0,75 0,75 0,75 0,75

DB4 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,80 0,80 0,80 0,85 0,85 0,75 0,75 0,75 0,75

DB5 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,80 0,80 0,80 0,85 0,85 0,75 0,75 0,75 0,75

DB6 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,80 0,80 0,80 0,85 0,85 0,75 0,75 0,75 0,75

DB7 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,80 0,80 0,80 0,85 0,85 0,75 0,75 0,75 0,75

DB8 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,80 0,80 0,80 0,85 0,85 0,75 0,75 0,75 0,75

DB9 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,60 0,70 0,70 0,70 0,70 0,70 0,80 0,80 0,80 0,85 0,85 0,75 0,75 0,75 0,75

LB1 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,60 0,60 0,60 0,60 0,60 0,75 0,75 0,75 0,80 0,80 0,70 0,70 0,70 0,70

LB2 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,60 0,60 0,60 0,60 0,60 0,75 0,75 0,75 0,80 0,80 0,70 0,70 0,70 0,70

LB3 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,60 0,60 0,60 0,60 0,60 0,75 0,75 0,75 0,80 0,80 0,70 0,70 0,70 0,70

LB4 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,60 0,60 0,60 0,60 0,60 0,75 0,75 0,75 0,80 0,80 0,70 0,70 0,70 0,70

LB5 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,60 0,60 0,60 0,60 0,60 0,75 0,75 0,75 0,80 0,80 0,70 0,70 0,70 0,70

O1 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,45 0,45 0,45 0,45 0,45 0,60 0,60 0,60 0,70 0,70 0,50 0,50 0,50 0,50

O2 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,45 0,45 0,45 0,45 0,45 0,60 0,60 0,60 0,70 0,70 0,50 0,50 0,50 0,50

O3 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,45 0,45 0,45 0,45 0,45 0,60 0,60 0,60 0,70 0,70 0,50 0,50 0,50 0,50

R1 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,40 0,40 0,40 0,40 0,40 0,50 0,50 0,50 0,60 0,60 0,45 0,45 0,45 0,45

R2 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,40 0,40 0,40 0,40 0,40 0,50 0,50 0,50 0,60 0,60 0,45 0,45 0,45 0,45

Y1 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,50 0,50 0,50 0,50 0,50 0,70 0,70 0,70 0,75 0,75 0,60 0,60 0,60 0,60

Y2 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,50 0,50 0,50 0,50 0,50 0,70 0,70 0,70 0,75 0,75 0,60 0,60 0,60 0,60

Y3 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,50 0,50 0,50 0,50 0,50 0,70 0,70 0,70 0,75 0,75 0,60 0,60 0,60 0,60

Y4 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,45 0,50 0,50 0,50 0,50 0,50 0,70 0,70 0,70 0,75 0,75 0,60 0,60 0,60 0,60
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notWillingness is a parameter representing, for each time slot, the probability to reject a ride (or the 

unattractiveness) of a destination; in this case it defined by 5 matrixes.  

It is defined as the 80% of users who refuse an increased tariff to go to desired destinations, so it is 

so calculated:  

𝑛𝑜𝑡𝑊𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠ℎ𝑘
𝑜 = 0,8 × (1 − 𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑄ℎ𝑘

𝑜 )   ∀ ℎ, 𝑘, 𝑜, 

where 𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑄ℎ𝑘
𝑜  is the attractivity of the desired destination (k). 

Value of notWillingness are illustrated in the tables below. 

 

Table 41 – notWillingness origin-destination for off-peaks (time slots 1, 3 and 5). 

 

 

Table 42 – notWillingness origin-destination for 1st peak (time slot 2) 

[*,*,1] DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

DB2 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

DB3 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

DB4 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

DB5 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

DB6 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

DB7 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

DB8 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

DB9 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

DB10 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

DB11 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

LB1 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

LB2 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

LB3 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

LB4 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

LB5 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

O1 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

O2 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

O3 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

R1 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

R2 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

Y1 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

Y2 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

Y3 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

Y4 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40

[*,*,2] DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,50 0,40 0,40 0,40 0,48 0,48 0,48 0,52 0,52 0,44 0,44 0,44 0,44

DB10 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,50 0,40 0,40 0,40 0,48 0,48 0,48 0,52 0,52 0,44 0,44 0,44 0,44

DB11 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,50 0,40 0,40 0,40 0,48 0,48 0,48 0,52 0,52 0,44 0,44 0,44 0,44

DB2 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,50 0,40 0,40 0,40 0,48 0,48 0,48 0,52 0,52 0,44 0,44 0,44 0,44

DB3 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,50 0,40 0,40 0,40 0,48 0,48 0,48 0,52 0,52 0,44 0,44 0,44 0,44

DB4 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,50 0,40 0,40 0,40 0,48 0,48 0,48 0,52 0,52 0,44 0,44 0,44 0,44

DB5 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,50 0,40 0,40 0,40 0,48 0,48 0,48 0,52 0,52 0,44 0,44 0,44 0,44

DB6 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,50 0,40 0,40 0,40 0,48 0,48 0,48 0,52 0,52 0,44 0,44 0,44 0,44

DB7 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,50 0,40 0,40 0,40 0,48 0,48 0,48 0,52 0,52 0,44 0,44 0,44 0,44

DB8 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,50 0,40 0,40 0,40 0,48 0,48 0,48 0,52 0,52 0,44 0,44 0,44 0,44

DB9 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,50 0,40 0,40 0,40 0,48 0,48 0,48 0,52 0,52 0,44 0,44 0,44 0,44

LB1 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,32 0,40 0,32 0,32 0,32 0,44 0,44 0,44 0,48 0,48 0,40 0,40 0,40 0,40

LB2 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,32 0,40 0,32 0,32 0,32 0,44 0,44 0,44 0,48 0,48 0,40 0,40 0,40 0,40

LB3 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,32 0,40 0,32 0,32 0,32 0,44 0,44 0,44 0,48 0,48 0,40 0,40 0,40 0,40

LB4 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,32 0,40 0,32 0,32 0,32 0,44 0,44 0,44 0,48 0,48 0,40 0,40 0,40 0,40

LB5 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,32 0,40 0,32 0,32 0,32 0,44 0,44 0,44 0,48 0,48 0,40 0,40 0,40 0,40

O1 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,25 0,20 0,20 0,20 0,32 0,32 0,32 0,40 0,40 0,24 0,24 0,24 0,24

O2 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,25 0,20 0,20 0,20 0,32 0,32 0,32 0,40 0,40 0,24 0,24 0,24 0,24

O3 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,25 0,20 0,20 0,20 0,32 0,32 0,32 0,40 0,40 0,24 0,24 0,24 0,24

R1 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,16 0,20 0,16 0,16 0,16 0,24 0,24 0,24 0,32 0,32 0,20 0,20 0,20 0,20

R2 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,15 0,16 0,20 0,16 0,16 0,16 0,24 0,24 0,24 0,32 0,32 0,20 0,20 0,20 0,20

Y1 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,24 0,30 0,24 0,24 0,24 0,40 0,40 0,40 0,44 0,44 0,32 0,32 0,32 0,32

Y2 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,24 0,30 0,24 0,24 0,24 0,40 0,40 0,40 0,44 0,44 0,32 0,32 0,32 0,32

Y3 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,24 0,30 0,24 0,24 0,24 0,40 0,40 0,40 0,44 0,44 0,32 0,32 0,32 0,32

Y4 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,24 0,30 0,24 0,24 0,24 0,40 0,40 0,40 0,44 0,44 0,32 0,32 0,32 0,32
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Table 43 – notWillingness origin-destination for 2nd peak (time slot 4) 

 

8.2.4. Run file 

The run file permits to write all the instructions in a simple script. It is launched by AMPL with the 

command: include filename.run, so its extension is .run. The scripts provide a series of memorized 

instruction, executed in sequence, among which: loading model and data, specifying solver and 

options, launching solver and stamping results. The run file can be viewed in Appendix A. 

