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cPhysique Théorique et Mathématique and International Solvay Institutes,
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1 Introduction and motivation

Despite being the Goldstone modes associated with broken spatial translations, phonons

are rarely described as emerging genuinely from a symmetry breaking process. In general

the effective field theories containing phonons assume the presence of a lattice without

accounting for its spontaneous formation. The description of the renormalization group

flow of a microscopic translational invariant theory that develops a lattice in the infrared

is complicated, for instance, because it entails many-body physics. The characteristics of

the symmetry breaking do affect, however, the construction of the low-energy effective field

theory (see for instance [1, 2]). The simplest example being that a proper counting of the

Goldstone modes is crucial to build the correct effective field theory; the case of phonons

has already been addressed, for example, in [3].

Ward identities are the cornerstone of the UV/IR connection implied by a symmetry

breaking process. They contain information about the symmetries of the microscopic theory

and, at the same time, about how the dynamically generated scales enter the low-energy

correlators. Note that the Ward identities contain only kinematic information as opposed

to dynamical. They describe the interplay of the various scales in the system without

quantitatively predicting their value. As an intuitively clear example, the Ward identity

analysis of the spontaneous breaking of a global U(1) symmetry predicts the possibility

of superfluidity without implying the actual existence of superfluids. The latter requires

the explicit solution of a model dynamically realizing the symmetry breaking pattern.
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Nevertheless, the Ward identities state a priori that the would-be superfluid is described

at low energy by the massless Goldstone mode associated to the broken U(1) (see e.g. [4]).

In this work we put forward a novel approach to the realization of phonons as Gold-

stone modes based on the analysis of the Ward identities. In particular, we focus on the

concomitant breaking of translational and conformal symmetry due to a single complex

scalar operator acquiring a space-dependent vacuum expectation value. The modulation

of the scalar operator is characterized by a wave-vector kµ and realizes a lattice along one

spatial direction. This is the minimalist scenario implementing the pattern of symmetry

breaking we are interested in. It allows us to show explicitly the emergence of the dilaton

and phonon modes and discuss their modifications upon adding an explicit component to

the breaking (i.e. a nontrivial source).

We perform our analysis in a generic quantum field theory (QFT) with the symmetry

breaking pattern above, and complement it with a concrete holographic realization con-

sisting in a Q-lattice model [5]. Holography constitutes a privileged setup that encodes

the Ward identity structure of a QFT and allows the analysis of its renormalization group

flow departing from a UV conformal fixed point [6–10]. Moreover, our holographic analysis

provides an interesting perspective on the problem at hand and yields useful input for our

generic QFT setup. Additionally, the holographic Q-lattice belongs to the widely studied

class of AdS/CMT models featuring translational symmetry breaking and clarifies some

issues about the presence and characteristics of phonons in this context [11–24].

We also show that a general symmetry breaking pattern with both explicit and sponta-

neous components leads to a particular interplay of the pseudo-phonon and pseudo-dilaton

modes. We set the stage for further studies which can naturally follow two directions.

The first one is mainly holographic and aims at solving completely the model at hand,

obtaining therefore direct information on the structure and content of the correlators that

have been only partially constrained by the present analysis. The second direction consists

of a systematic effective field theory program based on the explicit realization of the Ward

identity structure unveiled in this work.

The paper is structured as follows. In section 2 we derive in QFT the Ward identi-

ties of translational and scaling symmetry breaking by a complex scalar operator that is

modulated along one spatial direction. In section 3 we study a holographic model realizing

the Ward identities found in section 2. This requires a careful renormalization process and

proper treatment of bulk gauge invariant quantities. In section 4 we discuss the charac-

teristics of the low-energy modes and explore generic Ansätze for the relevant two-point

functions in view of constructing effective field theories. We conclude in section 5 taking

stock of the results we obtained and pointing to some important open directions.

2 Ward identities

In this section we recall, and quickly re-derive, the Ward identities for one- and two-point

functions when translations and dilatations are broken, either spontaneously or explicitly.

Consider the generating functional W [hµν , φ] of connected correlators of a d-dimen-

sional QFT defined on Minkowski spacetime. The field hµν is coupled to the energy-
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momentum tensor while φ is coupled to a scalar operator O. They can be respectively

considered as small fluctuations upon the background values ηµν and Φ̄, the latter being

thus a physical coupling for the operator O:

SQFT ⊃ −
1

2

∫
ddx

(
Φ̄∗O + Φ̄O∗

)
, (2.1)

which possibly breaks translation invariance (if ∂µΦ̄ 6= 0) and scale invariance (if the

operator O has naive dimension ∆O 6= d). Let us denote

Ssource =

∫
ddx

[
1

2
hµνT

µν − 1

2
(φ∗O + φO∗)

]
, (2.2)

where the numerical coefficients are conventional and chosen in view of later convenience.

The partition function of the system Z and the generating functional W are defined

as follows

Z = eiW =

∫
dµ eiSQFT+iSsource , (2.3)

where dµ represents schematically the path integral integration measure. Consequently

we have

〈Tµν(x)X(x′)〉 = −2i
δ

δhµν(x)
〈X(x′)〉 , (2.4)

〈O(x)X(x′)〉 = 2i
δ

δφ∗(x)
〈X(x′)〉 , 〈O∗(x)X(x′)〉 = 2i

δ

δφ(x)
〈X(x′)〉 , (2.5)

where X can be replaced by a string of operators at different positions, or by the identity,

in which case 〈1〉 ≡ Z.

2.1 Diffeomorphisms

Let us now show explicitly how the invariance of the partition function (2.3) under dif-

feomorphisms yields the Ward identities for translations. The external field fluctuations

transform under the infinitesimal diffeomorphisms generated by the parameter ξµ according

to their tensorial structure. Specifically

δξhµν = ∂µξν + ∂νξµ , (2.6a)

δξφ ≡ δξΦ = ξα ∂
αΦ = ξα ∂

αΦ̄ + ξα ∂
αφ . (2.6b)

Notice that we did not consider O(h) corrections to the first equation, while in the second

one we have retained O(φ) ones. The reason is that the latter are relevant for the correlators

we compute, while the former are not. We have also assigned the variation of the whole

field to the fluctuation, effectively taking the background field as invariant, i.e. δξΦ̄ = 0.

Using standard techniques, one can derive the following identity for one-point functions

〈∂µTµν〉 = −1

2
(∂νΦ∗)〈O〉 − 1

2
(∂νΦ)〈O∗〉 , (2.7)

which is valid at sources on. Setting the sources to zero is simply equivalent to replacing

Φ with Φ̄.
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Before computing the two-point functions, we have to implement the shift (as pointed

out, for instance, in [7]) of Tµν to split physical and external sources:

〈Tµν〉 = 〈Tµν〉QFT −
1

2
φ∗ ηµν〈O〉 − 1

2
φ ηµν〈O∗〉 , (2.8)

where TµνQFT is the physical energy-momentum tensor, while Tµν is the one that takes into

account also the part of the action with the external sources, appearing in the 1-pt Ward

identity at sources on. Having done this redefinition, one can finally compute the two-point

Ward identity

〈∂µTµν(x)O(x′)〉QFT = iδd(x− x′)∂ν〈O(x)〉

− 1

2
(∂νΦ̄∗(x)) 〈O(x)O(x′)〉 − 1

2
(∂νΦ̄(x)) 〈O∗(x)O(x′)〉 ,

(2.9)

where the sources have been set to zero. Note that the shift (2.8) is crucial in order to

obtain the correct contact term.

2.2 Local scaling transformations

The derivation of the Ward identities for scaling transformations is similar to the one for

translations. The field variations of interest are

δβhµν = −2β ηµν , (2.10a)

δβφ = (d−∆O)β Φ , (2.10b)

where β is generically spacetime dependent, ∆O is the dimension of the operator O, and

we neglect higher order terms.

