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Discrete Changes in Glucose 
Metabolism Define Aging
silvia Ravera1,2, Marina podestà1, Federica sabatini1, Monica Dagnino1, Daniela Cilloni3, 
samuele Fiorini4, Annalisa Barla  4 & Francesco Frassoni1,5

Aging is a physiological process in which multifactorial processes determine a progressive decline. 
Several alterations contribute to the aging process, including telomere shortening, oxidative stress, 
deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked 
with the aging process that it is possible predict the age of a person on the basis of the modification of 
one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because 
the energy metabolism changes are involved in the aging process, in this work, we propose a new aging 
clock based on the modifications of glucose catabolism. The biochemical analyses were performed 
on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age 
between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and 
efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. 
Further, based on these biochemical markers, we developed a machine learning-based mathematical 
model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. 
This mathematical model represents a new non-invasive tool to evaluate and define the age of 
individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or 
the rejuvenation.

Aging is a multifactorial process characterized by a progressive decline of physiological functions1, that deter-
mines an increment of vulnerability and the relative risk of developing diseases, i.e. cancer, cardiovascular dis-
orders, diabetes, neurodegeneration and death2,3. Several alterations are involved in the aging process, including 
deregulated autophagy, mitochondrial dysfunction, telomere shortening, oxidative stress, systemic inflammation, 
and metabolism dysfunctions2,4. Recently, also an involvement of epigenetic modifications has been proposed5 
as cause of aging, allowing to develop an “aging clock” based on the degree of DNA methylation, which increases 
with the age6. However, for several years, aging has been considered the result of damages accumulation due 
to an excessive production of reactive oxygen species (ROS), leading to the formulation of the “Mitochondrial 
Theory of Aging”7,8. This theory is based on the concept that mitochondria are one of the main sources of oxida-
tive stress9–11 and that mitochondrial DNA (mtDNA) displays a great rate of mutation together with a less effi-
cient repair machinery, in comparison to nuclear DNA (nDNA)12. Once a mtDNA mutation threshold has been 
reached, irreversible oxidative damage is formed, which leads to dysfunction of mitochondrial metabolism13, 
accelerating the oxidative stress production14.

Therefore, in this work, we evaluated the changes of energy metabolism in mononuclear cells (MNC) isolated 
from peripheral blood (PB), obtained from healthy population with an age between 5 and 106 years, analysing 
the oxidative phosphorylation (OXPHOS) function and efficiency, the ATP/AMP ratio, the lactate dehydroge-
nase (LDH) activity and malondialdehyde (MDA) content, to propose a mathematical model based on Machine 
Learning (ML) that, once trained on the collected data, aims at predicting the age of an individual on the basis on 
these metabolic markers.

ML is the branch of computer science that aims at inferring the input-output relationship underlying a col-
lection of examples15. In order to devise such relationship, ML models need to be trained on a set of input-output 
pairs, where the input data x are described as d-dimensional vectors and y is the output variable. In particular, 
predicting a real-valued output poses a regression problem. The final goal of ML is to devise predictive models 
that, once trained on a first dataset, will perform well on new, and previously unseen, samples, i.e. the so-called 
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test set. A ML model that achieves accurate predictions only on the training set is said to be over-fitting. This 
is an unwanted behaviour and precautions must be taken in order to avoid it. The most adopted technique to 
prevent over-fitting is called regularization and it consists in introducing additional information that, reduc-
ing the space of the possible solutions, helps the model to achieve good generalization properties15. In particu-
lar, sparsity-enforcing methods are one of the most relevant regularization strategies for biological applications. 
Sparse models identify subsets of variables upon which the predictive model is based. This subset is identified 
as the set of variables having non-zero weights. The remaining variables have zero weight and therefore are dis-
carded as not relevant.

Results
All the experiments were carried out on MNC isolated from PB obtained from the healthy population with age 
between 5 and 106 years. The distribution of the population was reported in Supplementary Fig. 1, and the infor-
mation about the human subjects (i.e.: gender and age), as well as the value of the evaluated biochemical markers 
are reported in Supplementary Dataset.

