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Abstract

1. Data from two experimental longline surveys and two video inspections carried

out in Santa Maria di Leuca cold‐water coral province (Mediterranean Sea) dur-

ing spring–autumn 2010 were used in order to compare the benthopelagic

abundance and diversity between coral and non‐coral habitats and between dif-

ferent devices. The sampling was carried out in two types of habitat: a coral

habitat with carbonate mounds and a non‐coral habitat characterized by

intermound sea floor.

2. A Bayesian hierarchical modelling approach to accommodate factors influencing

community assemblages was used considering the number of species, the

Shannon–Wiener diversity index and the two most abundant species represented

by the European conger (Conger conger) and blackbelly rosefish (Helicolenus

dactylopterus).

3. A relevant effect of the habitat factor was observed for both the number of spe-

cies and the diversity index, showing a higher species number and diversity index

in the coral habitat than in the non‐coral habitat. Concerning the relevance of

fixed effects from the model on the probability of observing non‐zero (positive)

abundances, the devices considered, longline and baited lander, did not show dif-

ferent influence for either C. conger or H. dactylopterus. In the case of positive

abundance, a relevant device effect was only observed for H. dactylopterus, show-

ing higher abundances for longline than for baited lander. A habitat effect was

detected, with positive abundances for both species in the coral habitat.

4. This study proves that structurally complex habitats generated by cold‐water

corals influence the distribution and diversity of the benthopelagic fauna, and that

the use of different devices can provide complementary useful results. Increased

knowledge about the role of cold‐water corals in the associated benthopelagic

fauna could lead to better conservation of one of the most important hot spots

of biodiversity in the Mediterranean Sea.
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1 | INTRODUCTION

During the last three decades, the role of cold‐water coral (CWC) reefs

as biodiversity hot spots has been established (Buhl‐Mortensen et al.,

2010; Buhl‐Mortensen, Buhl‐Mortensen, & Purser, 2017; Costello

et al., 2005; D'Onghia et al., 2011; Henry & Roberts, 2017; Jensen &

Frederiksen, 1992; Jonsson, Nilsson, Floruta, & Lundälv, 2004;

Mastrototaro et al., 2010; Reed, 2002; Rogers, 1999; Ross & Quattrini,

2007, 2009). CWC communities are used by commercial and non‐

commercial fishes and invertebrates for shelter, feeding, growing,

spawning, and as nursery areas, providing essential fish habitat (EFH)

(e.g. Baillon, Hamel, Wareham, & Mercier, 2012; Buhl‐Mortensen

et al., 2010; Busby, Orr, & Blood, 2006; Capezzuto, Ancona, et al.,

2018; Cau et al., 2017; D'Onghia, 2019; D'Onghia et al., 2010, 2016;

D'Onghia, Sion, & Capezzuto, 2019; Etnoyer & Warrenchuk, 2007;

Freiwald, Fosså, Grehan, Koslow, & Roberts, 2004; Gomes‐Pereira

et al., 2017; Henry et al., 2013; Roberts, Wheeler, Freiwald, & Cairns,

2009). For these reasons CWCs are impacted by commercial fishing

(e.g. D'Onghia et al., 2017; Fabri et al., 2014; Fosså, Mortensen, &

Furevik, 2002; Grehan, Unnithan, Olu, & Opderbecke, 2005;

Hall‐Spencer, Allain, & Fosså, 2002; Orejas et al., 2009; Roberts,

Harvey, Lamont, & Gage, 2000; Rogers, 1999; Söffker, Sloman, &

Hall‐Spencer, 2011), and their protection is necessary in order to com-

bine biodiversity conservation and fisheries management objectives.

The benthopelagic fauna associated with CWCs has been investi-

gated by various authors using different devices (e.g. Buhl‐Mortensen

et al., 2010; Costello et al., 2005; D'Onghia et al., 2010; Heifetz,

2002; Husebø, Nøttestad, Fosså, Furevik, & Jørgensen, 2002; Krieger

& Wing, 2002; Kutti, Fosså, & Bergstad, 2015; Linley et al., 2017;

Lumsden, Hourigan, Bruckner, & Dorr, 2007; Mastrototaro et al.,

2010; Milligan, Spence, Roberts, & Bailey, 2016; Quattrini, Ross,

Carlson, & Nizinski, 2012; Reed, Shepard, Koenig, Scanlon, & Gilmore,

2005; Roberts, Henry, Long, & Hartley, 2008; Ross & Quattrini, 2007;

Söffker et al., 2011). Exploration of CWC ecosystems and the associ-

ated fauna is beset by many difficulties, however, mainly because of

the irregular topographical setting and the risk of impacting vulnera-

ble species, such as corals and sponges, and damaging the equipment

used for such explorations (e.g. Kutti, Bergstad, Fosså, & Helle, 2014;

Linley et al., 2017; Milligan et al., 2016; Pham et al., 2014; Taviani

et al., 2017). In addition, the type of device used for such exploration

can affect what species assemblages are identified, i.e. the use of dif-

ferent sampling equipment, such as video inspection or fishing gear,

may lead to variations in the species composition recorded (e.g. Ayma

et al., 2016; Capezzuto et al., 2012; Costello et al., 2005; D'Onghia

et al., 2011, 2012; Kutti et al., 2014, 2015; Milligan et al., 2016; Ross

& Quattrini, 2007; Söffker et al., 2011). Sampling variability is also

tightly related to the behaviour of deep‐sea fauna and to the size
and speed of sampling devices (D'Onghia et al., 2011; Lorance &

Trenkel, 2006; Trenkel, Lorance, & Mahevas, 2004).

