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Fast Computation of Copper and Iron Losses 

Using Model Order Reduction 

Shingo HIRUMA*, and Hajime IGARASHI* 

* Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan 

E-mail: hiruma@em.ist.hokudai.ac.jp  

Abstract. This paper introduces a new method for fast computing of the iron and copper losses in 

electromagnetic systems. In the method, the finite element equation is reduced to the equivalent Cauer 

circuit via model order reduction. The nonlinear property due to core saturation is pre-computed and 

included in the Cauer circuit. While the copper loss is computed as the Jule loss in the circuit, the iron loss 

is computed in the post process by restoring the field distribution from the solution to the circuit equation 

with aid of the proper orthogonal decomposition. 

Keywords: Cauer circuit, eddy current problems, equivalent circuit, proper orthogonal decomposition. 

 

INTRODUCTION 

Recently, the model order reduction (MOR) techniques have attracted attentions because it can greatly reduce 

computational cost and memory usage. It has been shown that the MOR techniques allows us to reduce the 

Maxwell equations to the rational function [1] and also the continued function that is equivalently represented by 

the Cauer circuit [2]-[4]. While the copper losses obtained from the equivalent Cauer circuit have been shown 

very accurate, it has been difficult to accurately evaluate the iron losses in the magnetic core which include the 

hysteresis and eddy current losses from the circuit analysis. We here introduce a new method to restore the 

magnetic field from the solution to the circuit equation for computing the iron losses. In the proposed method, the 

Cauer circuit is built directly from the discretized Maxwell equations. The nonlinearity due to the core saturation 

is considered in the Cauer circuit by replacing the DC magnetic field with that obtained from the proper orthogonal 

decomposition (POD)[5]-[8]. The iron losses are here computed in the post process by applying the Steinmetz [9] 

equation to the restored field although other loss-evaluation methods can also be used. 

FORMULATION 

Linear problem 

First, we consider a linear eddy current problem which is governed by the quasi-static Maxwell equation 

(1) rot𝜈rot𝑨 + j𝜔𝜎𝑨 = 𝑱 

where 𝑨, 𝑱, 𝜈, j, 𝜔, 𝜎 are the vector potential, external current density, magnetic reluctivity, imaginary unit, angular 

frequency, and conductivity, respectively. In the field analysis, it is assumed that the eddy currents exist only in 

the coil windings so that the iron losses are considered in the post process. The equation is discretized by the finite 

element method (FEM) to obtain 

(2) (K + 𝑠N)𝒙 = 𝒃𝐼 

where K, N ∈ ℝ𝑛×𝑛, 𝒃 ∈ ℝ𝑛 , 𝒙 ∈ ℂ𝑛, 𝐼 , 𝑠 are the FE matrices, source and unknown vectors, external current, and 

complex frequency, respectively. The terminal voltage 𝑉 of the coil is given as 
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(3) 
𝑉 = 𝑠∫ 𝑨 ⋅ 𝒋

Ωc

𝑑Ω + 𝑅DC𝐼 = 𝑠𝒃T𝒙 + 𝑅DC𝐼 

where Ωc, 𝒋, 𝑅DC denote the coil region, the unit vector parallel to the coil windings, and the DC resistance, 

respectively. By eliminating 𝒙 from (3), we have the input impedance of the system as 

(4) 𝑍 = 𝑉/𝐼 = 𝑠𝒃T(K + 𝑠N)−1𝒃 + 𝑅DC 

By applying the continued fraction via the Lanczos process (CVL) method [4] to the transfer function in equation 

(4), 𝑍 can be written in the form of a continued function as 

(5) 
𝑍 = 𝑅DC +
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The continued function (5) is found to be the input impedance of the Cauer circuit shown in Fig.1. Although the 

Cauer circuit can be obtained by PVL [2] and CLN [3] in a similar way, CVL has the advantages that the continued 

function is derived directly for the general linear systems. The field 𝒙 in equation (2) can be restored from the 

solution to the circuit equation as 

(6) 𝒙 = 𝑖0𝒖0 + 𝑖1𝒖1 +⋯+ 𝑖𝑞−1𝒖𝑞−1 

where 𝑖0, 𝑖1, ⋯ , 𝑖𝑞−1 are the currents in the Cauer circuit and 𝒖0, 𝒖1, ⋯ , 𝒖𝑞−1 are the bases of the Krylov subspace 

𝒦𝑞(K
−1N, 𝒃) which are obtained in the CVL method. The first and higher terms in equation (6) represent the 

magnetostatic field and response fields due to the eddy currents because 𝑖𝑘 , 𝑘 ≥ 1 vanish faster than 𝑖0 in the low 

frequency limit. Based on this physical interpretation, the nonlinearity is introduced in the first stage of the Cauer 

circuit. The iron losses can be computed from the restored field (6) by using the loss-evaluation methods such as 

Steinmetz equation. 