The one-point Ward identity reads

〈T 〉 = −d−∆O

2
Φ∗〈O〉 − d−∆O

2
Φ〈O∗〉 , (2.11)

where we can set the external fields to their background values. We have defined T =ηµνT
µν

as customary.

Also in this case, before computing the two-point functions, we need to take into

account the redefinition of the energy-momentum tensor (2.8), namely we need to consider:

TQFT = T +
d

2
(φ∗ O + φ O∗) . (2.12)

Finally, the resulting 2-pt Ward Identity is

〈T (x)O(x′)〉QFT = iδd(x− x′)∆O〈O(x)〉

− d−∆O

2
Φ̄∗(x)〈O(x)O(x′)〉 − d−∆O

2
Φ̄(x)〈O∗(x)O(x′)〉 .

(2.13)

Finally, let us briefly mention the infinitesimal local Lorentz transformations. Since

the sources are scalar, the corresponding one- and two-point Ward identities are

〈T [µν](x)〉 = 0 , 〈T [µν](x)O(x′)〉 = 0 . (2.14)
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The Ward identities derived in this section are crucial for the analysis in section 4

where we discuss what kind of energy-momentum tensor can realize such Ward identities,

and in particular which gapless (or nearly gapless) modes should appear in the correlator

〈Tµν(x)O(x′)〉QFT in order to satisfy them. Before that, in the next section we turn to

holography and present a model that realizes the Ward identities we have just derived.

The holographic model provides also extra input for the analysis of section 4.

3 A holographic model

In this section we present a holographic realization of translation and scale symmetry

breaking. Our goal is twofold: first, to realize the Ward identities computed in the previ-

ous section; second, to obtain useful insight into the structure of the correlators which are

sensitive to the physics of the breaking of translational and scaling symmetry. Such insight

will be put to use in the QFT analysis of section 4. To this purposes, we analyze the holo-

graphic Q-lattice [5, 18], where the symmetry breaking (in particular that of translations)

is encoded in a dual gravitational model with a spatially-oscillating complex scalar field in

an asymptotically AdS spacetime. More precisely, let us consider the action of a massive

complex scalar field Φ of mass m in d+ 1 = 4 dimensional spacetime:

S = S0 + SGH + Sc.t. , S0 =

∫
d4x
√
−g
(
R− 2Λ− ∂MΦ ∂MΦ∗ −m2ΦΦ∗

)
, (3.1)

where the capital Latin indices run over the bulk coordinates (t, x, y, z). We henceforth fix

the cosmological constant Λ to −3. This model is dual to a CFT which has a complex scalar

operator1 with scaling dimension ∆ = d
2±
√

d2

4 +m2. We consider for definiteness m2 = −2

so that ∆ = 2, noting that the specific value of the scaling dimension of the operator is

nowhere crucial to the results obtained in this section. The Gibbons-Hawking term, SGH

in (3.1), is the boundary term required to have a well-defined variational problem, and it

is given by

SGH =

∫
d3x
√
−γ 2K =

∫
d3x
√
−γ 2gMN∇MnN , (3.2)

where nM is the unit vector orthogonal to the boundary, and γ the determinant of the

metric with the direction along nM excluded. The counterterm part of the action (3.1),

Sc.t., takes into account the counterterms needed to holographically renormalize the action,

which, for the model at hand, are given by:

Sc.t. =

∫
d3x
√
−γ (4 +R [γ] + ΦΦ∗) . (3.3)

The equations of motion can be written as follows:

RMN −
1

2
RgMN + ΛgMN = −1

2
gMN

(
∂AΦ∂AΦ∗ +m2ΦΦ∗

)
+ ∂(MΦ∂N)Φ

∗ , (3.4a)

∂M
(√
−g gMN∂NΦ

)
−
√
−gm2Φ = 0 , (3.4b)

plus an equation analogous to (3.4b) for Φ∗.

1As usual in the literature using such holographic Q-lattices, we will just assume the existence of a

regime where a gravitational theory features a globally charged scalar.
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We are interested in analyzing the zero-temperature case with the scalar operator

breaking the translation symmetry in one of the spatial directions by means of an oscillating

phase ei k·x, where the wave-vector is spatial and taken along the x direction, k = (0, kx, 0).

Accordingly, we consider the following Ansatz

ds2 = ḡMNdx
MdxN = −T (z)dt2 +X(z)dx2 + Y (z)dy2 + Z(z)dz2 ,

Φ(x, z) = eik·xϕ(z) .
(3.5)

Standard AdS spacetime in the Poincaré patch corresponds to T (z) = X(z) = Y (Z) =

Z(z) = 1
z2

where z is the radial coordinate. The bar over ḡMN indicates that it is the back-

ground (we reserve the unbarred symbol for the whole background-plus-fluctuation field).

The analysis of the Ward identities described in the following relies only on the UV

properties of the model. It is therefore sufficient to consider an asymptotic solution near

the conformal boundary (z = 0). The expansion of the bulk background fields as a power

series in z is given by

ϕ(z) = ϕ1z + ϕ2z
2 + . . . , (3.6)

ḡMM (z) = z−2
(
ηMM + g1MM z + g2MM z2 + g3MM z3 + . . .

)
.

Relying on the scaling properties of the model, the coefficient of the leading term of the

metric components has been set to one. We take ϕ(z) to be a real field. Solving order by

order the equations of motion (3.4) we have

ϕ(z) = ϕ1z + ϕ2z
2 +O(z3) ,

z2T (z) = 1− ϕ2
1

4
z2 + T3z

3 +O(z4) ,

z2X(z) = 1− ϕ2
1

4
z2 +X3z

3 +O(z4) , (3.7)

z2Y (z) = 1− ϕ2
1

4
z2 + Y3z

3 +O(z4) ,

z2Z(z) = 1−
(
T3 +X3 + Y3 +

4

3
ϕ1ϕ2

)
z3 +O(z4) .

We adopted a convenient way to fix the remaining gauge arbitrariness related to radial

diffeomorphisms by setting g1zz = g2zz = 0, and we further impose the condition

g3zz = 0 ⇔ T3 +X3 + Y3 +
4

3
ϕ1ϕ2 = 0 . (3.8)

Note that in (3.7) the z-linear terms in the metric components vanish because of the EOMs.

It is important to note that the background metric does not depend on the boundary

coordinates. This is a crucial simplification particular to the Q-lattice ansatz that will be

pivotal for the analysis in what follows. Indeed, it can also be shown that the O(z4) terms

will depend on k only through k2.

– 6 –
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3.1 Fluctuations

In order to compute the one- and two-point Ward identities we need to consider the fluc-

tuations of the fields of the model around the background solution (3.7). More specifically,

we are interested in computing the action (3.1) expanded up to second order in the fluctu-

ations. Consider the fluctuations

gMN = ḡMN + hMN , Φ = Φ̄ + φ , (3.9)

where ḡMN and Φ̄ are the background values displayed in (3.7).

The equations of motion (3.4) expanded at the linear order in the fluctuations (3.9) read

−hMA∇M∇AΦ̄−∇M Φ̄∇AhMA +
1

2
∇M Φ̄∇MhAA + ḡMA∇A∇Mφ−m2φ = 0 , (3.10)

1

2
∇B∇Ah C

C −
1

2
∇C∇Ah C

B −
1

2
∇C∇Bh C

A +
1

2
∇C∇ChAB + ΛhAB

+
1

2
m2Φ̄Φ̄∗hAB +

1

2
m2Φ̄∗ φ ḡAB +

1

2
m2Φ̄φ∗ ḡAB

+
1

2
∇AΦ̄∗∇Bφ+

1

2
∇BΦ̄∗∇Aφ+

1

2
∇AΦ̄∇Bφ∗ +

1

2
∇BΦ̄∇Aφ∗ = 0 .