The energetic status and the mitochondrial aerobic metabolism changes in MNC, during the 
physiological aging. To determine the energy status of MNC, the intracellular concentration of ATP and 
AMP was evaluated, and the ratio ATP/AMP was calculated (Fig. 1, Panel A). Data shows that the energy status 
changed with the age, decreasing progressively. More in details: values did not change in the first three decades 
of age (0–30 years), showed a modest decrement between 30 and 40 years of age (p < 0.05 vs decade of 0–30 
years of age), drastically decreased between 40 and 50 years (p < 0.01 vs the first four decades) and remained low, 
but stable, in the subsequent decades. Moreover, analysing the single data of ATP and AMP cellular concentra-
tion (Supplementary Fig. 2), it is evident that the cause of the decrement of ATP/AMP ratio was principally the 
increment of AMP concentration during the aging, in particular in the decades of 31–40, 41–50 and 51–60 years 
(p < 0.01 vs the previous decade).

Further on, the efficiency of oxidative phosphorylation (OXPHOS) was evaluated in term of P/O value, cal-
culated as the ratio between ATP synthesis (ATP-synth) and oxygen consumption rate (OCR). These parameters 
were evaluated in the presence of pyruvate + malate (Pyr + Mal) or succinate to stimulate the pathways formed 
by complexes I, III and IV and complexes II, III and IV, respectively. The P/O ratio after Pyr + Mal stimulation 
followed a similar trend observed for the ATP/AMP ratio (Fig. 2, Panel A). In particular, in the first four decades 
of age (0–40), the P/O value was around 2.5, which corresponds to the reference values16, while it showed a slight 
decrement in the range between 41 and 50 years (p < 0.01 vs the first three decades) and decreased drastically 
from 51 years onwards (p < 0.01 vs the first three decades). A further decrease was observed in the 71–80 decade 
(p < 0.01 vs the previous decades), then the P/O remained stable, but low, after the 80 years of age. Also the P/O 
ratio calculated after succinate induction decreased with the age, but its impairment was less evident around the 
fourth and fifth decades, appeared more marked only after 60 years (p < 0.05 compared with the younger dec-
ades) and definitely low around in the eighth decades (p < 0.01 vs the previous decade) (Fig. 1, Panel C).

Considering that the loss of mitochondria efficiency could determine the enhancement of the anaerobic 
metabolism, the activity of lactate dehydrogenase (LDH) has been evaluated as a marker of the anaerobic glyc-
olytic pathway. Data show an increment of LDH activity in MNC with aging: the values were similar in the first 
four decades, increasing significantly in the fifth decade (p < 0.05 vs the previous decade) and reached the maxi-
mum after 81 years (p < 0.01 with respect the previous decade) (Fig. 2, Panel C).

Moreover, since the uncoupled OXPHOS metabolism is often associated with an increment in the oxidative 
stress production11, which induces damages on proteins, nucleic acid and membrane, the level of malondialde-
hyde (MDA), a marker of lipid peroxidation, has been evaluated in MNC (Fig. 2, Panel D). MDA concentration 
remained stable until the 20 years of age, increased around the third decade, became significant different after the 

Figure 1. Changes of MNC energy status during aging. Graph shows the ATP/AMP ratio, as a marker of the 
energy status of MNC isolated from peripheral blood (PB), obtained from healthy population with an age 
between 5 and 106 years. The population is divided by decades. The values decrease progressively with aging. * 
or ** indicate, respectively, a significant difference for p < 0.05 or p < 0.01 between the marked decade and the 
previous decade.
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41 years of age with respect to the younger decades (p < 0.01 vs the younger decades) and reached the maximum 
level around the ninth decade (p < 0.01 vs the younger decades). Interestingly, after the 80 years of age, MDA 
values remained stable, probably due to the physiological metabolic slowdown.

