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Abstract: Great efforts have been made to improve bone regeneration techniques owing to a growing
variety of sources of stem cells suitable for autologous transplants. Specifically, adipose-derived stem
cells (ASCs) and stems cells from human exfoliated deciduous teeth (SHED) hold great potential
for bone tissue engineering and cell therapy. After a preliminary characterization of the main
biomolecules ASCs and SHED released in their conditioned media, cells were kept both in normal
and osteo-inducing conditions. Conventional assays were performed to prove their osteogenic
potential such as quantitative real-time polymerase chain reaction (qRT-PCR) (for RUNX-2, collagen
type I, osteopontin and osteonectin), alkaline phosphatase activity, osteocalcin production, and von
Kossa staining. Conditioned media were tested again after the osteogenic induction and compared to
maintaining condition both at base line and after 14 days of culture. The osteogenic condition inhibited
the release of all the biomolecules, with the exception, concerning SHED, of growth-regulated alpha
protein precursor (GRO↵), and, to a lesser extent, interleukin (IL)-8. In conclusion, our data support
that undifferentiated ASCs and SHED may be preferable to committed ones for general cell therapy
approaches, due to their higher paracrine activity. Osteoinduction significantly affects the cytokine,
chemokine, and growth factor profile in a differential way, as SHED kept a more pronounced
pro-angiogenic signature than ASCs.

Keywords: mesenchymal stem cells (MSCs); adipose-derived stem cells (ASCs); stem cells from
human exfoliated deciduous teeth (SHED); Bio-Plex

1. Introduction

With more than 2 million bone grafts performed annually worldwide, bone reconstruction is
a primary task of regenerative medicine [1]. Autologous bone graft is deemed the safest and most
effective grafting procedure [2]. However, the autograft entails a surgical “donor” site, which often
brings additional morbidity, including pain and infections [3]. Moreover, the bone source is usually
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limited [4]. Xenografts, coming from other species, are hindered by the absence of cells and the possible
contamination. Similarly, most available synthetic bone substitutes lack the ability to induce bone
formation [5].

Whatever the type of grafting, the real challenge in bone tissue engineering is represented by
critical-sized bone defect, meaning osseous injuries unable to heal spontaneously [6]. Only through an
integrated approach will multidisciplinary teams succeed in fabricating complex scaffolds, including
live cell populations endowed with the most sophisticated features of biomimicry [7], to set up a
complex 3D tissue under the guidance of suitable biomolecular cues. To this end, the ideal stem cell
should be abundant, accessible (i.e., harvested with a minimally invasive procedure), and capable of
differentiating along multiple cell lineages in a reproducible manner [7,8].

Human mesenchymal stem cells (MSCs) have been shown to be particularly suitable for
auto-transplant procedures. Apart from bone marrow [9], MSCs can be obtained from umbilical
cord [10], adipose tissue [11], placenta [12,13], human synovial membrane [14], and dental pulp of
deciduous teeth [15]. Teeth and the surrounding tissues are indeed an important source of MSCs.
They can be categorized according to their origin in dental pulp stem cells (DPSCs), periodontal
ligament stem cells, stem cells from apical pulp, dental follicular precursor cells, and stem cells from
human exfoliated deciduous teeth (SHED) [16].

In the present study, the authors decided to focus on two easily attainable cell types,
adipose-derived stem cells (ASCs) and SHED, as the most promising sources of MSCs in the dental field.
Described for the first time in 2001 [17], ASCs, thus named as per the consensus of the International
Fat Applied Technology Society [18], represent a plastic-adherent, multi-potent cell population that
can be collected in large quantities with low possibility of donor site morbidity, during liposuction
procedure [19]. SHED are highly proliferative, clonogenic cells capable of differentiating into a variety
of cell types, including cell-mediating bone formation in vivo [20,21]. Owing to their short period of
availability, limited to the primary dentition, SHED have been considered a prototypical source for
banking [22].

The use of MSCs is mandatory for any bone engineering approach [23,24]. Besides their actual
role in building new tissue, these cells are also attracting growing interest as “vehicles” for paracrine
signals, in what is usually defined as cell therapy. Surprisingly, however, sporadic data are available
thereof [25] and only minor information has been published comparing different mesenchymal cell
types [26]. To the authors’ knowledge, indeed, no comparative studies have assessed the biomolecular
profile characterizing ASCs and SHED so far, nor was the osteogenic capacity of ASCs and SHED
ever tested under this perspective. Hence, the aim of the present study was to compare the cytokine,
chemokine, and growth factor profile of osteoinduced ASCs and SHED to possibly unveil advantages
and pitfalls of adopting either cell type in the context of regenerative medicine.

2. Results

2.1. ASCs and SHED Displayed Different Cell Morphology and Bimolecular Profiles at First Passage

At the first in vitro cell culture passage after harvesting, ASCs appeared more spread out
(Figure 1A), while SHED presented a higher nucleus to cytoplasm ratio (Figure 1B). ASCs and
SHED showed a comparable phenotype consistent with that of MSCs [27]. Both cell types expressed
the main mesenchymal markers CD105, CD44, CD73, and CD90 and were negative for CD45.
No significant difference in the percentage expression of these markers was found in the two
populations (Figure 1C,D).

To assess the expression profile of growth factors, cytokines, and interleukins produced by
these MSCs, a standard panel of factors was evaluated (Figure 2, Table 1). They include various
anti- and pro-inflammatory interleukins (ILs), such as IL-6, -8, -10, and -12, as well as growth and
angiogenic factors like growth-regulated alpha protein precursor (GRO↵) and vascular endothelial
growth factor (VEGF), which were all significantly more abundant in ASCs than in SHED. On the
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contrary, while the levels of �-nerve growth factor (�-NGF), stem cell factor (SCF), and stromal
cell-derived factor-1↵ (SDF-1↵) were hardly detectable in ASCs, their production was significant in
SHED, even in conspicuous quantities in the case of SDF-1↵. Similarly, SHED released more monocyte
chemotactic protein 1(MCP-1) and hepatocyte growth factor (HGF) (ten times higher levels) than ASCs.
Macrophage migrator Inhibitory Factor (MIF) was well represented in both cell populations.

