
1

Automatic Search-and-Replace from Examples
with Coevolutionary Genetic Programming

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

Abstract—We describe the design and implementation of a
system for executing search-and-replace text processing tasks
automatically, based only on examples of the desired behavior.
The examples consist of pairs describing the original string and
the desired modified string. Their construction, thus, does not
require any specific technical skill. The system constructs a
solution to the specified task that can be used unchanged on
popular existing software for text processing. The solution con-
sists of a search pattern coupled with a replacement expression:
the former is a regular expression which describes both the
strings to be replaced and their portions to be reused in the
latter, which describes how to build the modified strings. Our
proposed system is internally based on Genetic Programming
and implements a form of cooperative coevolution in which two
separate populations are evolved independently, one for search
patterns and the other for replacement expressions. We assess
our proposal on six tasks of realistic complexity obtaining very
good results, both in terms of absolute quality of the solutions
and with respect to the challenging baselines considered.

Index Terms—Find-and-replace, Programming by examples,
Regular expressions, Diversity promotion

I. INTRODUCTION

A common processing task which users perform on text
documents consists in finding all the items of interest

and replacing them with modified versions [1]. Many text
editing programs tailored to different kinds of text include
a functionality usually called search-and-replace (or find-and-
replace) which allows users to perform this processing task
automatically.

The required task could be very simple, such as replacing
all the occurrences of a given string with another given string
(e.g., replace ie with i.e.), or more complex, as changing
the date format (e.g., from month-day-year to day-month-
year) or removing thousands-separator from numbers. The
user is required to specify the task by means of a search
pattern and a replacement expression: the former is a regular
expression which describes both the strings to be replaced and
their portions to be reused in the latter, which describes how
to build the modified strings. For instance, the date format
change task mentioned above can be specified by means of the
search pattern (\d+)-(\d+)-(\d+) and the replacement expression
$2-$1-$3.

Popular software for, e.g., editing documents (e.g., Mi-
crosoft Word), developing code (e.g., Netbeans), authoring
LATEX documents (e.g., Overleaf web application), do support

Authors are with the Department of Engineering and Architecture (DIA),
University of Trieste, 34127 Trieste, Italy.
E-mail: bartoli.alberto@units.it, andrea.delorenzo@units.it, emedvet@units.it,
ftarlao@units.it

Manuscript received . . .

in their search-and-replace functionality the specification of
the task by means of a search pattern and the corresponding
replacement expression. Yet, many users cannot take advan-
tage of this possibility because they lack the skills necessary to
write regular expressions. While mastering regular expressions
is an highly regarded achievement among developers [2], to
the point that specific contests exist for proving this ability [3],
many users still rely on web communities to find the regular
expression that fits their needs, also for relatively simple
tasks [4]. The specification of a search-and-replace task using
a search pattern and a corresponding replacement expression
is even harder, because those two parts have to be built
accordingly, based on the knowledge of the formalism for
describing the search pattern, of the formalism for describing
the replacement expression and the task-specific domain.

In this paper, we propose a system for building automat-
ically the specification of a search-and-replace task starting
from a set of examples. The users just need to provide some
tens of examples, each consisting of the text before and after
the desired modification, and the system outputs a search-
and-replace expression, i.e., a pair consisting of the regular
expression defining the search pattern and the corresponding
replacement expression. The user is not required to provide
any other hint to the system as, e.g., marking within the text
the substring to be replaced or giving an initial description of
the task. The system generates a search-and-replace expression
which is able to generalize beyond the provided examples,
i.e., it is able to solve an under-specified task. The generated
expressions can be reused in any compatible text editing
software for later processing of text documents different than
those used to provide the example and possibly very large1.

The proposed system is based on Genetic Programming
(GP), a popular Evolutionary Algorithm (EA) which has
already been shown to be able to compete with humans in both
efficiency and effectiveness for the specification of regular
expressions from examples of the desired behavior [4]. In fact,
we are not aware of any other automated approach with these
properties. The problem of generating the search pattern and
the replacement expression together is even harder, because
the search space is larger and the two parts of the solution
are dependent on each other. In our proposed approach,
we employ many research results concerning Evolutionary
Computation (EC) as a diversity promotion scheme and a
cooperative coevolutionary framework, in order to obtain an
overall effective and efficient tool for generating search-and-
replace expressions.

1We used the PCRE (Perl Compatible Regular Expression) syntax and the
Java Language regular expression engine.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Università di Trieste

https://core.ac.uk/display/224991789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Our work constitutes a significant improvement over our
earlier proposal [5], which, to the best of our knowledge,
was the first system able to generate automatically both the
search pattern and the replacement expression based only
on examples. Our earlier proposal was based on GP and
consisted of three steps: (i) a first evolutionary search aimed
at constructing a preliminary search pattern; (ii) construction
of a replacement expression of predefined structure, tailored
to the provided examples; and, (iii) a further evolutionary
search aimed at constructing the search pattern that, coupled
with the replacement expression obtained at the previous step,
would solve the user-specified task. In this work we provide
instead a conceptually much simpler framework in which
both the solution components—search pattern and replacement
expression—are found through the cooperative coevolution
of two separate populations, one for each component. The
quality of the replacement expression, thus, does not depend
on whether its predefined structure fits the specific task to be
solved, but on the ability of the evolutionary search to find
regions of the solution space that are suitable for that task.
Furthermore, we carefully designed the evolutionary searches
based on recent results in the area of evolutionary synthesis
of text extractors from examples, which provided significant
improvement over earlier proposals in this area [6]. In partic-
ular, we introduced the enforcement of a phenotypic diversity
promotion scheme [7], we extended the number and variety of
individuals in the initial population that are generated based
on the available examples (rather than at random) and, most
importantly, we introduced a significantly different fitness
function. In our earlier work [5], we used a multi-objective
fitness function based on two indexes: the amount of character-
level errors and a quantification of the structural mismatch
between the two components of a candidate solution, i.e.,
search pattern and replacement expression (please refer to the
cited paper for full details). In this work we introduce a new
fitness function composed of three objectives: the amount of
character-level errors, a quantification of the ability to identify
all the substrings in the examples that have to be modified (a
form of character-level recall), a complexity measure of the
candidate solution. This fitness definition is inspired by the
one in [6], an important difference being that in the cited work
complexity was quantified simply with the the length of the
candidate solution whereas here we assign a different weight
to each solution component.

We assessed our new proposal on six tasks of realistic com-
plexity, four of which were included also in [5], and considered
two significant baselines: our earlier GP proposal [5] and
the FlashFill algorithm incorporated into Microsoft Excel [8].
The results demonstrate that our multi-objective cooperative
coevolutionary GP (MOCCGP) proposal delivers very good
results, both from the point of view of the absolute quality
of the constructed solutions and with respect to the baselines.
Furthermore, MOCCGP takes much shorter execution times
than GP, often by one order of magnitude, which confirms that
the proposed evolutionary framework is both more effective
and more efficient than the previous one.

Our contribution may be summarized as follows. (1) Spec-
ification of a search-and-replace text processing problem from

examples of the desired behavior. (2) Description of an au-
tomated method for solving this problem based on Multi-
Objective Cooperative Coevolutionary Genetic Programming;2

The method extends an earlier proposal based on Genetic Pro-
gramming in terms of: usage of cooperative coevolution of two
different populations, one for each component of a candidate
solution; enforcement of a phenotypic diversity criterion; a
novel fitness function composed of three objectives; usage of
a fitness objective that quantifies complexity of a candidate
solution based on the terminals and functions actually used.
(3) Experimental assessment of the proposed method on six
tasks of realistic complexity against two significant baselines.

The remainder of the paper is organized as follows. In
Section II, we survey relevant previous research works. In
Section III, we formally define the problem of the automatic
generation of a search-and-replace expression from a set of
examples. In Section IV, we describe in detail our proposal.
In Section V, we discuss the experimental evaluation we
performed, including the data and the baselines we used.
Finally, in Section VI, we draw the conclusions.

II. RELATED WORK

In this section we focus on proposals concerning (a) the
(possibly partial) automatization of string manipulation tasks
which resemble search-and-replace, but which do not output a
standard search-and-replace expression, (b) the automatic gen-
eration of regular expressions from examples, and (c) evolu-
tionary approaches employing solutions for improving search
effectiveness and/or efficiency which are related to those of
our approach.

A. Automatic string manipulation

In general, the problem of synthesizing a string-to-string
function consistent with a set of input-output examples is NP-
complete [9]. However, instances of that problem have been
solved in which the desired manipulation and/or the kind of
input text were related to real-world applications, often in the
context of text editing or spreadsheet software.

