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Abstract

In this paper we propose a criterion based on risk minimization to stop the Landweber algorithm
for estimating the solution of a linear system with noisy data. Under the hypothesis of white
Gaussian noise, we provide an unbiased estimator of the risk and we use it for defining a variant
of the classical discrepancy principle. Moreover, we prove that the proposed variant satisfies the
regularization property in expectation. Finally, we perform some numerical simulations when
the signal formation model is given by a convolution or a Radon transform, to show that the
proposed method is numerically reliable and furnishes slightly better solutions than classical
estimators based on the predictive risk, namely the Unbiased Predictive Risk Estimator and the
Generalized Cross Validation.

Keywords: Landweber algorithm, Risk minimization, Stopping rule, Regularization, Inverse
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1. Introduction

The Landweber iterative method was proposed in [1] for solving Fredholm integral equa-
tions of the first kind. This method received a lot of attention in the eighties because of its easy
implementability and relatively low computational cost reaching a certain degree of popularity
in inverse problems literature becoming a reference algorithm in many text books [2, 3, 4, 5, 6].
Usually, since data are discrete and corrupted by noise, the Landweber algorithm presents a semi-
convergent behavior, i.e. the iterative process converges to the true solution until a certain iterate,
and thereafter it diverges away from the true solution [2]. In the framework of discrete inverse
problems, a vast literature exists on the semi-convergence property, and on how to early stop the
iteration (see for example [7] and references therein). The available methods to stop the iteration
can be subdivided according to the information needed to estimate the optimal iterate: among
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the methods requiring the knowledge of the data error norm within reasonable accuracy, we can
recall the discrepancy principle (DP) [8], the Mallow’s criterion [9] - also known as unbiased
predictive risk estimator (UPRE) - and some heuristic parameter choice rules [10]; among the
methods that do not require the knowledge of the data error norm, we mainly recall the gener-
alized cross validation (GCV) method [11] and the L-curve criterion [12]. The performance of
these methods strongly depends on the forward operator and, in general, no method works better
than the others. From the theoretical point of view, each of these methods has its own interesting
property: DP selects a solution during the convergent regime provided that the convergence is
computed with respect to the ¢, norm [13]. Nonetheless, this solution is often not optimal as
performing the iteration process beyond the selected solution can lead to better estimates of the
true solution. On the other hand, it has been proved that UPRE, as well as GCV, selects the
solution on the basis of an estimate of the predictive risk. Therefore, the selected solutions are
not necessarily optimal with respect to the £, norm of the solution space.

In this paper we focus on the risk minimization and we compute ¢, norm error between
the iteratively reconstructed solutions and the true solution as a measure for evaluating semi-
convergence. We show that, when the Landweber method is initialized with the 0’s solution
the difference between the 2-norm reconstruction error of two successive iterates can be written
without the need of the true solution Moreover, assuming that the noise corrupting the data is
white Gaussian, we prove that such function is an unbiased estimator of the discrete derivative
of the risk computed between two successive Landweber iterates. Therefore, selecting the last
iterate for which the discrete derivative of the risk is negative furnishes a discrepancy principle
which is adaptive in the sense that the lower bound of the discrepancy is iteration dependent. Fi-
nally, we test the proposed discrepancy principle in the case of three different inverse problems:
deblurring, deconvolution, and inverse Radon transform. This letter is organized as follows. In
Section 2 we set up the notation and we present the theoretical results on the reconstruction error,
the novel discrepancy principle for the Landweber algorithm and its regularization property. In
Section 3 we show the application of the proposed method to three two-dimensional reconstruc-
tion problems. We conclude the paper in Section 4.

2. A stopping rule based on risk minimization

We consider a linear data formation model Ax = y where x € RY is a vector of unknown
parameters, y € RY is the vector of measured data and A is the matrix mapping an object in
the corresponding data. A linear discrete inverse problem consists in finding an estimate of x
starting from noisy data y° # y. We consider that A is ill-conditioned, i.e. a small change
in the data may result in a large variation of the parameters. Therefore, the generelized
inverse solution x = ATy is not physical being corrupted by the noise amplification. To
overcome this issue we consider the Landweber method which furnishes the following family
of estimates

x7, =7 — AT (Axg —y°). (D)
Taking the limit with respect to k, x7 converges to a solution of the least squares problem
argmin, g 3 ||y — Ax||? provided that 0 < T < 2||[ATA|~!. Moreover, if the initial point xo =
Oy € RY then the algorithm converges to the generalized solution x. Under this assumption,

each iterate can be written as xp = Ly® with L = ’L‘Z/j‘.;(l)(l —tATA)/AT . The first result of this
work is that the difference between the reconstruction error at two successive iterations can be



written regardless x* but only as a function of y*. This result is crucial to the following anal-
ysis and it is not restricted solely to the Lamdweber case, but it can be extended to all the
regularization methods that provide estimated solutions belonging to ker(A)".

