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Abstract

Cellular types of multicellular organisms are the stable re-
sults of complex intertwined processes that occur in biologi-
cal cells. Among the many others, chromatin dynamics sig-
nificantly contributes—by modulating access to genes—to
differential gene expression, and ultimately to determine cell
types. Here, we propose a dynamical model of differentiation
based on a simplified bio-inspired methylation mechanism in
Boolean models of GRNs. Preliminary results show that, as
the number of methylated nodes increases, there is a decrease
in attractor number and networks tend to assume dynamical
behaviours typical of ordered ensembles. At the same time,
results show that this mechanism does not affect the possi-
bility of generating path dependent differentiation: cell types
determined by the specific sequence of methylated genes.

Introduction

Eukaryotic cells are characterised by the organisation of
DNA in a condensed structure, called chromatin. Chromatin
is composed of nucleosomes, structures of DNA wrapped
around octamers of histone proteins. Histone methyla-
tion and histone acetylation change—by adding methyl and
acetyl groups to histones—the degree of compactness of the
chromatin, in this way facilitating or obstructing gene ex-
pression. These processes are defined as epigenetic mecha-
nisms .

Although methylation effects depend on the particular po-
sitions on histones on which it acts, it most often leads
to tightly packed regions of chromatin called heterochro-
matin (Gilbert and Barresi, 2016; Perino and Veenstra,
2016; Schuettengruber and Cavalli, 2009). These regions
are not accessible neither by transcription factors nor by
RNA polymerases and so the expression of genes belong-
ing to these DNA areas is inhibited. Biological cells ex-
ploit differential methylation to modulate their gene expres-

'Tn a manner conforming with molecular biology, with the
term epigenetics we refer to the series of heritable mechanisms
not directly derived from changes in DNA that modify the cells’
behaviour. This is not to be confused with the different con-
cept of “epigenetic landscape” (Waddington, 1957; Huang, 2012),
metaphor introduced by Waddington to represent the developmen-
tal landscape determined by the GRN.
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sion during development and differentiation. It is important
to note that, along lineages, the attained configurations of
DNA methylation are inherited and progressively extended
as cells become more specialised (Kim and Costello, 2017).
Therefore, methylation contributes to maintain and stabilise
the attained gene expressions that ultimately characterise the
identities of the various cell states.

It is worth mentioning that methylation is tightly regu-
lated by complex interactions, and that epigenetic dysreg-
ulation is very common in a lot of disorders, from cogni-
tive, neurological and chronic diseases to cancer. Given the
complexity of these mechanisms, the adoption of models can
support the analysis of the role of epigenetics in pathophys-
iological processes. Several mathematical approaches have
been proposed with the aim of disentangling the effects of
epigenetics in development, differentiation and also in the
establishment of aberrant cellular states—Ilike cancer.

Noteworthy is the work (Miyamoto et al., 2015) in which
the authors investigate the mechanisms of differentiation and
cellular reprogramming introducing a continuous model of a
minimal gene regulatory network (GRN) able to give rise to
both pluripotent and differentiated states. In their modelling
approach, an epigenetic process—introduced as a gene ex-
pression fixation—turns out to be important to increase the
stability of the attained differentiated states and to reproduce
with more accuracy the phenomenology of the reprogram-
ming process.

In the works (Turner et al., 2017, 2013), the authors have
ascertained that the addition of an epigenetic layer—in the
form of Boolean switches that dynamically change the ac-
tual network topology—within recurrent neural networks
lead to better performance in the achievement of certain tar-
get tasks, as compared to models without it.

To the best of our knowledge, the specific role of epige-
netics in the dynamics of discrete models of GRN has been
addressed only by (Bull, 2014). The author does not focus
on the differentiation process as such, but instead, he evalu-
ates the potential of Random Boolean networks (RBNs) with
epigenetic control—which is interpreted as additional nodes
that change the regular transcription dynamics—in NK land-
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scapes (Kauffman and Levin, 1987).

Of fundamental relevance for this discussion are the
works of Kauffman and Huang (Kauffman, 1969; Huang
et al., 2009, 2005; Huang and Ingber, 2000) that have laid
the foundations for a mathematical description of GRN dy-
namics in terms of dynamical systems, with attractors that
model cell types.

