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EXECUTIVE SUMMARY 

Cadmium is a naturally occurring heavy metal, which has no known function in humans. It 
accumulates in the human body, primarily affecting the kidneys, but can also cause bone 
demineralisation and osteoporosis.  

We are increasingly exposed to cadmium in our diet. In response to this, the European Union 
(EU) is setting maximum permissible levels in different foods. In 2014, maximum permissible 
levels for cadmium in cocoa and chocolate products sold in the EU were set. This has been 
enforced since January 1st 2019. The levels are based on estimated consumption of chocolate 
by different age groups.  

The EU regulation sets different levels for four categories of chocolate products: 0.10 ppm for 
milk chocolate with < 30% total dry cocoa solids; 0.30 ppm for chocolate with < 50% total dry 
cocoa solids and milk chocolate with ≥ 30% total dry cocoa solids; 0.8 ppm for chocolate with 
≥ 50% total dry cocoa solids and 0.6ppm for cocoa powder sold to the final consumer or as 
an ingredient in sweetened cocoa powder. 

Limits on cadmium levels in chocolate have been put in place in Australia, Indonesia, New 
Zealand, Russia, and in the State of California in the USA. There is also active discussion 
regarding recommended limits for cadmium to be included in the Codex Alimentarius. 

While almost all limits are set on chocolate and cacao products and not the raw product, 
buyers are also placing limits on cacao beans1 to ensure the final products fall below the 
maximum permissible levels. These range between 0.5 and 1.1ppm. 

In comparison to other cacao growing regions of the world, the levels of cadmium in cacao 
regularly exceed these limits in certain areas of Latin America and the Caribbean (LAC).  

Much of the cacao produced in LAC is by smallholder farmers whose livelihoods are 
particularly vulnerable to the new regulations. Many are involved in the production of fine 
flavour cacao commonly used for products with high cacao content and in single origin niche 
products with the principal market being Europe. There is a pressing need to find short, mid 
and long-term solutions to address the issue. 

Solutions are currently being investigated or considered based on the current state of 
knowledge regarding i) sources of cadmium accumulation in soils, ii) factors affecting cadmium 
bioavailability to cacao plants, iii) physiological mechanisms of cadmium uptake by cacao 
plants and accumulation in the beans, iv) genetic variation in uptake and v) effects of post-
harvest processing on cadmium content in beans. 

Cadmium is found in the soil where its presence is a result of a combination of natural and 
anthropogenic processes. Natural processes include the weathering of rock, volcanic activity, 
forest fires, erosion and deposition in soils through flooding events by river sediments, while 
anthropogenic processes include mining and industrial activities, as well as agricultural 
practices such as irrigation and fertilisation. It is likely that both natural and anthropogenic 
sources contribute to the soil cadmium content, with the relative importance of different 
sources depending on the area.  

Not all cadmium present in the soil is bioavailable to cacao plants – i.e. readily available for 
uptake by the roots. While higher levels of total cadmium content imply higher potential for 
cadmium uptake by cacao trees, high levels of cadmium have been reported in cacao beans 
growing on soil with relatively low total cadmium content and vice versa. Bioavailability is 
influenced by multiple soil properties: pH, organic matter content, soil texture and mineralogy, 
cation exchange capacity, electrical conductivity, macro- and micro-nutrient content and the 

 
 
1 In line with the industry, cacao (cocoa) seeds are referred to throughout this review as ‘beans’ even though they 
are not true beans in the botanical sense. 
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presence of microorganisms. Altering these properties is key to reducing cadmium uptake by 
the plant 

The cadmium ion is taken up by the cacao roots through specific and non-specific processes 
used for ion absorption. It is transported via the xylem to the leaves, and reaches the fruit 
through the phloem. Generally, cadmium concentration in cacao trees decreases in the 
following order: leaves > pod husks > seed shell > shelled nib. Various factors can affect the 
process of uptake and partitioning of cadmium within cacao plants, such as the age of the tree 
or plant nutritional status. There is variability in cadmium content across different genotypes, 
indicating the possibility of identifying low-accumulating cacao varieties.  

Results regarding the effect of post-harvesting practices such as fermentation, drying, roasting 
and winnowing do not allow for clear conclusions, although it appears that these practices can 
potentially affect the cadmium content in cacao beans and derived products. 

Only some of the proposed solutions to reduce cadmium uptake have been or are in the 
process of being tested in LAC. Additionally, research to date indicates that finding a single 
solution to reduce cadmium accumulation in cacao beans is unlikely, due the heterogeneity in 
environmental and soil conditions in the region, different sources of cadmium, the use of 
different genotypes, and the quality requirements of buyers and their markets.  

Solutions also have different cost implications, and their effective implementation requires the 
motivation of a range of actors.  

The authors suggest that a mitigation hierarchy approach can help to develop a nuanced and 
integrated set of solutions for reducing cadmium levels in cacao beans and thus chocolate, by 
considering actions from farm to final product that are adapted to the specific conditions of the 
cacao value chain in question:  

• Avoid high risk areas for establishing plantations 
• Minimize the uptake of cadmium by the cacao tree  
• Reduce levels of cadmium through post-harvest processing 
• Reduce high levels of cadmium in chocolate by blending  

Actions are summarized in more detail below:  

• Avoid high-risk areas for establishing plantations: Until there are cost effective and 
efficient solutions to reduce accumulation of cadmium in cacao beans, sites where cacao 
is at risk from accumulating high levels of cadmium should be avoided for new plantations. 
While site identification is not straightforward due to the variable response of cacao trees 
to soil cadmium levels, areas known to produce cacao with high levels of cadmium could 
be avoided. It should be acknowledged that while many farmers cannot choose or change 
the location of their farmland, they could decide which crop to grow. It may be advisable 
to plant another crop, at least in the short-term in these areas. 
 

• Minimize the uptake of cadmium by the cacao tree: Some of the most promising 
strategies for reducing cadmium in cacao beans involve minimising its uptake by the trees. 
This can be achieved by minimising inputs of cadmium into the system through 
management of contaminated fertilisers, water quality and flood-drought cycles. It can also 
be achieved by adding soil amendments that alter soil characteristics such as pH or soil 
organic matter content to reduce the bioavailability of cadmium to cacao plants, by 
increasing the nutrient status of the plant which can reduce cadmium uptake, by adding 
microorganisms and other plant species that sequester cadmium from the soil, and using 
genotypes that are naturally low accumulators of cadmium. While the theory is advanced, 
field trials are only just beginning.  

 
 



3 

  

• Reduce levels of cadmium through post-harvest processing: It appears that it may be 
possible to minimise cadmium levels in cacao beans through changes to the traditional 
post-harvest processing methods of fermentation, drying, roasting and winnowing. Further 
research is needed, not only to determine reduction potential of levels of cadmium, but 
also to understand impacts on physical and flavour qualities. 
 

• Reduce levels of cadmium in chocolate by blending: Blending high cadmium content 
cacao beans with beans from other regions or even countries with a low cadmium content 
can be an effective short-term solution to ensure that products do not exceed the 
regulatory limits. However, for some areas this will result in the loss of regional identity and 
flavour differences that are key to the fine flavour cacao market. For fine flavour cacao that 
cannot be blended, a detailed traceability mechanism of cadmium levels may allow for 
separation of grains prior to fermentation. 

Since 2014, there has been an increase in research efforts to address the problem of cadmium 
accumulation in cacao, with the aim of finding solutions. Currently there are at least 28 ongoing 
projects in LAC (Ecuador, Colombia, Peru and Trinidad and Tobago) and Indonesia. Together, 
these projects cover most of the short, medium and long-term solutions currently considered. 
Several projects are working on the evaluation of amendments to modify soil properties, 
identify genotypes of low accumulation and bioremediation using microorganisms. Two areas 
that remain particularly poorly studied are phytoremediation (the use of plants to extract 
cadmium in the soil) and the socio-economic aspects (the impact of regulations on the global 
cocoa value chain, economic viability for farmers and the extension of the potential of possible 
mitigation solutions). The government, private sector, researchers and producers are 
advancing our knowledge to understand better the applicability of the short, mid and long-term 
solutions currently proposed by theory. 

The authors offer the following recommendations to help focus future actions: 

1. Test mitigation solutions in farmers’ fields across different environments and agricultural 
practices, focusing primarily on soil management methods that are economically and 
practically viable to farmers. 

2. Identify low-accumulating genotypes and test their use as rootstock and scion material in 
the field. 

3. Develop national and regional projects that use comparable methodologies, and align 
current research methodologies to allow for ease of comparison. 

4. Identify sources of cadmium contamination and the effect of abiotic factors (temperature, 
water stress, shade), on cadmium accumulation in beans. 

5. Fill the knowledge gap regarding the physiological basis of cadmium uptake, transport 
through the plant and accumulation in cacao beans. 

6. Ensure that solutions consider the net gain to small-scale farmers living in difficult 
economic circumstances. 

7. Identify and quantify the effectiveness of post-harvest solutions that might be able to 
reduce cadmium while maintaining the quality of the cacao. 

8. Engage with the industry to better understand the changes in cadmium levels during the 
manufacturing of chocolate products and identify reasonable limits to apply to the raw 
product. 

9. Establish consistency in laboratory results, focusing on standardizing sampling, cadmium 
extraction methods and analysis. 

10. Assess the utility of other methodological approaches for estimating cadmium levels in 
cacao beans. 

11. Assure markets and consumers that the cadmium contamination problem is localised and 
does not apply to an entire country or even region within the country. 

12. Inform producers of the issues and research being carried out to reach solutions.  
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1 BACKGROUND 

Cadmium is a naturally occurring, heavy metal, which has no known function in humans. It 
accumulates in the body affecting primarily the kidneys but can also cause bone 
demineralisation. Airborne cadmium can weaken lung function and even lead to cancer 
(Bernard 2008). To reduce exposure, the European Union (EU) is setting maximum 
permissible levels of cadmium in different foods based on dietary intake. In 2014, the EU 
announced maximum permissible levels for cadmium in cocoa and chocolate products sold in 
the EU – see Table 1. This has been enforced as of January 1st, 2019. The levels are based 
on estimated consumption levels of chocolate by different age groups. 

 
Table 1 EU maximum permissible levels of cadmium in cacao and chocolate products currently 

enforced – adapted from European Commission regulation (EU) 488/2014 of 12 May 2014 

Product 
Maximum permissible 

level (mg/kg) 

Milk chocolate with < 30% total dry cocoa solids 0.10 

Chocolate with < 50% total dry cocoa solids; milk chocolate with ≥ 30% 
total dry cocoa solids 

0.30 

Chocolate with ≥ 50% total dry cocoa solids 0.80 

Cocoa powder sold to the final consumer or as an ingredient in 
sweetened cocoa powder sold to the final consumer (drinking chocolate) 

0.60 

Source: European Commission regulation (EU) 488/2014 of 12 May 2014 

 
 
Figure 1 Terms used from the cacao bean to the chocolate bar 

 
Source: Prepared by the authors 
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The levels set by the EU regulation are similar to those being proposed for inclusion in the 
Codex Alimentarius1 of 0.8 mg/kg for chocolate with ≥ 50% to ≤ 70% cocoa solids, and 0.9 
mg/kg for chocolate with > 70% cocoa solids. The categories and limits for products with  
< 50% total cocoa solids and for cocoa powder (100% total cocoa solids) have yet to be 
defined2.  

The EU is not alone in regulating cadmium in chocolate. The Indonesian National Standard 
states the following maximum limits: Cocoa mass 1 ppm, Cocoa Butter 0.5 ppm, Cocoa 
pressed cake 0.5 ppm, Cocoa Powder 1 ppm and Chocolate products 0.5 ppm. The Australia 
and New Zealand Food Standards Code Standard 1.4.1 on contaminants and natural toxicants 
has set a maximum level of cadmium in chocolate and cocoa products at 0.5 ppm not including 
cocoa powder, and the Russian Federation (SanPin 2.3.2-1078-01) has set the same 
threshold, but this covers all chocolate and chocolate products, cocoa beans and products. 

The State of California USA has set maximum levels for cadmium in chocolate products under 
the Industrial Agreement Proposition 65 (19/02/2018) – see Table 2. Products that exceed the 
limits can be sold, but in this case, a warning must be put on the label. 

 
Table 2 Maximum permissible level set under the Industrial Agreement Proposition 65 (San Pin 2.2-

1078-01) 

Chocolate Product Composition 
(% of total cocoa content) 

Maximum cadmium level (ppm) set for: 

2018-2025 2025 

< 65% 0.400 0.320 

65-95% 0.450 0.400 

≥95% 0.960 0.800 

Source: San Pin 2.2-1078-01 

 
As can be noted above, the maximum permissible levels in the EU regulation are for chocolate 
products and not the raw material. However, buyers need to be able to relate the level of 
cadmium in the cacao beans with the final product. As cocoa butter contains minimal levels of 
cadmium, the concentration of cadmium in cocoa mass is similar to that in the cocoa liquor, 
(the first product derived from cacao beans after fermenting, drying and roasting). With 
knowledge of the percentage of cocoa mass in the final chocolate product, the following 
equation can be used to estimate the maximum cadmium level in cocoa mass that will allow 
the chocolate product to remain below the relevant EU threshold: 

𝐶𝑀 = 𝐸𝑈.𝑃𝑋%𝑃  

Where: 
 𝐶𝑀 =  Maximum level of cadmium in cocoa mass (mg/kg) 𝐸𝑈.𝑃 =  EU Maximum permissible level in finished product P (mg/kg) 𝑋%𝑃 =   percentage of cocoa mass in finished product P 
 

 
 
1 The Codex Alimentarius is a collection of internationally adopted food standards and related texts developed to assist in 
harmonising safety, quality and fairness of food quality at the international level. The 12th Session of the Committee on 
Contaminants in Foods (CCCF-12) 2018 Codex Alimentarius reviewed the proposed draft maximum levels for cadmium in 
chocolate and cacao derived products provided in this document 
2 Download PDF – Joint FAO/WHO Food Standards Programme, Codex Committee on Contaminants in Foods – Proposed draft 
maximum levels for cadmium in chocolates and cocoa-derived products 

http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-12%252FWD%252Fcf12_06e.pdf
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For example, in the case of dark chocolate containing 70% of cocoa mass (dry cocoa solids), 
for which the EU regulation sets a maximum permissible limit of 0.8 mg cadmium/kg in the 
finished product, the maximum level of cadmium in the cocoa mass will be: 

𝐶𝑀 = .. = .  𝑚𝑔/𝑘𝑔 

This can be used as an approximation for cadmium levels in cacao beans, assuming that 
unprocessed cocoa mass would contain similar amount of cadmium as the beans or nibs it 
originates from. Online tools are being developed using similar calculations for different 
chocolate products1. While this approach is useful for cases when there is a direct link between 
a batch of cacao beans and the cocoa mass used for making a single chocolate product, this 
is not always the case. As a result, many buyers appear to prefer a relatively low cadmium 
content to ensure that the beans can be used in any recipe and buyers are requesting limits 
for cadmium concentration in beans between 0.5 and 1.1 mg/kg. 

It is important to note that due to the variability of cadmium in cacao beans, and the high cost 
of laboratory analyses, a reliable estimate of the cadmium concentration is often not captured 
in the few samples analysed. This may make calculating cadmium in the final product from 
bean cadmium levels difficult. As the EU regulation is not written for cacao beans, there is no 
accepted sampling strategy. However, for other similar products sold in sacks, it is suggested 
that 5 samples should be taken from each 60kg sack, and for products by container, 10 
samples per half a tonne (i.e. one analysis per 50kg). A sample comprises 1kg. 

While these regulations have a global impact on the entire cacao supply chain, smallholder 
producers from Latin America and the Caribbean (LAC) countries will be the most affected. 
Surveys across cacao-producing regions of the world show that cadmium content in cacao 
beans is particularly an issue in LAC (see Figure 2 and Annex 1). Argüello et al. (2019) 
conducted a country-wide survey in major cacao-growing regions of Ecuador, collecting 560 
samples from 159 cacao farms, and found a mean cadmium bean concentration of 0.90 mg/kg 
with 45% of samples exceeding 0.60 mg/kg. Similar results were also found by Barraza et al. 
(2017) and Chavez et al. (2015). The bean cadmium concentration from nearly 57% of sample 
sites in a study in Peru (n=70) exceeded 0.8 mg/kg (Arévalo-Gardini et al. 2017). Zug et al. 
(2019) reported a mean cadmium content of 2.46 mg/kg in a sample of 40 cacao beans from 
the Huánuco region of Peru, the highest value in the literature to date – although the authors 
measured the content in defatted powder of dried cacao beans rather than the whole seed. 
Cadmium content in these samples ranged from 0.02 to a maximum of 12.5 mg/kg (Zug et al. 
2019). 

Surveys at a farm level show considerable variation across sites, with certain areas or 
´hotspots´ showing much higher cadmium levels than others (Gramlich et al. 2018; Bravo et 
al. 2018; Barraza et al. 2017; Argüello et al. 2019; Arévalo-Gardini et al. 2017; Tantalean 
Pedraza et al. 2017; Mite et al. 2010). Recent results from Ecuador found variation in cacao 
bean and soil cadmium content at multiple levels – among provinces, cantons and even within 
farmers’ fields – implying a high level of heterogeneity at many scales (Argüello et al. 2019). 

 

 
 
1 see http://chocosafe.org  

http://chocosafe.org/
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Figure 2 Distribution of reported average cadmium levels in cacao beans from Africa, Asia and LAC1 

(see Annex 1 for more information) 

Source: Prepared by the authors 

 
Overall, values of cadmium content in cacao beans reported across LAC indicate that the new 
EU regulation will affect cacao producers in the region. These regulations are a potential threat 
to the livelihood of many smallholder farmers, particularly those producing fine or flavour cacao 
beans commonly used for products with a high cocoa content as well as single origin products 
where mixing cacaos jeopardises the niche market.  

In this context, there is a pressing need to identify solutions that reduce cadmium levels in 
cacao beans and final chocolate products. This document reviews our current understanding 
and ongoing active research to help in this task. We review knowledge on sources of cadmium 
contamination in soils, soil properties that affect cadmium bioavailability and physiological 
mechanisms of cadmium uptake in cacao trees. We present results from trials to reduce 
cadmium uptake in cacao and other crops, and suggest directions for potential short, mid and 
long-term mitigation solutions. Finally, a compilation of ongoing research projects on cadmium 
and in cacao is presented to inform us of the results that can be expected shortly and identify 
possible remaining knowledge and research gaps. 

 
  

 
 
1 This graph summarises data from 21 studies that measured the cadmium content of cacao beans or nibs – Africa (7 data 
points), Asia (4 data points), and LAC (19 data points). The data represented in the box plots are the means reported by different 
studies. The graph does not take into account sample size and standard deviation for each mean or differentiate between beans 
and nibs. See Annex 1 for more detailed information and references. 
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2 SOURCES OF CADMIUM ACCUMULATION IN SOIL 

The presence of cadmium in soils is a result of a combination of natural processes and 
anthropogenic influences. Natural processes include the weathering of rock, volcanic activity, 
forest fires, erosion and deposition in river sediments, while anthropogenic influences include 
contamination by mining and industrial activities as well as agricultural practices such as 
irrigation and fertilisation that can result in cadmium input into the soil. 

The observed increase of cadmium levels in soils over recent years on a global scale suggests 
the importance of anthropogenic processes. In LAC, however, higher levels of cadmium 
reported in cacao beans relative to other regions, as well as localised differences, implies that 
the soils in some areas may be naturally rich in cadmium or have characteristics that lead to 
its higher bioavailability, although this does not rule out the role of anthropogenic sources, the 
use of different genotypes or a combination of these factors. The sources are explained in 
more detail in the following section. 

