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Abstract: The reference electronic skin is a sensor array based on PVDF (Polyvinylidene fluoride)
piezoelectric polymers, coupled to a rigid substrate and covered by an elastomer layer. It is first
evaluated how a distributed normal force (Hertzian distribution) is transmitted to an extended
PVDF sensor through the elastomer layer. A simplified approach based on Boussinesq’s half-space
assumption is used to get a qualitative picture and extensive FEM simulations allow determination of
the quantitative response for the actual finite elastomer layer. The ultimate use of the present model is
to estimate the electrical sensor output from a measure of a basic mechanical action at the skin surface.
However this requires that the PVDF piezoelectric coefficient be known a-priori. This was not the case
in the present investigation. However, the numerical model has been used to fit experimental data
from a real skin prototype and to estimate the sensor piezoelectric coefficient. It turned out that this
value depends on the preload and decreases as a result of PVDF aging and fatigue. This framework
contains all the fundamental ingredients of a fully predictive model, suggesting a number of future
developments potentially useful for skin design and validation of the fabrication technology.
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1. Introduction

Touch-sensitive electronic skin (e-skin) provides information on contact events occurring on its
surface and can be used in a variety of contexts involving tactile interactions [1–5]. In recent decades,
different tactile sensing technologies have been extensively developed especially for autonomous
robotics [6–8]. However, there are a lack of models of the overall skin behavior, which would allow for
better skin design and for the validation of the fabrication technology. Some interesting attempts in
this direction have been made [9–12] e.g., to show how grasping information can be extracted from
strain sensors beneath a compliant skin using simplified solid mechanics models and basic contact
theory [13]. However, consideration of skin mechanics has been infrequent in the design and use of
tactile sensors.

From a system perspective, e-skin includes stack-wise arrangements of functional and structural
materials together with adequate interface electronics to read sensor signals [14]. In this paper, the
reference architecture is a basic multilayer involving a rigid substrate, a Polyvinylidene fluoride
(PVDF) piezoelectric polymer sensor array and an elastic layer on top for stress transmission and
sensor protection. It is important to note that the whole theoretical analysis considers a single sensor
skin. The design of a sensor array can be optimized based on the single sensor analysis, which
studies how a distributed (Hertzian) force is transmitted to an extended sensor through an elastic layer.
Indeed, needless to say, the presence of an array of sensors rather than a single sensor does not modify
the analysis.

Sensors 2018, 18, 459; doi:10.3390/s18020459 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18020459
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 459 2 of 19

Although the first step for optimized skin design is characterizing the electromechanical and
mechanical behaviors of e-skin functional (i.e., sensors) and structural (i.e., substrate and elastic cover)
components, overall e-skin functioning is something different from that of its single building blocks.
The skin is to be observed as a whole. How is contact force transmitted to each single extended sensor at
the bottom of the elastic cover? Understanding what parameters affect the way mechanical information
is transmitted to the sensor array is important to tailor e-skin design on application requirements.
Relevant parameters in skin design are the size of sensors and their geometrical arrangement into the
array as well as the properties of the protective layer, e.g., its thickness and compliance. To give an
example, e-skin spatial resolution is determined by all these parameters. Furthermore, interesting
sensing systems for the detection of tangential contact forces can be built starting from sensors that
only measure pressure. The retrieval of tangential forces is permitted exclusively by the measurement
of tensile stress immediately outside the compression region as measured by the sensor array [15].
However, for the skin to have this interesting functionality, the geometry of the sensor array and the
properties of the protective layer need to satisfy certain requirements. Analogous considerations on
the relation between skin compliance and tactile sensing abilities for a similar skin system based on
strain sensors can be found in [13].

Moreover, building an electromechanical model of the artificial skin allows for validating skin
fabrication technology and checking the whole process of assembling single components. To give
some examples, for the piezoelectric polymer sensors to actually work in pure compression mode
(common assumption), thus ensuring linearity between developed charge and received pressure,
sensor bending is to be avoided. Partial bending of the sensors is naturally induced by not optimal
integration procedures, for example inclusion of air bubbles into the coupling adhesive layer or bad
sensor integration on the substrate, which is never ideally flat. Even assuming correct compression
mode sensor behavior, the polarization process may not be homogeneous, inducing dispersion
among sensors in the values of their d33 piezoelectric coefficients, which quantify pressure into
charge conversion. Obtaining expected (modeled) behavior of the electrical response of each sensor
to measured mechanical force at the skin surface proves that the whole fabrication process was
successful, but for an acceptable dispersion in sensor functioning that can be considered intrinsic to
the manufacturing process and handled by appropriate calibration.

In summary, the aim of illustrating the mechanism whereby mechanical information is transmitted
to the sensor array is therefore twofold: first, to contribute developing a set of models for use in the
electromechanical design of integrated sensing systems, secondly to pave the way for defining a set of
tools for new skin technology validation.

The proposed model is static, but it may be likely extended to a dynamic contact, as long as its
characteristic frequency is sufficiently far from the resonance frequencies of the system.

The rest of the paper is organized as follows. In the next section, materials and architecture of the
reference skin system are first introduced. Subsequently, an electromechanical model of the electronic
skin is presented, first studying the effect of (i) sensor size on sensor response to a single normal
point force and of (ii) distributed normal force on point-like sensor response, and combining the two
contributions to account for (iii) distributed normal force and extended sensor. In Section 3 the model
is validated on a real skin prototype. Finally, the last section summarizes obtained results and open to
future developments.

