
Available online at www.sciencedirect.com

 Procedia Computer Science 00 (2009) 000–000

Procedia
Computer
Science

www.elsevier.com/locate/procedia

International Conference on Computational Science, ICCS 2010

Integer simulation based optimization by local search
Jaroslav Sklenara*, Pavel Popelab

aUniversity of Malta, Msida, Malta
bBrno University of Technology, Brno, Czech Republic

Abstract

Simulation-based optimization combines simulation experiments used to evaluate the objective and/or constraint
functions with an optimization algorithm. Compared with classical optimization, simulation based optimization
brings its specific problems and restrictions. These are discussed in the paper. Evaluation of the objective function is
based on time consuming, typically repeated simulation experiments. So we believe that the main objective in
selecting the optimization algorithm is minimization of the number of objective function evaluations. In this paper
we concentrate on integer optimization that is typical in simulation context. Local search algorithms that try to
minimize the number of objective function evaluations are described. Examples with both analytical and simulation-
based objective functions are used to demonstrate the performance of the algorithms.

Keywords: simulation, integer optimization, local search

1. Introduction

Any deterministic single objective optimization problem can be expressed as min{ () | }nf S∈ ⊆x x �R where f is
the scalar multivariate objective function, n is the problem dimension and S is the set of feasible solutions. We note
that maximization of f is minimization of –f. The set S is of course problem dependent, but often (not always) it can
be expressed in terms of vector multivariate functions g and h representing the inequality and the equality
constraints: ={ | () , () }nS X∈ ⊆ ≤ =x g x 0 h x 0�R where the set X further restricts the acceptable values, for example
it can be a set of integer vectors in case of integer problems (⊆ nX Z) or a combination of continuous and integer
variables for mixed problems (−⊆ ×m n mX Z R). There are very many optimization algorithms that have been
developed to solve the above problem. For their overview and the background theory see for example the book [1]
to mention one out of many. A common assumption of all optimization algorithms is that for a given solution vector
x the functions f, g and h can be evaluated. This is true for all textbook examples, but unfortunately in reality the
situation is different. For many especially stochastic systems we know that certain functions exist, but no algorithms
are available for evaluation of these functions. Then the only option is approximation and/or simulation. Here we

* Corresponding author. Tel.: +356 2340 3070; fax: +356 2131 2110.
E-mail address: jaroslav.sklenar@um.edu.mt

c⃝ 2012 Published by Elsevier Ltd.

Procedia Computer Science 1 (2012) 1341–1348

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2012 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.04.149

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/224978791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.04.149
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

 Jaroslav Sklenar, Pavel Popela / Procedia Computer Science 00 (2010) 000–000

concentrate on simulation-based optimization that compared with classical optimization theory brings its specific
problems and restrictions. Function evaluation by simulation is in fact sampling where the population is made of all
possible realizations of some function F(x,ξ) where x is the solution being tested and the random vector ξ represents
the random numbers generated during a particular simulation experiment. Note that the vectors ξ used in the
experiments don’t necessarily have the same length. We design the simulation experiment in such a way that the
population mean μ = E[F(x,ξ)] is close to the function f(x) being evaluated. Similarly for the components gi(x) and
hj(x) of the vector constraints functions. By repeated simulation with changing seeds of random generators we
obtain a certain number r of samples and we compute the sample mean that we use instead of the exact unknown
function value:

1

1() (,)
r

i

i

f X F
r

ξ
=

= ∑x x (1)

It is well known that the expectation of the sample mean []XE and the population mean are equal, so by increasing
the number of experiments the sample mean X computed by the above formula can approximate the actual
population mean arbitrarily close. The population variance 2 ar[(,)]Fσ ξ= xV� can be decreased by increasing the
duration of the simulation experiments, the sample variance 2ar[] /X rσ=V� can be decreased by increasing the
number of experiments or by applying any other variance reduction technique. These problems represent standard
simulation topics dealt with in most simulation textbooks. See for example the book [2] to mention one out of many.
So for the purpose of this paper we assume that the objective function f(x) and the component functions gi(x) and
hj(x) can be evaluated by repeated simulation experiments with required precision.

