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Heart failure (HF) and cancer represent two major causes of 

morbidity and mortality in developed countries.1,2 The prevalence 

of these conditions is growing as the age of the population and 

the burden of shared risk factors, such as diabetes and obesity, 

are constantly increasing. In past decades, the field of cardio-

oncology has predominantly focused on prevention and treatment 

of cardiovascular disease in cancer survivors, who are particularly 

prone to developing HF as a result of the cardiotoxicity of many 

antineoplastic agents and the clustering of cardiovascular risk factors 

in oncological patients.3 

The co-occurrence of cancer and HF represents a major clinical 

problem, because each disease impinges on the treatment of the other 

disease, and consequently, has a detrimental impact on quality of life 

and survival.4,5 In this scenario, the interaction between cardiologists 

and oncologists is indispensable to ensure optimal management of 

patients affected by both conditions.4 In recent years, a previously 

unappreciated connection between cancer and cardiovascular disease 

emerged from epidemiological studies reporting an increased risk of 

incident cancer in HF patients.6–9 Although the cause of this association 

is not yet resolved, it has been proposed that HF might represent 

a cancer-predisposing condition.9–11 Another intriguing possibility is 

that the co-occurrence of HF and cancer is promoted by a common 

pathological milieu characterised by a state of chronic low-grade 

inflammation, which predisposes to both diseases.10

In this review, we provide an overview of the mechanisms underlying 

the bidirectional relationship between HF and cancer (Figure 1). 

Whereas pathways driving the increased risk of cardiovascular disease 

in cancer patients have been the subject of intense investigation, 

mechanistic links driving the increased risk of malignancy in HF 

patients have not been elucidated so far. In this respect, we outline 

below two non-mutually exclusive hypotheses that should be 

addressed by future preclinical and clinical studies. 

Incident Heart Failure in Cancer 
Advances in the treatment of cancer have reduced the morbidity 

and mortality associated with many types of neoplasms.  

However, oncological therapies, including chemotherapy, 

radiotherapy, and newer-generation targeted therapies, may have 

toxic effects on the heart (Figure 2), up to causing HF either 

acutely, e.g. by causing acute coronary syndromes or myocarditis-

like syndromes, or chronically, by directly impacting on cardiac 

myocyte function.12 Because of the substantial improvements in 

the management of most types of cancer, these complications may 

have a major impact on the prognosis of patients with malignancy; 
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in fact, they may become the primary clinical problem when cancer 

is stably controlled or cured.13 

A far less common cause of HF in cancer patients is the secretion 

of cardiotoxic substances, such as light-chain immunoglobulins or 

vasoactive mediators associated with monoclonal B-cell proliferation 

and neuroendocrine tumours (NETs), respectively.

Chemotherapy- and Radiotherapy-induced Heart 
Failure
Anthracyclines, a class of chemotherapeutic agents commonly used 

for the treatment of solid and haematologic malignancies, were 

the first antineoplastic drugs for which a cardiotoxic effect was 

recognised.14 Anthracycline cardiotoxicity may manifest as HF with 

acute or subacute onset, but may also lead to subclinical left ventricular 

dysfunction insidiously progressing to HF over the course of several 

years after exposure to the drug.15 The incidence of anthracycline-

related cardiac dysfunction is dose-dependent, and ranges from 5% 

at a cumulative dose of 400 mg/m2 to 26% for 550 mg/m2.16 However, 

a subclinical decrease in systolic function has also been reported for 

lower doses in survivors of acute lymphoblastic leukaemia.17 

The antiproliferative effect of anthracyclines stems from their 

ability to intercalate into nuclear DNA and block topoisomerase 2 

activity, consequently inhibiting DNA replication and transcription. 