Any code reference for additional coding information can be find in the “The AMPL Book” on AMPL 

website90. 

  

[*,*,4] DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,24 0,24 0,24 0,24 0,24 0,16 0,16 0,16 0,15 0,15 0,20 0,20 0,20 0,20

DB10 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,24 0,24 0,24 0,24 0,24 0,16 0,16 0,16 0,15 0,15 0,20 0,20 0,20 0,20

DB11 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,24 0,24 0,24 0,24 0,24 0,16 0,16 0,16 0,15 0,15 0,20 0,20 0,20 0,20

DB2 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,24 0,24 0,24 0,24 0,24 0,16 0,16 0,16 0,15 0,15 0,20 0,20 0,20 0,20

DB3 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,24 0,24 0,24 0,24 0,24 0,16 0,16 0,16 0,15 0,15 0,20 0,20 0,20 0,20

DB4 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,24 0,24 0,24 0,24 0,24 0,16 0,16 0,16 0,15 0,15 0,20 0,20 0,20 0,20

DB5 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,24 0,24 0,24 0,24 0,24 0,16 0,16 0,16 0,15 0,15 0,20 0,20 0,20 0,20

DB6 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,24 0,24 0,24 0,24 0,24 0,16 0,16 0,16 0,15 0,15 0,20 0,20 0,20 0,20

DB7 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,24 0,24 0,24 0,24 0,24 0,16 0,16 0,16 0,15 0,15 0,20 0,20 0,20 0,20

DB8 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,24 0,24 0,24 0,24 0,24 0,16 0,16 0,16 0,15 0,15 0,20 0,20 0,20 0,20

DB9 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,32 0,24 0,24 0,24 0,24 0,24 0,16 0,16 0,16 0,15 0,15 0,20 0,20 0,20 0,20

LB1 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,32 0,32 0,32 0,32 0,32 0,20 0,20 0,20 0,20 0,20 0,24 0,24 0,24 0,24

LB2 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,32 0,32 0,32 0,32 0,32 0,20 0,20 0,20 0,20 0,20 0,24 0,24 0,24 0,24

LB3 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,32 0,32 0,32 0,32 0,32 0,20 0,20 0,20 0,20 0,20 0,24 0,24 0,24 0,24

LB4 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,32 0,32 0,32 0,32 0,32 0,20 0,20 0,20 0,20 0,20 0,24 0,24 0,24 0,24

LB5 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,32 0,32 0,32 0,32 0,32 0,20 0,20 0,20 0,20 0,20 0,24 0,24 0,24 0,24

O1 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,44 0,44 0,44 0,44 0,44 0,32 0,32 0,32 0,30 0,30 0,40 0,40 0,40 0,40

O2 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,44 0,44 0,44 0,44 0,44 0,32 0,32 0,32 0,30 0,30 0,40 0,40 0,40 0,40

O3 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,48 0,44 0,44 0,44 0,44 0,44 0,32 0,32 0,32 0,30 0,30 0,40 0,40 0,40 0,40

R1 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,48 0,48 0,48 0,48 0,48 0,40 0,40 0,40 0,40 0,40 0,44 0,44 0,44 0,44

R2 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,48 0,48 0,48 0,48 0,48 0,40 0,40 0,40 0,40 0,40 0,44 0,44 0,44 0,44

Y1 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,40 0,40 0,40 0,40 0,40 0,24 0,24 0,24 0,25 0,25 0,32 0,32 0,32 0,32

Y2 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,40 0,40 0,40 0,40 0,40 0,24 0,24 0,24 0,25 0,25 0,32 0,32 0,32 0,32

Y3 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,40 0,40 0,40 0,40 0,40 0,24 0,24 0,24 0,25 0,25 0,32 0,32 0,32 0,32

Y4 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,44 0,40 0,40 0,40 0,40 0,40 0,24 0,24 0,24 0,25 0,25 0,32 0,32 0,32 0,32
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9. Results 

In this chapter are illustrated all the results obtained by the model application and its evidenced 

characteristics.  

Model characteristics Quantity  Model characteristics Quantity 

Number of Vehicles 1.248  Number of Markets  625  

Number of Origins 25  Number of Variables 84.500 

Number of Destinations 25  Number of Constraints 87.750 

Number of Time-slots 5  Number of Objective Functions 1 

Number of Cells 25  Number of Tariffs 5xxxvii 

Table 44 – Characteristics of the model 

As shown in the above table, there is only one function to be optimized and a lot of variables and 

constraints.  

The number of variables is calculated using the formula: 

#𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = #𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑠 + #𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑎𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑠 +  #𝑙𝑜𝑠𝑡 𝑡𝑟𝑖𝑝𝑠 + #𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠xxxviii, 

where: 

#𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑠 = #𝑜𝑟𝑖𝑔𝑖𝑛𝑠 ∗ #𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ #𝑠𝑙𝑜𝑡𝑠 

#𝑙𝑜𝑠𝑡 𝑡𝑟𝑖𝑝𝑠 = #𝑜𝑟𝑖𝑔𝑖𝑛𝑠 ∗ #𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ #𝑠𝑙𝑜𝑡𝑠 

#𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠 = #𝑐𝑒𝑙𝑙𝑠 ∗ #𝑠𝑙𝑜𝑡𝑠 

 

The number of constraints is so computed: 

#𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = #𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + #𝑡𝑜𝑡𝑎𝑙𝑀𝑎𝑟𝑘𝑒𝑡𝐷𝑒𝑚𝑎𝑛𝑑 + #𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 

+#𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑄 + #𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝐴 + #𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑈𝑝𝑑𝑎𝑡𝑒 + #𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 

where 

#𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = #𝑐𝑒𝑙𝑙𝑠 × #𝑠𝑙𝑜𝑡𝑠 

#𝑡𝑜𝑡𝑎𝑙𝑀𝑎𝑟𝑘𝑒𝑡𝐷𝑒𝑚𝑎𝑛𝑑 = #𝑜𝑟𝑖𝑔𝑖𝑛𝑠 ∗ #𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ #𝑠𝑙𝑜𝑡𝑠 

#𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = #𝑜𝑟𝑖𝑔𝑖𝑛𝑠 ∗ #𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ #𝑠𝑙𝑜𝑡𝑠 

#𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝑄 = #𝑜𝑟𝑖𝑔𝑖𝑛𝑠 ∗ #𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ #𝑠𝑙𝑜𝑡𝑠 

#𝑤𝑖𝑙𝑙𝑖𝑛𝑔𝑛𝑒𝑠𝑠𝐴 = #𝑜𝑟𝑖𝑔𝑖𝑛𝑠 ∗ #𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ #𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ #𝑠𝑙𝑜𝑡𝑠 

#𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑈𝑝𝑑𝑎𝑡𝑒 = #𝑜𝑟𝑖𝑔𝑖𝑛𝑠 ∗ #𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ (# − 1)𝑠𝑙𝑜𝑡𝑠xxxix  

#𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = #𝑐𝑒𝑙𝑙𝑠 

 

Outputs: 

1) Time slot 1 - Off-peak 1 

o Sold trips 

                                                
xxxvii The five tariffs are: standard, discount1, discount2, increment1, increment2 
xxxviii Note that we know the starting distribution of the operating day, but not the final distribution.  
xxxix 4 and not 5 because there isn’t a sixth slot.  
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Table 45 – sold trips during the 1st time-slot 

o Lost Trips 

 

Table 46 – lost trips during the 1st time-slot 

Results for the 1st slot are: 

 

Variable Value 

 

Number of Sold Trips: 465 

Number of Lost Trips: 889 

Total Demand: 1.354 

Profit  1.737,79 €  

Table 47– Summary results for first time-slot 

 