Specific metabolic fingerprint characterizes each age. In this work, we performed exploratory data 
analysis estimating the collinearities among measured variables via pairwise Pearson Correlation Coefficient 
(r) (see Eq. 3 in Materials and Methods section). Evaluating r for each pair of markers results in a symmetric 
heatmap, in which dark red entries are associated with strong positive correlation, white squares represent no 
correlation and dark blue squares correspond to strong negative correlation, see for example one of the panels 
in Fig. 3. Dividing the collected data into 5 groups, one for each two decades (0–20, 21–40, 41–60, 61–80, >81), 
we obtained 5 heatmaps, which represent the correlations among different metabolic parameters during aging 
(Fig. 3). In particular, it is possible to observe that each age group is defined by a specific pattern of correlations. 
For example, the younger samples (0–20 years of age), characterized by an efficient aerobic metabolism, display a 
positive correlation with P/O values and ATP/AMP ratio and a negative correlation between P/O values and both 
LDH activity and MDA levels. Conversely, in the old samples (>61 years of age), P/O values negatively correlated 
with the ATP/AMP ratio, while they did not significantly correlate with LDH activity.

Moreover, also the correlation between ATP/AMP ratio and MDA production changes with the age, appearing 
negligible for the younger samples (<21 years of age), negative for people of age between 20 and 60 years of age 
and positive for samples over 60 years of age.

A mathematical model predicts the age based on the energy metabolism markers. The pro-
posed predictive model, e.g.: the “biochemical aging clock”, is achieved by posing a linear age-regression prob-
lem from the set of the following biochemical biomarkers (measured in MNC): ATP, AMP, MDA, LDH, ATP/
AMP ratio, P/O-Pyr + Mal, OCR-Pyr + Mal, ATP synth-Pyr + Mal, P/O-Succinate, OCR-Succinate and ATP 
synth-Succinate.

We relied on one of the most popular sparse regression methods that is the Elastic-Net17. The Elastic-Net 
solution can be achieved by solving the minimization problem stated as follows (Eq. 1):

ˆ  α λ λ= − + + −∈w argmin
n
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2
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d

Figure 2. Changes of MNC glucose metabolism during aging. All data are obtained using MNC isolated 
from peripheral blood (PB) of healthy subjects with an age between 5 and 106 years. (A,B) Show the efficiency 
of the oxidative phosphorylation, expressed as P/O ratio, in the presence of pyruvate + malate or succinate, 
respectively. In both cases, the values decrease during aging, suggesting an uncoupling between oxygen 
consumption and ATP synthesis, which determines a low efficiency in energy production. (C) Reports the 
lactate dehydrogenase activity, as a marker of anaerobic glucose metabolism. The values increase in the 
elderly subjects, indicating that the lactate fermentation enhances parallel to the aging. (D) Shows the level 
of malondialdehyde (MDA), as a marker of oxidative stress, which increases with aging, probably due to the 
minor OXPHOS efficiency. In each panel, the population is divided by decades. * or ** indicate, respectively, a 
significant difference for p < 0.05 or p < 0.01 between the marked decades and the previous decade.
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The first term of the functional is called loss function and it measures the adherence between the actual out-
put and the predictions in terms of average squared Euclidean norm. The second term, in square brackets, is the 
regularization penalty. The Elastic-Net model adopts a mixed penalty that achieves smooth and sparse solutions, 
where the correlation among the input variables is preserved and can be tuned to simultaneously control the 
smoothness and the sparsity of the achieved solution. In particular, when λ = 1 the effect of the L2-norm vanishes 
and the regularization term enforces a level of sparsity in the solution which is proportional to, as in the Lasso18. 
On the other hand, when λ = 0 the effect of the L1-norm vanishes and the regularization parameter α controls 
the smoothness in the solution, as in Ridge regression15. Balancing the trade-off between L2 and L1 is the key to 
obtain accurate and interpretable solutions.