Furthermore, these agents cause damage to cellular components 

by forming complexes with iron and thereby inducing production 

of reactive oxygen species (ROS). Preclinical studies indicated that 

oxidative stress might represent the dominant driver of anthracyclines 

cardiotoxicity, but ROS scavengers failed to prevent doxorubicin-

induced cardiomyopathy in humans.12,18 Moreover, iron chelating 

agents did not show any cardioprotective effect in a rat model of 

anthracycline toxicity.19 A recent experimental study demonstrated 

that cardiac topoisomerase is a key mediator of doxorubicin-

induced cardiotoxicity, possibly accounting for the lack of efficacy 

of antioxidant agents in this setting. In fact, doxorubicin triggers 

apoptosis and transcriptomic remodelling in a topoisomerase-

dependent manner, ultimately impacting on oxidative phosphorylation 

and mitochondrial biogenesis.20 

Overall, in spite of a large body of preclinical research addressing 

the mechanisms of anthracyclines cardiotoxicity, pharmacological 

approaches aimed at alleviating this important side-effect are limited 

to a single agent, dexrazoxane, which achieves its cardioprotective 

activity via topoisomerase inhibition.21 Recently, inhibition of the 

multifunctional kinase, phosphoinositide 3-kinase gamma, was 

shown to enhance removal of damaged mitochondria in a mouse 

model of doxorubicin-induced HF, pinpointing a potential therapeutic 

strategy to protect the heart against anthracyclines toxicity.22

Since the discovery of anthracyclines-related cardiotoxicity, many other 

chemotherapeutic agents have been associated with the development 

of cardiomyopathy. Alkylating agents, such as cyclophosphamide 

and ifosfamide, inhibit cell proliferation by inducing DNA damage. 

Cardiotoxicity associated with these drugs manifests predominantly 

as conduction disorders and pericarditis, and high-dose regimens can 

lead to myocarditis and HF.23,24 Experimental evidence suggests that 

alkylating agents cause endothelial and myocyte damage secondary 

to the accumulation of toxic metabolites.25 Antimetabolites, such as 

5-fluorouracil and its pro-drug capecitabine, achieve their cardiotoxic 

effects mainly by triggering coronary artery vasospasm,12 but preclinical 

studies indicate that these agents might also be directly toxic to 

endothelial cells and cardiac myocytes by triggering ROS production 

and inducing mitochondrial dysfunction.26,27

Radiation therapy represents a standard approach for breast cancer 

treatment, and often involves the exposure of the heart to high 

radiation doses. Pericardial fibrosis is the most common radiotherapy-

related lesion, but radiation therapy also damages the myocardium.28 

Indeed, although cardiac myocytes are non-proliferating cells, and thus 

relatively resistant to radiation damage, emerging evidence indicates 

that chest irradiation can also lead to cardiomyopathy, and preclinical 

studies pinpointed ROS production with subsequent activation of Ca2+/

calmodulin-dependent protein kinase II as a key mediator of radiation 

damage to cardiac myocytes.29 

In contrast to cardiac myocytes, endothelial cells are continuously 

proliferating, and thereby more susceptible to radiation damage. 

Preclinical studies indicate that the primary lesion associated with 

radiation therapy is endothelial apoptosis, which might account for 

the clinical observation of accelerated atherosclerosis in patients 

receiving radiation therapy to the chest.30,31 In fact, cardiac radiation 

dose correlates with the subsequent risk of ischaemic heart disease in 

breast cancer patients, and even low levels of exposure heighten the 

risk of coronary events.32 Furthermore, a recent study observed that 

radiation therapy in breast cancer patients leads to a dose-dependent 

increase in the relative risk of HF with preserved ejection fraction 

(HFpEF).33 The latter observation corroborates the model according to 

which microvascular endothelial dysfunction represents a key factor in 

the pathogenesis of HFpEF.34 

Antineoplastic Targeted Therapy-induced Heart Failure 
Trastuzumab is a humanised monoclonal antibody targeting the 

