
117

POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.

pd.tvz.hr pd.tvz.hr

ARTIFICIAL INTELLIGENCE IN COMPUTER GAMES

UMJETNA INTELIGENCIJA U RAČUNALNIM IGRAMA

Renata Kovačević, Ivan Cesar, Davor Cafuta

Tehničko veleučilište u Zagrebu, Vrbik 8, Zagreb, Hrvatska

Abstract

Today, the highly developed and competitive
computer games industry needs to make
better and better computer games and beat
the competition. In order to keep the players
entertained with computer games, manufacturers
use a variety of techniques to make games
interesting and challenging. This is largely aided
by research in the field of artificial intelligence
that is extremely well suited for computer
games. Games need to be made as complex and
unpredictable as possible to provide as much fun
as possible. This article explores and gives an
overview of all the most popular techniques that
can be applied.

Keywords: AI, computer games, FSM, MCST,
Neural networks, Genetic algorithms

Sažetak

Danas, visoko razvijena i konkurentna industrija
računalnih igara mora proizvoditi sve bolje
računalne igre kako bi bila bolja od konkurencije.
Kako bi igrače nagnali na što dulje sudjelovanje
u igri, proizvođači koriste razne tehnike kako
bi one bile zanimljive i izazovne. Ovome u
velikoj mjeri pomaže istraživanje u području
umjetne inteligencije koja je izuzetno pogodna
za razvoj računalnih igara. Igre moraju biti što
je više moguće složene i nepredvidljive kako bi
pružile igraču zabavu. Ovaj članak istražuje i daje
pregled svih najpopularnijih tehnika koje se mogu
primijeniti u ovom području.

Ključne riječi: AI, računalne igre, FSM, MCST,
neuronske mreže, genetski algoritmi

1. Introduction
1. Uvod

The definition of artificial intelligence is the
ability to learn or understand or to deal with new
or trying situations[1]. This definition means that
any device programmed to cope with a certain
situation can be seen as intelligent. Artificial
intelligence is the creation of computer programs
that emulate acting and thinking like a human, as
well as acting and thinking rationally[2].

Generally speaking, most of the time, AI in
computer games refers to path finding and
emulating the behavior of other players in the
game. These are often referred to as non-player
characters (NPCs). With most rules, conditions
and actions being prewritten, it often appears
more “artificial” then “intelligent”. The concept
behind game AI is decision making. To be able
to decide some action, the AI needs to have a set
of decisions and a set of actions based on those
decisions. The first games that started using
artificial intelligence were Galaxian (1979) and
Pacman (1980). Galaxian used AI to maneuver the
enemies. The enemies had complex movements
and were able to move out of formation. In
Pacman, different movements were added to
different types of enemies and it gave a new
meaning to labyrinth games[3]. Over the years, AI
in games became increasingly complex and today
almost no computer game can be made without it.

This paper explores all the most popular
techniques of implementing artificial intelligence
in computer games and gives an overview of
each of them. Every technique is described and
a review of their advantages is given. The main
goal of this paper is to assist in the selection of
a particular technique with regards to the game
genre being developed.

DOI: 10.19279/TVZ.PD.2019-7-2-15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/224979381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

118

POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.

pd.tvz.hr pd.tvz.hr

2. Finite state machine
2. Stroj konačnih stanja

The finite state machines are one the most
common AI techniques used in a vast variety
of computer games. A finite state machine is a
device, or model of a device, which has a finite
number of states it can be in at any given time and
can operate on input to either make transitions
from one state to another or to cause an output
or action to take place. A finite state machine
can only be in one state at any given moment in
time[4]. The general idea of a finite state machine
is to disassemble the behavior of an object into
easily manageable parts or “states”. Every state
has its own conditions for each transition into
another state.