2.1 Natural sources of cadmium 

According to He et al. (2015), the contribution of natural processes to soil cadmium 
contamination is 3 to 10-fold lower than that of anthropogenic sources. In natural, 
uncontaminated soils, cadmium concentration is largely influenced by the amount of cadmium 
in the parent rock, and by local weathering conditions, as well as transportation by rivers and 
deposition in sediments and water by rivers during flooding events. Comparing different soil 
types, those derived from igneous rocks typically contain low amounts of cadmium, soils 
derived from metamorphic rocks are intermediate, and soils derived from sedimentary rocks 
(especially shales) contain high amounts (He et al. 2015). Gramlich et al. (2018) found that 
cadmium levels in cacao-growing soils varied significantly across different geological 
substrates in Honduras and was highest in alluvial soils originating from sedimentary material. 
A similar pattern was found in Ecuador in a study of 159 farms (Argüello et al. 2019). Other 
natural sources of soil cadmium include volcanic activity, forest fires, wind-blown soil particles 
and rock dust.  

2.2 Anthropogenic sources of cadmium 

Anthropogenic activity can increase cadmium concentration in agricultural soils through the 
application of phosphate fertilisers derived from sedimentary material and irrigation water from 
areas with high levels of cadmium. Mining and smelting of ores, burning of fossil fuels, and 
other industrial activities can also lead to localised cadmium contamination. Activities such as 
mining and land degradation on metal-rich soils upstream may be an important source of 
cadmium in agricultural areas downstream.  

In tropical soils in humid areas, migration of naturally occurring cadmium down the soil profile 
is more likely to occur than its accumulation in the top layer (Kabata-Pendias 2010; Rieuwerts 
2007). Thus, the results from multiple studies on cacao-growing soils of LAC that show 
significantly higher concentrations of cadmium in their top layer compared to other layers, and 
a general decrease with depth have been interpreted as the result of recent anthropogenic 
activity (Barraza et al. 2017; Gramlich et al. 2017; Arévalo-Gardini et al. 2016; Chavez et al. 
2015; Mite et al. 2010; Rodríguez Albarrcín et al. 2019), although isotope mapping has 
suggested that soil-plant cycling can lead to a similar pattern (Imseng et al. 2018).  

Details of key sources of anthropogenic cadmium contamination are presented in the following 
sections. 
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2.2.1 Direct input into agricultural soils 

Materials directly applied to soils can contain cadmium and contaminate soils. These include 
sewage sludge (biosolids), compost, animal manure and phosphate fertiliser (Adriano 2001; 
Alloway et al. 1999; Roberts 2014). 

Phosphate fertilisers are one of the most ubiquitous sources of cadmium contamination in 
agricultural soils throughout the world as cadmium often occurs in high concentration in the 
phosphate rocks from which the fertiliser is produced (Chaney 2012). Sedimentary phosphate 
rocks can contain cadmium in concentrations of 1 to 150 mg/kg – levels as high as 300 mg/kg 
have also been recorded (Fergusson 1990) – compared to volcanic sources with 1 to 4 mg/kg. 
It should be noted that about 85% of phosphate used in fertilisers is sourced from sedimentary 
deposits (Roberts 2014). 

The cadmium input resulting from use of contaminated fertilisers depends not only on the 
concentration in the source rock, but also on the fertilisation programme being followed. Past 
land use may also be important as it may have resulted in an accumulation of cadmium in the 
soil (Alloway et al. 1999; Gramlich et al. 2018), although leaching would be expected to 
remove this over time (Smolders 2017). 

In Peninsular Malaysia, Zarcinas et al. (2004) attributed levels of cadmium in cacao growing 
soils (mean of 0.11 mg/kg) and cacao beans (mean of 0.66 mg/kg) to the use of phosphate 
fertilisers due to a significant correlation between soil phosphorus and cadmium content 
(R²=0.80, p < 0.01). In LAC, some studies have also indicated phosphate fertilisers as a 
possible source of soil cadmium (Bravo et al. 2018; Gramlich et al. 2018; Laila Marie Zug et 
al. 2019) but low application of fertilisers in many areas may limit the impact of this source on 
plantations.  

Other soil amendments may also contain high levels of cadmium. These include zinc 
compounds and limestone, both of which are often manufactured from by-products of mining 
or other industries (Mortvedt 1985). 

2.2.2 Irrigation water and riverine sediments 

Rivers and streams running through areas with high levels of cadmium can deliver cadmium 
and other heavy metals to agricultural areas downstream via surface and ground water, or 
through irrigation systems. Cadmium may originate from weathering of the bed rock but 
concentrations can be exacerbated by mining and land degradation or other operations 
(Smolders et al. 2003; Sun et al. 2010; Zhai et al. 2008; Oporto et al. 2007; Yang et al. 2006; 
Takijima et al. 1973; Mortvedt 1985). Water does not have to carry high levels of cadmium to 
affect soil levels: both saline water conditions, and flood-drought cycles can increase the 3.1.1 
of cadmium present in the soil (Singh et al. 1999). 

Research in cacao plantations in LAC suggest water may be a source of cadmium 
contamination. Gramlich et al. (2018) suggested that the deposition of sediments from river 
flooding may be a key source of topsoil cadmium in their study sites in Honduras. Three 
studies in Ecuador have reached similar conclusions. A collaborative study between the 
French cooperative Ethiquable and the French Research Institute for Development (IRD) that 
the highest cadmium concentrations in cacao beans were found in farms that were regularly 
flooded by the river (with concentrations reaching 4.3 mg/kg; Maurice L., pers. com.). Chavez 
et al. (2015) suggested that the elevated cadmium levels in rivers used for irrigation could be 
the source of high levels of soil cadmium observed in their study area, and Argüello et al. 
(2019) mentioned that the bean samples with the highest cadmium concentration (5.28 –10.4 
mg/kg) came from a farm in a region with artisanal mining. In Peru, Llatance (2018) recorded 
differences in cadmium concentrations in soil samples taken from non-inundated (< 0.008 
mg/kg), inundated (0.043 mg/kg) and semi-inundated soils (0.11 mg/kg) in which less water is 
retained but for a longer period of time. 
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2.2.3 Atmospheric deposition 

The main sources of cadmium emissions to the atmosphere are industrial processes including 
mining and smelting (particularly zinc), iron and steel production, oil and gas industries, waste 
incineration and cement production (Alloway and Steinnes 1999). The transport of cadmium 
emitted into the atmosphere depends upon the particle size with very high levels of cadmium 
contamination occurring up to 30 km from the source (Adriano 2001), and contamination via 
aerosols spreading over much larger distances. Cadmium from atmospheric deposition 
concentrates in the upper humic soil layer (Alloway and Steinnes 1999) and appears to be 
easily available to plants (Adriano 2001).  

There is no evidence that atmospheric pollution leads to higher cadmium content in cacao 
beans as plantations are not normally located close to industrial zones. In Honduras, Gramlich 
et al. (2018) found no influence of proximity to industrial sites on the cadmium concentration 
of cacao-growing soils. Barraza et al (2017) found no differences in cadmium content within 
beans sampled at various distances from an oil refinery in Esmeraldas, or from gas flares in 
the Amazon region, and found low cadmium concentrations in aerosol samples collected in 
the farms – below the Ecuadorian legislative limit of 0.5 ng/m3. However, Acosta and Pozo 
(2013) reported higher concentrations of cadmium in cacao beans from a farm close to the 
Santo Domingo-Esmeraldas highway (Ecuador) compared to farms further away, which they 
attribute to pollution, but presented no statistical evidence for their findings. 

2.2.4 Recycling of cadmium within cacao production systems 

Where high concentrations of cadmium are reported in cacao beans, concentrations are also 
high or even higher in leaves and pod husks1 (see section 4.2). Dead leaves and pod husks 
are usually left to degrade in plantations to reduce nutrient loss and improve soil organic 
matter. Any cadmium in these tissues will either leach into the soil or be recycled within the 
system.  

For Mite et al. (2010), Barraza et al. (2017) and Gramlich et al. (2018), the higher cadmium 
concentration within top-soils relative to subsoils may be at least in part due to the 
accumulation over the years of cadmium from leaves and husks, although the authors do not 
rule out the possibility of contamination from other anthropogenic sources. In Colombia, 
Rodríguez Albarracín et al. (2019) found cacao leaf litter to have higher cadmium content then 
both cacao beans and leaves with an average of 85.5 mg/kg, which according to the authors 
implies a high level of cadmium cycling. However, the relative importance of this recycling 
process as a contributor to cadmium accumulation in cacao beans has yet to be understood. 
The use of stable cadmium isotopes to trace cadmium recycling between decaying and living 
tissue will be useful in addressing this knowledge gap.  

 
 

 
 
1 Here, pod husk refers to the cacao pod fruit shell which encloses all of the beans and pulp. The thin shell of a 
single cacao bean is sometimes referred to as the husk or testa. 
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Figure 3 Possible sources of cadmium input to cacao growing soils 

 
Source: Prepared by the authors 

 

3 SOIL PROPERTIES AND CADMIUM BIOAVAILABILITY 

Accumulation of cadmium by cacao plants is influenced by the amount and availability of 
cadmium present in the soil. Higher levels of total soil cadmium content imply a higher potential 
for cadmium uptake. Several studies have reported positive and statistically significant low to 
moderate correlations between total soil and cacao bean cadmium concentrations (Ramtahal 
et al. 2016; Fauziah et al. 2001; Gramlich et al. 2018; Laila Marie Zug et al. 2019). This 
includes a nation-wide survey in Ecuador that mapped total soil and cacao bean cadmium 
levels and identified problem areas or ‘hotspots’ (Argüello et al. 2019).  

However, total soil cadmium is not always a good indicator of cadmium in cacao beans as 
only a part of it is available to the plants (He et al. 2015; Shahid et al. 2016; Argüello et al. 
2019; Gramlich et al. 2018, 2017; Remigio 2014). The bioavailable cadmium levels in the soil 
shows a much stronger correlation to the bean cadmium levels than total cadmium. 
Understanding how soil properties affect the bioavailability of metals and specifically cadmium 
in cacao-growing soils is therefore key to developing effective soil mitigation strategies. 

3.1 Bioavailable cadmium 

3.1.1 Bioavailability and chemical speciation of cadmium 

In the soil, trace metals exist in many chemical and physical forms, not all of which are 
available, or bioavailable, for uptake by living organisms (Adriano 2001; Singh et al. 1999). 
The soil cadmium content can be divided into three nested pools based on bioavailability: total, 
reactive, and directly available – see figure 4. The total pool contains reactive, directly 
available and non-reactive cadmium (cadmium that is not available and is unlikely to enter the 
reactive pool for decades, centuries or even longer). The reactive pool consists of cadmium 
ions adsorbed onto reactive surfaces of soil organic matter, short-range ordered metal-
hydrous oxides, and clay particles and are potentially available for absorption by the plant. 
The directly available pool is composed of the free or totally dissolved cadmium ions in the 
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soil solution that are ready to be absorbed (Shahid et al. 2016; Pan et al. 2016). Movement 
from the reactive to the directly available pool is affected by soil pH, organic matter content, 
clay content and reactivity, cation exchange capacity, the presence of metal hydroxides, 
electrical conductivity, macro- and micro-nutrient content and the presence of 
microorganisms. These conditions change in space and time and with soil depth (Welch et al. 
1999; Adriano 2001; He et al. 2015; Shahid et al. 2016). 

Figure 4 Cadmium pools and bioavailability in soils 

 
Source: Prepared by the authors 

3.1.2 Measuring bioavailable cadmium 

3.1.2.1 Evaluating bioavailable cadmium in the soil 

Quantifying the amount of cadmium in the soil in each of the pools mentioned above requires 
the use of different reagents. The size of the reactive pool can be determined by extraction 
using weak acids (e.g. 0.05 M EDTA, 0.1 M HCl, or 0.43 M HNO3), while the directly available 
pool is either measured by sampling of the soil solution with soil moisture samplers or 
lysimeters or by a soil extraction using weak salts such as CaCl2, Ca(NO3)2, NaNO3 or DTPA 
extraction methods (Pan et al 2016). The total soil cadmium content is usually determined by 
digestion with a strong acid (EPA3050B for acid digestion of soils – EPA 2015). 

Cadmium within the reactive pool of the soil occurs in many different fractions (e.g. 
exchangeable, oxide-bound, carbonate-bound, organic matter-bound). Several studies have 
calculated the relative importance of these fractions in the soil by comparing their 
concentration with the level of cadmium in plant tissues. This is carried out with multiple-step 
extraction methods, using neutral salts or acids of increasing strength to extract the cadmium 
from each fraction (Rao et al. 2008).  

In the Nigerian states of Ondo and Ogun, Aikpokpodion et al. (2012b, 2012a) found that 
residual and oxidizable fractions account for a large part of total cadmium content in cacao-
growing soils. These fractions are generally considered to be mostly unavailable to plants and 
are associated with weathering of parent rocks. In Ecuador , Chavez et al. (2016b) found that 
acid-soluble and reducible fractions accounted for most of the total soil cadmium content. Of 
the five fractions they considered (water-soluble, acid-soluble, reducible, oxidizable and 
residual), the acid-soluble fraction was most highly correlated to cadmium content in cacao 
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beans leading the authors to suggest that this was the major contributor to the bioavailable 
cadmium pool in their study sites.  

Although the efficiency and predictability of a single extractant to measure the reactive pool of 
cadmium depends on soil factors and the species being studied (Adriano 2001), Ramtahal, 
Chang Yen, Ahmad, et al. (2015) and Chavez et al. (2015) found that powerful extractants – 
metal-chelating reagents, Mehlich 3 and hydrochloric acid (HCl) – provided a better estimate 
of bioavailable cadmium than more neutral ones due to the relative importance of the acid-
soluble cadmium fraction for cacao (Chavez et al. 2016b). Gramlich et al. (2018) found that 
the cadmium content in cacao beans was best predicted by measures of bioavailable soil 
cadmium from the diffusive gradient in thin film (DGT) and Mehlich 3 extraction methods. 
Novel approaches that use cadmium stable isotope compositions can also be applied to 
evaluate the relative importance of anthropogenic cadmium inputs and cadmium recycling, as 
well as the transfer of the bioavailable fraction to plants (Imseng et al. 2019, 2018). One caveat 
is that, as none of the extraction methods estimates bioavailable cadmium perfectly, and as 
different studies have used different methods, comparing levels of bioavailable cadmium 
across studies may not be possible. 

3.1.2.2 Measuring cadmium concentration in soil and plant tissues 

Reliable analysis of cadmium concentration is key to understanding the problem. The 
extraction protocol, choice of analytical instrument, its calibration and the quality control 
protocols adopted all play an important role in this. Commonly used techniques include Atomic 
Absorption Spectrometry (AAS), Furnace Atomic Absorption Spectrometry (FAAS), Induced 
coupled plasma mass spectrometry (ICP-MS) and Induced Coupled Plasma Optical Electro 
Spectrometry (ICP-OES). The most appropriate choice depends on level sensitivity required, 
whether one or more trace metals are being measured, as well as budgetary limitation 
(Thermo Elemental 2002). Additionally, while estimation of total cadmium prepared with strong 
acid extraction is relatively robust, digestion with weak acids to estimate bioavailable cadmium 
is much more difficult to analyse reliably and may require the use of ICP-MS (McBride 2011). 

3.2 Soil properties affecting cadmium bioavailability to cacao plants 

3.2.1 Relationship between soil properties  
The availability of cadmium to plants is influenced by multiple soil properties, which affect the 
chemical and physical characteristics of cadmium in the soil and can fluctuate in space and 
time. These include pH, organic matter content, soil texture and mineralogy, cation exchange 
capacity, electrical conductivity, macro- and micro-nutrient content and the presence of 
microorganisms (Adriano 2001; Singh et al. 1999; Shahid et al. 2016; He et al. 2015). 
Manipulating these properties is key to developing mitigation strategies that reduce cadmium 
uptake (Hamid et al. 2019). 

Most of the baseline studies investigating which of these factors may influence cadmium 
uptake by cacao have been carried out in LAC – Bolivia, Ecuador, Honduras, Peru, and 
Trinidad and Tobago – see Annex 2. These studies measured various soil properties, as well 
as agronomic and other factors, and determined their correlation with total and bioavailable 
soil cadmium as well as cadmium content in cacao plant tissue (leaves, beans, pod-husks). 
Although many studies have investigated this, differences in soil properties measured, soil 
types, sampling design, sample size, study length and bioavailable cadmium extraction 
procedure make their comparison difficult. We consider that 9 of these studies are robust 
enough for the comparison presented in Table 3 (see references below table). Of these, only 
three (Gramlich et al. 2017, 2018; Argüello et al. 2019) allow clear conclusions to be drawn. 
These studies form the basis of the following sections, along with results from experimental 
trials to understand how changes in soil properties affect cadmium uptake by cacao. 
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Table 3 Summary of results from baseline studies (see Annex 2 for detailed results) 

Soil properties 
Reported effect on cadmium bioavailability 

and/or cadmium content in cacao tissues 
Studies* 

Cadmium 

content 

Total soil cadmium ↑ Consistent results across studies. , , , ,  ↑  

Bioavailable cadmium  

(effect on cadmium 

content in cacao plant 

parts) 

↑ Consistent results across studies  2,  ↑  

pH Soil pH ↓ Consistent results across studies  1, 2, 3 ↓  

OM Organic matter ↓ Consistent results across studies 1, 2, 3 ↓  

Parent 

material 
Geological substrate Yes Consistent results across studies  2,3 

Soil Texture 
Clay content ↑ /↓ Inconsistent results 1, 2 ↑ ;  ↓  

Sand content ↓ Too few results  ↓  

CEC CEC x Inconclusive results  

Salinity EC x Inconclusive results  

Micro-macro- 

nutrients or 

other trace 

metals 

Zinc x Inconclusive results  

Fe ↑ Consistent results across studies  1,2 ↑  

P ↑ /↓ Inconsistent results 1 ↓ ; , ↑  

Pb x Inconclusive results  

Ca 2+ x Inconclusive results  

Mg2+ ↓ Too few results  ↓  

K ↓ Too few results  ↓  

Mn ↓ Too few results  ↓  

Soil Microbial 

activity 
Mycorrhizal colonisation x Inconclusive results  

Agronomic 

factors 

fertiliser application x Inconclusive results  

Monoculture vs 

agroforestry 
Yes Too few results 1 

Organic vs conventional Yes Too few results 3 

Age of orchard ↓ Too few results 3 ↓  

Trunk diameter Yes Too few results 1 

Cultivar effect Yes Too few results 1 

Other factors 

Altitude x Inconclusive results  

Proximity to industrial 

site 
x Inconclusive results  

Impact of oil activities x Inconclusive results 4 (x) 

Source: Prepared by the authors 

*Studies: 1 (Gramlich et al. 2017); 2 (Gramlich et al. 2018); 3 (Argüello et al. 2019); 4 (Barraza et al. 2017); 5 (Fauziah et al. 

2001); 6 (Arévalo-Gardini et al. 2017); 7 (Huamani and Rojas 2011) ; 8 (Huamaní-Yupanqui et al. 2012); 9 (Jomas 2016) 

↑  Increase leads to higher cadmium bioavailability and/or cadmium content in cacao tissues 

↓  Increase leads to lower cadmium bioavailability and/or cadmium content in cacao tissues 

Yes  Has an effect on cadmium bioavailability and/or cadmium content in cacao tissues 

x  No statistically significant effect on cadmium bioavailability and/or cadmium content in cacao tissues 

 

3.2.2 Cation Exchange Capacity 

Cation exchange capacity (CEC) is the total capacity of a soil to hold exchangeable cations. 
A higher soil CEC implies a higher capacity for soil particle surfaces to retain cations and can 
lead to a decrease in cadmium bioavailability. As CEC decreases there is an increased 
competition between H+ and Cd2+ ions for binding sites which results in cadmium desorption 
from soil particles into the soil solution. 
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CEC is influenced by soil properties including texture, clay content and mineralogy, pH and 
organic matter content. While clay content is important in cation exchange, not all clay 
mineralogy has the same capacity: 1:1 clays are common in highly weathered tropical soils 
and have a low CEC, while 2:1 clays have a high CEC. An increase in pH and soil organic 
matter content is also usually associated with a higher CEC, especially in tropical soils 
(Adriano 2001).  