Figure 1. Cell morphology of adipose-derived stem cells (ASCs) (A) and stem cells from human
exfoliated deciduous teeth (SHED) (B), phalloidin staining (in red) and DAPI (in blue) to mark
respectively cytoskeleton and nuclei, magnification 400⇥. Cytofluorimetric characterization was
obtained through CD105, CD44, CD73, CD90, and CD45 for ASCs (C), and SHED (D).
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inhibitory  factor  (MIF),  β‐nerve  growth  factor  (β‐NGF),  stem  cell  factor  (SCF),  and  stromal  cell‐
derived factor 1‐α (SDF‐1α). The symbol (*) indicates a significant difference between the two stem 
cells populations, considering a p‐value < 0.05. 
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macrophage migration inhibitory factor (MIF), β‐nerve growth factor (β‐NGF), stem cell factor (SCF), 
and stromal cell‐derived factor 1‐α (SDF‐1α). Italic fonts of numbers indicate a significant difference 
between the two stem cell populations, considering a p‐value < 0.05. 

Biomolecule 
Baseline 

ASCs  SHED 

Hu IL‐6  44.40  22.12 

Hu IL‐8  46.13  7.76 

Hu IL‐10  21.78  10.55 

Hu IL‐12  36.76  19.72 

Hu MCP‐1   35.82  73.40 
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Hu GROα  161.90  4.90 
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Hu MIF  72.90  87.28 

Figure 2. Bio-Plex quantification of factors produced by ASC and SHED at baseline. The evaluated
factors are: interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), interleukin-12 (IL-12), monocyte
chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF), growth-regulated ↵

protein precursor (GRO↵), hepatocyte growth factor (HGF), macrophage migration inhibitory factor
(MIF), �-nerve growth factor (�-NGF), stem cell factor (SCF), and stromal cell-derived factor 1-↵ (SDF-1↵).
The symbol (*) indicates a significant difference between the two stem cells populations, considering a
p-value < 0.05.

Table 1. Bio-Plex quantification of factors produced by ASC and SHED at baseline. The evaluated
factors are expressed in pg/mL and are: interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10),
interleukin-12 (IL-12), monocyte chemoattractant protein-1 (MCP-1), vascular endothelial growth
factor (VEGF), growth-regulated alpha protein precursor (GRO↵), hepatocyte growth factor (HGF),
macrophage migration inhibitory factor (MIF), �-nerve growth factor (�-NGF), stem cell factor (SCF),
and stromal cell-derived factor 1-↵ (SDF-1↵). Italic fonts of numbers indicate a significant difference
between the two stem cell populations, considering a p-value < 0.05.

Biomolecule
Baseline

ASCs SHED

Hu IL-6 44.40 22.12
Hu IL-8 46.13 7.76

Hu IL-10 21.78 10.55
Hu IL-12 36.76 19.72

Hu MCP-1 35.82 73.40
Hu VEGF 2867.41 786.37
Hu GRO↵ 161.90 4.90
Hu HGF 2.78 81.67
Hu MIF 72.90 87.28

Hu �-NGF 1.33 5.68
Hu SCF 0.01 9.51

Hu SDF-1↵ 0.01 233.43

2.2. Cell Viability

The growth of ASCs and SHED was estimated under maintenance (growth medium, GM) and
osteogenic (osteogenic medium, OM) conditions at day 1, 3, and 7 (Figure 3). Starting from day 1, the
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proliferation rate was prevented in both ASCs and SHED grown in OM compared to GM. This trend
became statistically significant at days 3 and 7 (Figure 3).

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  5 of 16 

 

Hu β‐NGF  1.33  5.68 

Hu SCF  0.01  9.51 

Hu SDF‐1α  0.01  233.43 

2.2. Cell Viability 

The growth of ASCs and SHED was estimated under maintenance (growth medium, GM) and 
osteogenic (osteogenic medium, OM) conditions at day 1, 3, and 7 (Figure 3). Starting from day 1, the 
proliferation rate was prevented in both ASCs and SHED grown in OM compared to GM. This trend 
became statistically significant at days 3 and 7 (Figure 3). 

 
Figure  3. Cell viability  assay. The  assay was performed on ASCs  and SHED  cultured  in growth 
medium (GM) or osteogenic medium (OM). Evaluations were made at 1, 3, 7, and 14 days from the 
beginning of the differentiation using CellTiter‐Glo® luminescent assay. Cell number is expressed as 
relative  luminescence units  (RLU). The symbol  (*)  indicates a significant difference between basal 
condition (GM) and osteogenic media (OM) considering a p‐value < 0.05. 

2.3. Early Osteogenic Differentiation of ASCs and SHED 

To assess the early osteogenic differentiation of ASCs and SHED, the transcript levels of RUNX‐
2 (Figure 4A) and collagen type I (Figure 4B) genes were evaluated through quantitative RT‐PCR at 
days  3,  7,  and  14. As  a  complementary  assay  to monitor  the  post‐transcriptional  level,  alkaline 
phosphatase activity was also tested at day 7 (Figure 4C). These forms of evidence supported that 
both ASCs and SHED underwent proper osteogenic commitment, the bone markers being constantly 
higher in osteodifferentiated cells compared to the control (Figure 4). The statistical significance was 
achieved at day 7 in every assay. 

Figure 3. Cell viability assay. The assay was performed on ASCs and SHED cultured in growth medium
(GM) or osteogenic medium (OM). Evaluations were made at 1, 3, 7, and 14 days from the beginning
of the differentiation using CellTiter-Glo® luminescent assay. Cell number is expressed as relative
luminescence units (RLU). The symbol (*) indicates a significant difference between basal condition
(GM) and osteogenic media (OM) considering a p-value < 0.05.

2.3. Early Osteogenic Differentiation of ASCs and SHED

To assess the early osteogenic differentiation of ASCs and SHED, the transcript levels of RUNX-2
(Figure 4A) and collagen type I (Figure 4B) genes were evaluated through quantitative RT-PCR at days
3, 7, and 14. As a complementary assay to monitor the post-transcriptional level, alkaline phosphatase
activity was also tested at day 7 (Figure 4C). These forms of evidence supported that both ASCs
and SHED underwent proper osteogenic commitment, the bone markers being constantly higher in
osteodifferentiated cells compared to the control (Figure 4). The statistical significance was achieved at
day 7 in every assay.

