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Summary 

Naturally produced peptides or proteins can be regarded as highly refined 

polymers. When synthetic polymers are married to proteins or peptides, the resulting 

bioconjugates can synergistically combine the properties of the individual components 

and overcome their separate limitations. The protein or peptide element can impart 

(bio)functional properties to the bioconjugate, whereas the polymer component can 

improve protein stability, solubility and biocompatibility. This Thesis is focused on the 

study of hybrid copolymers based on polypeptides and polymacrolactones. Block and 

graft copolymers have been synthesized by making use of the ring opening 

polymerization method (ROP) mainly and extensively characterized including both their 

chemical structure and their structure in the solid state. The self-assembly properties of 

the new copolymers have been preliminary examined regarding their potential 

application as nanocarriers for pharmaceutical compounds.  

This Thesis initially reports the ROP of ω-pentadecalactone (PDL) using different 

amino-ended initiators and assisted by either organic or enzymatic catalysts. This 

method was then extended for the ROP of PDL using bisamino-ended poly(ethylene 

glycol) (PEG) for the preparation of poly(ω-pentadecalactone)-b-poly(ethylene glycol)-

b-poly(ω-pentadecalactone) [PPDLx-PEG-PPDLx] triblock copolymers. These 

amphiphilic ABA-type copolymers were able to self-assemble in water to form 

nanoparticles with diameters between 100 and 200 nm.   

Hybrid copolymers of poly(ester-peptide) or poly(ether-ester-peptide) type 

exhibiting different architectures (e.g. diblock, triblock, graft or triblock/grafted) 

respectively, were then synthesized using as building blocks: poly(ω-

pentadecalactone), poly(globalide) (PGl), PEG as well as polypeptides derived from the 

L-glutamic acid (Glu), L-lysine (Lys), L-alanine (Ala) and L-phenylalanine (Phe) α-amino 

acids. The hybrid copolymers were synthesized through several stages depending on 
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the desired architecture. The first stage in the preparation of these copolymers was the 

synthesis of macroinitiators from PDL or PGl containing either an amino group at the 

end of the chain or multiple amine groups along their polymeric chain. In the second 

stage, such macroinitiators were used to trigger the polymerization of the α-amino acid 

N-carboxyanhyrides (NCA)  with the COOH group of L-glutamic acid and NH2 of L-

lysine duly protected as γ-benzyl-L-glutamate (BLG) and εN-carbobenzoxy-L-lysine 

(ZLL) respectively. Some copolymers containing BLG or ZLL units were treated with 

acids to render copolymers bearing the amino acids residues with their COOH or NH2 

functionalities in the free form. 

All of the synthesized copolymers were fully characterized through GPC and 

NMR spectroscopy. The thermal properties were studied by TGA and DSC techniques. 

The conformation adopted by the peptide-based copolymers in the solid-state was 

assessed by FTIR, and their crystalline structure was examined by X-ray diffraction 

using synchrotron radiation in most of cases. The conformation in aqueous solution of 

water-soluble copolymers containing Glu or Lys residues in the free form was explored 

by circular dichroism. 

The self-assembly behavior in aqueous medium of all the amphiphilic copolymers 

was investigated with the purpose of obtaining nanoparticles with the appropriated 

diameters required for their application as biomedical nanocarriers. The nanoparticles 

were duly characterized by light scattering and SEM and TEM microscopies. Block and 

graft copolymers were able to load doxorubicin and release it under pH control. 

Copolymers containing L-lysine were shown to be able of condensing DNA. The 

potential of these copolymers as DDS of anticancer drugs and vectors for transfection 

have been evidenced.     
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Resumen 

Los polipéptidos o proteínas obtenidos de manera natural son considerados 

como polímeros altamente refinados. Cuando los polímeros sintéticos se unen a 

proteínas o polipéptidos, los sistemas bioconjugados que se obtienen pueden 

sinérgicamente combinar las propiedades de sus componentes individuales y mejorar 

las propias limitaciones que tienen por separado. La proteína o el elemento 

polipeptídico puede impartir propiedades bifuncionales al bioconjugado, mientras que 

el polímero sintético puede mejorar la estabilidad proteica, la solubilidad y la 

biocompatibilidad. Esta tesis está enfocada en el estudio de copolímeros híbridos 

badados en polipéptidos y polimacrolactonas. Copolímeros tipo bloque e injerto fueron 

sintetizados utilizando principalmente la polimerización por apertura de anillo (ROP) y 

extensamente caractetizada tanto su estructura química, como su estructura en estado 

sólido. Las propiedades de auto-agregación de los nuevos copolímeros han sido 

anteriomente examinadas respecto a su potencial aplicación como 

nanotransportadores de compuestos farmacéuticos.   

Esta Tesis inicialmente reporta la homopolimerización de ω-pentadecalactona 

(PDL) usando diferentes iniciadores amino-terminados mediante el uso de 

catalizadores tanto orgánicos como enzimáticos. Este se extiende a la ROP de PDL 

usando poli(etilén glicol) bisamino-terminado (PEG) para la preparar copolímeros 

tribloque poli(ω-pentadecalactona)-b-poli(etilén glicol)-b-poli(ω-pentadecalactona) 

[PPDLx-PEG-PPDLx]. Estos copolímeros de tipo ABA fueron capaces de auto-

agregarse en agua para formar nanopartículas con diámetros entre 100 y 200 nm. 

Por otra parte, sistemas híbridos de tipo poli(éster-péptido) o poli(éter-éster-

péptido) que presentan distintas arquitecturas (por ejemplo dibloque, tribloque, injerto, 

o tribloque-injertado) respectivamente, se sintetizaron utilizando como bloques de 

construcción derivados de macrolactonas (ω-pentadecalactona), globalida) y α-amino 
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ácidos (ácido L-glutámico (Glu), L-lisina (Lys), L-alanina (Ala) y L-fenilalanina (Phe) así 

como poli(etien glicol) telequélico. 

 Los copolímeros híbridos fueron sintetizados en varias etapas dependiendo de 

cual fuese la arquitectura deseada. La primera etapa fue la preparación de los 

macroiniciadores a partir de PDL o PGl conteniendo en su estructura ya sea un grupo 

amino en el extremo de la cadena, o múltiples grupos aminos a lo largo de la cadena 

polimérica. En la segunda etapa, los macroiniciadores fueron utilizados en la 

polimerización de α-amino ácidos N-carboxianhídridos (NCA), con los grupos COOH 

del ácido L-glutámico y el grupo NH2 de la L-lisina apropiadamente protegidos como γ-

bencil-L-glutamato (BLG) y εN-carbobenzoxi-L-lisina (ZLL) respectivamente. Para los 

copolímeros que contienen bloques peptídicos de BLG o ZLL, las funcionalidades 

COOH o NH2 fueron regeneradas bajo condiciones ácidas, para producir así los 

copolímeros conteniendo el amino ácido en su forma libre. 

Todos los copolímeros sintetizados fueron completamente caracterizados 

mediante GPC y espectroscopia de RMN. Las propiedades térmicas fueron estudiadas 

por las técnicas de TGA y DSC. La conformación adoptada por los copolímeros en el 

estado sólido fue estudiada por FTIR, y su estructura cristalina fue analizada mediante 

difracción de rayos X usando radiación sincrotrón en la mayoría de los casos. La 

conformación en solución acuosa de los copolímeros solubles en agua, que contienen 

residuos de Glu o Lys, fue analizada por dicroísmo circular. 

Se estudió el comportamiento de todos los copolímeros para auto-agregarse en 

agua obteniéndose partículas con diámetros del orden nanométrico, como se 

demostró por DLS así como también por SEM y TEM, las cuales son apropiadas para  

ser aplicadas en biomedicina. Las nanopartículas de copolímeros dibloque y de injerto 

conteniendo ácido L-glutámico fueron capaces de incorporar doxorubicina y efectuar 

su liberación bajo control por medio del pH. Por otro lado, los copolímeros dibloque y 
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de injerto con bloques conteniendo L-lisina mostraron la habilidad de condensar el 

ADN, demostrando así su potencial uso como vectores en transfección.              

   Palabras clave: péptidos, polímeros sintéticos, ω-pentadecalactona, globalida, 

iniciadores amino-terminados, amino ácido, copolímeros híbridos, auto-agregación, 

nanoestructuras, doxorubicina, transfección.             
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Chapter 1. Objectives and organization of the Thesis 

1. Introduction 

The conjugation of polypeptides and synthetic polymers to form hybrid 

copolymers is a useful strategy to overcome some of the limitations related with the 

use of the individual components. Polypeptides are ideal for building stimuli-sensitive 

structures because the flexibility of their ordered conformational arrangements. On the 

other side, synthetic polymers confer the amphiphilic character required for the 

formation of well-organized biphasic morphologies.  Complex systems from the 

nanoscale upwards can be engineered from these copolymers taking benefit from 

molecular self-assembly strategies. After decades of research, the availability of 

efficient drug delivery systems for the treatment of diseases continues being still a 

significant challenge. The design amphiphilic hybrid copolymers based on polypeptides 

is envisaged as a promising approach to the achievement of nano-devices able to load 

therapeutic drugs with efficiency and to deliver them under control by effect of either 

external or internal stimuli.          

1. 2 General objective 

The main objective of this work is to design amphiphilic copolymers with different 

molecular architectures using easily available macrolactones (MLs), specifically ω-

pentadecalactone and globalide, and α-amino acids (αAA) as bio-based monomers, 

and occasionally poly(ethylene glycol) (PEG) too. The prepared copolymers will be 

able to self-assemble in aqueous environment to generate nano-objects of potential 

utility as biomedical nanocarriers.  
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1.3 Specific objectives 

� To study the ring-opening polymerization (ROP) of ω-pentadecalactone using 

different amino-ended initiators mediated by either organic or enzymatic catalysis. 

� To synthesize amphiphilic triblock copolymers ABA-type from PEG and 

macrolactones   and to explore their self-assembly behavior in aqueous medium. 

� To synthesize hybrid copolymers with either block or graft microstructure using 

pentadecalactone, poly(globalide), and α-amino acids (L-glutamic acid, L-lysine, L-

alanine and L-phenylalanine as starting comonomers. 

� To study the crystalline structure and the self-assembly properties of the hybrid 

copolymers at the nanometric scale and to relate them with their chemical structure  

� To assess the ability of the hybrid copolymers to form nano-objects (eg. 

nanoparticles, micelles, vesicles) by self-assembling in aqueous medium and to 

relate it with their chemical structure. 

� To evaluate the capacity of the nano-objects based on the hybrid copolymers to be 

used as nanocarriers for anticancer drugs, specifically for doxorubicin, including 

aspects as the loading efficiency, the releasing controlled by external stimuli, and 

the packing of gene material through electrostatic interactions.        

1.4 Outline 

o Chapter 1 contains a brief introduction to the Thesis, its objectives and its 

organization. 

o Chapter 2 provides an overview about the polyesters derived from 

macrolactones including their potential applications as drug delivery systems. 

o Chapter 3 describes the materials and methodology used for the synthesis of 

the polymers and copolymers as well as the techniques applied for their 

characterization. The methods used to prepare the nanoparticles from the 



 

 18 

 

amphiphilic copolymers and to evaluate them as nanocarriers are also 

reported 

o Chapter 4 is devoted to report the synthesis and characterization of poly(ω-

pentadecalactone) (PPDL) using amino-ended initiators, as well as the 

synthesis of the triblock copolymers PPDLy-PEGx-PPDLy and their self-

assembly in aqueous medium. 

o Chapter 5 deals with the synthesis of poly(ω-pentadecalactone)-b-poly(α-

amino acids) diblock copolymers (PPDL-b-pPAA) in which the amino acid are 

protected, their solid-state characterization and their self-assembly behavior 

in aqueous medium. 

o Chapter 6 treats about the synthesis of poly(globalide)-graft-poly(α-amino 

acids) (PGl-g-PAA) copolymers. Their structure in the solid state is studied in 

detail and their suitability as nanocarriers for anticancer drugs or DNA 

vectors is brought into evidence. 

o Chapter 7 reports on the chargeable PPDL-b-PAA diblock copolymers 

generated by removing the protecting groups from PPDL-b-pPAA copolymers 

which were described in Chapter 5. The capacity of these copolymers to form 

nanoparticles and to load and release cancer-therapy drugs (doxorubicin) or 

DNA is examined. 

o Chapter 8 is an extension of Chapters 5 and 6, where the macroinitiators 

prepared there were successfully utilized for the ROP of the L-alanine N-

carboxyanhydride to yield both diblock (PPDLx-b-PAlay) and graft (PGlx-g-

PAlay) copolymers. A comparative study regarding structural and self-

assembly aspects of the two types of copolymers is carried out. 
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o Chapter 9 reports on the copolymerization of globalide and ω-

pentadecalactone and the utilization of such random copolymers to graft L-

glutamic acid following the same procedures as in previous chapters. The 

influence of macrolactone copolymerization on the structure and properties of 

the graft terpolymers is examined. 

o Chapter 10 reports the synthesis of amphiphilic copolymers made of 

poly(ethylene glycol), poly(globalide) and poly(L-phenylalanine) segments. 

The PEGylated nanoparticles prepared by self-assembly of these copolymers 

in aqueous medium are described.                                             

The reader is encouraged to access to annexes to Chapters 4-10 containing 

supplementary graphical information for each one. 
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Chapter 2. Introduction 

2.1 Amphiphilic copolymers with self-assembling properties 

Self-assembly is a process by which the components of a system become 

arranged in ordered structures spontaneously. The type of structure adopted depends 

on the chemical nature of the components and the environment in which they are 

located. Self-assembly reflects the information coded (as shape, surface properties, 

charge, polarizability, magnetic dipole, mass, etc.) in the individual components since 

these characteristics determine the interactions among them [1].  Recent advances in 

the synthesis and design of amphiphilic copolymers have created a new surge of 

interest in the development of nano-assembled systems because many of their 

functions may be regulated by the shapes and dimensions of their counterparts. Self-

assembly of amphiphilic copolymers constitutes today the most efficient and versatile 

strategy to create nano-systems suitable for a wide diversity of applications in drug 

delivery, sensor design, bio-imaging, nanoreaction, cosmetics and dispersant 

technologies [2]. 

2.1.1 Block copolymers  

Advances in polymer chemistry have brought about many different strategies for 

producing amphiphilic-block copolymers from a given number of monomers (m) and a 

desired numbers of blocks (n) able to display different hydrophilic and hydrophobic 

characteristics. For example, synthesis using two chemically distinct monomers (m = 2) 

will lead to a diblock copolymer (n=2) or a symmetric triblock copolymer (n = 3), 

whereas synthesis of three different monomers (m = 3) will indefectibly result in 

asymmetric triblock copolymers (n = 3). In general, these block copolymers are defined 

as AB diblock copolymers or ABA and ABC triblock copolymers where A and C are 

chemically distinct hydrophilic blocks whereas B represents the hydrophobic block 

(Figure 1) [3].  
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Figure 1. Illustration representing different types of block copolymers   

By designing the nature and size of the blocks in such a way that they contain all 

necessary information to attain their self-assembly into functional materials, additional 

processing or modification steps could become superfluous. Three different 

representative classes of block copolymer are schematized in Figure 2.   

 

 

 

 

Figure 2. a) Coil-coil diblock copolymers, b) rod-coil diblock copolymers  and c) rod-coil diblock 
oligomers [4]. 
 

Coil-coil diblock copolymers. Block copolymers comprised of two flexible 

incompatible blocks [e.g. poly(styrene)-b-poly(isoprene)] tend to be  organized in 

separate nanophases with  a variety of different morphologies.   

Rod-coil diblock copolymers. Replacing one of the blocks of a coil-coil diblock 

copolymer by a stiff segment, a rod-coil type diblock copolymer will result. In this case, 

the self-assembly is no longer solely determined by phase-separation, but also by other 

factors related with the packing of the rigid phase. 

Rod-coil diblock oligomers. These systems are of particular interest since they 

allow accessing to phase-separated morphologies with domain sizes that could not be 

attained with traditional coil-coil diblock copolymers. 

a

b

c
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The covalent coupling of two polymeric chains at their respective ends required to 

build a diblock copolymer can be accomplished using a variety of chemical means 

which can be expanded to the preparation of tri- and multiblock copolymer as well [5,6].  

Controlled/living radical polymerization. Conventional radical polymerization can 

be carried out in bulk, in solution, and in dispersed media (suspension, emulsion, 

miniemulsion, microemulsion and inverse emulsion) to create block copolymers. 

Solvents should not contain easily abstractable atoms or groups, unless low MW 

polymers are desired [8].        

Living anionic polymerization is frequently employed for the synthesis of block 

copolymers where two or more monomers are chain polymerized sequentially. These 

are polymerizations evolving through anionic growing species as active polymerization 

centers. Special precautions (i.e. dryness, inert atmosphere, solvent purity) are 

required to prevent unwanted side reactions and to control the process kinetics. 

Ring opening polymerization (ROP). According to IUPAC there are two general 

methods of polymerization: chain polymerization and polycondensation. ROP belongs 

to chains polymerization, defined (according to IUPAQ): “A chain polymerization”. 

Chain reaction  which the growth of a polymer chain proceeds exclusively by 

reaction(s) between monomer(s) and active site(s) on the polymer chain with 

regeneration of the active site(s) at the end of each growth step. As any other chemical 

change, elementary reactions in ROP may be either driven by molecular features that 

are of enthalpic or entropic origin. The common feature of all the ROP is the presence 

of at least two elementary reactions that are necessary conditions of a macromolecule 

formation: initiation and chain growth. Chain transfer and termination could be avoided, 

but if present, then transfer (irreversible) and/or termination would lower the molar 

mass.   
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High molar mass aliphatic polyesters with low polydispersity indexes can be 

obtanined by ROP of lactones. The polymerization of lactones is generally carried out 

in bulk or in solution (THF, dioxane, toluene, etc.), emulsion, or dispersion. The 

temperature of the bulk polymerization is generally in the range of 100-150 ºC, 

whereas in solution polymerization, low temperatures haven been used (0-25 ºC) to 

minimize side reactions (inter- and intramolecular transesterification). A few lactones 

polymerize spontaneously on standing or on heating. Most do so in the presence of 

catalysts or initiators. Many organometallic compounds, such as oxides, carboxylates, 

and alkoxides are effective initiators for the controlled synthesis of polyesters using 

ROP of lactones. The mechanism of polymerization depends on the type of initiator [7]. 

Polycondensation. In order to perform polycondensation it is necessary for each 

monomer molecule to comprise at least two functional groups able to react during the 

process. Polycondensation involves reactions well-known from low molecular weight 

organic chemistry: amidation, esterification, and others, but they are realized many 

times and for this reason they are called polyamidation. Virtually, any homopolymer, or 

either polymerization of polycondensation type, may be used as the corresponding 

oligomer with terminal functional groups in polycondensation reactions leading to the 

formation of block copolymers. Block copolymers of the polycondensation type include 

block copolymers the last stage in the formation of which is a polycondesation reaction. 

Such copolymers can be linear, branched, grafted (graft block copolymers), and 

structured [9].       

Amphiphilic-block copolymers have the ability to form various types of 

nanostructures the most representative being micelles, nanospheres and 

nanocapsules (see Figure 3). These materials when intended for use in drug delivery, 

are generally composed of biocompatible, biodegradable hydrophobic blocks such as 

polyesters that are covalently bonded to biocompatible hydrophilic blocks, such as 

PEG or polypeptides [10]. 
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Micelles 

Size: 10-100 nm 

Aggregated copolymers in dynamic 
equilibrium with copolymer unimers 

Mobile fluid-like core 

 

Nanospheres 

Size: 100-300 nm 

Copolymer unimers in a 
“frozen”state 
Phase-separated solid matrix core 

 

Polymersomes 

Size: 100-300 nm  

Copolymers unimers  
Or membrane surrounding 
A drug reservoir or  
Oily core 

Figure 3. Nanoparticulate systems formed by amphiphilic block copolymers [10]. 
 

2.1.2 Graft copolymers 

Graft copolymers belong to the general class segmented copolymers and 

generally consist of a linear backbone of one composition bearing randomly distributed 

branches of a different composition. Graft copolymers, having polymeric arms spaced 

regularly and densely along the backbone, are an interesting architecture of 

hiperbranched polymers with size, length of side chain and backbone, grafting density 

and composition being precisely controlled. In comparison with the linear block 

copolymers, graft copolymers have more freedom in tuning the self-assembled 

behaviors by changing the grafting densities and length of side chains. In some 

conditions, more stable uni-molecular micelles can be formed by amphiphilic graft 

copolymers, which have attracted considerable interest for using as drug and gen 

carries in chemotherapy [11]. Most usually the backbone of a graft copolymer is 

constituted by a hydrophobic polymer chain whereas the branches show a notable 

hydrophilic character. Water soluble polyethers like poly(ethylene oxide) (PEO), 
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poly(amino acids) or polysaccharides are frequent  hydrophilic components of graft 

copolymers [12].    

Graft copolymers can be synthesized by three different methods [13,14] (Figure. 

4):  

i) In the “grafting onto” method, the backbone and the arms are prepared separately 

and them jointed. The branching sites can be introduced onto the backbone either by 

post polymerization reactions or by copolymerization of the main backbone monomer 

with a suitable comonomer bearing the desired functional group (unprotected or in a 

protected form if this functional group interferes with the polymerization reaction). The 

branches are prepared with and reactive group able to react with the functionality 

provided by the backbone. 

ii) In the “grafting from” method, the primary requirement is to have a preformed linear 

macromolecule with evenly distributed initiating-capacity functionality. The branches 

are formed by polymerization of the second monomer initiated by the active sites 

provided by the backbone.   

iii) In the “grafting through” or macromonomer method, preformed long chain 

monomers are copolymerized with a conventional monomer. 

 

 

 

 

 

 

 

 

 

Figure 4. General synthetic methods for the synthesis of graft copolymers [14].   
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The hydrophobic/hydrophilic segment ratio of graft copolymers are tuned by 

appropriate selection of the comonomers. For biomedical applications, the self-

aggregation characteristic of synthetic graft copolymer in aqueous media is of major 

interest. For copolymers containing a hydrophobic backbone and hydrophilic grafts, 

micellization becomes possible with either nonionic or ionic water-soluble side chains 

[15,16]. 

2.2 Amphiphilic copolymers containing polypeptide segments 

The use of hybrid materials based on the combination of peptides with synthetic 

polymers takes advantage of providing well-controlled structures bearing multiple 

chemical functionalities. The chemical conjugation of peptides to polymers is feasible 

via certain specific types of chemical reaction, the so-called “click” reaction being the 

most common one.  Apart from the conjugation of polymers and peptides, the insertion 

of peptide-based ion channels into polymer supramolecular structures represents 

another strategy to combine, in a functional manner, peptides and polymers. The 

exploitation of polymer-peptide self-assembly processes is opening new fascinating 

and promising routes in nanotechnology and nanomedicine [17].     

2.2.1 Polypeptides  

Synthetic polypeptides are polymers composed of α-amino acids. The 

investigation of polypeptides assemblies is a helpful approach for understanding the 

behavior of proteins systems. The polypeptide chain is known to adopt three typical 

conformations, random coil, α-helix, and β-sheet, which largely determine the rigidity of 

the polypeptide and in consequence its solubility. Both intrinsic factors as amino acid 

sequence and molecular weight and extrinsic factors as solvent nature, pH, and 

temperature, will influence the conformational and self-assembly properties of the 

polypeptides [18]. Peptide-based platforms for biomedical applications have been a 

subject of intense research and used in different areas including drug delivery, tissue 

engineering and biodiagnostic tools, among others [19].  
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2.2.1.1 α-Amino acids and polypeptides  

α-Amino acids are the basic constituents of both polypeptides and proteins and 

they are indispensable compounds for life process. The chemistry of amino acids and 

peptides has been developed mainly addressed to the structural elucidation and 

synthesis of compounds of useful biological function [20]. Although there are only about 

20 natural α-amino acids (Figure 5), the variety of their combinations results in an 

amazing diversity of materials differing in properties and functionalities [21].  

 

Figure 5. Twenty gene encoded α-amino acids shared by all life forms.  

Proteins have fascinated scientists for long since their complex sequences and 

diversity of chemical functionality lead to structurally defined folded chains with highly 

specific biological activities. Synthetic polypeptides were attractive, and remain so 

today, since they possess the same backbone as proteins. Polypeptides may be 

degraded enzymatically within a safe profile and non-toxic metabolites, which are 

remarkable properties for biomedical applications requiring temporal use [33–35]. Their 

synthesis has been both extensively and intensively explored and today most of them 
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may be prepared chemically by the ring opening polymerization of α-amino acid N-

carboxyanhidride (NCA ROP) monomers [26].  

The polymerization of NCAs (Scheme 1) is a highly economical and expedient 

process for the synthesis of long polypeptide chains, especially if compared to the 

solid-phase synthesis. N-carboxyanhydrides are known to be polymerized by aliphatic 

primary amines in such a way that the initiator is attached to the growing chain and the 

propagation is living. 

 

Scheme 1. Polymerization of N-carboxyanhidride (NCA) monomer.  

Most authors agree that the most likely pathways for the ROP of NCAs are the 

“normal amine” (NA) and the “activated monomer” (AM) mechanisms (Scheme 2)  [27]. 

i) Normal amine mechanism (NAM). This mechanism is the generally one followed in 

the polymerization of NCAs initiated by non-ionic initiators having at least one mobile 

hydrogen atom (base-H), such as primary and secondary amines, alcohols and water. 

ii) Activated monomer mechanism (AMM). This mechanism was proposed to explain 

the ROP of DL-phenylalanine NCA, initiated by a tertiary amine. Later, the AMM was 

found to be also valid for the basic salt-initiated polymerization of N-unsubstituted 

NCAs. In the cases of tertiary and secondary amine, as well as the alkali halide-

initiated polymerizations, it is believed that AMM and NAM coexist. 



 

Chapter 2   29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2. Possible reactions in ROP of α-amino acids NCAs by nucleophilic initiators [27,28] 

2.2.1.2 Structure and properties of polypeptides 

Synthetic polypeptides can adopt ordered conformations such as α-helices or β-

strands in addition to the disordered coil arrangement under specific environmental 

conditions. These secondary structures and their dynamic transitions play an important 

role in regulating the properties of polypeptides in self-assembly, catalysis, 

polymerizations, and biomedical applications [29,30]. 
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Figure 6. Circular dichroism (CD) and infrared spectroscopy (IR) as useful techniques in the 
secondary-structure elucidation of proteins and polypeptides. 

 

Circular dichroism (CD) is an excellent method of determining the secondary 

structure of polypeptides since the different structural elements display characteristic 

CD spectra (Figure 6a). For example, α-helical polypeptides have negative bands at 

222 nm and 208 nm and a positive band at 193 nm. Polypeptides with well-defined 

antiparallell β-pleated sheets (β-forms) present negative bands at 217 nm and positive 

bands at 196 nm while disordered chains exhibit very low ellipticity above 210 nm and 

negative bands at 196 nm [31]. Infrared spectroscopy is well suited for determining 

structural features of polypeptides. The major bands of interest are the amide I, II and 

III bands, which absorb in the 1600-1700, 1500-1600, and 1200-1350 cm-1 region, 

respectively. As each of the secondary structure motifs in peptides is associated with a 

characteristic hydrogen bonding pattern between the amide C=O and N-H groups, 

each type of secondary structure gives rise to characteristic amide I and amide II 

absorptions [32].  



 

Chapter 2   31 

 

In this Thesis, four α-amino acids (L-glutamic acid, L-lysine, L-alanine and L-

phenylalanine) have been used to build the polypeptide blocks needed for the 

synthesis of the copolymers. 

Poly(L-glutamic acid) (PLGA). Poly(L-glutamic acid), which can be conveniently 

synthesized through the ROP of the γ-benzyl-L-glutamate N-carboxyanhidride (BLG-

NCA), is a synthetic polypeptide that is biodegraded into L-glutamic acid, which is an 

essential amino acid for the human body. Every unit of poly(L-glutamic acid) bears a 

carboxyl group which is ionized at high pH forcing the polypeptide to adopt the random 

coil conformation due to the disturbing charge repulsion and to become therefore water 

soluble. When pH decreases, carboxyl groups are protonated and the polymer adopts 

then a helical conformation and becomes insoluble in water. PLGA is therefore 

responsive to external stimuli such as pH and ionic strength, and in addition, it provides 

functionality suitable for drug attachment. These features make PLGA an attractive 

candidate for the design of drug delivery systems [22].  