A system called LAPIS has been proposed in [10] which is
able to perform simple string manipulation tasks (including
some form of simple search-and-replace) specified using a
pattern language defined previously by the same authors [11].
Since some skill is still required to use the language, LAPIS
offers an assisted mode in which an initial pattern is inferred
from a set of positive and negative examples. Differently from
our work, the assisted mode addresses only the search portion
of the search-and-replace task. A similar scheme for inferring
a pattern from examples is used in [12]: the goal here is to
guess multiple selections for simultaneous editing.

A method for assisting the user in executing a search-
and-replace task is proposed in [13]. The authors consider a
scenario where, in order to mitigate the difficulty of defining a
search pattern, the users can work with imprecise patterns and
then manual check each suggested match. The authors propose

2The code of our method is publicly available: https://github.com/
MaLeLabTs/SearchAndReplaceGenerator.

3

to cluster the suggested matches so as to reduce the number
of manual checks, since the user approve or reject the whole
cluster instead of inspecting each single match.

More recently, the problem of automatic string manipulation
has been tackled as a form of Programming by Examples
(PBE): in the usual scheme, a string manipulation domain-
specific language (DSL) is designed and an engine able to
infer programs in that language which are consistent with
user-provided examples is proposed. The work in [8] is the
most significant of those approaches w.r.t. the present paper:
indeed, we included it in our experimental evaluation (see
Section V. The cited work proposes a DSL that supports
restricted forms of regular expressions, conditionals, and loops
and may represent common string manipulation tasks; the
corresponding inference algorithm is interactive by design
and takes fractions of seconds to infer the program in the
considered string manipulation tasks. The algorithm, named
FlashFill (FF), has been integrated into the Microsoft Excel
spreadsheet software.

A similar approach is proposed in [14] for automatizing
repetitive string processing tasks. The proposed DSL allows
to perform tasks such as sorting and counting of occurrences;
the associated PBE inference engine is able to extract clues of
those constructs from the input examples.

We remark that none of the cited works output a search-and-
replace expression which can be reused in any compatible text
editing software, differently than our proposed approach.

B. Automatic generation of regular expressions

Regular expressions are a long-established way of speci-
fying string patterns concisely. They are widely used in all
sort of tasks, not only by programmers. However, authoring
a regular expression is time-consuming and requires skills
related to both the task at hand (e.g., knowing the format of
an Italian VAT code) and the regular expression formalism:
during the March 2016 alone, more than 140000 questions
about regular expressions have been posted on StackOverflow,
a figure which shows that many users still struggle in writing
their regular expressions [4]. It is not surprising, hence, that a
wealth of approaches for the automatic generation of regular
expressions have been proposed, some based on some form
of evolutionary computation (EC) [15], [16], [17], [18], [19],
[20], [21], [3], [22], [6], [23] and some not [24], [25], [26],
[27], [28]. As a further classification, some of the approaches
consider the problem of generating a regular expression able
to match exactly the substring labeled in the example, others
the problem of generating a regular expression able to match a
non-empty substring in a subset of the examples and nothing
on the remaining examples. The two kinds of problems are
related to extraction and flagging, the former being, in general,
harder.

Concerning non EC-based approaches, in [26] the user is
required to provide a set of examples and an initial regular
expression: the algorithm then applies successive transforma-
tions until it reaches a local optimum in terms of precision and
recall. The system proposed in [27] works similarly but the
authors focus on noisy data. The method proposed in [28] does

not rely on an initial regular expression: instead, it identifies
relevant patterns in the set of examples and then combines the
most promising pattern into a single regular expression. The
proposal is evaluated on several business-related text extraction
tasks, e.g., phone numbers and invoice numbers. The system
proposed in [24] is tailored to data mining within criminal
justice information systems: it starts from a single example
and produces a reduced form of regular expression exploiting
the operator interventions during the learning process, which
is hence not fully automatic. A similar scheme for regular
expression generation which involves the human operator is
presented in [25]: here an active learning algorithm is proposed
which starts from a single example and then requires an
external operator to respond to membership queries about
candidate expressions.

EC has been used for generating regular expressions in
the last three decades and in many variants: Genetic Algo-
rithms (GA) [19], [20], Grammatical Evolution (GE) [18],
and Genetic Programming (GP) [15], [16], [17], [21], [3],
[22], [6], [23]. None of these approaches considered the
problem of synthesizing both a regular expression and a
replacement expression, though. Furthermore, the ability to
solve practically relevant problems was demonstrated only by
the most recent GP-based approaches (see [6] for a detailed
comparison). In this respect, the seminal work is [21] on
which later sophisticated proposals are based that address
the flagging problem [3], the extraction problem [6], and the
active learning extraction problem (i.e., the scenario where
the examples are provided by the user interactively based on
system-generated queries) [23]. In the present paper we built
on those proposals and customized many system components
to the specific case of the generation of search-and-replace
expressions. In particular, it is worth noting that simply using
as a search pattern of a search-and-replace expression a regular
expression able to match the substrings to be replaced is not
enough, because it will lack the capturing groups needed to
perform the replacement (see Section IV).

C. Evolutionary Computation perspective

Our proposal is a form of multi-objective Cooperative
Coevolutionary GP. Cooperative Coevolutionary Evolutionary
Algorithms (CCEA) have been introduced in [29] and are
a kind of EA where the individuals in the populations are
not assessed individually, but are grouped together to form
a complete solution for the problem. The effectiveness of
the individuals derives from the effectiveness of the complete
solution they take part in. The search-and-replace problem can
be naturally partitioned in two sub-problems, generating the
search pattern and generating the replace expression: for this
reason, it fits a multi-population CCEA, where the complete
solution is made of two sub-parts taken from two distinct
populations.

The evolution of solutions for multi-objective problems
through many cooperative populations have been proposed
in [30] for combinatorial optimization: the cited work also
performs some Pareto local search to further improve solution
quality. Local search is indeed a promising method to increase

4

efficiency of EAs, in particular when tackling problems where
the fitness evaluation is computationally expensive or where
strict constraints hold on the execution time as in, e.g., the
dynamic job shop scheduling problem [31]. In our work, we
do not perform local search steps: instead, we adopt domain-
based heuristics in the building of the initial population from
the examples.

A different form of splitting of the main problem in sub-
problems (separate-and-conquer) is presented in [22], for the
learning of regular expressions able to capture entities with
different syntax patterns. In the cited work, as in our pro-
posal, the diversity in the population is promoted. Diversity
promotion schemes have been indeed widely used to avoid
premature convergence [7]: common approaches consist in
self-adapting the probabilities of genetic operators (e.g., in [32]
for the mining of rules for subgroup discovery) or dynamically
vary the size of the population (e.g., in [33] as a variant to
the Differential Evolution EA). In our case, similarly to [22],
we promote diversity by simply prohibiting the presence of
duplicates (i.e., individual with the same phenotype) in the
populations.

III. PROBLEM STATEMENT

A search-and-replace expression is a pair ⟨s, r⟩ of strings
composed of a search pattern s, which is a regular expression,
and a replacement expression r. The pair ⟨s, r⟩ completely
describes a text replacement task: in an input text t, every
substring of t which matches s is replaced by a different
substring as described by the replacement expression r.

The search pattern s may contain capturing groups, a
capturing group being a substring s that is also a regular
expression and is enclosed between round parentheses. When
a regular expression s containing a capturing group matches a
string, the capturing group matches a substring of the matched
string.

The replacement expression r describes the string that
replaces a string matched by s. Available constructs for r
include back-references to the substrings matched by the
capturing groups in s. The syntax3 for back-references is $n,
where n is the index of occurrence of the capturing group in
s: $0 indicates the entire string matched by s, $1 indicates
the substring matched by the first capturing group in s, and
so on. For example, a search-and-replace expression which
can be used to change the date format from month-date-year
to day-month-year may be composed of the search pattern
s = (\d+)-(\d+)-(\d+), which includes three capturing groups,
and the replacement expression r = $2-$1-$3.

We consider the problem of constructing a search-and-
replace expression automatically from a user-provided learn-
ing set of examples E describing a text replacement task.
Examples in E are pairs of strings ⟨t, t′⟩, where t is a
string to be replaced by t′. An example in which t′ = t is
called a negative example and an example in which t′ ≠ t is
called a positive example. An embodiment of our framework
could include a GUI in which the user loads a text, selects

3Some regular expression engines (e.g., Python, .NET, Ruby) use the \n
notation, instead of the $n notation used, e.g., in Java, JavaScript, PHP.

portions that do not have to be modified (negative examples)
and portions that have to be modified, indicating the desired
modification for each portion (positive examples).

Intuitively, the problem consists in learning a search-and-
replace expression ⟨s, r⟩ whose behaviour is consistent with
the provided examples—⟨s, r⟩ transforms t into t′ for each
of the examples in E. Furthermore, ⟨s, r⟩ should capture the
underlying pattern describing the replace operation, thereby
generalizing beyond the provided examples. In other words,
the examples constitute an incomplete specification of the
behaviour of an ideal and unknown search-and-replace ex-
pression ⟨s⋆, r⋆⟩ and the learning algorithm should infer an
expression with the same behaviour as ⟨s⋆, r⋆⟩ not only on
the learning set but also on unseen text.