The studies of benthopelagic fauna carried out using fishing gear

(bottom trawls, longlines, and traps) can damage the gear and can be

harmful for habitat‐forming organisms, such as corals, sponges, and

other benthic species. Trawling destroys the reef, longlines are

difficult to accurately locate over reefs, and traps, along with the pre-

vious two devices, are particularly selective for certain species and

sizes (e.g. Costello et al., 2005; Durán Muñoz et al., 2011; Fosså

et al., 2002; Husebø et al., 2002; Kutti et al., 2014; Mortensen,

Hovland, Brattegard, & Farestveit, 1995; Sampaio et al., 2012). Among

the fishing gear, experimental longlines, with a small number of hooks

with respect to commercial longlines, seem to be the least harmful in

fragile and structurally complex habitats (Pham et al., 2014). Further-

more, they are cost‐effective and relatively easy to use (e.g. D'Onghia

et al., 2012; Menezes & Giacomello, 2013).

Video inspections are less invasive for these fragile ecosystems and

can provide information on small‐scale species distribution, abundance,

and behaviour (e.g. Bailey & Priede, 2002; Bo et al., 2015; Capezzuto

et al., 2012; Costello et al., 2005; D'Onghia et al., 2011, 2018; D'Onghia,

Capezzuto, Carluccio, et al., 2015; D'Onghia, Capezzuto, Cardone, et al.,

2015; Fabri et al., 2014; Linley et al., 2017; Quattrini et al., 2012; Ross &

Quattrini, 2007, 2009). They also have some limitations, however: sur-

vey via remotely operated vehicle (ROV) has been shown to influence

results through species being attracted or repelled by the presence of

the ROV (Costello et al., 2005; D'Onghia et al., 2011; Lorance& Trenkel,

2006; Ryer, Stoner, Iseri, & Spencer, 2009; Stoner, Ryer, Parker, Auster,

& Wakefield, 2008; Trenkel et al., 2004).

Baited landers produce less disturbance, but predominantly attract

scavenging fish and take a long time to achieve the correct positioning

and operation. Furthermore, the use of landers can lead to some

assumptions for estimating the benthopelagic abundance (Bailey, King,

& Priede, 2007; Cousins et al., 2013; D'Onghia, Capezzuto, Carluccio,

et al., 2015; Jamieson, Bailey, Wagner, Bagley, & Priede, 2006; Linley

et al., 2017; Priede & Merrett, 1996; Roberts et al., 2005).

The Santa Maria di Leuca (SML) CWC province represents a well‐

structured coral ecosystem in the Mediterranean Sea made up of the

reef‐forming species Lophelia pertusa and Madrepora oculata. Dead

and living colonies are widespread in an area of over 1200 km2,

between about 350 and 1100 m water depth, in the Northern Ionian

Sea (southern Italy) (Bargain, Marchese, Savini, Taviani, & Fabri,

2017; Savini, Vertino, Marchese, Beuck, & Freiwald, 2014; Taviani

et al., 2005; Tursi, Mastrototaro, Matarrese, Maiorano, & D'Onghia,

2004), playing an important role as nursery and spawning areas for

several commercial benthopelagic species. In recent years many stud-

ies have been conducted in SML CWC province and the mobile fauna

associated has been investigated using different sampling techniques,
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from different fishing gear to video systems, both in coral and

non‐coral habitats (Capezzuto et al., 2012; Carlier et al., 2009;

D'Onghia et al., 2010, 2011, 2012, 2016, 2017, 2018; Freiwald et al.,

2009; Linley et al., 2017; Maiorano et al., 2013; Mastrototaro et al.,

2010; Tursi et al., 2004). Corals play a fundamental role in providing a

complex habitat that hosts a high variety of species and acts as a refuge

area from fishing, enhancing the diversity in the deep sea (e.g. D'Onghia

et al., 2010, 2011, 2012, 2016). In particular, D'Onghia et al. (2012) and

Capezzuto, Ancona, et al. (2018) observed a coral habitat effect on

benthopelagic abundance. The analysis conducted on longline data

showed greater abundances of the fish species Conger conger,

Helicolenus dactylopterus, and Polyprion americanus in coral habitat,

and the fish Pagellus bogaraveo was only observed to be associated

with corals. No significant differences were detected between the

two habitats considering the average total catch per unit effort

(CPUE), either in number or biomass, however. Only CPUE values

coming from longline J‐hook 9 showed significant differences

between coral and non‐coral habitats.

