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S. Zafeiropoulose,f,g

aComputation-based Science and Technology Research Center, Cyprus Institute,

20 Kavafi Str., Nicosia 2121, Cyprus
bLaboratoire de Physique Théorique (UMR8627), CNRS,
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1 Introduction

Instantons and other semi-classical solutions of the QCD Lagrangian are believed to play

an essential role in the low energy dynamics of QCD, where the crucial phenomena of

confinement and chiral symmetry breaking take place [1]. Instantons are by definition

topologically non-trivial solutions of the classical field equations in Euclidean space with

finite action. These solutions play an interesting role from Quantum Mechanics, where

they describe tunneling processes, in Minkowski spacetime, from one vacuum to another

vacuum all the way to Yang-Mills theories where they describe tunnelling processes between

different vacua which are labeled by a different value of the topological charge (winding

number). Additionally, they play a crucial role in the explanation of the mechanism of

spontaneous breaking of chiral symmetry [2] but their relation to confinement in four

dimensional theories is much less clear despite the initial success in three-dimensional gauge

theories [3]. Apart from tunnelling paths in Minkowski spacetime, instantons are intimately

related to many interesting phenomena such as the U(1) problem, the strong CP problem,

they have interesting counterparts in the electroweak sector (sphalerons) that can lead to

violation of the baryon and lepton number conservation and could possibly describe rare

processes of baryon decay. Also, in supersymmetric gauge theories the exact β-function can

be computed by instanton methods. For more details we refer the interesting reader to [4].

QCD topology is a fully non-perturbative topic, and naturally the best way to study it

systematically is in ab-initio lattice simulations. Strictly speaking, topology is not math-

ematically well defined on the lattice. One can employ different definitions of the topo-

logical charge either gluonic (which are based on some discretization of the topological
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charge density after some smoothing procedure) or fermionic (based on the spectrum of

the Dirac operator). However, for small values of the lattice spacing were the gauge fields

are smooth enough, it is still meaningful to study the topology of gauge fields and there

are intensive explorations in lattice simulations [5–8]. While not demonstrated theoreti-

cally, it is expected and also confirmed by numerical simulations that all definitions of the

topological charge agree in the continuum limit (of course can be affected by different sizes

of cutoff effects) [8].

The main reason that a smoothing procedure is needed when one employs a gluonic

definition of the topological charge is that both the topological charge and the instanton

contribution to the lattice gauge fields are “hidden” by the presence of short-range (UV)

fluctuations and most studies reveal the presence of instantons only after the application

of such a filtering technique. Cooling [9], different smearing methods and, more recently,

Gradient flow are efficient techniques that remove short-range fluctuations in the gauge

fields that have been widely exploited for the study of QCD topology [6].

After UV fluctuations have been removed, different methods have been used to recog-

nize instantons in the remaining gauge fields [10–12] and measure their density and size dis-

tributions. The application of a filtering technique may nevertheless introduce biases in the

characteristics of the underlying semiclassical configuration. For example, instanton/anti-

instanton pair annihilation would lead to a reduction of the instanton density that would

therefore depend on the amount of UV filtering applied. The fact that the instanton size

may be modified by the filtering is also known, at least with the use of cooling, in such a

way that depending on the gauge action used, instantons shrink or grow with cooling. A

third phenomenon, the disappearance of small instantons of size comparable to the lattice

spacing may introduce uncontrolled and worse effects because it would affect the value of

the topological charge.

A different approach to the determination of the instanton nature of QCD vacuum was

presented in [13], where the IR running of some gluon Green’s functions was asserted to

be related to some properties of the instanton ensemble. Much effort has been devoted by

the non-perturbative QCD community to the understanding of the deep IR running of the

correlation functions among the fundamental fields of the theory. Quite remarkably, the

combination of results from lattice, Dyson-Schwinger equations and some other continuum

approaches has led to the firm conclusion that the gluon propagator acquires a dynamical

mass in the deep IR while the ghost propagator remains massless [14–28]. An appealing

possibility to describe the large distance (low momenta) correlations among gluon fields is

the use of an instanton liquid model with the advantage that it can be applied both before

and after the removal of UV fluctuations.

Our proposal in this paper is to apply both the direct recognition of instantons and

the analysis of the running of gluon Green’s functions, using the comparison between both

methods in order to quantify the systematic uncertainties present in each method. We will

furthermore analyze the instanton properties before applying the Gradient flow from i) an

extrapolation of the results to zero flow time and ii) the analysis of the IR running without

Gradient flow. Overall we expect to obtain a precise image of the instanton description

of the QCD vacuum, and its evolution with Gradient flow. Using this combination of
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methods we will explore the dependence of the instanton liquid parameters on the number

of dynamical fermions of the theory, by exploiting quenched ensembles (NF = 0) and

unquenched ensembles (with NF = 2 + 1 and NF = 2 + 1 + 1 dynamical flavors).

The action density and topological charge density obtained after removing UV fluc-

tuations show the presence of large lumps that are thought to be the realization of the

IR structure of the initial gauge fields. One possible description of those structures are

instantons. Section 2 will be devoted to a brief description of the Ansätze commonly used

for the instantonic description of the QCD vacuum. A fit of the topological charge density

obtained from the lattice to the instanton prediction has been used to quantify not only

the topological charge but the instanton density as well (see section 3.3).

Although instantons are believed to be the basis of long-distance physics of the QCD

vacuum, few studies have searched instanton traces without the application of any filtering

technique. A few years ago, the IR running of the gluon Green’s functions was proposed

as a way to study the instantonic content of lattice gauge field configurations without the

filtering of short-range fluctuations [29–31].

The aim of the paper is twofold. The fist purpose of the paper is therefore to combine

the methods based on the analysis of the IR running of gluon Green’s functions and the

localization of instantons by fitting the lumps after application of the Gradient flow. The

second motivation is to describe the parameters of the instanton liquid model before the

application of any filtering technique. This article starts with the definition of the multi-

instanton background which is introduced in section 2, along with all the Landau gauge

Green’s functions formulae of the instanton liquid model. In section 3 the local instanton

recognition method is introduced along with all the basics of the Gradient flow. In section 4

we present a detailed analysis of the IR running of the MOM coupling constant, with and

without the effects of the Gradient flow. In the same section the fate of instantons, under

the Gradient flow, is studied in a simple toy model. Section 5 summarizes our conclusions.

2 Multi-instanton background

Our main purpose is to make the semiclassical multi-instanton background resulting from

the non-trivial QCD vacuum manifest, basically by computing its contribution to the gluon

gauge field, assuming it to be dominant in the deep infrared domain, and identifying then

this contribution from results obtained from lattice simulations. In order to do so, we can

proceed in two different manners: (i) a direct recognition of local structures in configuration

space either for the gauge action or for the topological charge density, due to the instanton

brackground, and (ii) by the scrutiny of the low-momenta gluon correlations expressed by

the appropriate Green’s functions. Let us then start by introducing a practical description

of the gauge field within the classical multi-instanton background.