3.2.3 pH 

Soil pH is one of the most important parameters influencing cadmium speciation, mobility, 
solubility and thus its bioavailability (Adriano 2001). As pH increases, so does the soil CEC. 
In alkaline soils, cadmium tends to be less bioavailable as it is strongly bound to soil particles. 
Increasing the pH of acidic soils almost always leads to lower cadmium uptake by plants 
(Shahid et al. 2016; Sauvé et al. 2000) – although this may be countered by salinity (see 
section 3.2.6). Most studies on cacao find significant and negative correlations between soil 
pH and bioavailable cadmium (Low et al. 1994; Bravo et al. 2018; Barraza et al. 2017; 
Gramlich et al. 2018, 2017; Argüello et al. 2019) – the exception is Fauziah et al. (2001) in 
Peninsular Malaysia. However, the pH environment in the soil is not uniform as plants exude 
acids from their roots to improve the solubility of nutrients and ions (Dong et al. 2007). This 
means that even in neutral or alkaline soils cadmium accumulation in plant tissues may still 
occur. Cadmium has been found to be a significant problem in cacao grown in near-neutral 
pH soils in the north of Peru (Remigio 2014). 

Cacao trees grow best in soils with pH levels ranging from 5.0 to 7.5. Applying certain 
amendments to acidic soils that increase the pH can reduce the proportion of cadmium that is 
bioavailable and thus reduce cadmium uptake by plants (Ramtahal et al. 2018). Commonly 
used amendments for this purpose include slaked lime, dolomite and zeolite (Mahar et al. 
2015; Shi et al. 2009). A methodology using soil parameters to calculate liming needed to 
reduce cadmium uptake is presented in Ramtahal et al. (2018).  

Four studies have been conducted on cadmium bioavailability in cacao-growing soils in LAC. 
In a field experiment in Peru, Zamora (2018) reported a significant decrease in cadmium 
content of beans following the application of dolomite (at 1.8, 2.7 and 3.6 kg/plant) for 12 
months, although neither results from the control nor sample size are provided. Also in Peru, 
Schneider (2016) investigated the effect of applying slaked lime at low and high doses (2.5 
and 1.85 t/ha, and 5.8 and 3.6 t/ha respectively), on the bioavailability of cadmium in cacao 
plantations. After 5 months, they found a significant difference in bioavailable soil cadmium 
content between the control and limed treatments (Schneider 2016). The effect on bean 
cadmium concentration was not measured due to unforeseen circumstances. Ramtahal et al. 
(2018) applied slaked lime to cacao trees (3 kg/tree) in a field experiment in Trinidad and 
Tobago and measured soil pH, soil bioavailable cadmium and cadmium content of cacao 
leaves every month for 18 months. Despite natural variations of pH observed in untreated soil, 
a significant pH increase was found for lime-treated soils. Total leaf cadmium decreased both 
in limed and untreated trees (p < 0.05), but the reduction for limed trees was 3-fold that of un-
treated trees. The results will be corroborated with measurement of cadmium concentration in 
beans. Finally, Chavez et al. (2016a) investigated the effect of zeolite on cadmium 
bioavailability in a laboratory experiment, applied at 0.5 and 2% of total weight with different 
doses of cadmium and three soil types. An increase soil pH was not observed, and neither 
0.01 M CaCl2 nor Mehlich extractable cadmium levels were reduced after 28 days in any of 
the treatment. Chavez et al. (2016a) used natural zeolite in their experiment; synthetic forms 
have been suggested to be more effective in raising pH and reducing cadmium bioavailability 
(Shi et al. 2009; Wingenfelder et al. 2005). 

One key factor to the effectiveness of pH-modifying soil amendments is to ensure that they 
are incorporated into the soil. In established cacao plantations this can be a challenge because 
of the risk of damaging the surface roots. However, it has been shown that if mixed with 
organic matter (composts, manures, biosolids, or green manures), and surface applied, 
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biodegradation of the organic matter causes the formation of Ca salts which are soluble and 
will leach into the soil (Hue 1999; Liu et al. 2001). 

3.2.4 Organic matter content 
The organic matter content of soils plays an important role in cadmium bioavailability due to 
its ability to adsorb cadmium. The capacity of organic matter to bind with cadmium is due to 
its high CEC as well as its chelating ability (Adriano 2001; He et al. 2015). Organic matter 
content can also reduce cadmium bioavailability indirectly by affecting other soil properties 
(Shahid et al. 2016), mainly by increasing soil pH (Khan et al. 2017). However, humic 
substances sometimes form soluble complexes with cadmium and increase its mobility (He 
and Singh, 1993; Khan et al. 2017).  

Soil organic matter content in cacao plantations in Honduras and Bolivia was found to be 
significantly and negatively correlated to both soil bioavailable cadmium and plant cadmium 
content (Gramlich et al. 2017, 2018). A similar correlation was found in Ecuador between 
cadmium content in cacao beans and soil organic matter content (Argüello et al. 2019). 
Chavez et al. (2016a) interpret the higher correlation coefficient between acid-soluble 
cadmium and cadmium content in beans in the subsurface layer (5 - 15 cm) compared to the 
surface layer (0 – 5 cm) as a result of higher soil organic matter in the surface layer. A very 
low percentage of soil organic matter in the north of Peru (< 2%) may partly explain the 
elevated concentrations of cadmium in cacao beans in the region (Remigio 2014). 

Studies have reported a decrease in bioavailable soil cadmium and of cadmium uptake by 
plants using various organic matter amendments such as biochar (Anawar et al. 2015; M. 
Ahmad et al. 2014), poultry, pig or cattle manure and compost (Khan et al. 2017), 
vermicompost (Pinto et al. 2016), activated carbon (Xu et al. 2014) or coal (Kwiatkowska-
Malina 2018). Two studies have been conducted on the effect of organic matter amendments 
on cadmium bioavailability in cacao plantations, using compost and chicken manure (Zamora 
2018), and vermicompost (Chavez et al. 2016a). Zamora (2018) applied high doses of 
compost and chicken manure (30, 60 and 90 t/ha) in the field and measured the resulting 
effect on cadmium content in beans. Although the response was variable, in general compost 
reduced cadmium in cacao beans and chicken manure did not. Chavez et al. (2016a) found 
that vermicompost at a 2% rate of application could effectively reduce 0.01 M CaCl2 
extractable and Mehlich 3 extractable cadmium in soils spiked with 5mg/kg of cadmium. 
Interestingly, Chavez et al. (2016a) reported that this effect may have been due to a 
substantial increase in soil pH, perhaps from mineralization of organic N.  

The use of biochar and other activated carbons for heavy metal immobilisation has been 
shown to be effective in many other crops and is gaining attention for use in cacao – see 
Rizwan et al. (2016) for a review. Given that these compounds are highly variable, so is their 
effectiveness. The most important parameters influencing this are the choice of source 
material (Xu et al. 2014; Fellet et al. 2014; Yasmin Khan et al. 2017), the temperature of 
pyrolysis (Cui et al. 2016), and the soil characteristics of the site (M. Ahmad et al. 2014; 
Anawar et al. 2015). 

3.2.5 Soil texture 

Soil texture influences both cadmium content and its bioavailability in soils due to different 
cation exchange capacities of sand, silt and clay (Kabata-Pendias 2010). Fine textured soils 
(clays) generally have a higher adsorption capacity than coarser textured soils (sands) while 
total cadmium content and bioavailability appear to be higher in loamy soils (a mixture of clay, 
sand and silt) than in sandy soils (Adriano 2001; Kabata-Pendias 2010). However, this pattern 
is not always clear as the adsorption capacity of clay depends on the structure of the dominant 
clay mineral: 2:1-clay types have higher sorption abilities than 1:1 clay types. In the tropics, 
clays tend to be highly weathered and are dominated by 1:1 clay types with correspondingly 
lower CEC (Rieuwerts 2007). This may be the reason for the inconsistent results in correlative 
studies in cacao plantations where positive, negative and no correlation have been reported 
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between clay content and cadmium bioavailability across studies in Ecuador, Honduras, 
Bolivia and Peru (Huamaní-Yupanqui et al. 2012; Gramlich et al. 2018, 2017; Chavez et al. 
2015). Given these conflicting results, clay content does not appear to be a reliable indicator 
of cadmium bioavailability even though it may play an important role in cadmium bioavailability 
to cacao plants. 

3.2.6 Electrical conductivity 

Electrical conductivity (EC) is a measure of the soil’s ability to conduct an electrical current. A 
high EC is due to a large number of cations (nutrients) held on the soil cation exchange sites 
and indicates a fertile soil. However, soils with a high EC due to excessive sodium and 
magnesium (or chloride) ions can be detrimental to plant health, and also increase the 
bioavailability of cadmium (Khoshgoftar et al. 2004; A. Ahmad 2017).  

For cacao produced in a rain forest biome, a high soil EC is unlikely. However, in areas where 
cycles of flood and drought are common (naturally or due to irrigation), or where cacao is 
grown under irrigation with saline water (see section 4.7), it could be a problem as Cl- can 
complex with Cd2+ bound to soil particles and bring it into solution (Singh et al. 1999; Grant et 
al. 1999). In alkaline soils the concentration of chloride ions is likely to affect the uptake of 
cadmium more than any other soil factor (McLaughlin et al. 1998. Chaney et al 2012). 

Only a few studies on cadmium uptake by cacao plants have investigated the relationship 
between electrical conductivity and cadmium bioavailability. Fauziah et al. (2001) found a 
significant and positive correlation in cacao-growing soils of Malaysia. In Ecuador, Chavez et 
al. (2015) found that cacao bean cadmium content was best predicted by bioavailable 
cadmium content and the EC of the top-soil (R2 =0.73, p < 0.05). Argüello et al. (2019) found 
that at soil chloride ion concentrations greater than 500 ppm, cadmium bioavailability 
increased dramatically. This corresponds to an EC (1:5) of about 350 μScm−1. 

3.2.7 Macro- and micronutrients 

Sarwar et al. (2010) provide a detailed discussion of the complex nature of the role of soil 
mineral nutrients in reducing cadmium uptake. Some ions can influence cadmium uptake 
directly through competition for soil exchange sites, and chelation or complexation with 
cadmium compounds. However, predicting the effect is rarely straightforward as it also 
depends on the compound applied and the mode of application which can result in a change 
in pH or CEC, and thus affect cadmium bioavailability.  

3.2.7.1 Phosphorus 

Applying phosphate fertilisers uncontaminated by cadmium has been reported to either reduce 
cadmium bioavailability by immobilizing cadmium in the soil, or increase it by reducing soil pH 
(He et al. 2015; Mahar et al. 2015). In Venezuela, Nereida (2011) found that application of 
phosphorus at 50 or 150 mg/kg per tree in the form of monopotassium phosphate reduced 
levels of bioavailable cadmium in the soil. In Bolivia, Gramlich et al. (2017) found a negative 
effect of P soil content on bioavailable cadmium concentration and weak negative effect on 
cadmium concentration in pod husks. In contrast, Huamaní-Yupanqui et al. (2012) found soil 
cadmium levels to be significantly and positively correlated to P content in cacao leaves, and 
Laila Marie Zug et al. (2019) found a modest but positive correlation between cadmium content 
in beans and the use of P fertilisers – which they attribute to possible additional cadmium 
contamination. Fauziah et al. (2001) and Zug et al (2019) also found that bioavailable P soil 
content was positively correlated with bioavailable cadmium soil content, but they believe this 
is due to the use of phosphate fertilisers contaminated with heavy metals. 

3.2.7.2 Zinc 

Cadmium and zinc share very similar chemical properties, and this has led to the conclusion 
that a relative deficiency in zinc in the soil may lead to increased cadmium uptake as they 
compete for the same transport membranes (Sarwar et al. 2010; Adriano 2001). This is 
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discussed further in section 4.6. It appears that the ratio of cadmium to zinc in soils is normally 
1:200-500. Soils with lower ratios than this (such as marine shales) may exhibit high cadmium 
accumulation by crops (Chaney 2012).  

3.2.7.3 Silica 

Silica (silicon dioxide-SiO2) is known to reduce soil cadmium bioavailability as well as its 
uptake and movement within plants (Treder et al. 2005; Sarwar et al. 2010). A source 
commonly used as a cost effective and efficient filter for contaminated water is diatomaceous 
earth or diatomite. (Shawabkeh 2000). Diatomite can also be incorporated into soils to reduce 
soil cadmium bioavailability (Liva et al. 2007). Pot trials in Peru with cacao plants have shown 
a reduction of cadmium bioavailability especially with applications of over 5% and a field trial 
is currently underway (Arbulu Zuazo 2017). Ground water pollution of soils can also be 
prevented by placing a diatomite layer under the soil rooting layer (Liva et al. 2007).  

3.2.7.4 Other elements 

Many other elements in the soil are likely to influence cadmium uptake (Shahid et al. 2016; 
Kabata-Pendias 2010). The effect of soil nitrogen content on cadmium bioavailability appears 
to depend on whether a nitrate (NO3

-) or ammonium (NH4
+) based fertiliser is used, its 

application rate and timing, and the plant species studied (Sarwar et al. 2010; He et al. 2015). 
For example, when applied as NH4

+, soil acidification can occur, leading to an increased 
bioavailability of cadmium. In Peru Zug et al. (2019) found that the use of N-fertilisers in 
particular dramatically increased cadmium content in cacao beans. Other elements 
investigated regarding their effect on cadmium bioavailability include iron, lead, calcium, 
magnesium, manganese and potassium. Argüello et al. (2019) found that bioavailable 
manganese (Mn) explained 8% of the variation in bean cadmium concentrations in a 
regression model with total soil cadmium, pH and total organic carbon. Manganese 
oxyhydroxides are known to be strong adsorbents of metals and Geeroms (2016) suggested 
that the ratio of Mn to Cd is important. When this ratio is more than 20 to 1, cadmium uptake 
appears to be reduced. Gramlich et al. (2018) found that the magnesium and potassium 
content in the soil had a minor negative influence on plant cadmium concentrations, which 
authors believe is due to ion competition. Gramlich et al. (2018, 2017), found that iron was 
positively correlated to DGT-available cadmium in cacao growing soils of Bolivia and 
Honduras. However, in Honduras, iron availability was also strongly correlated to pH which 
accounted for the correlation with cadmium (Gramlich et al. 2018). 

3.2.8 Influence of soil microorganisms on cadmium behaviour in soils 

There are positive and negative effects of soil microorganisms (bacteria, yeasts and other 
fungi including arbuscular mycorrhizal fungi) on cadmium uptake by plants. This is likely to be 
due to the range of organisms under consideration and their interactions within the soil 
community. Bacteria that are tolerant to cadmium come from a wide phylogenetic group that 
appear to show diverse mechanisms for cadmium immobilisation from experiments in vitro 
and in field (Bravo et al 2018) increasing its bio-precipitation into Otavite or secondary forms 
of cadmium carbonate that could form only due to microbial metabolism (carbonatogenesis) 
(Bravo et al. 2011). However, soil microbial activity is also known to increase cadmium 
availability via excretion of organic acids and subsequent solubilisation of cadmium-bearing 
minerals (Shahid et al. 2016). It has been observed in various studies that plants inoculated 
with mycorrhizae took up less cadmium and/or were more tolerant to high soil cadmium 
concentrations than non-mycorrhizal plants (Janoušková et al. 2006, 2005; Jiang et al. 2016). 
However, as mycorrhizal fungi extend the capacity of root systems to sequester soil nutrients 
they have also been shown to increase cadmium uptake by plants (Leyval et al. 1997; Gaur 
et al. 2004; Ramtahal et al. 2014). As far as we know, mycorrhizae are not a good player in 
the immobilization of cadmium (Ramtahal et al. 2014). However, further research should focus 
on the specificity between native consortia of mycorrhizae from cacao root systems to see if 
cadmium-blocking effect could occur in specialized interactions. 



19 

  

3.2.8.1 Bioremediation 

Bioremediation uses living organisms to eliminate or neutralise high concentrations of 
contaminants from a specific site or source. Both plants (phytoremediation) and 
microorganisms are used for soil remediation (Alvarez and Polti 2014). Although cacao 
plantations do not grow on soils with exceptionally high cadmium concentrations the approach 
appears has received much interest.  

Soil microorganisms can be used to reduce the bioavailability of a heavy metal in the soil, or 
increase it to facilitate its removal through other techniques (e.g. phytoremediation). Several 
microorganisms have been identified as highly tolerant to cadmium and capable of reducing 
the cadmium available to plants (Beltrán-Pineda and Gómez-Rodriguez 2016). These include 
microbial communities identified from cacao plantations in Colombia (Bravo et al. 2018; 
Caceres and Torres 2017) indicating populations of fast growing bacteria. 

Three pot experiments have investigated the effectiveness of microorganisms on cadmium 
accumulation in cacao. Ramtahal et al. (2012) found that the addition of a commercial product 
containing mycorrhizae led to an increased cadmium concentration in seedlings. Using a 
similar product, Jacome et al. (2016) reported a decrease in cadmium concentration in 
seedlings in soils spiked with 12 and 24 mg/kg cadmium, but not at lower levels. Revoredo et 
al. (2017) investigated the effect of two different Streptomyces yeast strains on cadmium 
accumulation in cacao plants in spiked soils (100 mg/kg and 200 mg/kg). In addition to very 
high spiking levels, the sample size was too small to provide meaningful results. In a field 
experiment, Pérez Moncada et al. (2019) found a reduction in the cadmium content of cacao 
beans when grown in the presence of native arbuscular mycorrhizal fungi in soils spiked with 
24 mg/kg of cadmium. Unpublished results using yeasts isolated from a mining site in Peru 
have been shown to reduce cadmium levels in cacao in pot experiments, but further validation 
is required (Duran pers comm).  

Figure 5 Soil properties affecting cadmium availability to cacao plants 

 
1 Further discussed in section 4.7  

 

Source: Prepared by the authors 
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4 THE PLANT: CADMIUM UPTAKE MECHANISMS, PARTITIONING AND 
VARIETAL DIFFERENCES 

4.1 Mechanism of cadmium uptake 

Cadmium is a non-essential element for plants and its uptake is due to transport by specific 
and non-specific processes used for ions such as Fe2+, Ca2+, Zn2+, Cu2+ and Mg2+ (Shahid et 
al. 2016). After uptake by the root system, Cd2+ is transported to the xylem, and moves to the 
leaves. In the leaves, Cd2+ is actively transported into the phloem from where it reaches the 
fruits (Shahid et al. 2016; Clemens et al. 2013). Some cadmium may also reach the fruits 
directly from the xylem.  

Foliar uptake has received less attention then uptake by roots. While Shahid et al. (2017) 
suggest that for some species foliar cadmium uptake could be important, in cacao this appears 
to be negligible (Barraza et al. 2017). 