(3.11)

The terms of the bulk action S0 (3.1) that are linear and quadratic in the fluctuations φ

and hMN reduce to purely boundary terms upon using respectively the equations of motion

of the background and of the fluctuations. The term linear in the fluctuation gives

S
(1)
0 =

∫
z=ε

d3x
√
−ḡ
[
∇NhzN −∇zhNN − ∂zΦ̄φ∗ − ∂zΦ̄∗ φ

]
, (3.12)

while the quadratic term takes the form

S
(2)
0 =

∫
z=ε

d3x
√
−ḡ
[
− 1

4
hNN∇zhMM − hzM∇NhNM +

3

4
hMN∇zhMN

− 1

2
hMN∇MhzN +

1

4
hNN∇MhMz +

3

4
hzM∇MhNN

+
1

2
hzN (φ∂N Φ̄∗ + φ∗∂N Φ̄)− 1

4
hNN (φ∂zΦ̄∗ + φ∗∂zΦ̄)

− 1

2
φ∂zφ∗ − 1

2
φ∗∂zφ

]
, (3.13)

where ε is a UV cut-off which is set to zero at the end of the renormalization process. To

renormalize S0, we need to add to (3.12) and (3.13) the boundary terms (3.2) and (3.3)

computed at z = ε and eventually to perform the ε → 0 limit. To this end, it is again

convenient to adopt the radial gauge

hzM = 0 . (3.14)

In this gauge the equations of motion (3.10) and (3.11) reduce to a set of seven dynamical

equations plus four constraints coming from the equations for hzM , and the Gibbons-

Hawking term (3.2) reads

SGH =

∫
z=ε

d3x
√
−γ gµν∂zgµν , (3.15)

where the indices µ, ν label the boundary coordinates.

– 7 –
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Let us first focus on the linear part of the action. Expanding (3.15) to linear order

we obtain:

S
(1)
0 + S

(1)
GH =

∫
z=ε

d3x
√
−ḡ
[

1

2
hµν

(
∂z ḡµν − ḡµν ḡαβ∂z ḡαβ

)
− ∂zΦ̄φ∗ − ∂zΦ̄∗φ

]
. (3.16)

We now write the expansions for all the fields, both background and fluctuations, near

z = 0 in the following way (the expansion of the background metric is just a repetition

of (3.6) with boundary indices only):

ḡµν =
1

z2

(
ηµν + g2µνz

2 + g3µνz
3 + . . .

)
, (3.17)

hµν =
1

z2

(
h0µν + h2µνz

2 + h3µνz
3 + . . .

)
,

Φ̄ = Φ̄1z + Φ̄2z
2 + . . . = eikx

(
ϕ1z + ϕ2z

2 + . . .
)
,

φ = φ1z + φ2z
2 + . . . = eikx

(
ϕ̂1z + ϕ̂2z

2 + . . .
)
.

The coefficients of the fluctuations h0µν , h2µν , h3µν , ϕ̂1 and ϕ̂2 are generic functions of xµ.

Adding all the counterterms (3.3) expanded to linear order in the fluctuations and

performing the ε→ 0 limit, we get

S(1)
ren =

∫
z=0

d3x

[
−3

2
g3µνh

µν
0 +

3

4
g µ

3µ h
ν

0ν − ϕ2 (ϕ̂1 + ϕ̂∗1)

]
. (3.18)

We now turn to the second order terms in the action. Expanding (3.15) to second

order in the fluctuations, we obtain

S(2) + S
(2)
GH =

∫
z=ε

d3x
√
−ḡ
[

1

4
hλλ

(
ḡµν∂zhµν +

3

2
hµν∂

z ḡµν
)
− 1

4
hµν∂zhµν

− 1

2
hµλh

λ
ν∂

z ḡµν − 1

4

(
hλωhλω −

1

2
hλλh

ω
ω

)
ḡµν∂z ḡµν

− 1

4
hµµ(φ∂zΦ̄∗ + φ∗∂zΦ̄)− 1

2
(φ∂zφ∗ + φ∗∂zφ)

]
. (3.19)

We now add the counterterms (3.3) expanded to the second order in the fluctuations and,

having expanded the fields near z = 0 as in (3.17), we send ε → 0. Divergent terms

arise at O(z−3) and O(z−1) but they all cancel. For the latter, it is crucial to substitute

the following expression in the on-shell action, obtained through the µν equation of the

set (3.11):

h2µν =
1

2
(∂λ∂

λh0µν + ∂µ∂νh
λ

0λ − ∂λ∂µh λ
0ν − ∂λ∂νh λ

0µ ) +
1

4
ηµν(∂λ∂ωh

λω
0 − ∂λ∂λh ω

0ω )

− 1

4
ϕ2

1h0µν −
1

4
ϕ1ηµν(ϕ̂1 + ϕ̂∗1) . (3.20)

Note that we have substituted the value g2µν = −1
4ϕ

2
1ηµν according to the background

solution (3.7). The counterterm proportional to R is needed to cancel the remaining

O(z−1) divergences, but does not affect the finite terms.
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We eventually get

S(2)
ren =

∫
d3x

[
−3

4
h0µνh

µν
3 +

3

4
h µ

0µ h
ν

3ν +
3

2
g3µν

(
h µ

0λ h
νλ

0 − 3

4
h µν

0 h λ
0λ

)
− 1

4

(
3g µ

3µ + 2ϕ1ϕ2

)(
h0νλh

νλ
0 − 1

2
h ν

0ν h
λ

0λ

)
+

1

4
h µ

0µ ϕ1(ϕ̂2 + ϕ̂∗2)− 1

2
(ϕ̂1ϕ̂

∗
2 + ϕ̂∗1ϕ̂2)

]
. (3.21)

According to the holographic dictionary, this expression serves as a generating functional

W when it is written in terms of the sources only. In this setup the sources are h0µν and

ϕ̂1. Notice that in (3.21) the dependence on these fields is still implicit in h3µν and ϕ̂2.

We first use the constraints, coming from the zz and zµ Einstein equations (3.11), in

order to express those parts of h3µν which are not genuinely independent from the sources.

The constraint equations are

2[ϕ1(ϕ̂2 + ϕ̂∗2) + ϕ2(ϕ̂1 + ϕ̂∗1)]− 3h0µνg
µν

3 + 3h µ
3µ = 0 , (3.22)

and

∂νh3νµ = g3µν∂λh
νλ

0 +
1

2
g3νλ∂µh

νλ
0 − 1

2
g3µν∂

νh λ
0λ

+
1

3
ikµ [ϕ2(ϕ̂1 − ϕ̂∗1)− ϕ1(ϕ̂2 − ϕ̂∗2)]− 1

3
ϕ1∂µ(ϕ̂2 + ϕ̂∗2) . (3.23)

In order to implement the second constraint in (3.21), we need to split the source h0µν into

its irreducible components:

h0µν = h
(tt)
0µν + ∂(µh

(t)
0ν) + ηµνh0 +

∂µ∂ν
�

H0 , (3.24)

where ∂µh
(tt)
0µν = 0, h

(tt)µ
0µ = 0 and ∂µh

(t)
0µ = 0. Notice that this is the usual splitting of the

metric into irreducible representations of the Lorentz group, yet can also be seen as a mere

introduction of a basis.