2.1 The gauge field within a multi-instanton ensemble

We base our description of the QCD vacuum in a reliable approximation of a multi-instanton

solution for the SU(3) gauge action, built on the ground of the appropriate Ansatz for the
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minimization of the resulting action per particle. The following trial function,

g0B
a
µ(x) =

2
∑
i=I,A

Raα(i)η
α
µν

yνi
y2i

ρ2i
f(|yi|)
y2i

1 +
∑
i=I,A

ρ2i
f(|yi|)
y2i

, (2.1)

has been proposed in ref. [32] for the gauge-field classical solution from an ensemble of

instantons, Ba
µ; where yi = (x− zi) and ηαµν is the ’t Hooft tensor, that should be replaced

by ηαµν when summing over anti-instantons as i = A. Raα(i) represents the color rotations

embedding the canonical SU(2) instanton solution in the SU(3) gauge group (i.e., α = 1, 2, 3

and a = 1, 2, . . . 8). f(x) is a shape function, to be obtained by the minimization of the

action, that should obey f(0) = 1 in order not to spoil the field topology at the instanton

centers and which additionally provides sufficient cut-off at large distances guaranteeing

convergence of the sum. The length parameter ρ is known as the instanton radius or

size and, of course, remains transparent for a classical solution of the field equations.

It can be only fixed, phenomenologically, after a successful comparison of the instanton-

based prediction of a given observable with its empirical result, or related to the lattice

spacing when describing lattice results. In terms of this length scale, regimes of large

and small distances can be asymptotically defined from eq. (2.1) and, as discussed in [29],

in both cases, the gauge field can be effectively described by the following independent-

pseudoparticle Ansatz [33]

g0B
a
µ(x) = 2

∑
i

Raα(i) η
α
µν

yνi
y2i

φρi

(
|yi|
ρi

)
, (2.2)

which appears to be a linear superposition of pseudo-instantons at different positions, and

where the profile function φ behaves as

φρ(z) =


f(ρz)

f(ρz) + z2
' 1

1 + z2
z � 1

f(ρz)

z2
z � 1

, (2.3)

where f(x) is the shape function defined in eq. (2.1). As will be seen below, a linear

superposition makes possible a simple and closed result for the gluon two- and three-point

correlation functions, reliable both in the large as well as in the small-distance domains.

The profile function φ appears to match the behaviors from both domains, expressed by

the shape function, and breaks explicitly the scale independence required by the (small-

distance) limit of an isolated instanton, provided by the BPST solution [34]

φBPST(z) =
1

1 + z2
. (2.4)

Thus, assuming a BPST profile near any instanton center, one can therein approximate

the topological charge density by

QBPST(x) = ± 6

π2ρ4

(
ρ2

(x− x0)2 + ρ2

)4

, (2.5)

with “+” sign for instantons and “−” sign for anti-instantons.
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On the other hand, while the one-instanton contributions dominate at small distances

(near any instanton center) over the non-linear effects from other instantons in the back-

ground, the latter are dominant for large distances and their average define the drop of the

shape function which, according to [33], can be approximated as being also independent of

the instanton size.

It is worth emphasizing that, even when using a profile function φ(z) that takes into

account instanton interactions, the Ansätze given by eqs. (2.1) and (2.2) are only approx-

imations to the solutions for the classical equations of motion.1 Later below, aiming at a

careful examination of the classical background underlying the gauge fields produced by

lattice QCD simulations, we will apply a prescription based on the local recognition of

the peaks induced in the topological charge density by the pseudo-instantons of eq. (2.2).

Such a goal requires that both Ansätze provide a good description of the gauge field locally

around each pseudo-instanton center, such that the topological charge density results fairly

approximated by eq. (2.5). Furthermore, a non-local prescription for the scrutiny of the

classical background in the gauge field, based on the analysis of two- and three-point gluon

Green’s functions, has been recently investigated in [29] and will be extensively used in

the following. For this latter method to work, eq. (2.1) needs to be a good approximative

representation for the classical gauge field within the multi-instanton background, and the

deviations in eq. (2.2) with respect to eq. (2.1) are to be neglected from the gluon corre-

lations in momentum space, at least in the low-momentum regime. Its main advantage is

however that, as will be later explained, it can be directly applied to the lattice gauge fields

without any filtering to deprive the fields from quantum fluctuations; being thus a cheaper

and less distorting prescription for the examination of the quasi-classical background.

2.2 Green’s functions in Landau gauge

Let us assume the independent pseudo-particle Ansatz in (2.2) for the gauge field within

the multi-instanton ensemble, i.e. an instanton liquid model (ILM) for the gauge field.

Then, if we assume that instanton positions and color orientations are uncorrelated, the

gluon propagator dressing function reads [30, 31, 36]

G(2)(k2) =
1

24
δab

(
δµν − kµkν

k2

)
〈B̃a

µ(k)B̃b
ν(−k)〉 =

n

8g20
〈ρ6I2(kρ)〉 , (2.6)

in Landau gauge (always in Euclidean space), with
√
V B̃a

µ(k) =
∫

d4keik·xBa
µ(x), V being

formally the volume of spacetime and where the usual average over the gauge group space,

〈· · · 〉, is recast by the ILM as the average over all the possible configurations of pseudo-

instantons within the statistical ensemble defining the classical background of the QCD

vacuum. All the dependence on the profile function φ(z) is captured by

I(s) =
8π2

s

∫ ∞
0

dz zJ2(sz)φ(z) , (2.7)

1Beyond the well-known BPST solution for an isolated instanton, only a few more particular cases

admitting a known closed expression are known, as the n-instanton configuration (see [35] for a de-

tailed treatment).
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where J2 is a Bessel function of the first kind. Analogously, albeit requiring more algebra,

the scalar form factor for the tree-level component of the symmetric Landau-gauge three-

gluon Green’s function,

G(3)(k2) = 〈B̃a
µ(p)B̃b

ν(q)B̃c
ρ(r)〉 fabc

×
[
Γ
(0)
µ′ν′ρ′ (p,q, r)

(
δµ
′uµ −

pµ′puµ
p2

)(
δν
′ν − qν′qν

q2

)(
δρ
′ρ −

rρ′rρ
r2

)
+

1

2

(p− q)ρ(q − r)µ(r − p)µ

p2

]
(2.8)

where Γ(0)
µνρ (p,q, r) = δµν (pµ − qν) + δνρ (qν − rρ) + δρµ (rρ − pµ) , (2.9)

reads [30, 31, 36]

G(3)(k2) =
n

48kg30
〈ρ9I3(kρ)〉 , (2.10)

the kinematical configuration of momenta defined by p2 = q2 = r2 = k2.