As an example, lighting can be taken. Any light
can have only two states: on and off. The light
can be in only one of the state at a moment. It
can’t be on and off at the same time. By flipping
the switch one actually initializes the transition
between the two states. Therefore, when the light
is off, by flipping the switch the state transitions
from off to on. Then, the light is in the state of
on. By flipping the switch again, the state makes
a transition again, this time from on to off. This
is probably the simplest example of a finite state
machine. One a bit more complex example can be
the life of a cat. It can be said that cats have only
four states: relax, sleep, search and eat. When the
cat wakes up from sleeping it relaxes. It does this
until it gets hungry, then it searches for food until
it finds it. When it finds food it eats. If the cat eats
just enough food, it transitions back to relaxing.
If the cat overeats it goes to sleep. Also, while
relaxing it can become tired of relaxing and go to
sleep.

Finite state machines can be implemented in
several ways. The most straightforward way can
be made using if-then statements. Although this
approach is reasonable with this simple example,
things can get complicated very fast with any
larger finite state machine. More states give more
programming code, more if-then statements
and more case statements. This makes the
programming code difficult to read or maintain,
and with adding more states debugging becomes
an impossible mission. Whilst using this type of
implementation, one has to keep in mind that it is
not a good option if the game logic is going to be
extended.

Another way to implement a finite state machine
can be through finite state tables. This method
of implementing finite state machines gives a
better overview of all the states, transitions and
conditions. Furthermore, adding new states,
changing and deleting existing ones is more
flexible and simplified. It is possible to use the
states in the finite state tables in the same way
as in the previous example, or it is possible use
them in a more complex programming code. This
method provides a clean and flexible architecture
of a finite state implementation.

Along with the aforementioned methods,
implementation can also be embedded inside
the classes and programming code. This
architecture is known as the state design pattern.
This programming pattern provides an elegant
simplification of states within the programming
code itself.

Within this pattern the Cat class contains data
related to the current state that it is in at the
moment. The ChangeState method is called to
facilitate the transition from one state to another
when the conditions are met. Figure 1 Finite state machine of the life of a cat

Slika 1 Stroj s konačnim brojem stanja iz života mačaka

Current State Condition State Transition
Sleep Wake up Relax
Relax Get tired Sleep
Relax Get hungry Search
Search Found food Eat
Eat Full Relax
Eat Overeat Sleep

Table 1. Finite state table

Tablica 1. Tablica stanja

119

POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.

pd.tvz.hr pd.tvz.hr

These conditions and the transitional logic are
implemented within this method. The State
class is most commonly an abstract class. It will
never be instantiated, but it will be inherited
by all possible states needed in the finite state
machine. Each state is implemented in the form of
a separate class that inherits the base class State.
This allows each state to have similar behavior
implementation. So, within the inherited Handle
method, one can implement the logic associated
with that particular state. This pattern allows full
encapsulation and the code is easily extended
with either states or transition logic. In addition to
the states of a character in the game, this design
pattern can also be used to control the main game
flow components like the menu, save, pause, etc.

Although the use of a finite state machine gives
a good overview of possible actions (states) of
non-player characters, it also has its drawbacks.
One of the drawbacks is its predictability. Because
all of the states are pre-programmed they become
repetitive and the player can lose interest. In order
to have a more complex non-player character it
needs to have a large number of possible states
which requires a lot of programming and effort.

3. Behavior trees
3. Stabla ponašanja

Behavior tree is an AI system that works in a very
similar way to a finite state machine. Behavior
trees are made up of finite state machines that
work in a hierarchical system. Instead of states,
the behavior tree technique has behaviors, and
instead of state functions, there are various finite
state machines.

3.1. The MCST algorithm
3.1. MCST algoritam

Monte Carlo Tree Search (MCTS) is a method for
making optimal decisions in artificial intelligence
problems. These problems usually include
movement planning in combinatorial games, but
can be applied to any game of finite length[5].
These types of games can be Chess, Go, or any
other similar board game [6].

The MCTS is based on the Monte Carlo method.
This method is the generation of random objects
or processes in order to solve problems that are
deterministic in nature. It creates random samples
and events, repeating the experiment until the
problem is solved. They are often used in physical
and mathematical problems[7].