Using baited cameras on autonomous benthic landers, both on and

off the coral mounds of the SML CWC province, Linley et al. (2017)

did not detect significant differences in fish diversity between coral

and non‐coral habitats; however, C. conger was observed with much

higher density within the coral areas. Faster arrival and higher peak

numbers also indicate a greater abundance of H. dactylopterus in coral

habitat than in non‐coral habitat. Thus, these studies carried out in the

SML CWC province revealed some differences between coral and

non‐coral habitats, but they did not provide clear and definitive results

on the role of CWC habitat in influencing the distribution and diversity

of the benthopelagic fauna.

As a result of the high level of biodiversity (e.g. Bongiorni et al.,

2010; Mastrototaro et al., 2010) and the higher abundance of many

commercial benthopelagic species inside the coral habitat (e.g.

D'Onghia et al., 2010, 2011, 2012), as well as the resulting impact of

trawling and other fishing gear, a fisheries restricted area (FRA) has been

established in an areawithin the SMLCWCprovince (GFCM‐RAC/SPA,

2007). Nevertheless, even if towed dredges and bottom trawl nets have

been prohibited in this FRA, data from observer programmes and from a

satellite vessel monitoring system (VMS) have proven that trawlers

often still fish inside the FRA (D'Onghia et al., 2017).

With this regard, the aim of this paper is to reveal the coral habitat

effect on the benthopelagic abundance and diversity detected in the

SML CWC province using data derived from two different sampling

devices, an experimental longline and a baited lander, as well as using

a different modelling approach with respect to previous studies. In this

study data from different devices were used to consider how the type

of device might influence either the diversity and number of species or

the abundance of some species recorded. In particular, we investi-

gated whether the presence of corals can affect the diversity of the

benthopelagic fauna sampled with different devices. In order to

achieve this goal, a Bayesian hierarchical modelling approach was

adopted to accommodate factors influencing community assemblages.

The Bayesian framework provides many advantages in terms of statis-

tical accuracy and quantification of features of uncertainty affecting
fish populations (Cressie, Calder, Clark, Hoef, & Wikle, 2009; Royle

& Dorazio, 2008). It allows us to suitably model different kinds of

effects affecting the relative abundances of species as well as the var-

iation in species composition of communities, with the possibility of

acknowledging the distributions of effects with appropriate priors

throughout the hierarchy levels (Gelman et al., 2012).

In relation to the conservation difficulties of FRA within the SML

CWC province (D'Onghia et al., 2017), a better knowledge of fish hab-

itat use can enhance the conservation perspectives for this hot spot of

biodiversity.
2 | METHODS

2.1 | Study area

The SML CWC province is located along the Apulian continental mar-

gin, a few miles off Cape Santa Maria di Leuca (Italy) in the Northern

Ionian Sea (Central Mediterranean; Figure 1). It has the largest and

deepest occurrence of a living deep‐sea coral community currently

known in the Mediterranean Sea (Bargain et al., 2017; Corselli,

2010; Freiwald et al., 2009; Savini et al., 2014).

Living colonies of L. pertusa and M. oculata have been collected at

depths of 350–1100 m in the SML CWC province (Mastrototaro et al.,

2010; Taviani et al., 2005; Tursi et al., 2004), and their westernmost

presence was recorded by Freiwald et al. (2009) at depths of

603–744 m and 670–744 m, respectively.

Recently, habitat mapping based on bathymetric and backscatter

data, has provided indications of complex topographic features, char-

acterized by coral‐hardground and coral mounds with living corals,

over an area of about 2000 km2 at depths of approximately

120–1400 m (Bargain et al., 2017; Savini et al., 2014). A total of

1902 coral mounds were recorded covering approximately 68 km2 in

total, with an average area of 35 000 m2 per mound (Savini et al.,

2014). More recently, a subset of 517 potential coral mounds was pre-

dicted using both geomorphometric proxies and the Maxent method

(Bargain et al., 2017).
2.2 | Sampling devices and survey methodology

Data come from two different sampling devices, an experimental long-

line and a baited lander, both employed during spring and autumn sea-

sons. Two experimental longline surveys were carried out in the SML

CWC province during May–June and September–October 2010. A

commercial fishing vessel was hired for these experimental surveys.

The gear was armed with two types of hooks, J‐hook 7 and J‐hook 9.

The sampling was carried out in two types of habitat: (i) a coral habitat

characterized by a complex topography (C); and (ii) a non‐coral habitat

characterized by intermound sea floor (NC). In both habitats the

depths examined were between 363 and 668 m. Six hauls with hook

size 7 and three with hook size 9 were carried out in each habitat

typology during each survey (Tables 1 and 2). More details about the

survey methodology are given in D'Onghia et al. (2012).