Thanks to the sparsity-enforcing properties of the Elastic-Net penalty, we were able to identify a reduced 
number of relevant biomarker measures. In fact, out of the 11 variables, the model automatically selected only 
the 8 most predictive measures (i.e.: OCR-Succinate, P/O-Pyr + Mal, PO-Succinate, ATP synth-Pyr + Mal, AMP, 

Figure 3. Changes of correlation among the biochemical markers during aging. Heatmaps reported in this 
figure show the correlations among the biochemical markers reported in Figs 1 and 2. Population is divided 
into 5 groups, one for each two decades (0–20, 21–40, 41–60, 61–80, >81). Dark red entries indicate a strong 
positive correlation, white entries represent no correlation and dark blue entries correspond to strong negative 
correlation. Each age group is characterized by a specific pattern of correlations.
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MDA, LDH, ATP/AMP), which correspond to the nonzero elements. By contrast, 3 null elements of w corre-
spond to the discarded variables (ATP, OCR-Pyr + Mal, ATP synth-Succinate).

Therefore, the final model obtained after the final refit on the training set assumes the following form (Eq. 2):

‐ ‐
‐

‐

predicted age OCR Succinate P O Pyr Mal
P O Succinate
ATP synth Pyr Mal
AMP MDA
LDH ATP AMP

0 01 7 30 /
0 31 /
0 01
10 29 2 05
0 01 4 22 / 49 21 (2)

= . ⋅ − . ⋅ +
− . ⋅
− . ⋅ +
+ . ⋅ + . ⋅
+ . ⋅ − . ⋅ + .

This model, evaluated on the test set, achieves an absolute error of 7.9 years explaining the 84.3% of the 
variance. In order to better understand the model behaviour, we can see it working in practice. Table 1 shows 
relevant values of the molecular biomarkers corresponding to 14 subjects randomly extracted from the test set. 
This ensures that the weights of the proposed “biochemical aging clock” (Eq. 2) are estimated without taking 
into account such measures, hence preventing overfitting. The last columns on the right of Table 1 show real and 
predicted ages, and their unsigned difference.

Discussion
In this work, we described a new aging-clock, based on the changes of glucose catabolism in the aging, able to 
predict the age of an individual. The biochemical markers have been evaluated on MNC, which have been chosen 
because blood cells are considered an excellent model to evaluate the metabolic status of the entire organism19. 
Moreover, it was also shown that mutations identified in the peripheral blood cells (PBC) of aged “normal sub-
jects” are statistically correlated with degenerative diseases20.

The idea of our work is based on the energy metabolism changes that occur with aging. In fact, as shown by 
our results on MNC, the glucose metabolism shifts from aerobic to anaerobic with the age, influencing the cellular 
energy status. In particular, our data show that, during aging, the oxygen consumption is not completely coupled 
with the ATP synthesis, determining a reduction of ATP availability (Fig. 1 and Supplementary Fig. 1) and mak-
ing more difficult the AMP recycling through the enzymes that regulate the energy balance such as adenylate 
kinase21,22. Moreover, the uncoupling status of OXPHOS machinery determines an increment of ROS production, 
as shown by the high MDA level observed after the sixtieth and later decades (Fig. 2, Panel C), triggering a vicious 
circle, in which the damage of the mitochondrial inner membrane induces an increment of oxidative stress and 
the relative structural failures. An attempt to restore the ATP level is represented by the increment of LDH activ-
ity (Fig. 2, Panel D), probably to convert the NADH to NAD+, to restore the correct pool of oxidized coenzyme. 
However, it is important to note that LDH increment does not represent a “choice” for the cell, but the unique 
alternative to produce ATP from glucose.

All these data are confirmed by the heatmaps, which display a correlation among the evaluated biochemical 
markers in the different decades (Fig. 3). In fact, the positive correlation within P/O ratio and ATP/AMP ratio 
and the negative correlation between P/O ratio and LDH activity or MDA levels are typical of the samples of 
younger subjects (0–20 years of age), in which a perfect coupling between oxygen consumption and ATP synthe-
sis occurred. By contrast, in the samples of older individuals, P/O values negatively correlated with the ATP/AMP 
ratio, and did not significantly correlate with LDH activity, confirming that, during aging, the energy production 
through OXPHOS becomes less efficient, inducing the increment of aerobic glycolysis to compensate, at least in 
part, the reduced production of ATP.