IV. OUR APPROACH

A. Overview

The proposed method is a form of Multi-Objective (MO) EA
consisting of a multi-population Cooperative Coevolutionary
(CC) [34] tree-based Genetic Programming (GP) [35] with
several optimizations. We provide an overview of our proposal
in this section and full details in the next sections.

Two fixed-size populations S and R are evolved in which
individuals are search patterns and replace expressions, respec-
tively, internally represented as trees (see Section IV-C). The
function and terminal sets for the trees of the two populations
include predefined elements and a number of elements deter-
mined based on the examples in the user-provided learning set
E (see Section IV-D).

The initial composition of the two populations is determined
based on the examples in E (see Section IV-D). Then, the
populations are evolved iteratively for a specified number
of generations or until a termination criterion is met (see
Section IV-F). The populations S and R at a given generation
are constructed from the corresponding populations at the
previous generation, by applying the classic tree-based genetic
operators (mutation and crossover [35]) to individuals chosen
with a reproduction selection criterion. Furthermore, the best
individuals of a population are included unchanged in the
population at the next generation (a form of elitism [36]).

In each population, no duplicate individuals are allowed:
whenever a new individual s (r) is generated (upon initializa-
tion or application of a genetic operator), if another individual
s′ ∈ S (r′ ∈ R) exists such that s = s′ (r = r′)—i.e., the
two strings are the same—the new individual is discarded,
parent(s) selection is repeated, and a new one is generated.

The two selection criteria (reproduction and survival) op-
erate based on the fitness of the individuals. In order to
compute the fitness, individuals of the two populations are
paired using a pairing procedure (see Section IV-E) which
outputs a number of search-and-replace expressions ⟨s, r⟩ out
of the individuals in S and R: each search pattern s ∈ S and
replacement expression r ∈ R may be a part of zero or more
search-and-replace expressions. Three numerical indexes (see
Section IV-E) are computed for each search-and-replace ex-
pression: the fitness of a search pattern s is given by the three
indexes of the best search-and-replace expression among the

5

ones including s; the same for r. Fitness of individuals (triplets
of indexes) are compared based on Pareto-dominance and, in
case of tie, lexicographic ordering of fitness components (see
Section IV-E). If no search-and-replace expression exists for
a given individual s or r, the corresponding fitness is set to
the worst values (see Section IV-E).

The full evolutionary search procedure above is repeated a
number of times by varying the initial random seed. A single
search-and-replace expression is chosen as the final solution
among the best search-and-replace expressions in the final
populations of the repetitions (see Section IV-F).

Summarizing, the proposed method is a form of MOCCGP
with optimizations concerning (a) the construction of terminal
sets from the examples, (b) the construction of the initial
populations from the examples, (c) the phenotypic diversity
promotion scheme, (d) and the repetition of the evolutionary
search.

B. Definitions and notation

We here introduce the terms and notations related to string
manipulation and define constructs that are necessary in the
following.

A substring of a string t is a string of consecutive characters
in t identified by the indexes of the first (inclusive) and last
(exclusive) characters. We denote by ta,b the substring of t
where a is the index in t of the first character of ta,b and b−1
is the index in t of the last character of ta,b. For example,
given t = I love the vegetables, t2,6 = love.

The length of a string t, denoted `(t), is the number of
characters composing t; for a substring ta,b, `(ta,b) = b − a.

Two substrings ta,b, ta′,b′ of a string t overlap, denoted
ta,b⊺ta′,b′ , if and only if (b > a′) ∧ (b′ > a).

The intersection of two substrings ta,b, ta′,b′ of a string t
which overlap, denoted ta,b ⊓ ta′,b′ , is the substring starting
from the largest of the two starting indexes a, a′ and ending
at the lowest of the ending indexes b, b′: i.e., ta,b ⊓ ta′,b′ =
tmax(a,a′),min(b,b′). The intersection of two substrings which
do not overlap is the empty string ∅.

Two substrings ta,b, t′c,d are equivalent, denoted ta,b ≡ t′c,d,
if the text in the substrings is the same, regardless of the
indexes. For example, given t = this is false and t′ = take this,
t0,4 ≡ t′5,9.

The set Ct,t′ of maximal common substrings of two strings
t, t′ is a set composed of all the non-empty substrings of t such
that (i) they have an equivalent substring in t′, and (ii) they do
not overlap other longer substrings of t having an equivalent
substring in t′, and (iii) they do not overlap other substrings
of t of equal length and lower starting index that have an
equivalent substring in t′. For example, given t = the car and
t′ = they are, Ct,t′ = {t0,3, t4,5, t5,7} = {the, , ar}. Formally,
Ct,t′ = {ta,b ∶ (∃t′c,d, t′c,d ≡ ta,b) ∧ (∀te,f ∶ ∃t′g,h, t′g,h ≡
te,f , te,f /⊺ ta,b ∨ `(te,f) < `(ta,b) ∨ e > a)}.

Given two strings t and t′, we denote by αt,t′ the
longest substring of t starting at index 0 for which
an equivalent substring of t′ exists which starts at in-
dex 0, i.e., αt,t′ = argmaxt0,h∈T `(t0,h), with T =
{t0,h ∶ ∃t′0,h, t0,h ≡ t′0,h}. Similarly, we denote by ωt,t′ the

longest substring of t ending at index `(t) for which
an equivalent substring of t′ exists which ends at index
`(t′), i.e., ωt,t′ = argmaxt`(t)−h,`(t)∈T `(t`(t)−h,`(t)), with
T = {t`(t)−h,`(t) ∶ ∃t′`(t′)−h,`(t′), t`(t)−h,`(t) ≡ t′`(t′)−h,`(t′)}.
The string difference between two strings t, t′, denoted δt,t′ , is
the substring of t such that the concatenation αt,t′⊕δt,t′⊕ωt,t′
is equivalent to t. For example, given t = the long tail and
t′ = the short tail, αt,t′ = t0,4 = the , ωt,t′ = t8,13 = tail,
δt,t′ = t4,8 = long, and δt′,t = t′4,9 = short. Note that, for any two
strings t, t′, αt,t′ ≡ αt′,t and ωt,t′ ≡ ωt′,t, whereas, in general,
δt,t′ /≡ δt′,t.

C. Individual representation

Individuals of the two populations S and R are search
patterns and replacement expressions, respectively, internally
represented as trees. Elements of the respective terminal sets
TS ,TR and function sets FS ,FR are strings, as follows (we
assume the reader has some familiarity with regular expres-
sions [2]).

The terminal set TS for S consists of elements based
on the examples in the user-provided learning set E (see
Section IV-D) and of the following strings: ranges a-z and
A-Z, character classes \w or \d, and constants—i.e., digits
0, . . . , 9 and the (possibly escaped) characters \., :, ,, ;,

, =, ”, ’, \, /, \?, \!, \{, \}, \(, \), \[, \], <,
>, @, #, . The function set FS for S consists of the
following strings: concatenator 99, character class operators
[9] and [ˆ9], capturing group (9) and non-capturing group4

(?:9) operators, lookarounds (?<=9), (?<!9), (?=9), (?!9), and
possessive quantifiers 9*+, 9++, 9?+, 9{9,9}+.

The terminal set TR for R consists of elements based
on the examples in the user-provided learning set E (see
Section IV-D) and of the 10 strings representing the back-
references (see Section III): $0, . . . , $9. The function set FR
for R consists only of the concatenator string 99.

An individual s (r) is obtained from the corresponding tree
by means of the following parsing procedure. Let a string
transformation of a tree be the string obtained from the root
node of the tree after replacing every ith occurrence of the
character 9 with the string transformation of the ith child of
the root node. Then s and r are the string transformations of
the corresponding trees. Figure 1 shows two possible internal
representations (trees) for a search pattern s = d:(\d)/(\d++)/ and
a replacement expression r = D=$2-$1-.

Whenever, upon the application of a genetic operator, a tree
is generated whose string transformation is not a syntactically
valid regular expression (for S) or replacement expression
(for R), the tree is discarded and a new one is generated,
i.e., parent(s) selection is repeated and the genetic operator is
applied again until obtaining an individual whose phenotype
(i.e., string transformation) is different from the phenotype
of all the individuals that are in the population already. In
this respect, our EA adopts a phenotypic diversity promotion
scheme [7]. Moreover, whenever a tree is generated whose

4A non-capturing group is a group which cannot be referenced in the
replacement expression.

6

99

99

/(9)

9++

\d

99

99

/(9)

\d

99

:d

(a) Tree for s = d:(\d)/(\d++)/.

99

99

-$1

99

99

-$2

99

=D

(b) Tree for r = D=$2-$1-.

