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A B S T R A C T

Background and purpose: In radiation therapy, defining the precise borders of cancerous tissues and adjacent
normal organs has a significant effect on the therapy outcome. Deformable models offer a unique and robust
approach to medical image segmentation. The objective of this study was to investigate the reliability of seg-
menting organs-at-risk (OARs) using three well-known local region-based level-set techniques.
Methods and materials: A total of 1340 non-enhanced and enhanced planning computed tomography (CT) slices
of eight OARs (the bladder, rectum, kidney, clavicle, humeral head, femoral head, spinal cord, and lung) were
segmented by using local region-based active contour, local Chan-Vese, and local Gaussian distribution models.
Quantitative metrics, namely Hausdorff Distance (HD), Mean Absolute Distance (MAD), Dice coefficient (DC),
Percentage Volume Difference (PVD) and Absolute Volumetric Difference (AVD), were adopted to measure the
correspondence between detected contours and the manual references drawn by experts.
Results: The results showed the feasibility of using local region-based active contour methods for defining six of
the OARs (the bladder, kidney, clavicle, humeral head, spinal cord, and lung) when adequate intensity in-
formation is available. While the most accurate results were achieved for lung (DC=0.94) and humeral head
(DC=0.92), a poor level of agreement (DC < 0.7) was obtained for both rectum and femur.
Conclusion: Incorporating local statistical information in level set methods yields to satisfactory results of OARs
delineation when adequate intensity information exists between the organs. However, the complexity of ad-
jacent organs and the lack of distinct boundaries would result in a considerable segmentation error.

1. Introduction

The main goal of radiotherapy is to deliver a prescribed dose to the
target volume, while sparing normal tissue including organs-at-risk
(OARs). To achieve this aim, it is necessary to perform all elements of
radiotherapy, from CT simulation to plan verification, in an accurate
manner [1–4]. One of the most fundamental elements of this process is
the localization of the target volume and OAR, the effects of which on
the treatment quality are highly significant. However, a manual deli-
neation of the regions-of-interest (ROIs) is an error-prone procedure
owing to the fact that it is cumbersome, time intensive, and prone to
intra- and inter-observer variability [3,4].

Medical image segmentation is a wide field that can play a key role
in clinical diagnosis and therapy, the applications of which are quite

extensive [5–10], from computer-aided diagnosis systems, to improving
and facilitating delineation tasks for radiotherapy. With the advent of
new radiotherapy techniques such as image-guided radiation therapy
(IGRT), this field has remained an active area of research in radiation
therapy, and different classes of image segmentation methods have
been proposed, implemented, and clinically evaluated [3,4,11]. A sig-
nificant amount of research has been clinically applied to OAR deli-
neation, most of which has focused on deformable shape and atlas-
based models owing to their ability to reduce inter- and intra-observer
variability [12–17].

Active contour models based on a level set are another class of
segmentation techniques whose application in radiotherapy has re-
ceived growing attention in terms of both the target volume and OAR
delineation [3,18–22]. The main idea underlying these methods is to
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initialize a contour around the boundaries of the object as a parametric
curve, and to deform this contour toward the desired boundaries
through a minimization of the energy functional [23–26]. Despite the
better accuracy of region-based level-set segmentation methods, as
compared to gradient-based methods, for use with medical images, they
cannot provide suitable results for tumor images with a non-uniform
intensity distribution [4]. Thus, local region-based active contours may
be the preferred approach to evaluating their clinical performance in
radiotherapy treatment planning [3,18].

Moreover, various local region-based segmentation algorithms have
been proposed. The main goal of this paper was to evaluate the validity
and reliability of three robust local region-based algorithms to delineate
eight OARs throughout the whole body, namely, the bladder, rectum,
kidney, clavicle, humeral head, femoral head, spinal cord, and lung,
which are visible in CT images.

2. Materials and methods

2.1. Patients and computed tomography (CT) images

A CT dataset of 20 patients diagnosed with different types of cancer,
including breast, prostate, esophagus, lung and pancreatic cancer, were
used to delineate the above-mentioned OARs. All images acquired for
treatment planning were scanned using an Aquilion One (Canon, for-
merly Toshiba Medical Systems Co.), and all patients were treated using
standard three-dimensional conformal therapy (3D-CRT). The proper-
ties extracted from the studied CT images were shown in an axial view,
with a slice spacing of 3–5mm, resolution of ×0.5 mm 0.5 mm, and a
scan matrix of ×512 512.