2.4. Late Osteogenic Differentiation of ASCs and SHED

Late osteogenic differentiation of ASCs and SHED was evaluated by quantifying the
transcriptional levels of osteopontin (Figure 5A) and osteonectin (Figure 5B) genes, which resulted
in more expressed in OM condition at both day 7 and 14. Likewise, a significant enhancement of
released osteocalcin was observed in osteoinduced cells compared to the controls at day 21 (Figure 5C).
All these data clearly showed that ASCs and SHED were properly osteodifferentiated. As a further
confirmation, the presence of calcified matrix was proven by von Kossa staining in osteoinduced ASCs
and SHED at 21 days (respectively Figure 5D,E).
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Figure 4. Early osteogenesis assessment based on quantitative real-time polymerase chain reaction
(qRT-PCR) and alkaline phosphatase (ALP) activity assay. qRT-PCR analysis of osteogenic markers:
RUNX2 (A), collagen type I (B), and ALP activity assay (C) performed on ASCs and SHED under basal
conditions (GM) and in differentiating medium (OM). The symbol (*) indicates a significant difference
between GM and OM condition considering a p-value < 0.05, d: day.
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Figure 5. Late osteogenesis assessment based on qRT-PCR, ELISA detection of osteocalcin, and
von Kossa staining. qRT-PCR analysis of osteopontin (A) and osteonectin (B) genes performed on
ASCs (gray bar) and SHED (dark grey bar) under basal conditions (GM) and in osteo-differentiating
medium (OM), d: day. Osteocalcin detection within conditioned media performed through ELISA
(C). The symbol (*) indicates a significant difference between GM and OM condition considering
a p-value < 0.05. Von Kossa Staining of osteodifferentiated ASCs (D) and SHED (E) at day 21,
magnification 100⇥.

2.5. The Biomolecular Profile of ASCs and SHED Was Modulated upon Culture in OM

The expression profile of growth factors, cytokines, and interleukins produced by ASCs and SHED
was again detected with the same panel that was evaluated after the harvest (Figure 2). After 14 days
of culturing in GM (Figure 6A,B, Table 2), ASCs increased their levels of IL-6, IL-8, and MCP, while
SHED released more IL-6, IL-8, GRO↵, MIF, and SDF1↵. The comparison of the cells conditioned in
OM for 14 days (Figure 6C,D, Table 2) with the baseline of freshly harvested cells revealed that the
osteogenic condition inhibits the release of all the biomolecules expressed by ASCs and SHED, with
the exception for the latter of GRO↵, and, to a lesser extent, IL-8.



Int. J. Mol. Sci. 2018, 19, 1454 8 of 16
Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  8 of 16 

 

 
Figure 6. Bio‐Plex quantification of factors produced by ASCs and SHED after 14 days of culturing in 
GM (A) and upon osteoinduction in OM (C). Side graphs comparing the relative variation of A and 
C (percentage) to the baseline after harvesting are shown respectively in (B) and (D) under the label 
%.  The  evaluated  factors  are:  interleukin‐6  (IL‐6),  interleukin‐8  (IL‐8),  interleukin‐10  (IL‐10), 
interleukin‐12  (IL‐12), monocyte  chemoattractant  protein‐1  (MCP‐1),  vascular  endothelial  growth 
factor (VEGF), growth‐regulated alpha protein precursor (GROα), hepatocyte growth factor (HGF), 
macrophage migration inhibitory factor (MIF), β‐nerve growth factor (β‐NGF), stem cell factor (SCF), 
and stromal cell‐derived factor 1‐α (SDF‐1α). All of the factors were analyzed in both populations, 
but  b‐NGF,  SCF,  and  SDF‐1α were  not  expressed  in ASC. The  symbol  (*)  indicates  a  significant 
difference between the two stem cell populations, considering a p‐value < 0.05. 

Table 2. Bio‐Plex quantification of factors produced by ASCs and SHED after 14 days of culturing in 
GM  and  upon  osteoinduction  in  OM.  The  evaluated  factors  are  expressed  in  pg/mL  and  are: 
interleukin‐6  (IL‐6),  interleukin‐8  (IL‐8),  interleukin‐10  (IL‐10),  interleukin‐12  (IL‐12),  monocyte 
chemoattractant protein‐1  (MCP‐1), vascular  endothelial growth  factor  (VEGF), growth‐regulated 
alpha protein precursor (GROα), hepatocyte growth factor (HGF), macrophage migration inhibitory 
factor (MIF), β‐nerve growth factor (β‐NGF), stem cell factor (SCF), and stromal cell‐derived factor 1‐
α  (SDF‐1α).  Italic  fonts  of  numbers  indicate  a  significant  difference  between  the  two  stem  cell 
populations, considering a p‐value < 0.05. 

Biomolecule 
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ASCs  SHED  ASCs  SHED 

Hu IL‐6  173.07  125.29  3.02  5.04 
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Hu IL‐10  7.24  6.95  0.62  0.39 
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Figure 6. Bio-Plex quantification of factors produced by ASCs and SHED after 14 days of culturing
in GM (A) and upon osteoinduction in OM (C). Side graphs comparing the relative variation of A
and C (percentage) to the baseline after harvesting are shown respectively in (B) and (D) under the
label %. The evaluated factors are: interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10),
interleukin-12 (IL-12), monocyte chemoattractant protein-1 (MCP-1), vascular endothelial growth
factor (VEGF), growth-regulated alpha protein precursor (GRO↵), hepatocyte growth factor (HGF),
macrophage migration inhibitory factor (MIF), �-nerve growth factor (�-NGF), stem cell factor (SCF),
and stromal cell-derived factor 1-↵ (SDF-1↵). All of the factors were analyzed in both populations, but
b-NGF, SCF, and SDF-1↵ were not expressed in ASC. The symbol (*) indicates a significant difference
between the two stem cell populations, considering a p-value < 0.05.

Table 2. Bio-Plex quantification of factors produced by ASCs and SHED after 14 days of culturing
in GM and upon osteoinduction in OM. The evaluated factors are expressed in pg/mL and are:
interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), interleukin-12 (IL-12), monocyte
chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF), growth-regulated
alpha protein precursor (GRO↵), hepatocyte growth factor (HGF), macrophage migration inhibitory
factor (MIF), �-nerve growth factor (�-NGF), stem cell factor (SCF), and stromal cell-derived factor 1-↵
(SDF-1↵). Italic fonts of numbers indicate a significant difference between the two stem cell populations,
considering a p-value < 0.05.

Biomolecule
14 Days GM 14 Days OM

ASCs SHED ASCs SHED

Hu IL-6 173.07 125.29 3.02 5.04
Hu IL-8 108.70 192.72 4.95 11.10

Hu IL-10 7.24 6.95 0.62 0.39
Hu IL-12 12.41 12.73 0.01 0.01

Hu MCP-1 65.23 76.71 2.87 6.80
Hu VEGF 426.58 486.12 37.25 22.67
Hu GRO↵ 98.51 25.85 5.99 11.03
Hu HGF 1.43 83.51 0.10 79.66
Hu MIF 8.54 176.84 0.10 0.00

Hu �-NGF 0.10 8.87 0.17 1.45
Hu SCF 0.01 8.02 0.01 0.10

Hu SDF-1↵ 0.01 373.04 0.01 183.91
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3. Discussion

In recent years, great efforts have been made to improve bone regeneration techniques, owing not
only to the technological innovations in the field of material science, but also to a growing variety of
sources of stem cells for autologous transplants [8,28]. Among all the possible options, MSCs hold
great potential for bone tissue engineering [29]. In the present work, we focused our attention on ASCs
and SHED [17,20,21,30] respectively due to their abundance and their accepted bankability based on
cryopreservation [31]. Interestingly, we showed that ASCs and SHED display distinctive morphologies
when they adhere on plastic culture dishes, as it was portrayed even here (Figure 1A,B) through
immunofluorescent staining. The standard panel of markers used [27] qualified both cell types as
mesenchymal stem cells (Figure 1C,D).