Several important membrane transporter gene families (including NRAMP, ZIP, HMA) have 
been identified as playing a possible role in cadmium uptake by roots, xylem loading and 
transport within the plant1 (Guo et al. 2016; Clemens et al. 2013). In many species studied, a 
ZIP Zn2+ transporter in the root epidermal cell membrane is responsible for cadmium uptake. 
Additionally, root cells have HMA3 transporters which pump Cd2+ into the root cell vacuoles 
thereby limiting its transport into the xylem. Plants with a mutant HMA3 in rice, soybean, durum 
wheat are much less efficient in pumping Cd2+ into vacuoles and thus accumulate more 
cadmium than expected (Wang et al. 2012; Ueno et al. 2010). Over-expression of the same 
HMA3 transporter lowered Cd2+ transport to rice shoots and grain (Ueno et al. 2010). 

NRAMP, ZIP and HMA gene families are highly conserved across plant families and appear 
to have identifiable homologues in the cacao genome (Cryer et al. 2012). Ullah et al. (2018) 
identified and sequenced five genes from the NRAMP family in cacao and found that NRAMP5 
encodes for a protein capable of transporting Cd2+ ions in yeast. However, while NRAMP 
proteins have been shown to be important in cadmium uptake in rice (Ishikawa et al. 2012; 
Sasaki et al. 2012), to date this protein has not been implicated in cadmium transport for any 
other crop. An increased understanding of the role of these transport genes in cadmium uptake 
and partitioning will help the identification of low accumulating cacao genotypes for trials in 
the field. 

4.2 Partitioning of cadmium within the plant 

Generally, cadmium concentration in plant tissue decreases from roots > stems > leaves > 
pod husks > seeds (Benavides et al. 2005). This appears to hold for cacao where a decrease 
in cadmium concentration from leaf to pod husk to shelled bean has been reported – see Table 
4. 

  

 
 
1 These include the Adenosine tri-phosphate (ATP) binding cassette (ABC) superfamily, HMA (heavy metal ATPase), ZIP (ZRT, 
IRT-like protein), NRAMP (natural resistance-associated macrophage protein), YSL (yellow-stripe-like transporter), NAS 
(nicotinamine synthase), SAMS (S-adenosyl-methionine synthetase), FER (ferritin Fe (III) binding), CADMIUMF (cation diffusion 
facilitator), NRT (nitrate transporter) and IREG (iron regulated transporter) (Shahid et al. 2016; Clemens et al. 2013) 
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Table 4 Summary of results from studies regarding cadmium concentrations in different cacao plant 

parts 

Study Region Country 
Cadmium concentration in cacao plant 
tissues 

Gramlich et al. 2018 LAC Honduras leaf > pod husk = shelled bean 

Gramlich et al. 2017 LAC Bolivia leaf > pod husk > shelled bean 

Barraza et al. 2017 LAC Ecuador leaf > pod husk = unshelled bean 

Mite et al. 2010 LAC Ecuador Bean shell > leaf > pod husk > bean 

Chavez et al. 2015 LAC Ecuador shelled bean > bean shell >> leaf 

Tantalean et al. 2017 LAC Peru 
stem > leaf > root > unshelled bean > pod 
husk 

Llatance et al 2018 LAC Peru root > stem > leaf > unshelled bean 

Laila Marie Zug et al. 2019 LAC Peru Shelled bean (dried, powdered) > bean shell 

Rodríguez Albarracín et al. 2019 LAC Colombia Leaf litter > leaves > shelled beans 

Ramtahal et al. 2016 LAC Trinidad and Tobago leaf > pod husk > bean shell > shelled bean 

Ramtahal et al. 2015 LAC Trinidad and Tobago bean shell > shelled bean 

Fauziah et al. 2001 Asia Malaysia leaf > pod husk > unshelled bean 

Source: Prepared by the authors 

 
The transport of cadmium through the xylem may explain why other parts of the plant contain 
less cadmium than leaves, as active transport is needed into the phloem (Sêkara et al. 2005). 
In contrast, Chavez et al. (2015) reported cadmium levels in leaves that were below the 
detection limit while concentration in beans exceeded 1 mg/kg. Higher levels of cadmium in 
the bean shell compared to the shelled bean have been reported in several studies, but not 
all (see also Takrama et al. 2015; Crozier 2012). Such differences appear to have a genetic 
basis (Laila Marie Zug et al. 2019; see section 4.3), but some of the results may be due to an 
artefact of material preparation (Lewis et al. 2018). 

Post-harvest treatment (fermentation and drying) may also play a role in cadmium partitioning 
in the bean (Ramtahal et al. 2015; Alianza Cacao 2018 pers comms). Recently, Thyssen et 
al. (2018) mapped the distribution of several contaminants, including cadmium, in the cross 
section of a fermented cacao bean using a new method1. Their analysis suggests that 
cadmium is located on the inner side of the seed shell as well as in the meristematic part of 
the seed and has a similar distribution to zinc and to some extent magnesium, potassium and 
phosphorous. It remains unknown whether the same pattern is present in beans prior to 
fermentation. 

4.3 Genotypic differences in cadmium uptake and partitioning 

The use of naturally occurring low-accumulating genotypes alone, as rootstock, scions, or in 
combination, is seen as an integral part of reducing cadmium accumulation in edible plant 
tissues of many crops (Nawaz et al. 2016; Savvas et al. 2010; Zhou et al. 2017). Genotypic 
variability in cadmium accumulation between cacao varieties has been reported in several 
studies (Cryer et al. 2012; Arévalo-Gardini et al. 2017; Gramlich et al. 2017; Barraza et al. 
2017; Lewis et al. 2018). Arévalo-Gardini et al. (unpublished) found cadmium concentration in 
the leaves of seedlings of 60 cacao genotypes grown in cadmium-spiked soil to range from 1 
mg/kg to 10 mg/kg. The International Cocoa Genebank in Trinidad and Tobago also noted 
differences in cadmium concentration in cacao beans between 100 of their accessions 
growing in very similar soil conditions (Lewis et al. 2018). An isotope study (Barraza, Maurice 
et al. in prep.) showed a significant difference in cadmium transfer from soil to plant tissues 

 
 
1 Laser ablation-inductively coupled plasma-triple quadrupole mass spectrometry (LA-ICP-TQMS) 
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between the Ecuadorian national fine flavour cacao and the CCN51 hybrid. In northern 
Honduras, a study comparing 11 grafted cacao cultivars found significant variations in bean 
cadmium content between cultivars and no relationship between bean and soil cadmium 
content (Engbersen et al. 2019). These results suggest that the differences in bean cadmium 
content could be due to genotype differences in cadmium loading during bean maturation 
(Engbersen et al. 2019). 

A genome-wide association study of more than 600 cacao genotypes is currently underway at 
the University of the West Indies. The study compares phenotypic variability in cadmium 
accumulation with variability in genetic markers that are linked to the genes involved. There 
appear to be four mechanisms of importance: i) membrane transporter density and efficiency, 
which determines the active uptake of cadmium into the root; ii) sequestration of cadmium in 
root vacuoles ensuring it does not enter the xylem; iii) transport from the root to shoot through 
loading into the xylem, and iv) translocation from the shoot to beans via the phloem. 
Understanding the genetic basis of variability between genotypes in uptake, sequestration and 
translocation of cadmium can help in the selection of those genotypes that appear to be low 
cadmium accumulators for trials as rootstock and scions. 

4.4 Tolerance to the toxic effects of cadmium 

According to He et al. (2017), plants may exhibit signs of toxicity when the total cadmium 
concentration in soil exceeds 8 mg/kg, bioavailable soil cadmium concentration is > 0.001 
mg/kg, or the cadmium concentration in plant tissue reaches 3 - 30 mg/kg (Solís-Domínguez 
et al. 2007; Chen et al. 2011). While at least two of these limits have been exceeded in many 
of the published studies on cacao, physiological damage has not been reported. 

Hyperaccumulators are species or genotypes that are able to accumulate heavy metals in 
their above-ground organs at concentrations 100 to 1000 times higher than those found in 
non-hyperaccumulating species, without suffering any discernible phytotoxic effect 
(Muszyńska et al. 2016). Van der Ent et al. (2013) suggest that a cadmium hyperaccumulator 
should be able to tolerate levels of 100 mg/kg in leaf tissues with no side effects. Laboratory 
experiments with cacao seedling using soils spiked at 50 and 100 mg/kg of cadmium reported 
ultrastructural changes and damage to the photosynthetic machinery and anti-oxidative 
metabolism (Castro et al. 2015; Pereira et al. 2017), suggesting that cacao cannot be 
considered as a hyperaccumulator. However, Pereira et al. (2017) interpreted the fact that 
plants translocated cadmium to aerial tissues as a sign of tolerance to cadmium, since 
intolerant plants tend to have a higher accumulation in the roots (Verbruggen et al. 2009). 
These studies also reported evidence of genotypic differences in cadmium tolerance (Castro 
et al. 2015; Pereira et al. 2017).  

4.5 The effect of tree age on cadmium accumulation 

The age of a tree may influence its uptake of cadmium. Results from Argüello et al. (2019) 
and Alianza Cacao (unpublished) indicated that young cacao plants absorb more cadmium 
than older ones. Among possible explanations for this are that older trees have deeper roots 
(tapping into the sub-soil which contains less cadmium than top-soil), older plantations have 
higher Ca content in the top soil, blocking cadmium uptake (Argüello et al 2019), younger trees 
grow faster and that the high biomass of older trees reduces cadmium concentration through 
dilution (Lettens et al. 2011). While Gramlich et al. (2017) found a positive correlation between 
cacao trunk diameter and cadmium uptake, trunk diameter was strongly related to the 
agroforestry system and cultivar type, so it is possible that this correlation is not causal. 
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4.6 The effect of nutrition on cadmium uptake 

The presence of micro and macro nutrients may affect the amount of cadmium absorption by 
the plant roots (Christensen et al. 1999; Sarwar et al. 2010). Cd2+ shares many properties with 
Zn2+ as well as other divalent cations including Ca2+, Mg2+, Mn2+ and Fe2+, and may compete 
with these for the same root transport membranes (Pereira et al. 2017; Castro et al. 2015; 
Gramlich et al. 2018). 

Cd2+ and Zn2+ share the same transport protein in root epidermal cells in nearly every plant 
species studied. The exception is rice which accumulates Cd2+ via the Mn2+ transport protein 
(Green et al. 2003). It has been reported that zinc strongly inhibits cadmium uptake by wheat, 
spinach and lettuce (Green et al. 2003; Paul and Chaney. 2017). However, other studies found 
that higher zinc levels in soils led to an increase in cadmium bioavailability or uptake by plants 
(Adriano 2001; Sarwar et al. 2010; Kabata-Pendias 2010). A factor governing the relationship 
between zinc and cadmium is their relative concentration in the soil. A low Cd:Zn ratio (< 0.01) 
could ensure plants rapidly saturate in zinc and limit their cadmium intake as observed in 
several crops (Adriano 2001; Sarwar et al. 2010 see also Geeroms 2016). 

The results of correlative studies of zinc and cadmium levels in soil and cacao beans have so 
far not increased our understanding of the role of zinc in reducing cadmium uptake. These 
studies have shown that a higher zinc content is not related to a reduction of cadmium uptake 
by cacao plants (Argüello et al. 2019; Crozier 2012; Arévalo-Gardini et al. 2017; Gramlich et 
al. 2017). In Honduras, Gramlich et al. (2018) found a weak but positive correlation between 
leaf zinc and cadmium concentrations. In studies in Venezuela and Peru, Crozier (2012) found 
a strong and positive relationship between bioavailable cadmium and zinc soil content. More 
recently, Argüello et al. (2019) found zinc concentrations in cacao leaves that were within the 
range of adequate plant nutrition, but leaf zinc concentration was not retained in their models 
predicting plant cadmium concentrations. According to the authors, this suggests that zinc 
deficiency is unlikely to have been a factor affecting cadmium accumulation in cacao beans – 
at least within their study area (Argüello et al. 2019). Similarly, Gramlich et al. (2017) found no 
negative correlations between soil zinc and cadmium content in cacao leaves, pod husks or 
beans, and concluded that higher zinc levels would not reduce cadmium uptake. 

The application of zinc as zinc sulphate (ZnSO4) to limit cadmium uptake has been shown to 
be effective in lettuce and spinach, especially when coupled with liming to prevent soil 
acidification (Paul and Chaney 2017). For fruit crops, there is also the option of applying zinc 
through a foliar application to avoid soil acidification while inhibiting cadmium transfer to fruits. 
In the only study so far published of the effect of adding zinc to soils with high cadmium levels, 
Zamora (2018) found a modest decreasing trend in cacao bean cadmium content when zinc 
sulphate, was applied – at 0.09, 0.18 and 0.27 kg per plant. Finally, preliminary results from a 
small field trial in Peru suggest that optimal fertilisation can reduce cadmium levels in beans 
(Zamora pers comm). Trials that are more robust are required to understand the role of 
fertilisation and zinc in cadmium uptake. 

4.7 The effect of environmental factors on cadmium uptake 

Cacao is grown under a range of production systems and agricultural practices. These range 
from monoculture in full sun to agroforestry systems where fruit and timber trees provide 
shade. Agricultural practices include organic and conventional production and water 
management ranges from rain fed to complete dependence on irrigation. These factors can 
affect soil characteristics, such as soil water balance, organic matter, and nutrient cycling and 
availability as well as temperature fluctuations (Deheuvels et al. 2014). As discussed in 
previous sections, these can all influence cadmium availability. While the use of different 
species of shade trees may also affect cadmium uptake by cacao (Gramlich et al. 2017; 
Argüello et al. 2019), the influence of farming systems on cadmium accumulation requires 
further study. 



24 

  

Cadmium can be recycled within the system through practices such as leaving leaf litter and 
pod husks on the ground (see section 2.2.4). The relative importance of this recycling process 
as a contributor to cadmium accumulation in beans has yet to be understood, but it is unlikely 
to be high compared to other processes. Moreover, reincorporating cacao biomass into the 
production system has several positive impacts such as increasing soil organic matter and 
levels of nutrients available to the cacao plant, or reducing soil erosion. Further work is needed 
to evaluate the contribution of this recycling process to cadmium accumulation in the beans 
and to assess the trade-offs involved in abstaining from reincorporating cacao biomass in 
production systems.  

Contaminated water can be an important source of cadmium in irrigated cacao production 
systems (see section 2.2.2). Assessing cadmium and chloride ion input into the farm through 
water as well as the impact of flooding can be conducted at a farm level to determine whether 
changes in water management could reduce the amount of bioavailable cadmium in the soil. 
Water remediation can be carried out with diatomite (Shawabkeh 2000; Liva et al. 2007) or a 
system of filters. There is also a possibility that bioremediation could help purify irrigation water 
prior to its use (Cazón et al. 2012). 

4.8 Phytoremediation 

Phytoextraction is the most commonly recognized type of phytoremediation for heavy metals. 
It uses hyperaccumulating plants that extract and sequester heavy metals in their tissues. 
Harvesting these plants then removes the contaminant from the site (Ansari et al. 2016). 
Phytoremediators are typically used in degraded areas with very high heavy metal 
concentrations as a cost-effective solution to conventional remediation methods (Ansari et al. 
2016; He et al. 2015).  

Several studies have identified cadmium hyperaccumulators for potential use as 
phytoextractors (Li et al. 2012; Villafort Carvalho et al. 2013; Wang et al. 2006). Two Chinese 
species Sedum plumbizincicola and S. alfredii, isolated from mining sites are 
hyperaccumulators of cadmium, lead and zinc. They are also shade tolerant and have a high 
biomass yield (L. Deng et al. et al. 2016; D. Deng et al. et al. 2007) and may be candidates 
for use in cacao plantations. 

However, there are two caveats. In order to be effective, hyperaccumulators require acidic soil 
conditions to ensure the cadmium is available. This contradicts the soil conditions needed for 
reducing cadmium accumulation in the target crop, and trials on rice in Thailand have reported 
difficulties in managing the conflicting conditions required (Simmons et al. 2015). 

Additionally, one of the key aspects of working with hyperaccumulators is to ensure that plant 
material is removed from the plantation before it degrades back into the soil, and that this 
material is transported off site. Strategies would be necessary to make sure that plant biomass 
is removed in a timely manner and disposed of in facilities designed for contaminated waste, 
which in remote areas may be complicated. Given these numerous challenges, a thorough 
investigation of the utility of phytoextraction is needed to better assess its potential as a 
mitigation solution (Casteblanco 2018). 
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Figure 6 Uptake and partitioning of cadmium within the cacao plant 

 

Source: Prepared by the authors 

4.9 The effect of post-harvest processing  

Once the cacao beans have been harvested from the trees, the post-harvest processes of 
fermentation, drying, roasting, and winnowing begin.  

It has been noted that cadmium appears to migrate to the surface of the bean during 
fermentation and removal of the bean shell can result in a decrease in the concentration of 
cadmium within the bean (Alianza cacao, pers comm). However, Kruszewski et al. (2018) 
measured cadmium levels in raw cacao originating from Ecuador and Dominican Republic 
and in the processed chocolate mass materials from three different manufacturers. They found 
no decrease of cadmium content after winnowing and suggest that the only solution is addition 
of other raw materials (sugar, milk etc.), while Mounicou et al. (2003) report an increase in 
cadmium concentration in beans through a reduction in water content.  

Given that cadmium is more soluble in acidic conditions, and that part of the fermentation 
process results in the production of acids, there is need for further research to understand the 
overall influence of traditional fermentation, drying and roasting on cadmium content of cacao 
beans as well as impacts on physical and flavour qualities. This information may lead to the 
development of new fermentation techniques. The private sector is investigating some of the 
aspects at the moment, using microbiology (in beans) and nanotechnology (in cocoa mass) 
and have managed to obtaining reduction in cadmium content between 20% and 25%, but 
details are so far not available. While this is a new line of research, it may prove very useful 
in the reduction of cadmium in cacao beans by blocking its cadmium flow. However, sensorial 
properties should be monitored to ensure that qualities of fine and flavour cacao are not 
affected.  
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5  MITIGATION SOLUTIONS  

A mitigation hierarchy can help us develop a nuanced and integrated set of solutions to reduce 
the level of cadmium in cacao beans and thus chocolate by considering actions from farm to 
final product that are adapted to the specific conditions of the cacao value chain.  

- Avoid high risk areas for establishing plantations  
- Minimise the uptake of cadmium by the cacao tree  
- Reduce levels of cadmium through post-harvest processing 
- Reduce levels of cadmium in chocolate by blending 

It is unlikely that there is a single solution to reduce cadmium accumulation in cacao beans 
due to the heterogeneity in environmental and soil conditions in the region, the level of 
cadmium in the soil and its bioavailability, different origins of cadmium, the use of different 
genotypes, and the demands buyers and markets are placing on the level of cadmium in the 
final product.  

The solutions also have different cost implications, and their effective implementation requires 
the motivation of a range of actors. It must be kept in mind that solutions being developed for 
application in the plantation must be feasible to producers in the region who in general grow 
cacao on a small scale and with limited financial and technical resources. While it is expected 
that many of the solutions will improve soil health, consequently increase productivity and thus 
help meet any additional costs resulting from cadmium mitigation, this may not always be the 
case. Other solutions such as irrigation water treatment may be beyond the producers’ scope 
and may require the intervention of the government or NGOs for implementation. 

It should be kept in mind that while theories on the most important factors influencing cadmium 
uptake by cacao abound, only some of the solutions proposed have been or are in the process 
of being tested in LAC. Further research is needed to draw clear conclusions on their 
applicability at larger scales and across different environmental conditions. Other potential 
solutions remain unexplored or untested. 