 

 

Fig. 1 Equivalent Cauer circuit Fig.2 Current-flux characteristic 
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Nonlinear problem 

When we consider electric machines, it is important to consider the nonlinear property due to the core saturation. 

The nonlinearity is efficiently considered in the Cauer circuit by introducing the nonlinear current-flux 

characteristic which is shown in Fig.2 to the first stage of the Cauer circuit [2][10][11]. The nonlinear 

characteristic is obtained by solving the FE equation derived from the static Maxwell equation for different 

external currents 𝐼. To evaluate the iron loss in the post process, we set up the following two hypotheses. The first 

hypothesis is that the magnetostatic field is dominant compared with the response fields, that is 

(7) |𝑖0𝒖0| ≫ |𝑖1𝒖1 +⋯+ 𝑖𝑞−1𝒖𝑞−1|. 

Based on this hypothesis, the magnetic nonlinearity is represented by the first stage of the Cauer circuit. The 

second hypothesis is that the core saturation has little influence on the circuit parameters 𝜅1, 𝜅2, ⋯ , 𝜅2𝑞−1 which 

represent the response fields. The second hypothesis is valid when the magnetic flux interlinked with the coil has 

a negligible change due to the core saturation. 

The field restoration (2) is not valid when the core saturation becomes strong because the first term 𝑖0𝒖0 which 

represents the magnetostatic field would have major change. In this paper, we employ POD [5]-[8] to obtain the 

magnetostatic field considering the magnetic saturation. To evaluate the current-flux characteristic shown in Fig. 

2, the static fields 𝒙0, 𝒙1, ⋯ , 𝒙 −1 are computed using FEM where 𝑝 denotes the number of snapshots. The data 

matrix X = [𝒙𝟎 𝒙1  ⋯ 𝒙 −1] is then decomposed by the singular value decomposition as 

(8) X = [𝒙0 𝒙1  ⋯ 𝒙 −1] = WΣV. 

Using the matrix W, the nonlinear FE equation derived from the static Maxwell equation is reduced to 

(9) WTK(𝒙𝑟)W𝒙𝑟 = WT𝒃𝐼 

where 𝒙𝑟 ∈ ℝ  is the reduced unknown vector. We can obtain the magnetostatic field considering the core 

saturation by solving equation (9) using the Newton-Raphson (NR) method. In the post process, we restore the 

magnetic fields by solving (9) for the external current 𝐼 = 𝑖0 which is obtained from the analysis of the Cauer 

circuit. As a result, the restored field is now expressed as 

(10) 𝒙 = W𝒙𝑟 + 𝑖1𝒖1 +⋯+ 𝑖𝑞−1𝒖𝑞−1. 

The proposed method is composed of two steps as shown in Fig.3. In the first step, the nonlinear equivalent Cauer 

circuit is analyzed at each time step to obtain the copper losses. Then, reduced nonlinear FE equation (9) is solved 

to obtain the magnetostatic fields considering core saturation, and we restore the magnetic fields from which we 

compute the iron losses in the post process. 

NUMERICAL RESULTS 

Application to reactor 

To verify the proposed method, we apply the method to the analysis of an axisymmetric reactor which is shown 

in Fig. 5. The model is composed of a ferrite core PC47, and copper wires. The conductivity of the wire is 

𝟓. 𝟕𝟔 × 𝟏𝟎𝟕 [𝐒/𝐦], and the radius is 𝟏. 𝟕𝟓 × 𝟏𝟎−𝟒 [𝐦]. DC resistance of the coil winding 𝑹𝐃𝐂 is 𝟎. 𝟔𝟕𝟗 [𝛀]. 
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First, we built the equivalent Cauer circuit of the reactor. The relative permeability of the magnetic core is assumed 

to be 6000 which is the initial permeability of the ferrite PC47. The circuit parameters are summarized in Table 

1.  

