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ABSTRACT An industrial microgrid (IMG) consists in a microgrid involving manufacturer plants that are
usually equipped with distributed generation facilities, industrial electric vehicles, energy storage systems,
and so on. In this paper, the problem of IMG-efficient operation in the presence of plug-in electric
vehicles is addressed. To this purpose, the schedule of the different device operations of IMGs has to be
optimally computed, minimizing the operation cost while guaranteeing the electrical network stability and
the production constraints. Such a problem is formulated in a receding horizon framework involving dynamic
optimal power flow equations. Uncertainty affecting plug-in electric vehicles is handled bymeans of a chance
constraint approach. The obtained nonconvex problem is then approximately solved by exploiting suitable
convex relaxation techniques. The numerical simulations have been performed showing computational
feasibility and robustness of the proposed approach against increased penetration of the electric vehicles.

INDEX TERMS Industrial microgrids, receding horizon control, dynamic optimal power flow, plug-in
electric vehicles, chance constraints.

NOMENCLATURE AND ABBREVIATIONS

ACRONYMS

CHP Combined heat and power
CVaR Conditional value at risk
DOPF Dynamic optimal power flow
DG Distributed generation
ESS Energy storage system
FU Factory unit
IMG Industrial microgrid
PEV Plug-in electric vehicle
PV Photovoltaic

MATHEMATICAL NOTATION

R
m Real space of dimension m

S
m Space of symmetric (m×m) matrices
v′ Transpose of vector v
Tr(X ) Trace of matrix X .
[k, k + T ] Time interval from step k to step

k + T

x Lower bound of variable x
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x Upper bound of variable x
xi Value of variable x related to the

bus i
x(k) Value of variable x at time k
P(e) Probability that event e occurs
E[x] Expected value of random variable x

NOMENCLATURE

1 Sampling time
T Horizon length
CCHP
i Cost of electricity production by the CHP

system at bus i
CB
i Cost of heat production by the boiler at

bus i
CG Cost of electricity from the main grid
J[k,k+T ] Objective function to be minimized over

the interval [k, k + T ]
PCHPi Active power generated by the CHP sys-

tem at bus i
QCHPi Reactive power generated by the CHP

system at bus i
ηCHPi Electric efficiency of the CHP system at

bus i
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cCHPi Operation cost of the CHP system at bus
i per unit of electrical power generated in
a time slot

pg Gas price
PBi Heat power produced by the boiler at bus i
ηBi Efficiency of the boiler at bus i
PPVi Active power generated by the PV system

at bus i
pe Electricity price
cPVi Operation cost of the PV system at bus i

per unit of electrical power generated in a
time slot

Pi Net active power injected at bus i
Qi Net reactive power injected at bus i
PS+
i ESS connected to bus i charge power
PS−
i ESS connected to bus i discharge power
PFi Active power demand of the i-th factory

unit
QFi Reactive power demand of the i-th factory

unit
PEVi,h Charge power of the h-th PEV connected

to bus i
PGi Active power generation at bus i
PDi Active power demand at bus i
Gij Real part of the electrical admittance

between bus i and bus j
Bij Imaginary part of the electrical admit-

tance between bus i and bus j
Vi Voltage magnitude at bus i
θij Voltage phase difference between bus i

and bus j
αCHPi Waste heat factor of the CHP system at

bus i
R Thermal power required by the IMG
ESi Energy stored in the ESS connected to bus

i

ηS+
i Charging efficiency of ESS connected to

bus i
ηS−
i Discharging efficiency of ESS connected

to bus i
EEVi,h Energy stored in the battery of the

h-th PEV connected to bus i
ηEVi,h Battery charging efficiency of the

h-th PEV connected to bus i
kai,h Arrival time (starting charging time) of

the h-th PEV connected to bus i
kdi,h Departure time (stopping charging time)

of the h-th PEV connected to bus i
Ki Number of vehicles associated to bus i
Hi,k Set of indices of vehicles connected to bus

i which are charging at time k
Hi,[k,k+T ] Set of indices of vehicles connected to bus

i whose minimum arrival time belongs to
[k, k + T ]

ǫ Failure tolerance level

γi,h(k) Binary random variable denoting if PEV
h connected to bus i is charging at time k

Ŵi,h Random vector containing γi,h(k)
2i,h Support of random vector Ŵi,h

πka

i,h Vector of charging powers related to
h-th PEV connected to bus i during
[kai,h, k

a

i,h]
5(k) Decision variable vector at time k
5∗(k) Optimal decision variable vector at time k
5[k,k+T ] Decision variable vector sequence in

[k, k + T ]
5∗

[k,k+T ] Optimal decision variable vector
sequence in [k, k + T ]

kdmax Maximum departure time for all the vehi-
cles belonging to Hi,k ∪ Hi,[k,k+T ] for
any i