Simulation based optimization was studied by many authors. Also various approaches have been taken. Most
methods assume continuous variables and try to apply algorithms of classical optimization theory. For example great
effort has been invested to find the approximate values of gradients by simulation. Methods are based on a common
idea: evaluate the function at perturbed points and use the differences to compute the gradients approximately. For
more see for example [3]. These methods suffer from the fact that close to the minimum the norm of the gradient
can be very small, much smaller than the simulation error. Thus the results may be completely misleading, for
example we may obtain wrong minimization directions. That’s why robust algorithms based on the function values
only are probably more promising than methods based on approximated derivatives. For a more detailed discussion
about simulation-based optimization see the book [4] and papers [5], [6], [7] and [8] among others. Next we discuss
the problem of feasibility in simulation-based optimization context.

2. Feasibility in simulation context

Because of obvious reasons discussed above simulation does not provide exact results. We can increase the
number and duration of simulation experiments and apply variance reduction techniques, but this can only decrease
the error, not eliminate it. This simple fact makes the use of equality constraints such that the functions hj(x) are
evaluated by simulation very problematic. The same applies to tight inequality constraints. The result is that we have
to accept a certain tolerance on equality; otherwise the solution vectors would all be infeasible with respect to
equality constraints and possibly infeasible with respect to tight inequality constraints. This applies generally even to
constraints whose functions can be evaluated without simulation. The difference is the value of the tolerance that in
case of known functions is under user’s control as one of general tolerance related optimization parameters of the
tool used (see for example the Optimization toolbox of Matlab).

Another problem related to feasibility is the fact that infeasibility may not be revealed before starting the
simulation. So it may happen that we simulate for example unstable queuing systems where crash sooner or later
inevitably happens. Thus it is very important to try to check feasibility before actually starting the simulation. Of
course it may be impossible. Then the simulation model should contain tests to detect infeasibility. For example we
can define an upper bound on some effectiveness parameter like queue length or total number of customers in the
system and stop the simulation if it is reached. A general guide hardly exists; we have to make use of any knowledge
available about the system simulated.

So far our assumption was that feasibility is tested by the values of the functions gi and hj. Alternatively,
depending on the optimization algorithm used, it is possible that the simulation experiment reports infeasibility by a
very large objective function value. Programming languages mostly allow working with “infinite” values (maxreal
in SIMULA, POSITIVE_INFINITY in Java). We then solve an unconstrained problem for which only evaluation of

1342 J. Sklenar, P. Popelab / Procedia Computer Science 1 (2012) 1341–1348

 Jaroslav Sklenar, Pavel Popela/ Procedia Computer Science 00 (2010) 000–000

the objective function f is needed, provided the optimization algorithm copes with possibly infinite objective value.
Local search algorithms discussed next have this capability.

3. Integer optimization

From now onwards we concentrate on integer optimization problems because many practical decision making
situations can be formalized as integer programming problems, for example selection among a certain number of
alternatives and many configuration selection problems for which integer decision variables are typical. Solving
(mixed) integer optimization problems is generally much more difficult than solving problems in continuous
variables. Many algorithms have been developed; see for example the book [9]. Most integer programming
algorithms are based on solving a problem relaxation with dropped integrality constraints and a procedure
eliminating non-integer solutions until an integer optimum is reached. These algorithms are mostly useless in
simulation-based optimization context because the relaxation either does not exist or it cannot be evaluated. This
reduces the choice of algorithms drastically. Various deterministic and heuristic algorithms have been described. For
example the paper [10] describes a method based on repeated solution of a linear approximated program whose
parameters are found by simulation. Often various local search methods are used. It has been reported that in spite of
the primitive basic idea of local search methods, they have found many successful application areas. The methods
are generally very robust because they are based on function evaluation only. There are no assumptions about the
functions involved that is very important in simulation-based optimization where we know practically nothing about
the function except the fact that it exists. They also cope with infeasibility reported by a large “infinite” objective
value together with standard feasibility check before starting simulation. The disadvantage of local search methods
is the possibility that very many function evaluations might be needed. We know that in simulation-based
optimization the function evaluation is very costly because each evaluation represents a number of possibly long
simulation experiments. The purpose of this paper is description of local search algorithms that try to minimize the
number of evaluations while keeping all important advantages of local search.