2.2. Manual contouring

Three radiation oncologists manually delineated the eight OARs on
1340 non-enhanced and enhanced planning CT slices of 20 patients
using an Oncentra MasterPlan (version 4.3, Elekta AB, Stockholm,
Sweden) except for the lung delineation, for which the oncologists
employed automatic segmentation tools available with the treatment
planning system. The inter-observer variability was assessed, and the
reference contour was defined as the baseline and obtained from the
averages of the oncologists’ contours based on a method defined by
Chalana and Kim [27].

2.3. Local region-based segmentation algorithms

The semi-automatic segmentations of all slices were conducted by
two users experienced with the algorithms. First, three to four points
were selected around the desired organ in each slice, and the initial
contour was automatically interpolated and fitted between these points.
The initial curve reached the boundary of the organ by minimizing the
energy functional. In this study, three robust localized energy func-
tionals were used, and all three models were evaluated against all eight
OARs to assess the applicability and accuracy of each model. One of the
most effective features of the algorithms applied is their ability to
segment cancer-related images with non-uniform intensity distribu-
tions. However, because the localized energy functional is based on the
image intensity, this class of segmentation can only be applicable to
organs whose pixel intensities are distinguishable from adjacent organs.
It should be mentioned that all the implementations were conducted on
a 2.8 GHz desktop computer, with 8 GB of random access memory,
using MATLAB 7.12 software (MathWorks, Natick, MA).

2.3.1. Localizing region-based active contour (LRBAC)
LRBAC, proposed by Lankton and Tannenbaum [28], is considered

one of the most efficient local region-based techniques. The energy
functional for this model uses image statistics in a local neighborhood
along with the zero-level set and a curvature-based regularization term.
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In these equations, and throughout the remainder of the paper, c1
and c2 represent the average image intensity inside and outside of the
local window, respectively, which were defined through a Heaviside
function, H(.). The φ symbol refers to the level set function, the zero
levels of which were obtained through a Dirac Delta function, δ (.). The
term REG (.) denotes the length minimization energy that controls the
smoothness of the evolving contour. Moreover, I represents the main
image in the above formulae, and the subsequent formulae provided in
the following sections.

2.3.2. Local chan–vese model (LCV)
LCV is a generalization of the Chan–Vese model, which is one of the

most robust region-based methods available. Different local versions of
the CV model have been proposed, among which an efficient LCV
model, suggested by Xiao Wang et al. [29], was used in this study. The
energy functional for this model consists of a global statistical term,
local statistical term, and regularization term. Therefore, appropriate
segmentation results can be achieved in images with either homo-
genous or inhomogeneous intensity.
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In this equation, d1 and d2 represent the global image intensity
calculated from a contrast-enhanced image, Gk is square-shaped aver-
aging mask with a size of k, and ∗ signifies the convolution operator.

2.3.3. Local Gaussian distribution fitting (LGDF)
Li Wang et al. [30] proposed the LGDF method by assuming that the

local average intensity along with the local standard deviation is cap-
able of achieving segmentation in regions with a non-uniform intensity
and different variances with higher accuracy.

∂
∂

= − +
φ
t

x δ φ x e e REG φ( ) ( ( )[( ) ( )]1 2 (4)

∫= − + − =e x w y x σ y m y I x
σ y

dy i( ) ( )[log( ( )) ( ( ) ( ))
2 ( )

] ; 1,2i i
i

i

2

2 (5)

In Eqs. (4) and (5), w (.) refers to the localizing Gaussian kernel, and
mi and σi

2 are its average and standard deviation, respectively.
Because all eight OARs investigated in this research were segmented

using all three local region-based functionals described herein, the
energy functional that provided the most accurate results for each OAR
was chosen as the optimum algorithm for that particular OAR.