Poly(L-lysine) (PLL). Poly(L-lysine) is a cell penetrating polypeptide capable of cell 

transfection and transportation of other molecules of interest into the cell. PLL is a 

cationic polypeptide since it is protonated on the side amino group at physiological pH, 

which confers it particular interest in the field of siRNA delivery. As a delivery agent, it 

has been shown to be very resilient, effective and capable of prolonging the therapeutic 

action. As a result, it has a great potential as a very flexible system for general drug 

delivery. The synthesis of PLL is rather problematic due to the negative interference of 

its long side chain length. Nevertheless, PLL can be synthesized by ROP of εN-

carbobenzoxy-L-lysine N-carboxyanhidride (ZLL-NCA) and subsequently deprotection 

of the epsilon-amino groups [23].     

Poly(L-alanine)(PLAla). L-Alanine is the simplest natural amino acid bearing a non-polar 

hydrophobic side group. Poly(L-alanine) has particular properties among polypeptides 

due to the presence of the methyl side group.  PLAla displays good solubility in organic 

solvents that favors the possibility of obtaining nanoparticles useful as drug delivery 
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systems. Moreover, polymers based on L-alanine show better enzymatic degradation 

than those others based on glycine.  PLAla may be readily synthesized by ROP of Al-

NCA.     

Poly(L-phenylalanine)(PLPhe). Although the interest for α-amino acids is high for hybrid 

copolymer preparation, little attention has been paid to L-phenylalanine so far. The 

stacking of aromatic rings plays a well-known role to facilitate self-assembling and 

formation of both chemical and biochemical supramolecular structures. The restricted 

geometry and attractive forces of the aromatic moieties provides order and 

directionality to the arrangements adopted by the polypeptide, as well as the energy 

needed for the formation of such well-ordered structures. PLPhe may obtained by Phe-

NCA.[25]. 

2.2.2 Polypeptide-based copolymers  

The capability of polypeptides to form ordered secondary structures through 

noncovalent interactions somewhat distinguishes them from many other synthetic 

polymers. Polypeptide based copolymers show considerable promise for building nano-

systems regulated by controlling intra- and intermolecular interactions and the 

formation of secondary and tertiary structures.  

Combining two different polypeptide blocks enables the formation of noteworthy 

block copolypeptides able to self-assemble into micelles, vesicles, and hydrogels 

depending on the nature of the polypeptide blocks selected and the physical 

interactions taking place between the two blocks. Specific polypeptide sequences can 

be generated synthetically by the solid-phase peptide synthesis but the fabrication of 

polypeptides containing more than 50 amino acid residues by this technique is often 

unfeasible. The introduction of controlled and living/controlled NCA ROP methods has 

resulted in extensive research that has culminated in the generation of a plethora of 

novel block copolypeptides. Self-assembly of these into systems that may be exploited 
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to create a whole host of three-dimensional architectures suitable for biomedical 

applications [37].  

2.2.2.1 Polypeptide-PSty and polypeptide-PEG copolymers 

While synthetic polymers present the random coil or well-stable crystal structures, 

peptide sequences can adopt interconvertible conformations such as the α-helix or β-

strands. Hybrid materials based on the combination of peptides with synthetic polymers 

takes advantage of such polypeptide properties and provide nano-structures that may 

be controlled down to the molecular level and that may bear multiple chemical 

functionalities. Different polymerization techniques such as atom transfer radical 

polymerization (ATRP), reversible addition-fragmentation chain transfer polymerization 

(RAFT), nitroxide mediated polymerization (NMP), opening metathesis polymerization 

(ROMP), and ring opening polymerization (ROP) have facilitated the development of 

tailor-made polymers and copolymers with predictable molecular weight and narrow 

distributions. The properties of these polymers can then be further enhanced via 

conjugation of polypeptides to tune hierarchical assembly, stimuli response or desired 

targeting [36].  Some polypeptide-based hybrid copolymers of reference are those 

combining the polypeptide with highly hydrophobic or highly hydrophilic polymers. 

Selected examples of these two types are commented below.  

Atactic polystyrene (a-PSty) is an amorphous hydrocarbon polymer that has been 

extensively used for the synthesis of the coil part of amphiphilic diblock-peptide-based 

copolymers with a rod-coil structure. Polystyrene-b-poly(ε-benzyloxycarbonyl-L-lysine) 

(PSty-PZLL) diblock copolymers were reported by Gallot et al. Wide and small angle X-

rays scattering patterns indicated the presence in these copolymers of an hexagonal 

arrangement of the peptide helices [38]. Removal of the side-chain protecting groups 

resulted in non-water soluble polystyrene-b-poly(L-lysine) diblock copolymers that did 

not show evidence for any ordered arrangement of the peptides chains. Polystyrene-b-

poly(γ-benzyl-L-glutamate) (PSty-PBLG) diblock copolymers with a hexagonal-in-
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lamellar morphology have been also described [39]. Also the ABA-type triblock 

copolymers composed of a central polystyrene block flanked by two polypeptide 

segments made of PBLG or polysarcosine have been studied. Different block 

copolymers morphologies related to the different secondary structure of the peptide 

block were characterized with the PBLG blocks in the α-helical form and polysarcosine 

without adopting any regular structure.  

Studies carried out on ABA triblock copolymers PBLG-PSty-PBLG with a variety 

of compositions [40] revealed that the molecular organization adopted in the solid-state 

was strongly affected by the PBLG/PSty ratio and the molecular weight of the 

copolymer. WAXS patterns revealed d-spacings corresponding to the distance 

between neighboring polypeptide α-helices in all cases but TEM micrographs indicated 

a lamellar morphology only for triblock copolymers with PBLG contents below 60%. 

Later studies were realized on series of PS-b-PBLG and PS-b-PZLL hybrid copolymers 

made of a short polystyrene block (PD~10) and a polypeptide block containing 

between 10 and 80 repeating units [41]. The structure of these copolymers was 

characterized by variable temperature infrared spectroscopy and X-ray diffraction, and 

it was found that below 200 ºC and for sufficiently long peptide blocks, the diblock 

copolymers adopted a hexagonal structure. On the contrary, the polypeptide was 

arranged in the β-sheet form  for very short amino acid block lengths [42].      

The chemistry and biological applications of poly(ethylene glycol) (PEG) have 

been the subject of intense both academic and industrial studies. PEG is a hydroxyl-

capped water-soluble polyether with low-to-moderate molecular weight and good 

commercial availability. PEG has been used for long as an excellent co-partner in 

copolymerization reactions due mostly to its broad and worthy applications in drug 

delivery systems. Its mostly outstanding property is reducing the tendency of 

nanoparticles to aggregate by steric stabilization and producing thereby formulations 
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with increased stability during storage and application. Probably, PEG is the most 

commonly applied non-ionic hydrophilic polymer with stealth behavior.  

Poly(ethylene glycol)-polypeptide block copolymers (PEG-b-PP), have attracted 

significant interest as drug and gene delivery systems by utilizing their most relevant 

feature, that is the formation of micelles with a distinguished core-shell architecture. 

The hydrophilic block in these systems is usually PEG with a molecular weight ranging 

from 1000 to 20,000 g�mol-1. Micelles based on PEG-PP copolymers are unique among 

other micelle-forming block copolymers because the presence of a tailor-made non-

polar core of PP compatible with water-insoluble drugs. A primary advantage of PEG-

PP over other drug carriers is their capacity for loading drug, genes or intelligent 

vectors in the micellar core through the free functional groups (amino or carboxylic) of 

the polypeptide chain [43]. 

2.3 Polypeptide-polylactone copolymers 

Peptides are attached to other polymeric inert materials as bioactive components 

with the main purpose of optimizing the interactions between the material and the 

surrounding proteins and cells. An additional point of interest derives from the stable 

amide backbone of peptides which makes them rather inert against hydrolysis and 

therefore more suitable for materials science applications compared to other bioorganic 

macromolecules such as oligonucleotides or oligosaccharides [44,45]. Aliphatic 

polyesters occupy a key position in the field of polymer science regarding their 

remarkable properties such as biodegradability and biocompatibility. Their hydrolytic 

and/or enzymatic chain cleavage yields hydroxyl carboxylic acids, which in most cases 

are ultimately metabolized.. These key properties can be optimized by 

copolymerization or blending of homo and/or copolymers [48], which opens up a wide 

range of applications as environmentally friendly thermoplastics and biomaterials.  
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The use of polyesters as counterpart of polypeptides to form hybrid copolymers is 

exceptionally appealing due to their relatively easy of synthesis, which is particularly 

applicable when lactones susceptible to ROP are used as monomers.  

2.3.1 Lactones and ROP to polylactones 

Polyesters of A-B type are usually prepared by two different approaches, i.e. 

polycondesation of hydroxy acids and ring opening polymerization (ROP) of lactones. A 

lactone is an organic compound containing an ester group that becomes part of a ring 

structure made of carbon atoms. In Scheme 3 the chemical structures of some 

representative lactones are shown.  

 

 

Scheme 3. Chemical structures of representative small to medium-size lactones. 

 

In the ROP of lactones, polymers are formed when cyclic esters are initially 

opened by a nucleophile (initiator) and the opening reaction is continued at a good rate 

by assistance of a catalyst. The polymerization of lactones by ROP provides a facile 

route to the corresponding polyesters, commonly called polylactones [47]. Polylactones 

are important biodegradable and biocompatible environmentally friendly polyesters 

widely used for many applications.  

The main mechanisms of polymerization of lactones by ROP can be roughly 

divided into five categories: anionic polymerization, coordination polymerization, 

cationic polymerization, organo-catalytic polymerization, and enzymatic polymerization 

[46]. As a rule, amines and alcohols are not nucleophilic enough to realize the 

continuous ring-opening involved in the polymerization at a satisfactory rate, and it is 
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mandatory to use catalysts to attain a successful reaction. Particularly interesting in this 

context are organo-catalytic and enzymatic polymerizations, since they were the 

methods used in this Thesis. As an example, 1,5,7-Triazabiciclo[4.4.0]dec-5-ene (TBD) 

is an efficient organo-catalyst commonly used for the ROP of lactones initiated by 

alcohols. The benefits of enzymes as catalyst in ROP of lactones are manifold: a) 

Enzymes are green catalysts obtained from renewable resources, b) Enzymes may be 

easily separated from the resulting polyesters, c) Enzymatic polymerizations proceed 

under mild conditions in terms of pH, temperature, and pressure and, d) Enzymes are 

very efficient catalysts for the polymerization of large-size strain-free lactones, which 

are particularly difficult to polymerize by the usual chemical methods. 

Scheme 4 presents the two possible initiation-polymerization mechanisms 

followed in the ROP of a cyclic ester [46,48]. 

 

 

 

 

 

 
Scheme 4. Schematic representation of the initiation-polymerization ROP mechanisms of 
lactones. R=(CH2)n  

Each macromolecule that is formed by ROP may contain chain ends functional 

groups that are provided by the initiator or generated in the termination reaction. By 

changing the catalyst or initiator and the termination reaction, the nature of the 

functional groups can be varied to fit the polyester in the application of the polymer. 

Functional groups accessible to post-polymerization reactions can be introduced into 

the polymer structure in this way. 

Although alcohols (ROH) have been in most cases the initiators in the ROP of 

lactones, primary amines (RNH2) can be also used for the purpose. In principle the 

system lactone/RNH2 does not differ mechanistically from the lactone/ROH system 
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(Scheme 5), however the utilization of amines as nucleophiles in the ROP opens new 

possibilities such as the synthesis of polypeptide-polyester block and graft copolymers 

or star-shaped copolymers based on polyamino dendrimers [49–51].   

         

 

 

 

 

Scheme 5. Ring opening polymerization of lactones using alcohols or amines as initiators. 

 

A number of architectures may be produced as a result of the great versatility of 

the ROP of cyclic esters: homopolymers, block copolymers, graft copolymers and star-

shaped copolymers. Block copolymers are likely the most studied among these 

architectures. They may be readily prepared by sequential addition of monomers to 

systems polymerizing under living conditions. The order of monomer addition must be 

such that the macroinitiator generated by the preceding monomer is capable of rapidly 

initiating the ROP polymerization of the succeeding monomer. The preparation of 

prepolymers or macromers with functional end groups, so called telechelic polymers, is 

another approach to unconventional architectures. The functional end groups are 

introduced either by functional initiation or end-capping of living polymers, or by a 

combination of the two. In this way, monomers that are not able to copolymerize can be 

incorporated in a copolymer. Star-shaped polymers can be prepared by using a 

multifunctional initiator, e.g. pentaerythritol and a catalyst that initiates ROP of the 

selected monomer. A second approach is to use telechelic prepolymers that become 

linked together after polymerization.       

2.3.2 Macrolactones and poly(macrolactones) 

Macrolactones refer to lactones made of cyclic backbones made at least of 12 

atoms. Some representative macrolactones are shown in Scheme 6.  Compared to the 
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vast number of publications describing the ROP of small and medium ring-size cyclic 

esters (lactide, glycolide, caprolactone, etc), the ROP of macrolactones is 

underexposed and only few reports have been published to date [52]. The driving force 

behind the ROP of small-size lactones comes from the release of ring-strain during the 

polymerization process and it is therefore an enthalpy-driven process. On the contrary, 

when the ring size is large enough (usually ≥14 atoms), changes in enthalpy upon 

opening are minimal and polymerization becomes entropy-driven due to an increase of 

conformational freedom [53]. The interest for the macrolactones is rapidly increasing 

for the production of high hydrophobic polyesters, in particular of polyesters derived 

from fatty acids. Poly(macrolactone)s are highly hydrophobic and semicrystalline 

polymers with properties close to those of polyethylene, one of the highest volume and 

most versatile polymers. 

 

 

 

 

 

 

 

 

Scheme 6. Representative macrolactones. Only ω-pentadecalactone and globalide were used 
in this Thesis. 
 

In this Thesis we did work on copolymers based on ω-pentadecalactone (PDL) 

(IUPAC name: Oxacyclohexadecan-2-one) and globalide (Gl) (IUPAC name: 

Oxacyclohexa-decen-2-one), both of them commercially available. PDL is a naturally-

occurring macrolactone that is synthetically produced by expansion of the 

tetradecanone. Globalide is an unsaturated 16-membered lactone that contains one 

unsaturated double bond. It is also derived from hydroxy fatty acids and proven to be 
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non-toxic. It is actually a mixture of two different constitutional isomers with the double 

bond at the 11 or 12 positions. Such unsaturation provides it with a chemical handle for 

functionalization. Poly(ω-pentadecalactone) (PPDL) prepared from PDL is a 

semicrystalline polyester  that display mechanical properties comparable to high 

density polyethylene (HDPE) [54]. PPDL owes its increased tensile properties to its 

long methylene sequences and its strength to its crystalline nature. Both its crystallinity 

and hydrophobicity are responsible for the low susceptibility to hydrolytic degradation 

exhibited by this polyester [55]. Polyglobalide (PGl) has a low melting point (~48 ºC), is 

highly crystalline, nontoxic and shows low hydrolytic or enzymatic degradability, being 

characterized by high hydrophobicity. Such properties make it a good candidate for 

biomaterials obtained from bioresources with low degradability [52].    

2.3.3 Polypeptide-polylactone copolymers 

Most of studies carried out on polypeptide-polylactone copolymers are based on 

a few synthetic polylactones, such as poly(ε-caprolactone) (PCL), poly(lactide) (PLA), 

and poly(glycolide) (PGA). All these polylactones are biocompatible and degradable by 

hydrolysis at different rates. Copolymerization of these lactones with amino acids to 

produce random, block, or graft copolymers has been carried out to produce materials 

with intermediate properties between those of the parent homopolymers. This 

approach has allowed permeability to be extensively controlled [56].            

There are a number of papers on the studies of synthesis and characterization of 

poly(ester)-co-poly(α-amino acid) block or triblock copolymers. In most cases, poly(γ-

benzyl-L-gutamate)(PBLG) or εN-carbobenzoxy-L-lysine (PZLL) has been 

copolymerized with ε-caprolactone [57–62] and L-lactide [63–66]. The subsequent 

removal of the protecting-amino acid group rendered the poly(ester-peptide) 

copolymers with the amino or acid group in its free form. Additionally, architectures like 

graft copolymers [67,68] based on the combination of peptides and polyesters have 

been also reported. 
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As far as we know, the marriage of macrolactones to polypeptides to form 

copolymers has not been reported to date. Neither block nor graft copolymers have 

been described, and the solely information available in literature dealing with this kind 

of poly(ester-peptide) copolymers is that emerging from the work presented in this 

Thesis.   

Only few reports are known to deal with polypeptide-polyester copolymers 

displaying  self-assembly behavior. Jérôme et al. performed DSC on a poly(ε-

caprolactone)50-b-poly(γ-benzyl-L-glutamate)40 (PCL50-PBLG40) revealing two 

endotherms, one found at 60 ºC due to the melting of the PCL, and another one at  110 

ºC that reflects the conformational transition of the PBLG helix from a 7/2 to a 18/5 

helical structure. The observation of the two separate endotherms at temperatures 

identical to those found for the respective homopolymer transitions was a firm 

indication for the existence of a microphase-separated structure [70]. Similar results 

were later reported by other authors for PCL-PBLG and PLLA-PBLG diblock 

copolymers [69,71].     

2.4. Hybrid polypeptide-based copolymers as drug delivery systems  

The vast functionality of proteins and oligopeptides originate from a wide choice 

of α-amino acid monomers as well as the control of peptide sequences [72]. When 

synthetic polymers are married to proteins or peptides, the resulting bioconjugates can 

synergistically combine the properties of the individual components and overcome their 

separate limitations. The protein or peptide element can impart (bio)functional 

properties to the bioconjugate, whereas the polymer component can improve protein 

stability, solubility and biocompatibility. The synthetic polymer can also introduce new 

properties such as self  –assembly and phase behavior, and even modulate protein 

activity [35]. The architecture of the bioconjugate has to be adjusted to the application 

for which it is developed. The most common architecture is the head-to-tail conjugate 

(Figure 7a)    
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Figure. 7. Cartoon representation of the most common architectures of bioconjugates. The 
curved lines represent the synthetic polymer component and the ellipses the peptide or protein: 
(A) head-to-tail conjugate, (B) comb-shaped or grafted structure, (C) dendritic architecture [35].  
 

Drug delivery is the method used for administration of  a pharmaceutical 

compound in humans or animals in order to achieve a therapeutic effect [73]. Drug 

delivery at controlled rate and targeted are extremely important properties of the drug 

delivery systems that are vigorously pursued in the design of new formulations. The 

called “smart drug delivery systems” (SDDS) are able to deliver drugs to the targets 

sites with reduced dosage frequency and in a spatially controlled manner.  

Nanocarriers are the base of SDDSs. The eight most reported nanocarriers are 

presented in Figure 9 [78]. 

 

 

 

 

 

 

Figure 9. Schematic representation of the 8 nanocarriers used in smart drug delivery systems 

[78]. 

2.4.1. Polymeric nanoparticles 

Polymeric nanoparticles (NPs) (Figure 8) are the nanocarriers mostly investigated 

as drug delivery systems (DDS). NPs are colloidal carriers that can have a natural or 
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synthetic origin and can vary from 1 to 1000 nm in size. They may be able to load 

drugs by different mechanism as chemical bonding, encapsulation, adsorption, or 

dispersion. The nano-size range of these systems allows them to be injected directly 

into the systemic circulation without the risk of blocking the blood vessels. It has been 

shown that the size of the nanoparticle is the major factor determining the in vivo fate of 

the particles. Synthetic NPs may be prepared from a wide diversity of polymeric 

materials such as poly(ethyleneimine), poly(ε-caprolactone), poly(lactic-co-glycolic 

acid), polypeptides, polyesters, and also from inorganic materials such as gold, silicon 

dioxide among others [43]. 

 

Figure 8. Main nanoparticle features influencing systemic delivery [43].  

 

NPs can be conveniently prepared either from preformed polymers or by direct 

polymerization monomers using emulsion  polymerization [73]. When dealing with 

preformed polymers, a rich assortment of preparation techniques such as solvent-

evaporation, nanoprecipitation, or salting out among others, is available. 

When amphiphilic copolymers are placed in an aqueous environment, the 

hydrophobic blocks constitute the core of the micelle while the hydrophilic blocks form 

the corona or outer shell. Within a specific and narrow concentration range of the 

amphiphile in solution, termed the critical micelle concentration (cmc), several 

amphiphile will self-assemble into colloidal-sized particles termed micelles. If the 

amphiphile concentration in solution remains above the cmc, micelles are 
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thermodynamically stabilized against disassembly. Upon dilution to a concentration 

below the cmc, micelles will disassembly at a rate largely depending on the structure of 

the amphiphiles and the interactions between the chains. The hydrophobic micelle core 

serves as a microenvironment for the incorporation of lipophilic drugs, while the corona 

shell serves as a stabilizing interface between the hydrophobic core and the external 

medium [74]. 

Polymer vesicles (or polymersomes) become increasingly attractive and 

experienced a blooming development in last decade. Typically, polymer vesicles are 

more complicated systems than polymer micelles and simple core-shell nanoparticles. 

They are nanoscale hollow spheres with a hydrophobic membrane and hydrophilic 

interior Polymersomes are highly expected to find promising applications in biomedical 

field, such as drug delivery, gene therapy, magnetic resonance imaging, cell mimicking, 

etc. [75]. There are six methods for the preparation of polymersomes using the self-

assembly of polymers. Among them, only two are generally used. One is the ‘solvent 

switch’ method, where an organic solvent is used to dissolve the polymer before self-

assembly. The second is an organic-solvent-free method, where only water is needed 

for the dissolution of the polymer for self-assembly. Other methods include 

polymerization-induced self-assembly, centrifugation induced self-assembly, microfluid, 

and nano-printing. A major drawback of the polymers vesicles is the lack of 

biofunctionality, which restricts their ability to either target or interact with cells and 

tissues. Incorporation of polypeptide segments into copolymers provides significant 

advantanges in controlling the function of bioinspired assemblies which are desirable 

for drug delivery applications [76].  

2.4.2 Nanocarriers for drug delivery and transfection 

Drug administration by means of NPs is in principle suitable for all kinds of 

therapy.  However, particular attention has been and continues being paid to NPs 

addressed to the use in oncologic therapy. Cancer is a leading cause of morbidity and 
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mortality worldwide. It is estimated that there will be 13.1 million deaths due to the 

cancer in 2030 [81]. Doxorubicin is an anthracycline antibiotic derived from the 

actinobacteria Streptomyces peucetius var. caesius. Its chemical structure is shown in 

Figure 10. Doxorubicin is a cell cycle-nonspecific agent that acts by blocking 

topoisomerase II activity.  The molecule becomes intercalated into the flat space 

between the bases of DNA double helix, where it can act further to disrupt DNA 

replication and transcription. Doxorubicin is indicated in the treatment of many human 

cancers, including breast, ovarian, lung, bladder, thyroid, liver, and gastric cancers [82]. 

Doxorubicin has been used in a plenty of investigations in drug delivery systems as a 

drug model [83]. This drug has been used in this Thesis for the preliminary evaluation 

of the DDS here investigated. 

         

 

Figure 10. DOX�HCl is an amphiphilic drug, with a pronounce aromatic nature and containing a 
protonable amino group in the sugar moiety.  

 

Gene therapy refers to the treatments that imply the transfer of genetic molecules 

into specific cells of a patient for the therapy of diseases. Condensing DNA into 

nanoparticles is critical in gene transfection, and electrostatic interactions of synthetic 

cationic liposomes or cationic polymers with DNA are generally used for condensing 

DNA [75].  Cationic polymer systems can load genes by forming polyplexes with 

negatively charged DNA, which can protect DNA from degradation and facilitate its 

cellular uptake and intracellular traffic into the nucleus. Up to now, more and more 
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studies have demonstrated that the interactions in DNA condensation can make a 

great contribution to enhance the efficacy of gene delivery [80]. 

For example, polyion complexes of a nucleotide with polycations are considered 

one of the promising systems for a gene vector. DNA has a polyanionic character and 

can be bound to polycations, e.g. poly(L-lysine), though electrostatic interaction (Fig. 

11). It is well 

known that polylysine strongly binds to DNA to induce compactation of the DNA 

molecule [84]. 

 

 

 

 

 

 
Figure 11. Polyplexes formed with preformed micelles and plasmid DNA. (+) Represents the 
cationic charges of the copolymers or the surfaces charges of the preformed micelles and (-) 
represents the negative charges of the pNDA [84].   
 

2.4.3 Stimuli-responsive systems 

The design of intelligent nanocarriers is undoubtedly a challenging issue, since 

the required drug delivery systems have to be both site-specific and time-release 

controlled. The controlled releasing of drugs can be triggered by various external or 

internal stimuli. pH, redox, and enzyme activity are envisaged as internal stimuli, 

whereas, light, magnetic fields, and ultrasounds are recognized as external stimuli. 

Temperature can be either an internal or external stimulus [85,86].    

pH and temperatures are among the stimuli more extensively investigated. Many 

peptides can respond to switches in pH due to protonation or deprotonation from basic 

and acidic amino acids. The most well studied systems employing acidic and basic 

amino acids are those that consist of poly(L-glutamic acid) (PLGA) and poly(L-lysine) 

(PLLys). The linear PLGA homopolymer (pKa 4.32) dissolves in water in its anionic 
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form with the polymer in an extended random coil, but below 4.3 as it becomes neutral 

and changes to an α-helical conformation that precipitates from the solution. Likewise, 

PLLys whose pKa is roughly 10.53 also displays helix-to-coil transitions as a function of 

pH [87,88]. 

Temperature has been investigated to control the release of drugs from DDS in 

both space and time. The hyperthermic nature of most inflamed pathological sites and 

tumors can act as internal stimulus. In fact, since there is a change in solubility with 

temperature. The most well-known temperature-sensitive materials are those able to 

switch their structure from a shrunken form to a swollen form (or vice versa) in 

response to a change in temperature. They are characterized by an upper critical 

solution temperature (UCST) or a lower critical solution temperature (LCST). By 

changing the temperature around the UCST or LCST, a phase transition leading to 

swelling or shrinking occurs. Drugs can be easily loaded into LCST polymers at room 

temperature, and then delivered to the target tissue where they are released by 

temperature effect [86,89].   
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Chapter 3. Materials and Methods 

3.1 Introduction 

Polymerization is the tool universally used for building new polymers. The 

synthesis of a new polymer is preceded by the synthesis of the monomers needed for 

polymerization. There are a good number of polymerization procedures that may be 

applied to provide the desired polymer chemical structure. The synthesis possibilities 

increase for building copolymers since polymer modification approaches are then 

feasible.  To verify that the polymer chain synthesized is what was expected, or in 

order to relate the polymer properties to the structure of the material, polymer 

characterization tools and properties evaluation tests are required. Characterization in 

its wider scope will include the analysis of the structure and the evaluation of the basic 

properties. The structure of a polymer comprises both its chemical and physical 

features and the basic properties include thermal and mechanical properties. However 

the structural analysis may be focused in certain features according to the function 

expected for the new polymer. Similarly, the properties evaluated may include the 

specific behavior of the polymer according to the applications to which it is addressed.        

3.2 Materials 

All chemicals, except otherwise stated, were purchased from Aldrich Chemical 

Co. Hexylamine (HexA), c (A-DEG-A), allyamine (AllA), 1,5,7-triazabicyclo[4.4.0]dec-5-

ene (TBD) was dried in a desiccator with P2O5 for 16 h at 50 0C and bisamino-ended 

poly(ethylene glycol) (PEG) with Mn ≈ 2,600 was used as received. ω-

Pentadecalactone was freshly distilled in vacuum and stored under nitrogen. Globalide 

was provided by Grupo Indukern, Barcelona. Novozym 435 (supported Candida 

antarctica Lipase B, CALB), a gift of Novozymes, Denmark. Poly(vinyl alcohol) (PVA, 

MW ≈ 3000, 88% 
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hydrolyzed) was obtained from Scientific Polymer Products, Inc. Triphosgene, α-

pinene,  γ-benzyl L-glutamate (BLG) and εN-carbobenzoxy-L-lysine (ZLL), L-alanine 

(Ala) were purchased from Bachem. 2-(Boc-amino)ethanethiol (BAET). 2,2’-Azobis(2-

methylpropionitrile) (AIBN). Doxorubicin (DOX�HCl) was purchased from AK Scientific, 

Inc. (USA), DNA (~2000 bp) (from salmon testes).  

Solvents used for isolation and purification were of high-purity grade and used as 

received. Toluene was freshly distilled and kept on 3 Å molecular sieves. 

Trifluoroacetic acid (TFA) and HBr/acetic acid, anhydrous dimethyl formamide (DMF), 

tetrahydrofuran (THF), ethyl acetate and heptane were used directly from the bottle 

under an inert atmosphere. Hexafluoroisopropanol (HFIP) from Apollo Scientic, UK. 

3.3 Measurements 

NMR spectroscopy. 1H and 13C NMR spectra were recorded on a Bruker AMX-300 

spectrometer at 25 oC operating at 300.1 and 75.5 MHz, respectively. Compounds 

were dissolved in deuterated chloroform (CDCl3) or a mixture of trifluoroacetic acid 

(TFA) and CDCl3, and spectra were internally referenced to tetramethylsilane (TMS). 

