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Abstract

A limit elastic energy for the pure traction problem is derived from re-scaled
nonlinear energies of a hyperelastic material body subject to an equilibrated force
field.We prove that the strains ofminimizing sequences associated to re-scaled non-
linear energies weakly converge, up to subsequences, to the strains of minimizers
of a limit energy, provided an additional compatibility condition is fulfilled by the
force field. The limit energy is different from the classical energy of linear elasticity;
nevertheless, the compatibility condition entails the coincidence of related minima
and minimizers. A strong violation of this condition provides a limit energy which
is unbounded from below, while a mild violation may produce unboundedness of
strains and a limit energy which has infinitely many extra minimizers which are
not minimizers of standard linear elastic energy. A consequence of this analysis is
that a rigorous validation of linear elasticity fails for compressive force fields that
infringe up on such a compatibility condition.
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1. Introduction

TheLinearTheoryofElasticity ([19]) has a prominent role amongMathematical-
Physics theories for its clarity, rigorous mathematical status and persistence. It was
a great achievement of the previous centuries, and it inspired many other theories of
Continuum Mechanics and led to the formulation of a more general theory named
Nonlinear Elasticity ([22,32]), also known as Finite Elasticity, which underlines
that no smallness assumptions are required.

There was always agreement amongst scholars that the relation between the
linear and the nonlinear theory amounts to the linearization of strain measure under
the assumption of small displacement gradients; this is the precondition advocated
in almost all of the texts on elasticity. Nevertheless, only at the beginning of present
century, when appropriate tools of mathematical analysis were suitably tuned, did
the problem of a rigorous deduction of any particular theory based on some ap-
proximation hypotheses from a more general exact theory become a scientific issue
related to the general problem of validation of a theory, as explained in [31].

In this conceptual framework, G. Dal Maso, M. Negri and D. Percivale in [13]
proved that problems ruled by linear elastic energies can be rigorously deduced
from problems ruled by non-linear energies in the case of Dirichlet and mixed
boundary conditions; they did this by exploiting De Giorgi �-convergence theory
([12,14]). This result clarified the mathematical consistency of the linear boundary
value problems, under displacements and forces prescribed on the boundary of
a three-dimensional material body, via a rigorous deduction from the nonlinear
elasticity theory. We mention several papers facing issues in elasticity which are
connected with the context of our paper: [1–9,17,21,23–25,27–30].

The present paper tackles the same general question which was studied in [13],
but here we deal with the pure traction problem, i.e. the case where the elastic body
is subject to a system of equilibrated forces and no Dirichlet condition is imposed
on the boundary.

We consider a bounded open set � ⊂ R
N , N = 2, 3 as the reference configu-

ration of a hyperelastic material body, hence the stored energy due to a deformation
y can be expressed as a functional of the deformation gradient ∇y as follows:∫

�

W(x,∇y) dx,

where W : � ×MN×N →[0,+∞] is a frame indifferent function, MN×N is the
set of real N × N matrices and W(x,F) < +∞ if and only if det F > 0.

Then due to frame indifference there exists a function V such that

W(x,F) = V(x, 1
2 (F

TF − I)) , ∀F ∈ MN×N , a.e. x ∈ �.

We set F = I + hB, where h > 0 is an adimensional small parameter and

Vh(x,B) := h−2W(x, I + hB).

We assume that the reference configuration has zero energy and is stress free, i.e.

W(x, I) = 0, hence DW(x, I) = 0 for a.e. x ∈ �,
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and thatW is regular enough in the second variable. Then Taylor’s formula entails

Vh(x,B) = V0(x, symB) + o(1) as h → 0+,

where symB := 1
2 (B

T + B) and

V0(x, symB) := 1

2
symB D2V(x, 0) symB.

If the deformation y is close to the identity up to a small displacement, say y(x) =
x+ hv(x) with bounded ∇v , then, by setting E(v) := 1

2 (∇vT + ∇v) , one plainly
obtains that

lim
h→0

∫
�

Vh(x,∇v) dx =
∫

�

V0(x,E(v)) dx . (1.1)

Historically, relationship (1.1) was considered as themain justification of linearized
elasticity, but such pointwise convergence does not even entail that minimizers ful-
filling a given fixed Dirichlet boundary condition actually converge to the minimiz-
ers of the corresponding limit boundary value problem; this phenomenon is made
explicit by the Example 3.5 in [13] which exhibits a lack of compactness when V
has several minima.

To set theDirichlet problem in a variational perspective, referring to a prescribed
vector field v0 ∈ W 1,∞(�,RN ) as the boundary condition on a given closed subset
� of ∂� withHN−1(�) > 0 and to a given load g ∈ L2(�,RN ), one has to study
the asymptotic behavior of the sequence of functionals Ih , which is defined as

Ih(v) =
⎧⎨
⎩

∫
�

Vh(x,∇v) dx −
∫

�

g · v dx if v ∈ H1
v0,�

+∞ else in H1(�,RN ),

where H1
v0,� denotes the closure in H1(�,RN ) of the space of displacements

v ∈ W 1,∞(�,RN ) such that v = v0 on�; it was proved in [13] that (under natural
growth conditions and suitable regularity hypotheses on W) every sequence vh
fulfilling

Ih(vh) = inf Ih + o(1)

has a subsequence converging weakly in H1(�,RN ) to the (unique) minimizer v∗
of the functional I representing the total energy in linear elasticity, that is

I(v) =
⎧⎨
⎩

∫
�

V0 (x,E(v)) dx −
∫

∂�

g · v dHn−1(x) if v ∈ H1
v0,�

+∞ else in H1(�;RN ) ,

and that the re-scaled energies converge, namely

lim
h→0

Ih(vh) = I(v∗) =
∫

�

V0 (x,E(v∗)) dx −
∫

�

g · v∗ dx .

Such a result is a complete variational justification of linearized elasticity, at least
as far as Dirichlet and mixed boundary value problems are concerned. Thus it is
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natural to ask whether a similar result holds true also for pure traction problems
whose variational formulation is described in the sequel.

In the present paper we focus our analysis on Neumann boundary condi-
tions, say the pure traction problem in elasticity. More precisely, we assume that
f ∈ L2(∂�;RN ), g ∈ L2(�;RN ) are, respectively, the prescribed boundary and
body force fields such that the whole system of forces is equilibrated, namely, the
condition of equilibrated load

L(z) = 0 ∀z : E(z) ≡ 0 (1.2)

(which is a standard necessary condition for pure traction in linear elasticity), is
assumed with

L(v) :=
∫

∂�

f · v dHN−1 +
∫

�

g · v dx .

We consider the sequence of energy functionals

Fh(v) =
∫

�

Vh(x,∇v)dx − L(v) , (1.3)

and we inquire whether the asymptotic relationship Fh(vh) = inf Fh + o(1) as
h → 0+ implies, up to subsequences, some kind of weak convergence of vh to a
minimizer v0 of a suitable limit functional in H1(�;RN ).

First we emphasize that in the case of Neumann condition on the whole bound-
ary things are not so plain. Indeed even by choosing � Lipschitz and assuming the
simplest dependance of stored energy density W on the deformation gradient F,
say (see [10])

W(x,F) =
⎧⎨
⎩

|FTF − I|2 if det F > 0

+∞ otherwise,
(1.4)

if g ≡ 0, f = f n, f < 0 and n denotes the outward unit normal to ∂� (so that
the global condition (1.2) holds true), then by the same techniques as used in [13]
one can exhibit the Gamma limit of Fh with respect to weak H1 topology:

�(w H1) lim
h→0

Fh(v) = E(v) , (1.5)

where

E(v) = 4
∫

�

|E(v)|2 dx − f
∫

∂�

v · n dHN−1(x) , (1.6)

i.e. the classical linear elasticity formulation which achieves a finite minimum over
H1(�,RN ) since the condition of equilibrated loads is fulfilled. Nevertheless,
with exactly the same choices, there is a sequence wh in H1(�,RN ) such that
Fh(wh) → −∞ as h → 0+ (see Remark 2.7): although minimizers of E over
H1(�;RN ) exist, functionalsFh are not uniformly bounded from below and these
facts seem to suggest that, in presence of compressive forces acting on the boundary,
minimizing sequences of Fh do not converge to minimizers of E .
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Moreover, it is worth noting that if W fulfils (1.4) and g ≡ f ≡ 0 , and hence
inf Fh = 0 for every h > 0, then by choosing a fixed nontrivial N × N skew-
symmetric matrix W, a real number 0 < 2α < 1 and setting

zh := h−α Wx , (1.7)

we get Fh(zh) = inf Fh + o(1); nevertheless zh has no subsequence weakly
converging in H1(�;RN ), see Remark 2.4.