2. Materials and Methods

2.1. Electronic Skin Materials and Structure

In this paper, we consider a basic skin architecture that includes a rigid substrate, an array of
PVDF sensors and a protective layer on top (Figure 1).

Functional materials in the form of a sensing array transform the mechanical information they
receive into a set of electrical signals. PVDF piezoelectric polymers are an interesting choice for the
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sensing material, as they can measure dynamic contacts covering the whole frequency range of all
human mechanoreceptors (<1 Hz–1 kHz) [16]. Due to the specific (orthotropic) PVDF symmetry and
small film thickness (e.g., 100 µm for commercial films), when integrated on a rigid substrate PVDF
sensors work in thickness mode, such that [17]:

D3 = d33 T3, (1)

where, D3 is the charge density on the sensor surface, T3 is the normal stress component (i.e., the
pressure acting on the bottom of the protective layer), and d33 is the piezoelectric coefficient. As PVDF
sensors directly convert mechanical stimuli into charge, electronic circuits for data acquisition are
based on charge amplifiers [18]. Equation (1) does not include the electric field across the PVDF sensor
as it is assumed to be negligible due to the virtual ground at the operational amplifier inverting input.
Hence, measuring the charge density on the sensor surface provides a direct measure of the normal
stress acting on the sensor surface. Assuming circular sensors, the total sensor charge measured by the
charge amplifier is given by:

Qmeas = d33π rT
2T̄3, (2)

where rT is the sensor radius and T̄3 is the normal stress component T3 averaged over a single
extended sensor.
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Figure 1. The PVDF sensor array is located on the bottom of the protective layer and integrated on a
rigid substrate (side view).

The protective layer, which is usually polymer-based (e.g., PDMS), implements a mechanical
filtering of the tactile stimulus applied at the skin surface and distributes the mechanical stimulus onto
the sensor array below. The thickness of the soft layer is a very important parameter in the design
of a flexible skin. In the case of the present study—where PVDF is placed at the device bottom and
works in thickness mode—thicker layer means weaker sensor response signals. However, a thicker
elastomer layer exalts its surface deflection under contact forces and warrants more accuracy in the
measurement of changes of curvature if sensors are reduced to tiny compliant strips and placed near
the outer elastomer surface.

2.2. Electronic Skin Model

Equation (2) relates PVDF sensor output (i.e., the measured charge Qmeas) to the normal stress
component T3 averaged over the sensor (i.e., T̄3). Scope of the following two sections is to retrieve the
average normal stress component T̄3 transmitted to a single extended tactile sensor as a function of the
normal force F3 applied at the surface of the skin protective layer. This would allow to estimate the
sensor charge Qmeas (output) as a function of the normal force F3 (input), which leads to an estimation
of the system transfer function FRF, defined as the ratio between the Fourier transforms of the output
charge and of the input force. In this paper, we only focus on normal contact forces.

Basic assumption of the proposed model (which can be relaxed in future steps) is that the e-skin
protective layer can be treated as an incompressible elastic medium (Poisson ratio sufficiently close
to 0.5). This is appropriate for an elastomer (ν = 0.48), but not for other materials (e.g., a foam).

In the present section we make an additional major assumption: we assume that our system,
namely an elastic medium consisting of a layer with finite thickness, is part of an elastic half-medium
bounded by the free surface on which the external force is applied. As shown below, this assumption is
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quite useful, allowing for an analytical solution of the mathematical problem in closed form, based on
Boussinesq’s classical solution [19].

This approach provides a qualitative picture of the response of the e-skin to external forces that
lets the relevant physical parameters emerge naturally from the analysis. However, the price paid
is the inability of the approach to account for the actually finite thickness of the elastomer as well as
to impose the boundary condition at the rigid substrate. In the next section we then relax the latter
assumption and solve the problem numerically for the actual physical configuration. This will allow
us to obtain a quantitatively more reliable picture suitable for experimental validation.

2.3. Simplified Analysis

2.3.1. Effect of Sensor Size on Sensor Response to a Single Normal Point Force

Consider a single sensor of radius rT at a fixed position on a rigid surface (not necessarily
plane) with unit normal vector n. Assume a point force F is applied at a given position on the outer
surface of the layer. The surface is coated with an elastomer layer of constant thickness h (Figure 2a).
A stress field is then generated in the elastomer and transmitted to the sensor. Let T denote the stress
tensor. The stress vector acting on the sensor reads n·T. This stress response can be conveyed into an
appropriate circuit and retrieved by an electronic device. For example, PVDF sensors directly convert
the T3 stress component into charge, as indicated by Equation (1).
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Figure 2. (a) The PVDF sensor (radius rT) is located on the bottom of the elastic cover of thickness h
and a normal point force is applied on the outer surface (view side). (b) er is represented in a spherical
coordinate system.

In order to determine the relation between a point load F applied on the outer surface and the
stress at a given point inside the cover layer, we may get advantage of the solution of the so-called
Boussinesq’s problem [19]. This problem considers an elastic half-medium bounded by a surface on
which a point force is applied. For such a configuration the stress field determined by Boussinesq reads:

T =
3

2π
F · er

r2 er ⊗ er, (3)

where r is the radial distance of the generic point of the medium from the application point of the
load F, all bold-faced symbols represent tensors or vectors, ek is the unit vector in the k-direction and
⊗ is the symbol of tensor product.