About 10 and 50 mg of sample in 1 mL of solvent were used for 1H and 13C NMR, 

respectively. Sixty-four scans were recorded for 1H, and between 1000 and 10,000 

scans for 13C NMR.  

TGA and DSC. Thermogravimetric analysis (TGA) was performed on a Mettler-Toledo 

TGA/DSC 1 Star System under a nitrogen flow of 20 mL min−1 at a heating rate of 10 

°C min-1 and within a temperature range of 30-600 °C. The thermal transitions were 

examined by differential scanning calorimetry (DSC) using a Perkin-Elmer Pyris 

apparatus. Thermograms were registered from 4-6 mg samples at heating and cooling 

rates of 10 °C min−1 under a nitrogen flow of 20 mL min-1. Indium and zinc were used 

as standards for temperature and enthalpy calibration. 
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FT-IR spectroscopy. FTIR measurements were made on a Perkin-Elmer FT-IR 

spectrophotometer Frontier. Spectra were obtained from powder samples using a 

Universal ATR sampling accessory in the 4000-450 cm-1 region from 8 scans with a 

resolution of 4 cm-1. For the spectra recorded a variable temperature, solutions of 5 mg 

of polymer dissolved in 1 mL HFIP were prepared. Then, these solutions were 

deposited over a NaCl plate, and a film was formed after HFIP evaporation. The plate 

was set on Variable Temperature FTIR CELL.   

Gel permeation chromatography (GPC). Molecular weight analysis was performed 

by GPC on a Waters equipment provided with RI and UV detectors using hexafluoro-2-

propanol (HFIP) as eluent. 100 µL of 0.1% (w/v) sample solution were injected and 

chromatographed with a flow of 0.4 mL�min-1. HR5E and HR2 Waters linear Styragel 

columns (7.8 mm x 300 mm, pore size 103-104 Å) packed with crosslinked polystyrene 

and protected with a pre-column were used. Molar mass averages and their 

distributions were calculated against PMMA standards.  

X-ray diffraction (XRD). Real time X-ray diffraction (XRD) studies were carried out 

using synchrotron radiation at the BL11 beamline for non-crystalline diffraction (NCD), 

at ALBA (Cerdanyola del Vallès, Barcelona, Spain). WAXS and SAXS spectra were 

recorded simultaneously from powder samples subjected to heating–cooling cycles at a 

rate of 10 oC min-1. The energy employed corresponded to a 0.10 nm wavelength, and 

spectra were calibrated with silver behenate (AgBh) and Cr2O3. 

Circular dichroism (CD). Measurements were performed using a Jasco 

spectropolarimeter J-815) (Centres Científics i Tecnològics, Universitat de Barcelona). 

Briefly, PPDL-b-PAA copolymer solutions were prepared at a concentration of 50 

µg�mL-1 in deionized water previously adjusted at the desired pH (2.0 or 10.0). 

Triplicate CD spectra were recorded using a 10 mm quartz cell at a scanning speed of 
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10 nm�s-1 in the 190-250 nm range either at constant temperature of 25 °C or at 

variable temperature in the 10-80 ºC range.  

Dynamic light scattering (DLS). Dynamic light scattering studies were performed 

using a Zetasizer Nano ZS series Malvern instrument equipped with a 4 mW He-Ne 

laser operated at a wavelength of 633 nm. Samples were placed in disposable cuvettes 

thermostated at 25 ºC. The non-invasive back-scatter optical arrangement was used to 

collect the light scattered by the particles at an angle of 173º. 

Ultraviolet Visible Spectrophotometry (UV-vis). UV-vis was used to quantify the 

amount of doxorubicin either entrapped or released in the nanoparticles. Samples were 

withdrawn and directly measured using a 10 mm quartz cuvette at 480 nm in a Cecil 

Aurius Series CE 2021 spectrophotometer. 

Scanning electronic microscopy (SEM) and Transmission electronic microscopy 

(TEM). SEM images were taken with a field-emission JOEL JSM-7001F instrument 

(JEOL, Japan) from platinum/palladium coated samples. TEM images were recorded 

on a Hitachi 7650 microscope working at 120 kV. Samples were prepared by spraying 

a 1 g�L-1 solution of the copolymer onto a copper grid (200 mesh, carbon coated), 

dripping the water excess, and applying negative staining with 1% uranyl acetate 

aqueous solution. 

Polarizing optical microscopy (POM). Micrographs were recorded using an Olimpus 

BX51 polarizing optical microscopy with a Linkam THMS 600 stage attached. For 

observation, 10 mg of sample were dissolved in 1 mL of chloroform and 0.2 mL 

aliquots of these solutions were slowly evaporated on a glass slide. 

3.4 Syntheses  

3.4.1 ROP of PDL using amino-ended compounds 
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Synthesis of PPDL. ROP of PDL was performed with the concourse of either enzymes 

or organic compounds as catalysts. For enzymatic polymerization, the amount of CALB 

was 20% (w/w) with respect to monomer in all cases, and for chemo-catalyzed 

polymerization, different amounts of TBD were tested in order to reach high 

conversions of PDL. The general procedure was as follows: CALB or TBD was 

introduced in an open round-bottom flask provided with a magnetic stirrer which was 

placed in a desiccator at 50 ºC for 16 h. For CALB mediated polymerization, the amine 

used as initiator was dissolved in dry toluene and the solution poured into the reaction 

flask, which was then transferred to an oil-bath at 100 ºC, and the calculated amount of 

PDL immediately added. When TBD was used, the required amounts of amine and 

PDL were added simultaneously to the catalyst, the flask was sealed, and the mixture 

was magnetically stirred at 100 ºC for the scheduled period of time. In both cases, 

aliquots were withdrawn at scheduled times and dissolved in CDCl3 to be subjected to 

1H NMR analysis in order to follow the reaction progress. As soon as conversion 

remained unchanged, the reaction was stopped by cooling. For removing the enzyme, 

the toluene was evaporated, the residue dispersed in chloroform, and CALB filtered off. 

The polymer was then precipitated by pouring the filtrate in cold methanol. For 

polymerizations catalyzed by TBD, the crude reaction mass was dissolved in 

chloroform and precipitated in cold methanol. Irrespective of the catalyst used, the 

polymer was recovered by filtration and dried at room temperature under vacuum 

before characterization. 

3.4.2 Synthesis of PPDLy-PEG56-PPDLy triblock copolymers.   

Synthesis of PPDL-PEG-PPDL triblock copolymers.  For the reactions carried out 

by enzymatic catalysis, the amount of CALB used was 20% (w/w) respect to monomer. 

For polymerizations catalyzed by TBD, the amount of catalyst added was previously 

optimized to attain the highest conversion of PDL.  The general procedure was as 

follows: CALB or TBD was introduced in a round-bottom flask provided with a magnetic 
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stirrer which was then placed in a desiccator at 50 ºC for 16 h. When CALB was used, 

a solution of PEG (Mn ≈ 2,600) in dry toluene was added to the flask, which was 

transferred to an oil-bath at 100 ºC. Then, PDL was added and the solution 

magnetically stirred for at least 4 h. When TBD was the catalyst of choice, the required 

amounts of PEG and PDL were added into the flask, which was then sealed and 

heated at 100 0C under magnetic stirring for 12 h. In all cases aliquots of the reaction 

mixture were withdrawn and analyzed by 1H NMR in order to assess the advance of the 

polymerization reaction. For removing CALB, the toluene was evaporated under 

vacuum, the residue was re-dissolved in an excess of chloroform, and the enzyme was 

removed by filtration. The filtrate was then concentrated and precipitated in an excess 

of cold methanol. For polymerizations using TBD, the crude reaction mass was 

dissolved in chloroform and the solution precipitated in an excess of methanol. 

Regardless of the catalyst chosen, the copolymer was collected by filtration and dried 

in vacuum before characterization. 

3.4.3 Synthesis of the poly[(ωωωω-pentadecalactone)-b-(αααα-amino acid)] copolymers 

(PPDLx-b-pPAAy). 

3.4.4 Synthesis of αααα-amino acids N-carboxyanhydrides (NCA)  

Amino acids N-carboxyanhydrides (BLG-NCA, ZLL-NCA, Ala-NCA and Phe-NCA). 

γ-Benzyl L-glutamate and εN-carbobenzoxy L-lysine N-carboxyanhydrides. L-alanine 

and L-phenylalanine were prepared using the usual procedures described in literature 

[1, 2].  

γγγγ-Benzyl L-glutamate NCA. Yield: 90%. 1H NMR (300 Mhz, CDCl3, δ, ppm): 7.33 (m, 

5H, ArH), 6.28 (broad, 1H, NH), 5.07 (s, 2H, CH2), 4.30 (t, 1H, CH), 2.54 (t, 2H, CH2), 

2.22 (m, 1H, CH2), 2.06 (m, 1H, CH2).     
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εεεεN-carbobenzoxy L-lysine NCA. Yield: 80%. 1H-NMR (300 Mhz, d6-DMSO, δ, ppm): 

9.10 (s, 1H, NH), 7.39-7.27 (m, 6H, -C6H5), 5.00 (s, 2H, -OCCH2-C6H5), 4.42 (t, 1H, -

CO-CH-CH2), 2.98 (q, 2H, -CH2-NH), 1.77-1.21 (m, 6H, -CH2-CH2-CH2-NH). 

L-Alanine NCA. Yield: 70%. 1H-NMR (300 Mhz, d6-DMSO, δ, ppm): 8.96 (s, 1H, NH), 

4.46 (q, 1H, CH), 1.31 (d, 3H, CH3). 

L-Phenylalanine NCA. Yield: 80%. 1H-NMR (400 Mhz, d6-DMSO, δ, ppm): 9.10 (broad, 

1H, NH), 7.26 (m, 5H, ArH), 4.79 (t, 1H, CH), 3.03 (d, 2H, CH2). 

3.4.5 Synthesis of the PPDL-NH2 macroinitiator 

Allyl-ended poly(ωωωω-pentadecalactone) (PPDL-All). An exact amount (82 mg) of dried 

Novozym 435 was weighed into a Schlenk tube provided with a magnetic stirrer and 

added with 2 mL of dried toluene and then with 67 µL of a 1.33 M solution of allyl amine 

in toluene by means of a syringe through a rubber septum. The tube was immersed in 

an oil bath at 100 ºC and the reaction started upon injection of a solution of PDL (414 

mg, 1.66 mmol) in toluene (1.5 mL). After 4 hours of reaction under stirring, the mixture 

was allowed cooling down and toluene was fully removed using a rotary evaporator. 

The solid residue was re-dissolved in chloroform and the enzyme removed by filtration. 

The filtered clean solution was then poured into cold methanol to render PPDLx-All as a 

precipitate that was recovered by filtration and dried overnight under vacuum. Yield: 

90%. 

PPDLx-NH2. PPDLx-All (474 mg, 1.595 mmol) and 2-(Boc-amino)ethanethiol (BAET) 

(1.49 g, 8.41 mmol) were added into a Schlenk tube containing azo-bis-isobutyronitrile 

(AIBN) (138 mg, 0.841 mmol) and provided with magnetic stirring. The mixture was 

then dissolved in 1 mL of chlorobenzene and the reaction tube was purged with 

nitrogen gas. The reaction was started by immersing the tube into an oil bath at 80 ºC 

and it was left to proceed for 4 h. For isolation and purification of the 2-(Boc-
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amino)ethanethiol-ended poly(ω-pentadecalactone) (PPDLx-BAET), the reaction mass 

was poured into cold methanol, the precipitate recovered by centrifugation, and the 

operation repeated for two times. Yield: 87%. 

For unblocking the amino group in PPDLx-BAET, 245 mg of this compound were 

dissolved in TFA (2.5 mL) and the solution stirred at room temperature for 3 min. The 

solution was then poured into a large excess of diethyl ether to precipitate the free 

amino-ended poly(ω-pentadecalactone) (PPDLx-NH2) as a white powder that was 

recovered by centrifugation, repeatedly washed with fresh solvent, and finally with 0.5 

M NaHCO3 aqueous solution. Yield: 82%. 

Poly[(ωωωω-pentadecalactone)-b-(γγγγ-benzyl-L-glutamate)] copolymers (PPDLX-b-

PBLGy). In a Schlenk tube, BLG-NCA (308.1 mg, 1.170 mmol) was dissolved in dried 

CHCl3 (6 mL) and immersed in a 0 ºC water bath. Then a solution of PPDLx-NH2 (72.1 

mg, 0.023 mmol) in dried CHCl3 (3 mL) was injected into the Schlenk tube through a 

septum with a syringe under nitrogen atmosphere. The reaction was left under stirring 

until the BLG-NCA was completely consumed as monitored by FTIR spectroscopy. 

Then the copolymer was precipitated into an excess of diethyl ether, recovered by 

centrifugation and dried under vacuum. Yield: 90%. 

Poly(ωωωω-pentadecalactone)-b-(εεεεN-carbobenzoxy-L-lysine)] copolymers (PPDLX-b-

PZLLy). The synthesis of these copolymers was carried out using the same procedure 

as for PPDLX-b-PLGAy with a yield of 80%. 

3.4.6 Deprotection of benzyl (Bn) and benzyloxycarbonyl (Z) groups from the 

(PPDLx-b-pPAAy) diblock copolymers 

Poly[(ωωωω-pentadecalactone)-b-(L-glutamic acid)] diblock copolymers (PPDLx-b-

PLGAy). The benzyl carboxylate group of the polypeptide block of PPDLx-b-PBLGy 

copolymers was split by treatment with hydrobromic acid. 220 mg of the esterified 

copolymer were dissolved in TFA (2 mL) and then 1 mL of 33% (w/w) HBr in acetic 
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acid was added slowly to this solution at 0 oC. After 3 h of reaction, the mixture was 

poured into an excess of diethyl ether and the precipitate was recovered by 

centrifugation. The carboxylic-free PPDLX-b-PLGAy was washed twice with fresh diethyl 

ether and then dissolved in a 0.5 M NaHCO3 aqueous solution. Other sodium salts 

generated in the reaction were removed by dialysis against distilled water for 72 h at 

room temperature using MW-CO 2.0 kDa membranes. The deprotected copolymer 

PPDLx-b-PLGAy in the sodium salt form was recovered as a white powder after 

removing the water by rotaevaporation. Yield: 60-74%. 

Poly[(ωωωω-pentadecalactone)-b-(L-lysine)] (PPDLX-b-PLLy). Deprotection of PPDLX-b-

PZLLy copolymers by applying the same procedure described above for PPDLX-b-

PBLGy led to the amino-free copolymers PPDLX-b-PLLy. Yield: 65-72% 

3.4.7 Synthesis of poly[Gl20-graft-(AA)z] copolymers 

3.4.8 Poly[Gl8-co-(GlNH2)12] macroinitiator  

Synthesis of polyglobalide (PGl). Novozyme 435 (0.44 g) was dried in a Schlenk 

flask over molecular sieves at 40 ºC in a desiccator overnight. Globalide (2.1 g) and 

dried toluene (4.0 mL) were then added to the reaction flask which was purged with 

nitrogen gas and heated in an oil bath at 60 ºC for four hours. Dichloromethane (DCM) 

was then added to dissolve the reaction product and inhibit the enzyme activity. The 

polyester was isolated from the filtered solution by precipitation into ice-cold methanol 

and dried overnight. Yield: 97%.  

Synthesis of poly[Gl8-co-(Gl-AET)12]. Polyglobalide (0.2 g) and 2-(Boc-

amino)ethanethiol (1.11 g) were weighed into a Schlenk tube together with AIBN (50 

mg). 1 mL of THF was then added and the mixture purged with nitrogen gas. The 

reaction was commenced by immersing it into an oil bath at 80 0C under agitation 

provided by a magnetic stirrer. The reaction was allowed to run for 24 h and was 

terminated by addition of DCM to the reaction mixture immersed in an ice bath. The 

mixture was precipitated in cold methanol and the copolymer recovered by 
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centrifugation. The obtained poly[globalide-co-2-(Boc-amino)ethyl-thio globalide)] was 

dissolved in DCM and reprecipitated. Yield: 90%. 

Removal of Boc from the 2-(Boc-amino)ethylthio side groups was made by 

treatment with TFA. A solution of the protected copolyester (100 mg) in 2 mL of TFA 

was stirred at room temperature for 3 h. Then, the solution was added to 30 mL of 

diethyl ether and the amino-free poly[Gl8-co-(GlNH2)12] copolymer was separated by 

centrifugation, washed twice with saturated 0.5 M aqueous NaHCO3, and finally dried 

under vacuum at RT. Yield: 90%. 

Poly[globalide-graft-(γγγγ-benzyl-L-glutamate)z] (Poly[Gl20-graft-(BLG)z]). In a Schlenk 

tube, BLG-NCA (124 mg, 0.468 mmol or 200 mg, 0.760 mmol) was dissolved in 6 mL 

anhydrous DMF and placed in a water-NaCl bath. A solution of poly[Gl8-co-(GlNH2)12] 

(36 mg, 0.0063 mmol or 25 mg, 0.0043 mmol) in 2 mL anhydrous DMF was injected 

through a rubber septum with a syringe. The reaction was left under stirring for 5 days 

and then it was precipitated into an excess of cold diethyl ether, recovered by 

centrifugation and dried under vacuum. Yield: 80%.  

Poly[globalide-graft-(Nεεεε-carbobenzoxy-L-lysine)z] (Poly[Gl20-graft-(ZLL)z]) was 

synthesized in a similar fashion as poly[Gl20-graft-(BLG)z] with a yield of 80%. 

For removal the benzyl group from poly[Gl20-graft-(BLG)z],  150 mg of copolymer 

were dissolved in 1 mL of TFA. Then a solution of HBr in glacial acetic acid (2.5 or 5 

times excess with respect to polypeptide) was added slowly to the copolymer solution 

at 0 ºC and after standing 3 h the solution was poured into an excess of diethyl ether. 

The precipitate was recovered by centrifugation, washed twice with diethyl ether, and 

dissolved in a 0.5 M NaHCO3 aqueous solution to have the polymer in the sodium salt 

form. The basic solution was dialyzed against distilled water (MWCO 2.0 kDa) for 12 h 

at room temperature and dried under vacuum to render poly[Gl20-graft-(LGA)z] as a 

white solid. Yield: 80%.  

Poly[Gl20-graft-(LL)z] was obtained by applying the same procedure to poly[Gl-graft-

(ZLL)z]. Yield: 75%. 
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3.4.9 Synthesis of the poly(macrolactone)-poly(alanine) copolymers 

Poly(ωωωω-pentadecalactone)-block-poly(L-alanine)  P(PDL10-b-PAlay). By varying the 

Ala-NCA/PPDL10NH2 feed ratios, (30/1, 60/1 and 200/1), diblock copolymers with 

different polypeptide chain lengths were obtained. As an example for the synthesis of 

PPDL10-b-PAla60, Ala-NCA (100 mg, 0.87 mmol) was dissolved in dried CHCl3 (6 mL) in 

a Schlenk tube and placed in a 0 ºC water-NaCl bath. A solution of PPDL10-NH2 (42 

mg, 0.014 mmol) dissolved in dried CHCl3 (3 mL) under nitrogen atmosphere was 

injected into the Ala-NCA solution through a rubber septum with a syringe. The reaction 

was left under stirring until the Ala-NCA had been completely consumed as monitored 

by FTIR spectroscopy. After full monomer conversion the polymer was precipitated into 

an excess of diethyl ether, recovered by centrifugation and dried under vacuum. Yield: 

80%.1H and 13C NMR spectra of a selection of these copolymers are provided in Figure 

S5 of the SI file. 

Poly[globalide20-graft-(L-alanine)z] P[Gl20-g-(Ala)z]. Two copolymers were prepared 

by using Ala-NCA/P[Gl8-co-(Gl-NH2)12] feed ratios of 1/5 and 1/25. Ala-NCA [(60 mg, 

0.52 mmol) or (360 mg, 3.13 mmol)] was dissolved in 6 mL of anhydrous DMF in a 

Schlenk tube and placed in a 0 ºC water-NaCl bath. Solutions of P[Gl8-co-(Gl-NH2)12] in 

2 mL of anhydrous DMF [(30 mg, 0.095 mmol) or (40 mg, 0.126 mmol) per repeating 

unit] were injected into the solution through a rubber septum with a syringe. The 

reactions were left under stirring for 5 days under vacuum, and then the polymer was 

precipitated into an excess of cold diethyl ether, recovered by centrifugation and dried 

under vacuum. Yield: 80%. The 1H NMR spectra of P[Gl20-g-(Ala)20] graft copolymer is 

provided in Figure S6 of the SI file. 

3.4.10 Synthesis of P[(Glx-r-PDLy)-g-BLGy] graft copolymers 

Synthesis of P(Glx-r-PDLy) copolyesters by eROP. An exact amount of CALB (400 

mg, 20 % w/w with respect to monomers) was added into a round bottom flask, which 

was then placed in a desiccator with P2O5 for 16 h at 50 ºC. Dry toluene (7 mL) was 

added and mixtures of ω-pentadecalactone (1 g, 4.60 mmol) and globalide (1 g, 4.19 
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mmol) at different composition molar ratios (Gl/PDL: 0/100, 10/90, 30/70, 50/50, 70/30, 

90/10 and 100/0) were placed into the round bottom flask and immediately immersed in 

an oil bath at 70°C under nitrogen atmosphere and magnetic stirring. The reaction 

mixtures were lead to proceed for 24 h. Then, the mixtures were cooled down and the 

toluene removed by rota-evaporation.  The obtained residue was dispersed in 

chloroform and the enzyme was filtered out. The polymer was precipitated in cold 

methanol, recovered by filtration and dried before characterization. Yield: 80-90%. 

Functionalization of the P(Glx-r-PDLy) copolyesters via thiol-ene click reaction 

The P(Gl13%-r-PDL87%) or P(Gl48%-r-PDL52%) copolyesters were chosen as sources for 

the synthesis of the grafted copolymers. Briefly, the corresponding copolyester (0.2 g) 

and 2-(Boc-amino)ethanethiol (1.11 g) and AIBN (50 mg) were weighed in a Schlenk 

tube. Then, 1 mL of THF was added and the reaction tube was purged with nitrogen 

gas. The reaction commenced by immersing the tube into an oil bath at 80 0C and 

agitation was provided by magnetic stirring for 24 h. The reaction was terminated by 

the addition of dichloromethane (DCM) to the reaction mixture immersed in an ice bath. 

Afterward, the product was precipitated in cold methanol and recovered by 

centrifugation. This process was performed twice to render either the BAET modified 

copolymers P[(Gl-BAET)13-r-PDL87] or P[(Gl24-r-(Gl-BAET)24-r-PDL52], respectively. 

Yield: 90%. 

Removal of Boc-amino protecting groups. Solutions of copolyesters, P[(Gl-BAE)13-r-

PDL87] and P[Gl24-r-(Gl-BAET)24-r-PDL52], (100 mg) in trifluoroacetic acid (2 mL), were 

stirred at room temperature for 10 min. Then, the solutions were added to an excess of 

diethyl ether and the polymers recovered by centrifugation. The precipitates were 

washed twice with saturated aq NaHCO3 (0.5 M). Finally, the products were dried in 

vacuum at room temperature before used to produce P[(Gl-NH2)13-r-PDL87] and P[Gl24-

r-(Gl-NH2)24-r-PDL52]. Yield: 90%. 

Synthesis of the P[(Glx-r-PDLy)-g-BLGy] graft copolymers. Two graft copolymers 

were prepared using P[(Gl-NH2)13-r-PDL87] and P[Gl24-r-(Gl-NH2)24-r-PDL52] as 
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macroinitiators, respectively, for the ROP of BLG-NCA. To prepare P[(Gl13-r-PDL87)-g-

BLG2], the P[(Gl-NH2)13-r-PDL87] copolymer in a Schlenk tube was added with BLG-

NCA [(290 mg, 1.10 mmol) dissolved in 6 mL of dry CHCl3, and the tube placed in a 

NaCl-water bath. A solution of P[(Gl-NH2)13-r-PDL87]  [(5.2 mg, 0.016 mmol) in 2 mL of 

dried CHCl3 was injected to the flask through a rubber septum with a syringe. The 

reaction was left to stir for 48 h and then precipitated into an excess of diethyl ether, 

recovered by centrifugation and dried under vacuum. The same methodology was used 

to prepare P[(Gl48-r-PDL52)-g-BLG10] copolymer from P[Gl24-r-(Gl-NH2)24-r-PDL52] [(6.02 

mg, 0.019 mmol) and BLG-NCA (100 mg, 0.382 mmol) but using DMF instead of CHCl3 

as solvent. Yield: 80-90%. 

Graft copolymer deprotection. A general procedure was used for the deprotection of 

the PBLG pendant groups. Briefly, 2 mL of TFA was added to 170 mg of P[(Gl13-r-

PDL87)-g-BLG2] to dissolve the copolymer. A solution HBr in glacial acetic acid (2.5 or 5 

times excess with respect to polypeptide) was added slowly to the copolymer solution 

at 0 0C. After 2 h, the solution was poured into an excess of diethyl ether. The 

precipitate was centrifuged and washed twice with diethyl ether. The obtained polymer 

was dissolved in 0.5 M Na2HCO3 aqueous solution and then dialyzed (MWCO 2000) 

against distilled water to yield P[(Gl13-r-PDL87)-g-LGA2] in the salt form. The P[(Gl48-r-

PDL52)-g-BLG10] was treated in a similar trend to yield P[(Gl48-r-PDL52)-g-LGA10] in 70% 

yield. 

3.4.11 Synthesis of poly(globalide-g-L-phenylalanine)-b-poly(ethylene glycol)-b-

poly(globalide-g-L-phenylalanine)  P(Glx-g-Phey)-b-PEG56-b-P(Glx-g-Phey)   

Synthesis of PGlx-PEG56-PGlx triblock copolymers. Two copolymers were prepared 

varying the PEG/Gl feed ratio (1/40, 1/150). The amount of CALB used was 20% (w/w) 

respect to monomer in every case. For the synthesis of (PGl15)-b-PEG56-b-(PGl15) 

CALB (146 mg) was introduced in a round-bottom flask provided with a magnetic stirrer 

which was then placed in a desiccator at 50 0C for 16 h. A solution of PEG (200 mg, 
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0.077 mmol) in dry toluene was added to the flask, which was transferred to an oil-bath 

at 100 0C. Then, Gl (732 mg, 3.07 mmol) was added through a septum using a syringe 

and the solution magnetically stirred for at least 4 h. For removing CALB, the toluene 

was evaporated under vacuum and the residue re-dissolved in an excess of 

chloroform.  The enzyme was removed by filtration. The filtrate was then concentrated 

and precipitated in an excess of cold methanol. The copolymer was collected by 

filtration and dried in vacuum prior to characterization. Yield: 90%. For the synthesis of 

(PGl70)-b-PEG56-b-(PGl70), CALB (120 mg), PEG (43 mg, 0.016 mmol) and Gl (600 mg, 

2.52 mmol) were used, and further steps were carried out as in (PGl15)-b-PEG56-b-

(PGl15). Yield: 89%. 

Insertion of Boc-amino protected groups onto Gl units (Thiol-ene click reaction). 

(PGl15)-b-PEG56-b-(PGl15) (190 mg) in the presence of AIBN (50 mg) were weighed and 

added into a Schlenk tube. Then 2-(Boc-amino)ethanethiol (1.13 g) was added with a 

syringe. To enhance mixture miscibility, 1 mL of THF was added and the reaction flask 

was purged with nitrogen gas. The reaction commenced by immersing the Schlenk 

tube into an oil bath at 80 ºC; solution agitation was provided by magnetic stirring. The 

reaction was terminated by addition of DCM to the reaction mixture immersed in an ice 

bath. The polymer was precipitated in ice-cold methanol and recovered by 

centrifugation. The final product P(Gl15-BAE)-b-PEG56-b-P(Gl15-BAE) was dried 

overnight under vacuum at room temperature prior to further analysis. Yield: 86%. The 

post-functionalization of (PGl70)-b-PEG56-b-(PGl70) was carried out in a similar trend 

using BAET (1.13 g), a 50 mg (AIBN) and THF (1 mL) to render  P(Gl70-BAE)-b-PEG56-

b-P(Gl70-BAE). Yield: 85%.  

Boc-amino deprotection. A solution of P(Gl15-BAE)-b-PEG56-b-P(Gl15-BAE) 

copolymer (60 mg) in trifluoroacetic acid (TFA, 1.5 mL) was stirred at room temperature 

for 3 h. Then, the solution was added to 30 mL of diethyl ether and the polymer 

recovered by centrifugation. The precipitated was washed twice with saturated aq 

Na2HCO3 (0.5 M). Finally, the product P(Gl15-NH2)-b-PEG56-b-P(Gl15-NH2) was dried in 
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vacuum at RT before used. Yield: 80%. The P(Gl70-BAE)-b-PEG56-b-P(Gl70-BAE) 

copolymer was treated similarly to obtain P(Gl70-NH2)-b-PEG56-b-P(Gl70-NH2). Yield: 

80%.  