Slot_1 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB2 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB3 0 1 3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB4 0 0 0 4 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB5 1 0 1 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB6 0 1 1 0 0 3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB7 1 0 1 0 0 0 3 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB8 0 1 0 0 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB9 1 0 0 0 1 0 0 0 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB10 0 0 1 0 1 0 0 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DB11 0 0 1 0 0 0 1 1 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LB1 4 0 0 1 1 0 0 0 0 1 1 4 3 0 0 1 4 0 0 1 0 3 4 0 0

LB2 0 0 0 1 0 0 1 0 0 1 0 4 3 4 0 0 4 0 0 3 0 0 3 0 0

LB3 1 4 3 0 0 0 0 1 1 1 0 0 4 3 0 1 0 0 0 0 0 1 4 0 1

LB4 1 0 1 3 0 3 4 0 4 3 3 0 0 0 4 0 0 0 0 0 0 0 0 0 0

LB5 1 1 0 0 3 3 0 4 4 0 0 0 0 0 0 3 0 1 0 0 0 0 1 0 4

O1 3 1 0 0 0 1 0 0 1 0 1 4 4 1 1 0 3 4 1 0 3 4 4 3 1

O2 0 0 1 1 0 3 1 1 1 0 1 0 0 0 4 0 4 4 4 4 4 1 3 0 3

O3 1 0 4 4 0 3 4 0 0 0 0 0 1 0 3 0 1 4 4 4 1 0 3 0 1

R1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 3 1 1 1 0 0

R2 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0 3 0 0 0 1

Y1 3 0 0 0 0 0 0 0 0 0 0 4 0 1 1 0 4 1 0 1 4 4 0 4 0

Y2 0 1 0 0 0 0 1 0 0 1 0 4 3 3 0 0 4 3 3 4 4 0 4 0 0

Y3 1 0 1 0 4 1 1 0 0 1 0 1 1 0 1 1 3 0 1 0 3 4 0 3 4

Y4 1 0 1 0 4 4 0 4 3 0 0 1 1 0 0 3 0 4 0 1 0 0 0 1 3

Slot_1 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 3 1 1 1 1 0 1 1 0 1 1 8 1 2 1 2 7 1 0 0 0 8 1 2 1

DB2 0 3 0 1 1 2 1 0 1 0 0 1 0 7 2 0 1 1 1 8 1 1 1 1 0

DB3 0 1 3 1 0 1 0 1 1 1 1 1 2 8 0 1 0 1 5 5 1 1 0 0 1

DB4 0 1 1 3 0 1 1 0 1 0 1 0 1 7 2 0 1 0 0 6 1 2 0 0 2

DB5 1 1 1 1 2 1 0 1 1 1 0 1 0 7 0 2 0 0 0 8 1 2 2 0 0

DB6 1 1 1 1 1 2 0 1 1 0 1 2 1 7 2 0 1 1 1 7 2 0 2 1 2

DB7 1 0 1 0 1 0 2 0 0 1 1 2 1 1 7 1 0 2 7 2 2 2 1 1 2

DB8 1 1 0 0 1 1 1 2 0 1 1 2 0 1 2 6 1 2 1 0 2 0 1 1 8

DB9 1 0 1 1 1 2 1 0 3 1 1 2 1 1 8 7 1 0 0 1 2 1 1 2 7

DB10 0 0 1 1 1 1 0 1 0 3 1 0 2 1 7 2 1 0 2 0 0 1 1 1 2

DB11 2 1 1 0 1 0 1 1 1 2 3 2 2 2 8 1 2 2 1 0 1 0 2 1 1

LB1 4 0 1 1 1 1 0 1 0 1 1 4 3 0 0 1 4 0 1 1 1 3 4 0 1

LB2 1 0 0 1 0 1 1 0 1 1 0 4 2 3 0 0 3 0 0 2 0 0 2 0 1

LB3 1 4 2 1 0 1 0 1 1 1 0 0 4 2 1 1 1 1 0 8 0 1 4 0 1

LB4 1 0 1 2 1 3 4 0 3 3 2 1 2 2 3 2 0 6 7 0 2 0 1 1 0

LB5 1 1 0 1 3 3 0 3 4 0 0 1 1 1 0 3 0 1 1 1 2 0 1 1 4

O1 3 1 1 1 0 1 1 1 1 1 1 3 4 1 1 1 3 4 1 1 2 4 4 2 1

O2 1 1 1 1 0 3 1 1 1 0 1 1 1 0 4 1 3 4 4 4 3 1 3 1 2

O3 1 1 3 4 0 2 3 1 0 0 1 1 1 0 3 0 1 4 4 4 1 1 3 0 1

R1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 3 1 1 1 0 0

R2 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 3 1 0 0 1

Y1 3 1 0 0 1 0 0 1 1 1 0 3 1 1 1 1 3 1 0 1 4 3 1 3 1

Y2 1 1 1 1 0 1 1 0 0 1 1 4 3 2 0 1 4 3 3 4 4 0 3 0 0

Y3 1 1 1 0 4 1 1 1 1 1 0 1 1 1 1 1 3 1 1 1 3 4 1 3 3

Y4 1 0 1 1 3 3 1 4 2 0 1 1 1 0 0 3 2 3 1 1 5 0 0 4 2

34%
66%

Sold

Lost
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2) Time slot 2 – 1st peak 

o Sold trips  

 

Table 48– sold trips during the 1st peak (2nt time-slot) 

o Lost trips  

 

Table 49 – lost trips during the 1st peak (2nd time-slot) 

Results for the 2nd slot are: 

Variable Value 

 

Number of Sold Trips: 912 

Number of Lost Trips: 2.099 

Total Demand: 3.011 

Profit  16.727 €  

Table 50 – Summary results for second time-slot 

Slot_2 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 0 1 1 1 0 0 0 0 0 0 1 0 0 2 1 2 0 6 7 10 11 0 1 0 6

DB2 0 1 0 2 2 1 2 0 0 0 0 0 0 0 3 1 7 0 0 0 11 4 0 5 0

DB3 1 0 2 2 0 0 1 1 1 1 1 0 0 0 2 2 7 0 0 0 11 6 0 5 5

DB4 0 1 0 2 1 2 0 1 0 2 0 0 0 0 1 2 8 6 0 0 11 4 0 5 5

DB5 0 0 1 2 1 0 1 1 1 0 2 0 0 2 1 0 7 6 6 12 0 0 0 0 0

DB6 1 0 1 1 0 0 1 0 1 0 1 4 1 3 2 0 6 0 0 9 0 6 5 4 1

DB7 2 1 1 1 0 0 1 0 0 0 2 0 0 0 0 1 8 0 0 0 11 5 0 6 5

DB8 0 1 2 1 0 1 1 2 1 0 0 0 0 2 1 0 5 0 5 10 9 0 5 0 0

DB9 0 0 1 1 0 2 0 1 0 1 0 0 0 1 0 0 7 5 3 11 10 0 5 0 0

DB10 1 0 0 0 2 0 1 2 1 1 1 0 0 1 0 0 8 6 0 9 0 0 5 5 0

DB11 1 1 0 0 2 0 0 0 0 2 1 0 0 0 0 0 4 0 0 10 10 4 0 6 0

LB1 1 1 0 0 0 2 0 0 2 1 2 0 0 2 1 0 4 4 6 6 8 3 2 1 1

LB2 0 0 0 2 2 0 0 2 2 1 0 0 0 0 1 1 5 4 5 8 8 2 3 1 1

LB3 0 0 2 0 0 1 2 0 1 2 0 0 0 1 0 1 5 5 5 6 6 3 2 3 2

LB4 2 0 1 2 0 1 0 0 2 1 2 2 2 0 1 1 5 6 5 6 7 1 3 2 3

LB5 2 0 1 1 0 0 0 0 0 0 0 1 2 0 0 0 4 5 6 7 7 4 3 2 3

O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4 4 0 1 2 2

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 3 1 0 0 0

O3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 0 0 0 1

R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 1 0

R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1

Y1 1 1 0 0 0 1 1 0 0 1 0 1 2 2 0 0 2 1 1 4 6 1 0 1 1

Y2 1 0 1 1 0 0 1 1 1 1 0 0 2 0 2 0 2 4 2 6 6 1 2 0 1

Y3 0 0 0 0 1 1 0 1 0 0 1 2 1 0 1 2 1 2 3 4 5 0 1 1 1

Y4 0 0 0 1 0 0 1 1 0 1 1 0 1 2 0 0 1 3 4 4 6 0 2 1 0

Slot_2 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 0 1 1 1 1 1 0 1 1 1 1 4 2 2 1 3 16 9 9 16 17 11 10 11 6