human epidermal growth factor receptor (HER)2, a member of the 

ErbB family of receptors, which is overexpressed in a subset of 

breast cancer patients.35 Trastuzumab was initially approved as a 

first-line treatment for metastatic breast cancer, and is currently 

indicated for the treatment of HER2-positive breast and gastric 

cancer. The addition of trastuzumab to adjuvant therapy for breast 

cancer resulted in asymptomatic left ventricular dysfunction or 

overt HF in up to 18% and 4% of treated patients, respectively.36,37 

The observation of trastuzumab cardiotoxicity led scientists to 

Figure 1: Mechanisms Underlying the Bidirectional 
Relationship Between Heart Failure and Cancer
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interrogate the function of HER2 signalling in preclinical models 

of cardiac disease, revealing that this pathway plays an important 

homeostatic role,38 and is activated in response to cardiac injury; for 

example, following ischaemia, pressure overload, and anthracycline 

toxicity (reviewed by De Keulenaer et al.39). Therefore, HER2 inhibition 

does not cause myocardial damage directly, but rather, blocks an 

important adaptive signalling pathway and thereby renders the heart 

more susceptible to pathological stressors. Accordingly, trastuzumab-

induced cardiac dysfunction is usually completely reversible 4–6 

weeks after discontinuation of the drug. However, for reasons yet to 

be fully elucidated, cardiac function is irreversibly compromised in a 

minority of patients treated with trastuzumab.36 

Vascular endothelial growth factor (VEGF) is a key regulator of 

angiogenesis, the process of new blood vessel formation that sustains 

tumour growth when its enlargement precludes diffusion of nutrients 

and oxygen from pre-existing vessels.40 VEGF signalling has become 

the target of several antineoplastic agents, such as the humanised 

antibody bevacizumab and the tyrosine kinase inhibitors (TKI) sunitinib 

and sorafenib. Drugs targeting VEGF signalling have been linked to a 

wide spectrum of cardiovascular side-effects, such as hypertension, 

thromboembolism, and cardiomyopathy.41,42 In patients treated 

with anthracyclines for breast cancer, concurrent treatment with 

bevacizumab increased HF incidence from 4% to 14%.43 Experimental 

evidence indicates that the effects of agents inhibiting VEGF signalling 

on blood pressure and thromboembolic risk might be mediated by 

decreased production of two vasodilators, nitric oxide and prostacyclin, 

and increased production of the potent vasoconstrictor, endothelin-1, 

whose circulating levels were found elevated in patients treated 

with sunitinib.44–46 Sunitinib and sorafenib are only two examples of 

small-molecule TKI for which cardiotoxic effects were recognised. 

The number of TKI approved for cancer treatment is steadily growing, 

and cardiovascular side-effects have been reported for many of 

these drugs, such as the ABL inhibitors dasatinib and nilotinib or 

the multi-kinase inhibitor regorafenib.47 Although the incidence of 

cardiovascular side-effects with these drugs is relatively low, the  

underlying mechanisms need to be further clarified to improve the 

safety of TKI currently under development. 

Finally, cardiotoxic effects have also been associated with proteasome 

inhibitors, a class of antineoplastic agents used in the treatment 

of multiple myeloma and other hematologic malignancies. The first 

approved agent of this class, bortezomib, might cause HF in up to 4% 

of treated patients, and the second-generation proteasome inhibitor, 

carfilzomib, is associated with an even higher cardiotoxicity, with 

an incidence of cardiovascular adverse events of 18% according to 

a recent meta-analysis.48,49 The ubiquitin–proteasome system plays 

an important adaptive role in the myocardium, and its inhibition is 

sufficient to cause cardiac dysfunction in pigs.50 Therefore, cardiotoxicity 

associated with proteasome inhibitors is likely directly related to their 

mechanism of action.

Cancer-related Heart Failure 
HF can also be the consequence of two rare cardiomyopathies, i.e. 

light-chain amyloidosis and carcinoid heart disease (Figure 2), although 

this happens more rarely than following oncological treatments.