Let us next assume that Equation (3) may be applied to our configuration, approximating our
finite thickness layer with Boussinesq’s semi-infinite medium. Hence, the stress tensor at the center of
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the sensor will be evaluated by Equation (3), with r separation vector of the force application point
from the center of the sensor area. The advantage of Equation (3) is its simplicity, as the stress is
uniaxial in the radial direction, and its independence of elastic parameters.

In this paper, we develop Equation (3) considering the sole T3 stress component on the bottom of
the elastic cover of thickness h, as received by a PVDF sensor working in thickness mode Equation (1).
Letting r̂ be the radial distance of the point where the force is applied from the sensor center projected
on the outer surface (see Figure 2a), we have r2 = r̂2 + h2 and er = sinα (e1 cosβ + e2 sinβ) − e3 cosα
(see Figure 2b), where cosα = h/r, sinα = r̂/r.

T3 =
3

2π
h2

(r̂2 + h2)
5/2 {(F1cosβ + F2sinβ)r̂− F3h}, (4)

For a vertical contact force F3 (F1 = F2 = 0), Equation (4) reduces to

T3 = − 3
2π

F3h3

(r̂2 + h2)
5/2 = − 3

2π
F3

h2
1

(λ2 + 1)5/2 , (5)

where λ = r̂
h .
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As the sensor is not point-like, it is convenient to average the stress over the surface of the sensor.
With the notations of Figure 3 we find:

T̄3 = − 3
2π

F3

h2
1

π
( rT

h
)2

2π∫
0

rT
h∫

0

λ̃dλ̃dθ(
λ̃2 + λ2 − 2λ̃λcosθ + 1

)5/2 = − 3
2π

F3

h2 γ (
r̂
h

,
rT
h
), (6)

As r̂′2 = r̃2 + r̂2 − 2r̃r̂cosθ, λ = r̂
h and r̃

h is defined as λ̃.
In Equation (6), the γ ( r̂

h , rT
h ) coefficient includes the double integral, which can be solved

numerically as a function of r̂
h , i.e., the dimensionless distance of the sensor center from the projection

of the force application point on the sensor plane. Note that this is the first important result of the
analysis: indeed, γ is a measure of how the normal point force F3 is transmitted to the sensor through
the elastic layer leading to an average normal stress T̄3 acting on the sensor.

In Figure 4, the dependence of γ ( r̂
h , rT

h ) on r̂
h is plotted for different skin designs, measured by

the ratio of sensor radius to the thickness of the layer, rT
h . The reference black curve corresponds to the

case of “point-like” sensor (rT = 0). The color legend is included in the figure caption.
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Figure 4. The proportionality coefficient γ between average normal stress T̄3 on the sensor and normal
point force F3 (see Equation (6)) is plotted versus the distance r̂ from sensor center (see Figure 2 for
notations). Different curves are associated with different sensor sizes as measured by the dimensionless
parameter rT

h (yellow rT
h = 0.2; green rT

h = 0.5; black dotted rT
h = 0.6; blue rT

h = 0.7 ; magenta rT
h = 1;

light blue rT
h = 1.5; red rT

h = 2).

From an analysis of Figure 4, it follows that, for sufficiently small values of rT
h (say 0.2,

yellow curve), the problem can be treated as if the sensor was point-like. In the other cases, the
problem can still be treated as if the sensor was point-like provided that the force is located at a
sufficient distance from the sensor center. For example, if rT

h = 1 (magenta curve) in order to treat the
sensor as point-like the force is to be located at a distance that is equal/larger than the sensor radius.

Figure 4 is an important first achievement of this analysis, as it can be used as a practical tool for
skin design. As a matter of fact, it allows one to optimize the system geometry (rT/h and sensor pitch)
to achieve a desired skin resolution, which is related to the spatial concentration of the mechanical
stress information around a single sensor.

2.3.2. Effect of Normal Force Distributed Over Circular Contact Area on Point-Like Sensor Response

Consider normal force acting on a circular contact area of radius a with Hertzian pressure
distribution q(r̂) [20], which realistically describes normal contact by a rigid spherical indenter
(Figure 5):

q(r̂) = q0

{
1− r̂2

a2

} 1
2

, (7)

The reader is warned that, unlike in Section 2.3.1, here r̂ denotes a radial coordinate with origin at
the center of the contact area (see sketch in Figure 5).
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Figure 5. Normal force distributed over circular contact area with Hertzian pressure distribution.
(a) View side, (b) Top side.

The overall contact force is the result of integrating q(r̂) over the contact area (Figure 5b)

F3 =

a∫
0

q(r̂)r̂dr̂
2π∫
0

dθ, (8)

Using Equation (7) into Equation (8) allows for retrieving q0 as follows:

q0 =
3

2π
F3

a2 , (9)

The radius a of the imprint is related to the applied load F3 by the equation [20]:

a3 =
3F3R
4E∗

=
3F3R
4E

(1− ν2), (10)

where R is the radius of the spherical indenter, E is the elastic modulus of the protective layer and ν its
Poisson coefficient.

In the following, we describe the effect of this distributed force on a point-like sensor, which is
aligned with the contact center. Considering other sensor positions is far from the scopes of this paper.