Figure 1: The internal representations (trees) of a search
pattern (left) and of a replacement expression (right).

depth exceeds a predefined maximum depth ndepth, the tree is
discarded and a new one is generated.

D. Terminal set and population initialization

The terminal set and the initial composition of the two pop-
ulations contain elements tailored to the user-provided learning
set E of examples. The terminal set is built so as to include
elements that may be useful building blocks for working on
the provided examples. The initial population is built in order
to provide a sort of good starting point and useful genetic
material for the search. Both design choices have proven
to increase efficiency and effectiveness for the evolutionary
generation of regular expressions from examples [6], [23] and
they work as follows.

Let T ES denote the subset of TS containing the elements
tailored to E. We construct T ES as follows. Let ET be a subset
of the examples in E (see Section IV-F). Initially, T ES = ∅.
Then, for each example ⟨t, t′⟩ ∈ ET , (i) the substring δext

t,t′ of
t is built by extending by (up to) 1

2
`(δt,t′) characters on both

sides the string difference δt,t′ between t and t′ and (ii) each
character in δext

t,t′ is inserted in T ES .
Let T ER denote the subset of TR containing the elements

tailored to E. T ER is constructed with the same procedure as
the one for constructing TS , except that δt′,t is used instead
of δext

t,t′ .
Let S0 denote the initial population of search patterns S

and let nSpop be the size of S. We include up to 0.9nSpop
individuals in S0 from the examples in ET as follows. For
each example ⟨t, t′⟩ ∈ ET , the two string differences δt,t′ and
δt′,t are determined and the set Cδt,t′ ,δt′,t of their maximal
common substrings is built. Then, the following 16 regular
expressions are built:

● s1 = δt,t′ ;
● s2 = s1 where each letter in s1 is replaced by \w and

each digit is replaced by \d;
● s3 = s1 where each occurrence in s1 of a string c of
Cδt,t′ ,δt′,t is replaced by (c) (i.e., it is enclosed in a
capturing group);

● s4 = s3 where each letter in s3 is replaced by \w and
each digit is replaced by \d;

● s5, . . . , s8 built from s1, . . . , s4 by replacing each sub-
string composed of two or more repetitions of the same

t =

αt,t′
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
we’ll meet on

δt,t′
¬
11/3/

ωt,t′
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
2014 at 8:00am

t′ = we’ll meet on
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

αt′,t

3-11-
±
δt′,t

2014 at 8:00am
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ωt′,t

Cδt,t′ ,δt′,t = {11, 3}

s1 = 11/3/ s5 = 1++/3/
s2 = \d\d/\d/ s6 = \d++/\d/
s3 = (11)/(3)/ s7 = (1++)/(3)/
s4 = (\d\d)/(\d)/) s8 = (\d++)/(\d)/

r = $2-$1-

Figure 2: Examples of the search patterns and replacement
expression built for a single example ⟨t, t′⟩ in the population
initialization—search patterns s9, . . . , s16 are not shown for
the sake of brevity.

character or class c by c++ (i.e., it is grouped using the
possessive quantifier ++);

● s9, . . . , s16 built in the same way of s1, . . . , s8 but starting
from s9 = δext

t,t′ instead of s1 = δt,t′ .
In case the above procedure constructs more than 0.9nSpop
individuals, we select 0.9nSpop individuals at random with
uniform distribution across all the individuals and include
in S0 only the selected individuals. We recall that duplicate
individuals are not allowed in the population: in particular, if
a search pattern s is built from an example and another s′ = s
exists in the initial population S0, s is not inserted in S0 (the
comparison s′ = s is made on the string transformations of the
two search patterns, as described in Section IV-C). The actual
tree for a search pattern s is built by parsing s in order to
obtain a balanced tree (best effort, we omit the details for the
sake of brevity; our evolutionary search framework limits the
maximum depth of trees representing individuals, thus using
balanced trees allows representing a richer variety of individ-
uals). The remaining individuals required for completing S0

(0.1nSpop or more) are built randomly using the Ramped Half-
and-Half method with a maximum depth of n0depth [35]

Let R0 denote the initial population of replacement expres-
sions R and let nRpop be the size of R. We include up to
0.9nRpop individuals in R0 from the examples in ET as follows.
For each example ⟨t, t′⟩ ∈ ET , the two string differences δt,t′
and δt′,t are determined, the set Cδt,t′ ,δt′,t of their maximal
common substrings is built, and Cδt,t′ ,δt′,t is sorted according
to the decreasing length of its elements. Then, a single replace
expression r (i) r is initially set to r = δt′,t; then, (ii) for each
string c in Cδt,t′ ,δt′,t , the occurrence of c in r is replaced by $i,
where i is the (1-based) index of c in Cδt,t′ ,δt′,t . The remaining
individuals required for completing R0 (0.1nRpop or more) are
built randomly using the Ramped Half-and-Half method with
a maximum depth of n0depth [35].

Figure 2 shows an example of the individuals constructed
from a single example ⟨t, t′⟩.

7

E. Fitness

The fitness of an individual (i.e., a search pattern s or a
replacement expression r) is given by three numerical indexes
computed on the best search-and-replace expression ⟨s, r⟩
among the ones built by the pairing procedure, described
below, that the individual belongs to. In case an individual
s or r does not belong to any search-and-replace expression,
the worst possible fitness (+∞,+∞,+∞) is assigned to it.

The pairing procedure takes in input the two populations S
and R of search patterns and replacement expressions, respec-
tively, and outputs a set P of search-and-replace expressions.
Starting from P = ∅, for each search pattern s ∈ S, all pairs
⟨s, r⟩ such that the number of backreferences in r is not greater
than the number of groups in s are inserted into P .

The rationale for this pairing procedure is to associate each
search pattern s with a replacement expression r which can,
potentially, exploit all the capturing groups of s. Note that
∣P ∣ ≤ ∣S∣: in particular, ∣P ∣ < ∣S∣ if one or more search
pattern exist such that no replacement expressions with the
proper groupsR(r) exist in R. Moreover, in general not all
the replacement expressions are members of pairs of P and
some replacement expression may be included in more than
one pair in P .

The three fitness indexes measure (i) the quality of the
replacements resulting by the application of ⟨s, r⟩ to the user-
provided examples, (ii) the recall, at the character level, of the
search pattern on the examples, and (iii) the complexity of the
search pattern s and of the replacement expression r.

Let ET be a subset of the examples in E (see Sec-
tion IV-F). In detail, the fitness f⃗(⟨s, r⟩) is a triplet
(fdist(⟨s, r⟩;ET), f¬rec(s;ET), fcomp(⟨s, r⟩)) ∈ R3:

fdist(⟨s, r⟩;ET) = ∑
⟨t,t′⟩∈ET

d(t′, rep(t, ⟨s, r⟩))
`(t′) (1)

f¬rec(s;ET) = ∑
⟨t,t′⟩∈ET

1 − ` (δt,t
′ ⊓ sub(t, s))
` (δt,t′)

(2)

fcomp(⟨s, r⟩) = compS(s) + compR(r) (3)

where d(t1, t2) is the Levenshtein distance between the strings
t1 and t2, rep(t, ⟨s, r⟩)) is the string resulting from the
application of the search-and-replace expression ⟨s, r⟩ to
t, sub(t, s) is the first substring of t matched by s, and
compS(s), compR(r) are two complexity measures which
operate at the level of the internal representations (i.e., trees)
of s and r, respectively, as follows.

The complexity compS(s) of a tree representing a search
pattern s is given by the sum of the complexity of its nodes,
which is 0.8 for character classes \d and \w, 0.6 for
quantifiers 9*+, 9++, 9?+, 9{9,9}+, 0 for concatenator 99,
and 1 for any other node. The complexity compR(r) of a tree
representing a replacement expression r is given by the sum of
the complexity of its nodes, which is 0.6 for back-references
$0, . . . , $9, and 1 for any other node.

For all the three components of the fitness, the lower,
the better. In particular, fdist(⟨s, r⟩;ET) is, for each example
⟨t, t′⟩ ∈ ET , equals to 0 if the result rep(t, ⟨s, r⟩)) of the
application of the search-and-replace expression ⟨s, r⟩ to t is

exactly t′; f¬rec(s;ET) is 0 if the first match sub(t, s) of s in t
includes δt,t′ ; finally, fcomp(⟨s, r⟩) is closer to 0 if r and s are
short and make use of constructs which allow to generalize.