I. INTRODUCTION

Due to the technological development of low carbon tech-
nologies such as renewable generation sources, local energy
storage systems and electric vehicles, several issues came up
to properly integrate these new features into existing power
systems. In fact, the intermittent nature of the energy from
renewables may affect negatively network stability and grid
power quality. To this end, attention of the scientific com-
munity has focused on local communities, and in particular
on microgrids [1]–[3]. In [4], a novel model of microgrid in
the presence of renewables and electric vehicles has been pre-
sented, whereas in [5], a coordinated electric vehicle charging
algorithm has been proposed to guarantee the power quality
of the system. In this framework, secure grid operation under
huge penetration of plug-in electric vehicles (PEVs) has been
addressed [6], [7]. In [8], a battery swapping strategy to max-
imize the profit of a charging station has been developed,
while in [9], a profit optimization procedure to manage an
airport parking lot has been presented. Moreover, a peak-load
reduction controller exploiting the coordinated response of
photovoltaic (PV) systems, energy storage systems (ESSs)
and PEVs has been developed in [10], whereas in [11] a smart
charging control to minimize the operation cost under differ-
ent user preferences is reported. Also, studies on sizing and
siting of batteries, PV plants and electric vehicle charging sta-
tions have been carried out. In particular, optimal allocation
of renewable sources and electric vehicles charging stations
into a microgrid was addressed in [12]. In [13], an optimiza-
tion method has been proposed for proper sizing and siting of
DG units, energy storage systems and PEV charging stations,
while an optimal storage sizing procedure to minimize the
microgrid planning cost has been presented in [14].
Besides residential microgrids, recent years have wit-

nessed a growing interest towards industrial microgrids
(IMGs), i.e., microgrids involving manufacturing plants.
In addition to the above mentioned features, this kind
of microgrids has to take into account production loads,
industrial electric vehicles, and possibly spatially distributed
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combined heat and electrical power generation sources [15].
In [16], an optimal microgrid planning for an industrial site in
the presence of distributed generation (DG) plants has been
proposed, while in [17] a multi-objective optimization of
an industrial microgrid considering demand response, max-
imization of the total revenue, and total emission reduction,
has been developed.

To guarantee a robust operation of microgrids, uncer-
tainties affecting various aspects of the considered systems
should be handled, as well. These uncertainties may affect
directly the system behavior leading to possible violations
of both technological and security constraints. In fact, since
these constraints often depend on uncertain variables, a suit-
able modeling paradigm is needed to formulate them in prob-
abilistic terms. A rigorous way to model this uncertainty is
to make use of chance constraints [18], [19], which generally
lead to complex formulations difficult to handle. In order to
overcome this issue, several approximation techniques have
been proposed, e.g., scenario-based [20] or distributionally
chance constraint approaches [21]. For instance, a scenario-
based approach has been introduced in [22] to guarantee net-
work performance against uncertainties of power loads and
electric vehicles arrivals, and in [23] to tackle uncertainty on
renewable generation in a PEV parking lot.

In this paper, we consider an industrial microgrid involving
a manufacturing plant composed of several spatially dis-
tributed buildings, hereafter referred to as factory units (FUs),
connected to different buses. Such FUs perform different
tasks of the production plan and some of them are assumed to
be equipped with DG systems. In particular, PV systems cou-
pled with electrical energy storage systems are considered.
Further, we assume that FUs are provided with combined heat
and power (CHP) systems able to produce electrical and heat
power to be exchanged inside the IMG. In addition to CHP
systems, heat power can also be generated through boilers.
A fleet of plug-in electric vehicles is assumed to be assigned
to each FU. Such vehicles can be of different types, ranging
from picker to lift trucks, from bucket to delivery trucks [15].
The arrival (charging) time of each PEV is assumed to be
uncertain, while the departure (plug-out) time is considered
to be known in advance, since it is assumed to be scheduled in
the FU production plan. In this setting, vehicle-to-grid power
exchangewill not be allowed. A sketch of the considered IMG
is reported in Fig. 1.

The aim of the paper is to derive an optimal management
and control policy for the IMG in order to minimize the
energy bill, while satisfying electrical network stability con-
straints, heat and power exchange among FUs, and guaran-
teeing a suitable charge level to PEVs. Electricity and gas
prices change over time and they are assumed to be known
in advance. The optimization problem is formulated in a
receding horizon framework [24], [25], where at each time
step a sequence of dynamic optimal power flow (DOPF)
instances [26], [27] is solved. To tackle the uncertainty asso-
ciated to each PEV, a chance constraint approach [18] is
adopted. Due to power flow equations and chance constraints,

FIGURE 1. Sketch of an industrial microgrid.

the obtained optimization problem is nonconvex. Relaxations
based on [28] and [21] make it possible to reformulate the
nonconvex constraints as a set of linear matrix inequalities
for power flow and chance constraints, respectively.
The novel contribution of this paper with respect to the

existing literature can be summarized as follows:
i) the uncertainty related to PEVs is managed through a
chance constraint approach. This solution allows one to con-
sider also vehicles which are not in charge in the optimization
problem;
ii) nonconvex constraints arisen by using chance constraints
are relaxed by means of worst-case Conditional Value at
Risk (CVaR) constraints [21], allowing for computationally
feasible solution of the optimization problem.
Numerical simulations are performed to assess per-

formance and computational feasibility of the proposed
approach.
The paper is organized as follows. In Section II, the prob-

lem of optimal control of an IMG is formulated, while in
Section III the receding horizon approach is presented. A sim-
ulation case study is provided in Section IV. Conclusions and
future developments are presented in Section V.