Here we limit ourselves to exhaustive local search called “hill climbing” for maximization (“valley descending”
for minimization). The basic idea is well known. We start at a given initial feasible solution and we keep moving to
better points in a neighborhood until no better point exists. Then we have reached a local optimum. To implement
this trivial idea, we have to make several decisions that affect very much the performance of the method. The choice
is not simplified by the fact that a generally best local search method certainly does not exist. We can only compare
the variants of the method with respect to particular classes of integer problems. Next we discuss some common
points assuming integer problems without continuous variables. Without loss of generality we consider
minimization problems.

3.1. Selecting the neighborhood

Neighborhood ()xN of a feasible point ∈ ⊆ nSx Z is a mapping →: 2SSN such that the points in ()xN are in
a certain way “close” to x. The interpretation of “being close” depends on the set S and the algorithm used. For
example when solving the Travelling Salesman problem, the feasible set is made of all vectors that represent cycles
and neighborhood of a cycle is made of cycles obtained from x by some rules – for example by replacing edges (a,b)
and (c,d) by edges (a,d) and (c,b). Next we assume that neighborhood is based on geometrical distance in nZ . We
define two discrete neighborhoods as follows:

c
1

() { | , 1}
n

i i
i

S x x
=

= ∈ − ≤∑x x xN , s() { | ,max 1}i i iS x x= ∈ − ≤x x xN (2)

We shall call the neighborhoods cross and star neighborhood respectively due to their graphical shape in 2Z - see
Fig 1. We see that in the cross neighborhood a single component can change by ±1, so it is made of 2n points. In the
star neighborhood all components can change by ±1 in any combination, so it is made of 3n-1 points. For bigger n
the difference of the numbers of points in the two neighborhoods is significant. For n = 10 we have 20 points in the
cross and 59048 points in the star neighborhood respectively. This might suggest that considering only cross
neighborhood may speed up the local search process. Unfortunately, by using a cross neighborhood only we can
miss a local optimum even for unconstrained problems. We see this situation in Fig 1 (created by Matlab) that
depicts the contours of the function f(x,y) = (x - 4.5)2 + (y - 4.5)2 + 1.6xy. The point (4, 1) doesn’t have a better cross
neighbor, but when using the star neighborhood a better point (3, 2) exists.

J. Sklenar, P. Popelab / Procedia Computer Science 1 (2012) 1341–1348 1343

 Jaroslav Sklenar, Pavel Popela / Procedia Computer Science 00 (2010) 000–000

x

y

f(x,y) contour

1 2 3 4 5
0

1

2

3

4

Fig 1: Discrete neighborhood of the point (4,1)

As the star neighborhood cannot be ignored it seems that there are three options:

• Use star neighborhood only.
• Start with cross neighborhood, after reaching a cross local minimum change to star neighborhood and

continue until a star local minimum is reached.
• Start with cross neighborhood, after reaching a cross local minimum change to star neighborhood to find a

better point. Then continue by using cross neighborhood, etc. until there is no possible improvement.

After some experimentation we believe that the second option is probably the best one in most cases. The idea is
to apply the initial fast move close to a local minimum by using the cross neighborhood. Then we continue with the
star neighborhood to avoid a situation depicted in Fig 1. Especially for constrained problems the cross local
minimum can often be improved by additional star steps. The only problem is that the cross minimum can be far
away from the true star one.

