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Coulomb and exchange interaction effects on the exact two-electron dynamics
in the Hong-Ou-Mandel interferometer based on Hall edge states
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The electronic Hong-Ou-Mandel interferometer in the integer quantum Hall regime is an ideal system to probe
the building up of quantum correlations between charge carriers and it has been proposed as a viable platform for
quantum computing gates. Using a parallel implementation of the split-step Fourier method, we simulated the
antibunching of two interacting fermionic wave packets impinging on a quantum point contact. Numerical results
of the exact approach are compared with a simplified theoretical model based on one-dimensional scattering
formalism. We show that, for strongly localized wave packets in a full-scale geometry, the Coulomb repulsion
dominates over the exchange energy, this effect being strongly dependent on the energy broadening of the
particles. We define analytically the spatial entanglement between the two regions of the quantum point contact,
and obtain quantitatively its entanglement-generation capabilities.
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I. INTRODUCTION

In the electronic counterpart of the Hong-Ou-Mandel
(HOM) experiment two indistinguishable electrons impinge
on the opposite sides of an half-reflecting quantum point
contact (QPC), acting as the beam splitter. Contrary to pho-
tons [1], the antisymmetry of the two-electron wave function
entails in ideal conditions a zero bunching probability [2,3].
However, in experiments [4,5] the energy-broadening of elec-
trons induces a nonzero Pauli dip. This has been related to
the interplay between the energy selectivity of the QPC and
the energetic dispersion of the wave packets [6], or to the
decoherence induced by charge fractionalization [7,8].

A reliable and robust HOM interferometer is essential
in the flying qubit implementation of quantum computing
gates based on Hall edge-state interferometers [9]. Indeed, it
requires a system that is invariant to small perturbations and
robust against typical scattering mechanisms in semiconduc-
tor devices, such as with phonons, impurities and background
electrons. Experiments [10,11] show that coherent transport of
electrons can be achieved in the integer quantum Hall (IQH)
regime [12], which is generated by an intense perpendicular
magnetic field applied to a confined two-dimensional electron
gas (2DEG). This produces edge states, chiral 1D channels
following the borders of the device, where an electron can be
injected and propagates without being backscattered [13,14].
Edge-channel based nanodevices have been implemented to
test electron self-interference in the Mach-Zehnder interfer-
ometer [15–21], to observe violation of Bell’s inequality
and two-qubit correlations in the Hanbury Brown and Twiss
interferometer [22,23], and to devise quantum logic gates as
quantum erasers or which path detectors [24–26]. Moreover,
a protocol for the quantum tomography [27] of a fermionic
particle has been proposed in a Hanbury Brown and Twiss

interferometer [28]. Although fractional quantum Hall ef-
fect [29] offers many additional opportunities to exploit co-
herent quasiparticle interference [30–32], we limit our present
study to the integer regime.

Regarding the electronic HOM effect, recent experiments
highlight the presence of charge fractionalization [29,33,34]
in the propagation of single excitations in edge channels,
so that the coherence of the traveling qubit is not pre-
served [35,36]. This effect originates at bulk filling factor 2
due to interchannel interactions that destroy the coherence
of the injected Landau quasiparticles [37–39]. As recently
proposed, strategies can be implemented to quench this source
of decoherence, e.g., the introduction of top gates to loop
the second channel [40] or to increase the distance between
the two copropagating states [15]. Contrary to the previous
scenario, in the present work, we analyze and simulate a
device operating at bulk filling factor 1, i.e., only the first
Landau level is energetically available [41]. Rather than con-
sidering the injection of a steady-state current in the Hall
interferometer [5,23,42,43], we simulate our flying-qubit as
encoded in a Gaussian wave packet of edge states [15,16],
with an energy well above the Fermi sea, as recently proposed
using quantum dot pumps with time-dependent confining
barriers [44]. The choice of a Gaussian state minimizes the
computational burden, since its spatial spreading during the
propagation is lower with respect to other kinds of excitations,
as levitons [45–48]. However, we expect that our results do
not depend on the shape of the wave packets, at least at
a qualitative level, as long as their components transmitted
and reflected by the quantum point contact have a similar
distribution [16].

In our approach, the time-dependent wave function is
evolved by means of a parallel implementation of the
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split-step Fourier method [15,16] in a two-dimensional po-
tential landscape, that reproduces the field generated by top
gates in the typical GaAs/AlGaAs heterostructure. The en-
ergy broadening of the single particle is directly included in
the propagating state and time is an intrinsic variable of our
simulations, so that we can access the dynamical properties of
the two-particle system. It should be noticed that traditional
approaches in the literature bypass the huge computational
load for such simulations by using scattering matrices in
effective 1D schemes, which proved not to fully capture the
interplay between two-electron correlations and the realistic
geometry of the device, as for electron bunching. Here, we
privilege the exact solution by developing a scalable parallel
numerical solver of the time-dependent Schrödinger equation
for two particles in a 2D realistic geometry. Moreover, the
use of a two-particle Hamiltonian in our simulations allows
us to easily include the exact Coulomb interaction of the two
charges, in order to explore how electron-electron repulsion
interplays with the exchange interaction of the fermionic
system.