Therefore here, in contrast to [13], we cannot expect weak H1(�;RN ) com-
pactness of minimizing sequences, not even in the simplest case of null external
forces. Although this fact is common to pure traction problems in linear elasticity,
we emphasize that in general nonlinear elasticity setting this difficulty cannot be
easily circumvented by plain translations since Fh(vh) 
= Fh(vh − Pvh), with P

projection on infinitesimal rigid displacements.
We deal with this issue in the paper [26], showing nonetheless that at least for

some specialW , ifFh(vh) = inf Fh+o(1) thenup to subsequencesFh(vh−Pvh) =
inf Fh + o(1).

In order to achieve some kind of precompactness for the sequences vh fulfilling
Fh(vh) = inf Fh + o(1), we work with a very weak notion of convergence: the
weak L2(�;RN ) convergence of linear strains. Therefore our approach requires the
analysis of variational limit of Fh with respect to this convergence. Since weak L2

convergence of linear strains does not imply an analogous convergence of the skew
symmetric part of the displacement gradients, it can be expected that the � limit
functional is different from the classical linearized elasticity functional which is
the pointwise limit of Fh (for a reformulation of classical linearized elasticity with
linear strain tensor as the “primary” unknown instead of displacement, see [11]).

Indeed under some natural assumptions on W , a careful application of the
Rigidity Lemma of [18] shows that if E(vh) are bounded in L2 then, up to subse-
quences,

√
h∇vh converges strongly in L2 to a constant skew symmetric matrix

and the variational limit of the sequence Fh , with respect to the w-L2 convergence
of linear strains, turns out to be

F(v) := min
W

∫
�

V0
(
x, E(v) − 1

2W
2
)
dx − L(v) , (1.8)

where the minimum is evaluated over skew symmetric N×N matrices W and

V0(x,B) := 1

2
BT D2V(x, 0) B ∀B ∈ MN×N

sym . (1.9)

We emphasize that the functional F in (1.8) is different from the functional E of
linearized elasticity defined as

E(v) :=
∫

�

V0(x,E(v)) dx − L(v),

since if v(x) = 1
2W

2xwithW 
= 0 skew symmetric matrix, thenF(v) = −L(v) <

E(v).
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Nevertheless if N = 2 then (see Remark 2.6)

F(v) = E(v) − 1

4

(∫
�

V0(x, I)dx
)−1

[(∫
�

DV0(x, I)·E(v) dx
)−]2

,

hence F(v) = E(v) if

N = 2 , and
∫

�

DV0(x, I) · E(v) dx ≥ 0 .

In particular, if N = 2 and W is the Saint Venant–Kirchhoff energy density (1.4),
then the previous inequality reduces to

∫
�

div v dx ≥ 0,

whichmeans, roughly speaking, that the area of� is less than the area of the related
deformed configuration y(�), where y(x) = x + hv(x) and h > 0.

The main results of present paper are stated in Theorems 2.2 and 4.1; they show
that under a suitable compatibility condition on the forces (subsequent formula
(1.10)) the pure traction problem in linear elasticity is deduced via �-convergence
frompure traction problem in nonlinear elasticity, referring toweak L2 convergence
of the linear strains.

Precisely Theorem 2.2 states that, if the loads f, g fulfil (1.2) together with the
next compatibility condition
∫

∂�

f · W2x dHN−1+
∫

�

g · W2x dx < 0 ∀ skew symmetric matrixW 
=0 ,

(1.10)
then every sequence vh with F(vh) = inf Fh + o(1) has a subsequence such
that the corresponding linear strains converge weakly in L2 to the linear strain
of a minimizer of F , together with convergence (without relabeling) of energies
Fh(vh) to minF . Under the same assumptions Theorem 4.1 states that minimizers
of F coincide with the ones of linearized elasticity functional E , thus providing a
full justification of pure traction problems in linear elasticity at least if (1.10) is
satisfied. In particular, as is shown in Remark 2.8, this is true when g ≡ 0, f = f n
with f > 0 and n is the outer unit normal vector to ∂�, that is when we are in
presence of tension-like surface forces.

Regarding the physical interpretation and motivations of compatibility condi-
tion (1.10), we refer to subsequent Remarks 2.7 and 2.8.

Moreover, if there exists an N×N skew symmetric matrix such that the strict
inequality is reversed in (1.10), then functional F is unbounded from below; see
Remark 4.5 and Example 4.6. On the other hand, if inequality in (1.10) is sat-
isfied in a weak sense by every skew symmetric matrix, then argminF contains
argminE, minF = min E but F may have infinitely many minimizing critical
points which are not minimizers of E (see Proposition 4.3).

Summarizing, only two cases are allowed: either minF = min E or inf F =
−∞; actually the second case arises in the presence of compressive surface load.
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By oversimplifying we could say that F somehow preserves memory of insta-
bilities which are typical of finite elasticity, while they disappear in the linearized
model described by E .

In light of Theorem 2.2 and of the remarks and examples of Section 4, it seems
reasonable that, as far as pure traction problems are concerned, the range of validity
of linear elasticity should be restricted to a certain class of external loads, explicitly
those verifying (1.10), a remarkable example in such class is a uniform normal
tension load at the boundary as in Remark (2.8); while in the other cases equilibria
of a linearly elastic body could be better described through critical points of F ,
whose existence in general seems to be an interesting and open problem.

Concerning the structure of the new functional, we emphasize that actually F
is different from the classical linear elasticity energy functional E , though there
are many relations between their minimizers (see Theorem 4.1 ). Further and more
detailed information about functional F (a suitable property of weak lower semi-
continuity, lack of subadditivity, convexity in 2D, nonconvexity in 3D) are described
and proved in the paper [26].

2. Notation and Main Result

Assume that the reference configuration of an elastic body is a

bounded, connected open set � ⊂ R
N with Lipschitz boundary, N = 2, 3.

(2.1)
Thegeneric pointx ∈ �has components x j referring to the standard basis vectors e j
inRN ;LN andBN denote respectively the σ -algebras of Lebesgue measurable and
Borelmeasurable subsets ofRN . For everyα ∈ Rwe setα+ = α∨0, α− = −α∨0.

The notation for vectors a, b ∈ R
N and N ×N real matrices A, B, F are as

follows: a · b = ∑
j a jb j ; A · B = ∑

i, j Ai, jBi, j ; [AB]i, j = ∑
k Ai,kBk, j ;

|F|2 = Tr(FTF) = ∑
i, j F

2
i, j denotes the squared Euclidean norm of F in the space

MN×N of N×N real matrices; I ∈ MN×N denotes the identity matrix, SO(N )

denotes the group of rotation matrices,MN×N
sym andMN×N

skew denote respectively the
sets of symmetric and skew-symmetric matrices. For every B ∈ MN×N we define
symB := 1

2 (B + BT ) and skewB := 1
2 (B − BT ).

It is well known that matrix exponential maps MN×N
skew to SO(N ) and is sur-

jective on SO(N ) (see [20]). Therefore for every R ∈ SO(N ) there exist ϑ ∈ R

and W ∈ MN×N
skew , |W|2 = 2 such that exp(ϑ W) = R. By taking into account

that W3 = −W if N = 2, 3, the Taylor’s series expansion of ϑ → exp(ϑ W) =∑∞
k=0 ϑkWk/k! yields the Euler-Rodrigues formula
exp(ϑ W) = R = I + sin ϑ W + (1 − cosϑ)W2 N = 2, 3 . (2.2)

We recall an elementary issue which proves useful in our analysis:

if W ∈ MN×N
skew , |W|2 = 2 , N = 2, 3 , then |W2|2 = 2 , (2.3)

and we set
K := {τ(R − I) : τ ≥ 0, R ∈ SO(N )} . (2.4)
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For every U : � × MN×N → R, with U(x, ·) ∈ C2 a.e. x ∈ �, we denote by
DU(x, ·) and D2U(x, ·) respectively the gradient and the hessian of U with respect
to the second variable.

For every displacements field v ∈ H1(�;RN ), E(v) := sym∇v denotes the
infinitesimal strain tensor field, R := {v ∈ H1(�;RN ) : E(v) = 0} denotes the
space spanned by the set of the infinitesimal rigid displacements and Pv is the
orthogonal projection of v onto R.

We set −∫
�
vdx = |�|−1

∫
�
vdx.

We consider a body made of a hyperelastic material, say there exists aLN×BN2

measurable W : � × MN×N → [0,+∞] such that, for a.e. x ∈ �,W(x,∇y(x))
represents the stored energy density, when y(x) is the deformation and ∇y(x) is
the deformation gradient.