A quite remarkable feature of the strong coupling defined in the so-called symmetric

MOM scheme [37], computed from the form factors (2.6) and (2.8),

αMOM(k) =
k6

4π

(
G(3)(k2)

)2(
G(2)(k2)

)3 =
k4

18πn

〈ρ9I(kρ)3〉2

〈ρ6I(kρ)2〉3
, (2.11)

happens to be its independence on the instanton profile in both the limits of small and

large momenta [29–31], as a result of

〈ρ9I(kρ)3〉2

〈ρ6I(kρ)2〉3
=


1 +O

(
δρ2

k2ρ̄4

)
1 + 48

δρ2

ρ̄2
+O

(
k2δρ2,

δρ4

ρ̄4

) , (2.12)

where ρ̄ =
√
〈ρ2〉 expresses the mean instanton size and δρ2 = 〈(ρ − ρ̄)2〉 stands for the

mean square width of the instanton size distribution. Then, at large and small momenta,

the contribution from the classical instanton background to the running of the coupling

defined by eq. (2.11) remains insensitive to both the instanton profile function and to

the statistical distribution of the multi-instanton ensemble represented by the independent

pseudo-particle Ansatz in (2.2). Indeed, it will only keep track of the instanton density, as

immediately results from plugging (2.12) into eq. (2.11), one thus obtaining that the cou-

pling approximately behaves according to a k4-power law wherein the classical background

appears to be dominant. This was clearly shown in ref. [13] to happen at low momenta,

where the ultraviolet (UV) quantum fluctuations have little effect on the gluon correla-

tions, by a careful examination of the coupling computed from lattice QCD. The same

also happens, after filtering the short-range UV fluctuations out from the gauge fields, at

large momenta [29–31]. In particular in [29], we applied the so-called Gradient flow as

filtering technique and thus harvested a solid confirmation of the picture emerging from

eqs. (2.11), (2.12). This is especially so, because the effect of the size-distribution width

yields a different factor in front of the power for low and large momenta (see eq. (2.12)
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above), and this is precisely what the analysis made in [29] appeared to show. We will

supplement here this non-local technique, in some representative cases, with a local one

based on the shape recognition of peaks in the topological charge density which, albeit more

expensive from the point of view of computing time, will be of great help for pinpointing

the instanton sizes and obtaining a complete picture of the instantonic description.

3 Instanton local recognition from lattice QCD

As explained in the previous subsection, one of the main objectives of this paper is to

examine the lattice gauge fields in configuration space, in order to reveal their underlying

multi-instanton content by applying the local recognition recipe that will be introduced

and discussed below. A consistent comparison of the properties so obtained for the quasi-

classical multi-instanton ensemble with those extracted with the Green’s function method

will be finally presented.

3.1 The topological charge density

As already advanced, the examination of the classical background underlying the lattice

gauge fields in lattice configurations is based on the recognition of the shape of the peaks,

locally around their centers, induced in the topological charge density by the pseudo-

particles employed to build the multi-instanton Ansantz for the gluon gauge field, as given

by eq. (2.2). The first step needs thus to be the computation of the topological charge

density, which is obtained, as well as the gauge action, as follows.

Let us call Πµν(x) the Hermitean traceless part of the plaquette starting at site x in

the µ− ν plane,

Πµν(x) =
�µν(x)−�†µν(x)

2
− 1

3
Tr

�µν(x)−�†µν(x)

2
, (3.1)

with �µν(x) the average of the four plaquettes in the µ−ν plane. Then, the action density

can be obtained as

S(x) =
1

8π2

∑
µ>ν

Tr
[
Πµν(x)2

]
, (3.2)

where the 8π2 normalization factor comes from the action of a single instanton, such that∫
d4xS(x) = 1 either for the instanton or anti-instanton cases. While, for the topological

charge density one is left with

Q(x) =
1

25π2

∑
µνρσ

Tr [εµνρσΠµν(x)Πρσ(x)] , (3.3)

which, again, keeps the appropriate normalization factor to result in
∫
d4xQ(x) = +1(−1)

for instantons (anti-instantons). Eq. (3.3) is the so-called clover definition of the topological

charge density, which is expressed by a combination of the plaquettes given in eq. (3.1).

More elaborated definitions, which include rectangular Wilson loops of size 1×2 in order to

reduce discretization errors, can be found in literature (see, e.g. [8]). Notwithstanding this,

our use of eq. (3.3), supplemented with the prescription and acceptance criteria that will be
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described below, as well as with the comparison with the Green’s function results, will be

enough to achieve our purpose of revealing the quasi-classical multi-instanton background

underlying the gauge fields and making its properties manifest.

However, the quantum UV fluctuations are obviously present in any ensemble of lat-

tice gauge fields obtained by Monte Carlo techniques and implementing the QCD action,

therefore hiding the quasi-classical background. In computing the gluon correlations, the

UV fluctuations have been shown to be negligible in the low-momentum regime, basi-

cally dominated by the long-distance correlations [13, 29, 31]. On the contrary, gauge

fields are locally dominated by short-range contributions, which, if they are not previously

suppressed, would spoil the topological charge density defined by (3.3). In the following

subsection, we will briefly explain the use of the Gradient flow to remove such short-range

contributions, as it has been also done in [29], in that case to unveil the quasi-classical

k4-power law also at large-momenta.

3.2 Gradient flow

The Gradient flow can be conceived as a smoothing procedure which diminishes the short-

distance fluctuations which, within the context of a quantum field theory, correspond to

UV quantum fluctuations. Therefore, depriving the gauge fields from them, potentially,

implies to isolate the underlying non-trivial classical solutions which minimize the gauge

action. Despite of sharing the capacity of eliminating the short-distance fluctuations with

other filtering techniques such as cooling or smearing, the Gradient flow has solid theoret-

ical foundations with attractive features such as the simple renormalization of the flown

fields [38].

In continuum language, the Gradient flow field Bµ(τ,x) of SU(N) gauge field results

from the solution of the following first order differential equation

∂Bµ
∂τ

= DµGµν ; (3.4)

that introduces the flow time τ and

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ] ,

Dµ = ∂µ + [Bµ, ·] , (3.5)

the field strength tensor for the flown fields and the covariant derivative, respectively. As

initial condition for the differential equation, one chooses Bµ(0,x) = Aµ(x), so that the

fundamental gauge field Aµ(x) evolves from τ = 0 and, flown after any τ , reads

Bµ(τ,x) =

∫
d4y

e−
(x−y)2

4τ

(4πτ)2
Aµ(x) , (3.6)

as a formal expansion that, at tree-level, makes apparent an effective suppression of short-

distance fluctuations up to a distance of
√

8τ . In its lattice formulation, the SU(N) matrices

are flown by obeying a discretized counterpart of the first-order differential equation (3.6),

Vµ(τ,x) = −g20 [∂x,µS(V (τ)] Vµ(τ,x) , (3.7)