The first component of the fitness is a straightforward mea-
sure of the quality of the search-and-replace task which can be
performed by using ⟨s, r⟩. The rationale for the second com-
ponent is to help the search at the beginning of the evolution,
i.e., when the first component cannot discriminate between
bad and “almost good” search-and-replace expressions; in later
stages of the evolution, the second component becomes less
relevant: it can be seen that fdist(⟨s, r⟩;ET) = 0 implies
f¬rec(s;ET) = 0, whereas the opposite is, in general, not true.
Note that the precision is not taken into account explicitly: a
search pattern with a non-perfect precision would match also
characters which are not necessary, yet not even harmful, for
the replacement task. The rationale for the third component
is twofold: on one hand, penalizing large trees is a way for
addressing bloat, i.e., the growth of solutions without any
improvements of the fitness [37]; on the other hand, assigning
a lighter weight to nodes like classes, quantifiers, and back-
references is a way for favoring the generalization of search-
and-replace expressions (e.g., \d\d-\d\d\d\d is more able to
generalize than \d\d-20\d\d). The latter is an improvement
over most recent proposals for GP-based regular expression
generation from examples which only take into account the
length of regular expression [23], [6].

Pairs of fitness values are compared based on Pareto-
dominance: a fitness f⃗ dominates a fitness f⃗ ′ if and only if
(a) each ith component fi of f⃗ is lower than or equal to the
corresponding ith component f ′i of f⃗ ′, and (b) at least one
component fj is strictly lower than the corresponding f ′j . Sets
of fitness values are sorted based on Pareto frontiers with a
lexicographic tie-breaking criterion: given a set F of fitness
values, the subset F1 (i.e., the first Pareto frontier) is built
by including all the non-dominated fitness values of F ; then,
the subsets F2, F3, . . . are iteratively built by including, in
each Fi, all the non-dominated fitness values in F ∖⋃j<i Fj .
Fitness values are sorted based on their Pareto frontier (i.e.,
the index i of the subset Fi they belong to). In case of tie
(i.e., fitness values in the same Fi), the fitness with the lower
first component comes first; in case of further tie, the second
or third component is used.

F. Evolutionary search

An evolutionary search works as follows (see also Fig. 3):

1) The user-provided learning set E of examples is split in a
training set ET and a validation set EV ; ET and EV are
the same size (if the cardinality of E is odd then ET has
one more element than EV) and are built from E with
uniform sampling without replacement by ensuring that
(a) the difference in the number of positive examples in
ET and EV is at most 1, (b) the difference in the number
of negative examples in ET and EV is at most 1, and
(c) ET ∩ EV = ∅. In other words, the positive/negative
ratio of the learning set is maintained in the training and
validation sets.

8

2) Set ET is used for constructing the example-based subsets
T ES ,T ER of the terminal sets for the two populations, as
detailed in Section IV-D.

3) The initial populations S,R, composed of respectively
nSpop and nRpop individuals, are built from ET as detailed
in Section IV-D. A set P̂ = ∅ of the best search-and-
replace expressions, initially empty, is built.

4) A set P of search-and-replace expressions is built from
S,R with the pairing procedure detailed in Section IV-E
and the fitness of the elements in P are computed. The
set P̂ is populated by including the best (according to
the sorting of the fitness of its elements, as detailed
in Section IV-E) nP̂ search-and-replace expressions of
P ∪ P̂ . Finally, two populations S′ = {s, ⟨s, r⟩ ∈ P ∪ P̂}
and R′ = {r, ⟨s, r⟩ ∈ P ∪ P̂} of search patterns and
replacement expressions are built by considering the
respective elements of the pairs in P ∪ P̂ .

5) The new population S is constructed that consists of the
best pelitismn

S
pop individuals of S′, pcrossn

S
pop new individu-

als generated by applying the crossover operator on pairs
of individuals in S′, pmutn

S
pop new individuals generated

by applying the mutation operator on individuals in S′,
prndn

S
pop individuals randomly chosen in S′, and pnewn

S
pop

new individuals built randomly using the Ramped Half-
and-Half method with a maximum depth of n0detpth; a
tournament selection criterion of size ntour is used for
choosing individuals for applying the genetic operators—
comparison and sorting criteria are the ones detailed
in Section IV-E applied to the fitness values of the
corresponding best pairs in P ∪ P̂ (or the worst fitness
value if no corresponding pair exists in P ∪ P̂). The new
population R is populated in the same way from R′ using
nRpop instead of nSpop.

Steps 4 and 5 constitute a generation of the evolution.
The search is completed when at least one of the following
criteria is met: (a) a predefined number ngen of generations
has been executed, or (b) the best search-and-replacement
expression p̂ ∈ P̂ is such that fdist(p̂;ET) = 0 and (all the three
components of) the fitness of the best expression in P̂ in the
last nimp generations have never changed. The outcome of the
evolutionary search is the best individual p̂ = ⟨ŝ, r̂⟩ in P̂ at the
last generation. The rationale for the termination criterion b
and, in particular, for the choice of continuing the evolution
for a while even after a search-and-replace expression with
perfect fdist(p̂;ET) has been found, is to allow for further
improvements in the third component of the fitness (recall
that fdist(p̂;ET) = 0 implies f¬rec(ŝ;ET) = 0), i.e., it is aimed
at obtaining simpler search-and-replace expressions which are
also abler to generalize (see Section IV-E).

The search procedure described above is repeated nsearches
times starting with different random seeds, in order to improve
generalization and mitigate possible unfortunate stochastic
conditions.

The final search-and-replace expression ⟨s, r⟩ resulting from
the entire process is the one, among the nsearches pairs ⟨ŝ, r̂⟩
resulting from the repetitions, which minimizes fdist(⟨ŝ, r̂⟩;E),
i.e., the one whose application to all the examples in E is the

Construct example-based terminals

Construct initial populations

Pairing and fitness computation

Construct new populations

Search
completed?

Select ⟨s, r⟩ with best fitness

nsearch
executed?

Select ⟨ŝ, r̂⟩ with best fdist on E

ET

T ES ,T ESFS ,FR,TS ,TR

S,R

S′,R′

S,R

Yes

No

⟨ŝ, r̂⟩

Yes nsearch pairs ⟨ŝ, r̂⟩

No

Final ⟨s, r⟩

Figure 3: Outline of our proposed approach. The two first
blocks implement the procedure in Section IV-D, the “Pairing
and fitness computation” block and the “Construct new pop-
ulation” block correspond, respectively, to steps 4 and 5 in
Section IV-F.

best in terms of fdist.
Summarizing, the parameters of the proposed approach and

their actual values that we used in our experiments are the
maximum tree depth n0depth = 7 for initialization and the
maximum tree depth ndepth = 15 during the evolution, the sizes
nSpop = 500, nRpop = 250 of the two populations S and R, the
size nP̂ = 200 of the best search-and-replace expressions set
P̂ , the size ntour = 5 of the tournament selection criterion, the
rates pelitism = 0.4, pcross = 0.4, pmut = 0.05, prnd = 0.05, and
pnew = 0.1 for evolving the populations S and R, the maximum
number ngen = 1000 of generations, the minimum number

9

nimp = 50 of generations without fitness improvement, and the
number nsearches = 4 of repetitions of the evolutionary search.
Concerning genetic operators, we select subtrees to replace
(mutation) or exchange (crossover) as follows: we first select
one category between non-leaf or leaf nodes with probability
0.9 and 0.1, respectively; then, we select a node accordingly
with uniform probability.

G. Parameter tuning

We did not execute a full optimization of all the numerous
parameters. We started by using parameter values identical to
those of our prior works on automatic construction of regular
expressions [6] and then executed a few explorations on a
subset of the tasks, as follows. We compared ntour = 7 (used
in [6]) to ntour = 5, as we felt that a smaller tournament
size could compensate the higher evolutionary pressure in-
trinsic into the coevolutionary approaches used in this work;
indeed, we verified that ntour = 5 led to better results. We
compared nsearches = 4 (as in the public webapp implementing
the framework in [6]) to nsearches = 6; we found negligible
improvements with nsearches = 6 the latter thus we opted for
the much less demanding nsearches = 4. We experimented with
nRpop = 50,250,500 (there was no population of replacement
expressions in [6]); we noticed that nRpop = 250 and nRpop = 500

led to similar results, both significantly better than nRpop = 50,
thus we chose the less demanding value nRpop = 250.

As for any application of EC, finding the proper trade-
off between exploration and exploitation is a central point
which can eventually make the application successful or not.
We designed our proposed approach for search-and-replace
generation from examples as to properly balance the two
aspects. We aimed at promoting exploration by including a
diversity promotion scheme, by repeating the evolutionary
search multiple times and by using a tournament size smaller
than in similar scenarios (i.e., 5 rather than 7 as used in
[5], [6]). On the other hand, for supporting exploitation, we
included a strong elitism, exercised through the pelitism = 0.4
while building the populations S and R and, indirectly, by
using the set P̂ of the best search-and-replace expressions so
far.