In their work, Chaslot et al. give an example how
the MCST algorithm works. As shown in Image 3,
the basic MCTS algorithm has four steps that are
repeated:

1. Selection – the search starts at the root
node with the optimal child nodes selected. This
process is performed until a leaf node is reached.
This search will be performed by a selection
function. Such function can be the finite-horizon
Markov decision process (MDP) which is noted
as[9]:

Figure 2 State design
pattern

Slika 2 Obrazac dizajna
stanja

120

POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.

pd.tvz.hr pd.tvz.hr

Where:

wi – the number of wins after the i-th move

ni – the number of simulations after the i-th move

c – exploration parameter, needs to be tuned
experimentally

t – total number of simulations, equal to the sum
of all ni

2. Expansion – if the chosen leaf node
is not a terminal node, a new (child) node will
be created and selected. Generally, the tree is
expanded by one node for each time the game is
simulated.

3. Simulation – simulations on the node
created in the last step are played out. The game
is played out until the end with the moves chosen
randomly.

4. Backpropagation – the current move
sequence (the root node) is updated with the
simulated result. On each node the number of
visits should be incremented. Each node should
contain two values: the estimated value based on
the simulated results and the number of times it
has been visited.

This process is repeated until the allocated time
runs out.

An example of the MCTS algorithm can be the
game Civilization. In this game, players compete
to develop cities.

The AI cannot be pre-programmed for every
move, so it has to evaluate the possible next
moves and identify the best one. In this game
three actions are available: defend, build
technology and attack.

The algorithm creates all the possible actions,
calculates the payback for each action, identifies
the best action and takes it[10].

MCTS has advantages over the traditional
methods. One of these advantages is the fact
that the algorithm does not have to have any
knowledge about the game. The only thing it
should be aware of are the legal moves and at
what condition does the game end, enabling it
to be efficiently reused. When the algorithm is
started, an asymmetric tree is drawn. The more
interesting nodes are visited more often, and
the search time is lowered with the focus on the
relevant part of the tree. This makes the algorithm
suitable for games with a large combination of
possible moves.
However, the MCTS has also its drawbacks. Due
to the large number of combinations of possible
moves, the time limit may stop the algorithm
before it has calculated the next move. For
the algorithm to come up with a good solution,
sometimes it needs to explore large number of
iterations. Therefore, it could be concluded that its
biggest drawback is time.

In order to correct these shortcomings, many
solutions have been proposed. Most of these
solutions suggest introducing game rules into the
algorithm itself. This reduces its reusability, but
the algorithm will skip the implausible moves
which will reduce the number of iterations[11,12].

Figure 3 Outline of a MCST algorithm[8]

Slika 3 Pregled CST algoritma[8]

121

POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.

pd.tvz.hr pd.tvz.hr

4. Fuzzy logic
4. Neizrazita logika

Fuzzy logic expands conventional logic so
that it can handle the concept of partial-truth
values between the boolean contrast of true and
false[13].

The fuzzy logic reasoning system has the
following components: variables, rules and
an inference engine. During the process of
fuzzification variables get fuzzified by using fuzzy
set history and selecting a set of functions on
their possible range of values. By using fuzzified
values computers can interpret linguistic rules and
are able to produce certain outputs. These outputs
can remain fuzzified or can be de-fuzzified to
provide a crisp value.

Basically, variables can be the input given to the
fuzzy inference engine. Firstly, they are fuzzified.
In the engine, a set of fuzzy rules are implemented
in order to apply certain rules. These rules are
usually implemented using the if-then statement
logic and boolean operators: AND, OR, NOT.
With the help of these statements and operators
the fuzzy inference engine “concludes” what the
output should be. This output is in the form of
a fuzzy value. These values get de-fuzzified to
provide a crisp value[14].

Fuzzy logic is simple to implement within a game
due to its simple implementation. This simplicity
is based on its language-like nature. With fuzzy
logic one can implement rules like:

1. IF the service is poor OR the food doesn’t
 taste good THEN don’t leave a tip.

2. IF the service is good THEN give an
 average tip.

3. IF the service if good OR the food is
 delicious THEN leave a generous tip.

As can be seen in Image 5, the variables are
food and service. These variables are fuzzified
and given to the fuzzy inference engine which
contains the three defined rules. The results are
then de-fuzzified and given as an output as a crisp
number.