Amyloidosis is a disorder characterised by extracellular deposition of 

a proteinaceous material, coined as amyloid, derived from misfolding 

of a variety of precursor proteins.51 Amyloidosis is a systemic disorder 

and can affect several organs, but amyloid involvement of the 

heart portends by far the worst prognosis of any other type of 

organ involvement. Cardiac amyloidosis involves both myocardium 

and cardiac valves, and manifests as restrictive cardiomyopathy 

inexorably progressing to overt HF (reviewed by Falk et al.52 and Gertz 

et al.53). Amyloid light-chain (AL) amyloidosis, which is secondary 

Figure 2: Mechanisms Underlying Incident HF in Cancer
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to overproduction of immunoglobulin light chain by plasma cell 

malignancies, is the most severe form of the disease, with a median 

survival of 6 months from HF onset if the underlying dyscrasia is left 

untreated.54 Cardiac AL amyloidosis leads to a more severe form of 

HF despite a lower degree of cardiac hypertrophy, suggesting that AL 

amyloid protein might have direct toxic effects on cardiac myocytes.55 

Preclinical studies indicate that oxidative stress might represent a 

dominant driver of AL amyloid cardiotoxic activity.56 Treatment of 

cardiac AL amyloidosis is currently limited to optimal management of 

HF and the underlying amyloidogenic malignancy, whereas therapeutic 

approaches directly targeting AL deposition in the myocardium are not 

currently available in the clinical setting.52 

A rare form of cancer-related cardiac involvement is carcinoid heart 

disease, which is caused by NETs releasing vasoactive mediators, such 

as serotonin, bradykinin, and histamine. NETs are rare neoplasms arising 

from enterochromaffin cells of the gastrointestinal or respiratory tract. 

Because the mediators released by NETs are efficiently inactivated 

in the liver and the pulmonary vasculature, carcinoid heart disease 

usually arises from gastrointestinal NET upon their metastasisation 

to the liver and predominantly affects the right ventricle, whereas 

left ventricular involvement is observed in 5–10% of cases and is 

usually associated with bronchial carcinoids.57,58 The typical feature 

of carcinoid heart disease is the formation of endomyocardial fibrotic 

plaques, ultimately leading to right-sided HF. Furthermore, fibrotic 

remodelling often also involves the tricuspid valve, causing valvular 

regurgitation, which contributes to right ventricular decompensation. 

Medical therapy for carcinoid syndrome is limited to symptomatic relief 

with somatostatin analogues, which are ineffective toward myocardial 

and valvular involvement.59

While AL amyloidosis and carcinoid heart disease are the only forms of 

cancer-elicited HF observed in the clinical arena so far, experimental 

work suggests that other malignancies might affect cardiac function 

via the release of cardiotoxic oncometabolites. Mutations of the Krebs 

cycle enzyme, isocitrate dehydrogenase, have been identified in a 

subset of patients with myeloid leukaemia. In rats, this mutation leads 

to accumulation and release of D-2-hydroxyglutarate from malignant 

cells, and this oncometabolite impairs cardiac Krebs cycle activity and 

contractile function.60 

Incident Cancer in Heart Failure
Recent epidemiological studies revealed that HF patients carry a 

higher risk of incident cancer compared with individuals without 

HF, drawing attention toward another potential link between HF and 

cancer. This finding was first reported in a community-based case–

control study, and subsequently confirmed in a large prospective 

study based on the Danish national registries.6,7 Furthermore, a 

prospective cohort study demonstrated that patients developing 

HF following acute MI have an increased risk of incident cancer 

compared with those who do not develop HF after MI.8 This 

association might be accounted for by a detection bias due to 

intensified medical observation following HF diagnosis. However, 

the increased risk of incident cancer was observed after the second 

year after HF diagnosis, and the association persisted after excluding 

cancer diagnoses made in the first years of follow-up.