3.2. Tuning the algorithm

To implement the algorithm we have to take several decisions. First, in which order to test the neighbors of the
current solution. Assuming that no further information is given, we start by cross tests at the first coordinate. This is
another argument to start with the cross neighborhood because very many evaluations might be wasted until the first
star improvement is found. Another decision has to be made after an improvement is found. We can either move to
the first better neighbor or continue to test all neighbors and move to the best one. Testing all star neighbors would
result in excessive number of evaluations especially for higher dimensions due to exponential increase of the
number of neighbors with n. On the other hand testing all cross neighbors may result in better cross optimum closer
to the star one, so there may be a smaller total number of evaluations because the number of cross neighbors grows
only linearly with n.

Next decision is how to continue after moving to a better point. Intuitively it seems that keeping the direction of
the last move might be a good choice. By direction we mean the vector made of increments. So after a move from xk
to xk+1, the direction is given by xk+1 = xk + d. We note that the components of d can be -1, 0, or +1. Experimentation
proved that this assumption is true for unconstrained problems. With constraints it is justified when passing through
the “interior” of the feasible region. After reaching the boundary of the feasible region we cannot keep the same
direction. What to do in this case affects very much the total number of evaluations because very many star
neighbors might be tested until an improvement is found. In other words we are trying to optimize movement along
some generally unspecified nonlinear boundary. Close to corners where two or more active constraints meet we can
hardly assume anything. To optimize movement along a single active boundary we follow the last direction and if
this is not successful, for example due to infeasibility, we first test the so-called close directions. We define the set
of close directions ()dC of a direction d as follows:

1

() { | { 1, 0,1} , 1}
n

n
i i

i

d d
=

= ∈ − − ≤∑d d dC (3)

1344 J. Sklenar, P. Popelab / Procedia Computer Science 1 (2012) 1341–1348

 Jaroslav Sklenar, Pavel Popela/ Procedia Computer Science 00 (2010) 000–000

We note that only a single component can change by ±1 provided all are kept in {-1,0,1}. So assuming n = 3,
close directions of (1,0,1) are (0,0,1), (1,1,1), (1,-1,1) and (1,0,0). As all directions are located on the hypercube of
size 2 with centre in the origin, close directions are those whose geometrical distance from the current direction is 1.
After unsuccessful tests of all close directions, we have to evaluate the remaining ones. Here again we move
gradually more and more away from the last successful direction. This is implemented by converting a direction
considered as a number in base 3 with shifted digits into decimal and moving up and down from this number with
possible wrap around operations to keep the range [0, 3n-1]. This continues until a better solution or a star local
optimum is found. So for example the direction (1,0,1) is considered as the number 2123 = 2310. Then we test the
directions that correspond to decimals 22,24,21,25, etc.

The main objective is minimization of the number of function evaluations. That’s why we have to make sure that
each integer solution is evaluated mostly once. When using star neighborhood, there are very many common points
in the neighborhoods of two adjacent points. That’s why we keep a list of solutions that have already been evaluated
to avoid any duplication. Searching the list in internal memory is very fast and compared with simulation evaluation
the time lost is negligible. Considering the above discussion we shall test the following versions of the local search
algorithm. The first star move is always chosen in the middle of the range of directions.

LS1: Star neighborhood only without close directions.
LS2: Star neighborhood only with close directions.
LS3: First cross by moving to first better, then star neighborhood without close directions.
LS4: First cross by moving to first better, then star neighborhood with close directions.
LS5: First cross by testing all neighbors, then star neighborhood without close directions.
LS6: First cross by testing all neighbors, then star neighborhood with close directions.