Synthesis of poly(globalide-g-L-phenylalanine)-b-(poly(ethylene glycol)-b-

poly(globalide-g-L-phenylalanine)  P(Glx-g-Phey)-b-PEG56-b-P(Glx-g-Phey). Three 

copolymers were prepared by varying the P(GlX-NH2)-b-PEG56-b-P(Glx-NH2)/Phe-NCA 

feed ratio.  For preparing the P(Gl15-g-Phey)-PEG56-P(Gl15-g-Phey) copolymer, in a 

Schlenk tube, Phe-NCA (170 mg, 0.9 mmol, or   322 mg, 1.68 mmol) was dissolved in 

6 mL anhydrous DMF and placed in a water-NaCl bath. A solution of P(Gl15-NH2)-

PEG56-P(Gl15-NH2) (56 mg, 0.18 mmol, or 76 mg, 0.24 mmol) in 2 mL anhydrous DMF 

was injected through a rubber septum with a syringe. The reaction was left to stir under 

vacuum until the Phe-NCA had been completely consumed as monitored by FTIR 

spectroscopy. After full monomer conversion, the copolymer was precipitated into an 

excess of cold diethyl ether, recovered by centrifugation and dried under vacuum. 

Yield: 70-80%. For preparing the P(Gl70-g-Phey)-b-PEG56-b-P(Gl70-g-Phey) copolymer, 

Phe-NCA (220 mg, 1.14 mmol) and P(Gl70-NH2)-PEG56-P(Gl70-NH2) (40 mg, 0.126 

mmol) were used and further steps performed as in P(Gl15-g-Phey)-PEG56-P(Gl15-g-

Phey). Yield: 84%   

3.5 Preparation of nanoparticles 

3.5.1 Emulsion-solvent evaporation method 

Nanoparticles were prepared by the oil-in-water single emulsion technique with 

minor modifications [3]. Specifically, 10 mg of PPDLxPEG56PPDLx copolymer were 

dissolved in 2 mL of methylene chloride and the solution added to 10 mL of 5% (w/w) 

PVA (Mw=2000 g�mol-1) aqueous solution. The mixture was sonicated for 15 s three 

times to yield a homogeneous oil-in-water emulsion. This emulsion was immediately 

poured into 10 mL of the 0.3% PVA solution, and the mixture was magnetically stirred 

in an open beaker at room temperature for 3 h. Nanoparticles were formed along with 
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the gradual evaporation of methylene chloride. The nanoparticles were collected by 

centrifugation at 11,000 g for 15 min and washed three times with distilled water. 

NPs from the PPDLx-b-PBLGy and P[(Glx-r-PDLy)-g-BLGz] copolymers were 

obtained in a similar fashion. For the PPDLx-b-PZLLy, PPDL10-b-PAlay and (PGlx-g-

Phey)-b-PEG56-b-(PGlx-g-Phey) copolymers, a mixture of CHCl3/TFA (95:5), in order to 

get the copolymer completely solubilized in the organic phase, was used to obtain the 

NPs. 

3.5.2 Nanoprecipitation method 

The nanoprecipitation method was applied to prepare NPs from poly[Gl20-graft-

(BLG)z], poly[Gl20-graft-(ZLL)z] and (PGlx-g-Phey)-b-PEG56-b-(PGlx-g-Phey) copolymers 

[4, 5]. Briefly, 5 mg of copolymer were dissolved in 1.5 mL of DMF (for the poly[Gl20-

graft-(BLG)z], poly[Gl20-graft-(ZLL)z] ) or DMSO (for the (PGlx-g-Phey)-b-PEG56-b-(PGlx-

g-Phey) copolymers) at room temperature. Then, 3 mL of deionized water were added 

dropwise into the solution under vigorous magnetic stirring (300 rpm). To remove the 

solvent, the solution was transferred to a dialysis tube (MWCO 2.0 kDa) and dialyzed 

against 0.5 L of deionized water for 24 h with replacement of the dialyzing medium 

every 5 h. 

3.5.2 Ionotropic gelation method 

The ionotropic gelation method was used to form polyplexes derived from 

stoichiometric mixtures of poly[Gl20-graft-(LGA)z] and poly[Gl20-graft-(LL)z] copolymers 

[6].  Complexes NPs were prepared by adding drop-wise the poly[Gl-graft-(LL)z] 

solution (1.5 mg�mL-1) to that containing poly[Gl-graft-(LGA)z] (5 mg�mL-1) under 

magnetic stirring.   

In the all three methods, the NPs aqueous suspension finally obtained was used 

for DLS measurements and TEM or SEM observations. 
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3.6 Drug loading 

Drug loading in PPDL15-b-PLGAy and poly[Gl20-g-(LGA)z) copolymers was 

performed applying the following procedure: 5 mg of the copolymer  were placed in 

deionized water (4 mL) and stirred for 10 min until complete dissolution. Solutions of 

DOX�HCl in deionized water at different concentrations (1 to 5 mg�mL-1) were prepared 

and added dropwise with a syringe to the copolymer solution and the mixture left under 

stirring overnight. Excess of drug was removed by dialysis (MWCO 2000) against 

distilled water for 24 h (the dialysis medium was replaced intermittently). Afterwards, 

the mixtures were lyophilized. Loaded NPs were characterized by DLS and SEM/TEM. 

Drug-Loading Efficiency (DLE) and Drug-Loading Content (DLC) of the resulting Dox-

NPs were estimated by using the following equations: 

DLE% =
��			��	��	����	��	��	

��			��	��	����	��	����
100         DLC% =

����	��	 !"#	$%	&'�

����	��	&'�
100 

3.7 In vitro drug releasing 

Drug releasing from the DOX�poly[Gl20-graft-(LGA)z] and DOX�PPDL15-b-PLGA80 

NPs. Drug releasing was studied at two pHs (PBS; pH 7.4 and citrate-phosphate; pH 

4.2). DOX�poly[Gl20-graft-(LGA)z] or DOX�PPDL15-b-PLGA80 NPs suspension in each 

buffer (2.5 mL) was placed in a dialysis tube (MWCO 6-8 kDa, Spectrum Labs) and 

placed in 25 mL of the same buffer under mild stirring at 37 ºC. At scheduled time 

intervals, 1.5 mL aliquots of the release medium was taken out and replenished with an 

equal volume of fresh medium. The amount of released DOX was determined by 

measuring the absorbance of the withdrawn aliquots at 480 nm by UV-vis 

spectrophotometry. 
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Chapter 4. Metal-free catalyzed ring-opening polymerization and block 

copolymerization of ωωωω-pentadecalactone using amino-ended initiators 

Abstract 

Metal-free catalysis was successfully applied to polymerize ω-pentadecalactone 

(PDL) by ring-opening polymerization (ROP) using several amino-ended initiators, 

namely hexylamine, allylamine and O,O′-bis(3-aminopropyl)diethylene glycol. This 

polymerization method was suitable to prepare telechelic polyesters carrying 

functional-end groups. The technique was then extended to the synthesis of block 

copolymers by ROP of PDL using bisamino-ended poly(ethylene glycol) (Mn=2600) as 

macroinitiator. PPDLx-PEG56-PPDLx triblock copolymers with Mn ranging between 

∼4000 and ∼90,000 g�mol−1 were synthesized and extensively characterized by NMR, 

DSC, TGA and XRD. The amphiphilic copolymers thus produced were demonstrated to 

be able to self-assemble in nanoparticles with average diameters of ∼100-200 nm and 

morphologies highly depending on blocks lengths. The described synthetic route 

distinguishes in providing “clean” amphiphilic copolymers, which are attractive 

candidates for biomedical applications. 
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4.1 Introduction 

Aliphatic polyesters are biodegradable polymers with a great potential as 

materials to be used in temporary applications, particularly in biomedicine [1]. 

Macrolactones are easily accessible compounds that may be exploited for the 

production of polyesters by entropically-driven ring-opening polymerization (ED-ROP) 

[2]. Polyesters from macrolactones are distinguished by displaying thermal and 

mechanical properties close to polyethylene while maintaining certain degree of 

biodegradability [3]. The interest for macrolactones-based polyesters has largely 

increased in these last decades, not only because their singular properties but also due 

to the sustainability of newly appearing macrolactones that are synthesized from 

renewable resources [4].  

The increasing demand for polymers free of metal-contaminants to be used as 

biomaterials has motivated that organic catalysts including enzymes are receiving great 

attention nowadays in the synthesis of polyesters [5]. In this regards, supported 

Candida antarctica Lipase B immobilized on Lewatit VP OC (CALB), commercialized 

as Novozyme 435, has been used with great efficiency for the ROP of macrolactones, 

in particular for ω-pentadecalactone (PDL) [3,6] providing a synthetic route greener 

than the traditional ones based on the use of organometallic catalyst [7,8]. In addition, 

higher efficient processes of synthesis based on low-cost enzymes have been recently 

reported [9].  On the other hand, the use of organo-catalysts is another interesting 

approach that is gaining recognition in the synthesis of polyesters [10,11]. Thus (1,5,7-

triazabicyclo[4.4.0]dec-5-ene), known as TBD, is a powerful nucleophile able to 

efficiently catalyze esterification reactions and that is widely recognized as an 

extremely active catalyst for the ROP of macrolactones [11,12].  

Nucleophiles are the common species initiating the ROP of lactones, and a good 

number of both medium- and large-size lactones have been successfully polymerized 

by this method using alcohols as initiators [13–16]. By contrast, the ROP of lactones 
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initiated by amines has been scarcely explored in spite that their greater electron-

releasing capability makes them particularly effective for such purpose. In fact, the 

information presently available for the ROP of lactones initiated by amino-ended 

compounds is scarce and limited almost exclusively to medium-size rings [17–21]. As 

far as we know, no papers reporting the homopolymerization or copolymerization of 

macrolactones initiated by amines, either primary or secondary, amino acids, peptides 

or amino-terminated oligomers, are found in the accessible literature. Nevertheless, 

polymerization of either strained lactones (ε-caprolactone or lactides) or strainless 

lactones (large-ring size >9) initiated by primary amines could not differ appreciably 

from that initiated by alcohols. The use of amines as initiators will be then well justified 

when amino-ended compounds are desired to be jointed to the final polyesters, as it is 

for example the case of block copolymers made of polypeptides.   

Telechelic polymers bearing end groups able to take part in polymerization 

reactions are interesting building blocks for the preparation of polymers with relatively 

complex chemical structures such as block copolymers and network polymers [22,23]. 

Poly(ethylene glycol) (PEG) and its derivatives are well-known hydrophilic polymers 

with a great presence in both chemical and biological fields. Amphiphilic copolymers 

based on telechelic PEG are on the focus of numerous investigations addressed to the 

development of copolymer designs spontaneously generated by self-assembly and 

suitable for applications as drug delivery systems (DDS) [24,25].  PEG copolymers 

exhibiting amphiphilic behavior are common and a good number of them are based on 

the ROP of medium-size lactones initiated by the hydroxyl-end groups of PEG [26–29]. 

On the contrary, only a few reports on the copolymerization of PEG with PDL have 

been published so far, and none dealing with amine-initiated ROP reactions. Recently 

Hadjichristidis et al.,[16] have described PEG-b-PPDL diblock copolymers obtained by 

ROP of PDL initiated by PEG and catalyzed by phosphazene superbases but the 

properties of these copolymers were not examined.   
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In this work, we exploit the advantages of organo-catalysts and enzymes to 

prepare telechelic polyesters using amino-ended compounds as initiators for the ED-

ROP of PDL. On the basis of these exploratory results, commercial bisamino-ended 

poly(ethylene glycol) (NH2-PEG56-NH2) was then used as a bisfunctional macroinitiator 

for the polymerization of PDL to render amphiphilic PPDLx-PEG56-PPDLx triblock 

copolymers avoiding the concourse of metallic compounds. These novel copolymers 

have been extensively characterized, their thermal properties evaluated, and their 

ability to form nanoparticles has been brought into evidence. 

4.2 Results and discussion 

4.2.1 ROP of ωωωω-pentadecalactone  

The route used for the synthesis of PPDL and PPDLxPEG56PPDLx using CALB or 

TBD catalysts is depicted in Scheme 4.1, and results obtained in the 

homopolymerization of PDL under different conditions are compared In Table 4.1.  

 

 
 

Scheme 4.1. ROP of ω-pentadecalactone with either CALB or TBD as catalyst and amino-
ended compounds as initiators.  
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The 1H NMR spectra of the PPDL obtained by ROP catalyzed by CALB and 

initiated by the three amino-ended nucleophiles under study (entries 6-8) are shown in 

Fig. 4.1. These amines acted as initiators in the polymerization of PDL and remained 

therefore incorporated in the growing polymer chain [30]. In every case a signal 

appeared at 2.15 ppm which is indicative of the presence of the amide group generated 

by the nucleophilic attack of the amine to the carboxylate group of PDL with 

subsequent ring opening and polymerization initiation. Additional signals could be 

detected at 3.37 ppm and 3.25 ppm when HexA and A-DEG-A were used as initiators 

(signal A in spectra a and b, respectively). Such quadruplet signals arise from the α-

methylene protons of the amide group and their presence confirmed the incorporation 

of the amino-compounds into the polymer chain. Conversely, this signal appeared at 

3.9 ppm in the spectrum of the PDDL initiated by AllA (signal A in spectrum c) as a 

consequence of the deshielding effect provoked by the presence of the adjacent 

double bond. On the other hand, characteristic signals arising from the polyester are 

shared by PPDL regardless the nucleophile used. Triplets at 3.64 ppm and 4.05 ppm 

corresponding to protons of ended-chain CH2OH and COOCH2, respectively, were 

Table 4.1. ROP of ω-pentadecalactone (PDL) initiated by amines and catalyzed by either TBD 
or CALB. 

Entry Initiatora [PDL]0/[Cat]0/[Ini]0
b Time       

 (h) 
Conversionc   

(%) 
Yield     
(%) 

Mnd 
(g�mol-1) 

TBD 

1 - 100/5/0 12 - - - 
2 HexA 100/1/1 96 40 24 5,300 
3 HexA 100/10/10 96 64 37 2,100 
       

4 A-DEG-A 100/1/1 72 40 22 9,000 
5 A-DEG-A 100/5/1 12 99 87 19,700 

 

CALB 

6 HexA 100/5 3 99 97 5,500 
7 A-DEG-A 100/10 3 99 95 5,300 
8 AllA 100/5 3 99 93 5,000 
9 AllA 100/10 3 96 83 3,400 

aHexA: hexylamine; A-DEG-A: O,O′-bis(3-aminopropyl)diethylene glycol; AllA: allylamine.  
bMolar ratio in the feed. For enzymatic reactions the amount of CALB was 20% (w/w) respect to PDL.  
cConversion of PDL at the indicated reaction time as determined by 1H NMR. 
dNumber-average molecular weight of the resulting PPDL determined by 1H NMR. 
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present in all spectra. A quantification of the areas of these signals allowed estimating 

the number-average molecular weights of the resulting PPDL, which oscillated between 

~2,000 and ~20,000 g�mol-1 showing a large dependence on the reaction conditions 

used. A comparison of the conversion, yield and Mn values given in Table 4.1 led to 

conclude the following: (a) ROP of PDL was not feasible in the absence of initiator 

(entry 1), (b) the influence of initiator on results was small as far as CALB was used as 

catalyst (entries 6-9), and c) the best results were attained in the ROP initiated by 1 

mol-% DEG and catalyzed by 5 mol-% TBD relative to the amount of used monomer 

(entry 5).  

It should be remarked that ROP of the macrolactone took place almost 

exclusively by amine initiation ROP of PDL as it is demonstrated by measuring the 

CH2OH and CH2NCO signals areas of the formed polyesters. 1H NMR spectra of AllA-

PPDL before and after purification (Table 4.1, entry 8) with these signals enlarge for a 

reliable comparison are shown in Fig. A1 of the Annex A. On the other hand, it can be 

stated that the low yields attained for entries 2, 3 and 4 are due to the lack of reactivity 

of the macrolactone under the conditions used in such cases.  The 1H NMR spectrum 

of the reaction product of the polymerization initiated by hexylamine before purification 

(Table 4.1, entry 2) is shown in Fig. A2 of the annex A.  
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Fig. 4.1. 1H NMR (CDCl3) spectra of PPDL prepared by ROP initiated by a) HexA, b) A-DEG-A, 

and c) AllA. Superscripts I and L refer to signals arising from the first and last repeating units of 

the polyester chain, respectively.  

A preliminary thermal characterization of PPDLs obtained by amine-initiated ROP 

was carried out by TGA and DSC.  TGA thermograms of PPDLs synthesized using 
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each different nucleophile are compared in Fig. 4.2a. The thermal decomposition 

process started above 300 ºC and happened in one step with the maximum 

decomposition rate at ~425 ºC regardless the initiator used. Essentially the same 

behavior was observed for the three cases with small differences being within the limits 

of experimental errors. Fig. 4.2b displays the DSC traces of the amino-initiated PPDLs. 

The thermograms recorded at both cooling and heating are extremely similar showing 

in the three case sharp crystallization and melting peaks at temperatures around 75 ºC 

and 90 ºC, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2. Thermal analysis of amine-initiated PPDLs. a) TGA traces recorded under an inert 
atmosphere. b)  DSC traces registered at cooling and reheating from samples previously heated 
at 200 ºC.  

4.2.2 Synthesis PPDLxPEGyPPDLx triblock copolymers 

The promising results obtained in the ROP of PDL initiated by amino compounds 

encouraged us to carry out the synthesis of amphiphilic triblock copolymers by using 

diamine-ended PEG as double initiator for generating the PPDL blocks from PDL 

(Scheme 4.1). The PEG of choice was a sample with number-average polymerization 

degree of 56 (corresponding to a Mn of approximately 2,700 g�mol-1) and both organo-

chemical (TBD) and enzymatic (CALB) catalysts were used. All reactions were 

conducted in bulk at a temperature of 100 ºC. Copolymerizations with PEG:PDL molar 

ratios in the feed ranging between 1:25 and 1:420, which correspond to EG:PDL ratios 

of 2 to 0.13, were performed. Reaction conditions and results obtained for every case 
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are collected in Table 2. Acceptable yield values were attained in all cases (>70%) and 

according to the copolymer compositions, loses of product are due to incomplete 

reaction of PDL. Such a defect in the reactivity of the macrolactone was more 

pronounced when the polymerization was catalyzed by TBD.   

Table 4.2. Reaction conditions and results of the synthesis of PPDLxPEG56PPDLx 

triblock copolymers.a 

Entry Copolymerb Time 
(h) 

Yield 
(%) 

  [PEG]/[PDL]c 
        Mn 

d 
 (g�mol-1) 

Feed  
Copolyme
r 

  

Organic catalysis (TBD)
e
 

1 PPDL12PEG56PPDL12 3 87    1/25 1/23 
 

8,300 

2 PPDL34PEG56PPDL34 3 71  1/100 1/68 
 

18,700 

3 PPDL65PEG56PPDL65 12 70 
 

1/200 1/131   33,600 

Enzymatic catalysis (CALB)
f
 

4 PPDL16PEG56PPDL16 3 92  1/35  1/32 
 

10,650 

5 PPDL47PEG56PPDL47 12 94  1/100   1/94 
 

25,600 

6 PPDL191PEG56PPDL191 12 85  1/420  1/392   94,600 

aAll reactions performed at 100 ºC in bulk. 
bObtained copolymers with the indicated block lengths as determined from their compositions.  
cMolar PEG:PDL ratio in the feed and in the copolymer as determined by 1H NMR analysis. 
dNumber-average molecular weight determined by 1H NMR analysis of end-groups. 
eReactions catalyzed by 5 %-mol of TBD. 
fReactions catalyzed by 20% (w/w) of CALB.  

The chemical constitution and block composition of the copolymers were 

ascertained by NMR. 1H and 13C NMR spectra of PPDL46PEG56PPDL46 (entry 5 of 

Table 4.2) are depicted in Fig. 4.3. 1H NMR spectra of the all other copolymers are 

given in Fig. A3 of the Annex A. Insets containing enlarged regions have been inserted 

to show details difficult to observe in the straight representations. Signals arising from 

methylenes of the first and last pentadecanoate units as well as those due to the 

protons contained in the 3-oxyaminopropylene units of the central PEG block are made 

visible in the insets and used to determine the molecular weight of the copolymers. The 

Mn values obtained by this analysis are given in Table 4.2 and found to be consistent 

with the block lengths calculated by area quantification of signals specifically arising 

from PEG and PPDL blocks. 
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Fig. 4.3. 13C-NMR (a) and 1H-NMR (b) spectra of PPDL46PEG56PPDL46 (entry 5, Table 4.2).  
Superscripts I and L refer to signals arising from the first and last repeating units of the polyester 
chain, respectively.  

It should be noticed that no signals arising from the aminopropyl groups of the 

bisamino-ended PEG used as macroinitiator were detected in the 1H NMR spectra of 

the reaction product before purification, which is taken as indicative that all amine 

groups were active at initiating ROP of PDL (Fig. A4). On the other hand, the absence 

of homopolyester PPDL was ascertained by comparing 1H NMR signals arising from 

end CH2OH, HNCOCH2 and CH2O, which gave the same number of protons for the all 
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three (Fig. A5). Similar results were obtained for the analysis of PPDL prepared by 

short amine initiation (Fig.A6). 

4.2.3 Thermal properties of PPDLxPEG56PPDLx triblock copolymers 

The triblock copolymers synthesized by the two procedures were comparatively 

examined by TGA and DSC with the purpose of assessing their thermal behavior as a 

function of both the length of the PPDL blocks and the method used for their synthesis. 

The thermal parameters obtained from these assays are collected in Table 4.3. The 

TGA traces recorded from the copolymers and the two homopolymers as well as their 

derivative curves are shown in Fig. 4.4. 

 

 

 

 

 

 

 

Table 4.3. Thermal properties and crystallizability of PPDLxPEG56PPDLx triblock copolymers. 

Copolymer 

   
DSCb 

TGAa 
 

Heating 
 

Cooling 
 

Crystallization 
kineticsc 

o
Td   
ºC 

max
Td  

ºC 
Rw     

%  

1
Tm    
oC 

1∆Hm    
J�g-1 

 2
Tm   

ºC 

2∆Hm    
J�g-1 

  
Tc 

ºC 
∆Hc  
J�g-1 

  n In K 
t1/2 

s 

Organic catalysis (TBD) 
PPDL12PEG56PPDL12 385 427,470 2 

 
90 121  77 121 

 
77 -110 

 
2.1 -1.4 1.7 

PPDL33PEG56PPDL33 381 424,470 2 
 

95 135  89 138 
 

81 -117 
 

2.0 -1.4 1.7 
PPDL65PEG56PPDL65 399 424,472 4 

 
95 143  90 150 

 
81 -123 

 
1.9 -1.1 1.5 

Enzymatic catalysis (CALB) 
PPDL16PEG56PPDL16 394 423,472 1 

 
92 122  84 102 

 
77 -111 

 
1.7 -2.2 2.7 

PPDL46PEG56PPDL46 394 422,472 1 
 

94 132  88 110 
 

79 -115 
 

1.9 -2.3 2.7 
PPDL191PEG56PPDL191 383 421,472 6 

 
95 180  90 160 

 
81 -162 

 
2.1 -2.5 2.8 

       
 

         

PEG 373 406,472 2  59 169  56 148  20 -136     
PPDL 399 423,470 2  93 150  91 143  75 -119  1.4 -4.3 9.6 

a aOnset for 10% weight loss (o
Td) and maximum rate (max

Td) thermal decomposition temperatures measured in 
the TGA analysis performed under inert atmosphere. Rw: weight (%) remaining after heating at 600 ºC. 
bMelting (Tm and ∆Hm) and  crystallization (Tc and ∆Hc) temperatures and enthalpies measured by DSC. 1 and 2 
superscripts refer to the first and second heating runs.  
cAvrami parameters for the isothermal crystallization taking place at 84 ºC. 
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Fig. 4.4. a) TGA traces registered under inert atmosphere of PPDLxPEG56PPDLx copolymers 
and and b) their derivative curves. 

The high thermal stability of PEG and PPDL homopolymers is a well-known fact 

[3,31]. Both compounds start to undergone perceivable decomposition well above 350 

ºC and their decomposition in bulk happens in two stages at temperatures between 

400 ºC and 500 ºC leaving insignificant amounts of remaining weight. As it is shown in 

Table 4.3 the thermal stability of the PPDLxPEG56PPDLx triblock copolymers is fully 

consistent with the behavior observed for the homopolymers. ºTd of copolymers are in 

the 380-400 ºC range and their maxTd are about 420-425 ºC and 470-472 ºC for the first 

and second decomposition steps, respectively. Although differences in the 

decomposition temperatures of the copolymers are small and practically negligible 

when the two series are compared, it is noticed that onset temperatures are slightly 

higher for the copolymers prepared by enzymatic ROP, and that in general all 

decomposition temperatures are closer to those of PPDL. The first observation is rather 

reasonable since the catalyst remaining in the copolyesters is expected to enhance the 

starting decomposition of the polymer. On the contrary, the stronger influence of the 

PDL blocks on the thermal stability of the copolymers compare to the EG blocks is not 

readily explainable and a more detailed study of the decomposition mechanism is 

needed to account for such difference.   
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The DSC study carried out on the PPDLxPEG56PPDLx copolymers included the 

analysis of the melting-crystallization process taking place at heating, cooling and 

reheating. Traces registered for the two copolymers series are compared in Fig. 4.5 

and the Tm and Tc values observed for each one of them together with their associated 

enthalpies are listed in Table 4.3. Apparently, the PDL’s block is crystallized in all 

copolymers whichever is the composition. “As synthesized” samples melted in the 90-

95 ºC with values showing no significant differences between the two series but slightly 

increasing in each of them with the length of the polyester block. Also the melting 

enthalpies measured for the copolymers increased monotonically with the content in 

PDL as expected, but it was striking to observe that values are greater than those for 

the PPDL homopolyester when they are referred to the weight fraction of PDL in the 

copolymer. It seems therefore that the PEG segment operates as a crystallization 

hastener probably due to the self-assembling effect that is exerted on the whole 

copolymer in concomitance with phase separation. Additionally a plasticizing effect of 

PEG could be invoked to explain the high crystallinity found in the copolymers. 

Crystallization upon cooling from the melt was found to take place in all cases at 

supercoolings below 10 ºC which are values significantly lower than that required for 

the recrystallization of the homopolyester (16 ºC).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.5. DSC traces of PPDLxPEG56PPDLx copolymers.  a) First heating, b) cooling, c) second 
heating.  
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The crystallizability of the copolymers as a function of their composition was 

assessed by isothermal crystallization. For this purpose PPDL and copolymers 

samples were heated in the DSC up to 200 ºC, then rapidly cooled down to 84 ºC, and 

finally left to crystallize at this temperature. The advance of the crystallization process 

was followed by measuring the increasing in the enthalpy along time. The curves 

resulting from the representation of the relative crystallinity against crystallization time 

are compared in Fig. 4.6 for the two series and the kinetic parameters determined by 

applying the Avrami approach for each copolymer and PPDL are listed in Table 4.3. It 

is apparent that the PPDL segments crystallized faster when they were dangling from 

the PEG, and that such effect is even more pronounced in the copolymers synthesized 

in the presence of the organic catalyst than in those obtained with CALB. The POM 

micrographs obtained from films of copolyesters crystallized under the same conditions 

that were used for the kinetic analysis (insets of Fig. 4.6) revealed an axialite-like 

texture in both cases but with bigger size and less profusion of individual entities in the 

former case. 

 
Fig. 4.6. Evolution of the relative crystallinity as a function of time in the isothermal 
crystallization at 84 oC of PPDLxPEG56PPDLx copolymers. Insets: POM micrographs recorded 
from crystallized PPDL33PEG56PPD33 (a) and PPDL46PEG56PPDL46 (b).  

These findings are in line with the differences detected in the melting-

crystallization and corroborated the occurrence of heterogeneous crystallization in the 

TBD synthesized copolymer. Avrami parameters are in partial agreement with such 
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observations. Half crystallization times are in fact much lower for the organo-catalyzed 

copolymers whereas no significant differences in n between the two series where 

noticed.  