Recently, an abstract mathematical model of differentia-
tion based on Noisy RBNs has been proposed (Villani et al.,
2011; Villani and Serra, 2013; Serra et al., 2010). This
model has proven to be able to describe the most relevant
properties of the differentiation process, such as different
degrees of differentiation, stochastic and deterministic dif-
ferentiation, and cell reprogramming. The model focuses on
the dynamics of a single cell represented as an autonomous
system? subject to intracellular noise. Cell types are defined
as the portions of the space of states in which the dynamics
remains trapped, under a specific noise level. Changes in the
intracellular level of noise drive the differentiation process:
high noise levels correspond to pluripotent cells while the
low levels to fully differentiated ones. Experimental analy-
sis on RBNss subject to stochastic dynamics (Braccini et al.,
2018) and the successful evolution of networks able to attain
not trivial differentiation dynamics (Braccini et al., 2017,
Benedettini et al., 2014) proved the expressiveness and plau-
sibility of this model.

Differentiation represents a major challenge for every
model of gene regulatory networks that, like RBNs, is based
on deterministic dynamical systems which asymptotically
reach stable attractor states, to be identified with the differ-
ent cell types. Indeed, under the action of the deterministic
dynamics, a stable attractor does not change any longer so
it must represent a fully differentiated cell type. Therefore
cells which are found at intermediate differentiation levels
(e.g. pluripotent cells) should be associated to transients—
an unsatisfactory proposal, since it is known that there exist
long-lived pluripotent cells, which should rather be repre-
sented by metastable states.

The way out of this conundrum requires a mechanism to
escape from the deterministic attractors. While this mech-
anism is provided in our previously described model by
means of intracellular noise, in this work we want to ex-
plore an alternative—complementary—possibility, i.e. that
it is due to an external signal. In this way, the system is no
longer autonomous, and escaping from the attractors of the
corresponding deterministic system becomes possible. Ex-
ternal signals are indeed known to affect embryo evolution,
and the simplest way to describe their effect in a GRN model
is that of clamping the values of some network nodes to fixed
values.

“Here we adopt the terminology of dynamical systems in which
the adjective autonomous is used to denote systems that are not
subject to inputs, therefore their state may change in time only ow-
ing to internal mechanisms.
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This paper is organised as follows. The next section de-
scribes the proposed model with its theoretical implications
in BN models and its contribution to the understanding of
the biological process of methylation. The subsequent sec-
tion details the experimental setting of our in silico experi-
ments and illustrates results that show the properties of the
model. Finally, we conclude with an outlook to future work.

Model

Boolean networks are discrete-time and discrete-state dy-
namical models of GRN introduced by Kauffman (Kauff-
man, 1969, 1993). In their original formulation BNs can be
represented by a directed graph with n nodes each having as-
sociated a Boolean variable x;, 7 = 1,...,n and a Boolean
function f; = (zi,,...,x;, ) which depends on k other
nodes, avoiding self loops. Despite their simplifications they
proved to be suitable systems to represent the dynamics of
biological GRNs to many level of abstractions (Graudenzi
et al., 2011; Serra et al., 2006, 2007; Shmulevich et al.,
2005).

As previously discussed, methylation—even if it is not the
only phenomenon in place—has a non negligible impact on
cell fate determination and maintenance. Here we are es-
pecially interested in its abstract role in simplified models
of GRNs, namely in Boolean networks. Indeed, borrow-
ing the idea of a progressive methylation state of the chro-
matin along the development and differentiation of biologi-
cal cells, we propose an analogous mechanism in BN mod-
els. Similarly to what happens in the heterochromatin con-
dition, the expression of some BN nodes is blocked to value
0; these nodes will be referred to as frozen in the following.

Theoretically, the formulation of this peculiar methylation
mechanism implies a sort of simplification of the network,
as it reduces the nodes that are actually subject to a dynamic
update, and so restricting the number of combinations that
the system itself can assume. Therefore, it is not a priori
clear whether this mechanism can accommodate path de-
pendent differentiation: cell types determined by the spe-
cific sequences of methylated genes.

This model relies on the hypothesis—to be verified in
RBNs—that the progression of frozen nodes imposes the ar-
row of time of the differentiation process and, at the same
time, different patterns of methylated nodes give rise to dis-
tinct lineages, and so cell types. Indeed, biological differen-
tiation is characterised by the presence of different stages of
differentiation and by progressively specialisation of cells.

