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Chemoresistance is due to multiple factors including the induction of a metabolic adaptation of tumor cells. In fact, in these cells,
stress conditions induced by therapies stimulate a metabolic reprogramming which involves the strengthening of various pathways
such as glycolysis, glutaminolysis and the pentose phosphate pathway. This metabolic reprogramming is the result of a complex
network of mechanisms that, through the activation of oncogenes (i.e., MYC, HIF1, and PI3K) or the downregulation of tumor
suppressors (i.e., TP53), induces an increased expression of glucose and/or glutamine transporters and of glycolytic enzymes.
Therefore, in order to overcome chemoresistance, it is necessary to develop combined therapies which are able to selectively and
simultaneously act on the multiple molecular targets responsible for this adaptation. This review is focused on highlighting the
role of MYC in modulating the epigenetic redox changes which are crucial in the acquisition of therapy resistance.

1. Cancer Metabolic Reprogramming

Metabolic reprogramming is an early event in the carcino-
genic process, and it is involved in the development of
malignancy and the acquisition of most cancer hallmarks
[1]. The first metabolic phenotype observed in cancer cells
was described by Otto Warburg, a German biochemist, as a
shift from oxidative phosphorylation (OXPHOS) to aerobic
glycolysis to generate lactate and ATP even in the presence
of O2 (i.e., Warburg effect) [2]. Since the Warburg effect is
also found in tumor cells with intact and functional mito-
chondria, it is reasonable to assume that it could represent
a strategy adopted by cancer cells, not only to cope with
the greater energy demands but also to reduce oxidative
stress, preserving cells from oxidative death [3]. In this
regard, reactive oxygen species (ROS), maintained at “phys-
iological” levels, have been demonstrated to activate redox
signaling pathways involved in cell proliferation and sur-
vival [4, 5].

Over the past decade, numerous studies have supported
the hypothesis that the Warburg effect can be explained by
the alterations in multiple signaling pathways resulting from
mutations of oncogenes and tumor suppressor genes [6, 7].
Indeed, tumor metabolic reprogramming involves the activa-
tion of key metabolic pathways such as glycolysis, the pentose
phosphate pathway, and glutaminolysis [8].

In this regard, it has been demonstrated that the glyco-
lytic metabolic switch is due to a marked slowing down of
the conversion of phosphoenolpyruvate into pyruvate, a
reaction catalyzed by pyruvate kinase (PKM) [9]. Further-
more, in cancer cells, it has been observed that the presence
of the low-activity dimeric form of PKM2 promotes the con-
version of pyruvate to lactate [10] and that the increased
levels of lactic acid detected in cancer patients are related to
rapid tumor growth and high levels of metastases [11]. More-
over, considering that most chemotherapeutic agents are
weak bases, the presence of lactic acid, generating acidity,
induces the ionization of the drugs which, in their modified
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chemical structure, are not able to enter the tumor cells, thus
facilitating the onset of chemoresistance [12, 13].

PKM2, which makes cells less susceptible to oxidative
stress and enhances NADPH production [14, 15], has been
found to have a role in chemoresistance. In fact, a recent
study showed that this kinase promotes gemcitabine resis-
tance on one hand by inhibiting the transcriptional activation
of p53 and the p38-mediated signaling pathway and on the
other by increasing the expression of the antiapoptotic pro-
tein bcl-xl [16]. In addition, it has been reported that many
cancer cells in order to satisfy their bioenergetic and meta-
bolic needs depend on glutamine which is the main source
of tricarboxylic acid (TCA) cycle precursors (Figure 1). For
example, at the mitochondrial level, glutamine is converted
to glutamate by glutaminase (GLS). In turn, glutamate can
be converted to α-ketoglutarate (KG) by glutamate dehydro-
genase (GDH) or transaminase, resulting in sustaining the
TCA cycle. In addition, glutamate can serve as a precursor
not only of nonessential amino acids such as aspartate, ala-
nine, proline, and arginine but also of the most important
intracellular antioxidant, glutathione (GSH), which is a tri-
peptide consisting of glutamate, cysteine, and glycine. In
addition, malate, which is derived from glutamine, can be
converted into pyruvate, leading to NADPH formation
[17]. Therefore, the production of NADPH and GSH,
derived from glutamine, allows cancer cells to reduce oxida-
tive stress levels associated with mitochondrial respiration
and rapid cell proliferation (Figure 1).

In this regard, our recent studies on human neuroblas-
toma (NB) cells [18], as well as other studies carried out on
brain tumor samples [19] and ovarian cancer cells [20], have
all demonstrated that the acquisition of chemoresistance is
associated with high levels of GSH that enable cancer cells
to counteract the prooxidant action of many chemotherapeu-
tic agents [4, 21, 22].