We initially describe, in Sec. II, our time-dependent numer-
ical method to simulate two-particle transport in edge chan-
nels and the potential landscape we compute to reproduce the
HOM interferometer. In Sec. III A, we obtain the dynamical
bunching probability in presence of exchange symmetry in the
two-particle wave function, while in Sec. III B, we study the
effect of Coulomb repulsion between the two charges. Finally,
in Sec. III C, we present our measurement of the dynamical
spatial entanglement between the two antibunched regions of
the electronic HOM interferometer. In Sec. IV, we draw our
conclusions.

II. PHYSICAL SYSTEM AND NUMERICAL MODEL

A. Single-particle edge states as a basis

We simulate the dynamics of two charges −e with an
effective mass m∗, that propagate in a 2DEG in the IQH
regime. Here, a perpendicular magnetic field B = (0, 0, B) T
is included in the single-particle Hamiltonian H (x, y) by
using the Landau gauge A = (0, Bx, 0). In presence of a
confining lateral barrier V (x), translationally invariant in the
ŷ direction, the single-particle Hamiltonian is diagonalized
by �n,k (x, y) = eikyϕn,k (x), where the index n refers to the
Landau level, k to the wave vector in the direction of prop-
agation and ϕn,k (x) diagonalizes the effective 1D Hamiltonian
in the transverse direction:

Heff (x) = − h̄2

2m∗
∂2

∂x2
+ 1

2
m∗ω2

c (x − x0(k))2 + V (x), (1)

with x0(k) = − h̄k
eB and ωc = eB

m∗ . In proximity of the confining
potential [V (x) �= 0], the bending of the Landau levels gener-
ates conductive channels called edge states. Due to the chiral-
ity of the edge state ϕn,k (x), an electron initialized in it can not
be back-reflected by a potential roughness on its path, unless
it is scattered by a narrow QPC to the counterpropagating state
ϕn,−k (x) at the opposite side of the confined 2DEG [13,16].

In the electronic HOM experiment, particles are initialized
in counterpropagating edge states at opposite sides of a beam
splitter, as shown in Fig. 1. In our geometry, only the first

FIG. 1. Top view of the HOM interferometer with the potential
landscape reproducing the QPC (blue region) and the integrated
single-particle density probability at t = 0 (red wave packets). α and
β are the initial counterpropagating states for σ = 20 nm, while T
and B label the top and bottom regions we defined in the HOM
(separated by the diagonal white line).

Landau level is filled, i.e., only ϕn=1,k (x) is numerically
computed from Eq. (1) by means of LAPACK routines.

B. Electron as a time-dependent superposition
of single-particle edge states

To include the energy dispersion of the electron state, edge
states with different wave vector k are combined, so that the
single-particle wave packet reads

ψ (x, y) =
∫

dkFσ (k, k0, y0)eikyϕ1,k (x), (2)

where Fσ (k, k0, y0) = 4
√

σ 2/2π3e−σ 2(k−k0 )2
e−iky0 is a Gaussian

weight function centered at k0 = − eB
h̄ x0 and with a dispersion

σ in the ŷ direction. In order to avoid numerical errors
induced by unrealistic steplike potentials, the wave packets
are initialized next to confining barriers with a more realistic
shape:

V α (x) = VbFτ (x − xb), V β (x) = VbFτ (−x + xb), (3)

where Fτ (x) = (exp(τx) + 1)−1 is characterized by the
smoothness τ , height Vb, and α and β label the two initializa-
tion regions of the device (Fig. 1). The indistinguishability of
the two wave packets ψα (x, y) and ψβ (x, y) at t = 0 is ensured
by the equivalences τα = τβ and V α

b = V β

b , while the opposite
direction of propagation is guaranteed by the symmetry be-
tween the confining barriers of the 2DEG [V α (x) = V β (−x)].
The counterpropagating states ψα (x, y) and ψβ (x, y) are there-
fore characterized by an opposite wave vector of propagation
kα

0 = −kβ

0 and initial central position yα
0 = −yβ

0 , so that they
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impinge on the beam splitter simultaneously. Numerical val-
ues used in our simulations are Vb = 10 eV and τ = 3 nm.

C. Numerical solution of the two-particle Schrödinger equation
in four spatial dimensions plus time

By assuming a symmetric spin part of the wave function,
the Slater determinant is finally computed from the orbital
states ψα (x, y) and ψβ (x, y), so that exchange symmetry is
included in the two-electron state:

� = ψα (x1, y1)ψβ (x2, y2) − ψα (x2, y2)ψβ (x1, y1)√
2

. (4)

Together with accounting for the realistic geometry of
the device, the explicit computation of the two particle
wave function in the 4D configuration space allows one
to exactly reproduce the system dynamics in presence of
electron-electron interaction V12(x1, y1, x2, y2). However, the
memory burden to allocate the 4D wave function increases
the computational cost with respect to the single-electron
version of our software [15,16]. The present numerical
simulations entail indeed distributed-memory parallelization
techniques [49] and the support of high-performance com-
puting facilities; to face the problem of memory alloca-
tion, we partition the (x2, y2) domain of the configuration
space between interconnected supercomputing nodes with
the MPI paradigm, while a parallel version of the split-step
Fourier method [50] evolves the distributed two-particle wave
function.