5.1 Avoid high-risk areas for establishing plantations 

Until there are cost-effective and efficient solutions to reduce the accumulation of cadmium in 
cacao beans, sites at risk from cadmium contamination should be avoided for new plantations. 
While soil analysis can help, the identification of high risk areas is not always straightforward, 
as total soil cadmium content and cadmium bioavailability can vary widely within a small area 
(Argüello et al. 2019). Moreover, cacao grown on soils containing relatively low cadmium 
levels may still be able to accumulate high concentrations of cadmium in their beans. As such, 
regulatory thresholds of soil cadmium for agricultural land and irrigation water (e.g. Peru1) may 
not be very informative, since total soil cadmium alone is not always a reliable indicator. A 
better strategy may be to avoid establishment of new plantations within cacao growing areas 
known to have problems in selling their cacao for export. This approach requires a detailed 
knowledge of cadmium bean levels in a particular region, information that is being developed 
in many of the cacao-producing regions. A better understanding of the sources of cadmium 
contamination and the assessment of areas at risk based on digital soil mapping techniques 
using environmental covariates could help define effective guidelines for establishing new 
cacao plantations. 

It should be acknowledged that while many farmers cannot choose or change the location of 
their farmland, they could decide which crop to grow on their land. Thus until solutions have 
been developed, farmers in areas believed to be at high risk for cadmium accumulation in 
cacao may be advised to plant another crop, at least in the short term. 

 
 
1 Download PDF – Decreto Supremo N° 011-2017-MINAM 

http://www.minam.gob.pe/wp-content/uploads/2017/12/DS_011-2017-MINAM.pdf
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5.2 Minimise the uptake of cadmium by the cacao tree 

Some of the most promising strategies for reducing cadmium in cacao beans involve 
minimising its uptake by the trees. This can be achieved by i) adding soil amendments that 
alters soil characteristics such as pH or soil organic matter content, to reduce the bioavailability 
of cadmium to cacao plants; ii) increasing the nutrient status of the plant which can reduce 
cadmium uptake; iii) adding microorganisms and other plant species that sequester cadmium 
from the soil, and iv) using genotypes that are naturally low accumulators. 

5.2.1 Soil management and amendments 

Although development of an effective suite of solutions is still in its infancy, once high 
concentrations of cadmium in cacao beans have been detected in a plantation, a soil analysis 
can help identify which soil management approach or approaches are likely to be the most 
effective. In areas under irrigation, a water analysis will also be needed to measure chloride 
ion levels that can be key to cadmium availability. 

5.2.1.1 Soil pH  

Strategies aimed at raising soil pH to reduce cadmium bioavailability to cacao plants growing 
on acidic soils seem to have great potential as short to mid-term solutions – see section 3.2.3 
– and there is a need for larger trials with a longer duration to assess the potential of these 
strategies across different environments. It is also important to ensure that surface application 
of liming materials can penetrate into the root zone in the soil, achieved through combination 
with organic matter.  

It should be noted that there are examples of cacao growing on soil with neutral to alkaline pH 
that have high levels of cadmium in their bean (Remigio 2014). Furthermore, in areas where 
some sources of liming material are forbidden due to its use in making cocaine, alternative 
amendments such as biochar will need to be used. 

5.2.1.2 Organic matter 

Increasing soil organic matter content is a promising cost-effective solution to reduce cadmium 
bioavailability in soils – see section 3.2.4. This includes the use of manures, fulvic acids and 
biochars among others. Initial results are encouraging. Still, it should be noted that some 
organic matter amendments can contain high levels of heavy metals and should be analysed 
for cadmium content prior to their application (Khan et al. 2017). 

5.2.1.3 Silica 

Further research is needed through field trials to assess the potential of diatomite or other 
sources of silica to reduce both cadmium content in contaminated water and cadmium 
bioavailability in soils.  

5.2.2 Plant nutrition 

As nutrients and elements of the soil can influence cadmium bioavailability and uptake by 
cacao plants, adequate plant nutrition is likely to be important – see section 4.6. Cacao 
producers in LAC commonly do not apply optimal levels of fertiliser, and more attention should 
be focused on including this aspect in systematic trials. For those applying phosphate and 
zinc-containing fertilizers it is important to ensure that they do not contain high levels of 
cadmium as regulations are lacking in many countries of Latin America.  

5.2.3 Bioremediation 

Certain plants and microorganisms have been identified as hyper accumulators of cadmium 
and have been proposed for soil remediation in cacao plantations although there are no results 
from field trials – see sections 3.2.8 and 4.8. The concept of bioremediation was developed 
for soils with exceptionally high heavy metal contents, which is not the general case in cacao 
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plantations in LAC. Their utility in soils with relatively low cadmium concentrations remains 
unclear. Additionally, bioremediation is more efficient in acidic soils where the cadmium is 
bioavailable. This condition is contrary to all the other soil mitigation solutions discussed 
above. An added complication is associated with timely harvesting and safe disposal of 
biomass from plant hyper accumulators which may be difficult to implement in rural areas. 
Field assessments are needed to evaluate the feasibility of using microorganisms and hyper-
accumulating plants to reduce cadmium bioavailability.  

5.2.4 Low accumulating genotypes 

There is much variation in cadmium uptake and partitioning between cacao genotypes – see 
section 4.3. Reconversion of plantations using low accumulating genotypes as rootstock or 
scion is likely to be a very important part of the solution in the mid- to long-term, especially in 
areas with high levels of available soil cadmium. 

A better understanding of the genetic basis of this variation is needed to identify rootstocks 
with reduced cadmium uptake and translocation, and scions that transport less cadmium from 
rootstock to leaves and fruits. This is in addition to field trials with material already identified 
from phenotypic analysis. 

5.2.5 Other agricultural practices 

Adapting key agricultural practices may play an important role in the management of cadmium 
within cacao production systems although further research is needed. These include water 
management and irrigation, farm management, and manipulating the production system itself 
(organic, conventional, agroforestry, monoculture). Limiting the input of saline irrigation water 
may be important for some areas, as can limiting the flood-drought cycle intensity. 

5.3 Reduce levels of cadmium through post-harvest processing 

Investigation and advances in post-harvest processing are in their infancy and there is need 
for further research to understand the overall influence of traditional fermentation, drying and 
roasting on cadmium content of cacao beans, as well as impacts on physical and flavour 
qualities – see section 4.9. It is however unlikely that these processes will reduce cadmium 
significantly with no effect on other properties and may only be applicable for cacao with 
cadmium content marginally above the regulatory thresholds.  

5.4 Reduce levels of cadmium in chocolate by blending 

Blending high cadmium content cacao beans with beans from other regions or even countries 
with a low cadmium content can be an effective short-term solution to ensure that products do 
not exceed the regulatory limits. However, for some areas this will result in the loss of regional 
identity and flavour differences that are key to the fine or flavour cacao market. Although this 
market represents only 6% of cacao traded, it is the most important market for producers in 
many areas across LAC.  

For fine or flavour cacao that cannot be blended, there is a growing understanding that the 
fine scale variation in soil cadmium levels and bioavailability is also reflected in the bean 
cadmium level – thus neighbouring farms may have very different concentrations of cadmium 
in their harvested beans. A fine scale sampling can allow separation of beans that have 
acceptable levels above the EU threshold from those that do not, thus allowing for continued 
sale of a higher proportion of beans compared to when sampling is carried out at a larger scale 
(Remigio 2014). As long as the levels remain constant over time, and a cost-effective method 
of sample analysis can be established, this would allow continued sale of part of the harvest 
while mitigation measures are developed and tested in farmers’ fields. 
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6 ONGOING RESEARCH PROJECTS ON CADMIUM AND CACAO 

Several institutions have been contacted regarding information on ongoing or upcoming 
projects on cadmium. We received information on 26 projects across 5 countries and two 
regional projects: 

Regional – LAC 2 
Colombia 12 
Ecuador 6 
Indonesia 1 
Peru 6 
Trinidad and Tobago 1 
Total 28 

 

The following section presents key information about identified projects dealing with cadmium 
and cacao. For each project, the description of project general objectives has been broken 
down into different research topics or specific types of experiments.  

The projects’ description includes the following information (when applicable): • General information 

o Project title 

o Lead/implementing institution 
o Key experts 
o Partners 
o Funding sources 
o Geographical scope 
o Start date 
o End date • General objective • Measuring cadmium levels in soils or cacao beans and soil mapping 

o Locations/Area covered 
o Description • Measuring cadmium levels in cacao plant tissue 

o Description • Identifying sources of cadmium contamination in the soil 

o Sources investigated 
o Description • Soil and nutrient management 

o Type(s) of intervention 
o Description • Geo-chemical properties of the soil, agronomic factors and cadmium 

bioavailability/uptake 

o Description • Phytoremediation and bioremediation  

o Type(s) of intervention 
o Description • Genetic variability in cadmium uptake and partitioning 

o Description • Physiological mechanisms of cadmium uptake and partitioning 

o Description 
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• Post-harvest practices 

o Description • Socio-economics and technology transfer 

o Description • Published references • Expected outcomes 

 

This information on all projects is summarized in the following section. Detailed information on 
each ongoing project is provided in section 6.2. 

 

6.1 Synthesis of ongoing projects 

Figure 7 summarizes the detailed information from each project. Each research projects may 
focus on one or more specific research areas. 

 

Figure 7 Research areas of ongoing projects (Number of Projects in parenthesis) 

 

Source: Prepared by the authors 

 

The section below summarises the research projects (Country and project ID) in the main 
research areas. The projects are detailed in section 6.2. 
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Measuring cadmium levels in soils or cacao beans and soil mapping 

Ecuador P10* Mapping of cacao growing regions of Ecuador based on bean cadmium 
content – 15 departments which represent 97% of the total production 
area (completed and published)  

Colombia P18 Soil characterization (chemical, physical, cadmium) to map out suitable 
areas for cacao as well as to define management zones for optimal and 
sustainable production in Colombia.  

Colombia P23 Spatial modelling of the cadmium content in soils cultivated with cocoa. 
Dynamics of cadmium in stony soils with high levels of the element in 
beans. The results show a high spatial variability of cadmium levels in soil 
and plant, both at the municipal level and within farms.  

Colombia P24 Measuring Cd in soils and cacao beans in farms from Antioquia and 
Santander districts of Colombia. Performing a compilation of Cd in soils 
and beans of Colombia in an agreement between AGROSAVIA – 
FEDECACAO to develop geospatial distribution models of Cd in cacao 
from Colombia. 

Colombia P24 Total content and availability levels of heavy metals cadmium, mercury, 
arsenic and lead in soil and dry cocoa beans from Colombia. This work 
was based on the determination of heavy metals in the soil, the presence 
of traces of these metals in the cocoa bean and in concentrations greater 
than those allowed by the international market 

Measuring cadmium levels in cacao plant tissue 

Indonesia P28 Survey of cadmium contents in cacao beans produced from production 
areas in Indonesia and those imported from other countries 

Identifying sources of cadmium contamination in the soil 

Ecuador P10 Analyse cadmium concentration in soils and cacao beans of 30 farms to 
identify hotspots as well as sources of contamination across different 
altitudes and agroforestry systems 

Ecuador P13 Determine the cadmium sources and transfer processes between soil 
and cacao tissues in tropical environments using isotopic and 
biogeochemical tracers 

Colombia P23 Diagnosis of cadmium concentration in soils and cocoa beans and 
evaluating if cadmium contents in plants is of geogenic or anthropogenic 
origin. 

Colombia P24 Assessing both anthropogenic (mainly chemical fertilizers and manures) 
and geogenic sources (mainly using 2D-ERT technique) of Cd in cacao 
farms from Antioquia and Santander districts of Colombia. 

 



32 

  

Soil and nutrient management 

Types of  

intervention 

• Biochar (Peru P04, Ecuador P10, Ecuador P11) 
• Liming material (Peru P08, Ecuador P10) 
• Cadmium-tolerant bacteria - CdtB (Colombia P24) 
• Compost (Ecuador P10) 
• Vermicompost (Ecuador P10) 
• Humic and fulvic acids (Ecuador P10) 
• Micronutrients (Ecuador P10) 
• Coffee residue (Ecuador P11) 
• Oil palm residue (Ecuador P11) 
• Quinoa residue (Ecuador P11) 
• Organic matter (Peru P08, Indonesia P28) 
• NA (Trinidad and Tobago P03, Peru P06, Ecuador P15)  
• Optimal fertilisation (Regional LAC P01, Peru P04) 
• Silica (Peru P04) 

Regional LAC  

P01 
Study of the effect of the omission of nutrients in the concentration of 
cadmium and the productivity of the crop. 

Trinidad &  

Tobago P03 
Field trials using amendments in collaboration with the private sector. 

Peru P04 Field trials using different amendments. 

Peru P06 Evaluate different organic amendments in cadmium uptake in cacao. 

Peru P08 Evaluate different organic amendments and lime in cadmium uptake in 
cacao. 

Ecuador P10 Trials on 10 model farms with different levels of pH (low, medium, 
alkaline), using amendments to raise pH, organic matter and foliar 
application of micronutrients. 

Ecuador P11  Greenhouse trials using different amendments. Best performing practices 
will be used for field trials in Northern Ecuador, in alkaline and low pH 
soils. 

Ecuador P14 Diagnosis of the management of the farm with agroforestry cocoa 
through interviews. 

Ecuador P15 Sampling and analysis of amendments and cacao plantation soils from 
areas with high bean cadmium levels. Greenhouse trials to determine the 
absorption and bioavailability of cadmium. 

Colombia  
P24, P26, P27 

Evaluation of soil management strategies to reduce the presence of 
Cadmium in cocoa almonds. 

Indonesia P28 Effect of organic matter on cadmium absorption. 
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Geo-chemical properties of the soil, agronomic factors and cadmium 
bioavailability/uptake 

Ecuador P10  Evaluation of the effect of 10 soil properties of cacao growing soils and 
14 agronomic factors on cadmium concentration in soils and cacao beans 
through multivariate regression analysis (completed, see published 
references). 

Ecuador P14 Physical, chemical, biological and mineralogical properties of the soils will 
be measured and their effect on the bioavailability of cadmium will be 
determined by means of correlation analysis, multiple regressions and 
cluster analysis. 

Ecuador P15 Understand the mechanism that causes bioavailability of cadmium in 
cacao plantations using sequential extraction, soil physiochemical and 
mineralogical characterization and thermodynamics and kinetic studies. 

Colombia P23 Cacao bean samples and soil samples from 100 farms analyzed to 
determine Cadmium levels in beans, the pseudo-total Cadmium and bio-
available Cadmium and other soil properties (pH, organic carbon, P, Fe, 
Mn, Zn and Cu).  

Colombia P24 Assessing geogenic sources (mineralogical composition of Cd using 2D-
ERT technique) of Cd in cacao farms from Antioquia and Santander 
districts of Colombia and its analysis with soil elements and Cadmium-
tolerant bacteria (CdtB). 

Phytoremediation and bioremediation  

Types of  

intervention 

• Cadmium accumulating yeasts (Peru P04) 
• Mycorrhizae (Peru P04, Colombia P16, P21, P24) 
• Heliconia psittacorum (Colombia P16) 
• Plants (Ecuador P15) 

Peru P04  Field trials using cadmium accumulating yeasts. 

Peru P04  Greenhouse trials using commercial mycorrhiza and bacteria. 

Ecuador P15 Identification and evaluation of leguminous plants found in cacao 
plantations for phytoremediation. 

Colombia P16 Trials in nursery using Heliconia psittacorum alone and associated with 
fungal biomass. 

Colombia P17 Evaluate, in vitro, the level of tolerance to cadmium of native fungal 
species from cacao-growing soils of San Vicente de Chucurí. 

Colombia P21 • Characterization of arbuscular mycorrhizae fungi (AMF) communities 
that will allow for the identification of potential stress-tolerant AMF for 
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the development of mitigation strategies in cocoa plants under Cd-Zn 
stress.  

• Inoculation with AMF communities from Cd-enriched soils and 
commercial AMF. 

Colombia P22 Cd-resistant bacteria and fungi associated to cacao rhizosphere were 
isolated and identified through morphological and molecular markers. 
Their ability to solubilize phosphorous, fix nitrogen, and degrade cellulose 
were also evaluated. The results of this study will provide knowledge of 
Cd-resistant microorganisms associated to cacao crop and highlights 
potential strains for biotechnology-based strategies to mitigate the cocoa 
Cd uptake. 

Colombia P24 Assessing Cadmium tolerant bacteria (CdtB) and mycorrhizae to 
immobilize Cd in cacao farms from Antioquia and Santander districts of 
Colombia using metabolic fingerprints with isothermal microcalorimetry 
(IMC) and analysing its chemical conversions with XRD/XRF and MALDI-
TOF, as well as, with functional genes involved in Cadmium 
immobilization and chelation. Monitoring its capabilities in seedlings at 
greenhouse experiments and amendments in experimental field pots to 
sequestrate Cd in soils in cacao farms from Antioquia and Santander 
districts 

 

Genetic variability in cadmium uptake and partitioning 

Regional LAC  

P01 

Cocoa genotypes with less accumulation of cadmium, proposal for gene 
editing. 

Trinidad & 
Tobago P03 

Field trials using promising low cadmium accumulating rootstocks  

Peru P04 Identification of low accumulating genotypes (screening of > 1000 
national genotypes) 

Peru P04 Field trials with promising low accumulating rootstocks and scions 

Peru P07 Evaluate different cadmium uptake of different cacao clones 

Ecuador P11 Screening 10 different accession for low cadmium accumulation 

Ecuador P13 Comparison of Cadmium transfer and recycling between soil and plant 
for 2 varieties 

Colombia P21 Effect of grafting over Cd-Zn uptake and plant physiology of two 
genotypes under Cd-Zn stress. A trial experiment has been conducted 
using ungrafted, self-grafted and grafted plants of four different 
genotypes (IMC67, CAU43 as rootstocks; and FSV41, CCN51 as 
scions).  
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Colombia P25 Parental selection by attributes of interest: molecular characterization, 
quality criteria, disease resistance and cadmium absorption. 

Indonesia P28 Screening of some rootstock on absorption of cadmium from soil 

Physiological mechanisms of cadmium uptake and partitioning 

Ecuador P13 Follow the transfer and accumulation processes from soil to cacao 
beans using isotopic and biogeochemical tracers 

Ecuador P14 Measure total cadmium content as well as micro-nutrients content in 
root, stem, leaves and beans 

Colombia P21 Nutrition, photosynthetic efficiency, HMs partitioning and growth of two 
cocoa genotypes (IMC67 and PA121) are assessed in natural enriched 
soils with low and high Cd-Zn concentrations 

Colombia P23 The Cadmium in leaf and fruit tissues (shell, bean and pod husk) was 
analysed. Cadmium in soil and cacao leaf litter around trees was also 
determined. Bioaccumulation factor (BF) was calculated as the ratio of 
Cadmium in leaf or bean to that in soil, and Translocation factor (TF) as 
the ratio of Cadmium in leaf to that in fruit tissues.  

 
Post-harvest practices 

Ecuador P11 Monitor every two months the cadmium content of cacao beans (dried 
and fermented) of 15 collection centres to sort beans in batches that 
comply with EU regulations. 

Ecuador P12 Effect of fermentation and drying processes on cadmium content in 
cacao beans 

Ecuador P13 Monitor cadmium transfer (enrichment or loss) within each step of 
chocolate end-product elaboration (dry beans, fermented beans, 
roasted beans and cocoa liquor) 

Colombia P19 Cadmium content reduction in fermented Colombian fine flavour cocoa 
beans grown in highest cadmium content areas by nanotechnology 
strategies. 

Colombia P20 Cadmium content reduction in fermented Colombian fine flavour cocoa 
beans through the use of biotechnological strategies with 
microorganisms during post-harvest. 