Sample ID

Biochemical markers predicted 
age (years)

real age 
(years)

abs (error) 
(years)OCR-Succinate P/O-Pyr + Mal P/O-Succinate ATP-Pyr + Mal AMP MDA LDH ATP/AMP

#165/2017 12.24 2.69 1.38 29.93 0.57 3.73 205.98 2.49 34 30 +4

#228/2017 11.35 2.36 1.34 31.26 0.66 4.21 241.56 2.19 40 35 +5

#416/2016 12.63 0.96 1.19 15.67 0.56 6.95 326.47 1.87 57 54 +3

#91/2017 12.74 0.86 0.62 11.75 0.56 5.46 265.11 1.11 58 56 +2

#81/2017 10.45 1.28 0.88 14.4 0.65 6.53 301.27 0.79 59 55 +4

#418/2016 19.31 1.03 0.87 23.65 0.53 8.29 345.19 1.5 61 66 +5

#83/2017 16.21 0.86 0.98 11.02 0.72 5.99 265.78 0.61 62 57 +5

#509/2016 23.28 1.36 0.48 16.69 0.79 9.41 251.36 0.68 66 65 +1

#517/2016 43.64 0.25 0.23 5.55 0.53 9.63 285.41 1.49 70 64 +6

#76/2017 17.12 1.06 1.07 14.22 0.82 9.2 302.75 0.44 70 69 +1

#504/2016 39.16 0.48 0.2 7.17 0.49 12.75 256.78 1.85 72 72 0

#506/2016 50.6 0.29 0.4 5.25 0.66 9.18 298.75 0.88 72 71 +1

#75/2017 9.87 0.73 0.21 11.43 0.8 10.99 382.89 0.39 77 83 −6

#94/2017 13.64 0.44 0.39 7.24 0.8 13.93 385.14 0.38 85 82 +3

Table 1. Example of Eq. 2 application to predict age on the basis of glucose metabolism markers. The table 
represents an example of Eq. 2 application on 14 subjects randomly extracted from the test set. For each subject, 
the biochemical markers of glucose metabolism, the real and predicted ages and their difference are reported.
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Interestingly, the trend of the correlation between P/O and ATP/AMP is more evident in the presence of pyru-
vate + malate with respect to that observed after succinate induction. This may depend by the fact that the path-
way led by Complex I contributes more to the production of the proton gradient necessary for energy production 
through ATP synthase, with respect the Complex II pathway23. Moreover, the changes from negative to positive 
correlation between ATP/AMP ratio and MDA production changes with the age, confirms that MNC continue 
to use the oxidative phosphorylation as energy source, but this is associated with an increase in oxidative stress 
production, which could contribute to the progress of aging, determining a vicious circle.

Our data suggest that the critical period seems be around between the fifty and sixty decades; in fact, sub-
sequently the energy metabolism continues to change, but more slowly, and stabilizes after 80 years of age. This 
could depend by the fact that over 60 years of age the level of oxidative stress is so high to become critical for the 
integrity of the cellular structure, determining a damage. In fact, it is known that mild inhibition of mitochondrial 
respiration was shown to extend lifespan in many species such as C. elegans, Drosophila and mice24,25. Therefore, it 
is possible to speculate that around the early phases of aging (30–40 years of age) the increment of oxidative stress 
production could be considered favoured to drive towards cell proliferation devoted to the renewal26. However, 
the increment of cellular proliferation, requiring energy, increases the mitochondria metabolism and the relative 
oxidative stress production, reaching a critical amount that determining the aging in the later decades26.

All these data were used to perform a sparse linear regression analysis, in order to evaluate whether the age of 
an individual can be predicted from biochemical markers and to identify which are the predictive ones.

The best prediction is achieved by the model described in Equation 2. The model is a linear combination of 
the metabolic markers, where only 8 out of 11 are associated to non-zero weights. The remaining 3 markers are 
discarded as they do not contribute to the best prediction. In particular, the weights are learned from the data via 
the Elastic-Net algorithm (Hastie et al. 2009) that automatically discards the irrelevant metabolic markers and, at 
the same time, takes into account the correlated ones, as shown in the heatmaps (Fig. 3).