FIGURE 1 Longline and lander stations in the coral (C) and non‐coral (NC) habitats of the Santa Maria di Leuca cold‐water coral province
(Northern Ionian Sea)
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The MEMO (marine environment monitoring system) baited

lander, equipped with two digital cameras, was deployed during two

cruises carried out in June 2010 (CoralFISH project) and November

2010 (OBAMA project). A detailed description of this lander is

reported in Capezzuto et al. (2012). The MEMO baited lander was also

deployed in the C and NC habitats. Seven deployments were carried

out between 547 and 648 m: four in C and three in NC habitats

(Table 3).

The stations for the two different devices could not be coincident

because of their different sampling coverage.

Video footage of 42 h 28 min and 31 h 27 min was recorded in C

and NC habitats, respectively, with a total of 611 520 and 452 880

video frames taken by each camera in C and NC habitats, respectively.

During each deployment, the lander was baited with fresh specimens

of Scomber scombrus.
2.3 | Data analysis

Data analysis was carried out on benthopelagic fauna diversity and

abundance, taking into account that the data were collected across

time and space during heterogeneous surveys using different devices.

Two aims were pursued: investigating the variation in benthopelagic

biodiversity at the community level and inferring the relative abun-

dance of selected species in the study area. From a statistical
perspective, a suitable Bayesian hierarchical modelling approach is

proposed for the two kinds of analyses in order to accommodate fac-

tors influencing community assemblages. Possible influencing factors

are: the type of survey, classified as longline J‐hook 7, longline

J‐hook 9, and baited lander (hereafter LL7, LL9, and video); the habi-

tat, i.e. C and NC habitat; the season, i.e. spring or autumn (hereafter

SP and AU); and finally the haul coordinates, i.e. longitude and latitude

(hereafter lonUTM and latUTM).

Two different model specifications are proposed for assessing the

peculiarities of the response variables (abundances and biodiversity),

even though it is worth stressing that these models share a common

structure in the spirit of the Bayesian hierarchical framework, which

has many advantages in terms of statistical accuracy, providing the

possibility of acknowledging the distribution of effects with specified

priors and of quantifying the uncertainty of many features affecting

fish communities.
2.4 | Bayesian hierarchical model for biodiversity
measures

The investigation of factors affecting the community composition in

each haul refers to the number of species (S) and to the Shannon index

(H) as a measure of diversity (Magurran, 1991). S is the number of

observed species in each haul, from longline and lander, whereas H



TABLE 1 Sampling stations, with mean depths and geographic coordinates, carried out using longline in coral habitat (C) and in non‐coral habitat
(NC) in the Santa Maria di Leuca (SML) coral province during May–June 2010

START END

Date Station Habitat Depth (m) Latitude (N) Longitude (E) Depth (m) Latitude (N) Longitude (E)

28/05/2010 a1 C 396 39°37.355 18°15.599 460 39°36.268 18°13.999

a2 C 460 39°36.268 18°13.999 437 39°35.171 18°12.116

a3 C 437 39°35.171 18°12.116 499 39°35.544 18°11.115

29/05/2010 a4 NC 487 39°35.948 18°08.457 503 39°36.880 18°06.380

a5 NC 503 39°36.880 18°06.380 551 39°37.987 18°05.410

a6 NC 551 39°37.987 18°05.410 512 39°38.270 18°04.761

30/05/2010 a7 NC 561 39°39.790 18°05.029 594 39°39.103 18°02.848

a8 NC 594 39°39.103 18°02.848 561 39°40.571 18°01.750

a9 NC 561 39°40.571 18°01.750 503 39°41.762 18°00.977

31/05/2010 a10 C 512 39°35.135 18°22.134 524 39°34.916 18°24.122

a11 C 524 39°34.916 18°24.122 594 39°33.692 18°23.950

a12 C 594 39°33.692 18°23.950 545 39°34.375 18°22.726

07/06/2010 a13 NC 450 39°40.740 18°31.660 470 39°40.545 18°30.647

a14 NC 470 39°40.545 18°30.647 450 39°40.230 18°28.950

a15 NC 450 39°40.760 18°32.710 460 39°40.740 18°31.660

08/06/2010 a16 C 550 39°35.060 18°23.480 580 39°33.290 18°23.810

a17 C 580 39°33.290 18°23.810 620 39°32.150 18°24.050

a18 C 620 39°32.150 18°24.050 650 39°31.130 18°24.270

TABLE 2 Sampling stations, with mean depths and geographic coordinates, carried out using longline in coral habitat (C) and in non‐coral habitat
(NC) in the Santa Maria di Leuca (SML) coral province during September–October 2010

START END

Date Station Habitat Depth (m) Latitude (N) Longitude (E) Depth (m) Latitude (N) Longitude (E)