2.4. Quantitative analysis for evaluation

Three error metrics that are usually used in reporting the segmen-
tation performance were applied to compare the semi-automatic results
with the manual reference contours: the Dice coefficient (DC) which
measures the spatial overlap between two regions; the Hausdorff dis-
tance (HD), which quantifies the largest minimum distance between
two contours; and the mean absolute distance (MAD), which measures
the average of the absolute signed distance between two contours.
Additionally, to compare the volumes, two parameters, namely, the
percentage absolute volumetric difference (AVD) and the percentage
volume difference (PVD), for each organ were calculated [3,31,32].
Because poor results were obtained from the femur and rectum, they
were not considered further in the quantitative analysis.

It should be noted that the paired sample t-test (with significance
level set at α=0.05) was applied to all OAR volumes to compare the
average manual volumes and average semiautomatic volumes.
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3. Results

3.1. Manual and semi-automatic results

A review of the measured quantitative error metrics revealed that
the highest inter-observer Dice similarity criteria were obtained for the
lung (0.94 ± 0.04) and bladder (0.93 ± 0.03), and the lowest agree-
ments were observed for the spinal cord (0.81 ± 0.04) and clavicle
(0.87 ± 0.02) (Fig. 1).

Table 1 shows all error metric values between the manual and semi-

automatic results. Based on the optimum algorithm for each OAR, the
most accurate results were as follows: the mean ± standard deviation
of the DC between the manual and semi-automatic contours was
0.9 ± 0.04 for the bladder, 0.92 ± 0.12 for the humeral head,
0.81 ± 0.04 for the spinal cord, 0.84 ± 0.04 for the clavicle,
0.90 ± 0.04 for the kidney, and 0.94 ± 0.02 for the lung. A poor level
of agreement ( <DC 0.7) was demonstrated for both the rectum and
femur. The highest values (between the manual and semi-automatic
results), excluding the femur and rectum, for HD and MAD were in the
lung (HD, 9.7 ± 6.1mm) and bladder (MAD, 3.2 ± 0.9mm).

Fig. 1. Example of the results from both manual and semi-automatic delineations of an image slice of six OARs. The first column (a1, b1, c1, d1, e1, f1) represents the initial contours
defined by two experienced users and the final semi-automatic results; the second column (a2, b2, c2, d2, e2, f2) represents the manual contours defined by three oncologists (red,
oncologist 1; yellow, oncologist 2; cyan, oncologist 3), demonstrating the inter-observer variability in the OAR delineation. The last column (a3, b3, c3, d3, e3, f3) shows a contour
overlap of the semi-automatic (magenta) results, and the average of the oncologists’ contours (blue). All image datasets were exported from the PACS at a university hospital of Trieste,
Italy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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However, the lowest values were obtained for the spinal cord (HD,
3.9 ± 0.9mm, MAD, 1.8 ± 0.3).

The total OAR volumes derived from the manual and semi-auto-
matic techniques, AVD and PVD, are shown in Table 2, and the results
were averaged for each organ. According to the results, all volumes
obtained from the semi-automatic methods were lower than those ob-
tained from the manual delineation except for the bladder (with the
lowest AVDaverage time for defining each with the largest AVD).

The average time for defining each OAR per slice using the semi-
automatic method was 2.8 ± 0.8 s for the lung, 1.9 ± 0.3 s for the
clavicle, 1.4 ± 0.6 s for the humeral head, 3.1 ± 0.3 s for the kidney,
2.4 ± 0.6 s for the bladder, and finally, 0.7 ± 0.3 s for the spinal cord.
Compared with manual delineation, in which the contouring time was
recorded manually, these algorithms can reduce the time for organ
delineation by 20–40% (Table 3). The only exception was the lung,
which was delineated using the automatic segmentation tools available
in TPS and was segmented faster than with the other algorithms;
however, delineation through the automatic segmentation tools in the
TPS required a pre-processing to adjust the grey level, and finally, some
slices required slight modifications. In contrast, the LGDF algorithm
used for delineating the lung boundaries achieved more precise and
reliable results.

4. Discussion

To the best of our knowledge, this study was the first evaluation of
localized region-based algorithms for CT-based OAR delineation in ra-
diation therapy treatment planning.