Despite their common mesenchymal nature, ASCs and SHED derive from different tissues, and
the microenvironment in which these MSCs live may deeply affect their gene expression profile [32]
as well as their secretome. Thus, the purpose of this study was to evaluate and compare the effect of
osteodifferentiation on the biomolecular expression profile of ASCs and SHED. To accomplish this
task, a standard panel of growth factors, cytokines, and interleukins was evaluated (Figure 2), through
Bio-Plex assay [25]. This technique has multiple advantages over common ELISA kits, since it permits
a large number of molecules to be analyzed in the same sample and also allows reproducible and
comparable titration curves to be established [33,34].

We found that ASCs and SHED strongly differed in their basal expression of several biomolecules.
Important factors like HGF and SDF-1↵ were abundant in SHED but barely detectable in ASCs.
Cloned as a mitogenic protein for hepatocytes [35], HGF promotes morphogenesis and cell survival.
HGF was also proven to induce epithelial tubulogenesis/morphogenesis [36] and it has become a
promising candidate for treating patients with impaired tissue function [37]. As for SDF-1↵, it is
a strong chemoattractant for stem cells that has received growing attention as a means to recruit
endogenous progenitor cells possibly leading to regeneration in situ [38]. SCF, the ligand of the
tyrosine kinase receptor c-KIT, and �-NGF were more expressed by SHED than ASCs, but did not
reach high levels. These biomolecules might sustain trophic mechanisms and cooperate to allow for
the successful use of MSCs for musculoskeletal applications [39]. The pro-inflammatory cytokine
MIF was almost equally produced in both cell types. ASCs released higher levels of multifunctional
interleukins (IL-6, IL-8, IL-10, IL-12) and VEGF, the prototypical pro-angiogenic factor, than SHED,
whilst GRO↵ was scarce in SHED, but fairly represented in ASCs.

Surprisingly, very little information is available in the literature concerning secretome of ASCs
and SHED; indeed, it is quite rare to find reports where more than five cytokines/growth factors
are analyzed at the same time. Different works reported the release of high amounts of VEGF by
ASCs [40–42], similar to our result. Park et al. [43] examined the ASC secretion profile and its potential
usage in treating skin ageing. Moreover, through the usage of enzyme-linked immunosorbent assay
kits, these authors quantified HGF, which, in discord with our observation, resulted in the range of
670 pg/mL. The conspicuous production of HGF in SHED was instead described by Yamaguchi S et al.
as was the low amount released by ASCs used in comparison [26], results which are pretty consistently
in line with the outcome of our study (Figure 2).

Osteogenic condition inhibited cell proliferation, as it could be easily predicted, in accordance
with previous literature [44,45]. Likewise, the efficacy of the osteo-inductive condition adopted was
assessed with standard methods, which consistently confirmed that the in vitro differentiation sought
occurred properly. Interestingly, we found that ASCs increased their levels of IL-6, IL-8, and MCP,
while SHED augmented the release of IL-6, IL-8, GRO↵, MIF, and SDF1↵ when cells became confluent,
as it was clearly portrayed in the Bio-Plex analysis at 14 days (Figure 6A).

The secretion of paracrine factors has been pointed out as a major way to enhance the healing
process in numerous approaches based on ASCs [46,47] and SHED [48,49]. Based on these forms of
evidence, the effect elicited by osteoinduction on the biomolecular profile of ASCs and SHED becomes
of great interest. Osteogenic commitment tended to considerably downregulate the paracrine activity
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and thus the release of notably useful factors when compared to the baseline condition (shortly after
cell harvest). Quite relevantly, all the biomolecules decreased, with the only exception of GRO↵ and
IL-8 in osteoinduced SHED. GRO↵, also known as CXCL1, was described among the key angiogenic
chemokines [50], while the pro-angiogenic role of IL-8 has been acknowledged since the paramount
study by Koch and colleagues [51]. Owing to this pro-angiogenic cue, committed SHED could prove
useful to implement ex vivo bone regenerative Good Manufacturing Practice compliant protocols,
especially in the dental field.

4. Materials and Methods

4.1. Primary Cell Harvest and Culture

The primary human cells used in this study, adipose-derived stem cells (ASCs) and stem cells from
human exfoliated eciduous teeth (SHED), were obtained from human volunteers between 1 January
and 30 June 2013. The research was conducted following the protocols approved (in October 2012)
by the Ethics Committee of the Clinica Fornaca di Sessant (usage of lipoaspiration product, protocol
number EC20121008) and the CIR-Dental School of the University of Turin (harvest of deciduous
teeth, protocol number CIR20121022). Written informed consent was always obtained from donors.
As previously reported [17], ASCs were isolated and expanded from the lipoaspirates of ten different
donors (mean age 25.6 ± 4.5 years, male/female = 5/5) at the Clinica Fornaca di Sessant, Turin.
Following Miura’s protocol [20], SHED were extracted from integer exfoliated deciduous teeth that
were collected from ten children (9.2 ± 2.2 years) undergoing tooth extraction at the CIR-Dental
School. For both cell types, the non-adherent cell populations were removed after 48 h and the
adherent cell layer was washed twice with fresh medium. ASCs and SHED were maintained in growth
medium (GM) consisting of RPMI (EuroClone S.p.A., Milan, Italy) enriched with sodium pyruvate and
supplemented with 10% fetal bovine serum (Gibco BRL, Milan, Italy), penicillin-streptomycin 1:100, at
37 �C in humidified atmosphere with 5% CO2. Cells were then continuously cultured following their
harvest until fourth passage. To induce osteogenic differentiation, cells were cultured in “osteogenic
medium” (OM) by supplementing GM with 10 mM ß-glycerophosphate, 50 µg/mL ascorbic acid, and
0.02 mg/mL dexamethasone [52,53].

4.2. Cell Morphology

As described elsewhere [54–56], cells were seeded at a concentration of 5 ⇥ 103 cells/well in a
24-well plate for 1 day. After fixing in 4% paraformaldehyde in phosphate buffered saline (PBS), cells
were stained with rhodamine phalloidin and DAPI (Life Technologies, Milan, Italy) to mark actin
network and nuclei, respectively. Images were acquired with a Nikon Eclipse Ti-E microscope using
different a Nikon Plan 20X/0,10 (Nikon Instruments, Amsterdam, The Netherlands).