4. Examples

For testing the above versions of local search, five optimization problems have been created, three analytical and
two simulation based. Problem P1:

min{f1(x) = ((x1 - 10)2 + (x2 - 20)2 + (x3 - 30)2)1.5 - ((x4 - 40)2 + (x5 - 50)2 + (x6 - 60)2)0.5 | 1Tx ≤ 180, x ≥ 0 }

Problem P2:

min{f2(x) = (x1 - 10)2 + (x2 - 20)3 + (x3 - 30)4 + (x4 - 40)2 + (x5 - 50)3 + (x6 - 60)2+ (x7 - 70)4 | 1Tx ≤ 250, x ≥ 0 }

Problem P3 is similar to P2, the only difference is the sum of components 1Tx ≤ 150 to get a constrained minimum.

For simulation we consider a hypothetical queuing network made of 4 stations shown in Fig 2. Arrival to the
network is Poisson with the rate λ = 1 customer per minute. The stations are multi-channels with mean service times
3, 7, 5 and 6 minutes respectively. The actual distributions are triangular with minimum value mean - 50% of the
mean, most likely value equal to the mean and maximum value mean + 50% of the mean. After service in station 1,
60% of customers proceed to station 2, 40% of customers proceed to station 3. After service in station 2, 40% of
customers proceed to station 3, 30% proceed to station 4, the others leave. After service in station 3, 70% of
customers proceed to station 2, 15% proceed to station 4, the others leave. Stations 2 and 3 are visited mostly once,
so customers who were served by stations 1, 2 and 3 or 1, 3 and 2 all either leave the network or proceed to station
4, both with the same probability. We have 22 personnel (service channels) available that should be allocated in
such a way that would minimize the total average number of waiting customers.

Fig 2: Example queuing network

3

2

1 4

J. Sklenar, P. Popelab / Procedia Computer Science 1 (2012) 1341–1348 1345

 Jaroslav Sklenar, Pavel Popela / Procedia Computer Science 00 (2010) 000–000

So with all the parameters mentioned above fixed we solve the following constrained problem in four integer

variables. Problem S2:

+ + + ≤ ≥ = …1 2 3 4 1 2 3 4min{ (, , ,) | 22, 1, 1 4}Q iL c c c c c c c c c i

where ci is the number of channels in station i and LQ is the total expected number of waiting customers. Due to the
general distribution of the service times and non-Markovian behavior of customers, the function LQ can only be
evaluated by simulation. A simplified version without station 4 and 20 personnel was also simulated. Problem S1:

+ + ≤ ≥ = …1 2 3 1 2 3min{ (, ,) | 20, 1, 1 3}Q iL c c c c c c c i

Another feasibility requirement not included in the above models is stability of all stations λeff/cμ < 1 where λeff is
the total effective arrival rate to the station. To compute λeff by traffic equations for our non-Markovian behavior we
would need classes of customers, so we test stability by simulation.

The simulation models were written in SIMULA by using the tool QUESIM – see [13]. QUESIM supports user-
friendly creation of simulation models of queuing systems. For the purpose of this paper a detailed description of the
model is not relevant. Any discrete simulation tool would do provided the model can be called from the local search
routine as a function that is given an integer array argument (tested solution c) and that returns f(c) as the real result
or “infinite” value in case of infeasibility detected during simulation. Another Boolean function should be supplied
to test feasibility of c before starting simulation. Local search algorithms are implemented as real valued functions
with 4 arguments. A typical call is: result := localsearch3(myobjective,feasible,x0,debug,log); where the real
function myobjective evaluates the objective value, Boolean function feasible tests the feasibility of the solution
before calling myobjective, x0 is the starting point, Boolean debug turns on the debugging mode in which the
function stops at each solution and Boolean log turns on creation of the log file with all visited solutions. Note that
the local search is independent of the type of the objective function evaluation in myobjective. It can just return the
value of an expression in case of analytical models or it can perform repeated simulation runs in case of models S1
and S2. Feasibility of models S1 and S2 is tested by lengths of queues. If any queue reaches the length 500, the
system is considered unstable. Simulation is then terminated; infeasibility is reported by a large value (maxreal in
SIMULA) of the objective function..