Having in mind that Equation (3) is the Green function of the problem, the normal stress T3

generated on a point-like sensor located at a depth h below the center of the contact area can be
calculated by:

T3 = − 3
2π

∫ 2π

0
dθ
∫ a

0

q(r̂)r̂h3dr̂(
r̂2+h2

)5/2 = − 3
2π

∫ 2π

0
dθ
∫ a

0

q0

{
1− r̂2

a2

} 1
2 r̂h3dr̂(

r̂2+h2
)5/2 , (11)

By introducing new integration variable λ = r̂
h , defining a∗ = a

h and using Equation (9) for q0
we get:

T3 = − 3
2π

F3

h2
3

2πa∗2

∫ 2π

0
dθ
∫ a∗

0

{
1− λ2

a∗2

} 1
2

λ dλ

(λ2 + 1)5/2 = − 3
2π

F3

h2 δ(
a
h
), (12)

In Equation (12), the δ ( a
h ) coefficient includes the double integral, which can be solved numerically

as a function of a
h , i.e., the contact radius (depending on F3 through Equation (10)) normalized to the

layer thickness. Note that this is the second important result of the analysis: indeed, δ is a measure
of how the force F3 (distributed with Hertzian pressure distribution q(r̂)) is transmitted to the point
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sensor through the elastic layer leading to the stress T3 on the sensor. In Figure 6, δ is plotted as a
function of a

h .
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Figure 6. The proportionality coefficient δ between normal stress T3 on the sensor and overall contact
force F3 (see Equation (12)) is plotted versus the imprint radius a (contact size) scaled by the elastomer
thickness h (see Figure 5 for notations). Note that the point-like sensor is aligned with the contact center.

2.3.3. Combination of the Two Contributions: Effect of Distributed Normal Force on the Response of
an Extended Sensor

Starting from the case study described in Section 2.3.1, if the force is distributed with Hertzian
pressure distribution (Figure 7), Equation (6) can be written as:

T̄ 3 = − 3
2π

1
h2

∫
contactAREA

dF3(
r̂
h

, θ) γ (
r̂
h

,
rT
h
) = − 3

2π
1
h2

a∫
0

3
2π

F3

a2

{
1− r̂2

a2

} 1
2

γ (
r̂
h

,
rT
h
)r̂dr̂

2π∫
0

dθ, (13)

Note that the function γ ( r̂
h , rT

h ), which weighs the contribution of each point force dF3 to the
average normal stress T3 is a function of the radial distance of the point force dF3 from the projection
of the sensor center on the outer surface. Recall that this distance coincides with the radial coordinate r̂
employed to integrate over the contact area. Hence, the function γmust be included inside the integral,
as shown by Equation (13).

By introducing new integration variable λ = r̂
h and defining a∗ = a
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T̄3 = − 3
2π

F3

h2
3

2πa∗2

∫ 2π

0
dθ

a∗∫
0

{
1− λ2

a∗2

} 1
2

λ γ (λ ,
rT
h
) dλ = − 3

2π
F3

h2 σ(
a
h

,
rT
h
) , (14)

As above, for each chosen rT
h , σ ( a

h , rT
h ) includes the double integral that must be solved

numerically as a function of a
h , i.e., the contact radius scaled by the layer thickness. This is the

most important result of this analysis: indeed, σ is a measure of how the normal distributed force F3 is
transmitted to the sensor through the elastic layer leading to an average normal stress T̄3 acting on
the sensor.

In Figure 8, we plot σ ( a
h , rT

h ) as a function of a
h . The reference black curve corresponds to the case

of distributed force centered on point-like sensor and, as expected, it coincides with the function δ ( a
h ).

On the other hand, in the case of normal point force aligned with the sensor center (a = 0), we find
σ(0, rT

h ) = γ(0, rT
h ) (the intercepts of σ( a

h , rT
h ) and γ( a

h , rT
h ) on the y-axis are the same).

From an analysis of Figure 8, it follows that, for sufficiently small values of rT
h (say 0.2,

yellow curve), the problem can be treated as if the sensor was point-like. In the other cases, the problem
can still be treated as if the sensor was point-like provided the contact radius is sufficiently large.
For example, if rT

h = 1 (magenta curve) in order to treat the sensor as point-like the force is to be
distributed over a contact area with radius that is at least twice the layer thickness.

Until this point, the specific type of sensor did not come into play. The previous analysis is
completely independent of the specific sensor type and only describes the role of the elastomer layer
in stress transmission. The specific sensor type (i.e., PVDF piezoelectric polymer) is now included into
the picture. Using Equation (14), the charge response of a single extended sensor to distributed normal
force centered on the sensor can be estimated as:

Q3 = πr2
Td33T̄3 = −d33

3
2

( rT
h

)2
σ (

a
h

,
rT
h
) F3 (15)

For a given skin geometry Equation (15) allows one to calculate the effective piezoelectric
coefficient d33 of each PVDF sensor, once the charge Q3 and the force F3 have been measured.
Comparison with the expected value of d33 [21] allows one to validate sensor functioning and
skin technology.

Sensors 2018, 18, x 10 of 19 

 

Comparison with the expected value of d33 [21] allows one to validate sensor functioning and skin 

technology. 