Although the complexity of fuzzy logic does not
make it a frequent selection in AI implementation
in games, some popular games do use it. One of
these games is the Sims - a simulation of human
life. The player controls a family of one to eight
members. Each member has its own needs that
have to be satisfied. The AI in The Sims is specific
due to its ability to interact with its environment
to meet the sims needs[13].

5. Academic artificial intelligence
5. Akademska umjetna inteligencija

There is a distinction between academic artificial
intelligence and the artificial intelligence that
is used in computer games. Although academic
artificial intelligence can be implemented into
computer games, because of its complexity,
resource and performance constraints usually it
is not. The academic AI tends to find the optimal
solution regardless of the hardware or time
limitations. The methods described beforehand
give the developer control over the artificial
intelligence in non-player characters. With the use
of academic artificial intelligence, such as neural
networks and genetic algorithms, reactions of
non-player characters in certain situations may be
quite unpredictable[4].

Academic artificial intelligence can be divided
into strong AI and weak AI. Strong AI handles
the problems of how to create a system that can
mimic human behavior. It should understand itself
enough to be able to improve itself. Weak AI, on
the other hand, handle real world problems and
techniques how to solve them. It cannot modify
itself in order to improve. It handles only the
problem for which it is created[15].

Typically, when advanced game AI is
implemented in games, the game is created
around the AI and it is not just a part of the game.

Figure 4 Fuzzy rule-based inference

Slika 4 Zaključak na temelju neizrazitih pravila

Figure 5 Fuzzy logic example

Slika 5 Primjer neizrazite logike

122

POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.

pd.tvz.hr pd.tvz.hr

5.1. Neural networks
5.1. Neuronske mreže

Neural networks are inspired by the biological
nervous systems. They process information
in a similar way the brain would. This system
is composed of a large number of neurons
(elements) which are connected and work as
whole. Their key feature is their ability to learn
on examples. Each neural network should be
specifically designed to solve a certain problem.
The way the connections between the neurons
are made are always specific to the task they are
supposed to do. As seen in Image 6, every neuron
has its set of input data and teaching data. When
this is combined, it gives out the corresponding
output[16].

When combined, neurons can together form a
neural network with 3 basic layers: input layer,
hidden layer, output layer. On the input layer,
the raw data is fed into the network. This is the
layer in which data, that should be analyzed and
processed, is given to the neural network. The
hidden layer is where the data will be processed.
Each neuron and the weights on the connections
determine how the “flow” is going to go.

From the hidden layer, data is given to the output
layer based on the weights on the connections
between these two layers. In this simple
architecture, in the hidden layer the neurons are
free to construct their own representation of the
input. The weights on the connections determine
which neuron will be active[16,17].

Although the usage of advanced game AI is
more of an exception, some games do implement
them. One of those games is Black & White
where neural networks are used to give “life” to
a non-player character. In this game the player is
a god who is free to do whatever he pleases. He
rules the people in the game. At one point in the
game the player is given a creature that, in the
beginning behaves as a child. Because of the use
of neural networks, the player can “teach” this
creature and raise it like one would a child. By
praising and scolding it, the creatures’ personality
develops in the way the player wants it to[18].

5.2. Genetic algorithms
5.2. Genetski algoritmi

Genetic algorithms mimic the main Darwinian
principle – survival of the fittest. This is also
the main principle of evolution. The individual
with better survival capabilities will be the one
who will survive and transfer its genes on to new
generations. They solve optimization problems
using historical information in order to direct its
search into a region in which a better result can be
given[19]. Genetic algorithms have the following
components: population, chromosomes, gene
and allele. The population represents a subset
of all the possible solution to a certain problem.
A chromosome is one solution to the problem.
A gene represents one element position of a
chromosome, and an allele is the value the gene
takes for a particular chromosome.

Figure 6 A simple neuron

Slika 6 Jednostavan neuron

Figure 7 Architecture of
a neural network

Slika 7 Arhitektura
neuronske mreže

123

POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.

pd.tvz.hr pd.tvz.hr

This algorithm starts with an initial population.
It can be generated randomly or determined
and added manually. With the use of a Fitness
function calculation a suitability of the solution
is produced. Within the crossover, new offspring
are generated based on the “parents” (the current
chromosomes). Mutation produces random
modifications to the current chromosomes. The
new offspring replace the existing chromosomes
within the population using “the stronger wins”
algorithm. This process is repeated until certain
criteria is reached. In the end, the process returns
the best solution to the given problem.