DB2 1 2 0 2 2 1 2 1 1 0 1 5 3 4 3 2 11 16 19 30 17 5 11 5 12

DB3 1 1 2 2 1 1 2 2 2 2 2 2 8 7 2 3 10 17 14 28 17 6 9 6 5

DB4 0 1 0 2 1 2 1 2 0 2 0 5 5 3 2 2 10 8 14 26 17 5 11 6 5

DB5 1 1 1 2 1 1 1 1 2 0 2 2 6 6 1 7 10 9 9 18 27 10 10 11 11

DB6 1 1 2 1 1 1 1 1 2 0 1 4 2 4 2 8 9 17 18 14 26 6 5 5 8

DB7 2 1 1 2 1 1 2 1 1 1 2 6 3 5 8 6 10 16 18 24 17 5 9 6 5

DB8 0 1 2 2 0 2 2 2 2 1 0 4 3 2 1 3 8 19 8 15 18 12 6 11 9

DB9 0 1 1 1 0 2 0 2 0 1 0 2 5 2 4 4 10 8 13 18 17 12 6 10 10

DB10 2 0 0 1 2 3 2 2 2 2 2 3 8 1 7 3 10 11 14 14 24 12 5 5 12

DB11 1 2 1 0 2 4 0 0 1 2 2 6 8 4 3 2 9 18 18 15 17 5 9 6 12

LB1 1 1 1 1 0 1 1 1 1 1 1 0 1 2 1 0 5 5 6 9 10 3 3 2 1

LB2 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 1 6 5 6 11 11 3 4 2 2

LB3 1 1 1 0 0 1 1 1 1 1 1 1 0 2 0 1 5 5 6 8 8 4 3 3 2

LB4 1 0 1 1 1 1 1 1 1 1 1 2 2 1 1 2 5 6 6 8 10 1 3 2 3

LB5 1 0 1 1 0 0 0 0 0 0 0 1 2 0 0 1 5 6 6 9 9 4 3 3 4

O1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 2 2 4 4 0 1 1 1

O2 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 2 2 1 2 3 1 1 1 0

O3 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 2 3 3 0 1 1 1

R1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 0

R2 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 2 1 1 1 1 1

Y1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 3 2 1 5 6 2 0 1 1

Y2 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 3 4 3 6 6 1 2 1 1

Y3 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 2 2 4 5 6 1 2 2 2

Y4 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 2 4 4 5 6 0 2 2 0

30%70%

Sold

Lost
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The result is an undistributed shift of cars from suburbs (low zones) to center (medium and high 

zones) during the first peak because of the already mentioned house-work trend, but this tendency is 

alleviated by the tariffs’ increments, which stimulate user-relocation, discouraging an uncontrolled 

“exodus”.  

3) Off-peak2 

o Sold quantities  

 

Table 51 – sold trips during the 2nd off-peak (3rd time-slot) 

o Lost trips  

 

Table 52 – lost trips during the 2nd off-peak (3rd time-slot) 

Results for the 3rd slot are: 

Note that users’ behavior reflects the situation of the first off-peak with the only difference that there 

is a higher amount of demand and requests. In fact, the middle off-peak goes from 10:00 to 17:00, a 

Slot_3 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB11 0 0 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 0 1 2 1 1 0

DB2 1 0 0 0 1 0 0 1 1 0 1 1 0 2 0 0 1 1 1 0 1 1 1 0 1

DB3 1 0 0 1 0 0 0 0 1 0 1 0 0 3 1 0 1 1 3 0 0 0 0 1 1

DB4 1 0 0 0 0 0 0 1 0 1 1 0 1 4 1 0 0 1 0 0 1 1 0 1 1

DB5 0 1 1 1 0 0 1 1 0 1 0 0 1 4 1 0 1 0 1 4 0 0 1 0 1

DB6 1 1 1 1 1 0 1 1 1 0 1 1 1 4 1 1 0 1 0 4 0 1 1 0 1

DB7 1 1 0 0 1 1 0 0 1 0 0 1 1 0 3 1 1 1 0 0 1 0 1 0 0

DB8 0 1 0 1 0 0 0 0 1 0 1 1 1 1 1 4 0 1 1 0 0 0 1 1 4

DB9 1 0 0 1 1 0 0 0 0 0 1 1 1 1 0 4 0 1 1 0 0 1 1 1 4

DB1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 4 0 1 0 1 0 1 1 1 1 0

DB10 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 0

LB1 3 1 0 0 0 0 0 0 1 1 1 4 4 1 1 1 5 1 0 0 1 5 4 0 0

LB2 1 1 0 1 0 0 0 1 0 1 0 5 3 3 1 1 4 1 1 4 1 1 5 1 1

LB3 1 5 5 1 1 1 0 1 1 1 1 1 3 4 1 1 1 1 1 3 1 1 5 1 1

LB4 0 0 0 0 0 3 2 1 3 4 1 1 1 0 0 1 0 4 1 0 0 0 1 1 1

LB5 1 1 0 0 1 1 1 3 0 1 1 1 1 1 1 3 0 1 1 1 0 0 0 1 4

O1 4 1 1 1 0 0 1 1 0 1 1 4 5 0 0 0 5 4 0 0 4 4 5 3 1

O2 1 1 1 0 1 4 1 1 1 1 1 0 1 0 4 1 4 4 5 3 5 1 4 1 4

O3 0 1 3 3 1 3 5 0 1 0 0 0 1 1 3 1 1 4 4 4 1 0 4 0 1

R1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 4 1 0 1 1 1

R2 1 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 4 1 1 1 1

Y1 4 1 0 1 1 1 0 0 1 1 0 5 1 1 0 1 4 1 0 0 3 4 0 4 0

Y2 0 1 0 1 1 0 0 0 1 1 1 3 4 4 1 1 4 3 4 4 3 0 5 0 1

Y3 1 1 1 0 3 0 1 0 1 0 1 1 1 0 1 0 4 1 0 1 3 4 1 4 4

Y4 0 1 0 1 5 5 1 4 3 0 1 0 0 0 0 3 1 4 0 0 0 0 0 4 4

Slot_3 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 9 1 2 1 1 2 1 2 1 2 1 8 1 2 2 2 7 2 2 1 2 5 2 1 1