A schematic representation of this Boolean methylation-
inspired mechanism is depicted in Figure 1. In this work
we undertake an experimental analysis of the main dynami-
cal properties of RBNs subject to this process of progressive
methylation. For this mechanism to be useful in a plausi-
ble BN differentiation model, it should (i) progressively sta-
bilise the network and (ii) give origin to different lineages
depending on the nodes chosen to be frozen. If these prop-
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Figure 1: Schematic representation of the methylation
mechanism introduced. Grey nodes represent frozen nodes
(nodes constrained to assume the value 0, regardless of the
actual values of its inputs). The specific patterns of frozen
nodes in the ennuples that represent the state of the BN over
time have no other meaning than to exemplify the methyla-
tion process introduced.

erties are attained in RBN ensembles, then we could suppose
that evolution may act to tune the dynamics of the network
so as to achieve a specific differentiation lineage tree. The
choice of setting to 0 the nodes to be frozen is motivated by
the inhibition effect of most methylation mechanisms and
introduces an asymmetry in the RBNs model, as it progres-
sively bias the Boolean functions to 0. However, this is not a
limitation of the model, which can be extended to take into
account also actions in which nodes are clamped to 1 and so
provide even more variability in the lineages.

Results

The random Boolean networks used in these experiments are
subject to a synchronous and deterministic dynamics, there-
fore fixed points and cycles are possible asymptotic states.
For all the experiments, statistics are taken across 100 RBN
with n = 500 and £ = 2. We focused only on networks
with £ = 2 because the size of the network, combined with
the other chosen parameters, would have made the experi-
mental analysis computationally prohibitive. The Boolean
functions are defined on the basis of the bias parameter p,
which defines the probability to assign value 1 in a row of
a node truth table. The variation of the parameter p makes
it possible to determine the dynamical regime of the system
(ordered, critical or chaotic) (Bastolla and Parisi, 1997): so,
the limitation due to the choice of a specific connectivity
is thus eliminated. Since we want to analyse the emerging
generic properties induced only by the proposed methyla-
tion mechanism in ensembles of RBNs, we used an exact
bias. Exact bias is computed by generating each time a ran-
dom permutation of a vector of Boolean values with a length
equal to the number of nodes in the network and a fraction
p of 1’s, and by using partitions of this vector to define the
output values of Boolean functions. In this way, we remove
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from the statistics any possible contribution produced by a
variance in network dynamic regime. We generated RBNs
with p = 0.1, i.e. in the ordered regime, and p = 0.5, cor-
responding to the critical regime. As results with ordered
RBNSs are rather uninformative, we only show results for
critical RBNs.
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Figure 2: Distribution of the number of attractors for the
configuration n = 500, £k = 2, p = 0.5 as the number of
frozen nodes increases from 0 to 200 with a frozen step of 5
nodes at a time. The continuous line illustrates the trend of
the mean.

Attractor number distribution To providing the trend of
the number of attractors as the fraction of frozen nodes in-
creases we generated 100 RBNs and for each number of
frozen nodes we performed a search of the attractors starting
from 10* random initial states. The range of frozen nodes
considered varies from 0 to 200 with a step of 5 nodes. Box-
plots showing the the distribution of the number of attractors
as a function of the number of frozen nodes are depicted in
Figure 2, along with the mean of these distributions. As ex-
pected, the number of attractors decreases with the number
of frozen nodes, even though it remains non negligible up
to one fifth of frozen nodes. A question may arise as to how
many attractors are fixed points, as one expects an increasing
number of fixed points as the RBNs become more ordered.
This expectation is indeed confirmed, as shown in Figure 3.

Derrida parameter With the aim of assessing the in-
tuition suggesting a progressive shift towards an ordered
regime of the ensemble of RBNs subject to the methylation
mechanism, we computed the distribution of the Derrida pa-
rameter (Bastolla and Parisi, 1997) A, computed after one
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Figure 3: Distribution of the number of fixed points over the
number of attractors for the configuration n = 500, k = 2,
p = 0.5 as the number of frozen nodes increases from 0 to
200 with a frozen step of 5 nodes at a time. The continuous
line illustrates the trend of the mean.

step. This parameter is evaluated by taking, for each state
considered (102 in total), the means of the Hamming dis-
tances after one update between the state and the perturbed
one (a logic negation of a single node value) in all not frozen
nodes, taken one at a time. In particular, statistics report the
distributions of the 100 means of the means, one parameter
value for each RBN which summarises the overall behaviour
observed along the 103 random states. For this investigation,
we consider a number of frozen nodes represented by a per-
centage of {0, 10,20, 50} of all nodes. Figure 4 depicts the
boxplots summarising the distribution of \ for the ensembles
sampled; the trend towards an increasing order is confirmed
(the results for p = 0.1, on the left in Figure 4, are provided
as a comparison).