II. FORMULATION OF THE OPTIMAL

CONTROL OF AN IMG

In this paper, a discrete-time approach with sampling time
1 is considered. Let x be a generic variable, the notation
x(k) stands for the average value of x from time step k to
k + 1, i.e., from time k1 to (k + 1)1. Let the number of
buses involved in the IMG be denoted by N . By xi we mean
a generic variable x related to bus i.

The aim of this work is to minimize the overall cost of an
IMG while respecting the physical and security constraints
imposed by its components, i.e., power lines, DG facilities,
ESSs, PEVs, etc. Moreover, operation constraints related to
heat requirements and PEV charging set-points have to be
respected, as well.

A. OBJECTIVE FUNCTION

Let k denote the present time step and let T be the horizon
length. The objective function to be minimized is defined as
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the sum of all the costs of the IMG over the time interval
[k1, (k + T )1]. Electrical power can be generated by PV
and CHP systems or it can be drawn from the main grid.
Heat may be produced by boilers and CHP systems. Thus,
for all the factory units, the cost of using CHP systems
(CCHP

i ) and boilers (CB
i ) has to be taken into account in the

objective function, as well as the cost of the electricity drawn
from the main grid (CG). Thus, the objective function to be
minimized is:

J[k,k+T ]=

N
∑

i=1

k+T
∑

t=k

CCHP
i (t) +

N
∑

i=1

k+T
∑

t=k

CB
i (t) +

k+T
∑

t=k

CG(t).

(1)

Let PCHPi be the electrical power produced by the i-th CHP
system, and let ηCHPi and pg be the CHP efficiency and the
gas price, respectively. Denoting by cCHPi the operation cost
of the i-th CHP system per unit of electrical power generated
in a time slot, the CHP cost can be expressed as:

CCHP
i (k) =

PCHPi (k)1

ηCHPi

pg(k) + PCHPi (k) cCHPi .

Let PBi be the heat power generated by the i-th boiler, then
the corresponding cost is:

CB
i (k) =

PBi (k)1

ηBi

pg(k),

where ηBi denotes the boiler efficiency.
Let us denote the net active and reactive power at bus i byPi

and Qi, respectively. By convention, the slack bus is indexed
by 1, so the net active and reactive powers drawn from the
main grid correspond to P1 andQ1, respectively. Let pe(k) be
the electricity price at time k , the overall electricity cost from
the main grid can be written as:

CG(k) = P1(k)1 pe(k).

It is worthwhile to remark thatP1(k) is the difference between
the overall electric power needed by the IMG (for factory
operation, power losses, PEV and ESS charging), and the
electric power generated by CHP and PV systems.

In this work, to avoid arbitrage on electricity price, it is
assumed that the IMG cannot inject electric power into the
main grid, i.e., P1(k) ≥ 0 for all k .

B. PHYSICAL AND SECURITY CONSTRAINTS

In this subsection, the physical and security constraints
needed to ensure safe operation and physical stability of the
IMG are defined.

First, the power balance equations are recalled. Let PFi be
the active power demand of the factory unit connected to
bus i and let the charge/discharge power of the i-th ESS be
denoted by PS+

i and PS−
i , respectively. For a generic PEV

h connected to bus i, PEVi,h (k) represents the charge power
at time k . Denoting by PGi and PDi the total generated and

demanded active power at bus i, one has:

PGi (k) = PCHPi (k) + PPVi (k) + PS−
i (k),

PDi (k) = PFi (k) + PS+
i (k) +

Ki
∑

h=1

PEVi,h (k),

where Ki is the set containing the indices of the vehicles
connected to bus i.
The net active and reactive power at bus i can be written

as [26], [27], [29]:

Pi(k) = Vi(k)
N

∑

j=1

Vj(k)
(

Gij cos θij(k) − Bij sin θij(k)
)

,

Qi(k) = Vi(k)
N

∑

j=1

Vj(k)
(

Gij sin θij(k) − Bij cos θij(k)
)

,

where Gij and Bij are the real and imaginary part of the
electrical admittance between bus i and j, Vi is the voltage
magnitude at bus i, and θij is the voltage phase angle differ-
ence between buses i and j. Thus, the active power balance
equality constraint at bus i is:

Pi(k) − PGi (k) + PDi (k) = 0.