The choice of this algorithm guarantees a compact, accurate and easily interpretable model, which is robust 
to the noise affecting the data. In order to test the predictive properties of this Elastic-Net-based procedure, we 
repeated the model identification procedure 100 times on 100 random re-sampling of the input dataset27, achiev-
ing a mean absolute error of 9.7 ± 1.3 years and a mean explained variance of 77 ± 7%.

In conclusion, the mathematical model proposed in this work represents a new non-invasive tool to evaluate 
and define the age of individuals, on the basis of biochemical/bioenergetic markers. This approach could help 
to evaluate the effects of drugs or other treatments on early aging or rejuvenation. For example, it is known that 
the survival rates of pediatric cancers have improved tremendously over the past four decades, but the therapy 
responsible for this survival can also produce adverse long-term health-related outcomes28–30. In particular, it was 
observed that the prevalence of frailty in young adult treaded in childhood for cancer is similar to that expected 
among adults > 65 years old from the general population31. Therefore, the possibility to predict the real age in 
childhood cancer survivors could be useful to act promptly preventing the damages due to the early aging.

Methods
Reagents. All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA), unless otherwise indi-
cated. Ultrapure water (Milli-Q; Millipore, Billerica, MA, USA) was used throughout. All other reagents were of 
analytical grade.

Samples. This study was performed on mononuclear cells (MNC) isolated from peripheral blood (PB), 
obtained from healthy population with age between 5 and 106 years. For the participants under the age of 18 
years, we have obtained the informed consent from a parent and/or legal guardian. In total, we have collected 118 
samples from a heterogeneous group of individuals, not affected by chronic diseases and with different life-styles. 
PB samples were transferred into the laboratory and analysed within 24 hours from collection. All participants 
provide their written informed consent to participate in this study. Exclusion criteria were positivity for HBV, 
HCV and HIV. For each subject, 7–10 ml of PB were employed.

This study was approved by the Regional Ethics Committee of Liguria (N° 096REG2014) and all the experi-
ments were performed in accordance with relevant guidelines and regulations.

Evaluation of ATP/AMP ratio. The ATP and AMP quantification was based on the enzyme coupling 
method32. 20 µg of total protein were used for both assays. Briefly, ATP was assayed following NADP reduction, at 
340 nm. The medium contained: 50 mM Tris HCl pH 8.0, 1 mM NADP, 10 mM MgCl2, and 5 mM glucose in 1 ml 
final volume. Samples were analysed spectrophotometrically before and after the addition of 4 µg of purified hex-
okinase plus glucose-6-phosphate dehydrogenase. AMP was assayed following the NADH oxidation at 340 nm. 
The medium contained: 100 mM Tris-HCl pH 8.0, 75 mM KCl, 5 mM MgCl2, 0.2 mM ATP, 0.5 mM phosphoe-
nolpyruvate, 0.2 mM NADH, 10 IU adenylate kinase, 25 IU pyruvate kinase, and 15 IU of lactate dehydrogenase.

Oximetric analysis. The oxygen consumption was measured with an amperometric O2 electrode in a closed 
chamber, magnetically stirred, at 37 °C (Unisense, DK). For each assay, 200,000 cells were used. Sample was sus-
pended in a medium containing: 137 mM NaCl, 5 mM KH2PO4, 5 mM KCl, 0.5 mM EDTA, 3 mM MgCl2 and 
25 mM Tris–HCl, pH 7.4 and permeabilized with 0.03 mg/ml digitonin for 10 min. To stimulate the pathway 
composed by Complexes I, III and IV, 5 mM pyruvate plus 2.5 mM malate were added. To activate the pathway 
composed by Complexes II, III and IV 20 mM succinate was used33.