As a result of the decomposition above we obtain

S(2)
ren ⊃

∫
d3x

{
−3

4
h

(tt)
0µν h

(tt)µν
3 +

i

4
kµ
(
h

(t)
0µ +

∂µ
�
H0

)
[ϕ2(ϕ̂1 − ϕ̂∗1)− ϕ1(ϕ̂2 − ϕ̂∗2)]

− 1

4
ϕ1h0(ϕ̂2 + ϕ̂∗2)− ϕ2h0(ϕ̂1 + ϕ̂∗1)− 1

2
ϕ2H0(ϕ̂1 + ϕ̂∗1)

−1

2
(ϕ̂1ϕ̂

∗
2 + ϕ̂∗1ϕ̂2)

}
, (3.25)

where we have displayed only the terms depending on ϕ̂ explicitly or implicitly since only

those terms contribute to the mixed correlators of the scalar operators and the energy-

momentum tensor we are interested in. Notice that in the first line we have kept the term

containing the transverse traceless part of h3µν , which might depend implicitly on ϕ̂.
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The dependence of the VEVs, h
(tt)
3µν , ϕ̂2 and ϕ̂∗2, on the sources must respect gauge

invariance. While h
(tt)
µν is gauge invariant by itself, for the scalar fields and the remaining

components of the metric we have to write combinations invariant under

δhµν = ∂µξ
(t)
ν + ∂νξ

(t)
µ +

∂µ∂ν
�

χ− 2β ηµν , (3.26)

δφ = ξ(t)
µ ∂µΦ̄ +

1

2

(
∂µ
�
χ

)
∂µΦ̄ + β z ∂zΦ̄ , (3.27)

where we have split ξµ = ξ
(t)
µ + 1

2
∂µ
� χ, with ∂µξ

(t)
µ = 0. These transformations corre-

spond to the diffeomorphisms and local scale transformations defined in (2.6) and (2.10),

respectively. Using the expansions (3.17), and the decomposition (3.24), we arrive to

δh
(t)
0µ = 2ξ(t)

µ , (3.28)

δH0 = χ , (3.29)

δh0 = −2β , (3.30)

δϕ̂1 = ikµ
(
ξ(t)
µ +

1

2

∂µ
�
χ

)
ϕ1 + βϕ1 , (3.31)

δϕ̂2 = ikµ
(
ξ(t)
µ +

1

2

∂µ
�
χ

)
ϕ2 + 2βϕ2 . (3.32)

The invariant combinations are thus

β1 = ϕ̂1 − ikµ
1

2

(
δh

(t)
0µ +

∂µ
�
H0

)
ϕ1 +

1

2
h0ϕ1 , (3.33)

β2 = ϕ̂2 − ikµ
1

2

(
δh

(t)
0µ +

∂µ
�
H0

)
ϕ2 + h0ϕ2 . (3.34)

We now express all the components of the metric sources introduced in (3.24) in terms of

projectors acting on h0µν :

h0 =
1

2

(
ηµν − ∂µ∂ν

�

)
h0µν , (3.35)

H0 = −1

2

(
ηµν − 3

∂µ∂ν

�

)
h0µν , (3.36)

h
(t)
0µ = 2

(
∂ν

�
δκµ − ∂µ

∂ν∂κ

�2

)
h0νκ , (3.37)

h
(tt)
0µν = T αβµν h0αβ , (3.38)

with

T αβµν = δαµδ
β
ν − 2∂(µ

(
∂α

�
δβν) − ∂ν)

∂α∂β

�2

)
− 1

2
ηµν

(
ηαβ − ∂α∂β

�

)
+

1

2

∂µ∂ν
�

(
ηαβ − 3

∂α∂β

�

)
. (3.39)
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Using these expressions, the gauge invariant quantities become

β1 = ϕ̂1 − ikµDαβµ h0αβ ϕ1 +
1

4
Pαβ h0αβ ϕ1 ,

β2 = ϕ̂2 − ikµDαβµ h0αβ ϕ2 +
1

2
Pαβ h0αβ ϕ2 ,

where the projectors Dαβµ and Pαβ are defined as follows

Dαβµ =
δαµ ∂

β + δβµ ∂α

2�
− ηαβ

4

∂µ
�
− ∂α∂β∂µ

4�2
, Pαβ =

(
ηαβ − ∂α∂β

�

)
. (3.40)

Gauge invariance implies that

β2(x) =

∫
d3x′

[
f(x− x′) β1(x′) + g(x− x′) β∗1(x′) + c(x− x′) kµkνh(tt)

0µν(x′)
]

≡ f(∂) β1(x) + g(∂) β∗1(x) + c(∂) kµkνh
(tt)
0µν(x) , (3.41)

h
(tt)
3µν =

∫
d3x′

[
e(x− x′)h(tt)

0µν(x′)+

2

3
h(x− x′)kαkβT αβµν β1(x′) +

2

3
h∗(x− x′)kαkβT αβµν β∗1(x′)

]
≡ e(∂)h

(tt)
0µν(x) +

2

3
h(∂)kαkβT αβµν β1(x) +

2

3
h∗(∂)kαkβT αβµν β∗1(x) , (3.42)

where we have taken into account that the metric has to be real and we have put a factor
2
3 in front of the function h(x− x′) just for later convenience.

The quantities c(x− x′), e(x− x′), f(x− x′), g(x− x′) and h(x− x′), or alternatively

the differential operators c(∂), e(∂), f(∂), g(∂) and h(∂), encode the IR information of

the system (hence are typically non-local), and can be fully determined only by solving

the model.

We can finally solve for ϕ̂2:

ϕ̂2 = f(∂)ϕ̂1 + g(∂)ϕ̂∗1 + ikµ [ϕ2 − ϕ1(f(∂)− g(∂))]Dαβµ h0αβ

− 1

4
[2ϕ2 − ϕ1(f(∂) + g(∂))]Pαβh0αβ + c(∂)kµkνT αβµν h0αβ . (3.43)

Substituting the expressions (3.42) and (3.43) in (3.25) (assuming f(∂) to be real2), we get

the following terms containing at least one ϕ̂1

S(2)
ren ⊃

∫
d3x

{
ikµDνλµ h0νλ [(ϕ2 − ϕ1 f(∂)) (ϕ̂1 − ϕ̂∗1) + ϕ1 (g∗(∂) ϕ̂1 − g(∂) ϕ̂∗1)]

− 1

2
kµkνT αβµν h0αβ [(c(∂) + h(∂)) ϕ̂1 + (c∗(∂) + h∗(∂)) ϕ̂∗1]

− 1

4
ϕ1 Pµν h0µν [f(∂)(ϕ̂1 + ϕ̂∗1) + g(∂) ϕ̂∗1 + g∗(∂) ϕ̂1] (3.44)

−1

2
ϕ2

∂µ∂ν

�
h0µν (ϕ̂1 + ϕ̂∗1)− ϕ̂1f(∂)ϕ̂∗1

−1

2
ϕ̂1 g

∗(∂) ϕ̂1 −
1

2
ϕ̂∗1 g(∂) ϕ̂∗1

}
.

2We could actually relax this assumption and take f(∂) to be complex, but only its real part will

eventually appear in the renormalized action below.
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We have thus completed the holographic computation of the pieces of the generating func-

tional W ≡ S(1)
ren + S

(2)
ren needed to find the correlators of interest.

3.2 Ward identities

We shall now verify that the generating functional obtained above encodes the Ward iden-

tities obtained in the QFT analysis of section 2. This follows from the fact that the

generating functional is invariant under the relevant local symmetries, diffeomorphisms

and local rescalings, acting as (3.26), (3.27).

According to the holographic dictionary, one interprets (2.2) as the bulk to boundary

coupling, namely

δW =

∫
d3x

[
1

2
〈Tµν〉δh0µν −

1

2
(δφ∗1〈O〉+ δφ1〈O∗〉)

]
, (3.45)

i.e. the leading terms of the bulk fields (3.17) are holographically identified with the external

sources of the boundary QFT. The one-point functions in the expression above are the ones

at sources on.

By applying functional derivatives with respect to those external sources as in (2.5),

one obtains the following dictionary. From (3.18) and redefining O = eikxOϕ, one gets

〈Oϕ〉 = 2ϕ2 (3.46)

after setting the sources to zero. From (3.44) one gets

〈O∗ϕ(x)Oϕ(x′)〉 = 4if(x− x′) ,
〈Oϕ(x)Oϕ(x′)〉 = 4ig(x− x′) , 〈O∗ϕ(x)O∗ϕ(x′)〉 = 4ig∗(x− x′) . (3.47)

The one-point Ward identities are obtained considering the linear on-shell action S
(1)
ren

given by (3.18). It is straightforward to check that it is invariant under both diffeomor-

phisms and local rescalings. Varying only the metric source produces the following identities

〈∂µTµν〉 = 0 , 〈T 〉 = −2ϕ1 ϕ2 = −ϕ1 〈Oϕ〉 , (3.48)

which actually coincide with (2.7) and (2.11) after taking into account that in the Q-lattice

Ansatz (3.5) the field ϕ is real. Then, at the level of the one-point Ward identities the

holographic Q-lattice behaves effectively as a translational invariant system.