The results shown so far support the conjecture that a pro-
gressive freezing pushes RBNs towards order. One may ar-
gue that a result not in agreement with this expectation might
indeed sound surprising, nevertheless it is important to as-
sess it experimentally in particular because this trend is not
trivial at all in finite-size RBNs. While in infinite-size RBNs
just a tiny fraction of frozen nodes leads to a complete sta-
sis of the network>, in finite-size RBNs we observe that the
number of attractors and the Derrida parameter are kept at
significant values even in the presence of a non-negligible
fraction of frozen nodes. This result suggests that in finite-
size RBNs, while a progressive freezing tends to increase
order in network dynamics, it may still be open to variabil-

3a formal model of this behaviour is subject of ongoing work
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Figure 4: Distribution of the Derrida parameters as the num-
ber of frozen nodes increases, for both ordered and critical
ensembles of 100 RBNs with N = 500.

ity. This last characteristic is relevant especially with respect
to the possible paths across attractors that are feasible as the
consequence of different choices in the nodes to be frozen.

Diversity estimation In previous sections we have sum-
marised with path dependent differentiation the property of
generating different cell types as a result of different se-
quences of methylated genes. We can characterise the ten-
dency of this mechanism to give rise to this property by in-
specting the diversity caused by different combinations of
methylated genes at any attained differentiation stage. For
this purpose, we generate for each state of the methyla-
tion process (state represented by the already frozen nodes
and the attractor reached) 102 couples of triplets of nodes,*
among the non-already methylated nodes. This triplet is
frozen while the network is in an asymptotic state, there-
fore after this perturbation the BN dynamics is subject to a
transient and subsequently the network can either return to
an attractor equal to the current one—except for the frozen
triplet—or reach a different one. The freezing step may
be taken at any state—i.e. phase—of the current attractor;
as the phase of the attractor may be a source of variability
and here we want to assess the contribution of the choice of
frozen nodes only, once the attractor is reached after freez-
ing a triplet of nodes, its minimum state according to the

“The choice of 3 nodes is somehow arbitrary, but motivated by
the requirement of involving a small number of nodes to be frozen,
while keeping the possibility of significantly perturbing the attrac-
tor. However, previous preliminary experiments on different net-
work size and number of frozen nodes confirm the qualitative be-
haviour we show in this work.
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Figure 5: The trend of the number of equal reached asymp-
totic states considered in pairs and after removing the part
of the already frozen nodes (x-values) and the set of nodes
that constitute the triplets. (a) Triplets randomly chosen
among all the non-frozen nodes, (b) triplets randomly cho-
sen among the non-frozen nodes with value 1.

lexicographic order is chosen. As networks are random, this
choice does not introduce any bias and in this way we rule
out any possible contribution of attractor phase in the diver-
sity of paths originated by freezing steps. > The diversity is
then measured depending on the characteristics of the new
asymptotic states on which the dynamics settles after the
triplet is frozen. As we aim at providing general results, not
bound to a specific definition of phenotype ®, which should
be supported by motivations on a concrete biological case,
we analyse the arising diversities in various condition. Par-
ticularly, we count:

e the number of equal reached asymptotic states considered
in pairs and after removing the part of the already frozen
nodes and the set of nodes that constitute the triplets;

o the differences among all the reached attractors caused by
the generated triplets, by considering subset of genes (pat-
terns in the following) of different sizes (10, 50, 100) ran-
domly chosen;

o the differences among all the reached attractors caused by
the generated triplets, by considering the states vectors in
their entirety.

>In other words, we pose us in the condition of minimal diver-
sity.

8See the following parts of the text for a more detailed discus-
sion.
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Figure 6: The trend of the number of diversities caused by
200 triplets of frozen nodes. The triplets are randomly
chosen among the non-already frozen nodes. Diversities
are measured by considering if the reached attractors are dif-
ferent (all tuples case) or by means of randomly chosen pat-
terns (of sizes equal to 10, 50, 100) which select the nodes
on which perform the comparison between the reached at-
tractors.

By doing so we will have an overall picture of how this
mechanism behaves in ensembles of RBNs, without limiting
ourselves to particular points of view. As for the attractors
distribution analysis, the range of frozen nodes considered
varies from 0 to 200 with a step of 5 nodes. We stress that
in this model the various degrees of differentiation are char-
acterised by a distinct number of frozen nodes: the higher
the number of frozen nodes the more differentiated the cell
types. The triplets to be frozen are chosen at random among
all the non already frozen nodes; we also made experiments
with conditioning this choice to nodes that assume value 1
in the attractor state chosen for the perturbation. In this way,
we can assess the highest level of variability that can be at-
tained, as all the three nodes are actually perturbed by freez-
ing.