Moreover we assume that, for a.e. x ∈ �,

W(x,F) = +∞ if det F ≤ 0 (orientation preserving condition) , (2.5)

W(x,RF) = W(x,F) ∀R∈ SO(N ) ∀F ∈ MN×N (frame indifference) , (2.6)

∃ a neighborhood A of SO(N ) s.t. W(x, ·) ∈ C2(A) , (2.7)

∃C>0 independent of x : W(x,F) ≥ C |FTF − I|2 ∀F∈MN×N (coerciveness),

(2.8)

W(x, I) = 0 , hence DW(x, I) = 0 , for a.e. x ∈ � , (2.9)

that is the reference configuration has zero energy and is stress free, so by (2.6) we
also get

W(x,R)=0, DW(x,R)=0 ∀R ∈ SO(N ) .

By frame indifference there exists a LN ×BN -measurable V : � × MN×N →
[0,+∞] such that for every F ∈ MN×N ,

W(x,F) = V(x, 1
2 (F

TF − I)), (2.10)

and by (2.7),

∃ a neighborhood O of 0 such that V(x, ·) ∈ C2(O), a.e. x ∈ � . (2.11)

In addition we assume that there exists γ > 0 independent of x such that
∣∣∣BT D2V(x,D)B

∣∣∣ ≤ 2 γ |B|2 ∀D∈O, ∀B∈MN×N . (2.12)

By (2.9) and Taylor expansion with the Lagrange reminder we get, for a.e. x ∈ �

and suitable t ∈ (0, 1) depending on x and on B,

V(x,B) = 1

2
BT D2V(x, tB)B . (2.13)

Hence, by (2.12),

V(x,B) ≤ γ |B|2 ∀ B ∈ MN×N ∩ O . (2.14)
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According to (2.10) for a.e. x∈�, h>0 and every B ∈ MN×N , we set

Vh(x,B) := 1

h2
W(x, I + hB) = 1

h2
V(x, hsymB + 1

2h
2BTB) . (2.15)

Taylor’s formula with (2.9) and (2.15) entails Vh(x,B)= 1
2 (symB)D2V(x, 0)

(symB) + o(1), so

Vh(x,B) → V0(x, sym B) as h → 0+ , (2.16)

where the pointwise limit of integrands is the quadratic form V0 defined by

V0(x,B) := 1

2
BT D2V(x, 0)B a.e. x ∈ �, B ∈ MN×N . (2.17)

The symmetric fourth order tensor D2V(x, 0) in (2.17) plays the role of classical
linear elasticity tensor.

By (2.8) we get

Vh(x,B) = 1

h2
W(x, I + hB) ≥ C | 2 symB + h BTB |2, (2.18)

so that (2.17) and (2.18) imply the ellipticity of V0 as follows:

V0(x, symB) ≥ 4C | symB|2 a.e. x ∈ �, B ∈ MN×N . (2.19)

Let f ∈ L2(∂�;RN ) and g ∈ L2(�;RN ) be, respectively, the surface and body
force field.

For a suitable choice of the adimensional parameter h > 0, the functional
representing the total energy is labeled by Fh : H1(�;RN ) → R ∪ {+∞} and
defined as follows:

Fh(v) :=
∫

�

Vh(x,∇v) dx − L(v) , (2.20)

where

L(v) : =
∫

∂�

f · v dHn−1 +
∫

�

g · v dx. (2.21)

In this paper we are interested in the asymptotic behavior as h ↓ 0+ of functionals
Fh and to this aim we introduce the limit energy functional F : H1(�;RN ) → R

defined by

F(v) = min
W∈MN×N

skew

∫
�

V0
(
x,E(v) − 1

2W
2
)
dx − L(v) . (2.22)

We emphasize that the minimum in right-hand side of definition (2.22) exists; more
precisely, the finite dimensional minimization problem has exactly two solutions
which differ only by a sign, since, by (2.19),

lim
|W|→+∞,W∈MN×N

skew

∫
�

V0
(
x,E(v) − 1

2W
2
)
dx = +∞, (2.23)

and V0(x, ·) is strictly convex by (2.17), and (2.19).
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All along this paper we assume (2.1) together with the standard structural con-
ditions (2.5)–(2.9), (2.12) as it is usually done in scientific literature concerning
elasticity theory and we refer to the notations (2.10), (2.15), (2.17), (2.20)–(2.22).

The pair f, g describing the load is said to be equilibrated if
∫

∂�

f · z dHN−1 +
∫

�

g · z dx = 0 ∀ z ∈ R , (2.24)

and it is said to be compatible if
∫

∂�

f ·W2 x dHN−1 +
∫

�

g·W2 x dx < 0 ∀W ∈ MN×N
skew s.t.W 
= 0. (2.25)

Definition 2.1. We say that v j ∈ H1(�;RN ) is a minimizing sequence of the
sequence of functionals Fh j , if (Fh j (v j ) − inf Fh j ) → 0 as h j → 0+.

We will show (see Lemma 3.1) that, if compatibility (2.25) holds true, then
infh inf Fh > −∞, hence for every infinitesimal sequence h j a minimizing se-
quences of the sequence of functionals Fh j do exist.

Now we can state the main result, whose proof is postponed.

Theorem 2.2. Assume that the standard structural conditions and (2.24), (2.25)
hold true. Then for every sequence of strictly positive real numbers h j →0+ there
exist minimizing sequences of the sequence of functionals Fh j .

Moreover, for every minimizing sequence v j ∈ H1(�;RN ) of Fh j there ex-
ists a subsequence, a displacement v0 ∈ H1(�;RN ), and a constant matrix
W0 ∈ MN×N

skew such that, without relabeling,

E(v j ) ⇀ E(v0) weakly in L2(�;MN×N ) , (2.26)√
h j∇v j → W0 strongly in L2(�;MN×N ) . (2.27)

lim
j→+∞Fh j (v j ) = F(v0) = min

v∈H1(�;RN )
F(v) , (2.28)

F(v0) =
∫

�

V0(x,E(v0) − 1
2W

2
0) dx − L(v0). (2.29)

Remark 2.3. In the sequel (see Corollary 4.2) we prove that structural assumptions
together with (2.24) and (2.25) entail even further refinement in previous statement:
explicitly W0 = 0.

Remark 2.4. It is worth underlining that in contrast to the case of the Dirichlet
problem faced in [13], here, in the pure traction problem, we cannot expect even
weak H1(�;RN ) convergence of minimizing sequences.

Indeed choose f = g ≡ 0 and

W(x,F) =
{ |FTF − I|2 if det F > 0 ,

+∞ otherwise ,
(2.30)

v j := h−α
j Wx with W∈MN×N

skew , 0 < 2α < 1 , h j → 0+ .(2.31)
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Then Fh j (v j ) = o(1) and, due to inf Fh j = 0, the sequence v j is a minimizing
sequence which has no subsequence weakly converging in H1(�;RN ). It is well
known that such a phenomenon takes place for pure traction problems in linear
elasticity too, but in nonlinear elasticity this difficulty cannot be easily circumvented
in general, since the fact that v j is a minimizing sequence does not also entail that
v j −Pv j is minimizing sequence. In [26] we show that for some special integrand
W , as in the case of Saint Venant–Kirchhoff energy density, if v j is a minimizing
sequence, then w j := v j − Pv j is a minimizing sequence too, and there exists
a (not relabeled) subsequence of functionals Fh j such that the related minimizing
subsequencew j converges weakly in H1(�;RN ) to a minimizer v0 ofF , provided
(2.24) and (2.25) hold true.

Remark 2.5. A careful inspection of the proof (see also [13]) shows that Theo-
rem 2.2 remains true if coercivity condition (2.8) on W is weakened by assuming
either

∃C > 0 independent of x : W(x,F) ≥ C dist2
(
F, SO(N )

) ∀F∈MN×N ,

(2.32)
or by assuming these three conditions on V:

inf|B|≥ρ
inf
x∈�

V(x,B) > 0 ∀ ρ > 0 , (2.33)

∃ α > 0, ρ > 0 such that inf
x∈�

V(x,B) ≥ α|B|2 ∀ |B| ≤ ρ , (2.34)

lim inf|B|→+∞
1

|B| inf
x∈�

V(x,B) > 0. (2.35)

This can be shown by exploiting Lemma 3.1 in [13]; notice that under such weaker
assumption the constant appearing on the right-hand side of inequality (3.4) must
be modified accordingly in Lemma 3.1.

It is worth noting that (2.8) implies (2.32), (2.33), (2.34) and (2.35).

In this Section we show some properties of the limit functional F and several
preliminary results to be used in the proof of Theorem 2.2.