The latter time-dependent algorithm has already been val-
idated to study electron transport in single-qubit Hall inter-
ferometers in Refs. [15,16]. Here, we use its extension to the
two-particle case. In the Landau gauge, Ai = (0, Bxi, 0) with
i = 1, 2, the two-particle Hamiltonian

Ĥ12 = ( p̂1 − qÂ1)2

2m∗ + ( p̂2 − qÂ2)2

2m∗ + V̂1 + V̂2 + V̂12, (5)

is split by using Trotter-Suzuky factorization and included
in the evolution operator Û (t, 0) for a total evolution time
t = Nδt :

Û (t, 0) = [
e− i

h̄ δt ·(V̂1+V̂2+V̂12 )F−1
y1,y2

e− i
h̄ δt ·T̂y1 ,y2 Fy1,y2 F

−1
x1,x2

× e− i
h̄ δt ·T̂x1 ,x2 Fx1,x2

]N
. (6)

Fy1,y2 (F−1
y1,y2

) and Fx1,x2 (F−1
x1,x2

) are parallel 2D Fourier trans-
forms (antitrasforms) performed on the single-particle real-
space coordinates xi, yi (i = 1, 2). Fourier transforms exploit
the locality of the modified kinetic operators T̂x1,x2 (T̂y1,y2 )
in the reciprocal space [kx1 , kx2 ] ([ky1 , ky2 ]), while the single-
particle V1,V2 and two-particle V12 potential operators are
computed exactly in the real space.

The two-particle evolution in the HOM experiment is then
affected by the presence of the beam splitter, to partition the
impinging wave packets in a reflected and transmitted com-
ponent with the same probability in ideal conditions. In this
geometry, the beam splitter is realized by a QPC, i.e., a narrow
constriction in the potential confining barrier, that partially
scatters the traveling charge to the counterpropagating edge
channel. We design the QPC by using potential barriers as in

Eq. (3), so that the potential profile reads

V (x, y)=VbF (−x − ∞)F (x − xL )F (−y − ∞)F (y − yB)

+VbF (−x + xR)F (x − ∞)F (−y + yT )F (y − ∞),

(7)

where Vb is the height of the confining potential, xL, xR the left
and right sides of the barrier along the x̂ direction, and yT and
yB the top and bottom side of the barrier along the ŷ direction,
respectively. Such parameters of the single-electron potential
V (x, y) in Eq. (7) have been tuned to transmit and reflect the
impinging single-electron wave packet in Eq. (2) with 50%
probability, as achieved in the Mach-Zehnder interferometer
of Ref. [16]. In the present geometry, the electron beam
splitter has a symmetric opening about 30 nm. Moreover,
our choice of the smoothness parameter τ of Eq. (3) and the
transverse position x0 lead to a group velocity [16] of about
150 nm/ps for our wave packets.

Reference [16] shows the operability of the QPC in the
IQH regime and the consequence of the distinctive Fermi-
like energy selectivity of the present beam splitter. In this
geometry, if a proper initial position x0(k0) of the wave packet
ensures an integrated transmission probability of about 50%
at the QPC, the Fermi-like energy selectivity of the parti-
tioner induces incomplete overlap between the transmitted
and reflected components of the single-electron wave packet
in the ky space. This feature not only affects the visibility in
early implementations of the Mach-Zehnder interferometer,
but, as shown in the next section, it also has a key role in
the apparent violation of the Pauli exclusion principle in the
HOM experiment [6].

III. RESULTS

In the following, we present our exact numerical sim-
ulations of the HOM experiment in the IQH regime, with
B = 5 T. By considering the typical parameters of GaAs
(m∗ = 0.067me) for the hosting material, we tune the spatial
broadening of the two indistinguishable electron wave pack-
ets (σ = 10, 12.5, 15, 17.5, and 20 nm), and we observe
the interplay between the HOM geometry and two-electron
correlations in different scenarios, where the exchange and/or
Coulomb interaction are included.

The dynamical properties of the system are completely de-
termined from the 4D wave function �(x1, y1, x2, y2, t ), which
is iteratively computed at each time step. As an example,
Fig. 2 displays the conditional probability of one particle by
selecting the coordinates of the other at two different positions
and at two different times during the evolution in the HOM in-
terferometer. We stress that the huge computational load of the
4D wave function requires to reduce the number of degrees of
freedom in order to produce viable information, as to measure
the dynamical bunching (antibunching) probability Pb (Pab),
which corresponds to the joint probability of finding the two
particle in the same output (opposite outputs) [6]. The real-
space domain (x, y) is divided in two regions, labeled top (T )
and bottom (B) as shown in Fig. 1, so that the configuration
space [x1, y1, x2, y2] is partitioned into four distinguishable
regions labeled Si, j , where the indexes i, j = T, B refer to
the first and to the second particle, respectively. The joint
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FIG. 2. Conditional probability (red contour lines) for particle
1 P∗(x1, y1, x∗