The reactive powers of the PV systems and PEVs are
neglected since these small generators are typically connected
to the network through high quality grid-tie converters that
feature a fixed power factor close to 1 [30]. The reactive
power demand consists of the reactive power of the different
FU loads. Denoting by QCHPi and QFi the reactive powers
exchanged by the CHP system and the FU connected to bus i,
the reactive power balance equation is:

Qi(k) − QCHPi (k) + QFi (k) = 0.

Let us now introduce the inequality constraints concerning
network security, CHP and boiler systems, PV systems and
PEVs. The network security constraints enforce limits on
voltages at the different buses and capacities of the lines,
the latter depending on physical properties of the lines [30].
No voltage limits are set on the slack bus since it is considered
a fixed-voltage bus. As previously stated, we assume that the
slack bus is labeled with i = 1. Let us denote by Pij(k)
the power flowing from bus i to bus j in the k-th time slot.
Network security constraints can be written as:

V i ≤ Vi(k) ≤ V i i = 2, . . . ,N ,

and

|Pij(k)| ≤ Pij i 6= j,

while the slack bus constraints are:

0 ≤ P1(k) ≤ P1,

Q
1

≤ Q1(k) ≤ Q1,

where P1, Q1
and Q1 are given bounds.
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Constraints on active and reactive power generation by the
i-th CHP system are expressed as:

PCHPi ≤ PCHPi (k) ≤ P
CHP

i ,

QCHP
i

≤ QCHPi (k) ≤ Q
CHP

i ,

while the heat power produced by a generic boiler i is
constrained as:

0 ≤ PBi (k) ≤ P
B

i .

Let ESi be the energy stored in the ESS connected
to bus i, and let ηS+

i and ηS−
i be the corresponding

charging/discharging efficiency, respectively. The constraints
involving the ESS enforce limits on the charge/discharge
power, the storage capacity and the energy balance. Thus:

0 ≤ PS+
i (k) ≤ P

S+

i ,

0 ≤ PS−
i (k) ≤ P

S−

i ,

ESi ≤ ESi (k) ≤ E
S

i ,

ESi (k) = ESi (k − 1)+ηS+
i PS+

i (k − 1)1−
1

ηS−
i

PS−
i (k−1)1.

Regarding PEVs, let us consider the generic vehicle h

connected to bus i and denote by EEVi,h the energy stored in
its battery and by ηEVi,h the corresponding charging efficiency.
The electrical vehicle charging process is represented by the
following constraints:

EEVi,h (k) = EEVi,h (k − 1) + ηEVi,h P
EV
i,h (k − 1)1, (2)

0 ≤ PEVi,h (k) ≤ P
EV

i,h , (3)

EEVi,h (k) ≤ E
EV

i,h . (4)

C. OPERATIONAL CONSTRAINTS

Let kai,h and k
d
i,h denote the time a generic PEV h connected

to bus i starts and stops the charging process, respectively.
We assume that the departure time kdi,h is known, being it
related to the factory production schedule, while the arrival
time kai,h is uncertain.We also assume that the battery capacity
at plug-in time is known. To assure that a vehicle is fully
charged at the time it is plugged-out, the following constraint
is introduced. It enforces the stored energy at departure time
to be equal to the maximum battery capacity:

EEVi,h (k
d
i,h) = E

EV

i,h . (5)

In the considered setting, we assume that factory units can
exchange heat among themselves, and that their CHP systems
and boilers cooperate to satisfy the overall heat requirement.
Denoting by αCHPi the waste factor that describes how much
useful heat power is generated per electric power produced
by the i-th CHP system, the constraint on the overall heat
demand R of the IMG can be expressed as:

N
∑

i=1

(

αCHPi PCHPi (k) + PBi (k)
)

≥ R(k).

III. OPTIMAL CONTROL IMPLEMENTATION

In this section, a receding horizon algorithm ensuring optimal
operation of the IMG is derived. To this purpose, the objective
function (1) has to be minimized in order to compute the
optimal control sequence.
Let k denote the current time step. The arrival time of a

vehicle is supposed to be uncertain, and therefore the con-
straint representing its charging process is meaningful only
when that PEV is plugged into the network. For this reason,
let us defineHi,k =

{

h : kai,h ≤ k ≤ kdi,h

}

as the set of indices
identifying vehicles plugged into the i-th bus at time k . Since
the cardinality of this set varies over time, the optimization
procedure needs to be adapted at each time step. Therefore,
an adaptive optimization problem need be formulated at each
time step in order to find the best solution for the IMG
operation.

Notice thatHi,k takes into account only the vehicles charg-
ing at time k , but it provides no information about the incom-
ing ones. Ignoring such an aspect may lead to situations in
which network safety constraints may be violated, e.g., due
to voltage drops and/or power overloads caused by arrivals
of vehicles in future steps. Thus, in order to prevent these
events, a chance constrained approach is adopted to handle
uncertainty affecting PEVs arrival times.