As shown in Table 1, the LRBAC led to better results for the humeral
head and femur bone delineation. This was due to the fact that the
humeral head had a ball shape, and the gradient of intensity between
the ball portion and adjacent neighboring structure was negligible;
therefore, a shape constraint was required to define this OAR. Of the
three local-region based algorithms, the LRBAC energy functional could
be easily combined with a shape constraint. The results demonstrated
that LCV is the most accurate model for spinal cord and clavicle seg-
mentation. This might be because it applies a high-pass filter and can
intensify the edges of the image. A high intensity gradient and intense
inhomogeneity are present in some organs including the (non-contrast
enhanced) bladder, as well as portions of the kidney and lung; thus, not
only is the average intensity required, the local contrast criteria should
also be applied to obtain a better delineation, and as a result, LGDF can
segment these three OARs more precisely compared to the other
methods.

Rectum and femur segmentation results obtained by any of the
above algorithms have been poor and unacceptable. The main reason
for this is believed to be an inability to distinguish the boundaries be-
tween the rectum and nearby structures, as well as a portion of the
femur from the adjacent tissue, owing to a lack of intensity information
in certain image slices. Although combining the shape term with the
LRBAC energy functional allows segmenting certain parts of the femur,
it is still impossible to simultaneously segment the femoral head and
pelvic bone using such algorithms (Fig. 2).

In comparison to other common active contours, particularly edge-
based active contour models, the aforementioned three local region-
based methods are less sensitive to the initialization. However, they still
depend on the initialization parameters and initial contours. In this
study, the initial contours were defined by two experts experienced
with the algorithms, and the results of a semi-automatic segmentation
were observed by oncologists and approved as acceptable. Accordingly,
one of the major limitations of using the active contours is their vul-
nerability to initialization; thus, oncologists need to be trained in this
procedure when utilizing the algorithms. To a certain extent, this
drawback can be handled by defining the blocking regions, as proposed
by Wang [33].

The pros and cons of this study can be highlighted through a sub-
jective comparison between our results and the results obtained from
other related researches. In the first step, a quantitative comparison
with a recent algorithm proposed by Wang [33] was conducted. The
reason for choosing this robust level algorithm for comparison is its
ability to locally converge at the boundaries of the target regions. By
comparing the most accurate results from the three considered local
region-based methods with the results obtained from Wang’s algorithm,
it can be inferred that utilizing only image-based information for a

Table 1
Error metrics (DC, HD, and MAD) analysis of semi-automatic results compared to manual reference contours.

OAR LRBAC LCV LGDF

DC HD (mm) MAD (mm) DC HD (mm) MAD (mm) DC HD (mm) MAD (mm)

Clavicle 0.73 6.8 3.1 0.84 4.6 2 0.78 6.1 2.8
Bladder 0.83 12.7 5.6 0.67 17.6 8.4 0.90 9.5 3.2
Humeral Head 0.92 4.7 2.1 0.53 14.4 11.2 0.67 12.6 6.8
Kidney 0.73 13.4 9.4 0.62 14.1 13.2 0.90 8.4 2.6
Lung 0.76 17.6 10.9 0.83 14.7 8.4 0.94 9.7 2.4
Spine 0.59 6.6 3.8 0.81 3.9 1.8 0.72 5.6 2.3
Femoral Head 0.54 24.3 17.6 0.38 32.7 24.3 0.47 26.1 23.8
Rectum 0.52 19.5 10.2 0.46 19.9 13.7 0.61 17.4 8.8

Table 2
Comparison of volumes obtained from manual and semiautomatic methods along with
PVD and AVD.

OAR Manual
volume
(cm3)

Semi-
automatic
volume
(cm3)

Percentage
mean AVD

PVD P value

Clavicle 25 ± 4 23 ± 3 8.5 ± 1.3 0.91 ± 0.01 0.3
Bladder 174 ± 40 177 ± 40 4.1 ± 1.8 1.02 ± 0.04 0.85
Humeral

Head
43 ± 7 45 ± 5 9.8 ± 2.5 1.05 ± 0.09 0.6

Kidney 184 ± 87 176 ± 85 4.9 ± 2.5 0.95 ± 0.02 0.6
Lung 1950 ± 60 1901 ± 62 4.1 ± 2.6 0.98 ± 0.04 0.85
Spine 48 ± 11 44 ± 11 7 ± 3.3 0.92 ± 0.03 0.2

Table 3
Computational time expended for segmenting each OAR.