17/10/2010 b1 C 404 39°36.692 18°13.953 431 39°35.790 18°12.652

b2 C 431 39°35.790 18°12.652 479 39°35.153 18°11.423

b3 C 479 39°35.153 18°11.423 470 39°35.953 18°12.235

29/09/2010 b4 NC 430 39°39.794 18°05.664 594 39°39.744 18°04.182

b5 NC 594 39°39.744 18°04.182 462 39°40.428 18°03.063

b6 NC 462 39°40.428 18°03.063 495 39°41.764 18°02.850

23/09/2010 b7 NC 414 39°42.686 18°03.130 512 39°41.385 18°02.583

b8 NC 512 39°41.385 18°02.583 552 39°40.245 18°02.534

b9 NC 552 39°40.245 18°02.534 577 39°39.256 18°03.599

15/10/2010 b10 C 528 39°34.368 18°25.032 533 39°34.370 18°23.363

b11 C 533 39°34.370 18°23.363 524 39°35.191 18°21.903

b12 C 524 39°35.191 18°21.903 552 39°34.595 18°19.626

24/09/2010 b13 NC 363 39°41.490 18°05.605 594 39°39.588 18°03.535

b14 NC 594 39°39.588 18°03.535 495 39°40.744 18°02.959

b15 NC 495 39°40.744 18°02.959 487 39°42.076 18°03.069

16/10/2010 b16 C 528 39°34.817 18°11.716 668 39°32.964 18°14.488

b17 C 668 39°32.964 18°14.488 530 39°34.013 18°13.500

b18 C 530 39°34.013 18°13.500 467 39°34.700 18°12.445
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TABLE 3 Marine environment monitoring system (MEMO) lander deployments in the Santa Maria di Leuca (SML) cold‐water coral community
during the CoralFISH and OBAMA cruises in the Mediterranean Sea. C, coral habitat; NC, non‐coral habitat

Cruise Date Deployment‐site Habitat Latitude (N) Longitude (E) Depth (m) Time of video record (h, min)

CoralFISH 16/06/2010 St. 1‐MS08 C 39°33.6900 18°12.7300 547 14, 09

CoralFISH 17/06/2010 St. 2‐MS04 C 39°36.9101 18°30.3000 622 05, 24

CoralFISH 17/06/2010 St. 3‐MS04 NC 39°36.8300 18°28.8699 620 15, 37

OBAMA I 05/11/2010 St. 1‐MS04 C 39°36.7543 18°30.5021 648 18, 17

OBAMA I 06/11/2010 St. 2‐MS04 C 39°37.1367 18°30.1182 610 04, 38

OBAMA I 06/11/2010 St. 3‐MS08 NC 39°34.6595 18°15.7071 624 13, 02

OBAMA I 07/11/2010 St. 4‐off MS08 NC 39°35.2782 18°08.4744 615 02, 48
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is the negative sum of the relative abundances of species multiplied by

their natural logarithm in each haul, from both devices.

The two measurements represent different kinds of response var-

iables, and thus S is assumed to follow the Poisson distribution, suit-

able for counting data, whereas H follows the Gaussian distribution.

According to their specifications, both measurements are properly

modelled by spatial generalized additive mixed models, with mean

values depending upon the fixed effects of the covariates device, hab-

itat, and season, on the interaction between survey and season, and

on a smooth function of the spatial coordinates given by a linear com-

bination of spline‐like basis functions at a number of knots (Wood,

2017). To accommodate the residual spatial variation, a spatial random

component was also considered, in order to improve the accuracy of

predictions (Banerjee, Carlin, & Gelfand, 2004). This component has

a multivariate normal distribution with zero mean and covariance

matrix built by an exponential covariance function (Gneiting, 2002).
2.5 | Bayesian hierarchical model for abundances

Relative abundances of the European conger, C. conger, and the

blackbelly rosefish, H. dactylopterus, were considered as response var-

iables in the Bayesian hierarchical model, as they were the two most
abundant species in both types of surveys. The choice of these two

species is corroborated by previous results from both longline and

lander used in the studied area, where the most abundant species

were C. conger, H. dactylopterus, and P. bogaraveo (D'Onghia et al.,

2012; Maiorano et al., 2013); P. bogaraveo was only found in the coral

area and was not considered in the analysis.

A transformation scaling abundance data to the time unit (1 hour)

was adopted (N/h), giving right‐skewed non‐negative continuous

responses characterized by zero inflation (Figure 2). For each species

the relative abundances were modelled by gamma Hurdle models,

assuming zero and non‐zero data as being generated by two different

processes (Hilbe, 2007; Lee, Joo, Song, & Harper, 2011). The basic

idea is that abundances are modelled as a mixture of a Bernoulli distri-

bution that governs the binary outcome (zero/non‐zero) and a Gamma

distribution, suitable for non‐negative continuous data. In this frame-

work, zeros and positive realizations can be modelled with different

predictors. We assume that the probabilities of zero outcomes depend

on the fixed effects of survey, habitat, and season covariates. In

PARTICULAR, a marginal effect of the factor habitat on the probabilities

of zero abundances might be first suggested by the inspection of the

frequency distributions in Table 4.