The crystalline structure generated upon crystallization of PPDLxPEG56PPDLx 

was investigated by XRD at variable temperature by using synchrotron radiation. All the 

copolymers showed at room temperature a couple of well-resolved sharp peaks in the 

WAXS region corresponding to 0.41 and 0.37 nm Bragg spacings (Fig. 4.7).These are 

identified as the interplanar spacings characteristic of the PPDL rhombic lattice, [3,32–

34] and their presence brings into evidence that the PPDL segments are similarly 

crystallized in the copolyesters whichever is their composition. As expected, both 

peaks vanished when the copolymers were heated at their melting temperature to 

reappear upon cooling to reproduce almost exactly the initial pattern. According to the 

results obtained by DSC, the amount of PEG that is crystallized must be small. In fact 

no peak arising from PEG was detectable in the XRD profiles of the copolymers except 

in those containing the shortest PPDL blocks. In these cases a weak peak became 

detectable at 0.46 nm that disappeared at temperatures around 50-60 ºC and that was 

unable to recover upon cooling (Fig.  4.7c).  

 

 

 

 

 
 
 
 
 
 
 
Fig. 4.7. Evolution of WAXS recorded from PPDL46PEG56PPDL46 at heating (a) and cooling (b) 
over the 10-110 oC range. c) WAXS profiles recorded from PPDL16PEG56PPDL16 showing the 
PEG peak. Additional heating and cooling profile collections obtained for PPDL191PEG56PPDL191 

are given in Fig. A2 of the ESI file. 
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4.2.4 Nanoparticles formation and characterization 

The PPDLxPEG56PPDLx triblock copolymers are amphiphilic chains consisting of 

an inner hydrophilic segment of around 20 nm in length and two outer hydrophobic 

segments of variable length ranging from about 25 nm for x = 12 up to about 400 nm 

for x = 191. Since in the solid state the PEG segment is likely to be in non-regular 

conformation, and that PPDL must be crystallized in folded lamellae with a more or less 

defined thickness (presumably in the 5-30 nm range), the copolymers are expected to 

be arranged in an amphiphilic nanostructure with the PEG (amorphous and hydrophilic) 

and PPDL (crystalline and hydrophobic) phases sharply segregated one from the other. 

Since no peak was detected in the SAXS region of the XRD profiles of these 

copolymers it is interpreted that such structure is made of globular PEG amorphous 

aggregates surrounded by a continuous phase made of PPDL lamellae. Nevertheless, 

the size and mutual distribution of the two phases will be determined by the x value. 

A different behavior could be however expected for the copolymers when they 

are compelled to form small particles in an aqueous environment given the strong 

affinity of PEG for water.  The preparation of nanoparticles (NPs) from the 

PPDLxPEG56PPDLx copolyesters was carried out by the solvent evaporation method 

with dichloromethane as organic solvent. The copolymer series made by enzymatic 

copolymerization was the material of choice because a greener synthesis route was 

used in this case. The size and ζ-potential measured for the resulting NPs for the three 

copolymers under study are given in Table 4.4, and a selected assortment of TEM 

micrographs are shown in Fig. 4.8.    
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Table 4.4. Triblock nanoparticles characteristics. 

 Particle sizea  

Copolymer Diameter (nm) Dispersity(D) ζ-potential (mV) 

PPDL16PEG56PPDL16 125 0.12 -3.33 

PPDL46PEG56PPDL46  165 0.19 -3.90 

PPDL191PEG56PPDL191  161 0.13 -2.96 
a Measured by DLS in water. Size distribution plots are accessible in the ESI file (Fig. S8). 

 

The DLS results gave particle sizes between 125 and 160 nm with the value 

clearly increasing when the length of the PPDL block came from x=16 up to x=46 but 

keeping essentially unchanged for further x increasing to 191.  Negative weak values 

were found for the ζ-potential, as it should be expected for particles with the surface 

enriched in ethylene oxide groups. Differences among ζ-potential values are not 

relevant although it is rather remarkable that PPDL46PEG56PPDL46 displays the top 

value despite that PPDL16PEG56PPDL16 is the copolyester containing the highest 

proportion of ether groups. The entities examined by SEM display sizes and shapes in 

agreement with the data afforded by DLS. Although more or less rounded particles with 

diameters in the 100-200 nm range are invariably observed for the three copolymers, 

their appearance varies largely from one to the other. NP’s made of 

PPDL16PEG56PPDL16 are very prone to collapse and aggregate so that patches 

integrated by large numbers of attached NP are frequently seen (Fig. 4.8a). On the 

contrary, NP’s made of PPDL191PEG56PPDL191 appear very disperse maintaining their 

individual entity and displaying somewhat elongate shapes (Fig. 4.8c). An intermediate 

situation was found for NP’s made of PPDL46PEG56PPDL46 where rounded particles 

appear densely packed without losing their individuality. Additional SEM micrographs 

providing larger views of the PPDxPEG56PPDLx NP’s may be inspected in Fig. A9 of the 

Annex A.  
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Fig. 4.8. SEM images of nanoparticles made from PPDL16PEG56PPDL16 (a), 
PPDL46PEG56PPDL46 (b) and PPDL191PEG56PPDL191(c) triblock copolymers. 

The DSC analysis of the NP’s demonstrated that the polyester blocks are 

crystallized in these entities in a similar manner as it happens in the bulk but the 

crystallinity attained is much lower depending on copolymer composition (see Fig. A10 

and Table A1 of the Annex A). On the other hand, no sign of crystallinity associated to 
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the PEG blocks is perceived at any case. It is remarkable that the amount of crystalline 

PPDL in the NPs made of PPDL46PEG56PPDL46 is about 80% of that present in the 

copolymer in bulk whereas it becomes less than 7% in NPs made of 

PPDL16PEG56PPDL16. The situation is intermediate for PPDL191PEG56PPDL191 NPs 

where PPDL crystallized in about 25% relative to the amount that is crystallized in the 

powder. 

It is tempting to try relating the differences in shape and behavior exhibited by the 

NP’s in aqueous suspension with the block composition of the copolymers given the 

influence of the block length on crystallinity and the low Tg values displayed by both 

PEG and PPDL. The soft behavior and consequent shape definition and tendency to 

form unspecific aggregates that is displayed by PPDL16PEG56PPDL16 NPs is thought to 

be due to the rubbery nature of these particles in which the molar fraction of EG units is 

almost twofold that of PDL and crystallinity is almost negligible. Conversely the good 

dispersion and almond-like shape exhibited by PPDL191PEG56PPDL191 NPs is 

consistent with the presence of a considerable crystallinity and the small content in 

PEG, which will be segregated out from polyester core, as expected, but that is 

insufficient to cover the whole surface of the nanoparticle. NPs made of 

PPDL46PEG56PPDL46, despite showing a good mutual affinity, they keep inalterable 

their identity and display a satisfactory rounded shape. In this case, PPDL is 

extensively crystallized in the inner part of the NP so that PEG is segregated out to 

create a water-like surface. Nevertheless, the amorphous polymer fraction in these NP 

must be still considerable as it inferred from the polygonal contour exhibited when they 

are closely packed to each other. 

4.3 Conclusions 

In this paper it is reported for the first time the synthesis of polymacrolactones by 

ROP using amino-initiators and avoiding the concourse of organo-metallic catalysts.  

This approach is very suitable to prepare telechelic PE-like polyesters bearing diverse 
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functional-end groups which can be then used for further extensive reaction. In this 

work, the methodology has been applied to the preparation of amphiphilic triblock 

copolyesters (PPDL-PEG-PPDL) made of a central block of PEG and two dangling 

blocks of PPDL. Copolymerization was performed by ROP of PDL initiated by amino-

ended PEG and using either TBD or CALB catalysis with similar synthesis results. The 

length of the polyester blocks could be precisely controlled by adjusting the PEG/PDL 

ratio. Thermal properties and crystalline structure of the copolymers were found to be 

depending on the PEG/PDL ratio but differences between the two copolymer series 

were not significant. Strikingly the crystallizability of the PPDL in the copolymers was 

enhanced compared to that of the homopolyester and this effect was more pronounced 

for the copolymer series prepared with TBD as catalyst. Nanoparticles with 100-200 nm 

diameter could be prepared from the enzymatically-synthesized copolyesters bringing 

into evidence their self-assembling capacity. The green route followed for the 

preparation of the PPDL-PEG-PPDL triblock copolyesters, their largely expected 

biodegradability and good cytocompatibility, and their capacity to form structured 

nanoparticles make these copolyesters materials of exceptional interest for the design 

of drug delivery systems. 
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Chapter 5. Synthesis and properties of diblock copolymers of ωωωω-

pentadecalactone and αααα-amino acids 

 

Abstract 

Diblock copolymers (PPDLx-b-pPAAy) were prepared from ω-pentadecalactone 

and L-glutamic acid or L-lysine amino acids by ring opening polymerization initiated by 

amino groups. Telechelic amino-ended poly(ω-pentadecalactone) with a length of 15-

20 repeating units was firstly synthesized by enzymatic polymerization by means of  

CALB and then used as macroinitiator for the polymerization of the N-

carboxyanhydrides of the two α-amino acids conveniently protected as benzyl and εN-

carbobenzoxy derivatives, respectively. The molecular weight of the polypeptide block 

was accurately controlled by adjusting the amino acid/macroinitiator ratio used in the 

feed. Copolymers with Mn ranging between ~5000 and ~40,000 g�mol-1 and varying 

ester/peptide ratio were obtained and characterized in detail by GPC and NMR 

spectroscopy. The thermal properties of these copolymers were evaluated by TGA and 

DSC, and their structure in the solid-state including their response to heating, were 

examined by FTIR and XRD at variable temperature. It was shown that the 

polypentadecalactone segment was crystallized for all compositions and that the 

polypeptide counterpart adopted a two-dimensional hexagonal packing of α-helices at 

temperatures above melting of the polyester block. SAXS revealed the presence of a 

biphasic nanostructure with a repeating distance of 27 nm for the case of glutamic-

based copolymers.  It was demonstrated that both glutamic and lysine-based PPDLx-b-

pPAAy copolymers could self-assemble in well-shaped nanospheres with a diameter in 

the ~200-400 nm range and a negative zeta-potential. 
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5.1 Introduction 

Block copolymers containing at least one polypeptide block provide advantages 

over conventional synthetic polymers due to their ability to hierarchically self-assemble 

into stable ordered arrangements [1,2]. The polypeptide moiety in these copolymers is 

usually arranged in the familiar α-helix or β-sheet structure depending on the side chain 

of the constituent amino acid. The stiff polypeptide conformation is known to exert a 

decisive influence on the copolymer structure adopted in the solid state and its self-

assembling properties [3,4]. In fact structures at several length-scales with uncommon 

properties have been observed in the solid state for these copolymers, in which one of 

the blocks is a rod-like polypeptide and the other one is a flexible polymer [5,6]. 

Formation of micelles [7], vesicles, and bilayer aggregates [8] is also known to take 

place in these copolymers in aqueous medium according to their composition and 

environment conditions. Polypeptide-based copolymers are therefore outstanding 

building compounds for biomaterials due to their tunable chemical architecture, 

biocompatibility, biodegradability, and ability to take up responsive secondary 

structures [9].  

Among the diversity of peptide-based block copolymers today available [10,11], 

those derived from lactones become distinguished by both their feasible synthesis 

through ring opening polymerization (ROP) and their distinguishing properties. It is well 

known that amino acid N-carboxyanhydrides (NCA) are prone to undergo ROP initiated 

by aliphatic primary amines with the initiator remaining attached to the growing chain 

[9]. This approach has been applied to the synthesis of a number of polyester-b-

polypeptide copolymers. In most of cases the polyester is generated from medium-size 

lactones (ε-caprolactone, L-lactide, etc), and the synthesis strategy consisted of 

preparing first the macroinitiator with an ending free-amino group to initiate then the 

ROP of the NCA’s. Thus Caillol et al. synthesized a poly(L-lactide) amino-ended 

macroinitiator, which was then used for the ROP of γ-benzyl L-glutamate N-

carboxyanhydride (BLG-NCA). These PLLA-b-PBLG copolymers were organized in 
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separated domains containing crystalline PLLA and liquid-crystal columnar hexagonal 

PBLG [6]. Likewise others amino acids (L-Ala, L-Phe, L-Leu, etc.) have been used in 

the preparation of a diversity of poly(ester-peptide)s with the hydrophobic block made 

from L-lactide or ε-caprolactone [12-16].  

A critical factor for the successful synthesis of telechelic polymers is the end-

group fidelity, which is achieved by a good control of the functionalizing reaction [17]. 

Ritter prepared a library of poly(L-lysine-b-caprolactone) block copolymers using 

amino-ended poly(εN-carbobenzoxy L-lysine) (PZLLx-NH2) to effectively initiated the 

ROP of ε-caprolactone [18].  After removal of the Z-protecting group, water-soluble 

copolymers were obtained which were able to spontaneously self-organize into 

nanometer size aggregates (core-shell particles or vesicles). In our research, we 

initially tried this approach using well-defined PBLGx-NH2 or PZLLx-NH2 for the ROP of 

ω-pentadecalactone (PDL) mediated by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) or 

Candida antarctica lipase B (CALB) as catalysts. According to what has been reported 

[19,20] the use of TBD promoted transesterification reactions over the –COOBn group 

with release of benzyl alcohol as a by-product, and when CALB was used, the steric 

hindrance of the macroinitiator precluded its attack to the enzyme activated PDL so 

that copolymerization did not proceed. Recently we reported on the synthesis of well-

defined allyl-ended telechelic poly(ω-pentadecalactone)s (PPDL) intended to be used 

as initiator of ROP after appropriate functionalization [21]. Deliberately, an adequate 

functionalized alkene was used as initiator to insert an unsaturation into the PPDL end-

chain. The amine functionality was then introduced into the double-bond ended 

polyester via thiol-ene coupling with 2-(Boc-amino)-ethanethiol (BAET) followed by Boc 

removal. Such amine-functionalized polyester was claimed to be suitable for initiating 

ROP of either NCAs or other lactones, and this is in fact the approach we have 

adopted for the synthesis of the copolymers studied in this work. 
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In biomedical applications, and more specifically in the design of polymeric drug 

carriers, polymer amphiphilicity plays a crucial role. Drug carriers with significant 

lipophilic character have been found to be particularly effective in the stabilization of 

certain drugs and enlarging its circulatory retention in the blood stream. Macrolactones 

(MLs) have recently emerged as a family of building blocks for novel polymer 

biomaterials displaying properties close to those typical of long aliphatic chains but 

being potentially biodegradables [22]. The polyesters generated in the ROP of MLs 

have a hydrophobic character comparable to paraffins and display a strong tendency to 

crystallize producing well-developed crystallites of high thermal and chemical stability.  

Such features have motivated their use in the building of different block copolymers 

intended for drug delivery applications [23-25]. ω-Pentadecalactone is an easily 

accessible macrolactone that has been largely studied as ROP monomer for producing 

hydrophobic polyesters (PPDLs). Despite the exceptional potential of PPDL as 

biomaterial component, to our knowledge its marriage to polypeptides has never been 

reported, which prompted us to investigate the family of block copolymers made of PDL 

and L-glutamic or L-lysine (PPDL-b-pPAA). The work reported in this paper constitutes 

a first step in this investigation which is focused on neutral copolymers with the amino 

acids bearing their carboxylic or amino side groups conveniently protected. The PPDL-

b-pPAA copolymers are exempted of organometallic catalysts and are of interest, not 

only by themselves due to their capacity to form stable nano-aggregates, but also as 

precursors of ionic copolymers potentially exploitable in highly sophisticated biomedical 

applications. In fact the -COOH and -NH2 side groups of the glutamic and lysine 

residues are readily recoverable by acid treatment to render negatively and positively 

charged copolymers, respectively. These copolymers will display strong affinity for 

proteins and will be able to combine ionically with drugs and DNA’s to form stable 

nanoconjugates [26,27]. 
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5.2 Results and discussion 

5.2.1 Synthesis of the PPDL-NH2 macroinitiator 

The three-step pathway followed for the preparation of the PPDLx-NH2 

macroinitiator is depicted in Scheme 1. Partial yields were between 80 and 90% and 

the 1H NMR spectra of the three intermediate compounds respectively isolated in each 

step are depicted in Figure 5.1. The NMR analysis proved that the synthesis of the 

amino-ended macroinitiator was successfully achieved. 

 

 

 

 

 

 

 

 

 

Scheme 5.1. Synthetic pathway leading to the PPDL-NH2 macroinitiator. 

 

The triplet b appearing at 2.2 ppm is the only signal arising from methylene 

neighboring to the carbonyl group apart from that due to the repeating CH2COO unit of 

the polyester chain. This is taken as indicative that all polyester chains have been 

amino-initiated in the ROP process. The b signal is shared by the three spectra and its 

area is consistent with that of the fL signal at 3.65 ppm arising from the methylene 

protons of the end CH2OH. It can be hence inferred that both thiol-ene click and Boc-

deprotection reactions occurred as expected, and that therefore the PPDL-NH2 sample 

is practically exempted of not amino-ended chains. The ratio of the areas of the b and f 

signals measured in the 1H NMR spectra of this compound was used to determine the 

number-average length of the PPDL-NH2 which resulted to be in the range of 15 or 20 

units depending on the batch 
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Figure 5.1.1H NMR (CDCl3) spectra of a) PPDL-All, b) PPDL-BAE and c) PPDL-NH2. f
L notation 

refers to the last repeating unit.  

5.2.2 Synthesis of the PPDLx-b-pPAAy copolymers 

Two series of PPDLx-b-pPAAy diblock copolymers with the poly(amino acid) block 

(pPAAy) duly protected  were prepared by ROP of the NCA of γ-benzyl L-glutamate and 

εN-carbobenzoxy L-lysine, respectively, initiated by PPDL-NH2, as it is depicted in 

Scheme 5.2. Yields, compositions and molecular weights of the resulting copolymers 

are given in Table 5.1.   
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Scheme 5.2. ROP of AA-NCA initiated by PPDL-NH2.  

 

Copolymerization yields were in the 70-90% range with significantly higher values 

attained for copolymers made of Lys. The 1H and 13C NMR spectra of the PPDLx-b-

PBLGy and PPDLx-b-PZLLy ascertained their constitution and no signals other than 

those assignable to the monomeric repeating units present in these copolymers were 

therein detected. The PPDL15-b-PBLG30 and PPDL20-b-PZLL30 
1H NMR spectra are 

shown in Figure 5.2 as representative for their respective series. Some illustrative 13C 

NMR spectra are shown in Figure B1 of the Annex B. Compositions as well as number- 

average molecular weights were determined by 1H NMR using the areas of signals 

specifically arising from each block and from both amino and hydroxyl end groups (see 

details in Figure B2 of the Annex B. The compositions of the resulting copolymers were 

very close to those expected from the initiator to amino acid ratios set for their 

respective feeds with deviations being lower than 10%. Mn oscillated between ~10,000 

Table 5.1. Yields, compositions and molecular weights of PPDLx-b-pPAAy 
copolyesters. 
Copolymer

a
 Yield 

(%) 
Feed 

[Init]/[NCA] 
Copolymer

a,b
 

[PDL]/[AA] 
Mn

c 

(g�mol
-1

) 
LPPDL/LPAA

d 

(nm)/(nm) 

PPDL15-b-PBLG30 81 1/30 15/33 10,500  29/12 

PPDL15-b-PBLG60 73 1/60 15/56 15,500 29/20 

PPDL15-b-PBLG80 79 1/80 15/84 21,600 29/30 

PPDL15-b-PBLG180 80 1/180 15/187 44,200 29/67 

      

PPDL20-b-PZLL30 94 1/30 20/32 12,800 38/11 

PPDL20-b-PZLL70 81 1/70 20/68 22,300 38/28 

PPDL20-b-PZLL100 80 1/100 20/98 30,000 38/35 

PPDL20-b-PZLL190 88 1/200 20/190 54,300 38/68 
aSubscripts indicate the degrees of polymerization of the two blocks corresponding to the PPDL-NH2 initiator 

to NCA molar ratio used in the feed as indicated in column 3 after having been rounded to ten.   
bCopolymers composition expressed as the number of units of each block as determined by 1H NMR. 
cNumber-average molecular weight of copolymers determined by 1H NMR.  
dPDL and AA-block average lengths calculated from the compositions given in column 4 for an extended 
chain and assuming an average projected bond length of 0.120 nm. 



 

 Chapter 5 107 

 

and ~55,000 g�mol-1 which correspond to copolymer chain lengths between 40 and 100 

nm and block lengths ratios ranging from 0.4 to 3.5 with values close to 1 in the cases 

of PPDL15-b-PBLG80 and PPDL20-b-PZLL100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.2. 
1H-NMR spectra (CDCl3/TFA) of the PPDL15-b-PBLG30 (a) and PPDL20-b-PZLL30 (b) 

diblock copolymers. (bL corresponds to the end repeating unit).  

On the other hand, the chromatograms recorded in the GPC analysis displayed 

monomodal distributions (peaks appearing a longer elution times do arise from salts, 

Annex B, Figure B3) with molar dispersities within the 1.2-2.2 range. However 

molecular weight values given by this technique were found to be much lower than 

those determined by NMR. As it has been reported for polypeptides carrying aromatic 

groups [16,31], it can be assumed that exceptional interactions taking place between 
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the benzyl groups of the polypeptides and the aromatic matrix of the column could be 

responsible for the delay observed in the elution times. 

Contamination of the copolymers with some minor amounts of homo-

oligopeptides that might be generated by non-amino initiated ROP of the NCA cannot 

be discarded. Although dried CHCl3 was the solvent used, the presence of small 

quantities of water may initiate NCA polymerization. Unfortunately the detection and 

quantification of these oligopeptides is not easy. Nevertheless, their amount must be 

small since GPC results do not provide indication on their existence. Their elution 

together with the salts is highly unlikely because their molecular weights would be 

much greater and expected therefore to come out at noticeable shorter times. It should 

be noticed anyhow that the presence of minor oligopeptide impurity in the PPDLx-b-

pPAAy copolymers would not invalidate the structural and property study carried out on 

them.   

5.2.3 Thermal properties of the PPDLx-b-pPAAy copolymers 

The thermal stability of the PPDLx-b-pPAAy copolymers was examined by TGA 

under an inert atmosphere. The thermogravimetry traces recorded in the 25-600 ºC 

range for the two whole series including the parent homopolymers, as well as their 

derivative curves, are given in Figure B4 in the Annex B, and decomposition 

parameters are listed in Table 5.2. The onset temperatures of copolymers vary 

unsteadily from 237 to 230 ºC whereas the two homopolypeptides started to 

decompose above 285 ºC and 260 ºC, respectively. Decomposition of PPDL took place 

through one main step at a maxTd  of 430 ºC with a weight loss of about 90% followed by 

a second minor step at a maxTd  of 475 ºC. These two steps have been made to 

correspond to decarboxylation and polymethylene disintegration reactions, 

respectively.  

On the other hand the polypeptides displayed a thermal decomposition behavior 

consisting basically in two well-separated stages centered about 290 and 320 ºC for 
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PBLG, and 320 and 430 ºC for PZLL. At difference with the homopolymers, the 

response of the copolymers to heating was complex and rather aleatory without 

showing apparent correlation between decomposition temperatures and composition. 

All derivative curves display several peaks corresponding to partial maxTd located within 

the interval delimited by the parents homopolymers and with values approaching to the 

one or the other limit according to composition.  

The existence of thermal transitions in the PPDLx-b-pPAAy diblock copolymers 

was investigated by DSC. The traces recorded at both heating and cooling for the two 

whole series including the parent homopolymers are depicted in Figure 5.3 and the 

characteristic parameters measured in this analysis are listed in Table 5.2. As expected 

from what is reported from literature PPDL behaved as a semicrystalline polyester with 

Tm around 90 ºC and being able to crystallize upon cooling from the melt with high 

recovery of the original crystallinity [32]. 

Table 5.2. Thermal properties of the PPDLx-b-pPAAy diblock copolymers. 

Copolymers 

TGA
a 

 DCS
b
 

  
first  

heating 
 cooling  

second 
heating 

 

o
Td 

o
C 

max
Td 

o
C 

Rw     

%  
Tg 
o
C 

Tm 
o
C 

∆H   
J�g-1

TLC
c 

oC 
∆H   

J�g-1  

Tc   
oC 

∆H   
J�g-1  

Tm 
o
C 

∆H   
J�g-1 

PPDL15 285 430, 470 1  - 90 151 - -  75 -119  90 123 
PPDL15-b -PBLG30 237 230-470 1 

 
21 90 49 109 2 

 
73 -45 

 
89 44 

PPDL15-b -PBLG60 230 235-470 16 
 

21 88 26 109 2 
 

68 -24 
 

86 27 
PPDL15-b -PBLG80 230 240-470 15 

 
21 88 13 119 2 

 
67 -10 

 
85 12 

PPDL15-b-PBLG180 230 260-430 14  20 88 9 120 4  70 -6  88 6 
PBLG50 280 290,320 17  20 - - 118 9  - -  - - 
                

PPDL20 285 430, 470 1  - 90 151 - -  75 -119  90 123 
PPDL20-b-PZLL30 200 260-470 10  21 83 33 - -  63 -37  84 30 
PPDL20-b-PZLL70 210 230-410 9  21 84 23 ~140 nd  67 -32  84 23 
PPDL20-b-PZLL100 215 250-410 9  20 84 18 ~140 nd  66 -22  84 15 
PPDL20-b-PZLL190 240 270-410 5  20 90 2 - -  77 -0.7  91 0.62 
PZLL50 260 290, 430 9  21 - - ~140 nd  - -  - - 
aOnset temperature for 5% of weight loss (o

Td), maximum rate (max
Td) decomposition temperatures and remaining weight 

(Rw) after heating at 600 ºC. 
bGlass transition (Tg), melting (Tm and ∆Hm) and crystallization (Tc and ∆Hc) temperatures and enthalpies measured by 
DSC.  
c
TLC is the temperature for the helical transition undergone by the polypeptide block. Values given for PPDL20-b-PZLL70

and PPDL20-b-PZLL100 are approximate. 
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The DSC traces registered from copolymers displayed typical melting and 

crystallization peaks corresponding to the PPDL block for the two series and for 

whichever composition, and the second heating traces reproduced the endothermal 

peak observed on the first heating traces with acceptably close values in both melting 

temperature and enthalpy (see Figure B5 in the Annex B). It is worth noting that in the 

PPDLx-b-PBLGy series, the PPDL block melting peak appeared at the same 

temperature than in the homopolymer, but showing a shoulder at lower temperature 

that may be attributed to the fraction of polyester generated by secondary 

crystallization. On the contrary, the PPDL block in the PPDLx-b-PZLLy series melted at 

a few degrees lower than the homopolymer with a shoulder around 90 ºC indicating 

that the PZLL block exerts a greater distorting effect on PPDL crystallization than the 

PBLGy block. 

 

 

 

 

 

 

 

 

 
Figure 5.3. DSC first heating and cooling traces of PPDLx-b-pPAAy diblock copolymers a) BLG-
containing copolymers and b) ZLL-containing copolymers. 

On the contrary the DSC traces of PBLG and PZLL, which are polypeptides 

known to be unable to crystallize, displayed an endotherm in the 100-150 ºC range. 
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involving the conversion of the 7/2 helix to the 18/5 α-helix characteristic of poly(α-

amino acid)s. The transition was clearly observed for PBLG as a sharp peak at 120 ºC 
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in its heating trace. The occurrence of such transition in the PPDLx-b-PBLGy series was 

evidenced for both 15/80 and 15/180 compositions by the presence of an endothermal 

peak appearing at 110-120 ºC. Heat exchanges with similar meaning were observed 

nearby 140-150 ºC for the PPDLx-b-PZLLy copolymers with x/y values of 20/70 and 

20/100 but not for 20/190, which is a highly striking result without apparent explanation.  

5.2.4 Solid-state structure of the PPDLx-b-pPAAy diblock copolymers 

The occurrence of regular arrangements in the polypeptide chain of the PPDLx-b-

pPAAy copolymers and its dependence on the amino acid constitution was clearly 

demonstrated by FTIR analysis. The spectra of all the polymers studied in this work are 

comparatively represented in Figure 5.4. Bands at 1650 and 1545 cm-1 characteristic of 

α-helix type were conspicuous in the spectra recorded from all the PPDLx-b-PBLGy. In 

the case of the PPDLx-b-PZLLy, the spectra showed the absorption characteristic of the 

β-sheet at 1625 cm-1 in addition to the α-helix bands indicating that both forms coexist 

in this series. It should be noted that cannot be disregarded that the observed β-sheet 

structure may arise, at least in part, from homo-oligopeptides that could be present in 

the copolymer as a minor impurity. Nevertheless, in the two series, the relative amount 

of helical arrangement present in the copolymer is largely predominant and it increased 

with the length of the polypeptide block. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4. 1800-1500 cm-1

 region of FTIR spectra of PPDLx-b-pPAAy diblock copolymers and 
the PBLG and PZLL homopolymers showing bands characteristic of α-helix and β-sheet 
secondary structures 
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The large difference between the PPDL and pPAA blocks in chemical constitution 

leads to expect that the PPDLx-b-pPAAy copolymers are able to self-assembly in the 

solid state in a biphasic structure at the nanometric scale. To get insight into this 

structure, a real-time X-ray diffraction study was carried out by using synchrotron 

radiation with samples subjected to variable temperature. Both wide and small angle 

scattering were simultaneously recorded at either heating or cooling within the 10-150 

ºC temperature range. The evolution followed by the scattering profile of a pristine 

sample of PPDL15-b-PBLG80 with temperature changes is displayed in Figure 5.5.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.5. Evolution of the X-ray diffraction profiles of PPDL15-b-PBLG80 recorded at heating 
and cooling over the 10-150 oC range. a, a’) WAXS and b,b’) SAXS (details may be clearly seen 
in the enlarged Figure B6 of the Annex B). 