2 , y∗
2, t ′) = |�(x1, y1, x∗

2 , y∗
2, t ′)|2 at t ′ = 0.3 ps (left

column) and t = 0.9 ps (right column) for the selected positions
(green dots) of particle 2, (x∗

2 , y∗
2 ) = (−11.5, 50) nm (first row) and

(x∗
2 , y∗

2 ) = (50, −11.5) nm (second row), in the potential landscape
of the HOM. Note that, due to Pauli exclusion principle, the wave
function always vanishes at (x1, y1) = (x2, y2 ). By selecting different
couples of coordinates (x∗

2 , y∗
2 ), the conditional probability shows the

evolution of one of the two or both single-particle wave packets, as
indicated by the arrows.

probability of detection at the same side of the device is

Pb =
∫

ST T

|�|2dx1dy1dx2dy2

+
∫

SBB

|�|2dx1dy1dx2dy2, (8)

while the antibunching probability is similarly computed by
integrating over ST B and SBT ; bunching and antibunching
probability are related by Pab = 1 − Pb.

A. Effect of QPC scattering asymmetry

In a steady-state framework, where the injection of plane
waves is assumed, Pb is expected to be zero for an half-
reflecting beam splitter, due to the exchange symmetry of
a fermionic two-particle state �, even neglecting Coulomb
interaction [2]. Differently, by using a time-dependent model
in a 1D effective framework, it is proved [6] that the energy
broadening of the single-electron state affects the bunching
probability. This behavior is confirmed by our full-scale time-
dependent simulations of the two-electron bunching in 2D for
different wave-packet sizes, reported in Fig. 3. Here, in pres-
ence of exchange symmetry only, the bunching probability
of the two-fermion wave function initially varies with time,
reaching its maximum when the two particles interact at the
QPC. Then, the two charges leave the QPC only partially from
different outputs, so that the bunching probability decreases

FIG. 3. Numerical simulations of the exchange-symmetry driven
HOM interferometer. (a) Bunching probability of the two-fermion
state in absence of Coulomb interaction for different spatial dis-
persions σ . (Inset) Numerical fit of Eq. (15) (black dashed line)
with the stationary bunching probabilities in Fig. 3(a) at t = 1.2 ps
(�). This provides the geometrical parameter in Eq. (10) for our
QPC, a = 60 ± 1 nm. (b) Unconditional probability of particle 1
P(x1, y1, t ′) = ∫∫

dx2dy2|�(x1, y1, x2, y2, t ′)|2 at different time steps
t ′ in the potential landscape of the HOM. The snapshots show that
the stationary regime is achieved between 0.9 and 1.2 ps. Note that
due to exchange correlation, the unconditional probability of particle
1 shows the evolution of both wave packets.

without vanishing. As shown by comparing Pb(t ) to the evo-
lution of the two-particle probability (bottom panel of Fig. 3),
the stationary regime is achieved at t � 1.0 ps. By increasing
σ , the final bunching probability decreases linearly, so that we
expect that the full antibunching is restored in the plane wave
limit, i.e., σ → ∞.

The stationary trend of Pb(σ ) in the exclusive presence of
exchange symmetry can be estimated analytically by means of
the one-dimensional effective model we already validated to
study single-qubit interferometers [15,16]. The model relies
on the chirality of edge states to map our two-dimensional
system in the IQH regime with wave packets of plane waves
impinging on a 1D barrier, as schematically depicted in the
top panel of Fig. 4. The edge state ϕn=1,k (x)eiky is replaced
by a plane wave |k〉, with an effective parabolic dispersion
E (k) characterized by a magnetic mass m∗

B. In the reciprocal
space, the single-particle wave functions are defined on the
pseudospin basis {|kα〉, |kβ〉}, where |kα〉 = −|kβ〉 = |k〉. Ne-
glecting the Coulomb interaction, the effect of the potential
barrier is described by a single-particle scattering matrix:

Ŝ =
(

r(k) t (k)
t (k) r(k)

)
, (9)

where r(k) and t (k) are empirical equations that model [16]
the energy selectivity of a realistic QPC:[

r(k)
t (k)

]
=

[
1
i

]
exp

[
− (∓a(k − k0) + γ )2

8γ

]
. (10)

245415-4



COULOMB AND EXCHANGE INTERACTION EFFECTS ON … PHYSICAL REVIEW B 99, 245415 (2019)

FIG. 4. (Top) 1D model for the two-particle scattering at the
QPC: two wave packets of plane waves with opposite central mo-
mentum impinge on a 1D potential barrier. (Bottom) Bunching
(empty dots) and antibunching (full dots) probabilities for an anti-
symmetric (red) and symmetric (black) two-particle wave function
with σ = 20 nm. Only exchange symmetry is present.