– 8 –
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with the initial condition Vµ(0,x) = Uµ(x), and where S is a discretization of the gauge

action (herein, we will mainly use the Wilson gauge action for this, and will only make

use of the Iwasaki gauge action to perform some tests, as discussed below), g0 is the bare

coupling and ∂x,µ are the link derivatives that can be found defined in [39]. Despite its

important advantages as it is possessing a well defined continuum limit or the existence,

uniqueness and smoothness of its solutions, the effect of Gradient flow over the gauge fields

is in the practical level equivalent to that of cooling, at least for the purpose of dealing with

the topological charge [5, 6, 8]. A remarkable property of the Gradient flow is however the

steadiness of any exact solution of DµGµν = 0 under the flow, thereupon implying that

quantum UV fluctuations can be filtered out without distorting exact solutions such as

an isolated instanton. In practice, this property of the Gradient flow does not prevent

it from modifying the parameters of the multi-instanton ensemble (2.2), representing the

quasi-classical background underlying the lattice gauge fields. And the latter is true for two

different reasons: first because the whole argument about steadiness corresponds to the

continuum formulation of both instantons and flow, and second because the multi-instanton

representations are only approximate solutions to the classical equations of motion, the

isolated instantons never being an adequate description of the QCD vacuum, where a

rather dense distribution is expected [12].

For comparative purposes, the flow time should be expressed in units of t0, defined

by
√

8t0 = 0.3 fm following [39]. This allows to settle physical units for the Gradient flow

times, given that t0 = a2τ0 = 0.01125 fm2 and t = τ t0/τ0.

3.3 Locating instantons

Let us start by describing the lattice simulations set-ups for the gauge field configurations

both quenched (NF = 0) and unquenched (with NF = 2 + 1 and NF = 2 + 1 + 1 dynamical

flavors) that will be either exploited in this section by applying the instanton local recog-

nition, for some representative cases, or subsequently via the scrutiny of the low-momenta

running of the coupling defined by eq. (2.11).

For the quenched data, we consider two simulations exploited in [29] and [40] with

lattice spacings and volumes appropriate for having both enough lattice sites in the vicinity

of an instanton peak and enough data for momenta within the IR window, after the Fourier

transform. In the case of unquenched simulations, we will use two sets of lattice data, the

first includes NF = 2 + 1 field configurations produced by the RBC/UKQCD collaboration

using domain wall fermions very close to the physical pion mass (139 MeV), more details

on the lattice set-up can be found in [41]; the second set corresponds to a NF = 2 + 1 + 1

simulation from the ETM collaboration with a pion mass of around 300 MeV. This last

simulation has been carried out using Wilson twisted mass fermions at maximal twist

(details of the lattice setup can be found in [42]). Details such as the gauge action, the values

of the lattice spacing, the spacetime volumes or the total number of exploited configurations

for each set-up appear gathered in table 1.

As will be seen below, we will take the configurations for the tree-level Symanzik gauge

action at β=4.2 (see table 1) as a representative case and apply the Gradient flow for τ =

2, 3, 4, 5, 8, 10 and 15. Only for these fields, we will apply the instanton local recognition,
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NF gauge action fermion action β a V confs. ref.

0 tlS — 4.2 0.141 fm (4.5 fm)4 420 [29]

W 5.8 0.140 fm (6.72 fm)4 960

2+1 lw DWF 2.25 0.0835 fm 5.343 × 10.7 fm4 330 [41]

2.13 0.1139 fm 5.483 × 11.0 fm4 350

2+1+1 Iw TMF 1.95 0.083 fm 4.03 × 7.9 fm4 200 [42]

Table 1. Set-ups for the different ensembles of lattice data that have been exploited for this paper.

Concerning the codes for the actions, tlS stands for tree-level Symanzik, W for Wilson, Iw for

Iwasaki, DWF for Domain-Wall fermions and TMF for twisted-mass fermions.

while the Green’s function method will be applied for all of the lattice ensembles displayed

in table 1. It should be particularly noticed that, by the combination of different gauge

actions in the quenched case, we intend to guarantee that the discretization effects are

under control or, at least, that the observed behavior appears irrespectively of the action

considered. Finally, having access to NF = 0, NF = 2 + 1 and NF = 2 + 1 + 1 dynamical

flavor configurations we will be in a position to check the dependence on the instanton

liquid parameters with the number of fermionic flavors in the sea.

Now, after applying the Gradient flow, the short distance fluctuations that are present

in both the action and topological charge densities are suppressed and smooth lumps,

presumably induced by the pseudo-particles in eq. (2.2), appear unveiled. We will then

explicitly check for those lumps in the topological charge density, locally around their

centers, their shape similarity to the classical instanton solution in eq. (2.5). In the rest

of this section we will discuss the algorithm we have used for identifying instantons in the

flown field configurations. The first step is to localize the extrema of the topological charge

density that will be candidates for instantons or anti-instantons. Then, an estimate for

their sizes has to be provided. The aim of the last step will be to eliminate candidates that

are not topological charge structures but remain UV fluctuations.

We will define local maxima (minima) of the topological charge density as those sites

x0 where Q(x0) is larger (smaller) than the closest 8 neighbors. We are aware that defining

the extrema with respect to the 8 sites that are at ±a away in one direction may produce

double counting when a single instanton is so much distorted by quantum fluctuations that

another extremum takes place close the real one in the surrounding hypercube. Had we

used a more strict definition of an extremum, such as Q(x) being larger than the 80 sites

of the surrounding hypercube (see discussion in [43]), we would have avoided the double

counting but would have been also left to disregard the distorted real instantons. Therefore,

we have preferred to use a more modest definition of an extremum and apply a further

filter to eliminate false candidates at the last step.

After localizing these instanton candidates, the next step will be to obtain their in-

stanton size ρ. To this aim, we consider the ratio of the topological charge at the closest 8

neighbors to the value at the center that, according to eq. (2.5) should be

Q(x)

Q(x0)
=

(
ρ2

(x− x0)2 + ρ2

)4

(3.8)
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and fitted the lattice data to this expression using ρ as a free parameter. According

to eq. (2.5), the value of the topological charge at the center of a single instanton is

related to the instanton size by Q(x0) = 6
π2ρ4

. To check this dependence, the peak value

of the topological charge density has been plotted versus the fitted size in figure 1 for

three typical quenched configurations after τ = 4, 8 and 15 Gradient flow times. In this

plot there is a point for each local extremum of the topological charge density, while the

continuum line corresponds to eq. (2.5). As can be seen, most of the extrema lie near

the continuum line although a non-negligible number of outliers have to be filtered out as

described below. Furthermore, the larger is the flow time, the more closely concentrated

around the continuum line tend the extrema to be.