Then, we compute the current flux characteristic of the reactor by solving the static Maxwell equation. The number 

of snapshots 𝒑 is fixed at 20. The resultant current flux characteristic is shown in Fig.5. We can see the inductance 

becomes small when the external current becomes large. By replacing 𝜿𝟎𝐝𝒊𝟎/𝐝𝒕 with 𝐝𝚽(𝒊𝟎)/𝐝𝒕, we can obtain 

the Cauer circuit in time domain which is used in the nonlinear analysis. 

 

Fig. 4. Axisymmetric reactor 

 

Table 1: Circuit parameters of reactor model 

𝑛 𝜅2𝑛 𝜅2𝑛+1 

0 5.23 × 10−3 2.28 × 10−6 

1 1.95 × 10−1 1.02 × 10−7 

2 1.81 × 100 8.47 × 10−8 

3 2.00 × 100 3.06 × 10−8 
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Fig. 3. The entire process to obtain the copper and iron losses. 
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Fig. 5. Current flux characteristic of reactor 

   

(a)𝑖0 = 0.2 [A] (b) 𝑖0 = 0.7 [A] (c) 𝑖0 = 1.6 [A] 

Fig. 6. Contour plot of magnitude of magnetic flux density and flux lines of reactor 

Fig. 6 shows that the contour plot of the magnitude of the magnetic flux density and flux lines of the reactor when 

the external currents are 0.2, 0.7, 1.6 [A]. We can see that the distribution changes drastically depending on the 

external current due to the magnetic core saturation. This is the reason why the nonlinearity due to the saturation 

should be considered in the loss computation. 

We assume a sinusoidal input voltage, 25 kHz, 50 V, as the power supply to the reactor and to the Cauer circuit. 

The instantaneous power of the Cauer circuit is plotted in Fig. 7. The responses in the transient and steady states 

computed by FEM are also plotted in Fig.7. We can see the results obtained by the Cauer circuit are in good 

agreement with those obtained by FEM. It takes about 11 minutes 25 second to build the nonlinear Cauer circuit 

and takes about 16 second to obtain the waveform shown in Fig. 7 (CPU: Intel Core i7-7700@3.6GHz, RAM: 

8.00 GB) whereas it would take at least 10 days to obtain the result by FEM under the same environment. The 

copper loss in steady state is evaluated to be 

(11)   =
1

𝑇
∫ 𝑝(𝑡)𝑑𝑡
𝑡2

𝑡1

= 4.18 × 10−3 [W]. 

The reduced FE equation (9) is solved for the peak current 𝑖0 = 6.00 × 10−2 [A]. The iron losses are here 

estimated from the Steinmetz equation. The result is 

(12)  𝑖 =   +  = 1.06 × 102𝑓𝐵𝑚
2 + 5.76 × 10− (𝑓𝐵𝑚)

2. 

Since the peak current 𝑖0 is not so large that the core is not strongly saturated, the resultant losses are not very 

different from those computed from the linear analysis of FEM. Total losses obtained by the proposed method 

and FEM are summarized in Fig.8. The relative errors in   ,   ,    are 1.5, 4.1, and 4.1 %, respectively. The  
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accuracy of iron losses depends on the accuracy of field restoration (10). The accuracy could be made higher 

when we increase the number of snapshots in POD or employ other MOR method for nonlinear field computations. 

CONCLUSIONS 

In this paper, we have proposed a new method to evaluate the copper and iron losses through the analysis of the 

Cauer circuit which is a reduced physical model of an electric machine. In the method, the copper losses are 

directly evaluated from the nonlinear Cauer circuit considering the core saturation. On the other hand, to evaluate 

the iron losses, the magnetic field is restored from the solution to the Cauer circuit and reduced Maxwell equation 

obtained by POD.  

We have applied the proposed method to the axisymmetric reactor model for the validation of the method. The 

relative errors in the obtained copper and iron losses are 1.5 and 4.1 %. The accuracy of the iron losses depends 

on the accuracy of the MOR method.  

We can perform fast transient computations for arbitrary inputs because analysis of the Cauer circuit needs much 

smaller computational cost compared to the original FE equation. When we consider the PWM excitation as a 

 

Fig. 7. Transient analysis of Cauer circuit with power supply of 25 kHz, 50 V sinusoidal waveform 

 

Fig. 8. Total losses obtained by proposed method (left) and FEM (right). 
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power supply, it is important to consider the hysteresis losses due to the minor loops. In this case, we have to 

employ the methods such as Preisach [12] and play [13] models which can include the losses from the minor 

loops. The transient loss analysis is remained for our future work. 
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