4.3. Phenotype of ASCs and SHED

Cell surface markers of ASCs and SHED were analyzed by flow cytometry. In detail, cells
were identified as CD105, CD44, CD73, and CD90 positive cells and negative for CD45 expression.
Standard labelling protocol was performed with the following antibodies fluorochrome-conjugated and
isotypic controls: human CD105 PE (Invitrogen, Camarillo, CA, USA), CD73 FITC (kindly provided by
Prof. Malavasi, University of Turin), CD44 FITC, CD45 PerCP, IgG1 PE and IgG2a PerCP (Miltenyi
Biotech, Bergisch Gladbach, Germany), and IgG1 FITC-conjugated (Immunostep). As further control,
unstained cells were also examined. About 105 events/sample were used for capture with CellQuest
software. Data were analyzed with FlowLogic software (Miltenyi Biotech).

4.4. Detection of Interleukins, Chemokines, and Growth Factors by Bio-Plex System

To quantify a panel of major signaling molecules released within their medium, ASCs and SHED
were kept in GM for 3 days until confluence to assess the baseline. Cells were also kept either in GM or
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in osteodifferentiating medium for 14 days. The conditioned media thus produced by ASC and SHED
after 2 hour starvation in RPMI were analyzed with the flexible Bio-Plex system (Bio-Rad Laboratories,
Hercules, CA, USA), following the manufacturer’s protocol, as described elsewhere [57,58]. At least
two independent experiments were made per sample. The concentrations of the following specific
biomolecules was measured: IL-6, IL-8, IL-10, IL-12, MCP-1, VEGF, GRO↵, HGF, MIF, �-NGF, SCF,
and SDF-1↵. Concentrations of the analytes are expressed in pg/mL.

4.5. Viability Assay

ASCs and SHED were plated at a density of 500 cells/well in 96-well culture dishes and the
viability was assessed by CellTiter-Glo® (Promega, Milan, Italy) according to the manufacturer’s
protocol at 1, 3, 7, and 14 days [59,60]. The CellTiter-Glo® Luminescent Cell Viability Assay is a
homogeneous method of determining the number of viable cells in culture based on quantitation of
ATP as a marker of metabolically active cells. The amount of ATP is directly proportional to the number
of viable cells in culture; for this reason, this assay can be used as an indicator of cell proliferation
(as reported by manufacturer).

4.6. RNA Extraction and Real-time PCR Analysis

Total RNA was extracted using PureLink RNA Mini Kit (Ambion, Life Technologies Italy, Milan,
Italy). For quantitative real-time polymerase chain reaction (qRT-PCR), 1 µg total RNA was transcribed
into complementary DNA by MultiScribe® Reverse Transcriptase (High-Capacity cDNA Reverse
Transcription Kit, Thermo Fisher Scientific, Waltham, MA, USA) and PCR analysis was then assessed
using TaqMan probes from Roche. Transcript abundance, normalized to 18s mRNA expression, is
expressed as a fold increase over a calibrator sample. qRT-PCR was performed on a 7900HT Fast
Real-Time PCR System (Applied Biosystems, Life Technologies Italy, Milan, Italy). Specific primers and
probes were designed using the Universal Probe Library—Assay Design Center—Roche Life Science
software (www.lifescience.roche.com) [61,62].

4.7. Alkaline Phosphatase Activity

Alkaline phosphatase activity (ALP) was determined colorimetrically as previously reported [63]
and assessed at day 7. Cells were lysed with 0.05% Triton X-100 and incubated with the reagent solution
containing phosphatase substrate (Sigma-Aldrich, Milan, Italy) at 37 �C for 15 min. A calibration curve
of p-nitrophenol standards was always used. Alkaline phosphatase values were determined (Optical
Density 405 nm) and normalized to the whole protein content, which was determined (Optical Density
562 nm) with a BCA™ Protein Assay (Thermo Fisher Scientific).

4.8. Osteocalcin Detection

Following the manufacturer’s protocol, osteocalcin (OCN) was measured in GM and OM media
by means of Osteocalcin Elisa kit (KAQ1381 Invitrogen Corporation, Waltham, MA, USA) at day 21.

4.9. Von Kossa Staining

ASCs and SHED were grown in six-plate wells until day 21 in OM. Cells were washed once with
PBS, then they were fixed with 4% paraformaldehyde for 10 min at room temperature prior to being
washed again with PBS. Calcium salts were stained after von Kossa (vK) as reported previously [64],
while representative pictures were captured under light microscopy by an Olympus camera.

4.10. Statistical Analysis

Data were analyzed by the use of GraphPad Prism6 (GraphPad Software, Inc., La Jolla, CA, USA)
and Microsoft Excel (Microsoft Corporation, Redmond, WA, USA). Each experiment was repeated at
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least three times. Statistical analysis was performed by using the Mann-Whitney non-parametric t-test.
A p-value of <0.05 was considered significant [65,66].

qRT-PCR data were analyzed with GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, CA,
USA) by performing ordinary two-way ANOVA with Sidak’s multiple comparisons test for grouped
analyses or Mann Whitney test for column analyses.

5. Conclusions

In summary, these data suggest that undifferentiated ASCs and SHED may be preferable
to committed ones for general cell therapy approaches, due to their higher paracrine activity.
Osteoinduction significantly affects the cytokine, chemokine, and growth factor profile in a differential
way, as SHED, differently from ASCs, developed a marked pro-angiogenic signature.
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IL-6 Interleukin-6
IL-8 Interleukin-8
IL-10 Interleukin-10
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GRO↵ Growth-regulated alpha protein precursor
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References

1. Zimmermann, G.; Moghaddam, A. Allograft bone matrix versus synthetic bone graft substitutes. Injury
2011, 42, S16–S21. [CrossRef] [PubMed]

2. Gómez-Barrena, E.; Rosset, P.; Müller, I.; Giordano, R.; Bunu, C.; Layrolle, P.; Konttinen, Y.T.; Luyten, F.P. Bone
regeneration: Stem cell therapies and clinical studies in orthopaedics and traumatology. J. Cell. Mol. Med.
2011, 15, 1266–1286. [CrossRef] [PubMed]

3. Lichte, P.; Pape, H.C.; Pufe, T.; Kobbe, P.; Fischer, H. Scaffolds for bone healing: Concepts, materials and
evidence. Injury 2011, 42, 569–573. [CrossRef] [PubMed]