A. UNCERTAINTY MODELING

The real arrival time of the h-th vehicle at bus i, kai,h, is sup-
posed to be a random variable with a bounded closed support
[kai,h, k

a

i,h], and let us assume that the corresponding discrete
distribution function is known.
To take into account the incoming vehicles, let us define the

index set Hi,[k,k+T ] =
{

h : k < kai,h < k + T
}

which con-

tains the indices of the vehicles whose minimum arrival time
falls into the prediction horizon. Notice that, by construction,
setsHi,k andHi,[k,k+T ] are disjoint, i.e.,Hi,k ∩Hi,[k,k+T ] =

∅, for all i and k .
Being the arrival time kai,h a random variable, also the evo-

lution of the vehicle state of charge EEVi,h becomes a random
variable itself. So, to manage the charging process involving
incoming vehicles, constraint (5) is replaced by the following
chance constraint:

P

(

EEVi,h (k
d
i,h) ≥ E

EV

i,h

)

≥ 1 − ǫ , h ∈ Hi,[k,k+T ], (6)

where 0 < ǫ < 1 denotes a given failure tolerance level.
In order to model the uncertainty on the state of charge, let

us define the binary random vector Ŵi,h as

Ŵi,h =
[

γi,h(k
a
i,h), . . . , γi,h(k

a

i,h)
]

where,

γi,h(k) =

{

1 if k ≥ kai,h
0 otherwise

, k = kai,h, . . . , k
a

i,h

describes if a vehicle is in charge at time k .
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Combining (6) with Ŵi,h, the chance constraint can be
rearranged as

P

(

ηEVi,h 1

(

k
a
i,h

∑

t=kai,h

PEVi,h (t)γi,h(t) +

kdi,h−1
∑

t=k
a
i,h+1

PEVi,h (t)
)

≥

E
EV

i,h − EEVi,h (k
a
i,h)

)

≥ 1 − ǫ.

By using (2), the second sum can be rewritten as

P

(

ηEVi,h 1

k
a
i,h

∑

t=kai,h

PEVi,h (t)γi,h(t) + EEVi,h (k
d
i,h)

−EEVi,h (k
a

i,h + 1) ≥ E
EV

i,h − EEVi,h (k
a
i,h)

)

≥ 1 − ǫ,

and finally

P

(

ηEVi,h 1

(

π
ta
i,h

)′

Ŵi,h + E
EV
i,h ≥ 0

)

≥ 1 − ǫ, (7)

where,

πka

i,h =
[

PEVi,h (k
a
i,h), . . . , P

EV
i,h (k

a

i,h)
]′

,

and

E
EV
i,h = EEVi,h (k

d
i,h) − EEVi,h (k

a

i,h + 1) − E
EV

i,h + EEVi,h (k
a
i,h).

Notice that, if the vehicle arrival time interval overlaps the
current time, the arrival distribution Ŵi,h can be replaced by
the corresponding conditional distribution.

B. OPTIMIZATION PROBLEM FORMULATION

Let us define the command row vector 5(k) as

5(k) =
[

PEV1,1(k), . . . ,P
EV
1,K1

(k), . . . ,PEVN ,1(k), . . . ,P
EV
N ,KN

(k),

PS+
1 (k), . . . ,PS+

N (k),PS−
1 (k), . . . ,PS−

N (k),

PCHP1 (k), . . . ,PCHPN (k), QCHP1 (k), . . . ,QCHPN (k),

PB1 (k), . . . ,P
B
N (k)

]

,

where Ki denotes the maximum number of vehicles related
to bus i. Furthermore, let us introduce the vector 5[k,k+T ] in
order to collect the control sequence over the time interval
[k, k + T ] :

5[k,k+T ] = [5(k), . . . , 5(k + T )] .

The DOPF problem can be formulated as reported in
Problem 1, shown at the top of the next page.
Notice that, since Hi,k ∩ Hi,[k,k+T ] = ∅, ∀i, ∀k , the last

two constraints of Problem 1 are mutually exclusive in the
adaptive optimization procedure.
It is worthwhile to remark that this optimization problem is

nonconvex. In fact, it involves power flow equations, which
describe a highly nonlinear system, and chance constraints in
which the feasible set is typically nonconvex.
From the optimal power flow perspective, the noncon-

vexity can be handled by using its dual formulation and by

relaxing a rank constraint to obtain a convex problem. It has
been proven that for radial networks like those considered in
this paper, such a relaxation is exact, see [28] for details.
Regarding chance constrained optimization, in the next

subsection a method to approximate such constraints is
adopted.