Beyond the exploration-exploitation trade-off which mani-
fests during the evolution, we designed a population initial-
ization procedure heavily based on our domain knowledge,
with the aim of providing several good starting points for
the problem instance at hand. Moreover, we attempted to
reduce the huge search space (and hence increase the search
effectiveness) in two ways: (a) by tailoring of terminal sets to
the examples and (b) by splitting the search for the search-and-
replace expression in two sub-problems (i.e., two populations)
whose respective candidate solutions are then merged based
on the pairing procedure which we designed based on our
domain knowledge. The latter corresponds, in other words,
in searching just a small subset of the Cartesian product of
the space of all the possible search patterns and the space of
all the possible replacement expressions, instead of the entire
large space. The idea of splitting a problem in two or more
subproblems and setting the fitness of each solution component

according to the ability of the corresponding full solution to
solve the problem has been proven to be effective also with
other EAs [34].

V. EXPERIMENTS

A. Data

We experimentally evaluated our proposal on six search-
and-replace tasks inspired by practical needs and based on
real-world text corpora:

● Twitter. A task of anonymization in Twitter posts consist-
ing in replacing each username by the string @xxxxxx—
e.g., @MaleLabTs becomes @xxxxxx. The tweet corpus
has been taken from [38].

● IP. A task of partial anonymization of IP addresses
consisting in replacing each one of the last two digit
groups of each IP address (expressed in dot-decimal
notation) found in a web server log by xxx—e.g., 127.0.0.1
becomes 127.0.xxx.xxx.

● Date. A task of date format change consisting in
changing the format of each date found in the web
server log of the IP task from the Gregorian little-
endian slash-separated format to the Gregorian big-
endian dash-separated format—e.g., 31/Dec/2012 becomes
2012-Dec-31.

● Phone. A task of phone number format change consisting
in changing the format of each phone number found in
an email collection by removing the parenthesis around
the area code and adding a dash—i.e., (555) 555-5555
becomes 555-555-5555. The email corpus has been taken
from [39] and was used in [26], [28], [21], [6], [23] for the
generation of a regular expression able to match phone
numbers from examples where it turned out to be a hard
task.

● Salary. A task of number format change consisting in
removing the thousand-separating commas from salaries
of NBA players in a plain text file—e.g., $301,450,000
becomes $301450000.

● Ebook. A task of fixing paragraph terminations in ebook
files consisting in replacing wrong paragraph terminations
(i.e., occurrences of <p><\p> not preceded by the
., !, ?, : characters) by a space character in ePub (an
ebook XHTML-based format) files. The corpus consisted
of some portions of three publicly available ebooks: I
Promessi Sposi (Alessandro Manzoni), Pride and Preju-
dice (Jane Austen), Don Quijote de la Mancha (Francisco
de Robles).

The first four tasks have already been used in [5]. We made the
data corresponding to the last four tasks publicly available5;
data for Twitter and IP tasks cannot be published due to license
and privacy limitations.

For each task, we created a dataset E0 of examples ⟨t, t′⟩
by (i) concatenating the original corpora in a single string t0,
(ii) applying a hand-written search-and-replace expression able
to perform the task to t0 obtaining a string t′0, and, finally,

5http://machinelearning.inginf.units.it/data-and-tools/
automatic-search-and-replace

10

(iii) splitting t0, t
′

0 in a number of examples E0 = {⟨t, t′⟩}
such that each example contained zero or one occurrences
of a substring to be replaced. The size of the six resulting
datasets ranged from ∣E0∣ = 553 (for Salary) to ∣E0∣ = 1026
(for Ebook).

B. Procedure, indexes, and baselines

For each task, we executed the following experimental
procedure: (i) we split the task dataset E0 in a learning set E of
predefined size ∣E∣ and a test set E⋆ such that E,E⋆ have the
same positive/negative ratio of E0 and E∩E⋆ = ∅ (the splitting
is done with uniform random sampling without replacement),
(ii) we generated a search-and-replace expression ⟨ŝ, r̂⟩ au-
tomatically using our approach on E, and (iii) we applied
⟨ŝ, r̂⟩ to the examples in E⋆ and measured the following error
indexes:

εdist = fdist(⟨ŝ, r̂⟩;E⋆) = ∑
⟨t,t′⟩∈E⋆

d(t′, rep(t, ⟨ŝ, r̂⟩))
`(t′) (4)

εcount =
1

∣E⋆∣ ∣{⟨t, t
′⟩ ∈ E⋆ ∶ rep(t, ⟨ŝ, r̂⟩) ≠ t′}∣ (5)

The former, εdist, measures the average relative Levenshtein
distance on the examples in E⋆ between the string t′ desired
after the search-and-replace and the actual string rep(t, ⟨ŝ, r̂⟩)
obtained by applying the generated expression ⟨ŝ, r̂⟩. The
latter, εcount, measures the ratio of E⋆ examples for which
the ⟨ŝ, r̂⟩ does not perform as requested. For both indexes, the
lower, the better.

The error indexes defined above allow quantifying the
quality of the solution. In particular, εcount quantifies the
ratio of examples processed correctly while εdist quantifies
the mistakes in the examples that are not processed correctly.
We remark that our evolutionary approach is based on fitness
indexes that are correlated to these error indexes but are
different. Most importantly, the fitness is defined so as to
reward improvements in terms of εdist (character level) even
when such improvements are still not enough to be reflected in
terms of εcount (full example level). We based this design choice
on the results of our prior work on automatic construction of
regular expressions from examples. We found that this design
choice was fundamental for the effectiveness of the search
procedure [6]. We emphasize that we assessed the generated
search-and-replace expressions on a set of examples different
(and much larger, see below) than those used to generate them.
In other words, the examples of E⋆ are representative of the
ideal search-and-replace expression ⟨s⋆, r⋆⟩ able to solve the
task at hand on unseen test. Hence, zero error on E⋆ (i.e.,
εdist = 0 and εcount = 0) means that an ideal expression has
been generated.

We repeated the above procedure 15 times for each task by
varying the size ∣E∣ of the learning set in {20,50,100} and,
for each ∣E∣, by repeating the procedure 5 times with different
splitting of dataset E0.

In order to place the results of our approach in perspective,
we considered two baselines: our previous GP-based algo-
rithm [5] (denoted by GP in the following) and the FlashFill
algorithm [8] (denoted by FF in the following) incorporated

into Microsoft Excel—for the former, we used the parameters
suggested in the corresponding paper, whereas the latter is
parameter-free (in the Excel implementation). We measured
the error indexes εdist and εcount for the two baselines with
the very same procedure of our approach: in particular, we
computed them based on the same 15 learning/test sets for
each of the 6 tasks.

Beyond the error indexes, for our approach (denoted by
MOCCGP in the following) and GP we also measured the
learning time τ , i.e., the elapsed machine (wall-clock) time
to output the generated search-and-replace expression. We
executed all the experiments on a virtual machine with four
virtual cores on an Intel Xeon X3323 (2.53GHz) with 16GB
of RAM. The server was fully devoted to executing one virtual
machine at a time. We implemented a prototype for both
MOCCGP and GP in Java. We did not measure the learning
time for FF: as an interactive tool part of the Microsoft
Excel software, FF learning time is much shorter than the
learning time of GP and MOCCGP. We remark, though, that
FF does not output a search-and-replace expression which can
be reused in any compatible text editing software.

C. Results and discussion

Table I summarizes the salient results for the proposed
approach and the two baselines GP and FF. Each row cor-
responds to one combination of task and learning set size ∣E∣:
the row reports the average of the error indexes εdist and εcount
and the learning time τ (in minutes and only for MOCCGP
and GP) computed across the 5 repetitions performed on the
corresponding task and learning set size ∣E∣. The rightmost
column shows the ratio τMOCCGP

τGP
between the learning time

of MOCCGP and the one of GP: the lower, the faster our
approach compared to the one in [5].

The foremost finding of the experimental evaluation is that
our MOCCGP exhibits very good performance and greatly
improves over the baselines. In detail, MOCCGP exhibits zero
error (i.e., εdist = εcount = 0) in the Twitter task with every
considered learning set size, while neither GP nor FF man-
ages to obtain such perfect values. Furthermore, MOCCGP
performs also the replacement IP and Date tasks without any
mistake, which is a remarkable improvement over GP that
needs at least 50 examples in order to provide a perfect search-
and-replace expression. MOCCGP consistently improves over
both the baselines also on tasks Phone, Salary and Ebook. It
is also important to remark that in four tasks MOCCGP is
able to process all the test examples correctly, when there are
at least 50 examples available for learning, while in the most
challenging tasks Phone and Ebook, MOCCGP processes 99%
and 96.6%, respectively, of the test examples correctly (i.e.,
1 − εcount).

Another interesting result concerns the learning time τ . The
figures shown in Table I shows that MOCCGP is clearly much
faster than GP: the former takes less than 10% of the time
taken by our earlier proposal on four of six tasks and never
takes longer. The absolute values of τ are in the order of
the minutes or, for the most challenging tasks, of the tens of
minutes: these times are likely too long to make MOCCGP an

11

Table I: Experiment results. Error indexes εdist and εcount are expressed in percentage; times are expressed in seconds. The
best error indexes for each row, i.e., combination of task and ∣E∣.