 Furthermore, cancer and HF share several risk factors, such as 

diabetes and obesity, which might partly explain the association 

between HF and increased risk of malignancy. In the above-

mentioned studies, however, the likelihood of receiving a diagnosis 

of cancer remained higher in HF patients after adjusting for shared 

risk factor. Another possibility is that the increased risk of incident 

cancer is driven by a pro-oncogenic effect of HF medications, but 

recent meta-analyses addressing this issue do not support this 

concept.61 On these grounds, the present authors and other authors 

have put forward two non-mutually exclusive hypotheses on how 

HF might lead to an increased risk of cancer, which are discussed in 

detail below.9,10

A third potential mechanism was recently elucidated in a preclinical 

study that demonstrated that ischemic HF enhances tumour growth 

via release of mitogenic factors by the failing myocardium.11 In that 

study, MI was induced in mice via coronary artery ligation, and 

infarcted hearts were transplanted in the cervical region of APCmin mice, 

which are genetically predisposed to develop colorectal neoplasms. 

Intriguingly, mice transplanted with an infarcted heart developed a 

higher tumour burden compared with mice receiving a sham-operated 

heart. Because recipient mice retained their native healthy hearts, the 

increase in tumour load could not be attributed to haemodynamic 

impairment related to HF, but was shown to depend on the mitogenic 

protein, serpinA3, secreted by the failing myocardium. The translational 

relevance of this mechanism is underscored by the observation that 

circulating levels of serpinA3 are increased in chronic HF patients.11 

Overall, the results of that study strongly support the concept that a 

diagnosis of HF represents a risk factor for incident cancer.

The Neurohormonal Hypothesis 
Hyperactivation of the sympathetic nervous system (SNS) and 

renin–angiotensin–aldosterone system (RAAS) is a hallmark of HF 

with reduced ejection fraction (HFrEF), and substantially contributes 

to episodes of decompensation as well as to cardiac death. 

Indeed, medical therapy of HFrEF currently relies on neurohormonal 

inhibitors: blockers of the beta-adrenergic receptors (AR), through 

which the catecholamines epinephrine and norepinephrine transmit 

SNS signals; inhibitors of the angiotensin-converting enzyme that 

synthesises angiotensin II (AngII); and antagonists of the AngII or 

aldosterone receptor.62 

The hypothesis that neurohormonal activation may also account for 

the increased risk of cancer observed in HF finds its background 

in a large body of experimental data demonstrating that SNS and 

RAAS activation promote cancer progression and dissemination 

via multiple mechanisms. The pro-oncogenic effects of the SNS are 

predominantly mediated by beta-AR expressed by both cancer cells 

and, more importantly, non-malignant cells constituting the tumour 

microenvironment. Specifically, beta-AR signalling was demonstrated 

to favour tumour growth, induce formation of blood and lymphatic 

vessels, and promote remodelling of the extracellular matrix, ultimately 

leading to tissue invasion and metastatic dissemination in vivo.63 

Similarly, AngII promotes tumour vascularisation and invasiveness via 

type 1 AngII receptors.64 

An important caveat is that, although SNS and RAAS activation has 

also been described in HFpEF patients, the latter do not benefit from 

treatment with beta-AR blockers and RAAS inhibitors, indicating 

that the role of neurohormonal activation in the progression of 

HFpEF is not as relevant as in HFrEF.65,66 Two of the epidemiological 

studies discussed above included a substantial proportion of HFpEF 

patients, and cancer incidence was independent of left ventricular 
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ejection fraction.6,9 Because neurohormonal hyperactivation might 

not account for the higher incidence of cancer observed in HFpEF, we 

hypothesise that other factors are involved in this subset of patients.

The ‘Inflammatory Milieu’ Hypothesis
Independent of its aetiology, HF is associated with an increase 

in circulating and intramyocardial levels of pro-inflammatory 

cytokines, such as tumour necrosis factor-alpha, interleukin-1, and 

interleukin-6.67–70 Inflammation is pivotal to the pathogenesis of 

atherosclerosis, which underlies the development of ischemic heart 

disease, the most common cause of HF.71 In turn, myocardial injury 

triggers immune system activation, inducing cytokine release, and 

thereby fostering a vicious cycle of self-sustained inflammation. 