 

Figure 8. The proportionality coefficient σ between average normal stress 3T  on the sensor and 

overall (Hertzian) contact force F3 (see Equation (14)) is plotted versus the imprint radius a (contact 

size) scaled by the elastomer thickness h (see Figure 7 for notations). Note that the applied force is 

centered on the sensor. Different curves are associated with different sensor sizes as measured by the 

dimensionless parameter Tr

h
 (yellow Tr 0.2

h
 ; green Tr 0.5

h
 ; black dotted Tr 0.6

h
 —case study 

reported in the experimental session; blue Tr 0.7
h

 ; magenta Tr 1
h

 ; light blue Tr 1.5
h

 ; red Tr 2
h



). 

2.4. FEM Simulations 

We now remove the severe assumption whereby the elastomer may be modeled as an elastic 

half-medium. In other words, we consider an elastic incompressible medium consisting of a layer of 

finite thickness h, length l and width b (Figure 9). Length and width of the layer have been chosen 

arbitrarily, with the sole requirement of the elastomer sides being distant “enough” from the 

considered sensor such to justify the assumption that the lateral boundaries do not affect the stress 

field acting on the sensor significantly.  

The free surface is assumed to be subject to an external Hertzian pressure distribution Equation 

(7), with q0 small enough to lead to small amplitude deformations. The lower boundary is assumed 

to be rigid, while the side walls are free. The solution of the problem is sought numerically, with the 

help of the code COMSOL Multiphysics. Figure 9 illustrates an example of the results of FEM 

simulations of the elastomer subject to a normal force distributed over circular contact area (black 

line, radius a Equation (10)) with Hertzian pressure distribution. The employed value for the 

elastomer modulus E is the result of experimental characterization of the elastic layer of the 

reference e-skin as discussed in Section 3.2.1. 

Simulations have been initially performed by assigning fixed values of ν and E (see  

Section 3.2.1). Moreover, for any given rT/h, the value of a/h has been changed by arbitrarily playing 

with the two parameters F3 and R in Equation (10). The output of the simulation is reported in  

Figure 10, where it is compared with the simplified analytical solution based on Boussinesq’s 

approach. 

Figure 10 shows that, under the conditions of the configuration investigated in numerical 

simulations, the numerical output follows a similar qualitative trend but it differs quantitatively 

from the analytical results discussed in the previous section. This is mainly due to the boundary 

condition imposed by the rigid substrate. However, note that if the substrate is moved at a depth 

higher than h, the two solutions do approach each other. This has been verified, performing further 

Figure 8. The proportionality coefficient σ between average normal stress T̄3 on the sensor and overall
(Hertzian) contact force F3 (see Equation (14)) is plotted versus the imprint radius a (contact size) scaled
by the elastomer thickness h (see Figure 7 for notations). Note that the applied force is centered on the
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2.4. FEM Simulations

We now remove the severe assumption whereby the elastomer may be modeled as an elastic
half-medium. In other words, we consider an elastic incompressible medium consisting of a layer of
finite thickness h, length l and width b (Figure 9). Length and width of the layer have been chosen
arbitrarily, with the sole requirement of the elastomer sides being distant “enough” from the considered
sensor such to justify the assumption that the lateral boundaries do not affect the stress field acting on
the sensor significantly.

The free surface is assumed to be subject to an external Hertzian pressure distribution Equation (7),
with q0 small enough to lead to small amplitude deformations. The lower boundary is assumed to be
rigid, while the side walls are free. The solution of the problem is sought numerically, with the help of
the code COMSOL Multiphysics. Figure 9 illustrates an example of the results of FEM simulations
of the elastomer subject to a normal force distributed over circular contact area (black line, radius a
Equation (10)) with Hertzian pressure distribution. The employed value for the elastomer modulus E
is the result of experimental characterization of the elastic layer of the reference e-skin as discussed in
Section 3.2.1.

Simulations have been initially performed by assigning fixed values of ν and E (see Section 3.2.1).
Moreover, for any given rT/h, the value of a/h has been changed by arbitrarily playing with the two
parameters F3 and R in Equation (10). The output of the simulation is reported in Figure 10, where it is
compared with the simplified analytical solution based on Boussinesq’s approach.

Figure 10 shows that, under the conditions of the configuration investigated in numerical
simulations, the numerical output follows a similar qualitative trend but it differs quantitatively
from the analytical results discussed in the previous section. This is mainly due to the boundary
condition imposed by the rigid substrate. However, note that if the substrate is moved at a depth
higher than h, the two solutions do approach each other. This has been verified, performing further
simulations where the substrate was set at depths of 10 mm and 30 mm. It turns out that—for rT/h = 0.2
and a/h = 0.289—the relative error of the analytical solution with respect to the numerical one decreases
from about 40% to about 10% at 10 mm depth and 1% at 30 mm depth. This suggests that for sensors
embedded into a thick protective layer the analytical solution would be quite appropriate.
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Figure 10. A comparison between results for σ as a function of a/h for different values of rT/h
(see legend), as obtained by Boussinesq’s analytical model (see Figure 8) and the numerical COMSOL
simulations for the finite case.