Let us now focus on the two-point Ward identities, for which we need to consider S
(2)
ren.

Notice that S
(2)
ren can be shown to be invariant under local transformations upon taking into

account the contribution at second order from the transformation of S
(1)
ren. To derive an

expression for the two-point functions 〈∂µTµν(x)Oϕ(x′)〉 and 〈T (x)Oϕ(x′)〉, one needs to

vary the generating functional as in (3.45) for a specific transformation of h0µν , and then

take a functional derivative with respect to ϕ̂1. Equating what we expect by definition,

with the result from using (3.44), we get

〈∂µTµν(x)Oϕ(x′)〉= −kν〈Oϕ〉δ3(x− x′)

− i

2
kνϕ1〈O∗ϕ(x)Oϕ(x′)〉+

i

2
kνϕ1〈Oϕ(x)Oϕ(x′)〉 − i〈Oϕ 〉∂νδ3(x− x′) , (3.49)

〈T (x)Oϕ(x′)〉 = −i〈Oϕ〉δ3(x−x′)− 1

2
ϕ1〈O∗ϕ(x)Oϕ(x′)〉− 1

2
ϕ1〈Oϕ(x)Oϕ(x′)〉, (3.50)
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where we have used the holographic dictionary (3.46) and (3.47). The Ward identities above

have to be compared with the ones obtained in the QFT framework, namely (2.9) and (2.13)

upon implementation of the shift (2.8). As we show explicitly below (see eqs. (3.55), (3.56)),

both sets of Ward identities agree.

We have thus proven that the holographic on-shell action reproduces exactly the Ward

identities that we computed with standard field theory techniques. This may not be a

complete surprise, considering that Ward identities are just a reflection of the symmetries

of the problem, and the fact that the holographic model is built precisely to encode those

symmetries. In other words, once we obtain a generating functional that is invariant under

the relevant symmetries, the Ward identities are guaranteed to follow.

3.3 Full mixed correlator

Relying on the holographic model, we can actually obtain an explicit expression for the full

mixed correlator 〈Tµν Oϕ〉. This expression is used in section 4 to justify a generic Ansatz

for 〈Tµν Oϕ〉 which, in turn, is employed to find the gapless or nearly gapless modes related

to the broken symmetries.

From (3.44) one gets

〈Tµν(x)Oϕ(x′)〉 = 4i
δ2Sren

δϕ̂∗1(x′)δh0µν(x)

= −4kρDµνρ
[
ϕ2 δ(x− x′)− ϕ1(f(x− x′)− g(x− x′))

]
− iϕ1 Pµν (f(x− x′) + g(x− x′))− 2iϕ2

∂µ∂ν
�

δ(x− x′)

− 2i kαkβT µναβ
[
c∗(x− x′) + h∗(x− x′)

]
. (3.51)

Notice that Dµνρ is an odd differential operator, while Pµν and T µναβ are even. In order to

obtain the expected Ward identities, one should implement the shift (2.8)

〈Tµν〉QFT = 〈Tµν〉+
1

2
ηµν (ϕ̂1 + ϕ̂∗1) 〈Oϕ〉 = 〈Tµν〉+ ηµν (ϕ̂1 + ϕ̂∗1)ϕ2 , (3.52)

so that

〈Tµν(x)Oϕ(x′)〉QFT = 2i
δ〈Tµν(x)〉QFT

δϕ̂∗1(x′)
= 〈Tµν(x)Oϕ(x′)〉+ 2iϕ2 ηµν δ(x− x′) . (3.53)

Eventually we have

〈Tµν(x)Oϕ(x′)〉QFT = −4kρDµνρ
[
ϕ2 δ(x− x′)− ϕ1 (f(x− x′)− g(x− x′))

]
+ iPµν

[
2ϕ2 δ(x− x′)− ϕ1 (f(x− x′) + g(x− x′))

]
− 2i kαkβT µναβ

[
c∗(x− x′) + h∗(x− x′)

]
. (3.54)

The Ward identities are obtained by just taking the divergence and the trace of this expres-

sion, respectively. From their definitions (3.39) and (3.40), we know that ∂µDµνρ = 1
2δ
ν
ρ ,
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∂µPµν = 0, ∂µT µναβ = 0, ηµνDµνρ = 0, ηµνPµν = 2 and ηµνT µναβ = 0. Further using the

holographic dictionary we arrive to

〈∂νTµν(x)Oϕ(x′)〉QFT = −kµ〈Oϕ〉δ(x− x′)

− i

2
kνϕ1〈O∗ϕ(x)Oϕ(x′)〉+

i

2
kνϕ1〈Oϕ(x)Oϕ(x′)〉 , (3.55)

〈T (x)Oϕ(x′)〉QFT = 2i〈Oϕ〉δ3(x− x′)

− 1

2
ϕ1〈O∗ϕ(x)Oϕ(x′)〉 − 1

2
ϕ1〈Oϕ(x)Oϕ(x′)〉 . (3.56)

These are exactly the Ward identities (2.9) and (2.13) we anticipated from field theory,

provided we recall that O = eik·xOϕ, Φ̄ = eik·xϕ1 and set d = 3, ∆O = 2 there.

4 The (pseudo-)Goldstone spectrum

In section 3 we verified that the holographic Q-lattice complies with the general QFT

analysis of section 2 and, specifically, it leads to the same set of Ward identities. We now

continue to develop the generic QFT analysis of the 2-pt correlators, but we supplement

it with some input from the holographic model. Our aim is to study general conditions

that the scalar 2-pt correlators (i.e. those that remain unknown before actually solving the

model) have to satisfy in order to produce a consistent pattern of Goldstone and pseudo-

Goldstone modes. One such requirement is, for instance, the absence of massless poles

when the symmetry breaking is explicit.

In this section, we first recast the Ward identities obtained in section 2 by introducing

new suitable definitions. Next, these Ward identities together with input from the holo-

graphic model help us to formulate an Ansatz for the correlators 〈Tµν(q)Oϕ(−q)〉. An

immediate goal is to uncover some relevant properties of the holographic model before

actually solving it. While a more ambitious objective is to try and extract some general

messages from holography on the phenomenology of translational symmetry breaking. In

this sense, the present analysis is an initial step towards building effective field theories of

translation and dilatation breaking in general.

We consider the Ward identities derived in section 2 and adopt the Q-lattice Ansatz

O = eik·xOϕ , Φ̄ = eik·xϕ . (4.1)

As done in the holographic computation of the previous section (3.47), we introduce un-

known functions to express the 2-pt correlators involving the scalar operators

〈Oϕ(x)O∗ϕ(x′)〉 = 〈O∗ϕ(x)Oϕ(x′)〉 = 4if(x− x′) , (4.2a)

〈Oϕ(x)Oϕ(x′)〉 = 4ig(x− x′) , 〈O∗ϕ(x)O∗ϕ(x′)〉 = 4ig∗(x− x′) , (4.2b)

where f is real. The assumption that f and g are functions of the difference x−x′ is inspired

by holography. Indeed in section 3 we observed that the holographic model, when written

in terms of a Q-lattice Ansatz like (4.1) (which factors out the spatial dependence), leads

to bulk equations in terms of the “ϕ quantities” that do not have any explicit space-time

dependence. As a consequence, we can assume that, as a general feature, the correlators

are effectively insensitive to the breaking of translations.
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The imprint of the symmetry breaking has been factored out by (4.1) and is encoded

through the manifestly k-dependent terms in the translation Ward identity (4.3a) below.

This simplification will be crucial for the following analysis.