The distribution of the frequency of equal pairs of attrac-
tors is shown in Figure 5; we observe that the median fre-
quency of equal pairs increases from about 7/100 to 20/100
with the number of frozen nodes, while it is limited to low
percentages when frozen nodes are chosen among the ac-
tive ones (value 1). This result shows that the probability of
choosing two different triplets’ leading to the same asymp-
totic state after being frozen is rather low; therefore, at least

7 As triplets are chosen at random among at least 300 nodes, the
fraction of equal ones is negligible.
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Figure 7: The trend of the number of diversities caused by
200 triplets of frozen nodes. The triplets are randomly
chosen among nodes that have value 1, in the chosen
phase of the starting attractor.. Diversities are measured
by considering if the reached attractors are different (all tu-
ples case) or by means of randomly chosen patterns (of sizes
equal to 10, 50, 100) which select the nodes on which per-
form the comparison between the reached attractors.

for RBNs with at most 2/5 of frozen nodes, the different
paths generated by freezing are a significant fraction of all
the possible ones, despite the tendency towards a more or-
dered regime. This observation is confirmed also by the
statistics involving the total number of different patterns.
With the term pattern we refer to a projection of the network
dynamics in subset of nodes. So, patterns in this context
define the observable phenotypes in a way strongly related
to the concept of macrostate introduced in (Borriello et al.,
2018; Moris et al., 2016). These latter results are shown in
Figures 6 and 7. It is worth observing that, even when dif-
ferences are estimated on the basis of 10 nodes, the fraction
of overall different patterns is still non-negligible up to 100
frozen nodes out of 500.

These results support the hypothesis that different freez-
ing patterns in RBNs are very likely to produce different tra-
jectories along attractors, and therefore variability in differ-
entiation paths can be attained also by means of this mecha-
nism.

Conclusion

In this work we have explored the possibility of incorpo-
rating epigenetic mechanisms—methylation in particular—
into BN models of GRNs. We focused on those processes
responsible for high chromatin compaction, that influences

216

gene transcription by controlling the accessibility of DNA to
transcription factors and RNA polymerases. Accordingly, in
our model we progressively freeze—i.e. clamp to 0—a sub-
set of nodes and analyse the impact of this modification on
network dynamical features, namely on attractor number—
in analogy with the number of cell types—, on the Derrida
parameter—to assess the extent to which RBNs with frozen
nodes tend to an ordered regime—and on attractor diversity
as attained by different combinations of frozen nodes.

We observed that the number of attractors in RBNs de-
creases with the number of frozen nodes and the same does
the Derrida parameter, suggesting that, from an ensemble
point of view, the larger the fraction of frozen nodes the
more ordered the RBNs. These results are in agreement with
the intuition that, by clamping to 0 a fraction of RBN nodes,
not only the state space is reduced with respect to the orig-
inal network, but frozen nodes absorb perturbations and so
they favour network stability. These properties are to some
extent the abstract counterpart of progressive reduced alter-
natives and stability along differentiation stages. Moreover,
results show a very interesting property of RBNs: they main-
tain diversity in terms of possible asymptotic states originat-
ing from different combinations of frozen nodes, both dur-
ing the process of progressive freezing itself and in the final
reached states. We assessed this diversity by means of three
metrics, so as to attain general results. We found that dif-
ferent choices in nodes to be frozen are very likely to lead
to different asymptotic states, implying that diverse differ-
entiation paths can be generated. As expected, this diversity
tends to decrease with the fraction of frozen nodes in the
network.

As future work, we plan to add in our model mechanisms
to reproducing open chromatin structure, where genes are
made more accessible and their transcriptions eased. The
combined effects of both closing and opening chromatin
structure on attractors and other relevant features of BNs
will be consequently analysed. Moreover, since epigenetic
is expected to have an impact on cell type stability, we are
devising a set of experiments to measure how attractor ro-
bustness changes along the path of differentiation, for exam-
ple by measuring the impact of external signals—possibly
modulated—during different stages of differentiation. To
conclude, epigenetic is only one of the factors that are re-
sponsible for cell type transitions and definitions. Signalling
cues, typically generated by other cells, are another crucial
actor in the process of differentiation. In this perspective, we
are planning to study models involving networks of BNs, so
as to explore the possibility of modelling differentiation in a
multi-cellular setting.
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