This method is suitable when creating in-game
scenarios that include pursuit or evasion and, in
general, routing through the game scene. One
such example would be a tower defense game
where spatial reasoning is needed[20].

6. Conclusion
6. Zaključak

Considering the fact that every game is unique
in its own way, not every solution can be applied
globally to all games. Although game genres are
different, they can use the same AI solutions for
their problems. A different way of creating AI can
be used in many ways and in multiple genres of
games, provided that each version is customized
for that particular solution.

The Monte Carlo tree search algorithms best
works with turn-based strategy games that have a
finite length.

Because of their simplicity and ability to keep
control over the game flow, finite state machines
are often the first choice of implementation in all
of the mentioned genres. The rules can be added,
combined and controlled quite easily which
simplifies the implementation. Also, because they
do not need a lot of resources to be executed,
other elements within the game can run smoothly.

Fuzzy logic is a bit pricier and complicated
to implement so it is not the first choice with
developers. It works well with certain genres such
as adventure games, Real-Time Strategy Games
and First-Person Shooter/Third-Person Shooter
games. Neural networks and genetic algorithms
are quite pricey in terms of resources needed
to be executed. Also, their implementation can
be complicated and the behavior of non-player
characters chaotic and unpredictable. This limits
their use and most games that implemented are
built around the AI and it is not just a component
of the game.

7. REFERENCE
7. REFERENCES
[1.] Intelligence | Definition of Intelligence by

Merriam-Webster, https://www.merriam-
webster.com/dictionary/intelligence.

[2.] S. Russel, P. Norvig, Artificial Intelligence:
A Modern Approach, 3rd ed., Prentice
Hall Press Upper Saddle River, NJ, USA
©2009, 2010. http://aima.cs.berkeley.edu/,
ISBN: 978-0-13-604259-4.

[3.] D. Charles, C. Fyfe, D. Livingstone, S.
McGlinchey, eds., Biologically Inspired
Artificial Intelligence for Computer
Games, IGI Global, 2011. http://services.
igi-global.com/resolvedoi/resolve.aspx?
doi=10.4018/978-1-59140-646-4, DOI:
10.4018/978-1-59140-646-4, ISBN:
9781591406464.

[4.] M. Buckland, Programming Game AI
by Example, 1526. http://index-of.co.uk/
Game-Development/Programming/
Programming Game AI by Example.pdf,
ISBN: 1-55622-078-2.

[5.] K. Bayer, S. Koch, R. Klein,
Monte Carlo Tree Search, WiSt -
Wirtschaftswissenschaftliches Stud. 47
(2018) 11–18. http://mcts.ai/about/index.
html, DOI: 10.15358/0340-1650-2018-12-
11, ISSN: 0340-1650.

[6.] Y. Bjornsson, H. Finnsson, CadiaPlayer: A
Simulation-Based General Game Player,
IEEE Trans. Comput. Intell. AI Games.
1 (2009) 4–15. http://ieeexplore.ieee.
org/document/4804731/, DOI: 10.1109/
TCIAIG.2009.2018702, ISSN: 1943-068X.

[7.] D.P. Kroese, T. Brereton, T. Taimre, Z.I.
Botev, Why the Monte Carlo method is so
important today, Wiley Interdiscip. Rev.
Comput. Stat. 6 (2014) 386–392. http://
doi.wiley.com/10.1002/wics.1314, DOI:
10.1002/wics.1314, ISSN: 19390068.

Figure 8 Genetic algorithm components

Slika 8 Komponente genetskog algoritma

124

POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.POLYTECHNIC & DESIGN Vol. 7, No. 2, 2019.

pd.tvz.hr pd.tvz.hr

[8.] G. Chaslot, S. Bakkes, I. Szitai, P.
Spronck, Monte-carlo tree search: A New
Framework for Game AI, in: Belgian/
Netherlands Artif. Intell. Conf., 2008: pp.
389–390. https://www.aaai.org/Papers/
AIIDE/2008/AIIDE08-036.pdf, ISSN:
15687805.