DB2 1 6 2 1 2 1 1 2 2 1 1 1 2 5 1 1 2 1 2 9 1 1 2 1 1

DB3 1 1 7 2 1 1 1 1 2 1 1 1 1 3 1 1 2 2 4 9 1 1 1 1 2

DB4 2 3 3 7 1 1 2 1 1 2 1 1 1 3 2 1 1 1 1 8 2 1 1 2 1

DB5 1 2 2 1 6 1 2 2 1 1 1 1 1 3 2 1 1 1 1 4 3 2 1 2 1

DB6 2 1 2 1 2 7 2 1 1 3 1 2 1 4 2 1 1 1 1 3 3 1 1 1 1

DB7 1 1 1 1 2 2 8 1 2 1 3 2 2 1 6 2 2 1 8 3 2 1 2 1 1

DB8 1 2 1 2 1 1 1 9 1 1 2 1 1 2 2 3 1 2 2 2 2 2 1 2 4

DB9 1 1 3 2 2 1 1 1 7 1 1 1 2 1 7 3 1 2 1 2 1 1 2 1 3

DB10 1 1 2 1 1 1 3 1 1 8 2 1 1 1 4 1 2 1 2 1 2 2 2 1 1

DB11 1 1 2 2 1 1 3 2 2 3 8 1 2 1 6 1 1 1 2 1 1 1 2 1 1

LB1 3 1 1 1 1 1 1 1 2 2 2 3 4 2 2 1 4 2 1 1 2 4 3 1 1

LB2 2 2 1 2 1 1 1 1 1 2 1 4 3 3 1 2 3 2 1 4 2 2 4 1 2

LB3 1 4 4 2 2 2 1 1 1 1 1 1 3 4 2 1 1 2 1 3 2 2 4 2 1

LB4 1 1 3 7 1 3 7 2 3 5 5 2 1 1 8 2 3 3 5 1 2 1 1 1 1

LB5 2 1 1 1 8 8 1 5 9 2 2 2 1 1 2 3 2 1 1 2 1 3 1 1 3

O1 3 1 1 2 1 1 1 1 1 1 2 3 4 1 1 1 4 4 1 1 3 4 4 3 1

O2 2 1 2 1 2 4 1 1 1 2 2 1 1 1 3 2 4 3 4 3 4 2 3 2 3

O3 1 1 3 3 2 3 4 1 2 1 1 1 2 1 3 1 1 4 3 4 2 1 4 1 1

R1 1 2 1 1 1 1 1 1 1 2 1 2 1 1 2 1 1 2 2 4 2 1 1 1 1

R2 2 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 3 2 1 1 1

Y1 3 1 1 1 1 2 1 1 2 2 1 4 1 1 1 2 3 2 1 1 3 3 1 3 1

Y2 1 2 1 2 1 1 1 1 2 1 2 3 3 4 2 1 4 3 4 3 3 1 4 1 1

Y3 2 2 2 1 3 1 1 1 2 1 2 2 1 1 2 1 4 1 1 1 3 3 1 4 4

Y4 1 1 1 1 4 4 2 3 5 1 1 1 1 1 1 3 1 3 1 3 6 1 1 4 3
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range that includes also lunch, that can be considered a little peak because it is less relevant than other 

peak moments. 

Variable Value 

 

Number of Sold Trips: 679 

Number of Lost Trips: 1.246 

Total Demand: 1.925 

Profit        3.095 €  

Table 53 – Summary results for third time-slot 

4) Peak2 

o Sold quantities  

 

Table 54 – sold trips during the 2nd peak (4th time-slot) 

o Lost trips  

 

Table 55 – lost trips during the 2nd off-peak (3rd time-slot) 

35%
65%

Sold

Lost

Slot_4 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 2 0 0 1 1 1 1 1 0 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 1

DB2 1 2 1 2 2 2 1 0 0 1 0 1 1 0 0 2 0 0 0 0 0 1 0 1 1

DB3 1 1 1 0 0 0 0 0 2 0 2 2 1 0 0 0 0 0 0 0 0 1 0 0 0

DB4 0 0 0 2 0 1 1 0 0 2 2 2 1 0 2 1 0 0 0 0 0 1 0 0 1

DB5 1 0 2 0 1 1 2 0 1 2 1 0 2 0 2 0 0 0 0 0 0 0 0 1 0

DB6 1 0 0 1 0 1 2 2 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1

DB7 2 0 0 0 1 1 1 2 0 0 0 1 1 2 0 0 0 0 0 0 0 0 1 0 0

DB8 2 2 1 0 1 1 1 1 0 2 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0

DB9 0 2 0 0 2 0 0 2 1 0 1 2 1 1 0 0 0 0 0 0 0 1 1 0 0

DB10 1 0 2 2 2 2 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

DB11 2 0 1 1 1 2 2 1 0 0 0 2 0 2 2 0 0 0 0 0 0 1 0 0 1

LB1 2 2 4 1 3 2 1 3 1 2 1 2 1 1 1 1 0 0 1 0 0 0 1 0 0

LB2 2 2 3 1 4 4 2 2 3 3 4 0 2 0 0 1 1 0 0 0 0 0 0 0 0

LB3 1 1 3 2 2 4 2 1 4 3 3 0 1 0 1 2 0 1 0 0 0 0 1 2 0

LB4 4 2 2 1 3 1 2 3 1 3 3 0 1 1 2 1 0 0 0 0 0 0 1 0 2

LB5 4 2 3 2 1 2 1 3 1 1 3 1 1 1 1 2 0 0 0 0 0 0 1 0 1

O1 8 6 5 5 5 6 7 8 5 6 6 5 5 5 6 6 2 0 2 1 2 3 4 3 3

O2 8 8 6 5 8 7 8 8 6 6 6 4 4 6 6 4 1 1 1 0 0 3 4 4 2

O3 6 7 7 6 6 7 6 5 7 5 6 5 5 5 7 6 0 0 0 0 2 1 2 4 2

R1 11 10 11 9 11 10 12 11 9 10 12 5 7 10 7 5 3 2 2 2 0 5 5 6 5

R2 10 10 11 9 10 10 12 10 10 12 9 7 8 10 8 5 2 4 3 2 1 6 5 6 5

Y1 4 6 6 5 5 4 6 6 6 4 5 3 2 1 1 3 2 1 0 1 0 0 1 0 0

Y2 4 4 6 5 6 4 5 6 6 4 5 1 3 1 3 4 0 0 0 0 1 1 1 1 0

Y3 6 6 4 4 5 6 4 6 5 5 6 1 2 4 2 2 1 0 0 0 1 2 2 0 1

Y4 6 5 5 4 5 6 4 6 4 6 5 2 2 3 1 1 1 2 0 0 0 0 1 1 0

Lost_4 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 2 1 1 2 1 2 1 1 1 2 2 1 1 1 0 0 0 1 1 0 1 0 1 1 1

DB10 1 2 2 2 2 2 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1

DB11 1 2 1 1 1 0 0 0 2 0 2 1 1 0 0 1 1 1 1 1 0 1 1 0 0

DB2 1 0 1 2 1 1 1 0 1 2 2 1 1 1 1 1 1 1 1 1 1 1 0 0 1

DB3 1 1 2 1 2 1 2 1 1 2 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0

DB4 1 0 1 2 1 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1

DB5 2 0 0 0 1 1 2 2 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1

DB6 2 2 2 1 1 1 2 2 0 2 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0

DB7 0 2 0 0 2 1 1 2 1 0 2 1 1 1 0 0 0 1 1 0 0 1 1 0 1

DB8 1 1 2 2 2 2 1 2 2 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1

DB9 2 1 1 1 1 2 2 2 1 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1

LB1 2 3 4 2 3 3 2 3 2 3 2 2 1 2 1 1 1 0 1 0 0 0 1 0 1

LB2 3 3 3 1 4 4 3 2 3 3 4 0 2 1 1 2 1 0 1 0 0 0 1 0 0

LB3 2 2 4 3 2 4 2 1 4 4 4 1 2 1 2 2 0 1 0 1 0 0 1 1 1

LB4 4 3 2 1 3 1 2 3 1 4 3 1 1 1 2 2 0 1 0 0 1 0 1 1 1

LB5 4 2 3 2 1 2 2 4 1 2 3 2 2 1 2 2 1 0 1 0 0 1 1 1 1

O1 11 9 8 8 8 8 10 11 8 8 9 6 6 5 4 6 2 0 2 1 1 3 4 3 3

O2 10 10 8 8 11 10 11 10 9 9 8 5 5 6 5 5 2 2 1 0 0 4 4 4 2

O3 8 9 10 9 8 9 9 8 10 8 8 5 6 6 5 6 0 0 1 1 1 2 3 4 2

R1 17 17 18 15 18 15 18 18 14 16 18 8 10 9 8 8 3 3 2 2 1 6 5 6 4

R2 15 17 18 15 16 17 18 16 16 18 14 10 11 8 8 8 2 4 4 2 2 6 5 6 4

Y1 5 6 6 6 6 5 6 6 6 5 6 3 3 2 2 3 1 1 0 1 1 0 2 1 0

Y2 5 5 6 5 6 5 6 6 6 5 5 2 3 1 4 4 1 0 1 1 1 1 1 2 1

Y3 6 6 5 5 5 6 5 6 6 6 6 2 2 4 3 2 1 0 1 1 1 2 2 0 1

Y4 6 5 6 5 6 6 5 6 5 6 6 2 3 3 1 2 1 1 1 0 0 1 1 2 1
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Results for the 4th slot are: 