The a parameter depends on the smoothness τ and height Vb

of the QPC in Eq. (7), while γ = 4 ln 2 in our model. The
scattering at the QPC splits the single-particle wave packet
|ψα(β )〉 in two contributions, that we label |α(β ), R〉 for the
reflected and |α(β ), T 〉 for the transmitted component:

|α(β ), R〉 =
∫

dkFσ

(
k, kα(β )

0 , yα(β )
0

)
r(k)|k〉, (11)

|α(β ), T 〉 =
∫

dkFσ

(
k, kα(β )

0 , yα(β )
0

)
t (k)|k〉. (12)

The scattered single-particle wave packets |ψα(β )〉′ =
|α(β ), R〉 + |α(β ), T 〉 are inserted in Eq. (4) to compute
the bunched state:

|ψbun〉 = |αR〉|βT 〉 + |αT 〉|βR〉 − |βR〉|αT 〉 − |βT 〉|αR〉√
2

,

(13)
where the first ket refers to particle 1, while the second to
particle 2. Taking into account the orthogonality of |α(β )R〉
and |α(β )T 〉 due to their spatial separation, the bunching
probability Pb = 〈ψbun|ψbun〉 is calculated:

Pb = 〈αR|αR〉〈βT |βT 〉 + 〈αT |αT 〉〈βR|βR〉
− 2|〈αT |βR〉|2. (14)

We assume the ideal condition 〈α(β )R|α(β )R〉 =
〈α(β )T |α(β )T 〉 = 1/2, while the overlap integrals
〈α(β )R|β(α)T 〉 are computed exploiting Eq. (10). In case
of asymmetry between the initial positions of the two wave
packets (yα

0 = yβ

0 + �y), the bunching probability for a QPC
with �2 = σ 2 + a2/8γ reads

Pb = 1

2
− 1

2

σ 2

�2
e

−�y2

4�2 . (15)

In the inset of Fig. 3 (top panel), the exact bunching
probabilities computed numerically at t = 1.2 ps are fit by
means of Eq. (15) with �y = 0. This 1D effective model not
only confirms quantitatively the results of our 2D simulations,
but it also explains how the energy broadening affects the
Pauli dip. According to Eq. (10), the transmitted and reflected
components of the single-particle scattered wave packets are
centered at different wave vectors, thus decreasing the overlap
〈αT |βR〉 in Eq. (14). Two strategies are therefore possible
to reduce Pb: the manipulation of the spatial broadening σ ,
as shown by Fig. 3, or a variation in the smoothness of the
QPC. The former case is realized when σ → ∞ (plane-wave
limit), while the latter if a → 0 (flat energy selectivity) in
Eq. (8). Regarding the smoothing of the energy selectivity, a
different geometry, as the beam splitter at bulk filling factor 2
in Ref. [15], represents a possible solution.

We additionally remark that in Eq. (14) the overlap
−2|〈αT |βR〉|2 decreases the bunching probability due to
the antisymmetry of the two-electron state. In case of a
symmetric wave function the same term is expected to be
positive (+2|〈αT |βR〉|2), as shown in the bottom panel of
Fig. 4. Here, we compare the dynamical bunching and an-
tibunching probabilities of a symmetric/antisymmetric two-
particle wave function that propagates in our geometry of
the HOM interferometer: in the stationary regime, the two
configurations are characterized by exchanged values of Pb

and Pab. Differently, as indicated by Eq. (15), the symmetry
of the two-particle wave function is not expected to affect
Pb at �y → ∞. The stationary bunching probability for dif-
ferent initial displacements �y and σ = 15 nm is reported
in Fig. 5(a) (blue dots for V12 = 0). In our time-dependent
scenario, a spatial mismatch in the initial position of the two
electron states (yα

0 − yβ

0 = �y �= 0) modifies the time at which
each wave packet is expected to impinge on the QPC, so
that the overlap between the two wave packets decreases, as
well as the effect of their exchange symmetry. The classical
probability of joint detection for two distinguishable particles
is gradually restored with �y → ±∞. Eq. (15) shows that

the characteristic length for this process is λ = 2
√

σ 2 + a2

8γ

≈ 30 nm for σ = 15 nm, as confirmed by the fitting curve
Pb(�y) (blue solid line) in Fig. 5(a), which vanishes at 3λ �
90 nm.

B. Effect of the Coulomb interaction

If our single-particle approach provides enough informa-
tion to understand electron bunching probability in presence
of exchange-symmetry only, the introduction of the Coulomb
interaction requires a full-scale two-particle approach. We
introduce long-range electron-electron repulsion between the
two carriers by adding to the two-particle Hamiltonian the
potential

V12(x1, y1, x2, y2) = e2

4πε
√

(x1 − x2)2 + (y1 − y2)2 + d2
,

(16)
where ε is the medium permittivity and d accounts for
the finite thickness of the 2D system in the divergence at
x1 = x2 and y1 = y2.