N. of examples MOCCGP GP FF

Task ∣E∣ ∣E⋆∣ εdist [%] εcount [%] τ [s] εdist [%] εcount [%] τ [s] εdist [%] εcount [%] τMOCCGP
τGP

Twitter
20 980 0.0 0.0 15 4.0 5.5 24 35.2 47.5 0.63
50 950 0.0 0.0 29 13.6 3.1 38 23.6 35.7 0.76

100 900 0.0 0.0 58 4.7 2.0 121 22.4 33.8 0.48

IP
20 980 0.0 0.0 57 0.0 0.5 712 0.0 0.0 0.08
50 950 0.0 0.0 186 0.0 0.0 2067 0.0 0.0 0.09

100 900 0.0 0.0 301 0.0 0.0 2508 0.0 0.0 0.12

Date
20 980 0.0 0.0 93 29.9 60.0 1033 0.0 0.0 0.09
50 950 0.0 0.0 90 0.0 0.0 2250 0.0 0.0 0.04

100 980 0.0 0.0 145 0.0 0.0 4833 0.0 0.0 0.03

Phone
20 980 0.0 1.4 324 6.4 52.4 2160 10.0 43.5 0.15
50 950 0.0 6.1 1455 3.2 8.2 4850 12.8 48.4 0.30

100 900 0.0 1.0 2659 3.0 6.6 7820 12.0 45.6 0.34

Salary
20 533 0.1 6.1 77 0.2 10.2 771 3.9 96.4 0.10
50 528 0.0 0.0 127 0.0 0.0 1411 4.3 91.0 0.09

100 453 0.0 0.0 241 0.3 13.9 2678 4.0 81.9 0.09

Ebook
20 1006 0.8 10.3 231 1.4 29.2 2887 17.6 36.2 0.08
50 976 0.5 11.2 697 0.5 16.4 8713 22.2 42.3 0.08

100 926 0.3 3.4 1494 0.6 14.5 18674 20.9 40.0 0.08

interactive tool, but support the feasibility of a fully automatic
method for generating search-and-replace expressions from
few tens of examples. By the way, it has been showed that
even the skilled users take several minutes for authoring non-
trivial regular expressions [4], which are indeed just a part of a
search-and-replace expression. It is fair to emphasize, though,
that FF is sufficiently fast to support interactive usage.

The previous discussion is based on the average values for
the error indexes exhibited by the generated search-and-replace
expressions. In order to gain more insight into the behavior of
the three methods considered in our experimental evaluation,
we show in Figure 4 the box plots of εdist and εcount for
MOCCGP, GP, and FF on the 6 tasks for all the three values
of ∣E∣. It can be seen that MOCCGP is at least as good as the
other two methods on all the tasks w.r.t. both error indexes
and for every statistics (median, 25th, and 75th percentile):
Figure 4 hence suggests that our approach is consistently able
to generate good search-and-replace expressions.

To corroborate the previous statements, we executed a
Wilcoxon signed-rank test in order to check if there is a sig-
nificant difference in the distributions of εdist among the three
methods. We verified with significance-level α = 0.01 that the
distributions of εdist for MOCCGP vs. GP, MOCCGP vs. FF,
and GP vs. FF are different with statistical significance—the
obtained p-values being, respectively, 3.51 × 10−7, 2.2 × 10−16,
7.70 × 10−8. Similar figures hold also for εcount. The number of
samples used for each of the three approaches in the Wilcoxon
test was 3 × 5 × 6 = 90 (all combinations of learning set size
∣E∣, learning set E, and task).

In order to verify the generalization ability of our approach,
we analyzed the relation between the error index εdist computed
on the validation set E ∖ET and on the test set E⋆ for each
one of the 4 × 3 × 5 × 6 = 360 search-and-replace expressions
generated by an evolutionary search of MOCCGP. Figure 5
summarizes the results of this analysis by plotting εdist on E⋆

0

20

40

ε d
is

t
[%

]
MOCCGP GP FF

Twitter IP Date Phone Salary Ebook

0

50

100

ε c
ou

nt
[%

]

Figure 4: Box plots of εdist and εcount for MOCCGP, GP, and
FF on the 6 tasks for the 3 values of ∣E∣.

vs. εdist on E ∖ET , one mark for each expression. It can be
seen that, in general, the two figures are well correlated. In
other words, the error index εdist on the validation set E ∖ET
is a good predictor of the same error index on the test set
E⋆ which is, we remark, much larger: this finding supports
the fact that MOCCGP is able to generate search-and-replace
expressions which work well not only on the user-provided
examples, but also on “unseen” text (here represented by E⋆).

Finally, Table II shows one search-and-replace expression

12

0 0.5 1 1.5 2 2.5
0

1

2

εdist on E ∖ET (validation) [%]

ε d
is

t
on

E
⋆

(t
es

t)
[%

]

Figure 5: εdist computed on the test set E⋆ vs. εdist computed
on the validation set E ∖ ET for each search-and-replace
expressions generated by an evolutionary search of MOCCGP.

Table II: Examples of the search-and-replace expressions gen-
erated by MOCCGP.

Task ŝ r̂

Twitter (@)\w++ $1xxxxxx
IP \d++(\.)\d++(\s) xxx$1xxx$2
Date (\d++)/(\w++)/(\d++) $3-$2-$1
Phone \((\d++)[ˆ\w]*+ $1-
Salary ,(\w++),?+ $1
Ebook (\w)</p[ˆ\w]*+\w> $1

⟨ŝ, r̂⟩ for each of the 6 tasks—we chose one randomly among
the best performing ones for each task. It can be seen that
MOCCGP succeeds in generating very compact and human-
readable solutions for all the tasks. As a comparison, the best
search-and-replace expression generated by GP for the Twitter
task is (the search pattern ŝ is split across 3 lines):

ŝ =
@\w\w[ˆ\d]\w(?:r\w(?:[.])\wy*+\we)?+\w\w[ˆ\d]
(?:\w(?:\w\w(?:@\w)?+)?+(?:\w(?:\w\w)?+\w?+)?+)?+
(?:\w(?:\w\w\w\w\w[ˆA]\w\w\w)?+)?+

r̂ =@xxxxxx

We recall that FF does not output a search-and-replace expres-
sion usable in any compatible text editing software.

VI. CONCLUDING REMARKS

We have presented an approach based on multi-objective
Genetic Programming for solving a challenging problem, i.e.,
the automatic construction of search-and-replace expressions
based solely on examples of the text manipulation task to be
performed. The user provides only a set of examples, each
consisting of the input text and the desired modified text, and
the tool constructs a search-and-replace expression that can be
used unchanged on a broad variety of text processing tools.
The expression consists of a search pattern that takes the form
of a regular expression and of a replacement expression that
describes the changes to be applied to the substring matching
the search pattern.

We assessed the effectiveness and efficiency of our proposal
on six real-world search-and-replace tasks and compared its
performance against the only methods available in the litera-
ture that we are aware of: the GP-based algorithm proposed

in [5] and the FlashFill algorithm [8] as incorporated into the
commercially available Microsoft Excel software—the latter
does not output reusable search-and-replace expressions, but
artifacts in a specific language usable only by FlashFill itself.
We showed that our proposal is effective in constructing
compact and human-readable search-and-replace expressions
able to generalize beyond the provided examples. Indeed,
MOCCGP clearly outperforms the two baselines in effec-
tiveness and greatly improves over GP in efficiency (time
required for learning a search-and-replace expression from the
examples). Our proposal may effectively permit to people with
no technical expertise to construct search-and-replace expres-
sions in a few minutes and constitutes a further demonstration
of the potential of evolutionary computation techniques in
applications of practical interest.

The problem considered in this work is particularly chal-
lenging because the effectiveness of a solution does not
depend only on the structure of its two components—search
pattern and replacement expression—but also on their mutual
interaction. Problems of this kind are generally difficult to
solve with evolutionary techniques, because of the potential
explosion of the solution space. The key strength of our
approach is that the two components are optimized jointly.
To this end, we have defined a framework based on two
populations, one for each solution component, in which there
is a cooperative coevolution of the two populations. While we
have demonstrated the practicality of our approach only on of
the automatic construction of search-and-replace expressions,
our cooperative coevolutionary framework could be useful
even beyond this specific problem.

Acknowledgments

We are grateful to the anonymous reviewers for their
numerous and detailed suggestions leading to an improved
presentation.

REFERENCES

[1] A. Bartoli, A. D. Lorenzo, E. Medvet, and F. Tarlao, “Data quality
challenge: Toward a tool for string processing by examples,” Journal of
Data and Information Quality (JDIQ), vol. 6, no. 4, p. 13, 2015.