Evaluation Fo-F1 ATP synthase activity. ATP synthesis was measured by the highly sensitive lucif-
erin/luciferase method. Assays was conducted at 37 °C, over 2 min, by measuring formed ATP from added ADP. 
200,000 cells were added to the incubation medium (0.1 ml final volume) containing: 10 mM Tris-HCl pH 7.4, 
50 mM KCl, 1 mM EGTA, 2 mM EDTA, 5 mM KH2PO4, 2 mM MgCl2, 0.6 mM ouabain, 0.040 mg/ml ampicillin, 
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0.2 mM di-adenosine-5′penta-phosphate, 0.2 mM and the metabolic substrate: 5 mM pyruvate plus 2.5 mM 
malate or 20 mM succinate. The cells were equilibrated for 10 min at 37 °C, then ATP synthesis will be induced 
by addition of 0.2 mM ADP. The ATP synthesis was measured using the luciferin/luciferase ATP biolumines-
cence assay kit CLSII (Roche, Basel, Switzerland), on a Luminometer (GloMax® 20/20 Luminometer – Promega, 
Wisconsin, USA). ATP standard solutions (Roche, Basel, Switzerland) in the concentration range 10−10–10−7 M 
was used for calibration33.

Lactate dehydrogenase assay. To assay the glycolytic flux, the activity of lactate dehydrogenase (LDH; 
EC 1.1.1.27) was measured at room temperature on 20 µg of MNC homogenate. The reaction mixtures contained: 
100 mM Tris-HCl pH 7.4, 0.2 mM NADH and 5 mM pyruvate (Ravera et al. 2013). NADH molar extinction coef-
ficient was considered 6.22 mM−1 cm−1, at 340 nm. Enzymatic activity was expressed as mU/mg of total protein 
(nmol/min/mg of protein)34.

Evaluation of lipid peroxidation. To assess lipid peroxidation, the malondialdehyde (MDA) level was 
evaluated, using the thiobarbituric acid reactive substances (TBARS). The TBARS solution contained: 15% 
trichloroacetic acid (TCA) in 0.25 N HCl and 26 mM 2-Thiobarbituric acid. To evaluate the basal concentration 
of MDA, 600 µl of TBARS solution was added to 50 µg of total protein dissolved in 300 µl of milliQ water. The mix 
will be incubated for 40 min at 100 °C, then centrifuged at 14,000 rpm for 2 min and the supernatant was analysed 
spectrophotometrically, at 532 nm35.

Statistical analysis. Biochemical data were analyzed by one-way ANOVA followed by Bonferroni post hoc 
test, using Sigma Stat software (Sigma Stat Software, Inc., San Jose, CA, USA). p < 0.05 was considered significant.

Mathematical model development. In order to identify a mathematical model capable of predicting the 
metabolic age of an individual given the corresponding metabolic biomarkers, we rely on a three-step procedure. 
The first step consists in splitting the 118 collected samples in two non-overlapping sets, namely: training set 
(88 samples) and test set (30 samples). Cardinality of training and test sets are chosen by analysing the learning 
curves of the prediction error15. This splitting procedure simulates the presence of future unseen data and it is 
realized ensuring that the age distribution of the samples in the two sets is the same. The second step consists in 
data standardization, meaning that each variable is transformed in order to have zero mean and unit variance. The 
third, and final, step consists in the use of the Elastic-Net model adopting a cross-validation scheme for param-
eter tuning15. In this work, we optimized the free parameters of the Elastic-Net model (λ, α) in a grid-search 
cross-validation fashion, meaning that the best parameters are chosen from a two-dimensional grid as the pair 
yielding the lowest validation error estimated by 50 Monte-Carlo cross-validation resampling27 on the training 
set. The final weights vector is obtained refitting the model on the training set (which is the 75% of the whole 
dataset) using the optimal parameters. The performance of the achieved model is then assessed on the remaining 
test samples (i.e. the 25% of the full dataset).

Moreover, we have also explored the pairwise correlation across the collected measures with the Pearson 
Correlation Coefficient (r) (Eq. 3), which can be defined as:

=
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= =

r x z x x z z

x x z z
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where n represents the number of samples and macrons above variables identify their empirical means. This 
measure can be seen as the ratio between the estimated covariance and the product of their empirical standard 
deviation. r(x, z) can be seen as a measure of linear correlation between two variables x and z. Pearson Correlation 
Coefficient values range from 1 (perfect positive linear correlation) and −1 (perfect negative linear correlation). 
A Pearson Correlation Coefficient value of 0 means that there is no linear correlation between the two variables.
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