C. CHANCE CONSTRAINT APPROXIMATION

In the literature, there exist mainly two approaches to approx-
imate chance constraints. The first one regards scenario based
methods, where a number of realizations of the random pro-
cess is collected in order to approximate the original chance
constraints [20], [31]. The drawback of this approach is that
the number of samples needed increases considerably as
the failure tolerance level decreases, leading to computa-
tionally demanding problems when satisfaction probability
approaches 1. This feature may be dramatically amplified by
the increasing number and dimension of the random vectors
necessary to model uncertainty. In the considered setting,
the number of PEVs employed into the IMG, and then the
number of random vectors, amounts to tens or even hundreds,
leading to computationally unfeasible problems.
The second approximation family involves robust opti-

mization methods, where chance constraints are relaxed by
exploiting stochastic properties of the uncertain variables
involved. Hereafter, we refer to the technique proposed
in [21], where the first and second order moments of the
considered random variable are used to obtain a convex prob-
lem reformulation involving linear matrix inequalities. Then,
such a problem can be efficiently solved by using standard
optimization tools (e.g., [32]–[34]).
Thus, let us now focus on the random variable Ŵi,h, whose

expected value is given by

E[Ŵi,h] = µi,h =
[

µi,h(k
a
i,h), . . . , µi,h(k

a

i,h)
]′

,

where

µi,h(k) = E[γi,h(k)] = P(γi,h(k) = 1) = P(kai,h ≤ k).

Let 6i,h denote the covariance matrix of Ŵi,h, one has:

6i,h =







σi,h(kai,h, k
a
i,h) . . . σi,h(kai,h, k

a

i,h)
...

. . .
...

σi,h(k
a

i,h, k
a
i,h) . . . σi,h(k

a

i,h, k
a

i,h)







where

σi,h(p, q) =

{

µi,h(p)(1 − µi,h(q)) if p ≤ q

µi,h(q)(1 − µi,h(p)) if p > q.

The first and second order moments of Ŵi,h can be com-
bined as follows:

�i,h =

[

6i,h + µi,hµ
′
i,h µi,h

µ
′
i,h 1

]

.

Let us refer to a generic h-th vehicle connected to bus i.
In the following, for ease of notation, subscripts i and h

are omitted. According to [21], chance constraint (7) can
be approximated through CVaR and then replaced with the
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Problem 1: Dynamic Optimal Power Flow over time horizon [k, k + T ].

5∗
[k,k+T ] = argmin

5[k,k+T ]

J[k,k+T ]

subject to:

Pi(t) = PCHPi (t) + PPVi (t) + PS−
i (t) − PFi (t) − PS+

i (t) −
∑

h∈Hi,k∪Hi,[k,k+T ]
PEVi,h (t)

Qi(t) = QCHPi (t) − QFi (t)
|Pij(t)| ≤ Pij , j 6= i

PCHPi ≤ PCHPi (t) ≤ P
CHP

i

QCHP
i

≤ QCHPi (t) ≤ Q
CHP

i

0 ≤ PBi (t) ≤ P
B

i

0 ≤ PS+
i (t) ≤ P

S+

i

0 ≤ PS−
i (t) ≤ P

S−

i

ESi ≤ ESi (t) ≤ E
S

i



































































t = k, . . . , k + T ,

i = 1, . . . ,N

0 ≤ P1(t) ≤ P1
Q
1

≤ Q1(t) ≤ Q1

R(t) ≤
∑N

i=1

(

αCHPi PCHPi (t) + PBi (t)
)



























t = k, . . . , k + T

V i ≤ Vi(t) ≤ V i

}

t = k, . . . , k + T ,

i = 2, . . . ,N

ESi (t) = ESi (t − 1) + ηS+
i PS+

i (t − 1)1 − 1
ηS−
i

PS−
i (t − 1)1

}

t = k + 1, . . . , k + T ,

i = 1, . . . ,N

EEVi,h (t) = EEVi,h (t − 1) + ηEVi,h P
EV
i,h (t − 1)1

0 ≤ PEVi,h (t) ≤ P
EV

i,h

EEVh (t) ≤ E
EV

k











t = kai,h + 1, . . . , kdi,h,

i = 1, . . . ,N ,

h ∈ Hi,k ∪ Hi,[k,k+T ]

P

(

ηEVi,h 1

(

π
ya
i,h

)′

Ŵi,h + E
EV
i,h ≥ 0

)

≥ 1 − ǫ

}

i = 1, . . . ,N ,

h ∈ Hi,[k,k+T ]

EEVi,h (k
d
i,h) = E

EV

i,h

}

i = 1, . . . ,N ,

h ∈ Hi,k .

following set of convex constraints:


















































































































∃β ∈ R, M ∈ S
(k
a
−ka+2),

∃λ ∈ R
(k
a
−ka+1), ρ ∈ R

(k
a
−ka+1),

λ ≤ 0,

ρ ≤ 0,

β +
1

ǫ
Tr(M�) ≤ 0,

M +

(k
a
−ka+1)
∑

j=1

Wjλj � 0,

M +

(k
a
−ka+1)
∑

j=1

Wjρj−







0 −
1

2
ηEV1πka

−
1

2
ηEV1

(

πka
)′

−EEV − β






� 0,

(8)

where Tr(·) is the trace operator andWj are symmetric matri-
ces of dimension k

a
− ka + 1. Such matrices are used to

approximate the support 2 of Ŵ as:

2 ⊆
{

Ŵ ∈ R
(k
a
−ka+1) : [Ŵ′, 1]Wj[Ŵ

′, 1]′ ≤ 0,

j = 1, . . . , k
a
− ka + 1

}

,

where Wj are such that each entry of Ŵ must lie
between 0 and 1.