Remark 2.6. If N = 2, then for every W ∈ MN×N
skew there is a ∈ R such that

W2 = −a2I, hence (2.22) reads

F(v) = min
a∈R

∫
�

V0(x,E(v) + a2
2 I) dx − L(v) , (2.36)

therefore, a minimizer a∗(v) of functional (2.36) (for a ∈ R with fixed v) fulfils

a3∗(v)
∫

�

V0(x, I) dx + a∗(v)
∫

�

DV0(x, I) · E(v) dx = 0,

that is,

a2∗(v) =
(∫

�

V0(x, I) dx
)−1 (∫

�

DV0(x, I) · E(v) dx
)−

(2.37)
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and

F(v) =
∫

�

V0

(
x , E(v) + a2∗(v)

2 I
)
dx − L(v). (2.38)

Hence, by taking into account that V0 is a quadratic form, it is readily seen that for
N = 2,

F(v) =

=
∫
�
V0 (x,E(v)) dx − 1

4

(∫
�
V0(x, I)dx

)−1
[(∫

�
DV0(x, I)·E(v) dx

)−]2

− L(v)

= E(v) − 1

4

(∫
�
V0(x, I)dx

)−1
[(∫

�
DV0(x, I)·E(v) dx

)−]2

.

(2.39)
Even more explicitly, if N = 2, λ, μ > 0 and

W(x,F) =
{

μ|FTF − I |2 + λ
2 | Tr (FTF − I )|2 if det F > 0

+∞ otherwise,
(2.40)

then V0(x,B) = 4μ|B|2 + 2λ|TrB|2, and we get

a2∗(v) = |�|−1
(∫

�

div v dx
)−

. (2.41)

This conclusion could be approximately rephrased as follows: in 2D the global
energy F(v) of a displacement v is the same of linearized elasticity if the area of
the associated deformed configuration y(�) = (I + v)(�) is not less than the area
of �.

Remark 2.7. The compatibility condition (2.25) cannot be dropped in Theorem 2.2
even if the (necessary) condition (2.24) holds true. Moreover plain substitution of
strong with weak inequality in (2.25) leads to a lack of compactness for minimizing
sequences.

Indeed, if n denotes the outer unit normal vector to ∂� and we choose f = f n
with f < 0, g ≡ 0 then, by the Divergence Theorem,

∫
∂�

f · W2x dHN−1 = f (TrW2) |�| > 0 ∀ W∈MN×N
skew \{0} , (2.42)

so that the strict inequality in (2.25) is reversed in a strong sense by any
W ∈ MN×N

skew \ {0}; fix a sequence of positive real numbers such that

h j → 0+ W ∈ MN×N
skew , W 
≡ 0, and set v j = h j

−1( 12W
2 +

√
3
2 W) x , then

I + hv j = I + ( 1
2W

2 +
√
3
2 W

) ∈ SO(N ), due to representation (2.2) with
ϑ = π/3. Hence, by frame indifference,

Fh j (v j ) = L(v j ) = − f

2h j

∫
∂�

W2x · n dHn−1 = − f

2h j
(TrW2)|�| → −∞.

(2.43)
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On the other hand, assume that N = 2, 3, � ⊂ R
N a bounded open set with

Lipschitz boundary and W as in (2.30) and f = g ≡ 0, so that the compatibility
inequality is susbstituted by the weak inequality; if v j are still defined as above
then, hence by frame indifference,

Fh j (v j ) = 0 = inf Fh j , (2.44)

namely, v j is a minimizing sequence for Fh j , but E(v j ) has no weakly convergent
subsequences in L2(�;MN×N ).

Remark 2.8. It is worth noticing that the compatibility condition (2.25) holds true
when g ≡ 0, f = f n with f > 0 and n the outer unit normal vector to ∂�.

Indeed letW ∈ MN×N
skew ,W 
≡ 0: hence by (2.24) and the Divergence Theorem

we get ∫
∂�

f · W2 x dHN−1 = f (TrW2) |�| < 0, (2.45)

thus proving (2.25) in this case. This means that in case of uniform tension-like
force field at the boundary and null body force field the compatibility condition
holds true.

Remark 2.9. It is possible to observe some analogy between the energy functional
(2.22) and the results in [15,16], where the approximate theory of small strain
together with moderate rotations is discussed under suitable kinematical assump-
tions. More precisely, if F = I + h∇v is the deformation gradient and F = RU is
the polar decomposition, [15] shows that the assumptions

R = I + O(
√
h), U = I + O(h) as h → 0+, (2.46)

in the sense of pointwise convergence, are equivalent to

E(v) = O(1), h(skew∇v) = O(
√
h) as h → 0+, (2.47)

still in the sense of pointwise convergence. Therefore,

U = I + h
(
E(v) − 1

2 (skew∇v
)2

) + o(h), (2.48)

and the pointwise limit of Fh ( not the �-limit !) becomes∫
�

V0
(
x,E(v) − 1

2 (skew∇v)2
)
dx − L(v) ,

which is quite similar to (2.22).
We highlight the fact that (2.46) cannot be understood in the sense of

L2(�,MN×N ) whenever v ≡ v∗ on a closed subset � of ∂� withHn−1(�) > 0,
since by Korn and Poincarè inequalities we get∫

�

|∇v|2 dx ≤ C
( ∫

�

|E(v)|2 dx +
∫

�

|v∗|2 dHN−1
)

,

therefore if E(v) = O(1) then h∇v = O(h), thus contradicting the second of
(2.46). On the other hand a careful application of the rigidity Lemma of [18] show
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that if E(v) = O(1) and U = I + O(h) in the sense of L2(�,MN×N ), then there
exists a constant skew symmetric matrixW such that h∇vT∇v = −W2 + o(1) in
the sense of L1(�,MN×N ) (see the proof of Lemma 3.4 below). Therefore

U = I + h
(
E(v) − W2/2

) + o(h), (2.49)

where equality is understood in the sense of L1(�,MN×N ) andW a constant skew
symmetric matrix.

3. Proofs

We recall some basic inequalities exploited in the sequel, for both reader’s
convenience and labeling the related constants.

Poincaré Inequality. There exists a constant CP = CP (�) such that

∥∥ v − −∫
�
v

∥∥
L2(�;RN )

+ ∥∥ v − −∫
�
v

∥∥
L2(∂�;RN )

≤ CP ‖∇v‖L2(�;MN×N ) ∀ v ∈ H1(�;RN ) .

(3.1)
Korn Inequality. There exists a constant CK = CK (�) such that

‖v−Pv‖L2(�;RN ) + ‖v−Pv‖L2(∂�;RN ) ≤ CK ‖E(v)‖L2(�;MN×N ) ∀ v ∈ H1(�;RN ) .

(3.2)
Geometric Rigidity Inequality ([18]). There exists a constant CG = CG(�) such
that for every y ∈ H1(�;RN ) there is an associated rotationR ∈ SO(N ) such that
we have ∫

�

|∇y − R|2 dx ≤ CG

∫
�

dist2(∇y; SO(N )) dx. (3.3)

The first step in our analysis is the next lemma showing that if (2.24), (2.25) hold
true then the functionals Fh are bounded from below uniformly with respect to
h > 0; this implies the existence of minimizing sequences of the sequence of
functionals Fh j (see Definition 2.1).

Lemma 3.1. Assume (2.24) and (2.25). Then

inf
h>0

inf
v∈H1

Fh(v) ≥ − C2
P CG

C

(‖f‖2L2 + ‖g‖2L2

)
, (3.4)

where C is the coercivity constant in (2.18) and CP , CG are the constants related
to the basic inequalities above.

Actually the claim holds true even if strict inequality is replaced by weak in-
equality in (2.25).

Proof. Let v ∈ H1(�;RN ) and y = x + hv. Since det∇y > 0 a.e., by polar
decomposition for a.e. x there exist a rotation Rh(x) and a symmetric positive
definite matrix Uh(x) such that ∇y(x) = Rh(x)Uh(x), hence ∇yT∇y = U2

h , so
that for a.e. x,

|∇yT∇y − I|2 = |U2
h − I|2 = |(Uh − I)(Uh + I)|2 ≥ |Uh − I|2 =

= |(∇y − Rh)|2 ≥ dist2(∇y, SO(N )) .
(3.5)
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By (2.8), (3.5) and the Geometric Rigidity Inequality (3.3) there exists a constant
rotation R such that

Fh(v) ≥ Ch−2
∫

�

|∇yT∇y − I|2 dx − h−1L(y − x) ≥

≥ C

CG
h−2

∫
�

|∇y − R|2 dx − h−1L(y − x).