Adopting the redefinition (2.8) for the energy-momentum tensor, the 2-pt Ward iden-

tities of section 2 become (we drop the QFT subscript here and below)

〈∂µTµν(x)Oϕ(x′)〉 = −kν 〈Oϕ〉 δ(x− x′) + 2kν ϕ
[
f(x− x′)− g(x− x′)

]
, (4.3a)

〈T (x)Oϕ(x′)〉 = i∆O 〈Oϕ〉 δ(x− x′)− 2i(d−∆O)ϕ
[
f(x− x′) + g(x− x′)

]
, (4.3b)

and

〈T [µν](x)Oϕ(x′)〉 = 0 . (4.4)

It will prove useful in the following to work in the momentum basis. We shall then

Fourier transform the Ward identitis (4.3) which become

qµ〈Tµν(q)Oϕ(−q)〉 = ikν 〈Oϕ〉 − 2ikν ϕ [f(q)− g(q)] , (4.5a)

〈T (q)Oϕ(−q)〉 = i∆O 〈Oϕ〉 − 2i(d−∆O)ϕ [f(q) + g(q)] . (4.5b)

We shall now formulate a generic ansatz for the 〈Tµν(q)Oϕ(−q)〉 correlator and require

it to satisfy the Ward identities above. Note first that the Ward identity (4.4) requires

the mixed 2-pt function to be symmetric in the Lorentz indices. Hence, the most general

Ansatz that we consider is

〈Tµν(q)Oϕ(−q)〉 = Aqµqν +B ηµν + C kµkν +D (kµqν + kνqµ) . (4.6)

Imposing the Ward identities (4.5), we get3

〈Tµν(q)Oϕ(−q)〉 =
i

d−1

(
ηµν− q

µqν

q2

)[
∆O〈Oϕ〉−2(d−∆O)ϕ(f+g)+iCk2

]
+Ckµkν

+
i

q2

[
kµqν+kνqµ− k ·q

d−1

(
ηµν+(d−2)

qµqν

q2

)]
[〈Oϕ〉−2ϕ(f−g)+iCk · q] .

(4.7)

The above equation is one of the main results of this work. As we now explain it sheds light

on the spectrum of (pseudo-)Goldstone modes of the model. Note that, in contrast to the

relativistic invariant case, here the Ward identities do not determine completely the form

of the correlator and the function C(q) remains arbitrary.4 Moreover, one salient feature

is the generic presence of a 1/q4 term which deserves particular care and is analyzed in

subsection 4.2. Besides the quartic pole, we observe that in the spontaneous case ϕ = 0,

two simple poles 1/q2 are present. They represent two Goldstone modes associated to the

phonon and the dilaton respectively.5 Indeed, even though a nontrivial kµ breaks more than

3In the case of d = 3 and ∆O = 2 one can compare the expression (4.7) with the holographic result (3.54)

by considering that, as one can see from (4.2), the functions f and g map to themselves while (in direct

space) C(x− x′) = −2i(c∗(x− x′) + h∗(x− x′)).
4Leaving C(q) undetermined instead of another function appearing in the ansatz (4.6) is a matter

of choice.
5The holographic dilaton has already been directly studied in [25] (see also [26, 27]).
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two generators of the conformal group, the presence of a single phonon and a single dilaton

agrees with the Goldstone mode counting for spacetime symmetries (see [28] for a review).

Moreover, the dispersion relations of both the phonon and the dilaton are relativistic and

their propagation velocity (the “speed of sound”) is equal to the speed of light. This feature

can be related to the fact that we are considering a spontaneous symmetry breaking in a

relativistic conformal field theory at zero temperature. Finally, let us remark once again

that both conformal and translation symmetries are broken by the same mechanism, that

is by the same operator acquiring a nontrivial vacuum expectation value.

At this point it is worth stressing the different nature of the relativistic Goldstone

modes we observe, arising from the spontaneous breaking of translations and dilatations in a

relativistic CFT; and those, widely studied in holography, corresponding to the spontaneous

breaking of a global symmetry (both Abelian and non-Abelian cases have been considered).

These latter modes are characteristic of superfluids and have been shown to exhibit various

types of non-relativistic dispersion relations (see for instance [29, 30]) depending on the

type of superfluid. In the case of an Abelian symmetry, their speed of sound vs is given

by v2
s = 1/(d − 1) [31], and hence only at d = 2 it is equal to the speed of light (c = 1).

Crucially, in these setups the appearance of a time-dependent scalar profile breaks Lorentz

boosts as well as the global U(1) symmetry, while in the case under study a spatially

modulated VEV for the scalar breaks translations and dilatations.

Now, notice that in the explicit case ϕ 6= 0 the theory should be gapped, and therefore

all the massless poles, 1/q2 and 1/q4, have to disappear. Considering this requirement one

constrains the low-q2 behavior of the functions f , g and C. To get more insight on this

point, we notice that, since Oϕ is a complex operator, we can split it into its real and

imaginary parts, Oϕ = OR + iOI and define (omitting the obvious dependence on q)

〈OROR〉 = ifR , 〈OI OI〉 = ifI , 〈OROI〉 = 〈OI OR〉 = ifo , (4.8)

where now fR, fI and fo are all real functions. They are related to f and g defined in (4.2a)

and (4.2b) as

f + g =
1

2
(fR + ifo) , f − g =

1

2
(fI − ifo) . (4.9)

Similarly we can split the function C in its real and imaginary part, C = CR + iCI .

Requiring the theory (and specifically the correlator (4.7)) to be gapped in the explicit

ϕ 6= 0 case, we obtain the following conditions for the functions fo, fR, fI , CR and CI
(recall that ik · q is the Fourier transform of a real operator):

fo = − ik · q
ϕ

CI(q) +O(q4) , (4.10a)

fI =
〈Oϕ〉
ϕ

+
ik · q
ϕ

CR(q) +O(q4) , (4.10b)

fR =
1

(d−∆O)ϕ
(∆O〈Oϕ〉 − k2 CI(q)) +O(q2) , (4.10c)

fo =
k2

(d−∆O)ϕ
CR(q) +O(q2) . (4.10d)

We devote subsection 4.1 to analyzing the consequences of these requirements.
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4.1 Pole structure

In this section, building on the results above, we will extract information on the low-energy

behavior of the correlators. Our analysis relies on symmetry and consistency requirements

and is not restricted to (the solution of) any particular model.

The contraints (4.10), supplemented by the requirement that the functions fo, fR, fI ,

CR and CI be regular in the limit q2 → 0, imply the following low-q2 behaviour for those

functions:

CI = CI(0) + CI(2) q
2 +O(q4) , (4.11a)

CR = CR(0) + CR(2) q
2 +O(q4) , (4.11b)

fo = − ik · q
ϕ

CI(0) −
ik · q
ϕ

CI(2) q
2 +O(q4) , (4.11c)

fI =
〈Oϕ〉+ ik · q CR(0)

ϕ
+
ik · q
ϕ

CR(2) q
2 +O(q4) , (4.11d)

fR =
∆O〈Oϕ〉 − k2 CI(0)

(d−∆O)ϕ
+ fR(2) q

2 +O(q4) . (4.11e)

Note that in performing the low-q2 expansion (i.e. “light-like” limit) the quantity k · q can

be safely kept fixed since the vector kµ is always aligned along one spatial direction by

construction. Consistency between the conditions (4.10a) and (4.10d) further imposes

k2 CR(0) = −(d−∆O)ik · q CI(0) . (4.12)

The previous conditions constrain the system enough to determine the pole structure

of the pseudo-Goldstone bosons associated to the explicit breaking of translations and

dilatations. First of all, notice that the system (4.10) does not constrain the leading

constant value of CI , CI(0) as well as the q2 coefficients of CR and CI , CR(2) and CI(2).

Therefore, one can make the simplifying assumption that CI(0) = CI(2) = 0 so that the

correlator fo vanishes to the specified order. From (4.8) we see that this assumption

corresponds to considering that the physics is effectively diagonalized in the OR, OI basis.

Indeed, fR, whose q2 coefficient is unconstrained, becomes independent of k and can be

interpreted as the correlator containing the dilaton pole, while fI , which still depends on k,

accounts for the phonon contribution. In what follows we will analyze this simpler scenario.