245415-5



BELLENTANI, BORDONE, ORIOLS, AND BERTONI PHYSICAL REVIEW B 99, 245415 (2019)

FIG. 5. (a) Bunching probability as a function of the ini-
tial displacement �y between two indistinguishable wave packets
(σ = 15 nm) with the zero (blue) and nonzero (green) Coulomb
interaction V12 with d = 1 nm. For V12 = 0, the numerical data
(blue dots) are compared to Eq. (15) (blue line) with α = 60 nm,
while for V12 �= 0 numerical data (green dots) are fit by the equation
g(x) (green dashed line) as explained in the main text. The fit
provides an effective broadening σeff = 21.75 ± 0.03 nm and an
effective geometrical parameter aeff = 84.0 ± 0.1 nm. (b) Stationary
bunching probability (t = 1.2 ps) in presence of long-range Coulomb
interaction without exchange symmetry for different d parameters
in Eq. (16) and σ = 20 nm. (c) Bunching probability in presence
of long-range Coulomb interaction without exchange symmetry and
(d) with exchange symmetry for different σ and d = 1 nm. (e)
Comparison between the stationary bunching probability of two dis-
tinguishable electrons (yellow line) and indistinguishable electrons
(green line) with long-range Coulomb interaction. The stationary
bunching probability of two indistinguishable electrons in presence
of a screened Coulomb interaction is also reported (blue circle) for
the case σ = 20 nm and a damping σc = 5 nm, see Eq. (17).

To evaluate the interplay between exchange symmetry
and Coulomb interaction, we initially compute the bunching
probability for a product state �C = ψα (x1, y1)ψβ (x2, y2),
where the antibunching is exclusively generated by electron-
electron repulsion. In Fig. 5(b), we report the bunching prob-
ability at final time t = 1.2 ps with σ = 20 nm for different
values of the d parameter. Note that, for a Coulomb repulsion
small enough (d = 100 nm), Pb reaches the limit 1/2. Indeed,
in absence of the exchange symmetry, the two wave packets
evolve independently and the bunching probability in Eq. (14)

does not contain the overlap 〈αT |βR〉. Pb equals 1/2 only
if 〈α(β )T |α(β )T 〉 = 〈α(β )R|α(β )R〉 = 1/2, namely, the two
initial wave packets are properly initialized, so that they are
transmitted with 50% probability by the QPC, as in the present
case. Additionally, Fig. 5(b) shows that the Coulomb-driven
scattering at the QPC does not produce perfect antibunching
when d → 0, but rather Pb saturates by decreasing the d
parameter. This differs from a one-dimensional system, where
the two electron are confined on the same rail, e.g., in the
x̂ direction. In the latter case, they are forced to get across
x1 = x2, so that they feel an effective infinite barrier during
the scattering for d = 0. In the two-dimensional geometry,
alternative paths with a finite barrier are present, and each
charge is only partially reflected by the Coulomb potential for
d = 0, producing partial bunching.

Figure 5(c) shows the evolution of Pb(t ) for the separa-
ble case with different values of σ at d = 1 nm. Finally,
we add the exchange symmetry to the interacting system
[Fig. 5(d)]. In our operating regime, the Coulomb repulsion
dominates on the exchange interaction, which only shifts
the bunching probability to lower values. We also show, in
Fig. 5(a), the stationary bunching probability of indistinguish-
able and interacting electrons for different initial displace-
ments �y and σ = 15 nm: the numerical data (green squares)

are fit by g(x) = 1
2 [1 − σ 2

eff

σ 2
eff +α2

eff /8γ
exp(− x2

4(σ 2
eff +a2

eff /8γ )
)] (green

dashed line), which corresponds to Eq. (15) with an effective

σeff and aeff = 2
√

2γ

√
�2

eff − σ 2
eff used as fitting parameters.

The numerical fit provides σeff � 21 nm and aeff � 86 nm,
that are larger than the actual ones [Fig. 3(a), inset] without
the Coulomb interaction.

As visible in both separable [Fig. 5(c)] and nonseparable
[Fig. 5(d)] interacting scenarios, the effect of a long-range
Coulomb interaction turns out to depend on the spatial broad-
ening of the wave packet. The stationary bunching probabili-
ties of the separable and nonseparable cases are displayed in
Fig. 5(e). In presence of the long-range Coulomb interaction,
Pb(σ ) clearly differs from the almost-linear one in the inset of
Fig. 3(a), where the antibunching is exclusively driven by the
exchange interaction. Two additional numerical simulations
for indistinguishable electrons with σ = 25 and 30 nm con-
firm that, in our operating regime, the bunching probability
saturates to a nonzero value for larger wave packets.

Finally, we present an additional simulation where the
interaction between two indistinguishable electrons with
σ = 20 nm is screened by an exponential damping:

V ′
12(x1, y1, x2, y2) = Ce2

4πε

e−
√

(x1−x2 )2+(y1−y2 )2

σc√
(x1 − x2)2 + (y1 − y2)2 + d2

,

(17)

as done in Ref. [6] for an effective 1D geometry. The pa-
rameter C is a global constant that quantifies the interaction,
and σc determines its spatial range. Figure 5(e) reports the
stationary bunching probability compared to the case of an
unscreened Coulomb interaction. The numerical value for the
screened case is almost identical to the bunching probability in
presence of exchange alone, reported in the inset of Fig. 3(a).
This suggests that, for the present damping parameters (C = 1
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FIG. 6. Entanglement between T and B regions in the anti-
bunched configuration. (a) Von Neumann entropy for different σ

and d = 1 nm in presence of exchange symmetry only; the dotted
black lines in the inset show where the full scale wave function
is projected with respect to the top view of the potential profile.
(Bottom) Comparison between the stationary Von Neumann entropy
in the different scenarios.

and σc = 5 nm), the regime of exchange-driven bunching is
restored, and the dominance of the Coulomb interaction is
gradually suppressed in the intermediate regimes.