Then, as a first filtering prescription, we proceed first by checking that the topological

charge and action densities for all the candidates behave as eq. (2.2) for short distances,

and reject those not satisfying

4

√
6

π2Q(x0)

ρ
∈ (1− εR, 1 + εR), (3.9)

and
|
∑

x=x0±auQ(x)|∑
x=x0±au S(x)

∈ (1− εQ, 1 + εQ), (3.10)

where εR and εQ are parameters that we fix in our algorithm. We have checked that

the total number of instantons found is rather stable when varying them, and thus fixed

εR = 0.5 and εQ=0.3 for the results shown below. Once we ensure that the functional form

of the topological charge lump behaves locally as an isolated BPST instanton, and that

it is selfdual, we are left with the above raised issue of preventing the double counting of

two extrema corresponding to a single but distorted instanton. To do so, we have finally

included a filter for eliminating close pairs that works as follows: when an extremum is

identified as an instanton of size ρi at site xi, no other candidate is accepted if the site of

the extremum lies within the hypersphere defined by xi + ερiu, with u a unitary vector in

physical units (and, in all the cases, the hypersphere radius is fixed to 2 in lattice units

when the instanton size is smaller). The parameter ε is varied between 0.7 and 1, the

difference between the densities obtained for those two values being used to estimate the

systematic uncertainty associated to our localization method. This filter serves to exclude

the possibility of finding one instanton in the core of another one.2 The filtering of close

pairs eliminates a number of candidates much larger than the functional form of Q(x),

but many of them correspond to the outlier extrema of figure 1 that anyhow passed the

criterion (3.9), namely those candidates for which instanton size ρi and Q(xi) are not well

consistent with (2.5).

Both parameters of the instanton ensemble, the average instanton radius and density,

which are describing the semiclassical background underlying the gauge field, do depend

2In other words, we have assumed that, for a bi-instanton solution of the classical field equations, the

two extrema cannot appear located at a distance smaller than their individual radius. And so we he have

checked for some particular cases, when closed analytical solutions exist.
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Figure 1. (Color online) Absolute value of the topological charge density at the extrema (in lattice

units) vs. instanton size ρ determined from the fit described in the text for a particular gauge field

configuration of β = 4.2, V = 324 after τ=4 (leftmost upper panel), 8 (rightmost upper) and 15

(lower) Gradient flow times. Those extrema accepted as instantons are represented by blue squares,

while the rejected ones are represented by red crosses. The full line represents the relation eq. (2.5).

on the Gradient flow time and, in general, evolve with any parameter controlling the

suppression of the quantum fluctuations via a given smoothing prescription minimizing

the action. Although this is well known [5, 12, 44–46], few authors have studied this

evolution in detail, quoting just the values of the instanton density or size distribution

after a fixed flow time, cooling or smearing. In our case, after applying the Gradient flow

and our instanton locating algorithm, the emerging picture is that of a very dense ensemble

of instantons with a size of around 1/3 fm, which is more diluted as Gradient flow eliminates

instantons and anti-instantons, while the remaining ones become larger with the flow. This

is very apparent from the results displayed in figure 2 and also in table 2.

Furthermore, we have examined the correlations among instantons, both of like (II

or AA) and unlike charges (IA), through the evaluation of the radial distribution function

of pairs, g(r). This function is defined as the probability density, evaluated at a distance

r = |x−xi| away from any given instanton located at the position xi, of finding one like- or

unlike-charge instanton divided by the density of like- or unlike-charge instantons. Isotropy

and translational invariance guarantee that, after averaging over all the possible configura-

tions of the instanton ensemble, the distribution is indeed a radial function irrespective of
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τ t/t0 n (fm−4) ρ̄ (fm)

2 3.42 4.01(62) 0.419(8)

3 5.13 3.06(43) 0.458(10)

4 6.84 2.44(34) 0.486(11)

5 8.55 2.03(28) 0.509(12)

8 13.7 1.35(18) 0.555(13)

10 17.1 1.10(13) 0.580(14)

15 25.6 0.74(08) 0.639(17)

Table 2. Instanton density and size for different Gradient flow times in lattice units (first row) and

in physical units in terms of t0=0.01125 fm2, obtained from the localization technique. The errors

quoted for the instanton density include an estimate of the systematic uncertainty associated to the

short distance filter (see text) while the average size errors are purely statistical.

the position of the instanton xi. At large distances and for the homogeneous distribution

of an instanton gas or liquid, correlations among instantons tend to vanish and one would

be thereupon left with g(r) → 1. This radial distribution g(r) can also be understood as

the ratio of the number of instantons found in a spherical shell of infinitesimal width dr

and a radius r away from each instanton divided by the shell volume and rescaled by the

instanton density. Therefore, for a lattice evaluation, as the lattice volume is proportional

to the number of lattice sites, one can in practice estimate the radial distribution of pairs

by counting the number of like- or unlike-charge instantons at a given distance away from

each instanton, perform then the average over all the instantons of the ensemble, divide

next by the product of the total number of avalaible lattice sites at the same distance

and the instanton density; and, finally, perform the average over the ensemble of lattice

configurations. So proceeding, we have been left with the results displayed in figure 3 for

several Gradient flow times. A first feature to be noticed from the plots is that there is

an excluded volume for small distances which grows moderately with the flow time. This

might be readily thought to be a consequence of applying the double-counting-preventing

prescription that filters out the lumps lying within the core of an accepted instanton. How-

ever, the prescription is only applied for like-charge instantons, while the same feature is

also clearly manifest for those of unlike charge. Thus, we can conclude that the picture of

“hard-core” instantons is fairly consistent with the results we obtain for the correlations of

pairs. Furthermore, the increasing of the excluding volume reflects consistently the growing

of the instanton radius which is manifest from figure 2. A second remarkable feature is that

the distribution of instantons is not completely random: after Gradient flow, it is more

likely to find a charge of the same sign than a particle of opposite sign at short distances.

The latter is consistently accounted for the fact that the annihilation of opposite charge

pairs during the flow increases the probability of finding instantons of the same charge

close to each other.

A short comment about the effect of the filtering for small distances introduced in

the localization algorithm is furthermore in order. Had we taken a smaller cut on the
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instanton minimum inter-distance, a large peak at short distances would have emerged

for alike charges in figure 2, signaling the presence of very close pairs. The question of

whether those instanton clusters are physical or an artifact of the localization algorithm

was discussed long ago [10, 45], but up to now there is no definite answer. Thus, our

estimates for the instanton density with this algorithm might underestimate systematically

the actual density of topological objects because of this. Later on, we will return to this

point and justify, on the basis of the comparison of the densities obtained by instanton

localization and by Green’s functions, that this peak for close pairs ought to be indeed

neglected as an artifact of the instanton localization algorithm. However, this implies that

one needs to admit a systematic deviation of around 20–30%.

The instanton densities we have measured are of the order of n ∼ 1 fm−4 for rather

large flow times, a value that agrees with the one that can be set from the gluon condensate

〈G2〉, and that has served as reference for decades [1]. Nevertheless, if we try to infer the

density at zero Gradient flow time from the results in figure 2, the density results much

larger. Although it is difficult to extrapolate back to τ = 0 from our results, it points

towards an order of magnitude larger (see next section).