Theorem 1. Reconstruction error. The difference between the reconstruction errors of two
successive iterates of the Landweber algorithm can be written independently of x*. In particular
we have

7y =2 = [l —x*|1* = fi(0,37,¥") (2)
where
* 2 22T .02 M * (o] (o
filo,yo,y") = 2|2+ AT 1P+ 22 ) (v =y )i(r)i 3)
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where ry := Axg —y° is the residual.

PROOF. The reconstruction error of the k + 1 iterate can be written as
N
0,y —x|1P = 6 —x* = AT R 7| = |lxf — [P+ AT P =20 Y (o —x)i(ATD)i (@)
i=1
where the last term of the r.h.s. takes the form

M N
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We now consider that y° is the realization of a random variable Y with given unknown mean
y* and known (or estimated) covariance matrix 6>1. We can approximate the last term of equation
3 by means of the following results.

Lemma 2. We have E (¥;(y* —y°)i(r{)i) = —c?tr(Ry) where R(y°) := r{ = AxT — y° is the
residual operator.

PROOF. The result is a straightforward consequence of the Trace Lemma (see Chapter 7 in [14]).

|
Thanks to this result, we can state the following
Theorem 3. Unbiasedness. The function
fi(0.y%) = =21||Riy > + 72 |AT (Rey”)||* — 270w (Ry) (5)

is an unbiased estimator of discrete derivative of the risk computed between two successive
iterates, i.e. E(fi(0,y°)) = E(|[x7, | —x*? - [E54 —x*?).

This unbiased estimator allows us to define a novel criterion to stop the Landweber iteration.
The idea is to select the first iterate for which the risk is non-decreasing, i.e. f > 0. We define
the function

K(0,y?) = min{k | fi(o,y%) >0} (6)
eN



Therefore, the function K(o,y?) selects the iterate such that
T
IRey® (1 < SIIAT (Rey®)||* = o?tr(Ry)- ()

Inequality 7 can be considered as a variant of the classical discrepancy principle, as it is veri-
fied when the discrepancy is smaller than an iteration-dependent quantity instead of a constant
proportional to Mc?. For this reason we refer to it as the Risk-based Discrepancy Principle
(RDP). The numerical implementation of the RDP requires to compute the trace of the operator
Ry at each iteration. This implies that the proposed method have the same overall computational
burden as the GCV or the UPRE method.

We now prove the following

Theorem 4. Finiteness. K(c,y°) is finite for each ¢ and y°.

PROOEF. Since

T T
IRey® > = 2 AT (Ris®) | = (Riy®, (1 ZAAT )R,

inequality in equation 7 can be written as

T
(Rey®, (I — EAAT)Rky"> < —c%trRy (8)
where we have that ||Ri|| — 0 as k — co. The Lh.s is non-negative and tends to zero of order 2
w.r.t. k, and the r.h.s. is positive with order 1 as Ry is negative definite for each k € N. Therefore
the L.h.s goes to zero faster than the r.h.s. and then there exists a k such that equation 8 is satisfied.
This proves that K(o,y®) is finite. O

The RDP makes the Landweber iteration a regularization method:

Theorem 5. Regularization. Let us consider the Landweber algorithm initialized with a zero
object xo = Oy and suppose 0 < T < 2||ATA|| 1. Let xg( o y0) be the RDP solution. Then, we have

: o ®(12 __
lim B[[xg, o)~ '[P 0. ©)

PROOF. Let x := limy_,o. Lg(y). Let {0,};>_, be a sequence converging to zero when n — oo.
Denote with k,, := K(0;,,y%) the stopping index determined by the RDP criterion applied to L.
Let k be a finite accumulation point of k,. From the stopping criterion we have:

. T T
lim [Rey®||* — 3 IAT (Rey)|1* + 0 tr(Ry) = (Rey, (I — EAAT)RkW <0

Since I — %AAT is positive definite, we have that Ry = 0 and then x; is such that Ax; = y. Then,
x,f: — x; and equation 9 is satisfied.