C. Spatial entanglement

We finally provide a dynamical estimation of the spatial
entanglement for the antibunched configuration in presence
of exchange and/or Coulomb interaction. The Hilbert space
is divided into two separate subsystems, the top (T ) and the
bottom (B) region in Fig. 6, so that H = HT ⊗ HB. Due to the
indistinguishability of the two electrons, entanglement is mea-
sured by assuming particle 1 in the top region [(x1, y1) ∈ T ],
and particle 2 in the bottom one [(x2, y2) ∈ B], while the op-
posite configuration is equally entangled due to the symmetry
of the two wave packets. To reduce the computational burden,
we exploit the chiral nature of edge channels by projecting
the two-particle wave function on 1D slices of the subsystem:
y1 and y2 coordinates are fixed at the expected maxima of the
scattered single-particle wave packet in T and B regions, in the
present case y∗

1 = 11.5 nm and y∗
2 = −11.5 nm (black dashed

lines in the inset of Fig. 6).
The conditional two-particle wave function, φ(x1, x2) =

�(x1, y∗
1, x2, y∗

2 ) is renormalized, and the density matrix reads

ρT B(x1, x2; x′
1, x′

2) = φ(x1, x2)φ∗(x′
1, x′

2), (18)

whose Von Neumann entropy does not depend on the sub-
space chosen to be traced out. Therefore we compute the
reduced density matrix

ρT (x1, x′
1) =

∫
x2∈B

dx2 φ(x1, x2)φ∗(x2, x′
1), (19)

on the lattice points of our domain B. We calculate the spatial
entanglement by means of the Von Neumann entropy

S = Tr[ρT ln(ρT )]. (20)

Figure 6(a) shows the dynamics of the Von Neumann
entropy of the wave-function spatial distribution in the T and
B regions with exchange symmetry only in the antibunching
configuration. The entanglement is quenched by an increase of
the spatial distribution of the wave packet, so that we expect it
to vanish in the plane-wave limit. In Fig. 6(b), we compare the
stationary Von Neumann entropy for the cases of (i) exchange
symmetry alone (red solid line), (ii) a separable wave function
with the Coulomb interaction (green dashed line), and (iii) the
Coulomb interaction and symmetric wave function (blue dot-
ted line). In the latter, the Coulomb repulsion, which acts as an
additional barrier, further prevents the two particles to reach
the opposite regions thus damping entanglement. The Von
Neumann entropy in the interacting scenario with exchange
interaction does not differ from the one in the distinguishable
case: the two electrons are already prevented to occupy the
same coordinates due to the infinite barrier represented by V12

at (x1, y1) = (x2, y2). We stress that the entanglement assessed
in Fig. 6 represents the degree of nonseparability of the
spatial representation of the two-particle wave function and
its possible exploitation as a resource for quantum information
processing is not straightforward and beyond the scope of this
paper.

IV. CONCLUSIONS

We realized a full-scale numerical simulation of an elec-
tronic HOM interferometer in the IQH regime that contributes
to shed light on the apparent violation of Pauli exclusion
principle in two-electron bunching, by including exactly the
interplay between a realistic geometry of the QPC in 2D and
the exchange and correlation of the two-particle wave func-
tion. A full understanding of such interplay is important for
the implementation of a HOM device for quantum computing
protocols, e.g., to measure the degree of indistinguishability
of electrons generated from different sources [11]. Moreover,
from an experimental perspective, the access to the dynamics
of the full two-particle wave function and its dependence on
several parameters, as the spatial dispersion of the carriers,
represents a formidable ingredient to assess the origin of
low-frequency fluctuations in the electrical current. In fact, the
low-frequency noise is proportional to the overlap between the
two electron states, and provides the degree of indistinguisha-
bility of the two electrons impinging on the beam splitter. By
introducing desynchronization between the two sources the
full minimum of the Pauli dip can be characterized without
resorting to a challenging detection of coincidence counts.

In contrast to traditional approaches in literature, which
are based on 1D effective models implemented in station-
ary frameworks and with effective scattering matrices for
the QPC, we privilege the exact solution of the 4D time-
dependent Schrödinger equation for two particles in a 2D real
space. The exact solution requires a parallel implementation
of our numerical solver by means of the MPI library. Thanks
to this effort, we provide dynamical measurements of the
bunching probability for a two-particle system, where the
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electrons are initialized in Gaussian wave packets of the exact
edge states confined at the barrier, coherently to the most
recent single-electron injection protocols in Hall nanodevices.
The time evolution of the two interacting and correlated wave
packets successfully reproduce the two-electron dynamics
in the present interferometer. The decrease in the bunching
probability by increasing the spatial localization confirms, for
a full scale 2D spatial geometry, the findings of Ref. [6], where
this effect is explained with a 1D time-dependent model as a
signature of the nonorthogonality between the states scattered
by the potential barrier.