5. Results

The results of solving the problems P1, P2 and P3 are shown in Table 1, Table 2 and Table 3 respectively. In all
three cases the search started with x0 made of all ones. The obvious global optimum found for P1 is xopt1 = (10 20 30
0 0 0)T, f1(xopt1) ≅ – 87.75. The obvious global optimum found for P2 is xopt2 = (10 0 30 40 0 60 70)T, f2(xopt2) = –
33000. The certainly not obvious optimum found for P3 is xopt3 = (0 0 28 17 0 37 68)T, f3(xopt3) = –131810. As this
optimum was reached from various starting points we believe that it is global, though it may not be unique. We see
that optima for problems P2 and P3 are not constrained by the inequality, optimum for the problem P3 is. In all cases
all versions of local search found the same optima.

Table 1. Problem P1 results

Local search version LS1 LS2 LS3 LS4 LS5 LS6

Total number of evaluations 943 614 280 280 786 786

Cross tests 0 0 73 73 616 616

Cross improvements 0 0 60 60 128 128

Star tests 942 613 206 206 169 169

Star improvements 152 91 0 0 0 0

1346 J. Sklenar, P. Popelab / Procedia Computer Science 1 (2012) 1341–1348

 Jaroslav Sklenar, Pavel Popela/ Procedia Computer Science 00 (2010) 000–000

Table 2. Problem P2 results

Local search version LS1 LS2 LS3 LS4 LS5 LS6

Total number of evaluations 4588 1870 1183 1183 3226 3226

Cross tests 0 0 225 225 2302 2302

Cross improvements 0 0 207 207 636 636

Star tests 4587 1869 957 957 923 923

Star improvements 401 329 0 0 0 0

Table 3. Problem P3 results

Local search version LS1 LS2 LS3 LS4 LS5 LS6

Total number of evaluations 1123 958 907 912 2067 1895

Cross tests 0 0 163 163 1695 1695

Cross improvements 0 0 147 147 515 515

Star tests 1122 957 743 748 371 199

Star improvements 317 363 82 85 2 2

We see very clearly the advantage of starting the search by using cross neighborhood in versions LS2 and LS3.

Though starting directly with star neighborhood in LS1 and LS2 is not good, by comparing these two results we see
clearly the improvement from using the close star directions. The difference in case of problem P2 4588 improved to
1870 is impressive. The improvement brought by close directions is also remarkable when comparing LS5 with LS6
in Table 3: 371 star tests decreased to 199. On the other hand for LS3 compared with LS4 in Table 3 close directions
in fact increased slightly the number of evaluations from 743 to 748. In all cases it was better to move to first better
cross improvement and not to search for the best one (LS2,3 compared with LS5,6). For unconstrained problems P1
and P2 the cross tests found the optimum, there was no improvement by additional star tests. Constrained problem P3
shows clearly that star tests are necessary to reach the optimum.

The results of solving the simulation based problems S1 and S2 are shown in Table 4 and Table 5 respectively.

Table 4. Problem S1 results

Local search version LS1 LS2 LS3 LS4 LS5 LS6

Total number of evaluations 23 23 22 22 25 25

Cross tests 0 0 8 8 17 17

Cross improvements 0 0 3 3 6 6

Star tests 22 22 13 13 7 7

Star improvements 5 4 0 0 0 0

Table 5. Problem S2 results

Local search version LS1 LS2 LS3 LS4 LS5 LS6

Total number of evaluations 82 87 89 89 63 68

Cross tests 0 0 4 4 11 11

Cross improvements 0 0 1 1 2 2

Star tests 81 86 84 84 51 56

Star improvements 8 7 3 3 3 3

J. Sklenar, P. Popelab / Procedia Computer Science 1 (2012) 1341–1348 1347

 Jaroslav Sklenar, Pavel Popela / Procedia Computer Science 00 (2010) 000–000

For problem S1 simulation started from (5 7 5). All versions even from various starting points found the optimum
at copt = (5 9 6), obviously constrained, with LQ(copt) ≅ 0.52. All runs started with randomly generated seeds. Though
we know practically nothing about the function LQ, it is very likely that this is the global optimum. There is still an
improvement from starting by cross neighborhood, but as we cannot start far from the optimum due to feasibility
requirements, there is no initial fast move through cross neighbors as it was with analytical functions. Using close
directions made no effect and it was better to take the first cross improvement instead of testing all cross neighbors.