D. RECEDING HORIZON IMPLEMENTATION

Notice that the optimization Problem 1 does not take into
account vehicles whose departure time falls outside the pre-
diction horizon. To overcome this issue, a dynamic adaptation
of the prediction horizon T is proposed as follows:

1) Let the nominal prediction horizon T be given.
2) At time k , let us check for each bus i if there is any PEV

with index h such that h ∈ Hi,k ∪ Hi,[k,k+T ]:
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a) if there is not any PEV belonging to Hi,k ∪

Hi,[k,k+T ], then the prediction horizon remains
unchanged;

b) if there are some vehicles belonging to Hi,k ∪

Hi,[k,k+T ], the corresponding departure times kdi,h
have to be considered. Let us call kdmax the maxi-
mum departure time for all the vehicles belonging
to Hi,k ∪ Hi,[k,k+T ]. The prediction horizon has
to be updated with the maximum value between
kdmax and T .

The overall receding horizon algorithm is reported in
Algorithm 1.

Algorithm 1 Receding Horizon Procedure

1 Let T0 be the nominal prediction horizon;
2 Set k = 0;
3 Set T = T0;
4 for i = 1 to N do

5 for h ∈ Hi,k do

6 Update the horizon as T = max
{

T , kdi,h

}

;

7 Add constraints (2)-(3)-(4)-(5) for vehicle h;
8 end

9 for h ∈ Hi,[k,k+T0] do

10 Update the horizon as T = max
{

T , kdi,h

}

;

11 Add constraints (2)-(3)-(4)-(8) for vehicle h;
12 end

13 end

14 Solve Problem 1 to obtain 5∗
[k,k+T ];

15 Apply command 5∗(k);
16 k = k + 1;
17 Repeat from step 3

IV. NUMERICAL SIMULATIONS

In this section, an IMG is simulated in order to test the effec-
tiveness and the computational feasibility of the proposed
approach.

A. SIMULATION SETUP

Simulations have been performed over three days with a
sampling time 1 = 1 hour, a standard prediction horizon
T0 = 4 hours and a chance constraint failure tolerance level
ǫ = 0.1.

An IMG composed of 10 buses and 7 FUs is considered,
see Fig. 2. Factory units are referred to as FU1 , . . . , FU7 and
they may be equipped with CHP systems, boilers, PV plants
and PEVs. DG facilities installed in each FU are summarized
in Table 1.

Technical data regarding DG systems and PEVs are taken
from [15]. Data of CHP systems, that is, maximum and min-
imum active power generation, electric efficiency, waste heat
factor and operational cost are reported in Table 2, while
technical data regarding boilers are given in Table 3.

FIGURE 2. Structure of the considered 10-bus industrial microgrid.
‘‘B’’ denotes boilers while ‘‘PV’’ photovoltaic plants.

TABLE 1. Distributed generation facilities assigned to each factory unit.

TABLE 2. CHP systems technical data.

TABLE 3. Boilers technical data.

Each PV plant is assumed to be coupled with an ESS
able to store the power in excess into batteries. Technical
specifications about storage systems are reported in Table 4.
Forecasts of factory load patterns, PV generation and

heat requirements are assumed to be known enough time in
advance. The overall factory electrical load and heat require-
ment are depicted in Fig. 3, whereas the overall PV generation
is reported in Fig. 4. The IMG is supposed to be equippedwith
three types of PEVs (light service vehicles, heavy service
vehicles and large industrial vehicles) each one divided in
two subclasses. Technical data on PEV charging systems are
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TABLE 4. ESS technical data.

FIGURE 3. Top: Overall FU electrical load. Bottom: Overall heat
requirement.

FIGURE 4. Overall photovoltaic generation.

TABLE 5. PEVs technical data.

reported in Table 5, while in Table 6, the number of vehicles
assigned to each FU is reported.

Daily arrival and departure schedules of PEVs are reported
in Table 7. The actual arrival times of vehicles are taken from
a symmetric triangular distribution with a support of 4 hours.

For all buses, the nominal voltage magnitude is set to
230V , and the safety limits are given by ±10% of the

TABLE 6. Number of vehicles for each FU.