Concerning the instanton size, Garcia-Perez et al. [44] found that when cooling with

the Wilson action, individual instantons should shrink under a cooling procedure while

with overimproved actions they stabilize or grow with the application of cooling. A sim-

ilar discussion appears in the nice review by Creutz [47] who also analyzes the effects of

these types of action modifications to reflection positivity [48, 49]. Although it is not fully

known how the use of different filtering techniques may modify the conclusions reached by

the aforementioned authors, the fact of being in a dense liquid instead of being isolated

is definitely a dramatic change compared to the setup of the previous studies. Indeed we

found that most of the instantons we localized grow with the application of the Gradient

flow, while only small instantons shrink (and eventually disappear). The latter appears

to indicate that, at a first stage in the evolution with the flow time, a sort of effective

interaction between the independent pseudo-instantons (used to describe the classical so-

lution) dominates the process. This interaction takes into account the non-linear effects

between the pseudo-particles of the Ansatz which minimize the total action and, at least

when the density is large, tends to favor both the annihilation of opposite-charge instantons

and their growing when the density drops. We have checked that, if the Gradient flow is

driven by the Iwasaki gauge action, the observed evolution does not differ from the one

described above.

4 Momentum running, flow evolution and flavor effects

As we have discussed in section 2, the running of two- and three-gluon Green’s functions

can be combined to yield a strong coupling definition, the estimate of which, computed

from the gauge fields for a semiclassical multi-instanton ensemble leaves us with a very

striking signature for the presence of instantons. In the following, we will use this coupling

obtained from the lattice gauge fields to detect instantons by analyzing its running both

at large- and small-momenta, as explained in ref. [29], for all the set-up’s of table 1. We
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Figure 2. (Color online) Evolution of the average instanton size (leftmost upper), density (right-

most upper) and the histogram of sizes (lower) with the Gradient flow time for 100 quenched gauge

field configurations corresponding to β = 4.2 (see table 2). The error bars for the instanton size

show the width of the distribution rather than the standard deviation of the mean. For the density,

the error bars incorporate an estimate of the systematic uncertainty associated to the distance filter

discussed in the text.

will then compare the obtained results with the ones stemming from instanton localization

for the quenched case at β = 4.2 derived in the previous section, and will also study their

evolution with the Gradient flow time. Furthermore, we will take advantage of the other

lattice set-ups to analyze the evolution of the instanton ensemble parameters with the

number of dynamical flavors.

4.1 Momentum running and the instanton density

Without the application of any filtering technique, the running at large momenta of the

strong coupling defined by eq. (2.11) is dominated by the perturbative prescription, giving

rise to the appearance of asymptotic freedom, but the deep non-perturbative region (typi-

cally below ∼ 1GeV) exhibits a behavior that fits well to eqs. (2.11), (2.12). This finding

serves as a confirmation that the low-momenta (large-distance) correlations are dominated

by instanton-like objects, and allows to extract the instanton density without the need of

any filtering technique. Moreover, after applying the Gradient flow, the UV fluctuations

are filtered out and the gluon correlations become again dominated by the semiclassical
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Figure 3. (Color online) Pair correlation function for II and AA pairs (red) and for IA pairs

(blue) for β = 4.2, V = 324 and a Wilson flow time of τ = 4 (leftmost upper), 8 (rightmost upper)

and 15 (lower). The distribution is characteristic of a gas, with an excluded volume that is larger

for IA pairs than for II or AA.

multi-instanton ensemble and the large-momenta running of the strong coupling is also

well accounted by eq. (2.11). This can be clearly seen in figure 4 for the quenched case

at β = 4.2, where the lattice estimates appear to be manifestly consistent with eq. (2.11),

after applying the Gradient flow, in both the large- and small-momenta domains; thus sup-

porting a multi-instanton ensemble picture for the QCD vacuum at least when describing

gluon correlations. It is indeed worthwhile to realize how the suppression of UV fluctuations

from the gauge fields turns the well-known large-momenta logarithmic behavior of gluon

correlations (brown solid circles in figure 4, depicting the results from non-flown fields) into

the k4-law expressed by eq. (2.11); law which becomes more and more apparent when the

Gradient flow time evolves from τ = 4 (red circles) to τ = 15 (black circles). The same

figure had been also presented in [29], where its main features were very well understood,

in particular how the width for the instanton size distribution shifts the intercept of the

logarithmic line up at low momenta, as dictated by (2.12).

Now, as the slope of αMOM(k) in k4, according to eqs. (2.11), (2.12), allows for a direct

estimate of the instanton density from the lattice data at large momenta, we consider

three representative flow times (τ = 4, 8 and 15) for the quenched simulation at β = 4.2

and make a systematic comparison of the so obtained densities to the ones resulting from
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Figure 4. (Color online) The strong coupling defined by eq. (2.11), computed from the lattice gauge

fields simulated at β=4.2 without (brown solid circles) and after applying the Gradient flow with

τ=4 (red), 8 (blue) and 15 (black) and depicted by using logarithmic scales. The lines correspond to

the multi-instanton ensemble predictions both at low (solid) and large momenta (dashed), according

to eqs. (2.11), (2.12).

τ t/t0 n (fm−4) [IR] n (fm−4) [GF]

4 6.84 2.44(34) 3.5(1)

8 13.7 1.35(18) 1.75(4)

15 25.6 0.74(8) 0.98(5)

Table 3. Comparisons of instanton densities obtained by applying the localization technique (third

column) and the Green’s function running method (fourth column), after the Gradient flow for three

representative times. The errors here quoted incorporate, and are basically dominated by, some

systematic uncertainties in the IR case (see text), but only statistical for the GF method.

the direct instanton counting using the localization algorithm described in the previous

section. The results from both methods lie in the same ballpark, as can be seen in table 3

and figure 5. It appears however, that there are systematic deviations which, taking into

account the statistical uncertainties, are of the order of 2–3 σ’s. The deviations can be

seen as an underestimation in the counting of instantons by localization of around a 30%

at τ = 4 and of 24% at τ = 8 and 15. The latter can be consistently understood if one

admits that some of the close pairs filtered out by the short-distance criterion correspond

to real classical solutions. We can estimate that, had we accepted a 20–30% of the rejected

close pairs, the densities obtained by instanton location would have fairly agreed with

the ones resulting from the analysis of the Green’s function method. As a fully general

classical solution describing such pairs of close instantons is not available, a systematic

criterion to disentangle them from single distorted instantons that need to be rejected is
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not at hand. We have thus preferred to keep the short-distance criterion and assumed a

systematic deviation which, anyhow, will not prevent the estimates from being in the same

ballpark as those from the Green’s function method.

Moreover, either through the analysis of the direct counting of instantons or by the

study of the running of αMOM(k), we reach a coherent image of an instanton density that

drops with flow time. It is usually accepted that the results at a small fixed flow time

represent the physics of the original gauge field configuration. Nevertheless, the fact that

there is such a strong dependence on the flow time requires a deeper understanding. The

same phenomenon is found with other filtering techniques such as cooling and we refer the

reader to [50] for a simple approach for instanton density evolution through IA annihilation.