If k, — o as n — o, we can assume that k, increases monotonically with n. From the
definition of K(c,y°) follows that E(f;) < 0 for each j < k,. Then, for m < n, we know that

E (g ' |2) = (st =5 |) = E (kff,) <o. (10)

J=km
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Consider x;, = Ly, y. By applying the Cauchy-Schwartz inequality to the second term of the

m

Lh.s, in equation 10 we have
E Op * (12 Opn * (12
(g —x*1?) < E(|x" —x*|1%) < Coun + B+ 24/BuCum (11)

where C, , 1= IE(Hx,(:: —xz,|1?) and By, := |jxt,, — x*||*. By using again the Trace Lemma (see
[141]), |
Com = [[(Liy, = 1)y*[|* + 035 pte(LE, )

and therefore, given € > 0, we can fix m so large that C,, ,, < €+ G,% , and B,, < €. Moreover, by
taking an n large enough, we can bound ¢ < &. Thus, we have E(||xg" —x*?) < (3+2V2)e.
This shows that x,‘(’: converges in expectation to x* as o goes to 0. (]

3. Experimental results

In this section we consider three image reconstruction problems with the aim of testing the
performance of the proposed RDP. The first is a deblurring problem (Motion Blur - MB) where
the data is a blurred natural image and the forward operator represents the distortion due to the
straight motion of a photo-camera. The second one is a deconvolution problem (Radial Blur -
RB) where the data is a galaxy with a central large smooth signal and some small sharp features
blurred with a radial point spread function representing the optical effect due to the acquisition.
In these cases we have N = M = 2562. The third problem is the inversion of a sinogram obtained
by the Radon Transform (RT) of the Sheep-Logan phantom with N = 1282 and M = 185 x 180.
For each one of these problems, we generate N,,,; = 1000 replicates by adding to the exact data
y* as many noisy samples drawn from a white Gaussian distribution with a given variance c2.

We fix the signal to noise ratio to 20 dB for MB, 30 dB for RB and 40 dB for RT problem

g .
where the signal to noise ratio is snr = 20 log,, % We solve each replicate by means of

the Landweber algorithm and we select the best iterate according to the RDP and to the standard
UPRE and GCV criteria, in order to compare their performances.

As a benchmark to evaluate the performances, we select the stopping index k* minimizing
the /5 reconstruction error k* = argminy ||x7 —x*|| and we refer to x. as the “oracle solution”.
In particular, for all the replicates of each problem, we compute the relative error with respect to
k* as follows: . .

<> T Ax
*
where k.~ can be kgpp, kGev, kupre. Note that & (k<) = 0 is the best achievable error. More-
over we compute the error on the corresponding solutions normalized over the error provided by
the oracle solution:
é"(xa ) . ||xl(:<> 7x*H2 (13)
) = e ol

Note that & (x,f<>) > 1 and the best achievable error is 1. As a result, for each problem we have a
distribution of N,,,,; samples of the error on the stopping index and the corresponding distribution
of the error on the solution, both normalized with respect to the oracle index and error. In the first
row of Figure 1 we plot the distribution of the stopping index error (equation 12) while in the
second row we plot the distribution of the reconstruction error (equation 13). From the first row
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Figure 1: First row: distributions of & (krpp) (green), & (kgey) (red), and & (kypre) (blue) computed over Nyyy,s noise
realizations for the MB, RB, and RT problems. The vertical colored lines represent the medians of the distributions. The
dashed black line represents the best achievable error 0. Second row: distributions of & (x,fRDP) (green), &(x7 ) (red),

X

kGev

and &(x ) (blue) computed over N, noise realizations for the MB, RB, and RT problems. The vertical colored
kuprE

lines represent the medians of the distributions.

of Figure 1 it is evident that the RDP distribution is centered around O for all the problems, while
GCV and UPRE provide significantly biased distributions. Although the latter two distributions
show a smaller variance, the corresponding distributions of the reconstruction error (second row
of Figure 1) show slightly worse results than the one obtained using RDP.

4. Conclusion

In this work, we introduced a novel stopping rule for the Landweber method in the case
of data corrupted by white Gaussian noise. We proved that this stopping rule is an unbiased
estimator of the ideal risk and we showed that it provides very good estimates of the “oracle”
stopping index and their corresponding “oracle” solutions.
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