The WAXS recorded at 10 ºC shows exclusively the 0.41 nm and 0.37 nm 

reflections arising from the 110 and 200 planes of the pseudo-rhombic unit cell of 

PPDL with approximate dimensions a = 0.75 nm, b = 5.0 nm, and c = 20.0 nm and α = 

90.0° [34] indicating that the polyester block is the only one crystallized in this sample. 
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This profile remained essentially unchanged under heating until temperature reached 

approximately 90 ºC where both peaks disappeared and new reflections with Bragg 

spacings of 1.36 nm, 0.79 nm and 0.67 nm started to emerge and became more 

pronounced as temperature increased. These spacing values are related as 1:31/2:2 

and according to literature, they must arise from a two-dimensional columnar 

hexagonal packing of PBLG α-helices of 1.55 nm diameter. After cooling from 150 ºC 

these peaks decreased in intensity as soon as crystallization of the PPDL block started, 

a fact that happened around 50 ºC, so that the 1.36 nm peak was the only one 

remained at 10 ºC. The presence of the crystalline and liquid crystal structures could 

be further evidenced by polarizing optical microscopy (Figure B7 in the Annex B).  

The SAXS profiles recorded from PPDL15-b-PBLG80 at heating up to 150 ºC 

revealed the appearing of discrete reflections at 27 nm (main peak) and 13.5 nm 

simultaneously to the development of the columnar phase evidenced by WAXS. 

According to what has been reported for copolymers composed of PBLG and PLA 

blocks [6], such spacings are interpreted to arise from a nano-structure of alternating 

layers made of PBLG helices and liquid PPDL. After cooling from 150 ºC the 

nanostructure remained essentially unchangeable until crystallization of the PPDL 

block was initiated. It seems therefore that the occurrence of the nanometric structure 

is concomitant with the two-dimensional packing of the PBLG helices, and that the 

adoption of these ordered arrangements is disfavored by the presence of PPDL in the 

crystallized state.              

 The XRD analysis of PPDL20-b-PZLL100 was then carried out to get information 

from the copolymers containing lysine. The cumulative graphs showing the evolution of 

the WAXS profile of such copolymer with temperature changes along the 10-130 ºC 

range are provided in Figure 5.6. The response of this copolymer to the thermal 

treatment was significantly different to that observed for PPDL15-b-PBLG80. In this case, 

both the monoclinic crystal phase of PPDL and the 2D-hexagonal columnar phase of 

PZLL (with spacings at 1.5 nm, 0.86 nm and 0.74 nm [3,5,35]) are coexisting in the 
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original sample, and peaks arising from the later remained unchanged over the whole 

range of temperatures. The broad scattering observed around 0.47 nm at high 

temperature is attributed not only to the amorphous state of PPDL but also to PZLL in 

β-sheet form that remains unaffected by temperature along the range of the treatment. 

It is concluded therefore that, at difference with that happens in the PBLG containing 

copolymers, the formation and stability of the columnar structure made of the 

polypeptide block based on lysine is essentially independent on the state adopted by 

the PPDL phase. The weak conformational response to temperature given by PPDL15-

b-PBLG80 and PPDL20-b-PZLL100 copolymers was supported by FTIR evidences (Figure 

B8 of Annex B). 

On the other hand, the results obtained by SAXS were radically different since no 

discrete reflections were detected in these profiles (Figure B6 in Annex B) within the 

recording limits (up to approximately 40 nm). It may be concluded therefore that no 

segregation in ordered domains takes place in the PPDL20-b-PZLL100 copolymer in 

spite of that the liquid crystal structure was in this case readily formed. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6. Evolution of the WAXS profiles of PPDL20-b-PZLL100 recorded at heating (a) and 
cooling (b) over the 10-130 oC range.  
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PZLLy for y= 30, 100 and 190 were carried out at 77 ºC. Samples were previously 

heated at 150 ºC to ensure that both PPDL melting and PAA helical transition had 

taken place. As it is shown in Figure 5.7, where relative crystallinity vs. time is 

comparatively represented for the two series and compared with their respective PPDL 

homopolyester, the crystallization rate of the PPDL block is notably enhanced by the 

presence of the polypeptidic counterpart. Furthermore the enhancing effect appeared 

to be independent from the polypeptide block length. It is a striking result that is 

however in agreement with both DSC and thermal XRD observations. Similar results 

were obtained when the sample was previously heated at 93 ºC, i.e. between the 

PPDL melting and helical transition temperatures (see Figure B9 in Annex B) indicating 

that the polypeptide block conformation does not exert appreciable effect on the 

crystallizability of the PPDL block. These results allow extending the conclusions drawn 

in the XRD analysis of PPDL15-b-PBLG80 and PPDL20-b-PZLL100 (Figures 5.5 and 5.6) 

to other compositions.    

 

 

 

 

 

 

 

 
Figure 5.7. Evolution of the relative crystallinity as a function of time in the isothermal 
crystallization at 77 oC of PPDLx-b-PBLGy (a) and PPDLx-b-PZLLy (b) copolymers from samples 
melted at 150 ºC.  

5.2.5 Nanoparticles made of PPDLx-b-pPAAy copolymers. 
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Since these copolymers are non-soluble in water but soluble in volatile organic solvents 

as CHCl3, the well-settled emulsion-evaporation technique was applied for creating the 

particles. The sizes and surface charges of the entities obtained by such method were 

determined by DLS measurements and the resulting values are compared in Table 5.3. 

Monomodal DLS curves were recorded for every case (Figure 5.8) with average 

diameters  (D) in the 200-340 nm range with values being very close similar for the two 

series when copolymers with similar PDL/AA ratio are compared. All particles displayed 

small negative zeta potentials (ζ)  ζ)  ζ)  ζ)  with insignificant differences between the two 

copolymers integrating each pair. The morphology of these NPs was examined by 

SEM and illustrative pictures from selected copolymers are shown in Figure 5.9. A well-

defined spherical shape is displayed in all cases with sizes in acceptable consistency 

with values measured by DLS. 

 

 

 

 

 

   

 

 

 

 

 

 

Figure 5.8. DLS curves of PPDL-b-pPAA nanoparticles.  

The chemical modification of the –COOH group of glutamic acid as benzyl ester 

and the –NH2 group of lysine as carbobenzoxy amide greatly decreased the genuine 

Table 5.3. Nanoparticles made of PPDLx-b-pPAAy copolymers. 
Polymer D (nm) PDI ζ ζ ζ ζ (mV) 

PPDL15-b-PBLG30 340 0.40 -8.6 
PPDL15-b-PBLG80 220 0.12 -8.4 
    

PPDL20-b-PZLL30 300 0.18 -1.4 
PPDL20-b-PZLL190 200 0.14 -1.7 
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hydrophilic character of the amino acids and consequently the amphiphilic nature of the 

PPDLx-b-pPAAy copolymers too. Nevertheless, clear evidences have been provided by 

DSC and XRD to demonstrate that the polyester and the polypeptide phases must be 

segregated in the PPDLx-b-pPAAy copolymers when they are in the solid state, at least 

in the BLG-based copolymers. It should be expected therefore that these nanoparticles 

have a certain degree of heterogeneity with the polypeptide block being preferentially 

located at the outer region. It is however striking that the particle size notably 

decreased in each series with the increasing length of the polypeptide block. No simple 

explanation can be given at this moment for this apparent inconsistency.  

 

  

 

 

 

 

 

 

  

 

 

 

 

Figure 5.9. SEM images of nanoparticles made of PPDL-b-pPAA:  A) PPDL15-b-PBLG30, B) 
PPDL15-b-PBLG80, C) PPDL20-b-PZLL30 and D) PPDL20-b-PZLL190. 

5.3. Conclusions 

Two series of diblock copolymers (PPDL-b-pPAA) made of ω-pentadecalactone 

(PDL) and γ-benzyl L-glutamate (BLG) or εN-carbobenzoxy-L-lysine (ZLL) were 

successfully synthesized by using a copolymerization approach based on the amino-
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initiated ring-opening polymerization (ROP) of N-carboxyanhydrides (NCA) that 

avoided the use of organometallic compounds. CALB has been proved to be an 

efficient catalyst for the ROP of PDL leading to polyester blocks of well-defined lengths 

and exempted of undesirable side reaction products. The amino mediated opening of 

NCA allowed polypeptide segments of predetermined length according to the relative 

amount of macroinitiator that was used. PPDL-b-pPAA copolymers started to 

decompose noticeably at temperatures above 200 ºC to undergo major weight losses 

at much higher values. Despite that the genuine hydrophilicity was significantly 

diminished in the protected amino acids, the copolymers showed DSC characteristic of 

biphasic material indicating that even so, the PDL and AA blocks are still incompatible. 

Both phases were found to be organized in ordered arrangements, the polyester in the 

typical monoclinic crystal lattice of PPDL with chains in extended conformation, and the 

polypeptides in a 2D columnar pseudo-hexagonal liquid-crystal phase made of α-

helices. The two phases are strongly interactive as it is revealed by the enhancing 

influence of the polypeptide on the crystallizability of the PPDL block and the 

occurrence of a nanometric periodical structure at temperatures above melting of the 

PPDL phase.  These copolyesters are able to form well-defined quasi-spherical shape 

nanoparticles with diameters in the ~200-350 nm range and slight negative zeta-

potential. It should be remarked that these PPDL-b-pPAA diblock copolymers are 

exempted of metallic contamination and they are therefore well-suited to build drug 

nanocarriers for biomedical applications. Furthermore, as the protected amino acids 

may be easily liberated, they stand as immediate precursors of electrostatic charged 

copolymers suitable for efficient loading and controlled release of ionic drugs and 

nucleic acids.    
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Chapter 6. Poly(amino acid)-grafted polymacrolactones. Synthesis, self-
assembling and ionic coupling properties 

 

Abstract 

Polyglobalide (PGl) with number average polymerization degree of ~20 was 

prepared by enzymatic ROP and then polyfunctionalized at 60% with 

aminothioethylene groups. The PGl20-(NH2)12 copolymer was used as macroinitiator for 

the ROP of NCAs of Bn-LGA (γ-benzyl L-glutamate) and Z-LL (εN-carbobenzoxy-L-

lysine) protected amino acids to produce neutral polypeptide-grafted polyglobalides 

poly[Gl20-graft-(AA)z] with z = 5 and 12, which upon deprotection, afforded anionic and 

cationic copolymers, respectively. Both protected and deprotected graft copolymers 

were characterized in full detail by NMR, and their thermal properties were evaluated 

by TGA and DSC. The structure of these copolymers in the solid-state was examined 

by FTIR and XRD using synchrotron radiation. All grafted polyglobalides were 

amorphous but the polypeptide side chains were arranged in either alpha-helix or beta-

sheet conformation, and reliable indications on the occurrence of supramolecular 

structures were frequently found. The capacity of poly[Gl20-graft-(AA)z]  copolymers to 

self-assemble in aqueous medium was evidenced by the preparation of well-shaped 

spheroidal nanoparticles with a diversity of sizes depending on copolymer composition 

and charge. Loading and release of doxorubicin (DOX) from nanoparticles made of 

negatively charged poly[Gl20-graft-(LGA)12] as well as DNA complexation with cationic 

poly[Gl20-graft-(LL)5] were explored to appraise the potential of these copolymers for 

building drug delivery systems.  

 

Publication derived from this work: 

E. Tinajero-Díaz, A. Martínez-de Ilarduya, B. Cavanagh, A. Heise, S. Muñoz-Guerra, 
Poly(amino acid)-grafted polymacrolactones.Synthesis, self-assembling and ionic coupling 
properties React. Funct. Polym.  (2019) (under revision). 

Supporting information to this chapter in Annex C 
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6.1 Introduction 

In chemotherapy, polymeric nanoparticles and nanocapsules are unique systems 

able to carry drugs in vivo with release at a target site thereby minimizing negative side 

effects associated with a prolonged administration [1,2]. Polyesters in particular [3-5] 

and more recently poly(amino acid)s (PAA)  [6-8], have been highlighted as promising 

vehicles for drug delivery controlled by external stimuli and mediated by polymer 

degradation.  

Poly(amino acid)s (PAA) are attractive candidates for drug delivery because they 

are biocompatible, are easily available in a wide variety of chemical structures, and 

may adopt different regular molecular conformations depending on the environment. In 

addition, some amino acids are readily ionized to become either positively or negatively 

charged, a quality that makes them particularly suitable as stimuli-responsive materials 

[9-13]. PAA are commonly prepared by ROP of amino acid N-carboxyanhydrides (AA 

NCA) [14]. On the other hand, aliphatic polyesters are mostly non-functional polymers 

without noticeable molecular activity. They are however susceptible to enzymatic 

degradation at a rate that depends on their hydrophilic-hydrophobic balance. 

Polyesters generally display a good biocompatibility, and they may be created with a 

great diversity of structures by relatively easy synthetic procedures. Given the 

complementary properties of PAA and polyesters, their combination in the form of 

copolymers constitutes an attractive approach for the design of nanocarriers for 

controlled drug delivery.   

 A fair set of linear block copolymers made of polypeptide and polyester blocks 

has been reported to date. Block copolymer structures are usually obtained by the 

ROP of the AA NCA initiated from an amino-capped polyester that was previously 

synthesized using a suitable functionalized initiator for the ROP of the lactone [14]. In 

most cases the polyester is generated from medium-size lactones (up to 11 atoms) 

such as ε-caprolactone (CL) and L-lactide (LA), and the homopolypeptide block is 

derived from different common amino acids such as L-glutamic acid, L-lysine, L-alanine, 
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etc. [15-21]. Macrolactones (MLs), i.e. lactones consisting in 12 or more atoms, have 

recently emerged as a new family of building blocks for creating novel polymer 

functional materials [22]. The polyesters made of MLs have hydrophobic character 

comparable to paraffins and display a strong tendency to crystallize. Such features 

have motivated their use for the design of biodegradable nanoparticles and fibres 

suitable for drug dispensing applications including in several cases the loading and 

controlled delivery of doxorubicin (DOX) [23-26]. Despite the potential of MLs, only one 

example recently reported by us explored their marriage with PAA with the goal to 

render the copolymer properties [27]. Block copolymers of pentadecalactone and L-

glutamic acid or L-lysine with predetermined block lengths and the amino acids either in 

the free or protected form, were synthesized by sequential ROP. These copolymers 

were able to self-assemble in well-shaped nanospheres with a diameter in the ~200-

400 nm range and a negative zeta-potential.  

Some combinations of PAA and polyester from medium size lactones for the 

design of amphiphilic graft copolymers have also been explored. Mostly the polyester 

chains were grafted onto the polypeptide backbone taking advantage of the amino acid 

side groups, as is the case of PLL grafted with PLA [28,29]. Recently Thornton et al. 

[30] combined N-carboxyanhydride and O-carboxyanhydride ROP to synthesize poly(L-

serine grafted with a poly(α-hydroxy acid). These copolymers were used to form 

nanoparticles capable of loading and subsequent releasing DOX via acid-mediated 

hydrolysis. Inverse structures consisting of the polyester backbone grafted with 

poly(amino acid)s are less accessible due to the lack of functionalization of the 

common polyesters. PLLs grafted with chains of L-alanine, L-aspartic acid  or L-lysine 

have been prepared but in all these cases a copolymer of PLA containing minor 

amounts of Lys had to be used in a “grafting-from” approach [31,32]. The only example 

of PCL grafted with poly(amino acid)s was provided by Vert et al. [33], who reported 

(PCL-graft-PLL) copolymers that were synthesized following either the “grafting-onto” 

or the “grafting-from” method both applied to a macropolycarbanionic PCL derivative.  
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Pendant functions may be readily introduced into polyesters via ROP of lactones 

bearing some functionality [34,35]. Globalide (Gl) (oxacyclohexadecen-2-one) is a 16-

membered macrolactone that is widely used in perfumery.  It is in fact a mixture of two 

different constitutional isomers with the double bond at the 11 or 12 position.  As it is 

well known to happen with its saturated analogue PDL (36-37), Gl readily polymerizes 

enzymatically or catalytically to produce polyglobalide (PGl), an unsaturated polyester 

that is semicrystalline (Tm = 46 ºC) and non-cytotoxic [22,38]. The double bond present 

in the repeating unit of PGl has been used for thiol-ene addition reactions addressed to 

obtain cross-linked polymers, grafted copolymers and bioconjugates for drug loading 

[39-41].  

In this work we have used PGl to prepare poly[(Gl-graft-(AA)] copolymers, 

specifically those made of L-glutamic acid  (LGA)  and L-lysine (LL) with their pendant 

function (carboxyl or amino) either protected or in the free form. The structure in the 

solid-state of these copolymers and their capability to self-assemble in nanoparticles 

when placed in aqueous media has been assessed. Finally, the potential of the ionic 

poly[Gl-graft-(LGA)] and poly[Gl-graft-(LL)] water soluble copolymers to load DOX and 

to condensate DNA has been explored. To our knowledge it is the first time that the 

synthesis, structure and properties of a polymacrolactone grafted with amino acids is 

reported.    

6.2. Results and Discussion 

6.2.1 Synthesis of polypeptide-grafted poly(globalide)s  

The pathway followed in this work to synthesize the polypeptide-grafted 

poly(globalide)s, abbreviated as poly[Gl20-graft-(AA)z] where AA is γ-benzyl L-glutamate 

(BLG)/L-glutamic acid (LGA) or εN-carbobenzoxy L-lysine (ZLL)(L-lysine (LL), and the z 

subscript stands for the average number of amino acid units in the grafting polypeptide 

chains, is depicted in Scheme 6.1 The results of these syntheses including the 
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compositions and molecular weights of both intermediate and final copolymers are 

collected in Table 6.1 

 

 
Scheme 6.1. Synthesis of poly[(Glx-graft-(AA)z] copolymers. Only the 11-ene isomer of Gl is 
represented for simplicity. 

 

Firstly the polyamine macroinitiator poly[(Gl8-co-(GlNH2)12] was synthesized. The 

PGl sample used for this synthesis was obtained with an average length of 20 units (Mn 

~4750 g�mol-1) by enzymatic ROP of globalide. Amine polyfunctionalization of PGl was 

accomplished by thiol-ene reaction with 2-(Boc-amino)ethanethiol (BAET) catalyzed by 
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AIBN. The minimum amount of solvent necessary to enable complete reactants 

miscibility was used in order to maximize conversion [44]. The amount of BAET that 

became inserted in the PGl chain was measured by 1H NMR. The relative remaining 

area of the signal arising from the double bond protons at around 5.4 ppm indicated 

that 60% of the Gl units were modified. Removal of the Boc group by treatment with 

TFA led to the random copolyester poly[(Gl8-co-(GlNH2)12] which was then used as 

macroinitiator for amino acid grafting. The 1H NMR spectra of initial PGl, the BAET-

modified PGl and the multifunctionalized macroinitiator are shown in Figure C1 of the 

Annex C.  

 

L-Glutamic acid and L-lysine were selected as amino acids for the grafting due to 

their anionic and cationic character, respectively. The “grafting-from” procedure was 

accomplished by ROP of the N-carboxyanhydrides of the two protected amino acids, 

i.e. as γ-benzyl ester and εN-carbobenzyl benzoxy, respectively, from the amino groups 

Table 6.1. Results of the synthesis of poly[Gl20-graft-(AA)z] copolymers. 
Polymer

a 
Feed

c 

[NH2]/[NCA] 
Yield        
(%) 

Mn
d 

(g�mol-1) 
Composition

e
  

[Gl]/[AA]  
Grafted Gl

f 

(%) 

PGl20 - 97 4750 - - 
 

Poly[Glx-co-(TGl)y]
a 

Poly[Gl8-co-(BAET-Gl)12] - 90 6880 - - 
Poly[Gl8-co-(AET-Gl)12] - 90 5680 - - 

 
Poly[Glx-graft-(AA)z]

b 

Poly[Gl20-graft-(BLG)5] 1/6 80 16,850 27/73 60 
Poly[Gl20-graft-(BLG)12] 1/15 79 35,690 12/88 60 
 

 
  

  

Poly[Gl20-graft-(ZLL)5] 1/5 80 20,090 26/74 60 
Poly[Gl20-graft-(ZLL)12] 1/12 83 40,000 13/87 60 
      

Poly[Gl20-graft-(LGA)5] 1/6 50 12,260 27/73 60 
Poly[Gl20-graft-(LGA)12] 1/15 60 27,350 12/88 60 
      

Poly[Gl20-graft-(LL)5] 1/6 75 12,720 26/74 60 
Poly[Gl20-graft-(LL)12] 1/112 75 22,450 13/87 60 
aSubscripts refer to the number of pristine Gl (x) and modified Gl (y) units.   
bSubscripts refer to the total number of Gl units in the polyester chain (x) and the average number of 
amino acids contained in the polypeptide side chains (z).  

cMolar ratio of amine groups to AA-NCA in the feed. 
dNumber-average molecular weight determined by 1H NMR. 
eGlobalide to amino acid units ratio present in the graft copolymers. 
fPercentage of grafted Gl units in the copolymer.  
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present in poly[(Gl8-co-(GlNH2)12]. These reactions were performed in DMF at 0 ºC to 

avoid end-group termination and minimize side-reactions [44]. Subsequently, full 

removal of the Bn and Z protecting groups was attained by treatment with TFA/HBr. 

Poly[Gl20-graft-(LL)z]
 copolymers were recovered as hydrobromide salts whereas 

poly[Gl20-graft-(LGA)z] copolymers were converted in their sodium salts for a more 

convenient handling. 

1H and 13C NMR analyses were used to follow the grafting process and 

determine the copolymer molecular weights, and a representative selection of the 

spectra recorded from the graft copolymers is provided in Figures 6.1 and 6.2 and 

Figure C2 in the Annex C. 1H NMR signals arising from the CH2-OH end-groups were 

quantitatively compared with signals arising from internal methylenes to determine the 

number of Gl units in PGl (~20) corresponding to a Mn≈, 4750 g�mol-1. The grafting 

reaction was evidenced by the new signals appearing on the PGl spectrum in the 4.4-

4.6 ppm range that are attributable to the α-proton of the inserted poly(amino acid) 

segment. Moreover, the protons of the methylene directly attached to the amino group 

(CH2-NH) in the thioethylene spacer are downfield shifted down to 3.5 ppm due to the 

formation of the amide bond. Such signal (d), which appears split into two broad 

multiplets due to the asymmetric carbon of the amino acid residue, is shared by all 

copolymers and it provides evidence of the successful attachment of amino acids to the 

PGl main chain via NCA ROP. By comparing the intensity of protons “d” with the 

intensity of protons “α” is possible to assess the average degree of polymerization 

attained in the polypeptide side chains which were calculated to be around 5 and 12. 

Furthermore, since no signal arising from the CH2-NH2 was detected in the grafted 

copolymers it is concluded that all amino side groups in the poly[Gl8-co-(Gl-AET)12] had 

reacted so the grafting degree was estimated to be  60% in every case.  
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Figure 6.1. 
1H-NMR (CDCl3/TFA) spectra of: (a) poly[Gl12-graft-(BLG)5] and (b) poly[Gl12-graft-

(LGA)5] graft copolymers. 
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Figure 6.2. 
1H-NMR (CDCl3/TFA) spectra of: (a) poly[Gl12-graft-(ZLL)5] and (b) poly[Gl12-graft-

(LL)5] graft copolymers.  
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GPC of the intermediate and final copolymers showed monomodal peaks 

supporting the absence of homopolypeptide species in the graft copolymers (Figure C3 

in the Annex C) highlighting that the PAA was indeed grafted to the PGl. A good 

agreement was found between the Mn values determined by 1H NMR and GPC as far 

as the ungrafted copolymers where concerned whereas significant discrepancies 

appeared after grafting. Such discrepancies may be at least in part explained by the 

differences in hydrodynamic volume between the copolymers and the PMMA used as 

standard. It should also be noted that similar inconsistencies have been reported 

before for other polyester-polypeptide copolymers and attributed to the occurrence of 

specific interactions between the chromatography filler and the polypeptide moiety of 

the copolymer [19,45]. 

 
6.2.2 Thermal properties 

  

The thermal properties of all copolymers were examined by TGA and DSC and 

the most relevant parameters are collected in Table 6.2. The TGA traces and their 

derivative curves are shown in Figures C4 and C5 of the Annex C. Upon heating 

polyglobalide starts to decompose at 370 ºC showing a sharply decay in weight at 420 

ºC with less than 2% of material remaining at 600 ºC. Grafted copolymers showed a 

considerable decrease in thermal stability and their TGA profiles are complex indicating 

the occurrence of several decomposition steps as it could be expected from the 

presence of the polypeptide counterpart.  

At clear difference with PGl, none of the graft copolymers displayed melting by 

DSC, as it could be largely expected from their non-regular branched architecture 

(Figure 6.3). The only heat exchange observed on DSC traces was a weak broad 

endotherm located at temperatures around 113-119 ºC for the BLG-grafted copolymers 

which could not be reproduced at the second heating. A peak with similar 

characteristics appears at 118 ºC for PBLG. This peak is reported in literature to be 
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due to an irreversible transition involving a rearrangement from the 7/2 to the 18/5 α-

helical conformation [46]. 

Table 6.2. Thermal properties of poly[Gl20-graft-(AA)z] copolymers.  
 TGA

a  
DSC

b
 

 
 

 First heating  Second heating 

 

o
Td 

(oC) 

max
Td 

(oC) 
Rw 
(%) 

 Tg 

(oC) 
Tm  

(oC) 
∆H   

(J�g-1) 
TLC 
(oC) 

∆H   
(J�g-1) 

 Tg  

(oC) 
Tm 

(oC) 
∆H   

(J�g-1) 

PGl20 370 420, 464 2  - 54 83 - -  - 49 51 
              

Poly[Glx-co-(TGl)y]              
Poly[Gl8-co-(BAET-Gl)12] 235 400, 460 3  - - - - -  - - - 
Poly[Gl8-co-(AET-Gl)12] 190 270 20  - - - - -  - - - 
              

Poly[Glx-graft-(AA)z]              

Poly[Gl20-graft-(BLG)5] 370 310,400 13  21 - - 113 0.4  21 - - 
Poly[Gl20-graft-(BLG)12] 255 310 14  21 - - 120 0.6  21 - - 
PBLG 280 290 16  21 - - 118 9  21 - - 
              

Poly[Gl20-graft-(ZLL)5] 245 410 2  - - - - -  - - - 
Poly[Gl20-graft-(ZLL)12] 230 410 10  - - - - -  - - - 
PZLL 260 330 9  21 - - - -  21 - - 
              
Poly[Gl20-graft-(LGA)5] 235 360 36  - - - - -  - - - 
Poly[Gl20-graft-(LGA)12] 190 350 30  - - - - -  - - - 
              

Poly[Gl20-graft-(LL)5] 233 340, 430 16  - - - - -  - - - 
Poly[Gl20-graft-(LL)12] 242 330 2  - - - - -  - - - 
aOnset temperature for 5% of weight loss (o

Td), maximum rate decomposition temperature (max
Td) and 

remaining weight (Rw) after heating at 600 ºC. Only max
Td main peaks are indicated (see Figures C4 and C5 for 

a graphical description.  
bGlass transition temperature (Tg) and melting temperature and enthalpy (Tm and ∆Hm) measured from pristine 
samples (first heating) and from molten samples (second heating).  
c
TLC is a solid state phase transition temperature caused by a conformational change taking place in the PBLG 

segment. 
 

This interpretation is reasonable for explaining the peak displayed by the BLG-

grafted copolymers and is supported by the fact that it decreases in both temperature 

and enthalpy when the length of the BLG-grafts decreases from 12 to 5.  The glass 

transition was only observed for the BLG-grafted copolymers at 21 ºC, which is 

surprisingly the same value displayed by the PBLG polypeptide, and it was also 

present in the second melting traces. No other transition was observed either at cooling 

or at heating from the melt  (see Figure C6 in the Annex C). 
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Figure 6.3. DSC registered at the first heating from poly[Gl20-graft-(BLG)z] copolymers.  
 