It is also important to note that Figure 10 displays apparently irregular oscillations of the response
for any given rT/h. This has prompted us to identify what causes these oscillations. Indeed, at a more
careful examination, it turns out that, in the finite case, σ depends on an additional parameter, besides
a/h and rT/h. This may be readily appreciated noting that, on physical ground, ignoring the effects of
the sidewalls, the response of the system may be assumed to depend on the following dimensional
quantities: h, rT, E, F and R. With the help of simple dimensional arguments, one may then envisage
the following dimensionless relationship:

σ = σ (R/h, rT/h, F/(R2 × E)) (16)

Note that, in view of Equation (10), the parameter R/h is equivalent to the parameter a/h
previously used. Below, we denote the additional parameter F/(R2 × E) by L. The above argument
suggests that the plot of Figure 10 must be modified such that each line corresponding to given rT/h
be replaced by a strip of lines each associated with the same value of rT/h but a distinct value of L.
The output of the simulations is therefore organized including the dependence of σ on the parameter L.
Figure 11 illustrates the results for rT/h = 0.6, which corresponds to the geometry of the real e-skin
prototype employed for experimental tests presented in the following section. Note that the figure
confirms that distinct curves are associated with different values of L. Similar analysis can be extended
to all values of rT/h and analogous strips of lines would be obtained. However, in Figure 11 we
have restricted ourselves to a range of values of the parameter L of direct physical relevance for the
tactile application.
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Figure 11. A comparison between Boussinesq’s analytical model for the half-space (dotted line) and the
numerical COMSOL simulations for the finite case (markers) is reported for rT/h = 0.6, corresponding
to the geometry of the e-skin prototype employed in the experimental section. As in Figures 8 and 10,
σ vs. a/h is plotted. The role of the parameter L is included and confirms that distinct curves are
associated with different values of L.

3. Experimental Results and Discussion

A series of tests has been finally performed on an electronic skin based on arrays of PVDF
transducers, applying a normal contact force on the e-skin surface by a rigid spherical indenter
(Hertzian pressure distribution). For the sake of convenience, the normal contact force was aligned with
the sensor center, hence a distinct run was needed for each sensor. Experiments allowed measurement
of the system response function FRF. We recall that FRF corresponds to the ratio between the Fourier
transform of the output charge and that of the input force.

Of course, FRF can also be predicted using the theoretical model. However, the latter prediction
depends on the effective piezoelectric coefficient d33 of each PVDF sensor, a quantity that was a
priori unknown in the present investigation. Hence, comparison between theoretical predictions and
experimental observations has been employed to infer the value of the effective piezoelectric coefficient
d33 that leads to best fit. In other words, at the present stage this model may be described as post-dictive.
It will become pre-dictive once the effective piezoelectric coefficient d33 will be known a-priori.

A delicate issue arises because the PVDF piezoelectric polymer does not read static information,
i.e., the model can only be used with dynamic contacts. A dynamic contact has been indeed employed,
as explained below, relying on the expectation that such an approach is safe provided that the forcing
frequencies fall outside the range of any significant resonance. Resonances barely derive from the
stimulated sensor, as they would result from longitudinal waves which have much higher characteristic
frequencies (≈100 kHz) than those related to contact (<1 Hz–1 kHz). The order of magnitude of
resonance frequencies f associated with longitudinal waves can be calculated from f = v

λ , where v
is the speed of sound in the elastomer layer (≈1000 m/s [22]) and λ

4 corresponds to the thickness of
the elastomer layer (h = 2.5 mm). Resonances may also derive from the sensor itself, but we have
previously proven [21] that its charge-force transfer function (d33(ω)) is approximately flat in the
frequency range of interest for the tactile application (say, 1 Hz–1000 Hz). This notwithstanding,
resonances may derive from a variety of additional causes (e.g., movable contacts, contact surface
asperities, motor-induced vibrations), which cannot be a-priori controlled. The ultimate solution is
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then to identify a flat zone in the system response function and perform experiments only in that
frequency range.

3.1. Experimental Setup

As mentioned in the introduction, the tactile sensing system we are considering basically
consists of an array of stress sensors fixed on a rigid substrate and coated with an elastomer layer.
An example of a real device of this kind, based on an array of piezoelectric PVDF sensors, is illustrated
in [23]. This e-skin prototype integrates 64 ad-hoc screen-printed electrodes and tracks on both
sides of a commercial piezoelectric polymer film (Measurement Specialties Inc., Hampton, VA, USA,
http://www.meas-spec.com/default.aspx). Sensor radius equals 1.5 mm and pitch between adjacent
sensors is 8 mm. As the flexible skin has been glued on a rigid substrate, the tactile stimulus applied
on the outer surface of the elastomer (thickness h = 2.5 mm) is received by the sensors as a distribution
of normal stresses (T3), which is converted into charge.

It consists of a rigid frame with a lower fixed plate to which an electro-mechanical shaker
(Brüel and Kjaer, Nærum, Denmark, Minishaker Type 4810 with Power Amplifier Type 2706) is
assembled. A piezoelectric force transducer (Model 208C01, PCB Piezotronics, Depew, NY, USA)
is fixed to the moving head of the shaker. The e-skin sample is faced down side and it is mechanically
stimulated by the rigid spherical indenter coupled to the mini-shaker. The loading chain is formed,
accordingly, by: shaker, force transducer, spherical indenter, and skin sample. All these elements have
to be aligned before any test, for the indenter to be centered on a specific sensor. The mini-shaker is
controlled through a graphical user interface (GUI) developed with NI LabVIEW on the host PC and
NI DAQ data acquisition board is used. A swept sine signal is fed into the shaker (settable parameters:
start and end frequencies, number of steps, amplitude). The output signals of sensor charge
(response) and force transducer (stimulus) are continuously acquired by a 4-channel PCB Sensor
Signal Conditioner 482C54 (ICP and charge mode) and processed in frequency (i.e., their Fourier
transforms are calculated by LabVIEW software) to give the system response function FRF at each
frequency step. Before running each test, a preload is applied to guarantee indenter-skin contact
during the whole mechanical stimulation. It is this preload which is responsible for determining the
contact radius a Equation (10), as for all tests the amplitude of the dynamic oscillation is maintained
low enough not to affect significantly the contact area. This preload is controlled using a laser to
measure the displacement of the flat plate coupled to the shaker and using shaker displacement-force
calibration curves. The experimental setup (Figure 12) is a slightly different version of that described
in [21].Sensors 2018, 18, x 14 of 19 
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3.2. Results