Let us start considering the dilatation sector and assume the following form for the

dilaton correlator fR:

fR =
µD

q2 +M2
D

+ . . . , (4.13)

which features a massive simple pole in a regime where q2 and M2
D are smaller than the

scale set by µD. We also assume that there is a gap between the lowest energy mode and

the rest of the spectrum. This is in line with known strongly coupled examples, holographic

and not. Moreover, the form (4.13) conforms with the generic Lorentz-invariant low-energy

intuition. Next, matching with the condition (4.11e) in the low-q2 limit implies:

M2
D =

(d−∆O)µD
∆O〈Oϕ〉

ϕ . (4.14)
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Imposing that the residue µD neither diverge nor vanish in the ϕ → 0 limit, it results

that M2
D is linear in the explicit breaking parameter ϕ, a feature reproducing the GMOR

relation for the pseudo-dilaton.

Regarding the pseudo-phonon sector, one can assume for fI a simple pole structure

analogous to (4.13):

fI =
µP

q2 +M2
P

+ . . . . (4.15)

The condition (4.11d) at lowest order yields:

M2
P =

µP
〈Oϕ〉

ϕ , (4.16)

which implies that also for the mass of the pseudo-phonon a GMOR-like relation holds. At

the q2 order, we have a relation between µP and CR(2):

CR(2) = − 〈Oϕ〉2

ik · q ϕ µP
. (4.17)

Given that CR(2) is otherwise unconstrained, one can easily design a CR function to match

any desired µP . The only firm requirement on µP is that it should have a finite limit

when ϕ → 0. The limit when k → 0 is also interesting, however one should pay attention

to the order of limits when taking also the ϕ → 0 limit. Note that since C, and thus

CR, is always multiplied by at least two powers of k in the correlator (4.7), we can allow

for inverse power dependence on k in CR(2), also taking into account that CR can be a

non-trivial function of q2.

As a last comment, we point out that if one had ab-initio set C to zero, which is

equivalent to imposing the absence of the term kµkν in the correlator 〈Tµν Oϕ〉, the re-

quirement (4.11d) would assume the following form:

fI =
〈Oϕ〉
ϕ

+O(q4) . (4.18)

The absence of a q2 term in the expansion for fI would have led to an incompatibility with

a single pole Ansatz as in (4.15), and to unitarity issues if one had tried to express fI more

generally in terms of a sum of single poles.

4.2 A closer look at the double pole

In order to look further into the realization of the (pseudo-)Goldstone modes in the spec-

trum of our model we will analyze more closely the relevant low-energy correlators. Let us

consider the 2-pt function in the spontaneous case

〈Tµν(q)Oϕ(−q)〉 =
i

d− 1

(
ηµν − qµqν

q2

)[
∆O〈Oϕ〉+ iCk2

]
+ Ckµkν

+
i

q2

[
kµqν+kνqµ− k · q

d−1

(
ηµν+(d−2)

qµqν

q2

)]
[〈Oϕ〉+iCk · q]

(4.19)
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in greater detail. The k-dependent tensorial expression in the second line can be rewritten

as the sum of two terms:(
kµqν + kνqµ − k · q ηµν

)
+
d− 2

d− 1
k · q

(
ηµν − qµqν

q2

)
. (4.20)

Only the first term contributes to the Ward identity for translations (4.3a). The second

term is transverse, and is there just to compensate for the trace of the first. Notice that

it is this second contribution which gives rise to the potentially problematic 1/q4 term in

the correlator above.

We will now see that when trying to reproduce the Ward identities from an effective

field theory approach one reaches the same conclusion as above; namely, that a term needed

to compensate for the trace of the phonon contribution introduces a 1/q4 term.

We start with dilatations. We need a Tµν which is linear in the dilaton, automatically

conserved, and traceless only on the dilaton EOM. The Ansatz

Tµν ∝ (ηµν�− ∂µ∂ν)σ (4.21)

is such that ∂µT
µν = 0 and T ∝ (d−1)�σ. It is thus traceless only if σ is a massless mode,

the dilaton. Assuming also OD ∝ σ, then the two-point function reads

〈TµνOD〉 ∝
i

q2
(q2ηµν − qµqν) , (4.22)

where we have used that 〈σσ〉 = i
q2

. For translations we should consider a Tµν which is

linear in the phonon, in derivatives, and in kµ, following the spirit of [32]. It should be

conserved on the phonon EOM. We try

Tµν ∝ a (kµ∂ν + kν∂µ) ξ + b ηµνk · ∂ξ . (4.23)

Conservation yields

∂µT
µν ∝ a kν �ξ + (a+ b) k · ∂ ∂νξ . (4.24)

In order for the field ξ to obey a single equation of motion, we must set b = −a so that

Tµν ∝ (kµ ∂ν + kν ∂µ − ηµν k · ∂) ξ . (4.25)

This tensor however is not traceless:

T ∝ −(d− 2)k · ∂ξ . (4.26)

Again, assuming ξ can propagate along kµ, forces us to improve this Tµν with a transverse

part that compensates the trace:

Tµν ∝ (kµ∂ν + kν∂µ − ηµνk · ∂) ξ +
d− 2

d− 1

(
ηµν − ∂µ∂ν

�

)
k · ∂ξ . (4.27)

Unfortunately, this compensating part is necessarily non-local. We see that now assuming

OP ∝ ξ, and given that 〈ξξ〉 = i
q2

, we have

〈Tµν OP 〉 ∝
1

q2

[
kµqν + kνqµ − k · q

(d− 1)

(
ηµν + (d− 2)

qµqν

q2

)]
. (4.28)

– 19 –



J
H
E
P
0
5
(
2
0
1
7
)
0
5
1

Assuming that Oϕ = OD + iOP , we see that (4.22) together with (4.28) have exactly

the same structure as (4.19) if one neglects there the part proportional to the arbitrary

function C, which is transverse and traceless. This approach has shown that the double

pole in 〈Tµν Oϕ〉 can be related to the presence of a non-local term already at the level of

the phonon energy-momentum tensor (4.27).

There are two possible ways to address the picture we have just described. The first is

to observe that the 1/q4 terms are proportional to d− 2. So in a 1 + 1 dimensional system

they disappear. It is particularly interesting that in such a dimensionality our spatially

modulated scalar operator represents a lattice in all the spatial directions, and k · q is

necessarily non-vanishing. This observation hints towards a connection between the 1/q4

terms in the correlator and the fact of having spatial directions orthogonal to the lattice.6

4.3 Avoiding the double pole?

In this section we will take the Ward identities of the spontaneous case as the starting

point to try and construct an Ansatz for 〈TµνOϕ〉 that results in this correlator displaying

a single quadratic pole.