 

To support the interpretation made for DSC, poly[Gl20-graft-(AA)z] copolymers 

bearing the amino acids protected were analyzed by FTIR, and their spectra compared 

with those registered from their respective homopolypeptides PBLG and PZLL. The 

spectral region containing both Amide I and Amide II bands characteristic of 

polypeptides, which are commonly used for detecting the presence of α-helix and β-

sheet structures, is depicted in Figure 6.4 for both BLG- and ZLL-grafted copolymers. It 

is observed that whereas the helical conformation is that exclusively adopted by the 

two homopolypeptides (the absorption attributable to the β-sheet is very weak), the two 

structures become clearly visible in the copolymers with side chains containing 12 

amino acids in average. The relative importance of the two forms reversed in 

copolymers with short side chains (with 5 amino acids in average) so that the β-sheet 

structure becomes preponderant in poly[Gl20-graft-(BLG)5] and almost unique in 

poly[Gl20-graft-(ZLL)5]. It can be concluded therefore that the layered structure is 

favored by longer amino acid sequences and also that its relative importance is higher 

in the ZLL-grafted copolymers. These observations are fully consistent with the well-

known general structural behavior of polypeptides [47] and in good agreement with 

what has been reported for other copolymers containing segments made of BLG or 

ZLL units [48]. 
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Figure 6.4. Amide I and II region of the FTIR spectra registered from poly[Gl20-graft-(pAA)z] 
copolymers and PBLG and PZLL homopolypeptides.   
 

6.2.3 Supramolecular structure 

The supramolecular organization of the poly[Gl20-graft-(AA)z] copolymers was 

examined by X-ray diffraction (XRD) at variable temperature using synchrotron 

radiation. The WAXS and SAXS results obtained in the analysis of poly[Gl20-graft-

(BLG)12] are shown in Figure 6.5. At low temperature the discrete scattering produced 

by the copolymer was poor and uncertainly interpreted. The profile registered at 10 ºC 

in the WAXS region displayed broad peaks at approximately 1.5 and 0.5 nm whereas 

in the SAXS region a shoulder at 5.4 nm was the only signal observed. Since the FTIR 

spectra revealed the presence of both α- and β-sheet forms in this copolymer at room 

temperature, such signals should be associated to supramolecular structures 

defectively formed by the copolymer with the polypeptide branches arranged in one or 

other of these two conformations. Conversely, the scattering produced at 200 ºC in the 

medium-angle region displayed meaningful discrete information consisting of a set of 

Bragg reflections at 1.35, 0.77 and 0.68 nm which fit well into a 1:31/2:2 ratio. 
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Figure 6.5. WAXS (left) and SAXS (right) profiles registered from poly[Gl20-graft-(BLG12)] at 
different temperatures. The profiles registered at 10 ºC and 200 ºC are compared in the top 
plots. The evolution of the profiles recorded at real time u heating over the 10-200 ºC range is 
displayed in the bottom figures. 

According to literature [49] and to our own previous studies on block polyester-

polypeptide copolymers as well [27], such diffraction pattern must be interpreted as 

arising from a columnar-hexagonal packing of (BLG)12 α-helices of approximately 1.6 

nm diameter. On the other hand, the scattering observed in the SAXS region at 10 ºC 

was essentially retained after heating at 200 ºC but with intensity increased and slightly 

displaced to lower q values. 

The XRD analysis of the poly[Gl20-graft-(ZLL)12] copolymer provided profiles as 

those depicted in Figure 6.6. According to FTIR, the relative importance of the β-form 

to the α-helical form is higher in ZLL-grafted than in BLG-grafted copolymers and it is 

corroborated by XRD results. In fact, the WAXS profiles obtained for poly[Gl20-graft-

(ZLL)12] at any temperature do not display any significant discrete scattering except the 

0.46 nm broad peak which can be assumed to arise, at least in part, from the average 

interchain distance present in the β-sheet structure. In the SAXS region, two peaks at 

2.4 and 4.8 nm are observed at low temperature whereas only the former remains after  
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Figure 6.6. XRD profiles registered from poly[Gl20-graft-(ZLL12)] at different temperatures. The   
profiles registered in the SAXS region (q = 0.5-5 nm-1) at 10 ºC and 200 ºC are compared in a). 
The evolution followed by the profiles when heated from 10 to 200 ºC is displayed in b). 

heating at 200 ºC although slightly displaced up to 2.5 nm. The 2.3-2.4 nm peak could 

be attributed to the lamellar thickness made of ZLL-segments crystallized in β-sheet 

conformation. It seems therefore that at difference with poly[Gl20-graft-(BLG)12] and 

also with data reported by Lecommandoux et al. [48] for block copolymers made of 

styrene and ZLL, the α-helices adopted by PZLL  in poly[Gl20-graft-(ZLL)12] are unable 

to form columnar liquid-crystal structures. 

6.2.4 Self-assembling of poly[Gl20-graft-(AA)z] copolymers in aqueous medium 

As it could be reasonably expected, the poly[Gl20-graft-(AA)z] copolymers grafted 

with protected amino acids are non-water soluble due to the high hydrophobic 

character of the aromatic groups used for protection. The situation is just the opposite 

when unprotected copolymers are concerned. The presence of multiple carboxylic or 

amino groups makes the copolymers to be water-soluble in greater or lesser extension 

depending on the length of the branches. In relation to the potential applications 

envisaged for these copolymers, their behavior in aqueous environments and in 

particular their capacity to generate organized aggregates, has been examined. Data 

relative to critical micelle concentration (cmc), particle diameter and dispersity (D and 

PDI) and zeta potential (ζ) of the aggregates spontaneously formed when poly[Gl20-

graft-(AA)z] copolymers were placed in water are collected in Table 6.3.  
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The cmc of the water-soluble copolymers was measured by DLS and the plots 

used for determination are shown in Figure C7 of the Annex C. The cmc was found to 

decrease as the length of the grafted peptide branch increased, which is contrary to 

expectations since water solubility of these copolymers increased with larger contents 

in free amino acids. This is a pending issue of this work that needs further specific 

attention to be explained.    

 

 

  

 

 

 

 

 

 

 

 The nanoprecipitation method from DMF solutions at 1.5 mg�mL-1 copolymer 

concentration was applied to prepare nanoparticles from poly[Gl20-graft-(BLG)5] and 

poly[Gl20-graft-(ZLL)12] copolymers in which the COOH and NH2 groups are protected. 

As it is illustrated in Figure 6.7, almost monomodal distributions of entities with average 

diameters of 165 and 130 nm, respectively, and negative zeta-potential were obtained. 

TEM observations of these aggregates showed more or less rounded particles that are 

frequently collapsed most likely due to their deposition on the supporting film used for 

observation.   

The application of the nanoprecipitation method to copolymers poly[Gl20-graft-

(LGA)5] and  poly[Gl20-graft-(LL)12] with the amino acids constitutive of the polypeptide 

side chains  in the free form produced nanoparticles displaying a bimodal distribution of 

Table 6.3. Characterization of NPs made of poly[Gl20-graft-(AA)z] copolymers 
ansd polyplexes. 

Polymer cmc 
(mg�mL-1) 

Conc 
(mg�mL-1) 

D (nm) PDI ζ  
(mV) 

Poly[Gl20-graft-(BLG)5)]
a - 1.5 165 0.30 -47 

Poly[Gl20-graft-(ZLL)12)]
a - 1.5 130 0.29 -24 

      

Poly[Gl20-graft-(LGA)5)]
a 0.51 1.0 50-300 0.36 -12 

Poly[Gl20-graft-(LL12)]
a 1.62 1.0  80-400 0.31 27 

      

Poly[Gl20-graft-(LGA)5)]
b 0.51 1.0   25/106 0.40 -11 

Poly[Gl20-graft-(LGA12)]
b 1.62 1.0  20/140 0.44 -36 

      

Poly[Gl20-graft-(LL)5]
b 0.30 0.5 140 0.40 46 

Poly[Gl20-graft-(LL12)]
b 0.43 2.0  20/150 0.56 51 

      
Poly[Gl20-graft-(LGA)5)] +  
 Poly[Gl20-graft-(LL)5]

c - 5:1.5  500 0.12 7.0 
aPrepared by nanoprecipitation. 
bPrepared by dissolution in deionized water.  
cPrepared by ionotropic gelation  in water with the LL-grafted copolymer solution (1.5 
g�mL-1) added dropwise to the LGA-grafted copolymer solution (5 mg�mL-1).  
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sizes with respective average diameters of 50/80 nm and 300/400 nm. The zeta 

potential sign of the particles made of lysine-grafted copolymers was inverted upon 

deprotection, as it should be expected from the cationic charge that is created on the 

lysine residues.  DLS data and TEM micrographs recorded for these copolymers 

illustrating vividly the bimodal composition are included in Figure C8 of the Annex C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.7. Size distribution profiles and TEM images of nanoparticles made of: a) poly[Gl20-
graft-(BLG)5] and b) poly[Gl20-graft-(ZLL)12].  

 

To investigate copolymer aggregation in water without mediation of organic 

solvents, poly[Gl20-graft-(LGA)5] and poly[Gl20-graft-(LL)5] were dissolved in water at 

concentrations above their respective cmc and their solutions were examined by DLS 

to measure size and zeta potential of the aggregates as a function of concentration. 

Size distribution traces and representative TEM images of these preparations are  

shown in Figure 6.8 and average diameters, dispersities and zeta-potentials are 
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compared in Table 6.3. To explore the stability of these NPs with time, aliquots were 

withdrawn every 24 h for one week, and the changes taking place in size were 

assessed by DLS.  Both types of particles were found to be fairly stable with sizes 

remaining essentially constant over the whole period of experimentation.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 6.8. Size distribution profiles and TEM images of micelles made of (a) poly[Gl20-graft-

(LGA)5] (a) and poly[Gl20-graft-(LL)5] at different copolymer concentrations. (b) TEM images 
taken from the lowest concentration solutions (1 mg�mL-1

 and 0.4 mg�mL-1, respectively). 
 

The DLS profiles obtained for the different scheduled incubation times and the 

plot of nanoparticles average diameters as a function of time are shown in the Annex C 

as Figure C9. 
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6.2.5 Ionic coupling of deprotected copolymers: drug conjugates and polyplexes 

6.2.6 DOX loading and delivery  

DOX is an amphiphilic compound that may be positively charged due to the 

protonable amino group contained in its sugar moiety. DOX is today one of the most 

used drugs for cancer therapy and frequently taken as model to assess the potential of 

novel drug delivery systems that are designed with such purpose. To evaluate the 

capacity of poly[Gl20-graft-(LGA)12] to load DOX, the NPs formed from an aqueous 

solution of the copolymer (1.2 mg�mL-1) to which a DOX solution was simultaneously 

added were examined by DLS and compared with those prepared from the copolymer 

alone. Results are graphically depicted in Figure 6.9 indicating that upon conjugation, 

the bimodal distribution of sizes became monomodal and increased in diameter from 

20/150 nm up to 260 nm. The zeta-potential changed also to become less negative 

(from -34 mV to -22 mV).  These results are according with the coupling mechanism 

that is expected to operate for the loading of positively charged DOX onto the 

carboxylate-free copolymer. Drug loading efficiency (DLE) and drug loading content 

(DLC) were measured for different copolymer/drug proportions used for preparing the 

loaded NPs and their values are represented in Figure 6.10. Both indexes increased 

steadily with the relative amount of DOX up to DOX:copolymer ratio of 0.6. At this 

point, 63% and 38%, were the values attained by DLE and DLC, respectively. For 

higher amounts of DOX, a significant decreasing was observed for DLE whereas DLC 

slightly changed. It can be inferred that ionic coupling attained its maximum at the 0.6 

ratio. Although not all the negative charges present in poly[Gl20-graft-(LGA)12] have 

been neutralized at such ratio, it is reasonable to assume that a good number of 

carboxylate groups present in the copolymer are not accessible to DOX. This is in 

agreement with the fact the zeta-potential of the DOX loaded NPs is still negative.  
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Figure 6.9. DLS (a) and zeta potential (b) profiles of poly[Gl20-graft-(LGA)12]�nanoparticles 
unloaded and loaded with  DOX. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10.  a) DLE and DLC for different poly[Gl20-graft-(LGA)12]�copolymer: DOX ratios. b) In 
vitro release profiles of poly[Gl20-graft-(LGA)12]�DOX nanoparticles at pH 7.4  and 4.2.  
 

The in vitro release profiles of poly[Gl20-graft-(BLG)12]�DOX NPs that were loaded  

at a DOX:copolymer feed ratio of 0.6 are shown in Figure 6.10 for two different pHs 

(4.2 and 7.4). These pH values were selected because tumor extracellular pH values 

range from pH 6.5 to pH 7.2, whereas the pH within cancerous cells may be between 

pH 4.0 and 5.0 depending on location [50].  In both cases, DOX delivery happened 

within the first eight hours of incubation but the total amount of released drug and 

releasing rate were noticeably higher in the acid medium.  These results are consistent 

with the ionic coupling that is assumed to occur between DOX and the copolymer. At 
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pH 4.2 a significant reduction in the ionization degree of LGA moieties must take place 

with the subsequent disruption of the electrostatic interactions.    

6.2.7 Polyplex formation and DNA complexation 

At the last stage of this work and as a preliminary assessment of the capability of 

the cationic poly[Gl20-graft-(LL)z] copolymers to condensate DNA, aggregates formed 

from mixtures of LGA- and LL-grafted copolymers were investigated. Since they are 

oppositely charged it is expected that they become spontaneously assembled in 

definite objects stabilized by electrostatic interactions. Water solutions of poly[Gl20-

graft-(LGA)5] and poly[Gl20-graft-(LL)5] were mixed at room temperature by adding 

dropwise one to the other, and the resulting solution was examined by DLS and TEM. 

Results obtained when the Lys-grafted copolymer solution (1.5 g�mL-1) was added 

dropwise to a similar volume of LGA-grafted copolymer solution (5 mg�mL-1) are 

graphically shown in Figure 6.11 and numerically collected in Table 6.3. As it is clearly 

illustrated in Figure 6.11, a monomodal population of polyplex particles with an average 

diameter around 500 nm were formed, which is a size about four-five times larger than 

those displayed by the particles detected in each separate solution. The zeta-potential 

measured for these particles was intermediate between the values displayed by the 

single copolymer particles, and TEM observations showed that they are essentially 

round. The addition order followed for mixing was not critical since similar results were 

obtained when the LGA-grafted copolymer was added to the LL-grafted one with the 

only difference being that a somewhat larger particle size resulted in this case (Figure 

C10 of the Annex C). Conversely, solutions concentrations seem to be critical for the 

formation of the polyplex since no particles were detected when the same 

concentration was used for the two mixing solutions but a precipitate was obtained 

instead.   



 

 Chapter 6 144 

 

 

 

 

 

 

Figure 6.11. DLS profile recorded from the polyplex generated by mixing equal amounts of the 
LGA-grafted the LL-grafted copolymer solutions at a concentration of 5 mg�mL-1. Profiles 
obtained from the separate solutions are included for comparison. A TEM representative picture 
of the polyplex particles is shown in the inserted image.  

The capability of the anionic poly[Gl12-graft-(LL)5] copolymer for condensing DNA 

was assessed by examining the formation of polyplexes with salmon testes DNA 

(stDNA, 2000 bp ). For this, aqueous polymer solutions of copolymer and stDNA) were 

mixed at different proportions expressed as nitrogen/phosphorous ratio (N/P). N and P 

values were determined by considering that the poly[Gl12-graft-(LL)5] mass per cationic 

charge (one per amino N atom) is 225 g�mol-1 and the DNA mass per anionic charge 

(one per P atom) is ~325 g mol-1. The copolymer/DNA polyplexes were formed at room 

temperature upon dropwise addition of the copolymer solution to the DNA one followed 

by incubation of the mixture for 20 min at room temperature.  

 

 

 

 

 

 

 

 

Figure 6.12. Diameter (a) and zeta potential (b) of polyplexes nano-objects formed from 
poly[Gl12-graft-(LL)5] and stDNA at different N/P ratios. 
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 A wide N/P range going from 5 to 100 was tested and the mixed solutions were 

analyzed by DLS. Monomodal profiles registered from these mixtures are shown in 

Figure C11 of the Annex C. As it is represented in the bar plot of Figure 6.12, the stable 

nanoaggregates formed by ionic coupling of poly[Gl12-graft-(LL)5] with stDNA showed 

average diameters steadily decreasing from 220 nm, which is the size of the particles 

formed from the single copolymer, to 120 nm for a N/P ratio of 7. The zeta-potential 

showed a similar trend with a decrease from around 50 mV for the poly[Gl12-graft-(LL)5] 

NPs down to less than 20 mV. N/P ratios lower than 7 produced precipitates 

presumably consisting of unspecific NP aggregates caused by DNA interlocking.  Since 

the length of the stDNA used in this study is near to 1000 nm, the drastic reductions 

observed in diameter and Z-potential of NPs are taken as clear evidences for the DNA 

condensating capacity of poly[Gl12-graft-(LL)5] copolymer [51].  

6. 3 Conclusions 

A polyglobalide (PGl) made of 20 monomeric units in average was obtained by 

enzymatic ROP using Novozyme 435. This PGl was made to react with 2-(Boc-

amino)ethanethiol to afford a PGl copolymer containing about 60% of globalide units 

bearing a pendant amino group. The aminated polyglobalide was effective in initiating 

conveniently protected L-Glu and L-Lys NCA ROP to produce poly[Gl20-graft-(AA)z] 

copolymers with side chains made of either 5 or 12 units of each one of these two 

amino acids. These neutral copolymers could be readily deprotected to render 

polycharged anionic and cationic copolymers respectively. Both protected and 

deprotected poly[Gl20-graft-(AA)z] copolymers were amorphous but the poly(amino 

acid) side chains were arranged in either α-helix of β-sheet regular conformation. 

Powder XRD of poly[Gl20-graft-(AA)z] showed discrete scattering in the 2.5-6.5 nm 

range of spacings indicating the presence of organized supramolecular structures in 

these copolymers when they are in the solid state. In aqueous medium all the 

copolymers were arranged in nano-objects with a size and surface charge depending 
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on their constitution. The capacity of anionic poly[Gl20-graft-(LGA)5] and cationic 

poly[Gl20-graft-(LL)5] nanoparticles for loading and releasing DOX and condensing 

DNA, respectively, was assessed in vitro essays. DLE and DLC values found for DOX 

were around 60% and 40%, and DNA was efficiently packed in the NPs over a wide 

range of cationic/anionic charges ratio.       
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Chapter 7. pH-Responsive diblock copolymers made of ωωωω-

pentadecalactone and ionically charged αααα-amino acids 
 

Abstract 

Two sets of ionically charged polypentadecalactone-polypeptide diblock 

copolymers (PPDLx-b-PAAy, with x= 15 or 20 and y ranging from 30 to 200), one 

containing α-L-glutamic acid (LGA) and the other containing α-L-lysine (LL), were 

obtained from their respective precursors with the side groups of LGA and LL protected 

as γO-benzyl and εN-carbobenzoxy, respectively. The copolymers were semicrystalline 

with the polyester block crystallized in the usual pseudo-rhombic lattice and the 

polypeptide in the α-helix or β-sheet conformation depending on the amino acid and 

the length of the block. The copolymers with PAA blocks with y ≥ 80 were water-soluble 

and they adopted the α-helix conformation in the aqueous medium when they are in 

the non-ionized state. Both LGA and LL containing copolymers self-assembled in 

nanoparticles with a size between 150 and 180 nm in diameter. PPDL-b-PLGA 

nanoparticles were able to load DOX with an efficiency of ~70% whereas PPDL-b-PLL 

displayed a noticeable capacity for condensing DNA. In both cases hosting was based 

on the ionic complexation taking place between the ionized copolymer and the guest 

compound. Accordingly DOX release rate was found to be depending on pH. 
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7.1 Introduction 

Among the polymer materials that are addressed to the design of drug delivery 

systems, amphiphilic block copolymers are particularly appreciated [1,2]. This is so 

because the combination of two polymer blocks showing opposite water affinity renders 

biphasic systems prone to self-assemble in nano-morphologies well suited for 

encapsulation and transportation of drugs [3]. A distinguished class of these 

copolymers is that consisting of hydrophobic polyester and hydrophilic polypeptide 

blocks [4]. Aliphatic polyesters are the polymers of choice because their chemical 

versatility together with their friendly behavior in physiological environments provide a 

broad portfolio of materials with appealing properties in the biomedical field [5,6]. On 

the other hand, polypeptides are widely recognized for their good biocompatibility and 

biodegradability in vivo mediated by specific enzymes whereas they show high stability 

against chemical hydrolysis [7]. Additionally they are exceptional for their ability of 

taking up precise secondary conformations [8,9]. Nevertheless it is the pendant 

functionality provided by certain amino acids that makes polypeptides particularly 

interesting as building blocks for the synthesis of stimuli-responsive copolymers [10-

12].  

Many polyester-polypeptide block copolymers are readily attainable by ring 

opening polymerization of a wide collection of both lactones [13] and α-amino acid N-

carboxyanhydrides [14]. Representative examples are those made of common aliphatic 

polyesters coming from medium-size lactones as poly(glycolic acid), polylactides, 

poly(ε-caprolactone) and polycarbonates [15-18]. More recently, macrolactones (rings 

with 11 or more atoms) have been included as polyester comonomers to generate 

amphiphilic polyester-polypeptide block and graft copolymers with the hydrophobic 

moiety displaying properties close to paraffins [19-21]. An outstanding subclass of 

hybrid polyester-polypeptide copolymers are those made of acid or basic amino acids, 

namely, aspartic and glutamic acids or lysine, arginine and histidine, which may be 

negatively or positively charged, respectively, depending on pH. When these 
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chargeable polypeptides are covalently coupled with neutral polypeptides or synthetic 

hydrophobic polymers, the physico-chemical behavior of the resulting copolymers, 

including their conformation and assembling properties, turns out to be highly sensitive 

to external stimuli, in particular to pH changes. A number of chargeable block 

copolymers entirely made of α-amino acids [11] as well as those combining polypeptide 

with a variety of synthetic polymer segments have been reported [22-26] including 

several examples containing polyester blocks [27-31]. The situation is more precarious 

when the polyester block is made from macrolactones with no case reported to date.  

We have recently reported on polyester-polypeptide diblock copolymers (PPDL-

b-pPAA) made of ω-pentadecalactone (PDL) and protected α-amino acids (pAA), either 

benzyl L-glutamate (BLG) or εN-carbobenzoxy L-lysine (ZLL) [20]. To our knowledge, 

this is the only example of polymacrolactone-b-polypeptide diblock copolymers 

described in the literature. PPDL-b-pPAAs were synthesized by ROP of their respective 

α-amino acid N-carboxyanhydrides initiated by an amino-ended polyester previously 

produced by enzymatically ROP of PDL. These neutral copolymers were extensively 

characterized and their capacity for generating nanoparticles was examined. The 

suitability of PPDL-b-pPAA to directly render ionizable copolymers by simple 

deprotection of their polypeptide moieties was there pointed out as an additional merit 

of such copolymers. Following our previous work, we wish to report in this occasion on 

the deprotected PPDL-b-PAA diblock copolymers and their potential as biomaterials for 

drug delivery. The paper covers their synthesis from PPDL-b-pPAA, their structure and 

thermal properties in the solid state, and their behavior in aqueous medium regarding 

their self-assembling properties. The capacity of the negatively and positively charged 

PPDL-b-PAA to load hydrophobic drug and to condense DNA respectively by ionic 

complexation has been preliminary assessed. 
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7.2 Results and discussion 

7.2.1 Synthesis of ionic PPDLx-b-PAAy diblock copolymers. 

The PPDLx-b-pPAAy diblock copolymers constituted by PDL and protected amino 

acids, either γ-benzyl L-glutamate or εN-carbobenzoxy L-lysine, were recently reported 

by us, and the chemical route followed for their synthesis is depicted in Scheme D1 of 

the Annex D. These copolymers have been used in the present work for preparing their 

corresponding deprotected PPDLx-b-PAAy copolymers. Thus the removal of the benzyl 

ester group in PPDLx-b-PBLGy and the benzyloxycarbonyl group in PPDLx-b-PZLLy by 

treatment with HBr led to the PPDLx-b-PLGAy and PPDLx-b-PLLy copolymers, 

respectively, in which the polypeptide block bears either one free carboxylic side group 

or one free amino group in every repeating unit. The reactions involved in such 

modifications are formulated in Scheme 7.1 and the results attained are given in Table 

7.2. Yields were in the 60-75% range with losses being mainly attributable to limitations 

in the recovery and purification of the final product. Number-average molecular-weights 

determined by NMR end-group analysis of deprotected copolymers were close to the 

values calculated by subtracting the protecting group mass from the Mn of their  

Scheme 7.1. Treatment applied for amino acid deprotection of diblock copolymers. 
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respective protected copolymers. Differences between Mn values obtained by the two 

methods were less than 5% for the case of PPDLx-b-PLLy and around 12-13% for 

PPDLx-b-PLGAy indicating that splitting of the main chain caused by the acidic 

treatment must be negligible in the former and of little significance in the latter. 

Additionally, the 1H NMR analysis proved that full conversion was attained in the 

hydrolysis of the protected groups and also ascertained the composition of the 

deprotected copolymers. Representative spectra of the two series are shown in Figure 

7.1 with indication of the assignments for all the observed signals. Additional examples 

are given in Figure D1 of the Annex D. 

 

 

 

 

 

 

Table 7.2. Yield, Mn and thermal properties of deprotected PPDLx-b-PAAy copolymers. 
Copolymera Yield 

(%) 
Mn

b 

(g�mol-1) 
TGAc

 DSCd 

1st heating 1st cooling 2nd heating 

   
o
Td

a
 

o
C 

max
Td 

o
C 

Rw     

% 
Tm 
o
C 

∆H   
J�g-1 

Tc   
oC 

∆H   
J�g-1 

Tm 
oC 

∆H  
J�g-1 

PPDL15 90 3600 285 430 
470 

1 90 151 75 -119 90 123 

PPDL15-b-PLGA30 70 7500 (8450) 270 370 21 89 72 70 -23 90 29 

PPDL15-b-PLGA60 70 10,500 (11,850) 290 325 40 86 89 68 -13 90 15 

PPDL15-b-PLGA80 74 14,000 (15,950) 295 315 40 85 84 65 -4 92 3 

PPDL15-b-PLGA180 60 27,400 (31,100) 300 300 70 100 110 n.o. n.o. n.o. n.o. 

PLGA50 70 6550 290 300 49  74 51  - -  - - 
 

PPDL20 94 4800  285 
430 
470 

1 
 

90 151  75 -119  90 123 

PPDL20-b-PLL30 72 8500 (8900)  228 470 12  91 112  72 -81  85 70 

PPDL20-b-PLL70 70 13,200 (13,500)  272 450 10  87 65  78 -11  89 13 

PPDL20-b-PLL100 70                                   17,400 (17,700)  180 300 15  85-90 35  78 -6  91 10.0 

PPDL20-b-PLL190 65 28,800 (29,150)  300 340 18  85-90 7  72 -1  91 0.9 

PLL50 75 6500  270 325 16  85 48  - -  - - 
aSubscripts have the same meaning as in Table 1.  
bNumber-average molecular weight determined by 1H NMR. In parenthesis the molecular weight (rounded to ten) calculated for the 
composition given in Table 1.  
cOnset temperature for 5% weight loss (o

Td) and maximum rate (max
Td) decomposition temperatures measured in the TGA analysis 

performed under inert atmosphere. Rw: weight (%) remaining after heating at 600 ºC. 
dMelting (Tm and ∆Hm) and  crystallization (Tc and ∆Hc) temperatures and enthalpies measured by DSC at heating (first and second 
run) and cooling. 
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Figure 7.1. 

1H NMR spectra of PPDL15-b-PLGA80 in CDCl3/TFA (a) and PPDL20-b-PLL100 in 
CDCl3/TFA (b) and water (b’).  
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7.2.2. Thermal properties of the PPDLx-b-PAAy diblock copolymers 

The TGA traces of the deprotected PPDLx-b-PAAy diblock copolymers registered 

under a nitrogen atmosphere within the 20-600 ºC temperature range as well as their 

derivative curves are accessible in the Annex D as Figure D2. The most significant 

decomposition parameters of the two series provided by TGA analysis are listed in 

Table 7.2. Compared to the protected copolymers [20], the thermal stability in overall 

increased after deprotection. In fact, onset temperatures are observed well above 200 

ºC and bulk decompositions take place around 300 ºC. The derivative curves showed 

that decomposition evolved through a rather complicate process consisting in several 

steps, the last one taking place at temperatures not far from 500 ºC which probably 

corresponds to the decomposition of the PPDL block. What is really different is the 

amount of weight remaining after heating at 600 ºC which appears to be much higher in 

the case of the deprotected copolymers with values reaching up to 70% in the case of 

PPDL15-b-PLGA180. No doubt such large differences must be due, at least in part, to the 

ionic nature of PPDLx-b-PAAy copolymers. 