In view of the analysis discussed in Section 2.4, it is appropriate to employ only the full numerical
solution of the elastic problem for the actual e-skin prototype to fit experimental data.

3.2.1. Characterization of the Elastic Properties of the Elastomer

The compressive Young’s modulus of the PDMS elastic layer was measured using an
electromechanical machine Zwick/Roell Z0.5 (maximum load 500 N, operating with TestXpert II software),
on a cylindrical sample of 4 mm diameter and 2.5 mm length (Figure 13). The test was performed at a
speed of 10 mm/min, in the displacement control mode.
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Figure 13. The stress-strain curve for the elastomer sample in a compression test.

The elastic Young’s modulus of the elastomer has been calculated as the slope of the first linear
portion of the curve in Figure 13 and it corresponds to 16 [MPa]. This value has been employed for all
numerical models in this paper. Note that non-linear elastomer behavior starts at stress values about
2 [MPa].

3.2.2. Frequency Selection

The first issue is identifying the appropriate range of frequencies of the mechanical stimulus to
validate the electronic skin. As said in the introduction to Section 3, this dynamic approach proves safe
provided that the range of forcing frequencies falls outside of any significant system resonance.

First tests have been performed to record the system response function (FRF) experimentally
over the whole frequency range (1 Hz–1000 Hz). It turns out that: (i) resonances do exist and there
characteristic frequencies depend on the preload and the size of the indenter; (ii) a fairly wide range of
frequencies exists, where no significant resonance is detected; (iii) the imaginary part of the response
function, which accounts for any viscoelastic component of the response, is roughly an order of
magnitude smaller than the real (elastic) part. The latter statement is clarified in Figure 14, where the
system response function is plotted in the non-resonant range (roughly 1–130 Hz).

Based on these results, hereafter the imaginary part of the response will be ignored and Re will
be removed from the notation. In other words, the system is treated as purely elastic. Moreover,
each run has been performed stimulating the skin over the non-resonant range and averaging the
corresponding response.
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3.2.3. Indenter Selection

Two sets of tests have been performed over the same selected sensor, each set being characterized
by a different indenter (radii equal to 4 mm and 10 mm, respectively). For each given indenter,
the preload has been changed from a minimum (0.5 N) to a maximum (3 N) value.

As mentioned above, comparison between experimental and numerical values of FRF (Figure 15),
depends on the assumed value for d33. Best fit is obtained assuming that d33 =14 [pC/N].

Note that, with this choice, agreement is fairly satisfactory for the larger indenter, but differences
are larger for the smaller indenter in the high preload range. This suggests the possibility that
non-linearity of the response is responsible for such disagreement. Indeed, Figure 13 displays the
presence of non-linear effects when the stress exceeds a threshold value of about 2 MPa, which
is reached in the small indenter test for high preloads (recall that the effective contact radius is a
(Equation (10))). Furthermore, non-linearity of the sensor itself may contribute. Further work is needed
to investigate this issue in depth.
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Anyhow, this problem has been further analyzed in the sequence of tests performed on the whole
sensor array, using the small indenter (see the next section).
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3.2.4. Response Function of the Sensor Array

Finally, the whole sensor array has been tested, by stimulating the e-skin surface with the smaller
indenter (R = 4 mm) aligned with the center of each selected sensor. As said in Section 3.2.2, each run
has been performed over the non-resonant range at small force amplitude (F_dyn = 0.09 N) and the
corresponding FRF response has been averaged over that frequency range to get a single value of the
response for each sensor.

Two sets of data have been obtained. The first extensive study corresponds to higher preload
(=3 N) to study the non-linearity of the whole system over a large selection of sensors (41). The second
study has been performed over a smaller number of sensors (12), to measure an average response
function at smaller preloads (=1 N).

Note that the given preload affects the contact radius a (Equation (10)) while the amplitude of the
dynamic swept sine force determines the PVDF charge. On the contrary, the dynamic component does
not affect the computation of the contact radius, as the dynamic signal amplitude is negligible with
respect to the preload. The effective average normal stress component T3 affecting the response of the
PVDF sensor area is the difference between the total stress (produced by the dynamic force amplitude
added to the preload) and the stress due to the preload only. Note that—while the response of the
PVDF sensor is not affected by static contacts—its piezoelectric coefficient d33 (Equation (15)) is likely
to be dependent on the preload and some non-linearities may be expected for high preload values.

The following parameters have been used to estimate the system transfer function from the
numerical model: rT= 1.5 mm, h = 2.5 mm, F_dyn = 0.09 N. The radius of the Hertzian imprint has
been calculated from Equation (10), using: ν = 0.5, E = 16 MPa (Section 3.2.1), R = 4 mm, preload = 1 N
or 3 N.