Note that users’ behavior is opposite to the first peak’ behavior: there is the already mentioned work-

house trend. Note also that this tendency’s inversion reflects the colors’ change, depending on 

attractiveness.  

Variable Value 

 

Number of Sold Trips: 1.317 

Number of Lost Trips: 1.733 

Total Demand: 3.050 

Profit      23.508 €  

Table 56 – Summary results for fourth time-slot 

5) Off-Peak3 

o Sold quantities 

 

Table 57 – sold trips during the 3rd off-peak (5th time-slot) 

o Lost trips  

 

43%

57%

Sold

Lost

Slot_5 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 2 0 0 1 0 1 0 1 1 0 1 4 1 0 0 0 2 1 1 0 0 3 1 0 1

DB10 0 4 1 1 0 1 1 1 0 0 1 0 0 3 0 0 1 0 0 2 0 1 1 0 0

DB11 0 1 3 1 0 1 0 1 1 1 1 1 0 2 1 1 0 0 4 3 0 1 1 0 0

DB2 1 1 1 4 0 1 0 1 0 1 0 0 0 4 0 0 0 0 1 2 1 0 1 1 1

DB3 0 1 1 1 3 0 1 0 1 1 1 0 0 4 1 0 0 1 1 3 1 1 1 0 0

DB4 1 1 0 1 1 2 1 0 1 0 1 0 1 3 1 0 0 0 1 4 0 1 0 0 0

DB5 0 1 0 1 0 0 4 1 0 0 0 0 1 1 2 0 0 0 4 0 0 0 0 0 0

DB6 0 0 1 1 0 1 1 3 0 0 0 1 1 1 1 4 1 1 1 1 1 1 1 1 4

DB7 1 1 1 1 0 1 0 1 4 0 0 1 0 1 2 4 0 1 1 0 1 0 0 1 2

DB8 1 1 1 1 1 0 0 0 0 2 1 1 0 0 3 0 0 0 1 0 0 1 1 0 1

DB9 0 0 0 1 0 1 1 0 1 0 3 0 1 1 3 1 0 0 1 0 1 0 0 1 1

LB1 4 1 0 1 1 1 0 1 1 0 1 4 4 0 1 0 3 0 1 1 1 4 3 1 0

LB2 0 1 1 0 0 0 0 0 1 0 1 3 3 3 0 1 3 0 1 4 0 0 3 1 1

LB3 0 3 2 0 0 0 0 1 0 0 1 0 2 2 0 0 1 0 1 3 1 0 3 0 0

LB4 0 0 0 3 0 4 2 0 3 2 4 0 0 1 4 0 1 3 3 0 1 0 0 1 0

LB5 0 1 0 1 4 3 0 4 3 1 1 0 1 1 0 3 0 1 0 0 1 1 0 1 3

O1 2 1 0 1 1 1 0 0 0 0 1 3 4 0 0 0 2 4 1 0 3 3 3 4 0

O2 1 1 0 1 0 3 0 1 1 0 1 1 1 0 4 1 3 3 4 2 2 1 4 0 3

O3 0 0 4 3 0 3 3 1 0 0 1 0 0 0 4 1 0 4 3 3 0 1 3 0 0

R1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 3 0 0 0 1 0

R2 1 0 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 3 1 1 0 0

Y1 3 0 0 1 1 0 0 0 1 1 1 4 1 1 0 0 3 1 1 1 4 4 0 3 0

Y2 1 0 0 0 1 1 1 1 1 0 0 3 4 4 1 1 4 3 4 4 4 1 3 1 0

Y3 0 0 0 0 4 1 0 0 0 1 1 0 0 0 1 0 2 1 0 0 3 2 0 4 3

Y4 1 1 0 0 4 3 1 0 0 1 0 0 1 0 1 3 1 4 1 1 2 1 0 0 4

Lost_5 DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 LB1 LB2 LB3 LB4 LB5 O1 O2 O3 R1 R2 Y1 Y2 Y3 Y4

DB1 2 1 0 2 0 2 1 2 2 1 1 4 2 0 0 1 2 2 1 1 1 3 1 0 2

DB2 0 4 1 2 1 2 2 1 1 1 1 1 0 3 0 0 2 0 1 2 0 2 1 0 1

DB3 0 2 3 1 1 1 0 2 2 1 2 2 0 2 1 1 0 0 3 3 0 1 1 0 0

DB4 1 1 2 4 1 2 1 1 0 2 1 1 1 4 0 1 0 1 2 2 2 1 2 2 1

DB5 0 2 1 2 2 1 1 0 1 2 2 1 0 4 2 0 1 1 2 3 1 2 2 0 1

DB6 2 1 0 2 2 2 2 1 2 0 2 0 2 2 1 1 1 0 2 3 1 1 1 0 1

DB7 0 2 0 2 0 1 3 2 0 1 0 1 1 2 2 1 1 1 4 0 0 0 1 1 0

DB8 0 1 2 1 0 1 1 2 0 1 0 1 1 2 1 4 1 2 1 1 1 2 2 2 4

DB9 2 1 2 2 0 1 1 1 4 0 0 1 0 2 2 3 1 1 2 1 1 1 0 1 2

DB10 2 2 2 2 2 1 0 1 1 2 1 1 1 1 3 1 1 1 2 1 1 1 1 0 1

DB11 1 0 0 2 0 2 2 1 1 0 2 0 1 1 2 2 1 0 1 1 2 0 1 2 1

LB1 3 2 1 2 1 1 1 2 1 0 2 3 3 0 2 1 2 1 1 1 1 4 3 1 1

LB2 1 2 1 0 1 0 0 0 2 0 2 2 2 3 1 1 3 1 2 3 0 0 2 1 1

LB3 1 2 2 1 0 0 0 2 1 1 2 0 2 2 0 0 2 0 2 2 2 0 3 0 1

LB4 1 0 0 3 0 3 2 1 2 2 3 0 0 2 3 0 1 3 2 1 2 1 0 2 1

LB5 1 1 0 2 4 3 0 4 2 1 1 1 1 1 0 3 0 1 1 0 1 2 1 2 3

O1 2 2 0 1 1 1 0 0 0 1 1 3 4 1 0 1 2 4 1 1 2 2 2 4 1

O2 1 2 1 2 0 3 0 1 2 0 1 2 1 1 3 2 2 2 4 2 2 2 4 0 2

O3 1 1 4 2 0 2 2 2 1 1 1 0 1 1 4 1 1 4 2 2 0 1 2 0 1

R1 1 1 1 1 1 2 0 1 2 1 0 0 2 1 1 2 0 1 1 3 1 0 1 1 1

R2 1 0 2 1 2 2 1 0 1 0 1 1 1 0 1 2 2 0 1 1 3 1 1 1 1

Y1 3 1 1 1 2 0 0 0 2 1 2 3 2 2 0 0 3 1 1 1 4 3 1 3 1

Y2 2 1 1 1 1 1 2 2 2 0 0 2 4 4 2 1 3 3 4 4 4 2 3 1 1

Y3 1 1 0 0 4 2 0 1 0 1 1 1 0 0 2 0 2 2 1 1 2 2 1 3 2

Y4 1 2 1 0 4 3 2 8 4 1 1 1 1 1 2 3 1 3 1 2 2 2 0 6 3
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Table 58 – lost trips during the 3rd off-peak (5th time-slot) 

Results for the 5th slot are: 

Variable Value 

 

Number of Sold Trips: 635 

Number of Lost Trips: 857 

Total Demand: 1.492 

Profit        2.732 €  

Table 59 – Summary results for fifth time-slot 

 

 

6) Vehicle distribution evolution during time-slots. 