Let us try here to build a toy model for this phenomenon and use it to extrapolate the

instanton density down to zero flow time.

4.2 Gradient flow evolution of the instanton properties

If pair annihilation is the only phenomenon responsible for the observed density dropping,

the rates at which both nI and nA decrease have to be equal. Under the hypothesis that

this is a first order process, the time variation of instanton and anti-instanton densities will

be given by
dnI
dτ

=
dnA
dτ

= −λnInA . (4.1)

Furthermore, if nI ≈ nA ≈ n/2 (i.e., assuming that the topological charge of a particular

gauge configuration is much smaller than the instanton density), we arrive to

dn

dτ
= −λ

2
n2 . (4.2)

The parameter λ may depend on the flow time τ via the instanton size, interparticle

distance, etc. thus being not constant. In a first approximation, however, we assume that

it is well described by a constant, and integrating out eq. (4.2) results into

n(τ) =
n(0)

1 + 1
2λn(0)τ

=

(
1

n(0)
+
λτ

2

)−1
. (4.3)

This equation has been used to fit the measured instanton densities at different flow

times with the instanton location algorithm for the quenched configurations at β = 4.2,

and extrapolate to zero flow time. The result of the fit has been plotted in figure 5, thus

obtaining an extrapolated density of 12.3(4) fm−4. It is remarkable, despite of the simplicity

of the toy model, how well the measured densities at different flow times agree with eq. (4.3).

Furthermore, albeit the systematic uncertainty associated to this extrapolation may be

rather large and has not been quantified at this level, the so obtained density compares

fairly well with the estimate from the Green’s function method applied to non-flown gauge

fields. The density, in this case, can be obtained once the instanton size distribution width

is known and plugged into eqs. (2.11), (2.12). This width can be always estimated, after

applying the Gradient flow, by the direct scrutiny of the size distribution for the localized

instantons (see figure 2). However, as discussed in [29], it can be evaluated too, though
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Figure 5. (Color online) Comparison of the instanton density evolution with Gradient flow time

(in units of t0 = 0.01125 fm2) from instanton localization (red) and from αMOM(k) (blue). The

dashed lines correspond to eq. (4.3) resulting from the toy model described in the text which

fits either localization (red) or Green’s functions estimates (blue). The value at zero flow time

extrapolated from the instanton localization estimates strikingly coincides with the result from the

Green’s functions.

indirectly, from the shift of the low-momentum line with respect to the large-momentum

one in the logarithmic plot of figure 4, according to eq. (2.12), thus providing with a width

estimation fully consistently made within the Green’s function approach. Owing to its

consistency, we have preferred the latter (the estimates from both methods being anyhow

in the same ballpark; namely, δρ2/ρ̄2 around 0.02). Furthermore, whilst an extrapolation

to zero flow time would be required, in both cases, the values extracted at low flow time

remain very stable and we made the simple choice of keeping that at τ = 2. Thus, a ratio

δρ2/ρ̄2 ≈ 0.014 is estimated and, applied to eqs. (2.11), (2.12), results in n ≈ 12(2) fm−4.

As can be also seen in figure 5, the four values for the density from Green’s functions can

be also well described by eq. (4.3) but with a parameter λ slightly diminished.

4.3 Evolution with the number of flavors

We finally focus on the extensive analysis for the small-momenta behavior of αMOM(k) for

the different number of flavors in table 1. The running of αMOM(k) obtained from the

lattice data in table 1, has been plotted in figure 6 for NF = 0 (leftmost upper panel),

NF = 2+1 (rightmost upper) and NF = 2+1+1 (lower) without Gradient flow. The same

instanton picture that, so far, we have firmly grounded on the basis of our deep analysis

of quenched lattice simulations ought to work also for the unquenched simulations and,

indeed, the running of αMOM(k) between 0.3 and 0.9 GeV fits well to the power law given

by eq. (2.12) (straight line in the plots). When the lattice volume is large enough and

there are lattice points at lower momenta (in particular in the quenched β=5.8 case), this

instanton prediction breaks down, presumably due to the neighborhood of a zero crossing
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Figure 6. (Color online) αMOM vs the momenta obtained from quenched gauge configurations

(lefmost upper panel), Nf = 2 + 1 Domain-Wall (rightmost upper) and ETMC Nf = 2 + 1 + 1

(lower). The fit to the instanton prediction is represented by the straight line.

for the three gluon vertex [40, 51–58]. From the point of view of the ILM, the failure

for small momenta is expected because for very large distances (typically larger than the

instanton size) the model of uncorrelated instantons is not expected to work; in any case

the purely quantum nature of the zero-crossing discussed in refs. [40, 57] seems to be in

contradiction with an instantonic explanation.

Now, as eq. (2.11) tells, the IR running of αMOM(k) is basically determined by the

instanton density and, thus, a direct comparison of the results of the low-momenta fits

shown in figure 6 makes possible the scrutiny of the evolution of this density with the

number of flavors. Indeed, it suggests that the instanton density increases monotonously

with the number of dynamical flavors. If we furthermore accept that the ratio δρ2/ρ̄2 is

the same for Nf = 0, Nf = 2 + 1 and Nf = 2 + 1 + 1, we obtain that the instanton density

increases by a factor 1.3(1) from Nf = 0 to Nf = 2+1 and by a factor 1.5(1) from Nf = 0 to

Nf = 2+1+1. These two ratios are nearly compatible within the errors and this suggests a

very mild effect of the charm quark on the instanton density, certainly owing to its sizeable

mass threshold. The role of the charm quark and the dependence on the quark masses

has not been studied in detail yet but the fact that the instanton density grows with the

presence of dynamical flavors has been previously reported, for instance, in ref. [11]. In the

previous reference it was interpreted as follows: it is well known that an isolated instanton
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produces a zero mode of the fermion determinant [11, 46] and, as a consequence of this and

the action of a given gauge field being weighted by [det(/D + m)]NF , the existence of zero

modes of the Dirac operator would be highly improbable in the chiral limit. Becoming more

improbable the larger is the number of light fermion flavors. Thereupon, a large density of

instantons can be understood as favoring the instanton superposition and thus suppressing

the effect of isolated instantons. Or, in other words, it can be thought to enhance non-linear

effects and pseudo-particle interactions destroying the zero-modes associated to the single

instanton solution. However, one needs to be careful with the above argument (that for

the massless theory, one can ignore any instanton effects since those configurations don’t

contribute to the partition function) since while it is correct that instantons do drop out of

the partition function itself they do survive in physical correlation functions. We refer the

reader to [59] for a detailed analysis of the topic and its relation to the ’t Hooft vertex [60].