It is noteworthy that the dependency of tumors on spe-
cific metabolic substrates, such as glucose or glutamine, is
determined by alterations in oncogenes and oncosuppressor
genes which are responsible for the tumor metabolic pheno-
type, while also supporting tumorigenesis. Among onco-
genes, MYC has been found to have a pivotal role in the
metabolic reprogramming of tumor cells by enhancing glu-
cose uptake and glycolysis, lactate production and export,
glutamine uptake and glutaminolysis, mitochondrial biogen-
esis, and oxidative phosphorylation [1].

2. Role of MYC in Cancer Metabolic
Reprogramming and Adaptation to Therapy

MYC is a family of protooncogenes (i.e., c-MYC, L-MYC and
N-MYC) which encode transcription factors that have roles
in both normal and cancer cell physiologies. MYC requires
dimerization with the protein MAX for DNA binding and
for the assembly of transcriptional machinery. MAX can also
interact with Mxd members which are transcriptional repres-
sors and act in antagonism with MYC/MAX complexes. In
addition, Mxd members can also bind to Mlx proteins that
can interact with transcription activators of the Mondo fam-
ily [23]. The MondoA/Mlx complex, located in the cytosol,

translocates to the nucleus where, in response to an increase
in extracellular glucose levels, it stimulates the expression of
the thioredoxin-interacting protein (TXNIP) which sup-
presses the glucose uptake by limiting the expression of glu-
cose transporters (GLUT) in the membrane [24, 25].

MYC is strongly involved in regulating cell metabolism
and facilitates glycolysis by inducing the activation of genes
encoding for glycolytic enzymes and GLUT (Figure 1) [26].
It is also able to promote mitochondrial biogenesis and func-
tion, thus increasing both oxygen consumption and ATP
production [27–29].

Furthermore, it has been found that MYC upregulates the
expression of glutamine transporters, facilitating glutamino-
lysis [30, 31], which is also stimulated by repressing micro-
RNA-23a/b transcription leading to GLS1 overexpression
[32]. As reported above, GLS converts glutamine to gluta-
mate [32] which either enters the TCA cycle for the produc-
tion of ATP or serves as a substrate for GSH synthesis [30]. In
this regard, it has been reported that S6K1, a downstream
effector of mTORC1, facilitates the translation of MYC, fur-
ther contributing to the increase of GLS and GDH [33, 34].
In addition, it has been shown that mTORC1 expression,
in response to stress conditions, is inhibited by FOXO
transcription factors [35] and an increased expression of
FOXO3a is able to antagonize the MYC binding to pro-
moters, reducing the mitochondrial mass, oxygen consump-
tion, and ROS production [36].

Regarding the enhancement of the mitochondrial func-
tion, it has been found that MYC can activate the PPARγ
coactivator-1α (PGC-1α) and the mitochondrial transcrip-
tion factor A (TFAM), mediators of mitochondrial biogene-
sis and mitochondrial gene expression, respectively [28, 37].
Interestingly, although the role played by MYC/PGC-1α
axis is controversial [38], several reports have demonstrated
that PGC1-α is involved in chemoresistance [39] and the
inhibition of the PGC-1α pathway has been found to acti-
vate glycolysis [40] and to sensitize melanoma to oxidative
damage [41].

Therefore, as reported above, the MYC-overexpressing
tumors depend on glutamine [30, 31], and it has been dem-
onstrated that glutamine depletion leads to the reduction of
GSH levels and consequently triggers apoptosis. In fact,
buthionine sulfoximine- (BSO-) induced depletion of GSH
was able to induce apoptosis of N-MYC-amplified NB cells
through a ROS-mediated activation of PKCδ-dependent
pathways (Figure 2) [5, 42, 43]. Accordingly, PKCδ overex-
pression sensitized NB cells to the proapoptotic effects of
BSO and of etoposide [18, 44–46].

Clinical studies carried out on NB patients have demon-
strated that N-MYC amplification correlates to a reduction in
the survival rate of those patients undergoing a multidrug
therapy protocol consisting of etoposide, vincristine, carbo-
platin, adriamycin, and cyclophosphamide [47].