 

Table 60 – changes in vehicle capacity between time-slots 

  

43%

57%

Sold

Lost

Distribution Sta1 End1:Sta2 End2:Sta3 End3:Sta4 End4:Sta5 End5

DB1 23 40 3 12 87 85

DB2 23 34 3 9 68 71

DB3 24 37 3 6 79 73

DB4 23 34 3 4 56 61

DB5 24 36 4 4 73 73

DB6 24 40 5 3 74 85

DB7 23 34 3 3 74 76

DB8 24 37 4 3 78 70

DB9 25 39 4 3 64 61

DB10 24 31 3 4 67 62

DB11 23 29 3 4 68 74

LB1 52 48 11 9 28 21

LB2 52 48 11 7 26 27

LB3 52 40 11 7 29 41

LB4 52 41 5 7 27 27

LB5 52 37 5 7 22 14

Y1 52 43 61 55 10 7

Y2 52 44 50 52 13 0

Y3 52 32 55 50 5 3

Y4 52 39 49 49 6 0

O1 86 74 157 151 50 44

O2 86 67 124 114 9 0

O3 88 64 119 105 7 10

R1 130 137 261 275 101 124

R2 130 143 291 305 127 139
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9.1. Aggregate data 

The model results in a total profit obtained by user-relocations in a standard week/day of 48.000 

euro, demonstrating a positive impact of the model. 

Main demand and economics data are: 

 

Variable Value 

Total profit:      47.799 €  

Total Sold Trips: 4.008 

Number of Lost Trips: 6.824 

Total Demand: 10.832 

Table 61 – Summary results for all time-slots 

 

 

Figure 33 – Demand evolution per time-slot and per-hour 

Daily demand per time-slot is illustrated in left histogram; there are two peaks during the second and 

fourth period. In the second period (off-peak2), the demand is greater than other off-peaks’ ones 

because it includes the lunch’s little peak.  

The right histogram represents the demand per hour, which has been obtained as ratio of demand and 

relative range’s hours.  

This means for example that peak 2, which duration is 3 hours, has a demand of 3011 and a average 

hourly demand (demand/h) of ≅ 1004xl. Note that during the last off-peak the demand/h (that we can 

call demand’s rate) is greater than the other off-peaks’ ones because it is relative to only 4 hours, 

instead of 7.  

                                                
xl Demand per hour: 3001:3 ≅ 1104 
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This justifies that during the night there is a higher demand rate, probably deriving from after dinner 

requests to go to places of interest and leisure. 

Considering the Sold Trips results the two graphs below show different perspectives about sold 

quantities. 

 
Figure 34 – Sold trips evolution per time-slot 

 

 
Figure 35 – Sold trips distribution across daily time-slots 

 

Although there is a substantial difference about demand’s levels among the 5 time slots (the 2 daily 

peaks cover 56% of sold trips daily), this difference is mitigated by tariffs’ increments and discounts. 

This is the key of the model: discouraging users with a higher price and encouraging them with a 

lower price. The following graphs confirms this behaviour.  

Some valuable information can be extracted by the Lost Trip analysis. 

For example, analysing lost quantities of the 5 periods, and the ratio between lost trips and relative 

demand. As we can observe there is not only a higher level of losses during peaks, but also a higher 

percentage of losses with respect to demand. This is caused by the difference between accepted and 

rejected trips on the base of tariff’s variation. 
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Figure 36 – Lost trips evolution per time-slot 

 

 
Figure 37 – Lost trips ration of relative demand 

According to results of the model the profit is concentrated during peak hours  

 

Figure 38 – Distribution of Profits per time-slot 
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Figure 39 – value of Profits per time-slot 

Linking all the ranges’ profits, there is the typical sawtooth trend with high values during peaks 

(because of a high number of sold trips, traffic congestion, variable tariffs), but during a real operating 

day, the behaviour isn’t so regular as in the above graph. 

9.2.  End of operating day 

At the end of “operating day” (typically during the 5th slot) the staff relocation starts, if its required, 

to recover existing imbalance problems. As mentioned before, the assumption is that relocation is 

made instantaneously or during an ideal time in which there aren’t requests. There are different 

relocation strategies and we consider the following ones: 

• Uniform: uniform distribution of cars in the five macro-classes, namely low, medium-low, 

medium, medium-high and high; this means that approximately 20% of the cars must be in 

each macro-area; 

• Equal: distribution is performed to reach the starting distribution status of the 1st time-slot; 

• Threshold: distribution must respect two thresholds (minimum of 10 cars and maximumxliof 

90xlii); this is a choice that is in contrast with a hypothesis of the model (infinite capacity of 

destinations), so it is the less accurate because it is like we consider the problem of parking 

availability only at the end of the day. 

The unit cost of relocation equals to 15€xliii and the already defined starting distribution (there is a 

percentage of around 20% in each colored macro-group).  

These strategies are compared between each-other and with the current relocation strategy that is full 

operator-based. 

                                                
xli It is a threshold that consider an additive constraint: maximum number of parking slots.  
xlii Supposing that 1248/2550 is the average number of cars in each node and the minimum threshold is fixed to 10, the 

maximum threshold is equal to 50+(50-10)=90; the threshold are seen as two values with the same distance from the 

medium value.  
xliii Real data provided by Car2Go for Rome Municipality (2016). 
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The current model is the model using the actual pricing scheme (fixed unit tariff of 0,25 €/min) Car-

sharing operators currently use in Italy. 

9.2.1. Business comparison 

This subchapter illustrates the comparison between different analysed model, considering the above 

described model as a benchmark.  

Relocation results depend on relocation model and final distributions that in case of the chosen user-

based relocation strategy compared to the current relocation strategy present the following 

distributions at the end of the day. 

The equal model has the following result 

EQUAL 

End Target Relocation Cost 

791 260 -531            -   €  

130 260 130      1.950 €  

10 208 198      2.970 €  

54 260 206      3.090 €  

263 260 -3            -   €  

Cost of relocation      8.010 €  

Table 62 – EQUAL model relocation cost for end-of-day operator-based relocation 

 

similarly, the uniform model considering that initial distribution is similar to the uniform 

UNIFORM 

End Target Relocation Cost 

791 250 -541             -   €  

130 249 119       1.785 €  

10 249 239       3.585 €  

54 250 196       2.934 €  

263 250 -13             -   €  

Cost of relocation      8.304 €  

Table 63 – UNIFORM model relocation cost for end-of-day operator-based relocation  

 

On the other hand, the threshold model seems much more effective in terms of relocation results as 

stated by the table below. 

THRESHOLD 

End Target Relocation Cost 

791 791 0          -   €  

130 130 0          -   €  

10 62 30       450 €  

54 86 10       150 €  

263 180 83    1.245 €  

Cost of relocation     1.845 €  

Table 64 – THRESHOLD model relocation cost for end-of-day operator-based relocation 
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Finally, the current model, which is not using the user-based relocation strategy daytime has given 

the following results. 