4. Burchardt, H. Biology of bone transplantation. Orthop. Clin. N. Am. 1987, 18, 187–196.



Int. J. Mol. Sci. 2018, 19, 1454 13 of 16

5. Buser, Z.; Brodke, D.S.; Youssef, J.A.; Meisel, H.-J.; Myhre, S.L.; Hashimoto, R.; Park, J.-B.; Tim Yoon, S.;
Wang, J.C. Synthetic bone graft versus autograft or allograft for spinal fusion: A systematic review.
J. Neurosurg. Spine 2016, 25, 509–516. [CrossRef] [PubMed]

6. Schmitz, J.P.; Hollinger, J.O. The critical size defect as an experimental model for craniomandibulofacial
nonunions. Clin. Orthop. Relat. Res. 1986, 205, 299–308. [CrossRef]

7. Khaled, E.G.; Saleh, M.; Hindocha, S.; Griffin, M.; Khan, W.S. Tissue engineering for bone production- stem
cells, gene therapy and scaffolds. Open Orthop. J. 2011, 5 (Suppl. 2), 289–295. [CrossRef] [PubMed]

8. Derubeis, A.R.; Cancedda, R. Bone marrow stromal cells (BMSCs) in bone engineering: Limitations and
recent advances. Ann. Biomed. Eng. 2004, 32, 160–165. [CrossRef] [PubMed]

9. Gnecchi, M.; Melo, L.G. Bone Marrow-Derived Mesenchymal Stem Cells: Isolation, Expansion,
Characterization, Viral Transduction, and Production of Conditioned Medium. Methods Mol. Biol. 2009, 482,
281–294. [PubMed]

10. McElreavey, K.D.; Irvine, A.I.; Ennis, K.T.; McLean, W.H. Isolation, culture and characterisation of
fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem. Soc. Trans.
1991, 19, 29S. [CrossRef] [PubMed]

11. Gruber, H.E.; Deepe, R.; Hoelscher, G.L.; Ingram, J.A.; Norton, H.J.; Scannell, B.; Loeffler, B.J.; Zinchenko, N.;
Hanley, E.N.; Tapp, H. Human adipose-derived mesenchymal stem cells: Direction to a phenotype sharing
similarities with the disc, gene expression profiling, and coculture with human annulus cells. Tissue Eng.
Part A 2010, 16, 2843–2860. [CrossRef] [PubMed]

12. In ’t Anker, P.S.; Scherjon, S.A.; Kleijburg-van der Keur, C.; de Groot-Swings, G.M.J.S.; Claas, F.H.J.;
Fibbe, W.E.; Kanhai, H.H.H. Isolation of Mesenchymal Stem Cells of Fetal or Maternal Origin from Human
Placenta. Stem Cells 2004, 22, 1338–1345. [CrossRef] [PubMed]

13. Genova, T.; Munaron, L.; Carossa, S.; Mussano, F. Overcoming physical constraints in bone engineering: ‘the
importance of being vascularized’. J. Biomater. Appl. 2016, 30, 940–951. [CrossRef] [PubMed]

14. De Bari, C.; Dell’Accio, F.; Tylzanowski, P.; Luyten, F.P. Multipotent mesenchymal stem cells from adult
human synovial membrane. Arthritis Rheum. 2001, 44, 1928–1942. [CrossRef]

15. Ponnaiyan, D.; Bhat, K.M.; Bhat, G.S. Comparison of Immuno-Phenotypes of Stem Cells from Human Dental
Pulp and Periodontal Ligament. Int. J. Immunopathol. Pharmacol. 2012, 25, 127–134. [CrossRef] [PubMed]

16. Estrela, C.; de Alencar, A.H.G.; Kitten, G.T.; Vencio, E.F.; Gava, E. Mesenchymal stem cells in the dental
tissues: Perspectives for tissue regeneration. Braz. Dent. J. 2011, 22, 91–98. [CrossRef] [PubMed]

17. Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H.
Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Eng. 2001, 7,
211–228. [CrossRef] [PubMed]

18. Bourin, P.; Bunnell, B.A.; Casteilla, L.; Dominici, M.; Katz, A.J.; March, K.L.; Redl, H.; Rubin, J.P.;
Yoshimura, K.; Gimble, J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and
culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation
for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT).
Cytotherapy 2013, 15, 641–648. [CrossRef] [PubMed]

19. Uzbas, F.; May, I.D.; Parisi, A.M.; Thompson, S.K.; Kaya, A.; Perkins, A.D.; Memili, E. Molecular
Physiognomies and Applications of Adipose-Derived Stem Cells. Stem Cell Rev. Rep. 2015, 11, 298–308.
[CrossRef] [PubMed]

20. Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Robey, P.G.; Shi, S. SHED: Stem cells from human
exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 2003, 100, 5807–5812. [CrossRef] [PubMed]

21. De Mendonca Costa, A.; Bueno, D.F.; Martins, M.T.; Kerkis, I.; Kerkis, A.; Fanganiello, R.D.; Cerruti, H.;
Alonso, N.; Passos-Bueno, M.R. Reconstruction of large cranial defects in nonimmunosuppressed
experimental design with human dental pulp stem cells. J. Craniofac. Surg. 2008, 19, 204–210. [CrossRef]
[PubMed]

22. Ma, L.; Makino, Y.; Yamaza, H.; Akiyama, K.; Hoshino, Y.; Song, G.; Kukita, T.; Nonaka, K.; Shi, S.; Yamaza, T.
Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for
Regenerative Medicine. PLoS ONE 2012, 7, e51777. [CrossRef] [PubMed]

23. Leyendecker Junior, A.; Gomes Pinheiro, C.C.; Lazzaretti Fernandes, T.; Franco Bueno, D. The use of human
dental pulp stem cells for in vivo bone tissue engineering: A systematic review. J. Tissue Eng. 2018, 9,
204173141775276. [CrossRef] [PubMed]



Int. J. Mol. Sci. 2018, 19, 1454 14 of 16

24. Yorukoglu, A.C.; Kiter, A.E.; Akkaya, S.; Satiroglu-Tufan, N.L.; Tufan, A.C. A Concise Review on the Use
of Mesenchymal Stem Cells in Cell Sheet-Based Tissue Engineering with Special Emphasis on Bone Tissue
Regeneration. Stem Cells Int. 2017, 2017, 1–13. [CrossRef] [PubMed]

25. Mussano, F.; Genova, T.; Corsalini, M.; Schierano, G.; Pettini, F.; di Venere, D.; Carossa, S. Cytokine,
Chemokine, and Growth Factor Profile Characterization of Undifferentiated and Osteoinduced Human
Adipose-Derived Stem Cells. Stem Cells Int. 2017, 2017, 1–11. [CrossRef] [PubMed]