Restricting to the spontaneous case, the Ward identities (4.5) read

qµ〈Tµν (q)Oϕ(−q)〉 = ikν〈Oϕ〉 , (4.29a)

〈T (q)Oϕ(−q)〉 = i∆O 〈Oϕ〉 . (4.29b)

As before, we adopt the generic Ansatz

〈Tµν(q)Oϕ(−q)〉 = Aqµqν +B ηµν + C kµkν +D (kµqν + kνqµ) . (4.30)

Imposing the Ward identities gives

Ck · q +Dq2 = i〈Oϕ〉 , (4.31)

Aq2 +B +Dk · q = 0 , (4.32)

Aq2 + dB + Ck2 + 2Dk · q = i∆O〈Oϕ〉 . (4.33)

We now assume that C has the following simple pole form

C =
i〈Oϕ〉µ
q2 + Π

, (4.34)

with µ and Π possibly functions of q and k. From (4.31), we see that

D =
i〈Oϕ〉
q2

− k · q
q2

C =
i〈Oϕ〉

q2(q2 + Π)
(q2 + Π− µ k · q) , (4.35)

so that, if µ 6= 0, D has a single pole if and only if Π = µ k · q +O(q2). Let us then set7

C =
i〈Oϕ〉µ

q2 + µ k · q
, D =

i〈Oϕ〉
q2 + µ k · q

. (4.36)

6Since we are at zero temperature, symmetry breaking in 1+1 dimensions has in general obstructions

related to the Coleman theorem [33]. However we will assume the usual argument that the holographic

system is in the large N limit, hence the theorem does not apply [34] (see also [35, 36]).
7Note that the possible O(q2) term in Π can be reabsorbed by a redefinition of µ.
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Then, we can see from (4.32), (4.33) that B is determined as

B =
1

d− 1

i〈Oϕ〉
q2 + µk · q

[
∆O q

2 + (∆O µ− 1) k · q − µ k2
]
, (4.37)

and it features the same pole as C and D. Finally, A is determined as

A =
1

(d− 1)q2

i〈Oϕ〉
q2 + µ k · q

[
−∆O q

2 − (∆O µ+ d− 2) k · q + µ k2
]
. (4.38)

One can cancel the additional pole in q2 by having the term within the square brackets to

be proportional to q2. Given that we need to have µ 6= 0, the simplest solution8 is to take

k2 = 0, and

µ = −d− 2

∆O
. (4.39)

Note that for d = 2 we have µ = 0, hence a usual relativistic pole at q2 = 0, and no

constraint on k2.

We have thus completely characterized the Ansatz (4.30), which reads

〈Tµν(q)Oϕ(−q)〉 =

[
∆O

d− 1
(ηµνq

2 − qµqν)

+kµqν + kνqµ − ηµν k · q −
d− 2

∆O
kµkν

]
i〈Oϕ〉

q2 − d−2
∆O

k · q
.

(4.40)

We will now show that such a correlator can be reproduced by an effective theory where

the phonon and the dilaton mix. Let us assume the following form for a linear Tµν :

Tµν = 〈Oϕ〉
∆O

d−1
(�ηµν−∂µ∂ν)σ+〈Oϕ〉 (kµ∂ν+kν∂µ−ηµνk · ∂) ξ+

d−2

∆O
kµkν σ . (4.41)

It is conserved and traceless if k2 = 0 and

�ξ +
d− 2

∆O
k · ∂σ = 0 , �σ − d− 2

∆O
k · ∂ξ = 0 . (4.42)

These equations are compatible with their derivation from an effective action, which nec-

essarily mixes σ and ξ, i.e. the dilaton and the phonon:

Leff = −1

2
∂σ · ∂σ − 1

2
∂ξ · ∂ξ − d− 2

∆O
σ k · ∂ξ . (4.43)

The propagators are given by

〈σσ〉 = 〈ξξ〉 =
i�

�2 +
(
d−2
∆O

)2
(k · ∂)2

, 〈σξ〉 = −〈ξσ〉 =
ik · ∂

�2 +
(
d−2
∆O

)2
(k · ∂)2

. (4.44)

8More general solutions can contemplate a non-constant µ and also k2 6= 0. It is however not immediately

clear what their physical relevance is.
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Further assuming that Oϕ = σ + iξ, we get

〈Tµν Oϕ〉 =

[
∆O

d− 1
(�ηµν − ∂µ∂ν)

+i(kµ∂ν + kν∂µ − ηµν k · ∂) +
d− 2

∆O
kµkν

]
i〈Oϕ〉

�− id−2
∆O

k · ∂
,

(4.45)

where we have used that �2 +
(
d−2
∆O

)2
(k · ∂)2 = (� + id−2

∆O
k · ∂)(�− id−2

∆O
k · ∂). In Fourier

space (4.45) is just (4.40). We have thus been able to derive that correlator, which features

a single quadratic pole, from an effective action. Notice however, that we had to impose

k2 = 0 which takes us to a scenario of unclear physical relevance. As a final observation,

it is interesting to note that the mixing between the dilaton and the phonon does not take

place for d = 2.

Of course one could still object that requiring, as in this subsection, that there is a

single pole in all functions is perhaps too stringent. It is indeed possible that more general

Ansätze for C allow for double poles which are nevertheless compatible with a structure

for the propagator matrix similar to (4.44). It does not however seem possible to derive the

generic expression with a double pole at q2 = 0, from a local, unitary effective field theory.

5 Discussion and perspectives

In the present paper we have studied the concomitant breaking of translations and confor-

mal symmetries with the aim of investigating the general structure of phonons and their

pseudo counterparts in the context of conformal field theory. This analysis constitutes a

step in understanding physical systems near quantum criticality featuring the spontaneous

emergence of inhomogeneous space-dependent configurations, including the spontaneous

emergence of a lattice.

Inspired by the holographic Q-lattice, we have considered a scalar operator in a con-

formal field theory which spontaneously acquires an expectation value modulated along

one spatial direction. First, relying on QFT techniques, we analyzed the structure of the

Ward identities of the model and determined its general form. Second, turning to the holo-

graphic Q-lattice, we have proven that this model satisfies the same set of Ward identities.

Holography determined the structure of the relevant correlators which was not completely

fixed by the QFT analysis. Specifically, we learned that in such model the correlators are

still translational invariant, though not necessarily isotropic.

Once the structure of the correlators of the model was fixed, we focused our attention

on the features of their poles. In particular, we have found that in the purely spontaneous

case the mixed correlator 〈TµνO〉 presents two massless single poles (1/q2), which can be in-

terpreted as the phonon and the dilaton respectively, and generically a massless double pole

(1/q4). The latter can be interpreted as an interplay between the phonon and the dilaton,

which inevitably coexist in the model at hand. The presence of this double pole is somehow

intriguing: we observed that requiring the cancellation of the double pole in the sourced

case (when the symmetry breaking is explicit) implies a non-trivial and specific coefficient
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of the kµkν term in that correlator. In the spontaneous case, we have seen one instance in

which the double pole disappears, provided that kµ is light-like, k2 = 0. Such a scenario

could be interpreted as an “infinitely boosted Q-lattice”, although its meaning as a physical

setup is not easy to ascertain, and therefore this solution cannot be completely satisfactory.

The picture we have described already points to several possible future directions of

research that could help clarify the issue we encountered in the structure of the correlators.

The most obvious one is to solve the holographic model and compute the pole structure of

the correlators by analyzing the quasi-normal modes.9

A less obvious future direction arises from the observation that in d = 2 the double

pole disappears. Even though d = 2 is a very peculiar case, in which at finite N there is no

spontaneous symmetry breaking, its study could provide useful insight about evading the

double pole. It is also worthwhile analyzing models with a lattice in all the spatial direc-

tions (i.e. a Q-lattice with several scalar fields possibly coupled together) and determining

if they improve the effective field theory embedding of the Q-lattice models with only one

scalar operator.

Breaking of translation symmetry, explicitly or spontaneously, is also crucial in un-

derstanding transport properties in condensed matter systems. Although there has been

a concerted effort in implementing the breaking of translation symmetry in holography,

be it by massive gravity models or by implementation of disorder, our approach provides

the overarching structure that governs the correlators. More importantly, contrary to the

linear axion and massive gravity cases, where the breaking of translation is always explicit

and might be related to the presence of a finite density of impurities in the systems [48],

our approach deals with spontaneous symmetry breaking of translations and provides new

insight in the spontaneous emergence of phonons in the holographic context. In this di-

rection it is important to further analyze the system at finite temperature. In fact, in the

present analysis the dispersion relations of both the phonon and the dilaton are generically

relativistic because we consider the spontaneous symmetry breaking of a conformal field

theory at zero temperature. Studying the system at finite temperature should lead to a

velocity of sound for the phonons different from the speed of light.10

Finally, since we have argued that the double pole (i.e. the term 1/q4) can be ascribed

to the coexistence of the dilaton and the phonon, it would be extremely interesting to

consider cases in which the conformal symmetry is explicitly broken before translations;

along this line, it would be interesting, and also more realistic from the condensed matter

point of view, to introduce a finite charge density as well.
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