Socio-economics and scaling up of potential solutions 

Ecuador P10  Evaluation of the cacao value chain and quantification of the economic 
impact of EU regulations in contaminated cacao growing areas of 
Ecuador. The economic impact of possible mitigation strategies and 
scaling-up potential for small-holder cacao farmers will also be 
investigated. 
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6.2 Presentation of ongoing projects 

6.2.1 Regional – Latin America and the Caribbean 

 
projectID P01 

Project title  Multi Agency Platform of cocoa for Latin America and the Caribbean 
“Cacao 2030-2050” 

Lead/implementing  
institution 

Instituto Nacional de Investigaciones Agropecuarias (INIAP) 
Escuela Politécnica del Litoral (ESPOL) 

Key experts Manuel Carrillo Centeno (INIAP), Eduardo Chávez (ESPOL), Ramón 
Espinel (ESPOL) 

Partners Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), 
Instituto Nacional de Innovación y Transferencia en Tecnología 
Agropecuaria (INTA) Costa Rica, Instituto Dominicano de Investigaciones 
Agropecuarias y Forestales (IDIAF), Instituto Nacional de Innovación 
Agraria (INIA) Perú, Instituto de Investigación Agropecuaria de Panamá 
(IDIAP), Universidad Nacional de Costa Rica (UNA), CATIE (Costa Rica), 
CIAT (Colombia), CEFA (Italy), GIZ (Alemania), RIKOLTO, FCIA 

Funding sources FONTAGRO 

Geographical scope Latin America and the Caribbean 

Status of submission Approved 

Start date 2019 

End date 2022 

General objective Develop and transfer technology for the production of fine flavour cocoa, 
with quality and safety in Latin America and the Caribbean, strengthening 
the capacities of national R & D & I systems with an impact horizon of 2030 
and 2050. The specific objectives of the project are: i) to generate 
knowledge and alternatives for the management of cadmium in the cocoa, 
ii) to establish and standardize a methodology for measuring cadmium to 
generate maps and techniques to reduce the levels of cadmium, iii) 
generate socio-economic information of the impact of international 
regulations, and iv) disseminate and transfer the knowledge and 
alternatives generated by the project 

Expected outcomes • Cocoa genotypes with less accumulation of cadmium. 
• Study of the effect of the omission of nutrients in the concentration of 

cadmium and the productivity of the crop. 
• Proposal for gene editing. 
• Standardized methodology for the determination of cadmium in the 

region. 
• Report containing cadmium maps of some countries, and validation of 

strategies to mitigate cadmium absorption.  
• Report of drying and fermentation of cocoa on the content of 

cadmium. 
• Strategic framework document for the long-term Cocoa Platform 

2030-2050. 
• Socio-economic and impact analysis of EU regulations regarding 

cadmium concentration. 
• Analysis of current regulations for the import of fertilisers in the region. 
• Memories of annual workshops. 
• Training plans for trainers, journalists, and farmers. 
• Virtual Repository / platform with information about cadmium in cocoa. 
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projectID P02 

Project title  Fostering CLIMAte-relevant and LOw CAdmium innovations to 
enhance the resilience and inclusiveness of the growing cocoa 
sectors in Colombia, Ecuador and Peru (Clima-LoCa) 

Lead/implementing  
institution 

ALLIANCE BIOVERSITY-CIAT 

Key experts Mayesse Da Silva, Mirjam Pulleman, Andres Charry, Christian Bunn, 
Rachel Atkinson, Evert Thomas, Xavier Argout, Eduardo Chavez, Erik 
Smolders, Darwin Martinez, Rey Gastón Loor, Manuel Carrillo, 
Pathmanathan Umaharan, Laurence Maurice, Caren Rodriguez, Roxana 
Yockteng, Olivier Sounigo, Angela Castaño, Jaime Osorio, Andrea 
Montenegro and others in each of the implementing countries. 

Partners ALLIANCE BIOVERSITY-CIAT, CIRAD, AGROSAVIA, INIAP, ESPOL, 
WAGENINGEN UNIV., KULEUVEN, CRC, IRD 

Funding sources Europe Aid (DeSIRA) 

Geographical scope Colombia, Ecuador, Peru 

Status of submission Approved and contract in process of finalization  

Start date January 2020 (expected) 

End date December 2023 (expected) 

General objective Clima-LoCa will address important challenges related to the resilience, 
competitiveness and inclusiveness of the growing cocoa sectors of 
Colombia, Ecuador and Peru. Here, resilience refers to the capacity of 
smallholder producers, and other value chain actors, to mitigate the 
negative impacts of new EU food safety regulation on cadmium in cocoa; 
and of climate change. More specifically, the objective of the Action is to 
support the development, implementation and scaling of low cadmium and 
climate-relevant innovations that fit the diverse contexts of smallholder 
cocoa production. 

Expected outcomes The objectives of the project will be achieved based on 4 main outputs that 
are developed around 4 interdisciplinary work packages.  
• WP1 will develop baselines and impact assessments for cadmium and 

climate change, and inform public policies and interventions taking into 
account edaphoclimatic, cacao genetic and socio-economic variation 
within and between the countries 

• WP2 will provide scientific assessments in multilocational research 
trials to identify production practices and genotypes for reduced 
cadmium accumulation in cocoa beans, while considering effects on 
productivity, soil health, climate relevance and cost-benefits 

• WP3 will pilot low cadmium agronomic practices and genotypes in 
collaboration with farmer associations, and co-develop mitigation and 
scaling strategies in multi-stakeholder platforms 

• WP4 will strengthen regional research coordination and research 
capacity, and promote scientific exchange and training, including 
training of laboratories.  

All WPs include important activities dedicated to the dissemination of the 
project outputs and will develop decision support tools and training 
materials, targeting diverse stakeholders.  
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6.2.2 Trinidad and Tobago 

 
projectID P03 

Project title  Phase 2 "Mitigation of cadmium (cadmium) Bioaccumulation in 
Theobroma Cacao L." 

Lead/implementing  
institution 

Cocoa Research Centre 

Key experts Caleb Lewis, Gideon Ramtahal 

Partners ECA, CAOBISCO, FCC 

Funding sources ECA/CAOBISCO/FCC joint research fund 

Geographical scope Trinidad and Tobago 

Start date 2018 

End date 2019 

General objective This project will pick up on the first phase and will intensify field trials. 
Activities will include: 

• field trials with amendments in collaboration with the private sector  
• field trials using promising low cadmium accumulating rootstocks 

Soil and nutrient management 

Description Field trials with amendments in collaboration with the private sector  

Genetic variability in cadmium uptake and partitioning 

Description Field trials using promising low cadmium accumulating rootstocks identified 
in phase 1in different environments. 

Expected outcomes • Results on the efficiency of different amendments as mitigation 
solutions for cadmium uptake by cacao plants  

• New insights on the effects of using low-accumulating rootstocks with 
different scions and within different environments  

 

6.2.3 Peru 

 
projectID P04 

Project title Cadmium and cacao: identifying short and long-term solutions 

Lead/implementing  
institution 

Bioversity International 

Key experts Evert Thomas; Rachel Atkinson 

Partners MINAGRI, SENASA, INIA; U. Cientifica del Sur; U. San Marcos; U. 
Nacional de Piura 

Funding sources Peruvian Government 

Geographical scope Peru 

Start date 2018 

End date 2020 

General objective This project will first study the presence of cadmium in areas close to the 
project's activities and will investigate solutions at short and mid-term 
through: 

• field trials using soil amendments and cadmium accumulating yeasts 
• field trials testing low accumulating genotypes 
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• greenhouse trials using mycorrhiza in soils with different cadmium 
and pH levels, and combining low accumulating genotypes 

Soil and nutrient management 

Type(s) of intervention • Biochar (Inkan Negra /U. Cientifica del Sur) 
• Optimal fertilisation (Yara) 
• Diatomaceous earth (Feys Peru) 
• High accumulating yeast (Fertilev – Bioxlab/ U San Marcos) 
• Combinations 

Description Experiments using 14 treatments being carried out in established and new 
plantations with producers associated with the Cooperative NorAndino to 
determine effect on Cadmium accumulation in fruits and Cadmium 
availability in the soil 

Phytoremediation and bioremediation  

Type(s) of intervention • Commercial mycorrhiza 

Description Controlled experiments in greenhouses will be carried out to evaluate the 
capacity of commercial mycorrhiza to accumulate cadmium, combining the 
use of 1 to 5 promising low-accumulating genotypes within soils with 
different cadmium concentrations and pH levels.  

Genetic variability in cadmium uptake and partitioning 

Description The project will identify cacao genotypes native to Peru with low cadmium 
accumulation through a collection of > 1000 plants across the country by 
measuring levels of cadmium in leaves and soils (expected ~100 
genotypes). This will serve as a baseline before field testing and for genetic 
characterization. In addition, metagenomic testing of associated 
mycorrhizas will be conducted. Once identified as potential low 
accumulating genotypes, field testing of promising rootstocks will allow to 
check the effect of grafting and of environment (especially alkaline soils).  

Expected outcomes • Results on the efficiency of applying different amendments and using 
cadmium accumulating yeasts as a solution to reduce cadmium 
uptake by cacao plants (first results by early 2019, more by mid-2019 
and early 2020) 

• Results on the efficiency of applying mycorrhiza as a solution to 
reduce cadmium uptake by cacao plants (by early 2019) 

• Identified promising Peruvian genotypes which show low leaf 
cadmium levels growing within soils with high cadmium content. 
These promising genotypes could be used in further selection 
programs and as rootstocks in different cacao growing regions (by 
early 2019) 

• New insights on the role of genotype 

 

projectID P05 

Project title Cacao Seguro USDA-FAS/MINAGRI Action Plan 

Lead/implementing  
institution 

Instituto de Cultivos Tropicales-ICT/USDA-FAS – MINAGRI 

Key experts Harold Tarver (USDA-FAS), Benjamin Lownik (USDA-FAS), Enrique 
Arévalo-Gardini (ICT), Tommy Fairlie Canon (ICT/USDA-FAS) 

Partners USDA-FAS (Cacao Seguro Project), USAID, MINAGRI, SENASA, INIA 

Funding sources USAID, USDA-FAS 

Geographical scope Peru 
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projectID P05 

Start date 2018 

End date 2021 

General objective This project seeks to stimulate the intensification of research on cadmium 
in cacao in Peru through actions (project funding etc.) taken by the 
Peruvian government. Research Topics Include:  

• testing of the most promising approaches to mitigate cadmium 
accumulation 

• the concerted response of Peru in the international arena, CODEX, 
EU, etc.,  

• Laboratory standards and methodologies to analyse cadmium content 
• Outreach 

 

projectID P06 

Project title Effect of organic amendments in cadmium accumulation in cacao 

Lead/implementing  
institution 

Instituto de Cultivos Tropicales – ICT 

Key experts César O. Arévalo-Hernández, Enrique Arévalo-Gardini, Juvicksa Correa, 
Virupax Baligar 

Partners USDA-ARS 

Funding sources USDA-ARS, ICT 

Geographical scope Peru – Tarapoto-San Martin 

Start date 2017 

End date 2018 

General objective Evaluate different organic amendments in cadmium uptake in cacao 

 

projectID P07 

Project title  Cadmium and Lead uptake in different cacao clones used for 
commercial plantations 

Lead/implementing  
institution 

Instituto de Cultivos Tropicales – ICT 

Key experts Enrique Arévalo-Gardini, Virupax Baligar, César O. Arévalo-Hernández, 
Jimmy Chupillon 

Partners USDA-ARS 

Funding sources USDA-ARS, ICT 

Geographical scope Peru – Tarapoto-San Martin 

Start date 2017 

End date 2018 

General objective Evaluate different cadmium uptake of different cacao clones 
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projectID P08 

Project title Effect of lime and organic amendments in cadmium uptake in cacao 

Lead/implementing  
institution Instituto de Cultivos Tropicales – ICT 

Key experts César O. Arévalo-Hernández, Enrique Arévalo-Gardini, Virupax Baligar, 
Josselyn Revollar 

Partners USDA-ARS 

Funding sources USDA-ARS, ICT 

Geographical scope Peru – Tarapoto-San Martin 

Start date 2017 

End date 2019 

General objective Evaluate different organic amendments and lime in cadmium uptake in 
cacao 

 

projectID P09 

Project title Inter Lab for Peruvian Laboratories (Cacao Seguro Project) 

Lead/implementing  
institution Instituto de Cultivos Tropicales – ICT / USDA FAS 

Key experts César O. Arévalo-Hernández, Enrique Arévalo-Gardini 

Partners USDA-FAS (Cacao Seguro Project), USAID 

Funding sources USAID, USDA-FAS 

Geographical scope Peru – Tarapoto-San Martin 

Start date 2018 

End date 2019 

General objective Determination of cadmium for cacao bean and powder through Inter-
Laboratory Comparison within Peruvian labs have a similar and minor 
variability in the results 

 

6.2.4 Ecuador 
 
projectID P10 

Project title  Estudio nacional: En marcha 2017-2020. ESPOL – KU Leuven 
(Bélgica) 

Lead/implementing  
institution 

ESPOL 

Key experts Eduardo Chávez, Erik Smolders, Ramón Espinel, Miet Marteens, David 
Argüello, José Luis Vázquez, Daniela Montalvo 

Partners KU Leuven, Colaboración con Industria y ONGs para implementar 

Funding sources VLIR-UOS 

Geographical scope Ecuador 

Start date 2017 

End date 2020 

General objective The project seeks to identify the agronomic and economic impacts of EU 
regulations on cadmium and communicate results to cacao growers. Short 
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and long-term mitigation strategies to reduce accumulation of cadmium in 
cacao beans will be evaluated through a holistic and systematic approach. 
The results will be transferred to all stakeholders of the cacao value chain, 
and in particular to small-holder cacao growers. 

Measuring cadmium levels in soils or cacao beans and soil mapping 

Locations/Area covered Cacao growing regions of Ecuador (15 departments which represent 97% 
of the total production area) 

Description Sampling of soils, cacao leaves and beans (n=571) in 15 departments of 
Ecuador for soil mapping based on bean cadmium concentration 
(Finished, see published references). 

Soil and nutrient management 

Type(s) of intervention Different liming materials, compost, vermicompost, humus, humic and 
fulvic acids, biochar, micronutrients.   

Description Trials on 10 model farms with different levels of pH (low, medium, 
alkaline). 

• Application of amendments to lower pH of the soil within acid soils 
(different liming materials).  

• Application of organic matter within alkaline soils (compost, humic 
and fulvic acids, vermicompost).  

• Foliar application of micronutrient (in deficient areas, both alkaline 
and acid soils) 

• Biochar in Amazonian soils 

Geo-chemical properties of the soil, agronomic factors and cadmium bioavailability/uptake 

Description Evaluation of the effect of 10 soil properties of cacao growing soils and 14 
agronomic factors on cadmium concentration in soils and cacao beans 
through multivariate regression analysis (Finished, see published 
references). 

Socio-economics and technology transfer 

Description Semi-structured interviews will be conducted in order to evaluate the 
cacao value chain and quantify the economic impact of EU regulations in 
contaminated cacao growing areas. The economic impact of possible 
mitigation strategies and scaling-up potential for small-holder cacao 
farmers will also be investigated.  

Published references Argüello, D. et al. (2019) ‘Soil properties and agronomic factors affecting 
cadmium concentrations in cacao beans: A nationwide survey in Ecuador’, 
Science of the Total Environment. Elsevier B.V., 649, pp. 120–127.  

Expected outcomes • Some results are already published (Soil map, soil properties and 

agronomic factors effect on cadmium concentration in beans) 

• Results on the efficiency of different amendments as mitigation 
solutions to reduce cadmium uptake by cacao plants 

• Evaluation of the impact of EU regulation in contaminated cacao 
growing areas of Ecuador (by end of 2018) 

• Evaluation of the economic impact and scaling up potential of 
mitigation solutions for small-holders (by 2020) 
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projectID P11 

Project title  Proyecto GIZ - CEFA - ESPOL Herramientas Integrales para 
Identificar y Mitigar Zonas Cacaoteras Contaminadas con Cadmio en 
la Amazonia Norte y Manabi  

Lead/implementing  
institution 

ESPOL 

Key experts Eduardo Chávez 

Partners ESPOL, GIZ, CEFA 

Funding sources EU 

Geographical scope Ecuador (Northern Amazon and Manibi) 

Start date   

End date   

General objective • Analyse cadmium content in soils and cacao beans sampled from 
30 farms to identify hotspots and sources of contamination 

• Trials with different amendments within model farms 
• Screening of accessions for low accumulating genotypes  
• Monitor cadmium content of cacao beans of collection centres in 

order to sort beans in batches that comply with EU regulations 

Identifying sources of cadmium contamination in the soil 

Sources investigated  

Description Analyse, following different methodologies, the concentration of cadmium 
in soils and cacao beans of 30 farms to identify hotspots as well as 
sources of contamination across different altitudes and agroforestry 
systems. 

Soil and nutrient management 

Type(s) of intervention Coffee residue, oil palm residue and quinoa residue, combination of 
different biocharcoals 

Description Different amendments (coffee residue, oil palm residue and quinoa 
residue, combination of different biochars) are being tested at the 
greenhouse. Three doses (0, 1, 2%), soils with different characteristics 
(pH of 5.2 and 7.9, cadmium content of 0.74 and 1.12 mg/kg) 
Best performing practices will be tested within 5 model farms in Northern 
Amazon provinces and Manabi province in Ecuador, in alkaline and low 
pH soils (by January 2019). 

Genetic variability in cadmium uptake and partitioning 

Description Screening 10 different accession for low cadmium accumulation. If results 
are successful, this will serve as a basis for a larger study, with 
identification of genes involved in cadmium uptake and subsequent study 
on cadmium uptake mechanisms, as well as grafting trials. 

Post-harvest practices 

Description Monitor every two months the cadmium content of cacao beans (dried 
and fermented) of 15 collection centres in order to sort beans in batches 
that comply with EU regulations. 

Expected outcomes • Identified hot-spots within 10 farms surveyed 
• Identified sources of contamination  
• Results on the efficiency of different amendments as mitigation 

solutions for cadmium uptake by cacao plants  
• Identified promising low-accumulating genotypes  
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• Results on the efficiency of post-harvest mitigation solution based on 
sorting cacao beans according to their cadmium content to meet EU 
regulations 

 

projectID P12 

Project title   

Lead/implementing  
institution 

KU Leuven 

Key experts Erik Smolders, Eduardo Chávez, Ruth Vanderschueren 

Partners ESPOL, KU Leuven 

Funding sources   

Geographical scope  Ecuador 

Start date   

End date   

General objective PhD project focused on post-harvest treatment to mitigate cadmium.  

Post-harvest practices 

Description First part of the project focuses on the effect of fermentation and drying 
processes on cadmium content in cacao beans. 

 

 

projectID P13 

Project title CADCAO (cadmium in Cacao) 

Lead/implementing  
institution 

Institut de Recherche pour le Développement (IRD, France) 

Key experts Dr. Laurence Maurice (IRD Ecuador/GET, Invited Professor at the Univ. 
Andina Simon Bolivar (Quito)), Prof. Mark Rehkämper (Imperial College, 
London, UK), Dr. Eva Schreck (U. Toulouse/GET), Dr. Fiorella Barraza 
(IRD/GET) 

Partners Laboratory Géosciences Environnement Toulouse (IRD, GET, France), 
Mass Spectrometry and Isotope Geochemistry Lab (MAGIC) at the 
Imperial College of London. 
Cooperative Company ETHIQUABLE (France). 

Funding sources Institut Olga Triballat (France) 
Cooperative Company ETHIQUABLE (France). 

Geographical scope Ecuador (Pacific Coast and Amazon Region) 

Start date December 2017 

End date July 2019 

General objective The main objective of CADCAO project is to improve the understanding of 
the transfer and bioaccumulation mechanisms of cadmium from soils to 
cacao beans, especially in the varieties cultivated in Ecuador and 
destined to the European market (CCN-51 and National “Fine 
flavour”).The aims of this study, using isotopic and biogeochemical 
tracers, are: 

• Determine the cadmium sources in tropical environments 
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• Follow the transfer and accumulation processes from soil to cacao 
tissues (leaves, pod husks and beans) 

• Monitor cadmium transfer (enrichment or loss) within each step of 
chocolate end-product elaboration (dry beans, fermented beans, 
roasted beans and cocoa liquor) 

Identifying sources of cadmium contamination in the soil 

Sources investigated   

Description Determine the cadmium sources in tropical environments using isotopic 
and biogeochemical tracers. 