(3.6)

If

c := |�|−1
∫

�

(y − Rx) dx ,

then by Poincaré inequality (3.1), we have that

‖y−Rx−c‖L2(�)+‖y−Rx−c‖L2(∂�) ≤ CP ‖∇(y−Rx)‖L2 = CP ‖∇y−R‖L2 ,

and by (2.24) and Young inequality we get, for every α > 0,

L(y − Rx − c) ≤ CP ‖∇y − R‖L2
(‖f‖L2(∂�) + ‖g‖L2(�)

) ≤

≤ α−1 CP

2
‖∇y − R‖2L2 + α

CP

2

(‖f‖L2 + ‖g‖L2
)2

≤ α−1 CP

2
‖∇y − R‖2L2 + α CP

(‖f‖2L2 + ‖g‖2L2

)
.

By choosing α = h CP CG/C ,

L(y − x) = L(y − Rx − c) + L(Rx − x) ≤

≤ α−1 CP

2
‖∇y − R‖2L2 + α CP

(‖f‖2L2 + ‖g‖2L2

) + L(Rx − x) =

= h−1 C/CG

2
‖∇y − R‖2L2 + C 2

P

C/CG
h

(‖f‖2L2 + ‖g‖2L2

) + L(Rx − x) .

(3.7)
Exploiting the standard representation (2.2) of the rotation R = I + W sin ϑ +
(1− cosϑ)W2 for suitable ϑ ∈ R andW ∈ MN×N

skew with |W|2 = 2, by (2.24) and
(2.25) we get

L(
(R − I)x

) = (sin ϑ)L(Wx) + (1 − cosϑ)L(W2) < 0 , (3.8)

hence, by (3.6), (3.7) and (3.8), we conclude that

Fh(v) ≥ C/CG

2
h−2

∫
�

|∇y − R|2 dx − C 2
P

C/CG

(‖f‖2L2 + ‖g‖2L2

) − h−1L(
(R − I)x

)
>

> − C 2
P CG

C

(‖f‖2L2 + ‖g‖2L2

) ∀v ∈ H1(�;RN ) , ∀h > 0 .

(3.9)
��
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Lemma 3.2. Let vn ∈ H1(�;RN ) be a sequence such that E(vn) ⇀ T in
L2(�;MN×N ). Then there exists w ∈ H1(�;RN ) such that T = E(w). If, in ad-
dition, ∇vn ⇀ G in L2(�;RN ), then there exists a constant matrix W ∈ MN×N

skew
such that ∇w = G − W.

Proof. Since E(vn) ⇀ T in L2(�; MN×N ), we have E
(
vn − Pvn

) = E
(
vn

)
are

equibounded in L2(�;MN×N ), then byKorn inequality, vn−Pvn are equibounded
in H1(�;RN ), where P the projection on the setR of infinitesimal rigid displace-
ments. Therefore, up to subsequences, we can assume that wn := vn − Pvn ⇀ w
in H1(�;RN ) and we get

∇wn = E(wn) + skew∇wn = E(vn) + skew∇wn . (3.10)

Hence there existsS ∈ L2(�;MN×N
skew ) such that skew∇wn ⇀ S in L2(�;MN×N )

andby lettingn → +∞ into (3.10)wehaveT+S = ∇w. SinceS ∈ L2(�;MN×N
skew ),

it is readily seen that E(w) = T, and if, in addition, ∇vn ⇀ G in L2(�;MN×N ),
then there exists a constantW ∈ MN×N

skew such that∇Pvn ⇀ W in L2(�;MN×N ),
actually converging in the finite dimensional space of constant skew symmetric
matrices, thus proving the Lemma. ��
Remark 3.3. It is worth noting that if E(v j ) ⇀ T in L2(�;MN×N ), then by
Lemma 3.2 there exists v ∈ H1(�;RN ) such that T = E(v), and if T = E(w) for
some w ∈ H1(�;RN ), then v −w is an infinitesimal rigid displacement in �, i.e.
E(v − w) = 0.

Next we show a preliminary convergence property; we compute a kind of Gamma
limit of the sequence of functional Fh with respect to weak L2 convergence of
linearized strains.

Lemma 3.4. (energy convergence) Assume that (2.24) holds true and let h j → 0
be a decreasing sequence. Then we have that:

i) For every v j , v ∈ H1(�;RN ) such that E(v j ) ⇀ E(v) in L2(�;MN×N ) we
have

lim inf
j→+∞ Fh j (v j ) ≥ F(v).

ii) For every v ∈ H1(�;RN ) there exists a sequence v j ∈ H1(�;RN ) such that
E(v j ) ⇀ E(v) in L2(�;MN×N ) and

lim sup
j→+∞

Fh j (v j ) ≤ F(v).

Proof. Firstweprove i).We sety j = x+h jv j anddenote various positive constants
by C ′,C ′′, ..., L ′, L ′′. We may assume without restriction that Fh j (v j ) ≤ C ′; by
taking into account (2.8), we get

Ch−2
j

∫
�

|∇yTj ∇y j − I|2 dx − L(v j ) ≤ Fh j (v j ),
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and by (2.24),

h−2
j

∫
�

|∇yTj ∇y j − I|2 dx ≤ C ′ + L(v j ) = C ′ + L(v j − Pv j ),

where P v j is the projection of v j onto the set of infinitesimal rigid displacements.
Hence, by Korn inequality, we have

h−2
j

∫
�

|∇yTj ∇y j − I|2 dx ≤ C ′ + C ′′
(∫

�

|E(v j )|2 dx
) 1

2 ≤ C ′′′. (3.11)

Inequality (3.11), together with the Rigidity Lemma of [18] and (3.5), implies that
for every h j there exists a constant rotation R j ∈ SO(N ), and a constant C ′′′,
dependent only on �, such that∫

�

|∇y j − R j |2 dx ≤ C ′′′′h2j ;

that is, ∫
�

|I + h j∇v j − R j |2 dx ≤ C ′′′′h2j . (3.12)

Due to the representation (2.2) of rotations, for every j ∈ N there exist ϑ j ∈
(−π, π ] and W j ∈MN×N

skew , |W j |2 = 2 such that R j = exp(ϑ jW j ) and

R j = exp(ϑ jW j ) = I + sin ϑ j W j + (1 − cosϑ j )W2
j , (3.13)

hence, by (3.12),∫
�

|h j∇v j − sin ϑ jW j − (1 − cosϑ j )W2
j |2 dx ≤ C ′′′′h2j . (3.14)

Since

sym
(
h j∇v j − sin ϑ jW j − (1 − cosϑ j )W2

j

)
= h jE(v j ) − (1 − cosϑ j )W2

j ,

we get ∫
�

|E(v j ) − (1 − cosϑ j )h
−1
j W2

j |2 dx ≤ C ′′′′.

By recalling that E(v j ) ⇀ E(v) in L2(�;MN×N ) and |W2
j |2 = 2 due to (2.3),

we deduce, for suitable L > 0,

∣∣1 − cosϑ j
∣∣ = 1√

2

∣∣∣(1 − cosϑ j )W2
j

∣∣∣ ≤ Lh j , (3.15)

hence
| sin ϑ j | ≤ √

2Lh j . (3.16)

By (3.14) and (3.15) we have∫
�

|√h j∇v j − h−1/2
j sin ϑ jW j |2 dx ≤ (C ′′′ + 2L|�|) h j , (3.17)
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hence, by compactness of the sequence h−1/2 sin ϑ jW j in MN×N
skew , there exists a

constant matrixW ∈ MN×N
skew such that, up to subsequences,

√
h j∇v j → W strongly in L2(�;MN×N ), (3.18)

and therefore

h j∇vTj ∇v j → WTW = −W2 strongly in L1(�;MN×N ) . (3.19)

By Lemma 4.2. of [13], for every k ∈ N, there exists an increasing sequence of
Caratheodory functions Vk

j : � × MN×N
sym → [0,+∞) and a measurable function

μk : � → (0,+∞) such that Vk
j (x, ·) is convex for a.e. x ∈ � and satisfies

Vk
j (x,D) ≤ V(x, h jD)/h2j ∀D ∈ MN×N

sym , (3.20)

Vk
j (x,D) =

(
1 − 1

k

)
V0(x,D) for V0(x,D) ≤ μk(x)/h2j . (3.21)

By setting D j := E(v j ) + 1
2h j∇vTj ∇v j , properties (3.19), (3.20) and (3.21) entail

∫
�

Vh j (x,∇v j ) dx ≥
∫

�

Vk
j (x,D j ) dx (3.22)

and

lim
j→+∞Vk

j (x,D) =
(
1 − 1

k

)
V0(x,D) a.e. x ∈ �, ∀D ∈ MN×N

sym . (3.23)

Then by taking into account that

D j ⇀ E(v) − 1
2W

2 in L1(�;MN×N ),

(3.22) and Lemma 4.3 of [13] yield

lim inf
j→+∞

∫
�

Vh j (x,∇v j ) dx ≥ lim inf
j→+∞

∫
�

Vk
j (x,D j ) dx

≥
∫

�

(1 − 1/k)V0

(
x, E(v) − 1

2W
2
)
dx ∀k ∈ N .