3. Molecular Mechanisms of MYC-Dependent
Metabolic Changes

In N-MYC-amplified NB tumors, Akt has been found to be
hyperactivated [48] andAkt activationhas beendemonstrated
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to be strongly involved in etoposide resistance [46, 49–51],
as well as being related to the expression of CD133, a
marker of staminality associated with the most aggressive
cancer phenotype [52]. Accordingly, it has been shown that

Akt inhibition sensitizes NB cells to the cytotoxic action of
etoposide [53], doxorubicin, vincristine, and cisplatin [52].
In addition, under conditions of nutrient deficiency, the
reduced activity of Akt decreases the amount of MDM2,
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Figure 1: Role of MYC in the modulation of cancer metabolic reprogramming. MYC is involved in the modulation of both glycolysis and
glutaminolysis. MYC, in order to carry out this double role, upregulates membrane transporters and enzymes involved in these metabolic
processes (indicated in red). AST: glutamic-oxaloacetic transaminase; GDH: glutamate dehydrogenase; GLS: glutaminase; GLUT1: glucose
transporter 1; GSH: reduced glutathione; GSSG: oxidized glutathione; α-KG: α-ketoglutarate; LDH: lactic dehydrogenase; PDH: pyruvate
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Figure 2: MYC overexpression and increase of glutathione levels in the acquisition of chemoresistance. (a) Chemoresistance of MYC-
overexpressing tumors is associated with an enhancement of intracellular glutathione (GSH) levels. (b) In order to promote cell death, it is
helpful to deplete GSH by using depleting agents such as buthionine sulfoximine (BSO) or prooxidant drugs. These strategies stimulate
reactive oxygen species (ROS) production which modulate, and are modulated by, the proapoptotic protein kinase C-delta (PKC-δ).
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the p53 endogenous inhibitor, resulting in an increase in
p53 levels [54]. In fact, it has been found that the activation
of p53 limits glycolysis and promotes OXPHOS in cancer
cells while the loss of function of mutated p53 contributes
to the development of the Warburg effect [55, 56]. Therefore,
p53, in repressing PGC-1α, which is involved in mitochon-
drial biogenesis, and modulating other genes implicated in
autophagy, in glucose metabolism, and also in the pentose-
phosphate pathway [57–66], can play a role as a regulator
of tumor cell metabolism and chemoresistance.

Interestingly, our recent studies have shown that chronic
treatment of N-MYC-amplified NB cells with etoposide
does not modify the homozygous p53 mutation (A161T),
previously found in etoposide-sensitive NB cells, and there-
fore, in this context, p53 is responsible neither for OXPHOS
activation nor for the metabolic adaptation of etoposide-
resistant NB cells [67].

Moreover, several studies have demonstrated that the
metabolic reprogramming might be the result of the “molec-
ular interplay” between N-MYC and hypoxia-inducible fac-
tors (HIFs) [68]. HIF1 and HIF2 provide transcriptional
homeostatic responses to limited oxygen levels in both phys-
iological and pathological conditions. Although physiologi-
cal HIF1 can inhibit the activity of normal MYC, the
altered expression of the oncogenic MYC collaborates with
HIF to confer the propensity to cancer cells to convert glu-
cose to lactate, even in the presence of adequate O2 levels
[69–72]. In fact, at normal MYC levels, it has been observed
that HIF1α can compete for MAX, displacing MYC, while, at
higher MYC levels, the formation of MYC-MAX heterodi-
mers is maintained through mass action. Similar to MYC,
HIF1 activates all genes involved in glycolysis, but unlike
MYC, HIF1 actively inhibits mitochondrial respiration by
promoting mitochondrial autophagy [73, 74] and preventing
mitochondrial biogenesis [29]. In this context, it has been
reported that HIF1 induces the expression of pyruvate dehy-
drogenase kinase (PDK1) which phosphorylates and inacti-
vates pyruvate dehydrogenase, a mitochondrial enzyme
catalyzing the conversion of pyruvate to acetyl CoA [75,
76]. Moreover, it has been found that MYC, when overex-
pressed in human tumors, cooperates with HIF1 to induce
PDK1 and hexokinase 2 (HK2) expression, altering cellular
metabolism in favor of glycolysis with an increased produc-
tion of lactate [70, 75]. HIF1 and MYC independently
activate GLUT1 and lactate dehydrogenase A (LDHA),
resulting in an increased glucose influx and higher glycolytic
rates [75].

Interestingly, HK2, which plays a key role for theWarburg
effect in cancer, binds competitively to the voltage-dependent
anion channel (VDAC), in the outer mitochondrial mem-
brane, preventing its union with proapoptotic Bax and
thereby avoiding apoptosis [77].

Apoptosis and senescence represent two tumor-
suppressive mechanisms which can be modulated by MYC
and RAS oncogenes. In fact, RAS inhibits MYC-induced apo-
ptosis via PI3K activity and MYC suppresses RAS-induced
senescence via CdK2, a cyclin-dependent kinase which phos-
phorylates MYC at Ser62 residue [78]. Accordingly, CdK2
inhibition has been shown to slow down the growth of

MYCN-amplified neuroblastoma cells [79] and of other
MYC-driven tumors [80].