OAR Average # of slices for each
OAR

Time per
slice

Time (s)

Clavicle (L+R) 16×2 1.9 60.8
Bladder 12 2.4 28.8
Humeral Head (L+R) 18×2 1.4 50.4
Kidney (L+R) 20×2 3.1 124
Lung (L+R) 38×2 2.8 212.8
Spine 75 0.7 52.5
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segmentation task is insufficient for all eight OARs. Because the evo-
lution of the surface when applying Wang’s method is driven by the
threshold-based energy, each OAR can be segmented by setting the
threshold range according to the specific CT number. Although the
results are promising for six of the OARs, the humeral head and clavicle
have not been segmented as accurately as with the investigated region-
based methods. These results can be interpreted as follows. The rectum
and lungs are filled with air and have distinct CT numbers compared
with their adjacent tissues; therefore, to a certain extent, they can be
segmented more accurately. Because none of the neighboring tissues of
the spine have the same CT number, improved results have been easily
achieved. For cases of the femoral head, bladder, and kidney, the
availability of a blocking option helps prevent the surface from growing
toward other tissue. However, the existence of several bony structures
that are connected to the humeral head and clavicle result in a leak in
the evolving surface and a deviation from the target boundaries.

Zhang et al. [22] segmented the prostate, rectum and seminal ve-
sicle separately through a robust and fast active contour model by de-
fining a restricted region around each target. However, defining a
number of restriction regions adds increased demand to the initializa-
tion process. This can occur for a lung segmentation, which requires the
right and left ventricle areas, vena cava, thoracic aorta, and other tissue
types to be defined as restricted regions for a contour evolution. Pekar
et al. [13] used a 3D deformable surface model for segmenting the
bladder, rectum, and femoral head. The results are heavily dependent
on a manual correction and the image resolution. In addition, the
computational time takes up to 15min, which is five times longer than
our implementations. In another study, Pekar et al. [14] used a model-
based approach with a shape constraint to segment the bladder, rectum,
and femoral head. The shape information in this research was acquired
by training the dataset, which makes it an offline method; in contrast,
we used a variational-based energy shape model that can be fitted to
the level set evolution algorithm in real time. El Naqa et al. [21] applied
a segmentation framework to multimodal images (PET-CT or PET-CT-
MR); however, the accuracy of the segmented regions was almost
within the same range as our results using only CT images.

The first conclusion drawn here is that, although CT images have a
lower tissue contrast resolution compared to that of an MRI [34], such
segmentation techniques are still able to reveal adequately satisfactory
results when a reasonable amount of intensity information of diverse
tissue types exists. In addition, the potential and limitations of this class
of segmentation were investigated in this paper. The results demon-
strated that this class of segmentation achieves a good deformability
and a significant ability to delineate OARs when adequate intensity
information exists. However, the two main drawbacks of this class are

sensitivity to the initialization and an inability to segment the images
when insufficient intensity information is available.

In this study, the possibility of using local region-based level-set
methods for segmentation of the OARs was investigated by applying
three different energy functionals to eight OARs in CT images. The
accuracy of the semi-automatic segmentations was compared against
manual delineations by experts in terms of Dice, MAD, and HD, as well
as through volumetric measurements, such as AVD and PVD. Although
promising results were obtained for six of the OARs, segmentation of
the rectum and femoral head remain a challenging task owing to a lack
of distinct boundaries and intensity information. As indicated, de-
formable models have both benefits and drawbacks in handling the task
of OAR segmentation; however, using model-based segmentation tools
along with active contours, the shortcomings presented in this paper
might be overcome [35–37]. A possible optimal solution could be using
a coupled framework to utilize the benefits of both active contours and
atlas-based algorithms. Although such a combination has been applied
using classical parametric active contours [38], their inability to seg-
ment sharp concavities as well as handle images with inhomogeneous
intensity can be solved by replacing the parametric active contours with
local region-based energy functionals, as suggested by Gao and Tan-
nenbaum [39]. Therefore, an evaluation of the clinical application of an
atlas-based method coupled with local region-based active contours for
use in radiation therapy treatment planning can be addressed in future
studies.
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Fig. 2. (a) Difficulty in simultaneously segmenting the femoral head and pelvic bone, and (b) a lack of distinct boundaries between the rectum and nearby structures (manual contour,
blue; semi-automatic contour, magenta). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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