Furthermore, it has been hypothesised that microvascular endothelial 

inflammation might decrease myocardial nitric oxide release, thereby 

inducing cardiac myocyte hypertrophy and impairing relaxation, which 

is a hallmark of HFpEF.34 

Indeed, HFpEF patients display elevated concentrations of galectin-3, 

an inflammatory mediator associated with myocardial fibrosis, 

and pentraxin 3, an inflammatory marker that was observed to 

correlate with left ventricular diastolic dysfunction.72,73 Furthermore, 

circulating levels of inflammatory markers (tumour necrosis factor-

alpha, transforming growth factor-beta, C-reactive protein, procollagen 

type 1 carboxy-terminal propeptide) were found to be elevated, and 

correlated with asymptomatic diastolic dysfunction in patients with 

metabolic syndrome and hypertension.74 Altogether, a wealth of clinical 

studies indicate that HFrEF and HFpEF are associated with a state 

of mild chronic systemic inflammation, but it is currently unresolved 

whether the latter is a cause or consequence of cardiac dysfunction. 

In contrast, chronic inflammation is considered carcinogenic and 

capable of boosting the transition from early-stage tumours to overt 

malignancies.75 In principle, therefore, inflammation might mediate 

the association of both HFrEF and HFpEF with incident cancer. 

Although preclinical studies addressing this hypothesis are lacking, 

this model is corroborated by the results of the Canakinumab Anti-

Inflammatory Thrombosis Outcome Study (CANTOS) trial.76 In that 

study, the interleukin-1beta-targeting antibody, canakinumab, reduced 

the rate of recurrent cardiovascular events in patients with previous 

MI. Intriguingly, additional analyses revealed that treatment with 

canakinumab was associated with a dose-dependent trend toward 

reduction of hospitalisation for HF, which was independent of prior 

HF history, and a lower risk of incident lung cancer.77,78 Altogether, 

the results of the CANTOS trial strongly support the concept that 

chronic low-grade inflammation represents a fertile substrate for the 

progression of HF and cancer. 

The striking results of the CANTOS trial stand to some degree at 

odds with studies using broad-spectrum anti-inflammatory agents, 

namely the tumour necrosis factor-alpha inhibitors, etanercept and 

infliximab, and the immune-system suppressant, methotrexate, 

which did not detect any effect of these drugs on cardiovascular 

events.77,79,80 An important difference between these studies and 

the CANTOS trial is that only the latter enrolled patients with 

modestly elevated C-reactive protein levels, reflecting a state of mild 

systemic inflammation. Furthermore, although excess inflammation is 

undoubtedly detrimental, cytokine signalling also mediates adaptive 

responses in the heart, and future studies should be aimed to more 

precisely identify signalling pathways associated with maladaptive 

processes driving the progression of HF.81,82

Finally, HF-related inflammation might foster cancer in an indirect way. 

For instance, a decline in the number of naïve T  cells, and a marked 

increase in highly differentiated effector and memory T  cells was 

recently observed in patients with HF, and is related to elevated levels of 

interleukin-6.83 These features are consistent with immunosenescence, 

which consists of the deterioration of both adaptive and innate 

immunity, and, given the role played by the immune system in malignant 

cell elimination, may partly account for the increase in cancer incidence 

in HF, as it has been postulated for ageing.84

Conclusion
Until now, the main focus of cardio-oncology has been the prevention 

and treatment of cardiotoxic effects of chemotherapeutic agents. In 

this context, elucidation of the underlying mechanisms is instrumental 

to the development of strategies to prevent chemotherapy-related 

cardiomyopathy. While this avenue of research is far from being exhausted 

as a result of the staggering growth of novel anticancer targeted 

therapies, a new exciting area of cardio-oncology opens up in front of 

us, inspired by several lines of evidence linking the pathophysiology  

of HF to the development and progression of malignancy. 
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