The means of the non‐zero abundances are assumed to depend on

the fixed effect of the type of survey and on a latent component that
FIGURE 2 Distribution of species relative
abundances (N/h)



TABLE 4 Distribution of zero and positive abundance values for
Conger conger and Helicolenus dactylopterus, distinguishing between
type of habitat

Conger conger Helicolenus dactylopterus

Coral Non‐coral Coral Non coral

N/h 0 1 7 1 10

>0 21 14 21 11
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can be considered as the random variation of the relative abundance

common to the different surveys. At a lower level of the model hierar-

chy, this spatially correlated random latent component follows a

Gaussian distribution, with its mean depending on the fixed effects

of habitat and season, and on a smooth function of the spatial coordi-

nates and spatial correlation given (as specified in Section 2.4).
TABLE 5 Presence/absence of species sampled in coral and non‐coral h

CEPHALOPODS Todarodes sagittatus

CRUSTACEANS Bathynectes maravigna

Geryon longipes

Munida spp

Nephrops norvegicus

Paromola cuvieri

Plesionika martia

CHONDRICHTHYES Centrophorus granulosus

Dipturus oxyrinchus

Etmopterus spinax

Galeus melastomus

Hexanchus griseus

Leucoraja circularis

Leucoraja fullonica

Prionace glauca

Pteroplatytrygon violacea

OSTEICHTHYES Brama brama

Conger conger

Helicolenus dactylopterus

Lampanyctus crocodilus

Lepidopus caudatus

Merluccius merluccius

Micromesistius poutassou

Molva dipterygia

Mora moro

Pagellus bogaraveo

Phycis blennoides

Polyprion americanus

Xiphias gladius

Total number of species
At the lower level of the model hierarchy, the specification of

priors for fixed effects, decay parameter, and precision share the same

structure used for the Bayesian hierarchical model for biodiversity

measurements, as discussed in Section 2.4.

2.6 | Implementation

For both kinds of models, Bayesian Markov chain Monte Carlo

(MCMC) estimation was obtained with JAGS software (JUST ANOTHER

GIBBS SAMPLER; Plummer, 2003), which extends standard Gibbs sam-

pling, using further algorithms to sample from the target posterior dis-

tribution (Wood, 2016). JAGS obtains samples from the posterior

distribution of the model parameters according to five main steps:

model definition, compilation, initialization, adaptation/burn‐in, and

monitoring. Among the existing packages that provide an interface
abitats with longline and baited lander

LONGLINE BAITED LANDER

coral non‐coral coral non‐coral

– – ✓ ✓

– – ✓ –

– – ✓ –

– – ✓ –

– – ✓ –

– – ✓ ✓

– – ✓ ✓

✓ ✓ – ✓

✓ – – –

✓ ✓ ✓ –

✓ ✓ – –

– – ✓ ✓

✓ ✓ – –

✓ – – –

✓ – – –

✓ ✓ – –

✓ ✓ – –

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

– – ✓ ✓

✓ ✓ ✓ –

✓ ✓ – ✓

✓ ✓ – –

✓ – – –

✓ – – –

✓ – ✓ –

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ – – –

20 13 16 11
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between R and JAGS, R2JAGS (Su & Yajima, 2015) was used to go

through the first four steps, whereas the CODA package (Plummer,

Best, Cowles, & Vines, 2006) was used to analyse the MCMC output.

All models were run with three chains for 72 000 simulations per chain

with a burn‐in phase of 12 000 and a thinning interval of five to

reduce autocorrelation among iterative samples and to improve the

computational efficiency. A total number of 12 000 samples were

saved to summarize the posterior distribution for each model. Conver-

gence of the chains to the stationary distribution was determined by

monitoring trace plots and computing Gelman–Rubin diagnostics

(Gelman & Rubin, 1992).
FIGURE 4 Posterior median values, and 95% and 90% confidence
intervals (95% C.I. and 90% C.I.), of estimated fixed effects for the
number of species (a) and the Shannon index (b). Abbreviations: LL7,
longline J‐hook 7; LL9, longline J‐hook 9; NC, non‐coral habitat; SP,
spring; Video, baited lander survey
3 | RESULTS

The list of the species sampled in C and NC habitats both with longline

and with baited lander is reported in Table 5.

In the C habitat 20 species were sampled with longline (eight car-

tilaginous fishes and 12 teleost fishes) and 16 species were observed

with the lander (one cephalopod, six decapod crustaceans, two carti-

laginous fishes, and seven teleost fishes). In the NC habitat 13 and

11 species were identified with the longline and lander, respectively.

In particular, five cartilaginous fishes and eight teleost fishes were

sampled with the longline; one cephalopod, two decapod crustaceans,

two cartilaginous fishes, and six teleost fishes were observed with the

lander.

A preliminary data analysis of the marginal effect of habitat in

describing differences in terms of diversity and number of species is

shown in Figure 3. No marginal evidence for difference was found

between the devices used for measurement or between seasons.