26. Yamaguchi, S.; Shibata, R.; Yamamoto, N.; Nishikawa, M.; Hibi, H.; Tanigawa, T.; Ueda, M.; Murohara, T.;
Yamamoto, A. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following
ischemia-reperfusion. Sci. Rep. 2015, 5, 16295. [CrossRef] [PubMed]

27. Roato, I.; Alotto, D.; Belisario, D.C.; Casarin, S.; Fumagalli, M.; Cambieri, I.; Piana, R.; Stella, M.;
Ferracini, R.; Castagnoli, C. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features
for Orthopaedic Reparative Applications: Banking of Adipose Tissue. Stem Cells Int. 2016, 2016, 1–11.
[CrossRef] [PubMed]

28. Correia, S.I.; Pereira, H.; Silva-Correia, J.; Van Dijk, C.N.; Espregueira-Mendes, J.; Oliveira, J.M.; Reis, R.L.
Current concepts: Tissue engineering and regenerative medicine applications in the ankle joint. J. R.
Soc. Interface 2014, 11, 20130784. [CrossRef] [PubMed]

29. Samsonraj, R.M.; Raghunath, M.; Nurcombe, V.; Hui, J.H.; van Wijnen, A.J.; Cool, S.M. Concise Review:
Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine.
Stem Cells Transl. Med. 2017. [CrossRef] [PubMed]

30. Gimble, J.M.; Katz, A.J.; Bunnell, B.A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 2007,
100, 1249–1260. [CrossRef] [PubMed]

31. Lendeckel, S.; Jödicke, A.; Christophis, P.; Heidinger, K.; Wolff, J.; Fraser, J.K.; Hedrick, M.H.; Berthold, L.;
Howaldt, H.-P. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial
defects: Case report. J. Cranio-Maxillofac. Surg. 2004, 32, 370–373. [CrossRef] [PubMed]

32. Kobolak, J.; Dinnyes, A.; Memic, A.; Khademhosseini, A.; Mobasheri, A. Mesenchymal stem cells:
Identification, phenotypic characterization, biological properties and potential for regenerative medicine
through biomaterial micro-engineering of their niche. Methods 2016, 99, 62–68. [CrossRef] [PubMed]

33. DuPont, N.C.; Wang, K.; Wadhwa, P.D.; Culhane, J.F.; Nelson, E.L. Validation and comparison of luminex
multiplex cytokine analysis kits with ELISA: Determinations of a panel of nine cytokines in clinical sample
culture supernatants. J. Reprod. Immunol. 2005, 66, 175–191. [CrossRef] [PubMed]

34. Mussano, F.; Genova, T.; Munaron, L.; Petrillo, S.; Erovigni, F.; Carossa, S. Cytokine, chemokine, and growth
factor profile of platelet-rich plasma. Platelets 2016, 27, 467–471. [CrossRef] [PubMed]

35. Nakamura, T.; Nishizawa, T.; Hagiya, M.; Seki, T.; Shimonishi, M.; Sugimura, A.; Tashiro, K.; Shimizu, S.
Molecular cloning and expression of human hepatocyte growth factor. Nature 1989, 342, 440–443. [CrossRef]
[PubMed]

36. Montesano, R.; Matsumoto, K.; Nakamura, T.; Orci, L. Identification of a fibroblast-derived epithelial
morphogen as hepatocyte growth factor. Cell 1991, 67, 901–908. [CrossRef]

37. Nakamura, T.; Sakai, K.; Nakamura, T.; Matsumoto, K. Hepatocyte growth factor twenty years on: Much
more than a growth factor. J. Gastroenterol. Hepatol. 2011, 26, 188–202. [CrossRef] [PubMed]

38. Lau, T.T.; Wang, D.-A. Stromal cell-derived factor-1 (SDF-1): Homing factor for engineered regenerative
medicine. Expert Opin. Biol. Ther. 2011, 11, 189–197. [CrossRef] [PubMed]

39. Hofer, H.R.; Tuan, R.S. Secreted trophic factors of mesenchymal stem cells support neurovascular and
musculoskeletal therapies. Stem Cell Res. Ther. 2016, 7, 131. [CrossRef] [PubMed]

40. Dufrane, D. Impact of Age on Human Adipose Stem Cells for Bone Tissue Engineering. Cell Transplant. 2017,
26, 1496–1504. [CrossRef] [PubMed]

41. Siegel, K.R.; Clevenger, T.N.; Clegg, D.O.; Proctor, D.A.; Proctor, C.S. Adipose Stem Cells Incorporated in
Fibrin Clot Modulate Expression of Growth Factors. Arthrosc. J. Arthrosc. Relat. Surg. 2017, 34, 581–591.
[CrossRef] [PubMed]

42. Murohara, T.; Shintani, S.; Kondo, K. Autologous adipose-derived regenerative cells for therapeutic
angiogenesis. Curr. Pharm. Des. 2009, 15, 2784–2790. [CrossRef] [PubMed]

43. Park, B.S.; Jang, K.A.; Sung, J.H.; Park, J.S.; Kwon, Y.H.; Kim, K.J.; Kim, W.S. Adipose-derived stem cells and
their secretory factors as a promising therapy for skin aging. Dermatol. Surg. 2008, 34, 1323–1326. [CrossRef]
[PubMed]



Int. J. Mol. Sci. 2018, 19, 1454 15 of 16

44. Walsh, K.; Perlman, H. Cell cycle exit upon myogenic differentiation. Curr. Opin. Genet. Dev. 1997, 7, 597–602.
[CrossRef]

45. Buttitta, L.A.; Edgar, B.A. Mechanisms controlling cell cycle exit upon terminal differentiation. Curr. Opin.
Cell Biol. 2007, 19, 697–704. [CrossRef] [PubMed]

46. Waters, R.; Alam, P.; Pacelli, S.; Chakravarti, A.R.; Ahmed, R.P.H.; Paul, A. Stem cell-inspired secretome-rich
injectable hydrogel to repair injured cardiac tissue. Acta Biomater. 2017, 69, 95–106. [CrossRef] [PubMed]

47. Denkovskij, J.; Bagdonas, E.; Kusleviciute, I.; Mackiewicz, Z.; Unguryte, A.; Porvaneckas, N.; Fleury, S.;
Venalis, A.; Jorgensen, C.; Bernotiene, E. Paracrine Potential of the Human Adipose Tissue-Derived Stem
Cells to Modulate Balance between Matrix Metalloproteinases and Their Inhibitors in the Osteoarthritic
Cartilage In Vitro. Stem Cells Int. 2017, 2017, 1–13. [CrossRef] [PubMed]