Physiological mechanisms of cadmium uptake and partitioning 

Description Follow the transfer and accumulation processes from soil to cacao beans 
using isotopic and biogeochemical tracers. 

Post-harvest practices 

Description Monitor cadmium transfer (enrichment or loss) within each step of 
chocolate end-product elaboration (dry beans, fermented beans, roasted 
beans and cocoa liquor) 

Expected outcomes • Identified sources of cadmium contamination 
• Tracing Cadmium transfer and recycling between soil and cacao 

tissues 
• New insights on physiological mechanisms of cadmium uptake by 

cacao plants 
• Results concerning the effect of post-harvest and production 

practices on cadmium content in cacao beans and cacao-based 
products 

 

projectID P14 

Project title INIAP – Regional Amazónica Ikiam University 

Lead/implementing  
institution 

INIAP – Ikiam University 

Key experts Magdalena López PhD, Paulo Barrera MsC. 

Partners ENGIM (Italian Cooperation), GIZ (Germany Cooperation) 

Funding sources INIAP, ENGIM, GIZ, Ikiam University 

Geographical scope Ecuador – Central Ecuadorian Amazon 

Start date 2/11/2018 

End date 2/10/2020 

General objective Determine the dynamics of Cadmium in four zones dedicated to cocoa 
agroforestry system in two predominant soils in Napo – Ecuador 

Measuring cadmium levels in soils or cacao beans and soil mapping 

Locations/Area covered Tena, Archidona and Aorosemena in Napo province. Area 74340 ha 

Description 16 agroforestry cocoa farms were selected, in each one 20 sub-samples 
of soil at two depths (0-15 and 15-30 cm) were taken to determine the 
total cadmium. Additionally, 5 cacao plants will be chosen at random and 
4 sub-samples of litter will be taken to determine total Cadmium and soil 
samples at a depth of 0-15 cm to establish the cadmium contents 
available in each plant. These results will be correlated with the contents 
of Cadmium in the different parts of the cacao plants. 



46 

  

projectID P14 

Soil and nutrient management 

Type(s) of intervention Diagnosis of the management of the farm with agroforestry cocoa through 
interviews 

Description In 16 farms surveys and information gathering will be carried out in the 
field to characterize socially, economically and agronomically the different 
productive systems in 4 areas of Napo province. The floristic biodiversity 
will also be determined in the productive systems. 

Geo-chemical properties of the soil, agronomic factors and cadmium bioavailability/uptake 

Description For all 5 cacao plants sampled in each farm, soil samples will be collected 
as well. Physical, chemical, biological and mineralogical properties of the 
soils will be measured and their effect on the bioavailability of cadmium 
will be determined by means of correlation analysis, multiple regressions 
and cluster analysis 

Physiological mechanisms of cadmium uptake and partitioning 

Description In 5 cacao plants, we will measure total cadmium content in root, stem, 
leaves and beans, for each farm and in two seasons (Dry and wet 
season). Macro and micro nutrients in plant tissue will also be measured 

 

 

projectID P15 

Project title  Técnicas para disminuir la disponibilidad de Cadmium en suelos de 
cacaoteras 

Lead/implementing  
institution 

Instituto Nacional de Investigaciones Agropecuárias (INIAP) 

Key experts Manuel D. Carrillo Z., Luz María Martínez, Markus Gräfe, Alexis Debut, 
Wuellins Durango, RAúl Jaramillo y Karina Peña 

Partners INIAP, Universidad UTE, Universidad de las Fuerzas Armadas (ESPE), 
International Plant Nutrition Institute (IPNI) 

Funding sources INIAP, UTE, ESP, IPNI 

Geographical scope Ecuador 

Start date 2017 

End date 2020 

General objective Understand the dynamics of cadmium in the soil to reduce its 
bioavailability using methods to reduce uptake by cacao plants 

Soil and nutrient management 

Type(s) of intervention Evaluate the availability of cadmium in cacao-growing soils treated with 
different conventional and organic amendments 

Description Characterize soil amendments and cacao-growing soils for levels of 
cadmium 
Determine the bioavailability of cadmium under different conditions in a  
Greenhouse experiment. 

Geo-chemical properties of the soil, agronomic factors and cadmium bioavailability/uptake 

Description Establish mechanisms by which soil cadmium becomes available through 
kinetic and thermodynamic studies and using sequential extraction 
methods. 
Carry out a physicochemical and mineral soil characterization  
Understand the physicochemical processes of adsorption and desorption 
of soil cadmium  
Carry out fractionation of the solid phase of soil cadmium 
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Phytoremediation and bioremediation  

Type(s) of intervention Identification and evaluation of leguminous plants found in cacao 
plantations for phytoremediation 

Description Evaluation of leguminous plants as potential phytoremediators 
Collection of leguminous plants and preparation of seeds for sowing 
Evaluation of its ability to extract cadmium 

 

6.2.5 Colombia 

 
projectID P16 

Project title  Phytoremediation and Myco-remediation of cadmium in a 
Theobroma cacao soil at nursery level (biological strategies to 
improve crop quality) 

Lead/implementing  
institution 

Universidad de Santander – FEDECACAO 

Key experts Beatriz Elena Guerra (Universidad de Santander), Jaider Muñoz 
(Universidad de Santander), Diannefir Duarte (FEDECACAO) 

Partners Universidad de Santander, Federación de cacaoteros de Colombia 
(FEDECACAO) 

Funding sources  Universidad de Santander- FEDECACAO 

Geographical scope Colombia 

Start date 08-2016 

End date 08-2018 

General objective Evaluate the efficiency of Heliconia psittacorum alone and associated with 
fungal biomass for bioremediation in cadmium contaminated cacao-
growing soils (nursery) 

Phytoremediation and bioremediation  

Type(s) of intervention Heliconia psittacorum alone and associated with fungal biomass 

Description The contamination of soil by various anthropogenic activities has resulted 
in a serious problem related to the accumulation of heavy metals with a 
negative impact for agriculture. Several species of plants are considered 
tolerant to heavy metals or adapt easily to these contaminated 
environments, which make them candidates to evaluate their potential as 
phytoremediators. Heliconia psittacorum is a plant that grows commonly 
in cocoa plantation in Santander-Colombia and grows in symbiosis with 
arbuscular endomycorrhizal fungi. This study will evaluate its tolerance 
level in soils contaminated naturally by cadmium, when it is grown alone 
or associated with arbuscular mycorrhizal fungi and free-living fungi. 

 

projectID P17 

Project title  Study of biodiversity and cadmium tolerance in native filamentous 
fungi native to cacao soils in Santander- Colombia 

Lead/implementing  
institution 

University of Santander - Colombia (UDES) - Universidad EAFIT -Colombia 

Key experts Beatriz Elena Guerra (Universidad de Santander) Javier Correa 
(Universidad EAFIT) 

Partners Universidad de Santander, EAFIT 

Funding sources Universidad de Santander 
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Geographical scope Colombia 

Start date 08-2018 

End date 10-2019 

General objective To evaluate the level of fungal tolerance in vitro, at high concentrations of 
cadmium. 

Phytoremediation and bioremediation  

Type(s) of intervention Native fungal species from cacao-growing soils of San Vicente de Chucurí 

Description Fungal biomasses use mechanisms such as bioaccumulation or biosorption 
of heavy metals, in their tissues without affecting their metabolism.  It has 
been reported that different fungal species have the ability to survive 
adapting or mutating to high concentrations of heavy metals.  Hence the 
objective of this work is directed to the isolation of filamentous fungi from 
soil contaminated by cadmium from the cacao region of the municipality of 
San Vicente de Chucurí (Santander). For the purpose of evaluating the 
tolerance level for native fungal species at different concentrations of the 
metal heavy, assays will be evaluated through the growth and development 
in mycological media modified with cadmium (100, 200, 300 ppm 
respectively) and later will be identified molecularly more tolerant species. 

 

projectID P18 

Project title  Cacao for Peace - Geographical Information System Mapping for 
Optimized Cacao Production in Colombia 

Lead/implementing  
institution 

CIAT (in country coordinator) and implemented together with PSU and 
USDA-NRCS 

Key experts Mayesse Da Silva, Gerardo Gallego, Zamir Libohova, Charles Kome, Siela 
Maximova, Mark Guiltinan, Patrick Drohan 

Partners CIAT, USDA-FAS, USDA-NRCS, Penn State University, FEDECACAO, 
IGAC, UNODC 

Funding sources USAID/USDA 

Geographical scope Colombia 

Start date 2018 

End date 2019 

General objective This project is part of the Cacao for Peace initiative. Its objective is to 
promote a deeper understanding of spatial variability of soil characteristics 
and cadmium, water supply for cacao cultivation, and assess the diversity 
of plants in the Sierra Nevada de Santa Marta in Colombia in order to 
define suitable areas for optimal and sustainable cacao production as well 
as define management zones for improved management. Definition of 
suitable areas takes into account soil characteristics, climate conditions, 
and soil cadmium content.  

Soil mapping 

Locations/Area covered Sierra Nevada de Santa Marta 

Description Soil characterization (chemical, physical, cadmium) to map out suitable 
areas for cacao as well as to define management zones for optimal and 
sustainable production in Colombia. High-resolution soil maps (30m; scale 
1:25000) will be developed based on digital soil mapping approaches.  
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Project title  Development of bio- and nano-technology strategies for the reduction 
of cadmium in Colombian fine flavor cocoa beans. 

Lead/implementing  
institution 

CasaLuker / Los Andes University. 

Key experts Johann Osma; Juan Carlos Cruz, Claudia M Rodriguez, Sergio Leonardo 
Florez, Ana Lucia Campana. Hector Hugo Olarte 

Partners Antioquia University. 

Funding sources CasaLuker. 

Geographical scope Municipalities of the departments of Santander and Arauca. 

Start date May- 2017 

End date February 2019 

Links  

General objective Cadmium content reduction in fermented Colombian fine flavor cocoa 
beans grown in highest cadmium content areas by nanotechnology 
strategies. 

Post-harvest practices 

Description This project proposes the optimization of the bio- and nano-technological 
strategies previously developed by CasaLuker and Los Andes University, for 
the reduction of Cadmium content in fermented cocoa beans by adjusting 
production conditions, operation and control of these strategies on a 
laboratory and semi-industrial scale to achieve scaling up processes at an 
industrial level. Los Andes University and CasaLuker have been developing 
processes of cadmium reduction during post-harvest stages and subsequent 
processes at the laboratory and semi-industrial scale that have allowed them 
to approach compliance with international standards. One of the most 
successful approaches has been the preparation of micellar bodies on cocoa 
matrices between 10% and 30% of reduction, which has allowed to 
manufacture chemical complexes with the molecules that contain Cadmium 
to remove it. Another approach based on the use of heavy metal removal 
microorganisms has been tested and validated in laboratory conditions and 
at a semi-industrial scale. At the same time, a plan will be developed for the 
assurance of the quality of the cocoa matrix throughout the removal process, 
to maintain the qualities of the "Fino de Aroma" cocoa produced in Colombia. 
This will be done through a monitoring of the organoleptic characteristics of 
the grain that allows to iteratively adjusting the scaled processes. 

 
 
 
projectID P20 

Project title Cadmium mitigation project with the use of microorganisms 

Lead/implementing  
institution 

CasaLuker S.A 

Key experts Claudia Rodriguez, Johanna Hurtado, Paula Andrea Pedraza, Patricia 
Ahumada, Martha Cepeda, Hector Hugo Olarte, Maria José Chica – 
Agrosavia: Daniel Bravo, Martha Gomez, Eddy Bautista, Andrés Diaz. 

Partners CorpoGen, Agrosavia 

Funding sources CasaLuker 

Geographical scope Colombia 

Status of submission In process 

Start date 2015 
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End date 2019 

Links  

General objective Cadmium content reduction in fermented Colombian fine flavor cocoa beans 
through the use of biotechnological strategies with microorganisms during 
post-harvest. 

Post-harvest practices 

Description The searching strategies to reduce the amount of toxic metals in food has 
become an important focus for the development of studies in various parts 
of the world. The biotechnological strategies, in this case, consist in the 
application of microorganisms in cocoa cadmium decreasing processes. 
Bacillus and Lactobacillus from different origins with a high cadmium 
retention capacity have been reported in different studies. The CasaLuker´s 
results obtained in beans removal tests previously developed in our group, 
evaluated several strains selected for their potential in this application. 
Laboratory scale tests were carried out and those with the best percentages 
of cadmium removal were selected. Reference strains were also evaluated 
according to what has been reported in previous studies, in addition, 
microorganisms from the cocoa ferment in order to take advantage of the 
fermentation conditions. Subsequently, pilot scale trials were conducted with 
volumes between 10 kg and 40 kg of cocoa mass, observing removals 
between 13% and 28% with time of contact between 12 and 24 hours. Once 
the standardization of the pilot stage is concluded, it is expected to carry out 
in-situ and semi-industrial tests in one of the regions of Colombia where the 
highest cadmium contents are present in cocoa. 

 

projectID P21 

Project title  Effect of local arbuscular mycorrhiza fungi communities and grafting 
on the physiology of cacao under cadmium and zinc stress 

Lead/implementing  
institution 

Universidad Nacional de Colombia, sede Bogotá (UNAL) 
Federación Nacional de cacaoteros de Colombia (FEDECACAO) 

Key experts Jhon Felipe Sandoval Pineda (UNAL), Edwin Antonio Gutiérrez Rodríguez 
(FEDECACAO), Alia Rodriguez (UNAL), Esperanza Torres Rojas (UNAL) 

Funding sources COLCIENCIAS, UNAL, FEDECACAO, Fondo Nacional de Cacao, 
Gobernación de Cundinamarca, Corredor tecnológico Agroindustrial. 

Geographical scope Colombia 

Start date 2017 

End date 2019 

General objective To determine the effect of local arbuscular mycorrhiza fungi (AMF) 
communities and grafting on the physiology of different cacao genotypes 
under cadmium and zinc stress 

Phytoremediation and bioremediation  

Type(s) of intervention Inoculation with AMF communities from Cd-enriched soils and commercial 
AMF 

Description 1. Arbuscular mycorrhiza fungi (AMF) are obligate symbionts present in 
cacao rhizosphere and their community diversity is modified depending 
on several abiotic factors such as cadmium (Cd) and zinc (Zn) 
concentration in soils. It has been reported that Cd-Zn tolerant AMF 
could be used for biotechnological applications, however it is necessary 
to identify the role of these local communities in bioremediation 
processes. In this work we characterized local AMF community 
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structure present in cacao rhizosphere with low and high natural 
concentrations of Cd and Zn in a cacao-producing region in Colombia. 
Characterization of these AMF communities will allow the identification 
of potential AMF stress-tolerant for the development of mitigation 
strategies in cacao plants under Cd-Zn stress. 

2. Arbuscular Mycorrhiza Fungi (AMF) may reduce cadmium (Cd) and 
zinc (Zn) plant uptake under presence of those heavy metals in the soil. 
However, this response is dependent on different factors such as plant 
genotype and AMF inoculum. This research determined the effect of 
local AMF communities on the physiology of two cacao-grafted 
rootstocks (IMC67 and CAU43, both grafted with FSV41) under Cd and 
Zn stress as a possible alternative for cultivating HMs-enriched soils in 
a Colombian region. The results of this project highlight the importance 
of host genotype-AMF interaction as an important factor that 
determines cacao physiological response under Cd and Zn stress. 

Genetic variability in Cadmium uptake and partitioning 

Description Grafting is a widespread cacao propagation technique in Colombia, this 
practice allows growers to clone cacao plants with better quality and yield 
traits. However, there is no experimental information regarding the effects 
of grafting over cadmium (Cd) and zinc (Zn) uptake and partitioning on 
cacao plants. This research assessed the effect of grafting over Cd-Zn 
uptake and plant physiology of two genotypes under Cd-Zn stress. We 
conducted an experiment using ungrafted, self-grafted and grafted plants 
from four different cacao genotypes, two genotypes as rootstocks (open 
pollinated seeds from IMC67, CAU43) and two as scions (FSV41, CCN51). 
This study will provide insights on plant Cd-Zn uptake and partitioning that 
can be used to select the lowest Cd-Zn accumulating cacao genotypes for 
nursery. 

Physiological mechanisms of Cadmium uptake and partitioning 

Description Cadmium (Cd) and zinc (Zn) are heavy metals (HMs) that may alter plant 
physiology depending on their concentration in the soil. However, in cacao 
these alterations only have been described under artificial conditions, which 
do not reflect HMs dynamics in natural soil-plant systems. In this research, 
nutrition, photosynthetic efficiency, HMs partitioning and growth of two 
cacao open pollinated genotypes (IMC67 and PA121) were assessed in 
natural enriched soils with low and high Cd-Zn concentrations. Results from 
this research provide novel information about antagonistic cationic 
interactions, Cd-Zn plant accumulation and physiological alterations of 
cacao plants grown in a natural Cd-Zn enriched soil. 

 

 

projectID P22 

Project title  Characterization of cadmium-resistant bacteria and fungi from cacao 
rhizosphere   

Lead/implementing  
institution 

Universidad Nacional de Colombia, sede Bogotá (UNAL) 
Federación Nacional de cacaoteros de Colombia (FEDECACAO) 

Key experts Henry Novoa (AGROSAVIA, UNAL), Jeimmy Alexandra Cáceres 
Zambrano (UNAL), Esperanza Torres Rojas (UNAL) 

Funding sources UNAL, Gobernación de Cundinamarca, Corredor tecnológico 
Agroindustrial, FEDECACAO. 

Geographical scope Colombia 

Start date 2015 
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End date 2019 

General objective To characterize Cadmium-resistant bacteria and fungi from cacao-
cultivated in Cadmium natural enriched soils 

Phytoremediation and bioremediation  

Type(s) of intervention Bacteria and fungi isolated from cacao-cultivated in Cadmium natural 
enriched soils 

Description Heavy metal bioremediation using bacteria and fungi could be an efficient, 
environmentally friendly, and reasonably low-cost strategies for 
management of Cadmium polluted soils. In this research Cadmium-
resistant bacteria and fungi associated to cacao rhizosphere were isolated 
and identified through morphological and molecular markers. Their ability 
to solubilize phosphorous, fix nitrogen, and degrade cellulose were also 
evaluated. The results of this study provide knowledge of Cadmium-
resistant microorganisms associated to cacao crop and highlights potential 
strains for biotechnology-based strategies to mitigate the cacao Cadmium 
uptake.    

 

 

projectID P23 

Project title  Technological improvement of cacao production in the Provinces of 
Rionegro and Alto Magdalena, Cundinamarca 

Lead/implementing  
institution 

Universidad Nacional de Colombia, sede Bogotá (UNAL) 

Key experts John Fernando Soler Arias (UNAL), Heidy Soledad Rodríguez Albarracín 
(UNAL), Martha Cecilia Henao Toro (UNAL) 

Funding sources Gobernación de Cundinamarca (Corredor Tecnológico Agroindustrial 
Derivado 2) 

Geographical scope Colombia 

Start date 2017 

End date 2019 

General objective Assess the risk of contamination of the cacao bean with cadmium in 
response to the concentration of total and available cadmium in soil, in 
productive systems of two regions of the Colombian Andean zone 

Measuring Cd levels in soils or cacao beans and soil mapping 

Locations/Area covered  

Description 1. Spatial modelling of the cadmium content in soils cultivated with cacao. 
An observational methodology was followed, through an exploratory 
sampling, to establish the relationship of the spatial variability of 
Cadmium and some chemical properties of the soil, with the contents 
of Cadmium in the plant. Zones within the region with higher 
concentrations of cadmium were identified. 