[2] J. Friedl, Mastering Regular Expressions. O’Reilly Media, Inc., 2006.
[3] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Playing regex

golf with genetic programming,” in Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation. ACM, 2014,
pp. 1063–1070.

[4] ——, “Can a machine replace humans in building regular expressions?
a case study,” IEEE Intelligent Systems, vol. 31, no. 6, pp. 15–21, 2016.

[5] A. De Lorenzo, E. Medvet, and A. Bartoli, “Automatic string replace
by examples,” in Proceedings of the 15th annual conference on Genetic
and evolutionary computation. ACM, 2013, pp. 1253–1260.

[6] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Inference of reg-
ular expressions for text extraction from examples,” IEEE Transactions
on Knowledge and Data Engineering, vol. 28, no. 5, pp. 1217–1230,
2016.

[7] G. Squillero and A. Tonda, “Divergence of character and premature
convergence: A survey of methodologies for promoting diversity in
evolutionary optimization,” Information Sciences, vol. 329, pp. 782–799,
2016.

[8] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in ACM SIGPLAN Notices, vol. 46, no. 1. ACM,
2011, pp. 317–330.

[9] J. Hamza and V. Kunčak, “Minimal synthesis of string to string functions
from examples,” arXiv preprint arXiv:1710.09208, 2017.

13

[10] R. Miller and B. Myers, “Lapis: Smart editing with text structure,” in
CHI’02 extended abstracts on Human factors in computing systems.
ACM, 2002, pp. 496–497.

[11] R. Miller, B. Myers et al., “Lightweight structured text processing,” in
Proceedings of 1999 USENIX Annual Technical Conference, 1999, pp.
131–144.

[12] R. Miller and B. Myers, “Multiple selections in smart text editing,”
in Proceedings of the 7th international conference on Intelligent user
interfaces. ACM, 2002, pp. 103–110.

[13] R. Miller and A. Marshall, “Cluster-based find and replace,” in Proceed-
ings of the SIGCHI conference on Human factors in computing systems.
ACM, 2004, pp. 57–64.

[14] A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and A. Kalai, “A ma-
chine learning framework for programming by example,” in Proceedings
of the 30th International Conference on Machine Learning (ICML-13),
2013, pp. 187–195.

[15] M. Tomita, “Dynamic construction of finite automata from example
using hill-climbing,” in Proc. of the Fourth Annual Cognitive Science
Conference, 1982, pp. 105–108.

[16] B. Dunay, F. Petry, and B. Buckles, “Regular language induction with
genetic programming,” in Evolutionary Computation, 1994. IEEE World
Congress on Computational Intelligence., Proceedings of the First IEEE
Conference on, vol. 1. IEEE, 1994, pp. 396–400.

[17] B. Svingen, “Learning Regular Languages Using Genetic Program-
ming,” in Genetic Programming 1998 Proceedings of the Third Annual
Conference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo,
D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, Eds.
Morgan Kaufmann, 1998, pp. 374–376.

[18] A. Cetinkaya, “Regular expression generation through grammatical
evolution,” in Proceedings of the 9th annual conference companion on
Genetic and evolutionary computation. ACM, 2007, pp. 2643–2646.

[19] D. F. Barrero, D. Camacho, and M. D. R-moreno, “Automatic web data
extraction based on genetic algorithms and regular expressions,” Data
Mining and Multi-agent Integration, pp. 143–154, 2009.

[20] A. González-Pardo, D. F. Barrero, D. Camacho, and M. D. R-Moreno,
“A case study on grammatical-based representation for regular expres-
sion evolution,” in Trends in Practical Applications of Agents and
Multiagent Systems. Springer, 2010, pp. 379–386.

[21] A. Bartoli, G. Davanzo, A. De Lorenzo, M. Mauri, E. Medvet, and E. So-
rio, “Automatic generation of regular expressions from examples with
genetic programming,” in Proceedings of the 14th GECCO conference
companion. ACM, 2012, pp. 1477–1478.

[22] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Learning text
patterns using separate-and-conquer genetic programming,” in European
Conference on Genetic Programming. Springer, 2015, pp. 16–27.

[23] ——, “Active learning of regular expressions for entity extraction,” IEEE
Transactions on Cybernetics, 2017.

[24] T. Wu and W. Pottenger, “A semi-supervised active learning algorithm
for information extraction from textual data,” Journal of the American
Society for Information Science and Technology, vol. 56, no. 3, pp. 258–
271, 2005.

[25] E. Kinber, “Learning regular expressions from representative examples
and membership queries,” Grammatical Inference: Theoretical Results
and Applications, pp. 94–108, 2010.

[26] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and A. Arbor,
“Regular Expression Learning for Information Extraction,” Computa-
tional Linguistics, no. October, pp. 21–30, 2008.

[27] R. Babbar and N. Singh, “Clustering based approach to learning regular
expressions over large alphabet for noisy unstructured text,” in Proceed-
ings of the fourth workshop on Analytics for noisy unstructured text data,
ser. AND ’10. New York, NY, USA: ACM, 2010, pp. 43–50.

[28] F. Brauer, R. Rieger, A. Mocan, and W. Barczynski, “Enabling informa-
tion extraction by inference of regular expressions from sample entities,”
in Proceedings of the 20th ACM international conference on Information
and knowledge management. ACM, 2011, pp. 1285–1294.

[29] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in International Conference on Parallel Prob-
lem Solving from Nature. Springer, 1994, pp. 249–257.

[30] L. Ke, Q. Zhang, and R. Battiti, “A simple yet efficient multiobjective
combinatorial optimization method using decompostion and pareto local
search,” IEEE Trans on Cybernetics, accepted, 2014.

[31] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic pro-
gramming via iterated local search for dynamic job shop scheduling,”
Cybernetics, IEEE Transactions on, vol. 45, no. 1, pp. 1–14, 2015.

[32] J. M. Luna, J. R. Romero, C. Romero, and S. Ventura, “On the use
of genetic programming for mining comprehensible rules in subgroup

discovery,” Cybernetics, IEEE Transactions on, vol. 44, no. 12, pp.
2329–2341, 2014.

[33] M. Yang, C. Li, Z. Cai, and J. Guan, “Differential evolution with
auto-enhanced population diversity,” Cybernetics, IEEE Transactions on,
vol. 45, no. 2, pp. 302–315, 2015.

[34] K. A. De Jong and M. A. Potter, “Evolving complex structures via
cooperative coevolution.” in Evolutionary Programming, 1995, pp. 307–
317.

[35] J. R. Koza, “Genetic Programming: On the Programming of Computers
by Means of Natural Selection (Complex Adaptive Systems),” vol. 1,
1992.

[36] K. A. De Jong, Evolutionary computation: a unified approach. MIT
press, 2006.

[37] E. D. De Jong and J. B. Pollack, “Multi-objective methods for tree size
control,” Genetic Programming and Evolvable Machines, vol. 4, no. 3,
pp. 211–233, 2003.

[38] E. Medvet and A. Bartoli, “Brand-related events detection, classifi-
cation and summarization on twitter,” in Proceedings of the 2011
IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology - Volume 01, ser. WI-IAT ’12. IEEE
Computer Society, 2012, to appear.

[39] E. Minkov, R. C. Wang, and W. W. Cohen, “Extracting personal names
from email: applying named entity recognition to informal text,” in
Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing, ser. HLT ’05.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2005,
pp. 443–450.

Alberto Bartoli received the degree in Electrical
Engineering in 1989 cum laude and the PhD de-
gree in Computer Engineering in 1993, both from
the University of Pisa, Italy. Since 1998 he is an
Associate Professor at the Department of Engineer-
ing and Architecture of University of Trieste, Italy,
where he is the Director of the Machine Learning
Lab. His research interests include machine learning
applications, evolutionary computing, and security.

Andrea De Lorenzo received the diploma degree in
Computer Engineering cum laude from the Univer-
sity of Trieste, Italy in 2006 and the MS degree in
Computer Engineering in 2010. He received the PhD
degree in Computer Engineering in 2014, endorsed
by the University of Trieste. His research interests
include evolutionary computing, computer vision,
and machine learning applications.

Eric Medvet received the degree in Electronic En-
gineering cum laude in 2004 and the PhD degree
in Computer Engineering in 2008, both from the
University of Trieste, Italy, where he is currently an
Assistant Professor in Computer Engineering and the
Director of the Evolutionary Robotics and Artificial
Life Lab. His research interests include Genetic
Programming and machine learning applications,
in particular concerning Android malware detection
and information retrieval.

Fabiano Tarlao received the degree in Electronic
Engineering in 2010 and the PhD degree in Com-
puter Engineering in 2017, both from the University
of Trieste, Italy. He is currently a PostDoc research
fellow at the Department of Engineering and Archi-
tecture at University of Trieste, Italy. His research
interests are in the areas of web security, Genetic
Programming, and machine learning applications.