Up to subsequences, v j − Pv j ⇀ w in H1(�;RN ), moreover, E(v) = E(w).
Then, by (2.24) for every k ∈ N, we obtain

lim inf
j→+∞ Fh j (v j ) ≥

∫
�

(
1 − 1

k

)
V0(x,E(v) − 1

2W
2) dx − L(w) =

=
∫

�

(
1 − 1

k

)
V0(x,E(v) − 1

2W
2) dx − L(v).

Taking the supremum as k → ∞, we deduce

lim inf
j→+∞ Fh j (v j ) ≥

∫
�

V0(x,E(v) − 1
2W

2) dx − L(v) ≥ F(v), (3.24)

which proves i).
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We are left to prove claim ii). To this end, we set, for every v ∈ H1(�;RN ),

Wv ∈ argmin

{∫
�

V0

(
x, E(v) − 1

2W
2
)
dx : W ∈ MN×N

skew

}
. (3.25)

Without relabeling, v denotes also a fixed compactly supported extension in
H1(RN ;RN ) of the given v (such extension exists since � is Lipschitz due to
(2.1)).

We may define a recovery sequence w j ∈ C1(�;RN ) for every j , as follows:
set

w j = h−1/2
j Wv x + v � ϕ j , (3.26)

where ϕ j (x) = ε−N
j ϕ(x/ε j ) is a mollifier supported in Bε j (0), and the sequence

ε j is chosen in such a way that h jε
−3
j → 0 holds true. Sobolev embedding entails

v ∈ L6(RN ;RN ), since v ∈ H1(RN ;RN ) and N = 2, 3; then, by the Young
Theorem, and since 0 < ε ≤ 1, we have

‖∇(v�ϕ j )‖L∞ ≤ ‖v‖L6‖vϕ j‖L6/5 ≤ ε
−N/6−1
j ‖∇ϕ‖L6/5‖v‖L6 ≤ ε

−3/2
j ‖∇ϕ‖L6/5‖v‖L6 .

(3.27)
By ∇w j = h−1/2

j Wv + ∇(v � ϕ j ) and WT
v = −Wv we get

E(w j ) = E(v) � ϕ j ,

h j∇wT
j ∇w j = −W2

v + h j∇(v � ϕ j )
T ∇(v � ϕ j ) + h1/2j

(∇(v � ϕ j )
T Wv − Wv∇(v � ϕ j )

)
,

hence, by taking into account (3.27) and h jε
−3
j → 0, we get

E(w j ) + 1
2h j∇wT

j ∇w j → E(v) − 1
2W

2
v in L2(�,RN ) , (3.28)

h j

(
E(w j ) + 1

2h j∇wT
j ∇w j

)
→ 0 in L∞(�,RN ). (3.29)

Therefore Taylor’s expansion of V entails

lim
j→+∞Vh j (x,E(w j ) + 1

2h j∇wT
j ∇w j ) = V0

(
x,E(v) − 1

2W
2
v
)

for a.e. x ∈ �,

(3.30)
and taking into account (2.14), (2.15), (2.16) and (3.29), we have

Vh j (x,E(w j ) + 1
2h j∇wT

j ∇w j ) ≤ γ |E(w j ) + 1
2h j∇wT

j ∇w j |2 , (3.31)

hence the Lebesgue dominated convergence theorem yields

Fh j (w j ) → min
W∈MN×N

skew

∫
�

V0
(
x,E(v) − 1

2W
2
v
)
dx − L(v) ,

thus proving ii). ��
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Remark 3.5. IfW is a convex function of FTF− I, then (3.24) is a straightforward
consequence of the weak L1(�;MN×N ) convergence of B j and the construction
of Vk

j can be avoided in the proof. Hence the restriction to decreasing sequences
h j (needed in order to apply Lemmas 4.2 and 4.3 of [13]) can be removed in the
assumptions of Lemma 3.4 ifW is convex.

Lemma 3.1 entails the existence of minimizing sequences for the sequence of func-
tionals Fh . Next, tecnical lemma 3.6 shows a (very weak) relative compactness
property of these sequences: if v j is a minimizing sequence then E(v j ) is equi-
bounded in L2. The key idea of the proof consists in showing that ||E(v j )||L2 →
+∞ entails the contradiction E(v j )/||E(v j )||L2 → 0 strongly in L2, and by a care-
ful analysis of all possible cases related to different balance of involved parameters
we get

Lemma 3.6. (Compactness of minimizing sequences) Assume that (2.24) and
(2.25) hold true, h j → 0+ is a sequence of strictly positive real numbers and
the sequence of displacements v j ∈ H1(�;RN ) fulfil (Fh j (v j ) − inf Fh j ) → 0,
namely v j is a minimizing sequence for Fh j .

Then there exists M > 0 such that ‖E(v j )‖L2 ≤ M.

Proof. By Lemma 3.1 there exists c such that

−∞ < c ≤ inf Fh j ≤ Fh j (0) = 0. (3.32)

Assume, by contradiction, that t j :=‖ E(v j ) ‖L2→ +∞ and set w j = t−1
j v j .

By Lemma 3.2 there exist w ∈ H1(�;RN ) and a subsequence such that without
relabeling E(w j ) ⇀ E(w) in L2(�;MN×N ). By (3.32) we can assume up to
subsequences that Fh j (v j ) ≤ 1.

By setting y j = x + h jv j = x + h j t jw j , arguing as at the beginning of the
Lemma 3.4 proof and exploiting Korn inequality (3.2), we obtain that for every
j ∈ N there exists a constant rotation R j ∈ SO(N ) such that

∫
�

|∇y j − R j |2 dx ≤ h2j + CK (‖ f ‖L2(∂�) + ‖g‖L2(�)) t j h
2
j ,

that is, by setting C ′ = CK (‖ f ‖L2(∂�) + ‖g‖L2(�)),∫
�

|I + h j t j∇w j − R j |2 dx ≤ h2j (1 + C ′ t j ). (3.33)

Possibly up to further subsequence extraction, one among these three alternatives
takes place:

a) h j t j → λ > 0 , b) h j t j → 0 , c) h j t j → +∞ .

If condition a) holds true, we have

∫
�

∣∣∣∣∇w j − R j − I
h j t j

∣∣∣∣
2

dx ≤ 1

t2j
+ C ′

t j
,
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hence, up to subsequences,

∇w j → R − I
λ

(3.34)

strongly in L2(�;MN×N ) for a suitable constant matrix R ∈ SO(N ), and by
Lemma 3.2 we get ∇w ∈ K + MN×N

skew .
If condition b) holds true, then, by using formulæ (3.13) and (3.33), there exist

ϑh j ∈ (−π, π ] and a constant matrix W j ∈ MN×N
skew with |W j |2 = |W2

j |2 = 2
such that∫

�

|h j t j∇w j − sin ϑh jW j − (1 − cosϑ j )W2
j |2 dx ≤ h2j (1 + C ′ t j ) . (3.35)

Since W j and W2
j are respectively skew-symmetric and symmetric, (3.35) yields

∫
�

∣∣∣∣E(w j ) − (1 − cosϑ j )

h j t j
W2

j

∣∣∣∣
2

dx ≤ t−2
j + C ′ t−1

j , (3.36)

and, bearing in mind that
∫
�

|E(w j )|2 dx = 1 , we get
∣∣∣∣ (1 − cosϑ j )

h j t j

∣∣∣∣ = 1√
2

∣∣∣∣ (1 − cosϑ j )

h j t j
W2

j

∣∣∣∣ ≤ C ′′, (3.37)

hence ∣∣sin ϑh j

∣∣ ≤
√
2(1 − cosϑh j ) ≤

√
2C ′′ h j t j . (3.38)

Estimate (3.35), together with t j → +∞, yields

∫
�

∣∣∣∣∣
√
h j t j∇w j − sin ϑ j√

h j t j
W j − (1 − cosϑ j )√

h j t j
W2

j

∣∣∣∣∣
2

dx ≤ C ′′′ h j . (3.39)

By (3.37) we know that 1 − cosϑ j = o(
√
h j t j ), hence (3.38) and (3.39) entail

the existence of a constant matrix W ∈ MN×N
skew such that, up to subsequences,√

h j t j∇w j → W strongly in L2(�;MN×N ). Moreover, by (2.8) and Korn in-
equality,

t2j

∫
�

|E(w j ) + 1
2h j t j∇wT

j ∇w j |2 dx ≤ C IV + L(w j )

= C IV + L(w j − Pw j )

≤ CV
(∫

�

|E(w j )|2 dx
) 1

2

,

hence ∫
�

|E(w j ) + 1
2h j t j∇wT

j ∇w j |2 dx → 0.