[9.] H.S. Chang, M.C. Fu, J. Hu, S.I. Marcus,
An Adaptive Sampling Algorithm for
Solving Markov Decision Processes,
Oper. Res. 53 (2005) 126–139. http://
pubsonline.informs.org/doi/abs/10.1287/
opre.1040.0145, DOI: 10.1287/
opre.1040.0145, ISSN: 0030-364X.

[10.] L. Harbing, AI in Video Games: Toward
a More Intelligent Game, SINT. (2017).
http://sitn.hms.harvard.edu/flash/2017/ai-
video-games-toward-intelligent-game/.

[11.] R. Lorentz, Using evaluation functions
in Monte-Carlo Tree Search, Theor.
Comput. Sci. 644 (2016) 106–113.
https://doi.org/10.1016/j.tcs.2016.06.026,
DOI: 10.1016/j.tcs.2016.06.026, ISSN:
03043975.

[12.] C.H. Hsueh, I.C. Wu, W.J. Tseng, S.J.
Yen, J.C. Chen, An analysis for strength
improvement of an MCTS-based program
playing Chinese dark chess, Theor.
Comput. Sci. 644 (2016) 63–75. https://
doi.org/10.1016/j.tcs.2016.06.025,
DOI: 10.1016/j.tcs.2016.06.025, ISSN:
03043975.

[13.] M. Pirovano, I. Elettronica, P. Milano,
The use of Fuzzy Logic for Artificial
Intelligence in Games The current
state of Game AI, (2012). http://www.
michelepirovano.com/pdf/fuzzy_ai_in_
games.pdf.

[14.] U. Kose, Developing a Fuzzy Logic Based
Game System, Comput. Technol. Appl. 3
(2012) 510–517. https://www.academia.
edu/1919779/Developing_a_fuzzy_logic_
based_game_system.

[15.] K. Chethan, Artificial Intelligence:
Definition, Types, Examples, Technologies,
Medium. (2018). https://medium.com/@
chethankumargn/artificial-intelligence-
definition-types-examples-technologies-
962ea75c7b9b.

[16.] I. Goodfellow, Y. Bengio, A. Courville,
Deep Learning, MIT Press, 2016. http://
www.deeplearningbook.org, ISBN: 978-
0262035613.

[17.] C. Stergious, D. Siganos, Neural Networks,
https://www.doc.ic.ac.uk/~nd/surprise_96/

journal/vol4/cs11/report.html.
[18.] J. Wexler, Artificial Intelligence in Games:

A look at the smarts behind Lionhead
Studio’s “Black and White” and where it
can and will go in the future, 2002. https://
www.cs.rochester.edu/~brown/242/assts/
termprojs/games.pdf.

[19.] C. García-Martínez, F.J. Rodriguez, M.
Lozano, Genetic algorithms, in: Handb.
Heuristics, Academic Press, 2018: pp.
431–464. https://www-sciencedirect-
com.ezproxy.lib.ukm.si/science/article/
pii/B9780124095458000054, DOI:
10.1007/978-3-319-07124-4_28, ISBN:
9783319071244.

[20.] P. Huo, S.C.K. Shiu, H. Wang, B. Niu,
Application and comparison of particle
swarm optimization and genetic algorithm
in strategy defense game, in: 5th Int.
Conf. Nat. Comput. ICNC 2009, IEEE,
2009: pp. 387–392. http://ieeexplore.ieee.
org/document/5364640/, DOI: 10.1109/
ICNC.2009.552, ISBN: 9780769537368.

AUTORI ‧ AUTHORS

Renata Kovačević - nepromjenjena biografija
nalazi se u časopisu Polytechnic & Design
Vol. 5, No. 1, 2017.

Korespondencija
renata.kovacevic@tvz.hr

Ivan Cesar - o autoru.

Korespondencija
icesar@tvz.hr

Davor Cafuta - nepromjenjena biografija nalazi
se u časopisu Polytechnic & Design
Vol. 5, No. 1, 2017.

Korespondencija
davor.cafuta@tvz.hr