Figure 4 shows the estimates of fixed effects from Bayesian hierar-

chical models for the number of species and the Shannon–Wiener

index. For the sake of simplicity, only the estimates of the main covar-

iate effects are reported, ignoring the effect of haul location that

proved not to be relevant for any of the models implemented. A
FIGURE 3 Distribution of the number of species (S) and Shannon
index (H) for potential factors affecting community composition.
Solid horizontal lines represent median values. Abbreviations: AU,
autumn; C, coral habitat; LL7, longline J‐hook 7; LL9, longline
J‐hook 9; NC, non‐coral habitat; SP, spring; Video, baited lander
relevant effect of habitat is apparent for both measurements,

supporting the preliminary results in Figure 3. In particular, NC habi-

tats support a lower number of species and diversity than found in C

habitats. The Shannon–Wiener index generally shows lower values

for the spring season (Figure 4). This contrasts with the effect of the

interaction between survey and season, showing larger diversity

values for longline surveys with J‐hook 7 in the spring season.

The estimates and credibility intervals of the main model parame-

ters for the abundances of C. conger and H. dactylopterus are reported

in Figure 5. Hurdle models explain the dependence of zero and posi-

tive abundances on different predictors. The left‐hand panels of

Figure 5 show the relevance of fixed effects on the probability of

observing positive (i.e. non‐zero) abundances. For both species the

negative relevant effect of the NC habitat implies lower probabilities

of positive abundances with respect to the C habitat. Evidence of this

is obtained from the marginal frequency distribution of positive abun-

dances in the two habitats (Table 4). The spatial distribution of pre-

dicted non‐zero abundance probabilities (Figure 6) confirms that

positive abundances are mostly detected in the C habitat for both

species.

The three devices did not prove to have a different influence on

the probability of positive abundances of C. conger and H. dactylopterus

(Figure 5, left). Only for C. conger is there a higher probability of



FIGURE 5 Posterior median values, and 95% and 90% confidence intervals (95% C.I. and 90% C.I.), of estimated effects from Hurdle models for
Conger conger (above) and Helicolenus dactylopterus (below). Left‐hand panels, effects on the probability of non‐zero abundances; right‐hand
panels, effects on (positive) abundance values
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positive abundances in the spring season. The right‐hand panels of

Figure 5 report estimates and credibility intervals of the model effects

on positive relative abundance values. Although no relevant effects on

positive abundance related to the different devices can be detected

for C. conger, a relevant positive effect of longlines (both J‐hooks)

was detected for H. dactylopterus, implying higher abundances of this

species for this type of fishing gear than for videos. The spatial distri-

butions of predicted relative abundances are reported in Figure 7,

notable confirming the greater abundance of H. dactylopterus obtained

using longlines.
4 | DISCUSSION

Integrating data from different devices and applying Bayesian hierar-

chical modelling, these results provide a further contribution to our

knowledge about the role of coral habitat in influencing the
benthopelagic diversity and abundance within the SML CWC prov-

ince. A relevant effect of habitat was detected, showing a higher num-

ber of species and a higher diversity in C habitat than in NC habitat,

thereby reinforcing previous results (D'Onghia et al., 2010, 2012;

Linley et al., 2017; Maiorano et al., 2013). The higher value of the

Shannon–Wiener index observed during spring using the longline

J‐hook 7 might be linked to an increase in evenness during this season.

In fact, the Shannon–Wiener index takes into account the relative

abundances of the different species; J‐hook 7 is also less selective

than J‐hook 9 at the depths investigated, as it catches a wider range

of fish species, and thereby increases equitability among the different

species captured.

The devices considered in the model applied did not show differ-

ent effects on the probability of non‐zero abundance for both C. conger

and H. dactylopterus. A relevant habitat effect was detected, with pos-

itive abundances for both species in C habitat, as confirmed by the

spatial distribution of predicted non‐zero abundance. The relevant



FIGURE 6 Spatial prediction of probabilities of non‐zero abundances for Conger conger (left) and Helicolenus dactylopterus (right), distinguishing
between coral (C) and non‐coral (NC) habitats

FIGURE 7 Spatial prediction of relative abundance values for Conger conger (left) and Helicolenus dactylopterus (right), distinguishing between
devices: longline J‐hook 7 (LL7), longline J‐hook 9 (LL9), and baited lander (Video). Note the different scales for relative abundance reported
for the two species in this figure
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association of H. dactylopterus and C. conger with corals is in agree-

ment with several previous studies (Biber et al., 2014; Buhl‐Mortensen

et al., 2017; Costello et al., 2005; D'Onghia et al., 2010, 2011, 2012,

2016; Linley et al., 2017; Mytilineou et al., 2014; Reed, Weaver, &

Pomponi, 2006; Roberts et al., 2008; Ross & Quattrini, 2007, 2009;

Sulak et al., 2007).