However, predictions for the system transfer function depend on the effective piezoelectric
coefficient d33 of each PVDF sensor, a quantity that was a priori unknown in the present investigation as
the PDMS elastic layer was already integrated on top. Some initial characterization of the commercial
PVDF film was performed around 2010 and results are reported in [21]. However, a systematic
measurement of the d33 coefficient over the whole sensor array is not available. In any case, although
such a characterization is done prior to sensor integration into the complex multilayer skin, long-term
aging and fatigue may affect sensor behavior and degradation of sensor properties is expected over
time. Being able to estimate the piezoelectric d33 coefficient from the overall system response function
is thus a useful tool to measure the reliability of the e-skin device over time, whenever embedded
sensors are not accessible anymore for a direct characterization.

Theoretical predictions will therefore be employed below to infer the value of the effective
piezoelectric coefficient d33 that best fits the experimental observations.

The numerical model has been used to extract the dependence of the d33 coefficient, which
measures the piezoelectricity of the PVDF sensor, on the preload. Data associated with the higher
preload (=3 N) are well fitted with a d33 value equal to 22 [pC/N], while data corresponding to the
lower preload (=1 N) yield a d33 value of 14 [pC/N]. These lower d33 values, associated with the latest
runs, can be considered reasonable as the e-skin was subjected to a huge number of stress cycles in the
past 4 years, and this has likely led to film degradation and consequent PVDF aging and fatigue. It is
important to appreciate that, as already noted above, the proposed model becomes fully predictive
with a preliminary measurement of the PVDF d33 coefficient of each sensor, prior to integration of the
elastic layer on top of the sensor array.

Some dispersion of sensor response is observed, which is a measure of the accuracy of indenter
positioning and of the reliability of the whole e-skin fabrication technology. Dispersion in sensor
behavior may be due to various factors, which can be considered intrinsic to the manufacturing
process. These factors may include different point-to-point values for the sensor radius and/or for
the local layer thickness, inhomogeneity in PVDF film polarization and quality of the skin integration
technology, which may affect sensor working in pure compression mode (sensor bending may occur).
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More sophisticated methods to precisely positioning the indenter are likely to be used in the future to
further decrease the dispersion of measured sensor outputs. Results are reported in Figure 16.
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4. Conclusions

For the considered electronic skin, contact information is transmitted through an elastomer layer
to PVDF sensors that only measure pressure.

In a preliminary stage, Boussinesq’s approach has been used to solve the direct problem of how a
distributed external normal force is transmitted to an extended PVDF sensor. Although this approach
relies on the severe assumption to treat the elastomer as an elastic medium filling a half-space, it has
allowed us to perform a comprehensive (albeit qualitative) analysis of the response of an extended
sensor to a variety of forcing actions. A normal point force applied anywhere on the outer skin surface
has been first investigated. The result of this study (γ curve) provides in itself a very useful practical
tool for optimizing skin design to achieve a certain skin resolution. A specific validation of this
analysis was not included among the scopes of the present work and will be the topic of a forthcoming
publication. Next, the sensor response to a Hertzian distributed force acting on the skin surface and
centered on the considered sensor has been estimated. The sensor charge response is finally written
in terms of the σ parameter, which depends on the sensor and contact radii (rT and a, respectively),
both scaled by h.

The half-space assumption has then been relaxed. Numerical FEM simulations have therefore
been used to validate the model on a layer of finite thickness, length and width. It turned out that
the numerical output follows a qualitative trend similar to that of the previous simplified analysis,
but it differs quantitatively mainly due to the boundary condition imposed by the rigid substrate.
However, if the substrate is moved at increasing depths higher than the depth h at which the sensor is
embedded, then the two solutions do approach each other. This suggests that for sensors embedded
into a thick protective layer Boussinesq’s analytical solution would be quite appropriate. Moreover,
in the finite case, σwas found to depend on an additional parameter, L, which is a function of R, F3

and E. This parameter did not appear in Boussinesq’s analytical solution.
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Finally, a real skin prototype based on a PVDF sensor array has been tested, using dynamic
contacts over a non-resonant frequency range. First tests with different indenter sizes suggested
the presence of some non-linear effects, attributed to both the elastomer layer and the PVDF sensor.
Performing a systematic analysis over the whole sensor array, the numerical model has allowed
estimation of the d33 coefficient, which turns out to exhibit some dependence on the preload. Fairly low
d33 values are also found and appear to be due to PVDF aging and fatigue.

Although treated herein as a post-dictive model, the framework laid down in the present work
contains all the fundamental ingredients of a fully pre-dictive model, suggesting a number of future
developments potentially useful for skin design and validation of the fabrication technology. In its
present form, the model is valid for incompressible protective layers (ν ≈ 0.5), but note that extension
to compressible materials is feasible as a complete, although admittedly much more complex, solution
valid for all ν is available [24]. On the other hand, the method is not constrained to the specific
type of sensors, given that these sensors give a generic stress measurement n·T at the bottom of the
elastomer layer.

Further future developments include extensions to distributed normal forces not necessarily
aligned with the sensor center and to the case of multiple normal distributed loads. Modeling the
effect of shear loads as well as of viscoelasticity of both the protective layer and the sensors will also
deserve some attention.
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