2. Dynamics of cadmium in stony soils with high levels of the element in 
beans. In farms with high levels of Cadmium in cacao beans, we 
focused on the determination of Cadmium at two depths of the soil (0-
30 and 60-100 cm), and the fractionation of the element (determination 
of exchangeable, carbonates, organic matter and iron and manganese 
oxides phases). The results show a high spatial variability of Cadmium 
levels in soil and plant, both at the municipal level and within farms. 
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Identifying sources of Cd contamination in the soil 

Sources investigated Anthropogenic vs. natural 

Description For making a diagnosis of Cadmium concentration in soils and cacao 
beans and evaluating if Cadmium contents in plants is of geogenic or 
anthropogenic origin, a hundred farms were chosen, and one cacao tree 
with mature fruits was sampled in each farm for determination of Cadmium 
in beans. The pseudo-total Cadmium and bio-available Cadmium end 
other soil properties (pH, organic carbon, P, Fe, Mn, Zn and Cu), in the 
soils around the tree, were evaluated. Cadmium levels in fertilisers and 
amendments and in parent material of soils were also analysed. 

Geo-chemical properties of the soil, agronomic factors and Cadmium bioavailability/uptake 

Description For making a diagnosis of Cadmium concentration in soils and cacao 
beans and evaluating if Cadmium contents in plants is of geogenic or 
anthropogenic origin, a hundred farms were chosen, and one cacao tree 
with mature fruits was sampled in each farm for determination of Cadmium 
in beans. The pseudo-total Cadmium and bio-available Cadmium end 
other soil properties (pH, organic carbon, P, Fe, Mn, Zn and Cu), in the 
soils around the tree, were evaluated. Cadmium levels in fertilisers and 
amendments and in parent material of soils were also analysed. 

Physiological mechanisms of Cadmium uptake and partitioning 

Description In cacao crops selected, a plant with mature fruits was sampled. The 
Cadmium in leaf and fruit tissues (shell, bean and pod husk) was 
analysed. Cadmium in soil and cacao leaf litter around trees was also 
determined. Bioaccumulation factor (BF) was calculated as the ratio of 
Cadmium in leaf or bean to that in soil, and Translocation factor (TF) as 
the ratio of Cadmium in leaf to that in fruit tissues.  It was evaluated that 
cacao plant can be considered as cadmium accumulator. The risk of 
Cadmium cycling in crops of the study area can be high, as litter is a direct 
product of foliar abscission of cacao during all year, and leaf is the organ 
with the highest concentration of Cadmium. 

 

projectID P24 

Project title  Cadmium in cocoa production and technological strategies for its 
management 

Lead/implementing  
institution 

AGROSAVIA 

Key experts Daniel Bravo (Project manager and leader in bioremediation research), 
Nesrine Chaali, Rocio Gámez, Andrea Montenegro, Margarita Gómez, 
Clara León, Diana Serralde, Viviana Varón, Ruth Quiroga, Gustavo Araujo, 
Urley Pérez, Gersain Rengifo, Santiago López, Juan Gil. 

Collaborators  FEDECACAO, ESPOL, CasaLuker 

Funding sources Ministry of Agriculture and Rural Development of Colombia (MADR) 

Geographical scope Colombia 

Start date 2019 

General objective Characterize the presence of Cadmium in Cocoa cultivation to generate 
mitigation strategies in soils, plants and beans 

Description Although some of the aspects in the Cadmium issue have been identified, 
the critical aspects of contamination remain with certain complexity. The 
origin of cadmium should be considered – geogenic or anthropogenic, as 
discussed in previous studies – as well as the sources that maintain the 
cadmium-flow to the beans at the ecosystem level. However, given the 
complexity of the distribution of the metal, it must also be studied locally at 
the farm level, even per hectare cultivated within a farm. Indeed, there are 
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many questions to be answered regarding cadmium’s space time behavior 
for different users in the value chain (i.e. producers, academy, the industry 
and regulators).  
In farms selected from Santander and Antioquia districts, we are measuring 
Cadmium and using CdtB and analyzing both geological and biological 
aspects of the Cd-flux on the system. The Cadmium in leaves and fruits, 
including also shells, beans and pod husk are analyzed. Cadmium in soils 
and cacao leaf litter around trees are also considered. As in a previous 
work, Bioaccumulation factor (BF) is calculated as the ratio of Cadmium in 
leaves or beans to that in soils, and Translocation factor (TF) as the ratio of 
Cadmium in leaves to that in fruit tissues. Due to the complexity of the 
issue, mitigating the presence of cadmium requires solutions with multi-
method and multi-approach contributions that will allow i) delve into the 
sources of Cadmium to tackle it using a holistic perspective, which include 
more specific strategies at the local level; and ii) defining accurate 
strategies in the short, medium and long term, with impacts on national 
cocoa production. The portfolio of technological offers, therefore, must be 
varied and consistent with both regulatory impositions, as well as 
AGROSAVIA’s corporate capabilities, expertise and international 
cooperation to generate potential solutions to cacao farmers of Colombia. 

 

projectID P25.1 

Project title  Selection of promising cocoa genotypes by agronomic attributes of 
interest: genetic diversity, productivity criteria, disease resistance 
and cadmium absorption 

Lead/implementing 
 institution 

AGROSAVIA 

Key experts Roxana Yockteng; Caren Rodríguez; Andrea Montenegro, Jaime Osorio 

Funding sources Ministry of Agriculture and Rural Development of Colombia (MADR) 

Geographical scope Colombia 

Start date 2019 

General objective Perform bioprospecting of the available germplasm (germplasm banks and 
work collections) by means of phenotypic, molecular characterization, by 
cadmium absorption and compatibility to select promising genotypes ("core 
collection") that will feed the genetic improvement program 

Genetic variability in cadmium uptake and partitioning 

Description Colombia not only has a great genetic diversity of the Theobroma cacao 
species (Osorio et al. 2017), but also a great diversity of the wild sister 
species of cocoa. When analyzing samples from different herbaria in the 
country, reports were found for the species of the 22 species of Theobroma 
genus and 10 species of the 17 Herrania genus descriptions. 
Despite this intraspecific variability of T. cacao and interspecific of the sister 
species in Colombia, cocoa cultivation presents problems resulting from the 
loss of this variability. The use of monoclonal crops has led to the loss of 
this variability making these plantations more susceptible to diseases such 
as moniliasis and black cob (Evans 2007) and generating low productivity 
due to self-incompatibility. 
In addition, cocoa is a heavy metal accumulator plant, particularly 
Cadmium. The presence of this element in the cocoa produced in Colombia 
(León Moreno 2012) generates a problem of food security compared to 
national and international markets since cocoa cannot be commercialized if 
the levels of cadmium in the grain exceed the permissible levels 
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In this project, the studies of genotype association with the phenotype will 
continue as the phenotypic databases (incidence of diseases, data 
associated with productivity, etc.) are fed back 

 

projectID P25.2 

Project title  Identification of agronomic attributes in cocoa whose expression is 
affected by the pattern with a view to establishing a program of 
genetic improvement of patterns that contributes to enhancing the 
behavior of clones of interest 

Lead/implementing  
institution 

AGROSAVIA 

Key experts Caren Rodríguez, Roxana Yockteng, Andrea Montenegro, Jaime Osorio, 
Xavier Argout 

Funding sources Ministry of Agriculture and Rural Development of Colombia (MADR) 

Geographical scope Colombia 

Start date 2019 

General objective To study the effect of the pattern on the expression of agronomic attributes 
of interest in the cup oriented to establish a program of genetic 
improvement of patterns in cocoa 

Genetic variability in cadmium uptake and partitioning 

Description In Colombia, the propagation of Theobroma cacao is mainly carried out 
through the grafting technique, combining attributes of interest between 
cups and patterns; however, in the country the genetic basis of the 
materials used as standards is narrow, based mainly on the use of 
progenies of 3 genotypes selected for their adaptability to acidic soil 
conditions and resistance to Ceratocystis sp. In order to respond to the 
current challenges facing Colombian cocoa farming, including poor 
performance, limiting diseases and abiotic stress such as water deficit and 
cadmium absorption, it is necessary to ensure a broader genetic base that 
allows responding to the specific needs of producers of grain of the country, 
as well as international markets. In a first stage of research, the agronomic 
attributes for which the pattern has an effect on the expression of these in 
the cup will be identified. The results of the first phases will contribute to 
defining the strategy to be adopted for each attribute in a genetic 
improvement program as described below: 1. When there is no effect of the 
pattern on the cup, the attribute will not be considered for the selection of 
patterns 2. When the influence of the pattern on the cup is important, the 
attribute will be considered in the pattern improvement program 3. When 
the influence of the pattern and the cup / pattern interaction are important, 
the attribute will be considered and the selection of the patterns will be 
implemented using combinations with clones of interest such as cup 4. 
Once the attributes for which the pattern exerts an effect and the cup / 
pattern interaction are important, attributes of interest in the pattern will be 
combined from a program of genetic improvement 
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projectID P26 

Project title  Accreditation of techniques for the determination of pesticide 
residues in pineapple, cashew, rice and cadmium and arsenic 
contaminants in rice and cadmium in cocoa. 

Lead/implementing  
institution 

AGROSAVIA 

Key experts María Angelica Pichimata, Andrea Montenegro, Yeni Rodriguez 

Funding sources Ministry of Agriculture and Rural Development of Colombia (MADR) 

Geographical scope Colombia 

Start date 2019 

General objective Prove the techniques for the determination of pesticide residues in 
pineapple, rice, cashew and contaminants cadmium and arsenic in rice and 
cadmium in cocoa, in accordance with the requirements established by the 
standard NTCISO / IEC 17025: 2017 

Soil and nutrient management 

Description The Corporation has been working with different projects related to food 
safety-quality in a transversal way in all research networks, for this reason it 
is important and relevant to have accredited techniques that allow obtaining 
reliable and traceable results at an international level with respect to to the 
contents of As, Cadmium and pesticide residues in food. 
 
This research project aims to accredit the techniques for the determination 
of pesticide residues in pineapple, rice, cashew and cadmium and arsenic 
contaminants in rice and cadmium in cocoa, in accordance with the 
requirements established by NTC ISO / IEC 17025: 2017, which will be 
addressed in approximately two years of execution and will generate 3 
technological offers associated with the provision of laboratory services 
with these techniques. The results of this project may benefit the academic 
and scientific community so that new research projects can be generated, 
the monitoring and control organizations, the producers, companies and 
exporters that require such analysis 

 

projectID P27 

Project title  Determination of the origin of Cadmium and the strategies to mitigate 
Metal levels in cocoa beans and soils in Arauca 

Lead/implementing  
institution 

AGROSAVIA 

Key experts Daniel Bravo; Carlos González; Mario Porcel; Gustavo Araujo; Marcela 
López; Rafael Novoa; Gersain Rengifo. 

Funding sources Ministry of Agriculture and Rural Development of Colombia (MADR) 

Geographical scope Colombia 

Start date 2019 

General objective Contribute to the mitigation of cadmium levels in cocoa by generating new 
recommendations and technologies 

Soil and nutrient management 

Description Regarding safety, it is proposed to develop an innovative fertilization 
strategy that is based on the initial cadmium levels in the soils - cocoa 
beans ratio, as a starting point for soil work. With a multi-method approach 
with precision agriculture tools, such as geoelectric, geomicrobiology can 
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recommend a comprehensive fertilization and management 
recommendations will be generated to mitigate the Cadmium both in soils 
and cocoa beans, providing criteria of decision to reduce levels of cadmium 
in the medium and long term, and allowing to improve and maintain over 
time the state of safety of the grains in Arauca. 

 

6.2.6 Indonesia 

 
projectID P28 

Project title Cadmium mitigation through soil amelioration and genotype 
screening 

Lead/implementing  
institution 

ICCRI 

Key experts Soetanto Abdoellah Soeparto, Erwin Prastowo, Niken Puspitasari, Indah 
Anitasari, Bayu Setyawan 

Funding sources  ICCRI 

Geographical scope  Indonesia 

Start date  2018 

End date  2020 

General objective • Screening of some rootstock on absorption of cadmium from soil 
• The effect of organic matter on cadmium absorption 
• Survey of cadmium contents in cacao beans produced from 

production areas in Indonesia and those imported from other 
countries 
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7 ANNEX 

7.1 Annex 1 – Average Cadmium bean content reported by studies across cacao-growing regions (full references on 
next pages) 

 

(1)(Vitola et al. 2016); (2)(Amankwaah et al. 2015); (3)(Bertoldi et al. 2016); (4)(Takrama et al. 2015); (5)(Assa et al. 2018); (6)(Fauziah et al. 2001); (7)(Zarcinas et al. 2004); (8)(Kruszewski et al. 2018); 
(9)(Gramlich et al. 2017); (10)(Acosta et al. 2013); (11)(Llatance 2018); (12)(Tantalean Pedraza et al. 2017); (13)(Mite et al. 2010); (14)(Arévalo-Gardini et al. 2017); (15)(Argüello et al. 2019); (16)(Chavez et 
al. 2015) ; (17)(Barraza et al. 2017); (18)(Ramtahal, Yen, Bekele, et al. 2015);  (19)(Gramlich et al. 2018); (20)(Cárdenas 2012); (21)(Ramtahal et al. 2014)

Source: Prepared by the authors 
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Zarcinas, B. A., Pongsakul, P., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops 
in Southeast Asia 2. Thailand. Environmental Geochemistry and Health, 26(3), 359–371. 

  



60 

 

7.1.2 Annex 1.2 – Cacao bean cadmium content (mg/kg) reported in studies across 
Africa, Asia and LAC  

Source: Prepared by the authors 

n=sample size; SD=standard deviation; min=minimum; max=maximum; NA=not available 

  

Study (Full reference in 

Annex 1.1) 
Region Country n Mean Sd min max 

Vitola and Ciprovica, 2016 Africa Ghana 3 0.02 0.003 NA NA 

Vitola and Ciprovica, 2016 Africa Nigeria 3 0.02 0.003 NA NA 

Vitola and Ciprovica 2016 Africa Cameroon 3 0.05 0.010 NA NA 

Amankwaah et al. 2015 Africa Ghana 100 0.05 NA 0.005 0.095 

Bertoldi et al. 2016 Africa West Africa 21 0.09 0.042 NA NA 

Takrama et al. 2015 Africa Ghana 67 0.27 NA 0.248 0.336 

Bertoldi et al. 2016 Africa East Africa 8 0.51 NA NA NA 

Assa et al. 2018 Asia Indonesia NA 0.01 NA NA NA 

Bertoldi et al. 2016 Asia Asia 8 0.33 0.176 NA NA 

Fauziah et al. 2001 Asia Malaysia 50 0.55 0.109 NA NA 

Zarcinas et al. 2004 Asia Malaysia 5 0.66 NA 0.204 1.680 

Kruszewski et al. 2018 LAC Dominican Rep. NA 0.13 0.031 NA NA 

Vitola and Ciprovica 2016 LAC Ecuador 3 0.20 0.040 NA NA 

Gramlich et al. 2017 LAC Bolivia 64 0.21 0.020 NA NA 

Acosta and Pozo,2013 (2) LAC Ecuador 50 0.35 NA NA NA 

Llatance et al 2018 LAC Peru  0.41 NA NA NA 

Bertoldi et al. 2016 LAC Central America 10 0.54 0.302 NA NA 

Kruszewski et al. 2018 LAC Ecuador NA 0.63 0.067 NA NA 

Tantalean et al. 2017 LAC Peru 40 0.84 NA NA NA 

Mite et al. 2010 LAC Ecuador 153 0.84 NA 0.320 1.800 

Argüello et al. 2019 LAC Ecuador 560 0.90 NA 0.03 10.4 

Chavez et al. 2015 LAC Ecuador 19 0.94 NA 0.020 3.000 

Barraza et al. 2017 LAC Ecuador 31 0.97 0.84 0.09 3.51 

Ramtahal 2015 LAC Trinidad 45 0.98 0.248 NA NA 

Arévalo-Gardini et al. 2017 LAC Peru 70 0.88 0.0.30 0.17 1.78 

Gramlich et al. 2018 LAC Honduras 110 1.10 0.100 NA NA 

Tantalean et al. 2017 LAC Peru 40 1.10 NA NA NA 

Bertoldi et al. 2016 LAC South America 14 1.39 1.089 NA NA 

Cárdenas, A. 2012 LAC Peru 20 1.55 NA NA NA 

Ramtahal et al. 2014 LAC Trinidad 43 1.59 0.152 NA NA 
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7.2 Annex 2 – Results from baseline studies 

*Studies: 1 (Gramlich et al. 2017); 2 (Gramlich et al. 2018); 3 (Argüello et al. 2019); 4 (Barraza et al. 2017); 5 (Fauziah et al. 2001); 6 (Arévalo-Gardini et al. 2017); 7 
(Huamani et al. 2011) ; 8 (Huamaní-Yupanqui et al. 2012); 9 (Jonas 2016) 
 

 Response 

variable 
Bioavailable Soil Cadmium Bean Cadmium Husk Cadmium Leaf Cadmium 

Study*  1 2 2 2 5 8 1 2 2 2 3 3 3 3 3 4 7 9 1 2 2 5 1 1 2 5 2 

Type of analysis  MR MR MR MR PC PC MR MR MR MR MR MR MR MR MR MR SR PC MR MR MR PC MR MR MR PC MR 

pvalue 

threshold 
 0.05 0.05 0.05 0.05   0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.05 0.05 0.05 0.05 0.01 0.05 0.05 0.05 0.01 0.05 

R-squared  
0.38 

- 

0.55 
0.88 0.85 0.87     NA 0.53 0.57 0.69 0.48 0.57 0.65 0.45 0.65   0.18  0.24 0.62 0.73  0.60 0.59 0.59  0.57 

Cadmium 

content 

Total soil 

cadmium 
  + + +         +   + + +   + + +      + +       + + 

Bioavailable 

cadmium 
              +                      +    + + +    

pH soil Ph -   -          -   - - -   -          -           

OM 
Organic 

matter 
  - -                 - -   -          -  - -    - 

Soil type 
Geological 

substrate 
  Yes Yes Yes         Yes Yes       Yes            Yes           

Soil Texture 
Clay content + + + +                              -             

Sand content           -                                        

CEC CEC                                                   

Salinity EC                                                    

Micro-

macro- 

nutrients 

Zinc                                                    

Fe + +   +                                          + 

P -       +                         + -               

Pb                                                    

Ca 2+                                                    

Mg2+                                               -    

K                                                  - 

Mn                  -          
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 Response 

variable 
Bioavailable Soil Cadmium Bean Cadmium Husk Cadmium Leaf Cadmium 

Soil 

Microbial 

activity 

Mycorrhizal 

colonisation 
                                                   

Agronomic 

factors 

fertiliser 

application 
                                                   

Monoculture 

vs 

agroforestery 

                                   Yes      Yes        

Organic vs 

conventional 
                            Yes                      

Age of 

orchard 
                            -                      

Trunk 

diameter 
                                            Yes      

Cultivar effect                                    Yes      Yes        

Other 

factors 

Altitude                                                    

Proximity to 

industrial site 
                                                   

Impact of oil 

activities 
                                                   

Source: Prepared by the authors 

MR/SR Multiple/Single regression 

PC Pearson correlation 

+ Positive relationship (increase leads to an increase of response variable) 

- Negative relationship (increase leads to a decrease of response variable) 

Yes Statistically significant effect on response variable 
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