On the other hand, by the Fatou Lemma,

lim inf
j→+∞

∫
�

|2E(w j ) + h j t j∇wT
j ∇w j |2 dx ≥

∫
�

|2E(w) − W2| dx,
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and we get 2E(w) = W2, which implies∇w = skew∇w+ 1
2W

2, hence skew
(∇w

)
is a gradient field, and there is a constant skew-symmetric matrix Z such that
skew

(∇w
) = Z. By setting

R := I + 1

2
W2 +

√
3

2
W,

and by applying formula (3.13), we get a R ∈ SO(N ) that is ∇w − (R − I) ∈
MN×N

skew , which implies ∇w ∈ K + MN×N
skew whenever condition b) holds true.

Eventually, if condition c) holds true, by (3.33) we get

∫
�

∣∣∣∣∇w j − R j − I
h j t j

∣∣∣∣
2

dx ≤ A

t2j
+ C ′

t j
, (3.40)

and by taking into account that h j t j → +∞ and |R j − I| is bounded, by (3.33)
we get ∇wh j → 0 strongly in L2(�; MN×N ), hence ∇w ∈ K + MN×N

skew still by
Lemma 3.2.

By summarizing, in all three cases if t j :=‖ E(v j ) ‖L2→ +∞ andFh j (t jw j ) ≤
C then ∇(t−1

j v j ) = ∇w j → ∇w strongly in L2(�;MN×N ) and ∇w ∈ K +
MN×N

skew = K + MN×N
skew .

Therefore, E(w j ) → E(w) strongly in L2(�;MN×N ) .
Since w̃ j := w j − Pw j are equibounded in H1(�;RN ), every subsequence

of w̃ j has a weakly convergent subsequence and if w̃ is one of the limits we get
E(w̃) = E(w) hence by (2.24) L(w̃) = L(w). Therefore every subsequence of
L(w̃ j ) has a subsequence which converges to L(w) that is the whole sequence
L(w̃ j ) converges to L(w), hence

−L(w) = − lim sup
j→+∞

L(w̃ j ) = − lim sup
j→+∞

L(w j ) ≤ lim inf
j→+∞ t−1

j Fh j (v j ) . (3.41)

Since (3.32) entails lim sup t−1
j Fh j (v j ) ≤ 0, by (3.41) we get L(w) ≥ 0 .

By taking into account that ∇w ∈ K + MN×N
skew , then we have either ∇w ∈

MN×N
skew or

w(x) = τ(R − I)x + Ax + c , for some τ > 0 , R ∈ SO(N ) ,

R 
= I, A ∈ MN×N
skew , c ∈ R

N .

The second case cannot occur, since in such a case, by (2.2), therewould existϑ ∈ R

with cosϑ < 1 and W ∈ MN×N
sym , W 
≡ 0 such that R = I + (1 − cosϑ)W2 +

(sin ϑ)W ∈ SO(N ), hence (2.24) and (2.25) would entail the contradiction

L(w) = τ

∫
∂�

f · (R − I)x dHN−1 + τ

∫
�

g · (R − I)x =
= τ(1 − cosϑ)

∫
∂�

f · W2x dHN−1 + τ(1 − cosϑ)

∫
�

g · W2x < 0 .

(3.42)
Hence ∇w ∈ MN×N

skew , that is E(w) = 0, which is again a contradiction, since
‖E(w j )‖L2 = 1 and E(w j ) → E(w) in L2(�;MN×N ). ��
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Proof of Theorem 2.2 -. First we notice that minimizing sequences for Fh j do
exist for every sequence of positive real numbers h j converging to 0, thanks to
Lemma 3.1.

Fix a sequence of real numbers h j > 0 converging to 0 and a minimizing
sequence v j for Fh j .

Up to a preliminary extraction of a subsequence we can assume that h j is
decreasing.

Since −∞ < inf Fh j ≤ 0 there exists C > 0 such that Fh j (v j ) ≤ C , hence,
by Lemma 3.6,

‖E(v j )‖L2 ≤ C,

and by Lemma 3.2, there exists v0 ∈ H1(�;RN ) such that, up to subsequences,
E(v j ) ⇀ E(v0) in L2(�;MN×N ), thus proving (2.26). By Lemma 3.4 we get that

lim inf
j→+∞ Fh j (v j ) ≥ F(v0) .

Still by Lemma 3.4, for every v ∈ H1(�;RN ) there exists ṽ j ∈ H1(�;RN ) such
that E(̃v j ) ⇀ E(v) in L2(�;MN×N ) and

lim sup
j→+∞

F j (̃vh j ) ≤ F(v) ,

hence

F(v0) ≤ lim inf
n→+∞ F j (vh j ) ≤ lim inf

n→+∞(inf Fh j + o(1)) ≤ lim sup
j→+∞

Fh j (̃v j ) ≤ F(v),

(3.43)
and (2.28) is proven.

Eventually we notice that (2.27) follows by labeling with W0 the skew sym-
metric matrix W in the convergence relationship (3.18) obtained in the proof of
claim i) in Lemma 3.4.

Thus we have only to prove (2.29): to this end, by arguing as in the proof of
claim i) in Lemma 3.4, we have (3.24), hence we get

F(v0) = lim inf
j→+∞ Fh j (v j ) ≥

∫
�

V0(x,E(v0) − 1
2W

2
0) dx ≥ F(v0),

thus proving (2.29). ��

4. Limit Problem and Linear Elasticity

We denote by E : H1(�;RN ) → R the energy functional of classical linear
elasticity

E(v) :=
∫

�

V0(x,E(v)) dx − L(v) . (4.1)

Notice that (1.6) is just a particular model case of (4.1) corresponding to (1.4).
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As was already emphasized, the inequalityF ≤ E always holds true. Moreover
the two functionals cannot coincide: indeedF(v) < E(v) whenever v(x) = 1

2W
2x

with W ∈ MN×N
skew . However we can show that the two functionals F and E ,

notwithstanding their differences, have the same minimum and same set of mini-
mizers when the loads are equilibrated and compatible, that is they fulfil both (2.24)
and (2.25).

The next results clarify the relationship between the minimizers of classical
linear elasticity functional E and the minimizers of functional F defined in (1.8) ,
and coincident with the Gamma limit of nonlinear energies Fh , in the sense stated
in Theorem 2.2.

Theorem 4.1. Assume that (2.24) and (2.25) hold true. Then

min
v∈H1(�;RN )

F(v) = min
w∈H1(�;RN )

E(w) (4.2)

and

argminv∈H1(�;RN )F = argminv∈H1(�;RN )E . (4.3)

Proof. Both functionals F , E do have minimizers under conditions (2.24) and
(2.25), thanks to Theorem 2.2. Taking into account that F(v) ≤ E(v) for every
v ∈ H1(�;RN ), and setting zW(x) := 1

2W
2x for every W ∈ MN×N

skew , we get
E(zW) = 1

2W
2 and

min
v∈H1(�;RN )

E(v) ≥ min
v∈H1(�;RN )

F(v) =

min
v∈H1(�;RN )

{
min

W∈MN×N
skew

{∫
�

V0(x, E(v) − 1
2W

2) dx − L(v)
}}

=

min
W∈MN×N

skew

{
min

v∈H1(�;RN )

{∫
�

V0(x, E(v) − 1
2W

2) dx − L(v)
}}

=

min
W∈MN×N

skew

{
min

v∈H1(�;RN )

{∫
�

V0(x, E(v − zW)) dx − L(v − zW) − L(zW)

}}
=

min
z∈H1(�;RN )

E(z) − max
W∈MN×N

skew

L(zW) = min
H1(�;RN )

E ,

(4.4)
where the last inequality follows by L(zW) ≤ 0, due to (2.25) and L(0). Therefore
(4.2) is proved and we are left to show (4.3).

First, assume v ∈ argminv∈H1(�;RN )F and let

Wv ∈ argmin

{∫
�

V0

(
x, E(v) − 1

2W
2
)
dx : W ∈ MN×N

skew

}
. (4.5)
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If Wv 
= 0 then, by setting zWv = 1
2W

2
v x, we get E(zWv) = ∇zWv = 1

2W
2
v and,

by compatibility (2.25), we obtain

minF = F(v) =
∫

�

V0

(
x, E(v − zWv)

)
dx − L(v − zWv) − L(zWv) =

E(v − zWv) − L(zWv) ≥ min E − L(zWv) > min E ,

(4.6)
which is a contradiction. Therefore Wv = 0, zWv = 0, and all the inequalities in
(4.6) turn out to be equalities, hence we get F(v) = E(v) = min E = minF , say,
v ∈ argminH1(�;RN )E and argminH1(�;RN )F ⊂ argminH1(�;RN )E .