CURRENT 

End Target Relocation Cost 

1039 260 -779           -   €  

142 260 118      1.770 €  

16 208 192      2.880 €  

11 260 249      3.735 €  

40 260 220      3.300 €  

Cost of relocation    11.685 €  

Table 65 – CURRENT model relocation cost for end-of-day operator-based relocation 

 

Results of the user-based relocation used during the day and the operator-based relocation applied at 

the end of the day by staff are described in the table below. 

  Equal Uniform Threshold Current 

Gross Profit 47.799 € 47.799 € 47.799 € 36.103 € 

Operator-based Relocation cost 8.010 € 8.304 € 1.845 € 11.685 € 

Relocation Net Profit  39.789 € 39.495 € 45.954 € 24.418 € 

%Profit 83% 83% 96% 68% 

Number of relocations 528 538 123 779 

Table 66 –Profit comparison of different relocation model with current. 

 

As we can observe user-based relocation model used to relocate vehicles at the end of the day has 

different impact on profit percentage (up to 13% gap) between threshold model and Uniform/Equal, 

apparently representing a better situation. All user-based relocation models are much more convenient 

that current relocation model. 

 

Figure 40 – Profit comparison for different relocation models 

Results of the business case demonstrate the effectiveness to implement a user-based relocation 

strategy daytime, since all operator-based relocation model applied at the end of the day have higher 
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Gross Profits and lower Operator-based relocation cost that current model which is not applying the 

user-based relocation. 

In comparing the equal and the current relocation model, which have to reach the same target 

distribution at the end of the day, the results show a higher margin (+11.696€/day) and a lower cost 

(-3.675€/day) for a final net margin of 15.371€/day, projecting an economic result if +5,6 million 

euro yearly. 

10. Conclusions 

The goal of this research work was to demonstrate that, the proposed user-based relocation strategy 

can be profitable for one-way free-floating car-sharing models. 

In this case the user-based relocation strategy proposes to the user, when a trip planning inquiry is 

done, a flexible pricing scheme based the desired destination and a set of alternatives in boundary 

areas. 

Flexible pricing is based on the difference of Urban Area Value (UAV), associated to the origin, the 

destination and the alternatives. 

Results clearly demonstrate that the novel dynamic pricing applied to the city of Rome is profitable 

for the Car-sharing Operator, providing at the same time a significant increase in service profit and 

good reduction of staff involvement to perform vehicle relocation. 

Additionally, other tangible results of this research are: 

1. UAV metric enables Car-sharing operator to classify different Cells of the Urban Area, on the 

basis of a mobility demand value, distinguishing between areas with higher and lower demand 

potential1. 

2. Reliability of UAV calculation, of specific urban area, depends on the volume of data used for 

the analysis and using data from other sources of mobility-sharing services operating in the same 

city. The higher the volume, the higher the reliability; it is always better to use UAV calculated 

with data from different and complementary data sources, if available1,91. 

3. Aggregate calculation of UAV also gives valuable information of potential urban demand in non-

served areas, enabling the Car-sharing operator to evaluate its interest in extending the service 

area to new catchment areas1. This approach may give a very high added value to Car-sharing 

operators entering in market with strong competitor presence. 

4. Enabling potential users in performing origin-to-destination trip planning, Car-sharing operator 

can understand interest in destination of end-users even for Lost Trips.  

There are different issues in Car Sharing system. Among them there is the imbalance problem. The 

relocation is an effective way to mitigate it, but it is inefficient when there is traffic congestion and it 

is too expensive, particularly in a city like Rome. The cost of a relocation often doesn’t justify the 

unit profit, namely it is an investment that often hasn’t an earning. To solve this situation, the thesis 

proposes an optimized model based on the user-relocation policy. The results show that there is a 

significative reduction of costs when the tariff is variable during an operating day and this is an 

optimal starting point to study in deep user-based relocation as a solution of unbalancing and a way 

to make more profits. The confirm arrives from the comparison between the current model and the 
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proposed one: there is not only a decrease of relocation costs, but also a higher earning. The suggested 

system involves users to relocate cars indirectly, offering different alternatives with variable prices 

leaving the customers free to choose the best alternative for his needs.  
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11. Appendixes 

11.1. Appendix A – Run file 

reset; 
reset; 
model modelloyuri.mod; 
data modelloyuri.dat; 
 
param q{h in Origin, k in Destination}; 
param nq{h in Origin, k in Destination}; 
param p{o in HourlyRange}; 
param cf{h in Origin}; 
 
fix {h in Origin} capacity[h,1]:= 5*c[h]; 
 
option solver cplex; 
printf "\n\n ### GRAPH WITH %d NODES (2 High, 3 Medium-High, 4 Medium, 5 Medium-Low, 11 
Low) ### \n\n", card(Origin); 
 
param vehicles:=sum{h in Origin} c[h]; 
printf "Total number of cars: %d \n", vehicles; 
printf "Number of variables: %d \n", _nvars; 
printf "Number of constraints: %d \n", _ncons;  
printf "Number and name of the objective function: %d %s \n", _nobjs, "Profit"; 
printf"\n\n"; 
solve; 
 
for {o in HourlyRange} { 
 
printf "\n\n### SLOT TEMPORALE NUMERO: %d ### \n\n", o; 
 
printf "\nTariffs: "; 
for {k in Destination} { 
printf "%s ",k; 
} 
printf"\n"; 
for {h in Origin} { 
printf "%s ",h; 
 for {k in Destination} { 
printf "%f ",valueOfTariff[h,k,o]; 
} 
printf"\n"; 
} 
 
 
for{h in Origin, k in Destination} { 
 let q[h,k]:= quantity[h,k,o]+sum {j in Destination} alternative[h,j,k,o];  
} 
 
for{h in Origin, k in Destination} { 
 let nq[h,k]:= notQ[h,k,o]; 
} 
 
let p[o]:= sum{h in Origin, k in Destination} 
(quantity[h,k,o]*5*rentTime[h,k,o]*(valueOfTariff[h,k,o]-0.17)+sum {a in Destination} 
(alternative[h,k,a,o]*alter[k,a,o])*5*rentTime[h,a,o]*(valueOfTariff[h,a,o]-0.17));  
 
printf "Sold quantity for each trip:\n"; 
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display q; 
printf "Lost Trips:\n"; 
display nq; 
printf "Profit = %f \n\n", p[o]; 
 
printf "\nStarting Distribution: \n"; 
for{h in Origin} { 
 printf "%s %d \n",h,capacity[h,o]/5; 
 } 
 
 
let{h in Origin} cf[h]:= capacity[h,o]/5 -sum{k in Destination} (quantity[h,k,o]+sum {a 
in Destination} (alternative[h,a,k,o]*alter[a,k,o])) + sum{k in Origin} 
(quantity[k,h,o]+sum {a in Destination} (alternative[k,a,h,o]*alter[a,h,o]));  
  
printf "\nFinal Distribution: \n"; 
for{h in Origin} { 
if o<5 then printf "%s %d \n",h, capacity[h,o+1]/5; 
if o=5 then printf "%s %d \n",h, cf[h]; 
 } 
 
} 
 
 
printf "\nTotal profit: %f", profit; 
printf "\nTotal sold quantity: %d %s %d %s", sum{h in Origin, k in Destination, o in 
HourlyRange} (quantity[h,k,o] +sum {a in Destination} 
(alternative[h,k,a,o]*alter[k,a,o])), "of which ",sum{h in Origin, k in Destination, o 
in HourlyRange, a in Destination} alternative[h,k,a,o]," alternatives"; 
printf "\nTotal lost quantity: %d", sum{h in Origin, k in Destination, o in 
HourlyRange} notQ[h,k,o]; 
printf "\nTotal demand: %d", sum{h in Origin, k in Destination, o in HourlyRange} 
demand[h,k,o]; 
 
printf "\n"; 
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