48. Matsushita, Y.; Ishigami, M.; Matsubara, K.; Kondo, M.; Wakayama, H.; Goto, H.; Ueda, M.; Yamamoto, A.
Multifaceted therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth
for acute liver failure in rats. J. Tissue Eng. Regen. Med. 2015, 11. [CrossRef] [PubMed]

49. Wakayama, H.; Hashimoto, N.; Matsushita, Y.; Matsubara, K.; Yamamoto, N.; Hasegawa, Y.; Ueda, M.;
Yamamoto, A. Factors secreted from dental pulp stem cells show multifaceted benefits for treating acute
lung injury in mice. Cytotherapy 2015, 17, 1119–1129. [CrossRef] [PubMed]

50. Hristov, M.; Zernecke, A.; Liehn, E.A.; Weber, C. Regulation of endothelial progenitor cell homing after
arterial injury. Thromb. Haemost. 2007, 98, 274–277. [CrossRef] [PubMed]

51. Koch, A.E.; Polverini, P.J.; Kunkel, S.L.; Harlow, L.A.; DiPietro, L.A.; Elner, V.M.; Elner, S.G.; Strieter, R.M.
Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 1992, 258, 1798–1801. [CrossRef]
[PubMed]

52. Mussano, F.; Genova, T.; Verga Falzacappa, E.; Scopece, P.; Munaron, L.; Rivolo, P.; Mandracci, P.;
Benedetti, A.; Carossa, S.; Patelli, A. In vitro characterization of two different atmospheric plasma jet
chemical functionalizations of titanium surfaces. Appl. Surf. Sci. 2017, 409, 314–324. [CrossRef]

53. Mussano, F.; Genova, T.; Rivolo, P.; Mandracci, P.; Munaron, L.; Faga, M.G.; Carossa, S. Role of surface
finishing on the in vitro biological properties of a silicon nitride–titanium nitride (Si3N4–TiN) composite.
J. Mater. Sci. 2017, 52, 467–477. [CrossRef]

54. Canullo, L.; Genova, T.; Mandracci, P.; Mussano, F.; Abundo, R.; Fiorellini, J. Morphometric Changes Induced
by Cold Argon Plasma Treatment on Osteoblasts Grown on Different Dental Implant Surfaces. Int. J.
Periodontics Restor. Dent. 2017, 37, 541–548. [CrossRef] [PubMed]

55. Genova, T.; Grolez, G.P.; Camillo, C.; Bernardini, M.; Bokhobza, A.; Richard, E.; Scianna, M.; Lemonnier, L.;
Valdembri, D.; Munaron, L.; et al. TRPM8 inhibits endothelial cell migration via a non-channel function by
trapping the small GTPase Rap1. J. Cell Biol. 2017, 216, 2107–2130. [CrossRef] [PubMed]

56. Fiorio Pla, A.; Genova, T.; Pupo, E.; Tomatis, C.; Genazzani, A.; Zaninetti, R.; Munaron, L. Multiple Roles of
Protein Kinase A in Arachidonic Acid-Mediated Ca2+ Entry and Tumor-Derived Human Endothelial Cell
Migration. Mol. Cancer Res. 2010, 8, 1466–1476. [CrossRef] [PubMed]

57. Sacerdote, P.; Mussano, F.; Franchi, S.; Panerai, A.E.; Bussolati, G.; Carossa, S.; Bartorelli, A.; Bussolati, B.
Biological components in a standardized derivative of bovine colostrum. J. Dairy Sci. 2013, 96, 1745–1754.
[CrossRef] [PubMed]

58. Vallée, A.; Faga, M.G.; Mussano, F.; Catalano, F.; Tolosano, E.; Carossa, S.; Altruda, F.; Martra, G.
Alumina-zirconia composites functionalized with laminin-1 and laminin-5 for dentistry: Effect of protein
adsorption on cellular response. Colloids Surf. B Biointerfaces 2014, 114, 284–293. [CrossRef] [PubMed]

59. Munaron, L.; Genova, T.; Avanzato, D.; Antoniotti, S.; Fiorio Pla, A. Targeting calcium channels to block
tumor vascularization. Recent Pat. Anticancer Drug Discov. 2013, 8, 27–37. [CrossRef] [PubMed]

60. Mussano, F.; Genova, T.; Laurenti, M.; Zicola, E.; Munaron, L.; Rivolo, P.; Mandracci, P.C.S. Early response of
fibroblasts and epithelial cells to pink-shaded anodized dental implant abutments: An in vitro study. Int. J.
Oral Maxillofac. Implants 2018, in press.

61. Petrillo, S.; Chiabrando, D.; Genova, T.; Fiorito, V.; Ingoglia, G.; Vinchi, F.; Mussano, F.; Carossa, S.; Silengo, L.;
Altruda, F.; et al. Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis.
Cell Death Differ. 2017, 1. [CrossRef] [PubMed]

62. Schierano, G.; Mussano, F.; Faga, M.G.; Menicucci, G.; Manzella, C.; Sabione, C.; Genova, T.;
von Degerfeld, M.M.; Peirone, B.; Cassenti, A.; et al. An Alumina Toughened Zirconia Composite for
Dental Implant Application: In Vivo Animal Results. Biomed. Res. Int. 2015, 2015. [CrossRef] [PubMed]



Int. J. Mol. Sci. 2018, 19, 1454 16 of 16

63. Roato, I.; Belisario, D.C.; Compagno, M.; Verderio, L.; Sighinolfi, A.; Mussano, F.; Genova, T.; Veneziano, F.;
Pertici, G.; Perale, G.; et al. Adipose-derived stromal vascular fraction/xenohybrid bone scaffold:
An alternative source for bone regeneration. Stem Cells Int. 2018, 2018. [CrossRef]

64. Yang, R.; Davies, C.M.; Archer, C.W.; Richards, R.G. Immunohistochemistry of matrix markers in Technovit
9100 New-embedded undecalcified bone sections. Eur. Cells Mater. 2003, 6, 57–71. [CrossRef]

65. Canullo, L.; Genova, T.; Tallarico, M.; Gautier, G.; Mussano, F.; Botticelli, D. Plasma of Argon Affects the
Earliest Biological Response of Different Implant Surfaces. J. Dent. Res. 2016, 95, 566–573. [CrossRef]
[PubMed]

66. Fiorio Pla, A.; Brossa, A.; Bernardini, M.; Genova, T.; Grolez, G.; Villers, A.; Leroy, X.; Prevarskaya, N.;
Gkika, D.; Bussolati, B. Differential sensitivity of prostate tumor derived endothelial cells to sorafenib and
sunitinib. BMC Cancer 2014, 14, 939. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