Many chemotherapeutic drugs exert their cytotoxic
effects on cancer cells by reactivating apoptosis and/or senes-
cence [81]. In this context, it has been hypothesized that
therapy-induced senescence (TIS) could be useful in the
treatment of tumors with an impairment of the apoptotic
pathways.

Interestingly, it is relevant to know that the presence of
TIS cells can stimulate immunosurveillance and also induce
chemoresistance [82, 83]. In fact, TIS cells have features of
stemness that is regulated by the Wnt-dependent pathways
[84–86] and undergo a metabolic reprogramming character-
ized by an increase in the glycolytic activity [2, 3] and an
impairment of proteasome activity and autophagy [87]. In
this context, the treatment of oncologic patients with anthra-
cyclines and alkylating agents has been shown to induce cel-
lular senescence and the secretion of cytokines, chemokines,
growth factors, and proteases that can contribute to the side
effects of chemotherapy [82, 88].

Recently, it has been reported that downregulation of
p21, a cell cycle inhibitor, leads to MYC upregulation
which represses the expression of CD47 receptor generating
a subpopulation of cells that escape senescence [89]. How-
ever, further studies are necessary to determine if senes-
cence is a general adaptive pathway to chemotherapy and
if this response concerns only a specific subpopulation of
cancer cells.

4. Inhibition of MYC Effectors as a Potential
Strategy to Block Cancer
Metabolic Reprogramming

Although MYC is considered the “most-wanted” target for
anticancer therapy [90], the targeting of this oncogene has
not yet obtained any positive outcomes. In fact, the inhibition
of MYC can interfere with its physiological functions and
therefore an alternative approach inhibiting MYC effectors
could be more useful. More specifically, given that MYC
drives the glucose and glutamine metabolism of cancer cells,
the use of small molecules, able to inhibit enzymes involved
in glycolysis and glutaminolysis, might be effective in slowing
down tumor cell proliferation. Among them, several drugs
targeting the MYC effectors are currently being tested in clin-
ical practice [91–97] (Table 1).

Interestingly, a promising approach could be to indirectly
modulate MYC through the “synthetic lethality” [90], and in
this regard, the development of MK-3475 (pembrolizumab
or keytruda) might offer new therapeutic opportunities. In
fact, this latter compound is an inhibitor of the programmed
death-1 (PD-1) protein and MYC modulates the expression
of its ligand (PD-L1) [98], which, when overexpressed, stim-
ulates glucose metabolism [99] by increasing GLUT1 expres-
sion [100]. MK-3475 has been, and is currently, the subject of
over 900 clinical trials, and two of these have even reached
Phase 4 (NCT03715205; NCT03134456). In addition, in
Phase 3 studies, it should be noted that this compound per
se is efficacious in treating recurrent or metastatic head-
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and-neck squamous cell carcinoma (NCT02252042) [101],
advanced urothelial carcinoma (NCT02256436) [102], non-
small-cell lung cancer (NCT01905657) [103], and melanoma
(NCT02362594) [104].

5. Conclusions

Tumor metabolic reprogramming is a direct result of the
reengineering of intracellular signaling pathways that are
altered by activated oncogenes or downregulated oncosup-
pressors and by epigenetic changes, conferring a proliferative
advantage to cancer cells.

Indeed, tumors may prefer either a glycolytic or an oxida-
tive metabolism, depending on the activation of oncogenes or
repression of oncosuppressors but also on the tumor micro-
environment. Therefore, it is conceivable that in the tumor
niche there is a strong “metabolic competition” due to high
nutritional requirements and also an intense “molecular
interplay” able to maintain an efficient metabolism. The bal-
ance between these factors could paradoxically guarantee the
development and the survival of cancer even under therapy-
induced stress conditions. Consequently, therapies that block
glucose metabolism might be more effective towards tumors
with high glycolytic rates, while they might develop therapy
resistance in tumors whose metabolism depends on oxidative
phosphorylation [105].

Therefore, anticancer therapy must take into account
that most chemotherapeutic drugs are prooxidant agents
and are able to induce a metabolic reprogramming that alters
the redox homeostasis of cancer cells activating signaling
pathways responsible for cell survival.

Considering the crucial role of MYC in driving the meta-
bolic reprogramming of cancer which has been shown to be
strictly related to drug resistance, several studies have been
carried out in order to focus MYC-dependent metabolic
pathways. Even though the efforts are multiple, to date the
applicability of MYC inhibitors is still a utopia. However,
the use of small molecules, able to inhibit MYC-related
enzymes involved in glycolysis and glutaminolysis, might
result effective in slowing down tumor cell proliferation and
counteracting chemoresistance.

However, the characterization of the metabolic repro-
gramming of tumors and its connection with oncogenic
signaling is a promising strategy to identify novel molecular
approaches in anticancer treatment.
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