An effect for season was only detected for C. conger, probably

because of an increase in food availability during spring in the C hab-

itat or the reproductive requirements of adult specimens during this

season linked to corals as spawning habitats (D'Onghia et al., 2016).

In fact, the European conger is an opportunistic predator and a scav-

enger living and foraging close to rocky areas, where it finds refuge

during the day (Morato, Sola, Gros, & Menezes, 1999; Xavier, Cherel,
Assis, Sendão, & Borges, 2010). Sulak et al. (2007) report Conger

oceanicus burrowing into the base of Lophelia clumps.

A relevant effect for device was only observed for H. dactylopterus,

showing higher abundances (i.e. greater catchability) for longline than

for baited lander. This is probably linked to the behavioural pattern of

the blackbelly rosefish, which usually rests on the sea bed, being a typ-

ical sit‐and‐wait ambush predator, feeding mainly on benthic crusta-

ceans, fish, and plankton (Consoli et al., 2010; D'Onghia et al., 2012;

Mainzan, Mari, Prenski, & Sanchez, 1996; Nouar & Maurin, 2000;

Sulak et al., 2007). For this reason, the longline bait lying on the bot-

tom is more attractive for this fish than the bait of the lander set on

a plate above the bottom. With its greater mobility and roaming

behaviour, no difference was detected in the attractiveness of bait
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between lander and longline devices for the European conger

(D'Onghia et al., 2011).

The model highlighted that the presence of corals affects the

diversity and abundance of the benthopelagic fauna in the SML

CWC province, showing some differences between longlines and

baited lander in detecting the distribution of two different fish species.

Although both species may be considered scavengers, differences in

their behaviour lead to differences in their abundance estimates via

longline and baited lander.

Some authors report that behaviour influences the composition of

deep‐sea faunal assemblages and species relative abundances, subse-

quently affecting the biodiversity indexes calculated using different

methodologies (Ayma et al., 2016). Consequently, as different devices

differ in attractiveness for species because of the differing behaviours

of the species, a proper analysis of the fauna assemblage would

require the combined use of different devices in order to obtain better

estimates of the diversity and abundance of the fauna associated with

coral habitat.

Finally, the present study finds a significant influence of cold‐water

corals on the distribution and diversity of benthopelagic fauna and

reinforces that the use of different methodologies may help to miti-

gate individual selectivity. At same time, different devices can also

contribute to providing complementary information on the small‐scale

distribution of benthopelagic fauna as a consequence of behaviour.

Although a direct linkage between benthopelagic fauna and corals

has not been investigated in this study, the associations observed

between fishes and habitats is of paramount importance in the devel-

opment of a credible system of monitoring, control, and surveillance of

the SML CWC province, in order to gain a better conservation per-

spective with ecosystem‐based approaches to fisheries management

(Rosenberg, Bigford, Leathery, Hill, & Bickers, 2000). The role of the

CWC province as EFH with a beneficial influence on fisheries

resources has been previously demonstrated (Capezzuto, Sion, et al.,

2018; Capezzuto, Ancona, et al., 2018; D'Onghia, 2019; D'Onghia

et al., 2019). The extensive three‐dimensional CWC habitat hosts a

great variety of species, for which it acts as a feeding, spawning, and

refuge area from fishing (Baillon et al., 2012; Bo et al., 2015;

Capezzuto, Ancona, et al., 2018; Capezzuto, Sion, et al., 2018; Cau

et al., 2017; Costello et al., 2005; D'Onghia et al., 2016, 2019;

Freiwald et al., 2004; Henry et al., 2013; Husebø et al., 2002; Kutti

et al., 2014; Quattrini et al., 2012; Reed, 2002; Ross & Quattrini,

2007). Indeed, the presence of species at the top of the marine food

web, such as Centrophorus granulosus and Hexanchus griseus, respec-

tively considered Critically Endangered and of Least Concern in the

International Union for Conservation of Nature (IUCN) European

Red List of Marine Fishes (Nieto et al., 2015), and those of commercial

interest such as Helicolenus dactylopterus, Merluccius merluccius,

Pagellus bogaraveo, and Polyprion americanus, with M. merluccius con-

sidered Vulnerable in the IUCN Mediterranean Regional Red List

(Relini et al., 2017), could emphasize the role of the SML CWC prov-

ince as a partial refuge from fishing activity, and could stress the need

for its protection. CWC communities are impacted by anthropogenic

activities (Hinz, 2017). The major direct impacts are linked to deep‐
water fishing activities, which mainly include longlining and accidental

trawling, discarded/lost gear, dumping, and littering. This also occurs in

the SML CWC province where an FRA has been established (D'Onghia

et al., 2017). A lack of monitoring, control, and surveillance could make

the FRA ineffective. Therefore, management initiatives are urgently

required to prevent further overexploitation and habitat loss

(Capezzuto, Ancona, et al., 2018; D'Onghia et al., 2017; Grehan,

Arnaud‐Haond, D'Onghia, Savini, & Yesson, 2017).
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