For problem S2 simulation started from (4 7 4 6). All versions even from various starting points found the
optimum at copt = (4 8 5 5), obviously constrained, with LQ(copt) ≅ 1.70. All runs started by randomly generated
seeds. The optimum is probably the global one though again we know nothing about the function LQ. This time there
is no improvement from starting by cross neighborhood. The reason is that again we have started close to the
optimum due to feasibility requirements. This time using close directions made in fact a negative effect in two cases
by comparing figures for LS1 with LS2 and LS5 with LS6 and once there was no effect (LS3 and LS4). This time the
best results were obtained by testing all cross neighbors in the initial stage. Unlike for the problem S1, all versions
needed star neighbors to reach the optimum.

All simulation evaluations for both problems were made by 10 repeated runs, 60000 minutes each that means
about 60000 arrivals per run. The time needed to find the optimum for problem S2 with algorithm LS6 was about 9
minutes (Intel Core2 T5600 1.83GHz, 1GB RAM).

6. Conclusion

Various versions of local search algorithm for optimization of integer problems were tested. Due to the
simulation based optimization context the main goal was minimization of the number of objective function
evaluations. A new concept of close directions has been introduced. It improved the performance considerably for
two analytical functions, but in case of objective functions evaluated by simulation the situation is more
complicated. There are factors that affect the number of evaluations like for example the starting point, the first
selected move, etc. We cannot expect that a single version of local search performing best in all cases can be found.
So the way forward might be a collection of algorithms with different features. More experimentation still has to be
done. For a new problem with little or no information about the functions involved, starting with the version “first
cross neighborhood by moving to first better, then star neighborhood with close directions” might be a good choice.

References

1. M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinnear Programming - Theory and Applications, Wiley, 1993.
2. P. Bratley, B.L. Fox and L.E. Schrage, A Guide to Simulation – 2nd Edition, Springer, 1987.
3. J.C. Spall, An Overview of the Simultaneous Perturbation Method for Efficient Optimization. In John Hopkins APL Technical Digest,

1998, Vol 19, No 4, p. 482-492.
4. A. Gosavi, SIMULATION–BASED OPTIMIZATION Parametric Optimization Techniques and Reinforcement Learning, Kluwer

Academic Publishers, 2003.
5. S. Andradottir, A Review of Simulation Optimization Techniques. In Proceedings of the 1998 Winter Simulation Conference, p. 151-8.
6. F. Azadivar, Simulation Optimization Methodologies. In Proceedings of the 1999 Winter Simulation Conference, p. 93-100.
7. Y. Carson and M. Anu, Simulation Optimization: Methods and Applications. In Proceedings of the 1997 Winter Simulation Conference, p.

118-126.
8. M.C. Fu, Simulation Optimization: Methods and Applications. In Proceedings of the 2001 Winter Simulation Conference, p. 53-61.
9. G.L Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, Wiley, 1999.
10. S.J. Abspoel, L.F.P. Etman, J. Vervoort and J.E. Rooda, Simulation Optimization of Stochastic Systems with Integer Variables by

Sequential Linearization. In Proceedings of the 2000 Winter Simulation Conference, p. 715-723.
11. C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization. Algorithms and Complexity. Dover Publications, 1998.
12. L.A. Wolsey, Integer Programming. Wiley, 1998.
13. J. Sklenar, Simulation of Queuing Systems in QUESIM. In Proceedings of the 2005 European Simulation and Modelling Conference

ESM2005, p. 35-7.

1348 J. Sklenar, P. Popelab / Procedia Computer Science 1 (2012) 1341–1348