On the other hand, even admitting that the above qualitative argument might work,

there is another source of explanation, at least partially, for this increasing with the num-

ber of dynamical flavors: any direct comparison of the instanton densities obtained from

simulations with different number of flavors gets over the systematic deviations from the

physical scale setting on phenomelogical estimates or in gauge quantities as the gluon cor-

relation functions [61, 62]. In setting the scale by imposing that a lattice estimate of a given

quantity takes its physical value, the latter always incorporates effects from those dynam-

ical quarks being active in the real world for the empirical determination of this quantity.

In particular, the impact of this effect on a quenched theory is certainly non-negligible,

but still for Nf=2 simulations, there has been a recent work [63] finding a reduction of

around a 5% in the lattice spacing as a systematic deviation from the physical scale set-

ting. A reduction of the lattice spacing ought also to be expected for the quenched lattice

theory, as the lattice estimates for ΛMS appear to be lower at Nf = 0 [64] than at Nf=2 or

Nf = 2 + 1 + 1 [65, 66], while the matching at the quark-mass thresholds3 of theories with

different number of dynamical flavors suggest the opposite trend [67]. Though it is very

hard to quantify how this reduction amounts, one can readily conclude that a diminishing

of a 10% for the lattice spacing in the quenched theory would enhance by around a 40%

the instanton density and would thus make it lie on the same ballpark as Nf = 2 + 1 and

Nf = 2 + 1 + 1. There might appear to exist also an impact from the charm quark in the

lattice scale setting for the comparison of Nf = 2 + 1 and Nf = 2 + 1 + 1 results, however

the scale setting involving quantities in the pion sector, such an impact should be nearly

negligible [63].

Finally, one must also keep in mind that the estimates for the densities we compare

have been obtained by invoking eqs. (2.11) and (2.12), the last of which also needs the

instanton size width to be plugged into. We have assumed, for the comparison to be made,

that δρ2/ρ̄2 is the same for any number of flavors. Whilst the latter seems to result, at

low Gradient flow time, from the analysis of ref. [29] and despite the fact that the width

is only playing at the level of a subleading correction, any small deviation would become

3A matching of theories with Nf and Nf + 1 dynamical flavors at the quark-mass threshold (or a similar

mechanism [63]) is, precisely, what is required for a meaningful comparison of quantities derived from

those theories.
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magnified by the factor 48 in (2.12) and so produce a sizeable impact on the comparison.

However, as above stated, the picture we obtain for the impact of the dynamical flavors

on the instanton density is consistent with the results of ref. [11], obtained with a different

technique for the instanton detection.

5 Conclusions

We have presented an analysis of the instanton contributions to the QCD vacuum using two

complementary approaches. The first one is based on the fact that an independent pseudo-

particle approach (i.e. an instanton liquid model without correlations among instantons)

predicts a power law k4 for the combination of gluon Green’s functions used to define the

coupling in the symmetric MOM scheme, αMOM(k). Moreover, the coefficient of k4 can be

used to infer the instanton density. The second approach uses the Gradient flow technique

to remove short range fluctuations in the gauge field configurations and instanton-like

structures are revealed in the topological charge density. We have proposed a method for

identifying instantons among the extrema of the topological charge density and applied it

to some quenched configurations.

Although GF is thought to modify minimally the topological structure of the gauge field

configuration, it does not prevent the disappearance of instantons, neither of small instan-

tons whose size is comparable to the lattice spacing, nor through instanton/anti-instanton

annihilation. Indeed, we have observed that both methods (IR running of αMOM(k) and

instanton localization) show a strong decrease in the instanton density with the flow time.

Whilst the densities obtained from both methods differ by a ∼ 25–30%, they can be seen to

lie in the same ballpark and, on top of this, the fact that both evolve in the same manner

with flow time strongly supports the instanton dominance after removing the short range

fluctuations. The existence of noticeable discrepancies between the instanton densities ob-

tained from both methods can be well interpreted as due to the systematic uncertainties

related to the difficulties for identifying close instanton pairs (or clusters) with our local-

ization algorithm owing to strong deviations locally around the instanton centers from the

BPST profile used.

A simple model for instanton annihilation reproduces, qualitatively and quantitatively,

the evolution of the instanton with GF, and allows to extrapolate the instanton density

to zero flow time. The density obtained, ∼ 12 fm−4, is much larger than the traditionally

quoted value of 1 fm−4, although some modern estimates [12] point towards larger den-

sities. For zero flow time, i.e. without the application of the Gradient flow, we cannot

localize instantons using our direct method, but can still fit the instanton density using

the k4 power law. We obtained that the slope of αMOM(k) supports the picture of a dense

instanton liquid, with a density of n ≈ 12.3(2) fm−4. This density is fully compatible

with the extrapolation of the densities obtained from the localization method using the

annihilation model.

After performing the comparison of both methods in the quenched case, we obtained

the instanton density for unquenched (NF = 2 + 1 and NF = 2 + 1 + 1) lattice gauge field

configurations without GF. From the fit to the power-law, we obtained larger instanton

– 22 –



J
H
E
P
0
2
(
2
0
1
8
)
1
4
0

densities for the unquenched case, which although already reported in [11] is a somehow

controversial finding. The naive argument associates, via the Atiyah-Singer index theorem,

instantons to zero modes of the Dirac operator and, thus, the presence of light dynamical

quarks in the unquenched simulation should suppress instantons. Indeed our numerical

findings with both methods employed seem to indicate the opposite behavior, namely the

density of instantons grows so that they get distorted and can not any longer be associated

to zero modes of the Dirac operator. Two considerations can be made concerning this

enhancement of the instanton density with the inclusion of dynamical quarks: first only

the light quarks should have an effect and, therefore, the inclusion of the charm quark

when passing from NF = 2 + 1 to NF = 2 + 1 + 1 is thought to have a negligible impact

over the instanton density. We found ratios to the quenched case of 1.3(1) for NF = 2 + 1

and 1.5(1) for NF = 2 + 1 + 1, nearly compatible within errors. The second consideration

discussed in the text is the impact of the light quarks in the quenched lattice spacing

setting. When using any observable to fix the lattice spacing, it incorporates the effect of

any quark being active at the scale used for the determination of the physical observable.

Therefore, in the comparison of quenched to unquenched results, it is conceivable that a

systematic deviation of the lattice spacing is present. For our estimates of the instanton

density, a ∼ 10% systematic deviation for the quenched lattice spacing would account for

the differences between NF = 0 and NF = 2 + 1 and 2 + 1 + 1.

In summary, we feel that the results presented here draw a clear image of instanton

dominance after application of the gradient flow, when there is no trace of ΛQCD, and the

running of gluon Green’s functions is dominated by the semiclasical content of the gauge

fields. Perhaps more interestingly, the IR behavior of gluon Green’s functions without

gradient flow seems to be well described by an instanton liquid model with a rather large

density. Why instantons may serve for describing some properties of low energy QCD and

not others, or to what extent instantons are relevant for the QCD phenomenology seem to

be still open problems.
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