TABLE 7. Arrival and departure time of vehicles.

nominal value. The slack bus is constrained to draw at most
6500 kW of active power from the grid and the constraints on
the reactive power are set toQi = −Qi = 3150 kVAR. All the
other buses of the network are treated as load buses.
Electricity and gas prices have been taken from the Italian

electricity market [35] and they are depicted in Fig. 5. Notice
that, electricity price changes every hour while gas price is
updated once a day.

FIGURE 5. Top: Electricity price. Bottom: Gas price.

B. SIMULATION RESULTS

The results obtained by simulating the considered IMG show
that the proposed control strategy is able to efficientlymanage
all the grid components.
From the electrical point of view, in Fig. 6 (top), one may

observe the relationship among CHP production, PV gener-
ation and main grid power consumption. As expected, when
the electricity price is low, the IMG power is mostly drawn
from the main grid. In Fig. 6 (bottom), the total FU electrical
demand is reported, as well as the overall PEV charging
profile, while in Fig. 7, the state of charge of the storages
related to FU1 and FU2 is depicted.
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FIGURE 6. Electrical power side of the grid. Top: Overall electrical power
supply. Overall CHP generation (blue), PV production (green), main grid
power consumption (red). Bottom: Overall electrical power demand.
Overall FU load (red) and PEV demand (blue).

FIGURE 7. State of charge of ESS at FU1 (red) and FU2 (blue).

FIGURE 8. IMG heat requirement (red), overall CHP thermal
generation (blue) and boiler heat production (green).

Moving the attention on the heat demand reported in Fig. 8,
CHP systems and boilers are employed to satisfy such con-
straint. In particular, boilers are mainly used both when
CHP systems saturate and when producing electrical power
through them is not convenient, e.g., around time 25. Con-
cerning the overall heat generation, it can be noticed that the
total produced heat always coincides with the requirement
except around time 57, when the heat produced by CHP
systems exceeds the overall requirement.

In Fig. 9, voltage magnitudes of buses 4, 6 and 8 are
depicted. It can be observed that voltage magnitudes remain
in the working range at all times. The largest fluctuations can
be observed at bus 8 (red), which is connected to the most
demanding FU, i.e. FU1.

FIGURE 9. Voltages at buses 4 (blue), 6 (green) and 8 (red).

TABLE 8. Grid operation costs [e] over three days.

In order to evaluate the performance of the proposed
approach, a benchmark consisting in Algorithm 1 without
chance constraints (i.e., without lines 9-12) is considered. The
two algorithms have been compared over a three-day simu-
lation, showing similar overall costs, as reported in Table 8.
On the other hand, to assess the robustness of the two pro-
cedures, an increased PEV penetration has been considered.
Under this new setting, the benchmark is no more capable to
satisfy grid constraints when the number of vehicles increases
of about 30%, while the proposed chance constraint approach
is able to guarantee an optimal grid operation even for a
number of vehicles more than doubled. Hence, thanks to the
adopted chance constraint control strategy, the optimization
procedure can suitably manage the incoming vehicles with a
consequent improvement of the grid security.

FIGURE 10. Electrical power side of the grid with double penetration of
vehicles. Top: Overall electrical power supply. Overall CHP generation
(blue), PV production (green), main grid power consumption (red).
Bottom: Overall electrical power demand. Overall FU load (red) and PEV
demand (blue).

In Fig. 10, the electrical power side of the IMG under
double penetration of vehicles is depicted. In this setup,
the grid is highly stressed. Indeed, the slack bus and the CHP
systems reach often their saturation limits due to the heavy
demand of PEVs. However, the proposed algorithm enforces
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the feasibility of the IMG network by spreading the PEV
charging process over the whole plug-in time.

Regarding computational aspects, the proposed algorithm
results to be largely tractable. In fact, the time needed by an
iteration amounts to about 7 seconds.1

V. CONCLUSIONS

A receding horizon approach to the optimal control of an
IMG in presence of PEVs has been presented. To deal with
the uncertainty affecting the arrival times of PEVs, a chance
constraint approach has been devised and a suitable relaxation
technique has been adopted. Simulations involving a 10-bus
industrial microgrid have been performed. The proposed
approach has been compared with a deterministic method
which does not employ chance constraints. Results show that
the overall energy bill is similar for both approaches. How-
ever, the proposed method outperforms the benchmark when
looking at robustness regarding PEV penetration. In fact,
the benchmark is able to handle PEV increase of about
30%, after that network stability is no more guaranteed,
while the algorithm based on chance constraint can manage
PEV growth of more than 100%, showing better robustness
capabilities.

Future developments may involve the use of different
kind of techniques for dealing with uncertainty, like for
instance, scenario-based approaches. Moreover, uncertainties
on vehicle departure times and on other aspects of the IMG
(e.g., uncertain FU load profile and uncertain PV generation
forecasts) can be considered as well.
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