In addition to the full-scale numerical simulation, we pro-
vide a simplified analytical model to relate the stationary
bunching probability to the nonperfect overlap between the
transmitted and reflected wave-packets from the QPC. This
model clarifies the interplay between the spatial dispersion of
the wave packet σ and the geometry of the QPC, which is
encoded in the single-particle parameter � of Eq. (15).

We show how the perfect antibunching is recovered in the
plane-wave limit and point out the role of exchange symmetry
by simulating the HOM experiment both for a symmetric and
an antisymmetric wave function. As an additional advantage
in treating exactly the two-particle scattering, we include
electron-electron repulsion in the Hamiltonian to evaluate the
interplay with the fermionic statistics. We observe that in a 2D
real-space geometry, differently from the typical 1D scenario
adopted in literature, the bunching probability does not vanish
for an infinite repulsive Coulomb interaction. Additionally, for
unscreened interacting particles, we find that Pb(σ ) saturates
to nonzero values. Our conclusions do not contradict the
results obtained in Ref. [4], as in the experiment the device
does not generate strongly-localized excitations, but rather
wave packets with an emission time of the order of tens
of picoseconds, i.e., two orders of magnitude larger than in
our geometry. Furthermore, by including an exponentially
decaying screening in our interacting regime, we show how
the effect of Coulomb repulsion can be suppressed with a
proper choice of the damping length, so that the limit of
exchange-driven bunching is restored, also for interacting
particles.

Finally, a dynamical measurement of the spatial Von
Neumann entropy between the top and bottom regions of the
device allows us to assess the spatial entanglement between
the two antibunched carriers; we found that the long-range
Coulomb interaction quenches the entanglement by enhanc-
ing the Pauli dip with respect to the antisymmetry alone.
This study represents the starting point for the simulation of
more sophisticated 2D geometries, as the conditional phase
shifter [51,52], where the Coulomb interaction entangles elec-
trons in different edge states.
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APPENDIX: SPLIT-STEP FOURIER METHOD FOR A
TWO-PARTICLE SYSTEM

Together with a considerable increase in the memory cost,
the evolution of two-particle wave function �(x1, y1, x2, y2; t )
is characterized by an heavier computational load with re-
spect to the single-particle version of the split-step Fourier
method [15,16].

In presence of a perpendicular magnetic field, the linear
momentum of the ith particle is modified by including, in the
Landau gauge, the magnetic vector potential Ai = (0, Bxi, 0)
with i = 1, 2, which separately couples with the xi and kyi

components of the single-electron Hamiltonian. The two-
particle Hamiltonian in presence of the electron-electron in-
teraction V̂12 then reads

Ĥ12 = V̂1 + V̂2 + V̂12 + T̂x1,y1 + T̂x2,y2 , (A1)

with V̂1, V̂2 single-particle external potentials and

T̂xi,yi = p̂2
xi

2m∗ +
(

p̂yi + eBx̂2
i

2m∗

)
, i = 1, 2 (A2)

single-particle operator accounting for the dynamics of a free
electron in a perpendicular magnetic field. The x̂ and ŷ com-
ponents in Eq. (A2) can be rearranged so that T̂x1,y1 + T̂x2,y2 =
T̂x1,x2 + T̂y1,y2 , with

T̂x1,x2 = p̂2
x1

2m∗ + p̂2
x2

2m∗ , (A3)

T̂y1,y2 = p̂2
y1

2m∗ + 2eBx̂1 p̂y1

2m∗ + e2B2x̂2
1

2m∗

+ p̂2
y2

2m∗ + 2eBx̂2 p̂y2

2m∗ + e2B2x̂2
2

2m∗ . (A4)

T̂x1,x2 is represented by a diagonal matrix in the 2D reciprocal
space [kx1 , kx2 ], regardless the space representation for the
ŷ-coordinate, while T̂y1,y2 is diagonal in the 2D reciprocal
space [ky1 , ky2 ] and in the 2D real space [x1, x2]. On the other
hand, the potential operators V̂1, V̂2, and V̂12 are diagonal
on the 4D real space [x1, y1, x2, y2]. Note that V̂12 is a two-
particle operator that couples the x̂ and ŷ coordinates: its exact
representation is possible only in the 4D real space configura-
tion [x1, y1, x2, y2], where our two-particle wave function is
defined. By means of the approximate Trotter-Suzuky factor-
ization [50], the evolution operator for a total evolution time
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t = N · δt can be separated into three terms:[
e− i

h̄ δt Ĥ12
]N = [

e− i
h̄ δt ·(V̂1+V̂2+V̂12 )e− i

h̄ δt ·T̂x1 ,x2 e− i
h̄ δt ·T̂y1 ,y2

]N
. (A5)

As in the standard split-step Fourier method [50], the di-
agonal character of the exponential operators in the 2D

real/reciprocal spaces described above can be exploited in
computing their effect on the quantum state by applying
a 2D Fourier transforms Fx1,x2 (Fy1,y2 ) and antitrasforms
F−1

x1,x2
(F−1

y1,y2
) to the wave function, as in Eq. (6).
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