In order to show the opposite inclusion, we assume v ∈ argminv∈H1(�;RN )E
and, still referring to the choice (4.5), we set zWv = 1

2W
2
v x. Then

F(v)=
∫

�

V0

(
x, E(v − zWv)

)
dx − L(v − zWv) − L(zWv) =

= E(v − zWv) − L(zWv) ≥ F(v − zWv) − L(zWv) . (4.7)

This leads to the contradiction F(v) > F(v − zWv) if zWv 
= 0, due to (2.25);
therefore zWv = 0, andwe have equalities in place of inequalities in (4.7). Therefore
E(v) = F(v) and v ∈ argminH1(�;RN )F . ��
Corollary 4.2. Assume that the standard structural assumptions hold true along
with (2.24) and (2.25), and that W0 ∈ MN×N

skew is the matrix whose existence is
warranted by in Theorem 2.2. Then W0 = 0.

Proof. Let v0 be in argminF , letW0 be the skew symmetric matrix in the claim of
Theorem 2.2, and assume by contradiction thatW0 
= 0. By (4.2) and (4.3) we get

∫
�

V0(x,E(v0) − 1
2W

2
0) dx =

∫
�

V0(x,E(v0)) dx,

and by taking into account that V0 is a quadratic form,
∫

�

V0(x, 1
2W

2
0) dx − 1

2

∫
�

DV0(x,E(v0)) · W2
0 dx = 0.

Since, by (4.3), v0 ∈ argminE , the Euler-Lagrange equation yields
∫

�

DV0(x,E(v0)) · W2
0 dx = L(W2

0x) ,

hence, by (2.25),

0 ≤
∫

�

V0(x, 1
2W

2
0) dx = 1

2
L(W2

0x) < 0,

which is a contradiction.
Hence W0 = 0. ��

If the strong inequality in (2.25) is replaced by a weak inequality, then Theorem
4.1 cannot hold true, as is shown by the following general result:



Francesco Maddalena, Danilo Percivale & Franco Tomarelli

Proposition 4.3. If the structural assumptions together with (2.24) are fulfilled, but
(2.25) is replaced by

L(W2x) ≤ 0 ∀W ∈ MN×N
skew , (4.8)

then argminF is still nonempty and

minF = min E , (4.9)

but the coincidence of minimizer sets is replaced by the inclusion

argminE ⊂ argminF . (4.10)

If (4.8) holds true and there exists U ∈ MN×N
skew , U 
= 0 such that L(U2x) = 0,

then F admits infinitely many minimizers which are not minimizers of E; more
precisely,

argminE ⊂

=

argminE +
{
U2x : U ∈ MN×N

skew , L(U2x) = 0
}

⊂ argminF ,

(4.11)
where the last inclusion is an equality in 2D:

argminE ⊂

=

argminE + { − t x : t ≥ 0} = argminF , if N = 2 . (4.12)

Proof. The set argminE is nonempty by classical arguments. Fix v∗ ∈ argminE .
Then, for every v ∈ H1(�;RN ), and for every W ∈ MN×N

skew , by setting zW =
1
2W

2x, we get

F(v∗) ≤ E(v∗) ≤ E(v − zW) =
∫

�

V0(x,E(v) − 1
2W

2) dx − L(v − zW)

≤
∫

�

V0(x,E(v) − 1
2W

2) dx − L(v), (4.13)

hence, for every v ∈ H1(�;RN ),

F(v∗) ≤ min
W∈MN×N

skew

∫
�

V0(x,E(v) − 1
2W

2) dx − L(v) = F(v), (4.14)

thus proving that argminF is nonempty as well as (4.10).
Moreover, by setting

Wv ∈ argmin

{∫
�

V0
(
x,E(v) − 1

2W
2
)
dx : W ∈ MN×N

skew

}
, ∀v ∈ H1(�;RN ),

(4.15)
condition (4.8) entails that for every v∗ ∈ argmin E ,

F(v∗) =
∫

�

V0
(
x,E(v∗−zWv∗ )

)
dx−L(v∗) = E(v∗−zWv∗ )−L(zWv∗ ) ≥ E(v∗),

(4.16)
hence (4.9) follows by F ≤ E .
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If (4.8) holds true, L(zU) = 0 for some 0 
= U ∈ MN×N
skew and v∗ ∈ argmin E ,

then, by comparing the finite dimensional minimization overW with evaluation at
W = U and exploiting (4.9), we get

F(v∗ + zU) = min
W

∫
�

V0
(
x,E(v∗) + 1

2U
2 − 1

2W
2
)
dx − L(v∗ + zU) ≤

≤
∫

�

V0(x,E(v∗)) dx − L(v∗) = E(v∗) = min E = minF ,

(4.17)
that is, v∗ + zU ∈ argminF . Since V0 is strictly convex we get
argminE = {v∗ + z : z ∈ R}, hence E(v∗ + zU) > E(v∗), thus proving the
strict inclusion in (4.11).

Concerning the last claim, if (4.8) holds true, L(zU) = 0 for some 0 
= U ∈
MN×N

skew , v∗ ∈ argminF and N = 2, then M2×2
skew is a 1D space, therefore we can

assume U = (e1 ⊗ e2 − e2 ⊗ e1), U2 = −I, M2×2
skew = spanU and Wv∗ = λU for

some λ ∈ R, and by (4.9),

min E = minF = F(v∗) =
∫

�

V0
(
E(v∗) − 1

2
W2

v∗
)
dx − L(v∗) =

=
∫

�

V0
(
E(v∗) − λ2

2
U2) dx − L(v∗ − zλU ) = E(v∗ − zλU ) ,

that is (v∗−zλU ) ∈ argminE for every v∗ ∈argminF , therefore we get

argminF − { zλU : λ ∈ R} ⊂ argminE , argminF ⊂ argminE + { zλU : λ ∈ R} ,

hence by zλU = λ2

2 U
2x = −λ2

2 xwe obtain the equality in place of the last inclusion
in (4.11), hence (4.12). ��
The next example depicts the above Proposition in a simple explicit case.

Example 4.4. Let � = (−1/2, 1/2)2, g ≡ 0, f = (1S+ − 1S−)e2 + (1T+ − 1T−)e1
where S± denotes, respectively, the right and the left sides, and T± the upper and
the lower sides of the square. A straightforward computation gives, for suitable
λ ∈ R,∫

∂�

f · W2 x dHN−1 = −λ2
∫

∂�

f · x dHN−1 = 0 ∀ W ∈ M2×2
skew . (4.18)

Then, since (2.24) and (4.8) are fulfilled, by (4.12) in Proposition 4.3 we have
the whole description of the set argminF : for every choice of V0 satisfying the
standard structural hypotheses, F has infinitely many minimizers v which are not
minimizers of E ; explicitly, they are of the kind

v = (v∗ − tx) ∈ argminF \ argminE if v∗ ∈ argminE, t > 0 .

It is quite natural to ask whether condition (2.25), which is essential in the proof
of Theorem 2.2, may be dropped in order to obtain at least the existence of minF :
the answer is negative.

Actually the next remark shows that, when the inequality in compatibility con-
dition (2.25) is reversed for at least one choice of the skew-symmetric matrix W,
then F is unbounded from below.



Francesco Maddalena, Danilo Percivale & Franco Tomarelli

Remark 4.5. If

∃W∗ ∈ MN×N
skew : L(zW∗) > 0 , where zW∗ = 1

2
W2∗x , (4.19)

then
inf

v∈H1(�;RN )
F(v) = −∞. (4.20)

Indeed, by arguing as in (4.4) and replacing minH1 with infH1 , we get

inf
H1(�;RN )

F = min
H1(�;RN )

E − sup
W∈MN×N

skew

L(zW) where zW = 1

2
W2x . (4.21)

Hence
inf

H1(�;RN )
F ≤ min

H1(�;RN )
E − τL( zW∗) ∀ τ > 0 ,

which entails (4.20).

The next example shows that in the case of uniform compression along the whole
boundary functional, F is unbounded from below.

Example 4.6. Assume � ⊂ R
N is a Lipschitz, connected open set, N = 2, 3, g ≡

0, f = −n, where n denotes the outer unit normal vector to ∂�.
Then (4.19) holds true, hence, by Remark 4.5, infv∈H1(�;RN ) F(v) = −∞.

Indeed, for every W ∈ MN×N
skew such that |W|2 = 2, we obtain

∫
∂�

f · W2x dHN−1 = −
∫

∂�

n · W2x dHN−1

= −
∫

�

div(W2x) dx = − |�|TrW2 = 2 |�| > 0 .

This means that any Lipschitz open set turns out to be always unstable when uni-
formly compressed in the direction of the inward normal vector along its boundary.
Therefore the linearized model proves inadequate for such a case, even for a small
load.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
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