The DSC heating and cooling traces recorded from the PPDLx-b-PLGAy and 

PPDLx-b-PLLy copolymers are shown in Figure 7.2, and the thermal data provided by 

this analysis are gathered in Table 7.2.  

 

 

 

 

 

 

 

 

Figure 7.2. DSC traces recorded at heating from pristine samples of PPDLx-b-PLGAy (a) and 
PPDLx-b-PLLy (b) diblock copolymers. 
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The heating DSC traces displayed by these copolymers have in common the 

presence of the melting peak of the PPDL block in the 80-90 ºC temperature range 

followed by a more or less prominent endotherm that, according to related 

antecedents, it could be associated to a conformational transition taking place in the 

polypeptide block. The occurrence of conformational transitions in the unprotected 

PLGA and PLL blocks of polypeptide-based block copolymers has been reported 

previously by other authors [32] and is consistent with the presence of ordered 

conformations. One or two exothermal peaks corresponding to one or two-step 

crystallization of the PPDL block were observed in the cooling traces.  A critical 

inspection of Table 7.2 reveals that Tm values recorded at the first heating fluctuates 

inconsistently along the two series, which is in contrast with the rather steady variation 

and peak sharpness that is observed for such transition when recorded at the second 

heating (see Figure D3 in the Annex C). These results indicate that crystallization of the 

PPDL must be sensitively affected by the history of the samples, a fact that is 

uncontrolled when they come directly from synthesis but that is essentially the same 

when they are crystallized from the melt.   

7.2.3. Solid-state structure of the PPDLx-b-PAAy copolymers 

FTIR analysis of powder samples of PPDLx-b-PAAy was performed to get insight 

the molecular arrangement that is adopted by the polypeptide block in these 

copolymers in the solid-sate. The spectra of the two series are compared in Figure 7.3 

which shows intensity variations in the characteristic absorptions of the copolymers that 

are consistent with composition. Thus the broad band appearing around 3500 cm-1 due 

to the stretching vibration of O-H or/and N-H bonds increased steadily with the AA/PDL 

ratio whereas exactly the opposite happenned with the 2950-2800 cm-1 and 1750 cm-1  

bands arising from the methylene and carbonyl ester groups present in the PPDL 

block. Additionally a close inspection of the absorption pattern recorded in the 1700-

1500 cm-1 region revealed significant differences not only between the two series but 
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also for the different compositions within each of them. The spectra of PPDL15-b-PLGAy 

copolymers show a band a 1645-1650 cm-1 with transmittance practically constant 

along the series. This band is commonly assigned to the Amide II band of the PLGA 

block in α-helix conformation although the presence of random coil arrangement 

cannot be discarded. On the other hand, the PPDL20-b-PLLy series displays in addition 

to such band, a second Amide II band at ~1625 nm-1 whose intensity increased with y. 

This band is characteristic of the β-sheet form and its presence reveals that the PLL 

block in these copolymers must be partially arranged with chains in almost extended 

conformation and intermolecularly hydrogen bonded in a proportion that increases with 

the length of the polypeptide block.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. FTIR of PPDLx-b-PAAy diblock copolymers. In a’ and b’ plots, the 1800-1500 cm-1 
region has been enlarged for a better comparison of characteristic absorptions of the helical and 
β-sheet forms. 
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The structure of the PPDL-b-PAA copolymers in the solid-state was then 

examined by XRD at variable temperature using synchrotron radiation and covering 

both WAXS and SAXS regions. The WAXS scattering profiles recorded for PPDL15-b-

PLGA80 and PPDL20-b-PLL100 at both heating and cooling in the 10-150 ºC temperature 

range are plotted in Figure 7.4. The reflections at 0.41 and 0.37 nm indexed as 110 

and 200, which are characteristic of the pseudo-rhombic monoclinic unit cell of PPDL 

with approximate dimensions a = 0.75 nm, b = 0.5 nm, and c = 2.0 nm and α = 

90.0°[33,34], are apparent in the profiles of the two copolymers recorded at 10 ºC. 

Upon heating the two reflections were initially unaltered but they disappeared abruptly 

when temperature reached the proximities of 90 ºC. The same behavior was displayed 

by the weak refection at ~0.71 nm observed in the diffraction profiles of PPDL20-b-

PLL100 which could be tentatively indexed as the 101 of the PPDL crystal lattice. The 

two hk0 reflections were fully recovered upon cooling when temperature arrived to 

around 65 ºC and 80 ºC for the LGA and the LL containing copolymers, respectively. 

These results are in full agreement with those obtained by DSC confirming that the 

PPDL block was crystallized in all the PPDLx-b-PAAy copolymers, and that this block is 

able to recrystallize from the melt at an undercooling that is significantly larger for the 

LGA containing copolymers. Since no sign of any other reflection is observed in the 

WAXS profiles recorded from PPDL15-b-PLGA80, it should be concluded that the order 

attained by the PLGA blocks in this copolymer must be low. Conversely, the WAXS 

profiles produced by PPDL20-b-PLL100 show additional reflections at 1.4 and 0.81 nm 

which could be attributed to the β-sheet structure in which the PLL block seems to be 

arranged as it was clearly revealed by FTIR. It is worth noting that the scattering due to 

the β-sheet form phase was attenuated at temperatures above melting of the PPDL 

phase so that the 0.81 reflection was the only remaining at 150 ºC. After cooling, the β-

form was not be recovered whereas the PPDL crystallized so that its initial diffraction 

pattern became well reproduced. At difference with what was reported for the protected 
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PPDL-b-pPAA copolymers, no discrete scattering was observed in the SAXS profiles 

produced by the deprotected PPDL-b-PAA copolymers indicating that they are not 

assembled in any ordered nanostructure, at least below the 60 nm scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Evolution of the WAXS profiles of PPDL15-b-PLGA80 (a,a’) and PPDL20-b-PLL100 
(b,b’) recorded at heating and cooling over the 10-150 oC at a rate of 10 ºC�min-1. The reflection 
at 1.4 nm that is cited in the text is hardly seen in b). For a better visualization, an enlarged 
region has been reproduced in Figure D4 of the Annex D. The peak observed at 0.34 nm is an 
artefact of unknown origin that was produced during the register of data.   

7.2.4. Properties in water solution and self-assembling of PPDL-b-PAA. 

The protected PPDLx-b-pPAAy diblock copolymers were non-water soluble as it 

could be reasonably expected from the presence of the hydrophobic groups used for 

protection. Conversely, the solubility in water of the deprotected PPDLx-b-PAAy 

copolymers is strongly dependent on both the x/y ratio and the ionic state of the 

polypeptide counterpart. In the non-ionized form none of these copolymers could be 

solubilized in water but PPDL15-b-PLGA80 and PPDL15-b-PLGA180 as well as PPDL20-b-

PLL100 and PPDL20-b-PLL190 became water-soluble when they were in the sodium and 

hydrobromide salts, respectively. The high contrast between the strong hydrophobic 
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nature of the polyester block and the ionically charged polypeptide block in these 

copolymers make them to display a markedly amphiphilic behavior that should be 

reflected in their capacity to self-assemble in aqueous medium. The conformational 

preferences of the water-soluble PPDLx-b-PAAy copolymers when dissolved in water, 

their critical micelle concentrations (cmc), and the main features of the nanoparticles  

 that they are able to form are compared in Table 7.3. 

 

Firstly the determination of the cmc was carried out by measuring the variation in 

light scattering intensity with polymer concentration in aqueous solution. As expected, 

the resulting plots (see Figure D5 in Annex D) clearly indicated a sharp change in the 

slope of the straight line at a concentration that increased with the PAA to PPDL ratio. 

Secondly the occurrence of regular conformations of PPDLx-b-PAAy in aqueous 

solution and their dependence on pH and temperature were investigated by CD 

spectroscopy at concentrations well below the cmc. The CD traces recorded for 

PPDL15-b-PLGA80 and PPDL20-b-PLL100 under different conditions are shown in Figure 

7.5. The maxima dichroic pair appearing at 212 and 222 nm with negative sign, which 

is the profile characteristic of α-helix, became well appreciated in these compounds at 

pH 2 and 10 respectively in agreement with to their non-ionized states. As it should be 

expected, the helical dichroism profile disappeared when pH changed from acid to 

basic in the former and in the opposite sense in the latter. The heating effect was 

zimilar in both cases with the helical structure being progressively disrupted as 

temperature increased.  

 

Table 7.3. Features of the water-soluble PPDLx-b-PAAy diblock copolymers in 
aqueous medium 
Copolymer  CD  DLS 

 
Secondary structure  cmc           

(mg�mL-1) 
D                 

(nm) 
PDI ζ 

(mV) pH=2 pH=10 
PPDL15-b-PLGA80  

helix coil 
 

0.37 146 0.26 -4.12 
PPDL15-b-PLGA180  

helix coil 
 

0.79 153 0.26 -45.3 
         
PPDL20-b-PLL100  

coil helix 
 

0.26 180 0.12 39.5 
PPDL20-b-PLL190  

coil helix 
 

0.30 176 0.24 70.8 
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Figure 7.5. CD spectra of PPDLx-b-PAAy diblock copolymers in aqueous solution at a 
concentration of 50 µg�mL-1.  

 

The DLS plots of the aqueous solutions of the PDDLx-b-PAAy copolymers at 

concentrations above the cmc are shown in Figure 7.6 (a and b). These plots evidence 

the presence of aggregates of nanometric size with a diameter that is dependent on the 

amount of dissolved copolymer. Bimodal distributions were occasionally obtained 

indicating that aggregation take place in more than one specific manner. The ζ-

potential displayed by these nanoparticles was positive or negative for LGA and LL 

containing copolymers respectively in agreement with the sign charge of the 

polypeptide present in each case. In both cases, the absolute value of ζ increased with 

the length of the polypeptide block, as expected. 
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Figure 7.6. DLS plots of aqueous solutions of PPDL15-b-PLGA180 (a) and PPDL20-b-PLL190 (b) 
at different concentrations, and SEM images of the nanoparticles (a’ and b’) left upon water 
evaporation of the lowest concentration solutions. 

The morphology of the nanoaggregates formed in aqueous solution at 

concentrations above cmc was examined by SEM. The significance of the resulting 

nanoparticles in terms of size is not reliable since aggregation is highly sensitive to 

concentration and therefore it will be enhanced during the evaporation of the drop. 

Nevertheless the SEM images (Figure 7.6a’ and 7.6b’) showed homogeneous 

populations of nanoparticles well separated from each other that could be clearly 

differentiated. 

7.2.5. Preliminar evaluation of PPDLx-b-PAAy copolymers as drug nanocarriers    

7.2.6. PPDLx-b-PLGAy copolymers:  Doxorubucin loading and release  

Doxorubicin (DOX), a widely-known antineoplasic compound [35], was used as 

model to evaluate the potential of the anionic PPDLx-b-PLGAy copolymers to be used 

as drug delivery systems. Two LGA-containing copolymers differing in the length of the 
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PLGA block were selected for this study, namely PPDL15-b-PLGA80 and PPDL15-b-

PLGA180. In these copolymers, ionic coupling between DOX and the carboxylate side 

groups of the LGA units should be expected to be the main mechanism responsible for 

entrapping. 

The DLS experimental traces registered from (PPDLx-b-PLGAy)�DOX conjugates 

for a LGA/DOX ratio of 5:1 and 8:1 and blanks (pristine copolymer) nanoparticles are 

shown in Figure 7.7 and their diameters (D), polydispersity indexes (PDI) and zeta 

potentials (ζ) measured by this technique are compared in Table 7.4. In both cases, the 

monomodal traces observed for the unloaded NPs made of pristine copolymers 

became split when they were loaded with DOX. The two new signals corresponded to 

NPs sizes smaller and greater than that of the unloaded ones, and the negative zeta 

potential significantly decreased upon DOX loading in both cases. 

 

 

 

 

 

 

 

Figure 7.7. DLS profiles of DOX-charged NPs made of PPDL15-b-PLGAy diblock copolymers. 

 

Table 7.4. Characterization of DOX-loaded nanoparticles. 
Copolymer or conjugate  LGA/DOX 
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(nm) 
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PPDL15-b-PLGA80  
- 360 0.32 -39 

(PPDL15-b-PLGA80)�DOX 
 

5/1 160/490 0.53 -20 

PPDL15-b-PLGA180  
- 460 0.14 -45 

(PPDL15-b-PLGA180)�DOX 
 

8/1 140/550 0.60 -29 

 

1 10 100 1000 10000

In
te

ns
ity

 (
a.

u.
)

D (nm)

 PPDL
15

-b-PLGA
80

 (PPDL
15

-b-PLGA
80

)�DOX

1 10 100 1000 10000

D (nm)

 PPDL
15

-b-PLGA
180

 (PPDL
15

-b-PLGA
180

)�DOX



 

 Chapter 7 168 

 

To assess the influence of the feed composition on coupling efficiency, a set of 

(PPDL15-b-PLGA80)�DOX conjugates were prepared using different LGA/DOX ratios. 

Copolymer/drug mixtures prepared at the selected ratios were dialyzed against water 

to remove non-associated DOX and the absorption of the dialysate at 480 nm was 

measured to estimate the amount of DOX that remained attached to the copolymer. 

Additionally, the residue recovered upon lyophilization of the dialysate was examined 

by 1H NMR using external calibration to determine the absolute amount of DOX present 

in the nanoparticles (an illustrative spectrum is shown in Figure D6 in the Annex D) The 

values obtained for DLE (Drug Loaded Efficiency) and DLC (Drug Loaded Content), as 

well as for the zeta-potential are graphically shown in Figure 7.8 for the different tested 

LGA/DOX ratios. For low values the two parameters increased with the proportion of 

drug used to form the conjugate but this trend vanished for ratios lower than 5/2. All 

DOX-loaded particles exhibited a negative surface charge around 20 mV lower than 

that of the unloaded which is consistent with the neutralization of part of the LGA 

carboxylate groups by the loaded drug molecules [36]. 

 

 

 

 

 

 

 

 

 

 

Figure 7.8. PPDL15-b-PLGA80�DOX conjugates obtained at different LGA/DOX ratios. a) DLE 
and DLC, and b) zeta potential.  
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ionic complex, a process that must be pH-dependent. DOX-loaded NPs prepared from 

PPDL15-b-PLGA80 and PPDL15-b-PLGA180 using a feed with a LGA/DOX ratio of 5 were 

chosen to evaluate the release of DOX at 37 oC at two different pHs, i.e. in PBS, pH 7.4 

and citrate-phosphate buffer, pH 4.2. The plots of the cumulative DOX release obtained 

over a period of one day and a half are shown in Figure 7.9. In all cases the release of 

the drug happened fast in the first several hours of incubation to slow down later to the 

point that the 100% of delivery was not reached. No significant differences in the 

profiles obtained for the two tested copolymers were observed indicating that the 

influence of the PLGA block length is not significant. On the contrary, the release at pH 

4.2 took place at a noticeably high rate than at pH 7.4 as it could be reasonably 

expected from the enhancing effect of pH on the dissociation of the LGA�DOX ionic 

complex. This effect was clearly evidenced in the 1H NMR spectra shown in Figure 

7.10 which were registered from PPDL15-b-PLGA80 copolymer and its DOX conjugate 

at neutral and acidic aqueous media. It is noteworthy that signals from DOX were 

almost undetectable at neutral pH whereas they became clearly visible at pH 2 

indicating that an extensive dissociation of the complex must occur in the acidic 

medium.   

 

 

 

 

 

 

 

Figure 7.9. Cumulative release (%) of DOX from loaded micelles of: (a) PPDL15-b-PLGA80 and 
(b) PPDL15-b-PLGA180 diblock copolymers at pH 7.4 (black line) and pH 4.2 (red line). The 
release study was performed using the dialysis method and DOX concentration was estimated 
by UV absorption at 480 nm. Data are given as mean ±SD of triplicates.  
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Figure 7.10. 1H NMR spectra (D2O) of the PPDL15-b-PLGA80 copolymer and (PPDL15-b-
PLGA80)�DOX conjugate at neutral and acidic pH.  

7.2.7. PPDLx-b-PLLy copolymers: DNA complexation 

The formation of complexes between LL-containing copolymers and DNA was 

examined using the PPDL20-b-PLL100 copolymer and salmon testes DNA (stDNA, 
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Mw~2,000 bp) in aqueous medium. The polyplexes were prepared at room temperature 

using deionized water by addition of the copolymer solution to that of DNA and 

subsequent incubation of the mixture for 20 min. A range of N to P ratios (N/P, 

mol/mol) going from 30 to 3 was tested. N/P values were determined by considering 

that the PPDL20-b-PLL100 and DNA mass per N and P atom is 225 g�mol-1 and 325 g 

mol-1, respectively. The polyplex solution was subjected to DLS analysis and scattering 

data compared to those obtained for the pristine copolymer. As it is seen in Figure 

7.11, the original size of copolymer nanoparticles of ~250 nm decreased with addition 

of moderate amounts of DNA (N/P =30) down to ~150 nm indicating that complexation 

with concomitant condensation of the DNA molecule has taken place. Further addition 

of DNA entailed a steadily increase in particle size to reach a diameter near 400 nm for 

N/P = 3. This is consistent with previous observations reporting that the largest 

aggregates are formed for N/P values close to 1 [37]. Polyplex formation also entailed 

a decrease in the positive zeta-potential of the copolymer for all compositions, as it 

should be expected from the charge compensation that must take place upon coupling. 

However the variation of ζ with composition does not display a logical trend. It 

decreased about 10 mV for small amounts of DNA (N/P = 30 and 16) and recovered 

almost totally for N/P = 10. From this value onwards ζ decayed slightly but steadily for 

increasing content in DNA.    

 

 

 

 

 

 

 

 

 

Figure 7.11. Diameter (a) and zeta potential (b) of the (PPDL20-b-PLL100)�DNA polyplexes.  
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7.3. Conclusions 

Diblock copolymers (PPDLx-b-PAAy), either negatively or positively charged, 

made of polypentadecalactone (PDL) and L-polyglutamic acid (PLGA) or L-polylysine 

(PLL), respectively, have been successfully prepared. Neutral copolymer precursors 

obtained by sequential ROP of PDL and amino acid NCA, in which LGA or LL units 

were duly protected, have shown to be appropriate for this synthesis. Deprotection was 

easily accomplished to render copolymers with the same PDL/AA composition as the 

parent precursors. In all PPDLx-b-PAAy copolymers, the PPDL block was crystallized 

and the polypeptidic block was arranged in α-helix or β-sheet conformation depending 

on the amino acid and the length of the block. These copolymers displayed water 

solubility for long amino acid blocks in the ionized state and showed helix-coil transition 

in aqueous solution mediated by pH changes. PPDLx-b-PAAy copolymers were able to 

self-assembled in nanoparticles with sizes between 100 and 200 nm with presumed 

good stability due to the tight effect provided by the polyester core. The peripheral 

location of the ionic block made these nanoparticles particularly suitable for anchoring 

charged molecules by ionic coupling mechanism. DOX was entrapped in the PLGA-

based copolymer particles with a loading efficiency near 80% to attain contents of the 

drug up to 20% and it was released in hours at a pH-depending rate. A preliminary 

examination of the capacity of the PLL-based copolymers to couple DNA revealed the 

formation of nanometric ionic polyplexes with apparent condensation for high 

copolymer/biopolymer ratios.  
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Chapter 8. Block and graft copolymers made of 16-membered 
macrolactones and L-alanine: A comparative study 

 

ABSTRACT 

Block and graft poly(macrolactone)-poly(α-amino acid) copolymers made of L-

alanine and pentadecalactone or globalide respectively, were prepared. A sequential 

ROP copolymerization route consisting of two stages, the first devoted to the 

preparation of the amino-functionalized poly(macrolactone) and the second to the 

amino-initiated polymerization of Ala-NCA, was followed for the synthesis of both types 

of copolymers. Poly(L-alanine) segment lengths were accurately controlled by adjusting 

the macroitiator/Ala NCA ratio used for reaction in the second stage. Block copolymers 

were semicrystalline with the poly(pentadecalactone) block well crystallized in a 

separate phase and the poly(α-amino acid) block arranged in either the α-helical or β-

sheet structure in a ratio that was depending on composition and temperature. Graft 

copolymers were amorphous but with the poly(α-amino acid) side chains in a more or 

less regular conformation. Nanoparticles with a diameter of around 300 nm and 

moderate positive Z-potential could be obtained from the block copolymers by self-

assembling in water whereas graft copolymers were unable to render recognizable 

objects of nanometer-dimension under similar conditions.      
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8.1 Introduction 

Block and graft copolymers in which homogeneous monomer sequences are 

incompatible and therefore able to spontaneously self-assemble in organized 

arrangements, are the preferred compounds for building nanostructured polymeric 

systems [1-3]. In this regard, amphiphilic copolymers made of hydrophilic and 

hydrophobic segments are particularly interesting given their capacity to form biphasic 

nanoparticles including compact, hollow and core-shell objects, when they are free to 

self-assemble in aqueous media [4-6]. As a subfamily of heterogeneous copolymers, 

those integrated by aliphatic polyester and poly(α-amino acid) segments are receiving 

great attention in these last years due to the outstanding assortment of properties that 

may be attained by such combination. As a matter of fact, this paper deals with diblock 

and graft copolymers made of polyesters derived from macrolactones (ML) and the 

poly(α-amino acid) poly(L-alanine) (PAla).  

Poly(α-amino acid)s are biocompatible polymers that exist in a wide variety of 

chemical structures, many of them ready accessible by ring-opening polymerization 

(ROP) of α-amino acid N-carboxyanhydrides [7]. These polymers display high 

conformational versatility and may adopt different structures depending on the 

surrounding conditions [8]. Aliphatic polyesters are mostly non-functional synthetic 

polymers usually lacking molecular activity but displaying an enormous potential for 

drug delivery applications [9-11]. These polyesters can be synthesized by relatively 

simple polymerization procedures; the most used one being the ring-opening 

polymerization (ROP) of lactones [12]. Polyesters generally display a good 

biocompatibility and are more or less vulnerable to enzymatic degradation depending 

mainly on their hydrocarbon/ester ratio. A good number of polyester-poly(α-amino acid) 

block copolymers has been described in the literature, and their capacity to form 

nanoparticles with potential utility as drug carrier and delivery systems has been 

extensively explored [13-17]. The number of cases dealing with polyester-poly(α-amino 



 

 Chapter 8 179 

 

acid) graft copolymers that has been studied appear to be much lower [18-21], in 

particular when grafting is made on the polyester counterpart. In both cases, diblock 

and graft systems, the polyester invariably derived from a medium-size lactone (up to 

11 atoms) such as ε-caprolactone or L-lactide, and the polypeptide was made of a 

three-functional α-amino acid such as aspartic or glutamic acid, lysine or serine.  

The polyesters made of macrolactones (large-size lactones containing more than 

11 atoms) have hydrophobic character comparable to paraffins, and their potential for 

the design of biodegradable carriers suitable for drug dispensing applications has been 

extensively explored along the last decade [22-25]. However ML-based hybrid 

copolymers have been scarcely studied and the number of poly(macrolactone-co-α-

amino acid)  copolymer systems known to date reduces to a couple of examples 

recently reported by us [26-27]. In these works, ω-pentadecalactone (PDL) and 

globalide (Gl) were the MLs chosen for the synthesis of block and graft copolymers, 

respectively, and the α-amino acids were L-glutamic and L-lysine in both cases. The 

copolymers were prepared by enzymatic ROP of the ML and subsequent coupling by 

amino-initiated ROP of the conveniently protected α-amino acid. By this method, the 

length of the blocks and grafted chains of the copolymers could be precisely adjusted. 

Most of these copolymers were shown to be able to self-assemble in well-shaped 

nanoparticles with a diameter in the ~200-400 nm range and displayed negative zeta-

potential.  

L-Alanine is a neutral α-amino acid that has a strong helix-stabilizing effect when 

incorporated in a polypeptide chain. The small size of the methyl side chain of L-alanine 

allows high chain flexibility while retaining enough bulk to stabilize the secondary 

structure through side-chain/side-chain interactions and van der Waals forces. In 

polymer design, L-alanine has been mostly copolymerized with hydrophilic monomers 

such as ethylene glycol [28-32] to build amphiphilic block copolymers showing 

nanophase separation. Although L-alanine is catalogued as a hydrophobic α-amino 
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acid, the capacity of the amide group to be hydrogen-bonded with itself or directly to 

water enables this amino acid to play a relatively hydrophilic function when inserted in 

highly hydrophobic molecules. Thus block copolypeptides made of alanine and γ-

benzyl-L-glutamate have been synthesized and described to be structurally 

heterogeneous with the two integrating amino acids taking up the α-helical and the β-

sheet structure, respectively [33,34]. Furthermore L-alanine is known to play a critical 

role in regulating the secondary structure of spider silks polypeptides due to the 

influence exerted by the poly(L-alanine) domains arranged in β-sheet form [35,36]. 

Copolymers based on the combination of polyalanine and polyester sequences are 

rare so that only L-lactide [14] and ε-caprolactone [15] have been used so far as 

comonomers of L-alanine in the synthesis of block copolymers. On the other hand, L-

alanine has been recurrently used for grafting water-soluble polymers [37] and 

biopolymers [38,39]  with the aim at making them more water-resistant. To our 

knowledge, neither block nor graft copolymers made of L-alanine and macrolactones 

have been investigated so far.  

In this paper block and graft copolymers made of L-alanine and either PDL or Gl, 

are synthesized, and their structure, thermal properties and capacity to form self-

assembled nanoparticles are assessed through a comparative study. The purpose of 

this work is to show the utility of the sequential ROP synthesis to produce well-defined 

heterogeneous copolymers from MLs and L-Ala and additionally to explore the capacity 

of such copolymers for building nanoparticles with potential application as nanocarriers. 

Since the crystallinity and conformation of the two counterparts play a crucial role in the 

eventual arrangement adopted by the copolymer, main efforts have been focused on 

the analysis of the structure by means of FTIR, DSC and XRD.       
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8.2 Results and discussion 

8.2.1 Copolymer synthesis 

The synthesis of diblock and graft copolymers based on 16-membered 

macrolactones, either oxacyclohexadecan-2-one (15-pentadecalactone, PDL) or 

oxacyclohexadecen-2-one (globalide, Gl), and the α-amino acid L-alanine (L-Ala) was 

carried out by the two-stages sequential ring opening polymerization (ROP) process 

previously used by us for the synthesis of analog macrolactone-based copolymers 

containing L-glutamic acid or L-lysine [26,27]. A detailed description of this chemical 

route with indication of all involved reagents and reaction conditions is depicted in 

Scheme 8.1. 

The first stage of the synthesis was devoted to the enzymatic ROP of the 

macrolactone and ended with the preparation of the amino-functionalized 

poly(macrolactone) that was used in the second stage for initiating the ROP of the L-

Ala-NCA. An amino-capped poly(pentadecalactone) PPDL10NH2 with an average 

length of ten units was the macroinitiator used for the synthesis of the diblock 

copolymers PPDL10-b-PAlay.   

 

Scheme 8.1. Parallel routes followed for the synthesis of copolymers made of 16-membered 
macrolactones and L-alanine. Left: Block copolymers from pentadecalactone (PDL). Right: Graft 
copolymers from globalide (Gl).  
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Conversely, the unsaturated polyglobalide (PGl) obtained by enzymatic ROP of Gl with 

an average length of 20 units was amino multifunctionalized in the main chain by click 

reaction with 2-(Boc-amino)etanothiol (BAET) and subsequent removal of the Boc 

group. The resulting random copolymer P[Gl8-co-(GlNH2)12] containing around 60% of 

amino-functionalized Gl-units was the macroinitiator used in the second stage for the 

“grafting-from” synthesis of the P[Gl20-g-(Ala)z] copolymers. 1H NMR spectra of the two 

macroinitiators are available in Figure E4 of the Annex E.  The ROP of Ala-NCA was 

triggered by the nucleophilic attack of the amino group of the macroinitiator onto the 

NCA carbamate carbonyl group. Different ML/Ala-NCA ratios were used for 

copolymerization in order to obtain a variety of copolymers with significant different Ala-

segment lengths that allows a rational comparison regarding structure and properties. 

Synthesis results and compositions as well as molecular weight data of all the prepared 

copolymers are collected in Table 8.1.   

Table 8.1. Synthesis results obtained for PPDL10-b-PAlay and P[Gl20-g-(Ala)z] 
copolymers.   
Copolymera 

 
Feed ratiob 

ML-NH2/NCA 
Copolymer 

ratioc ML/Ala  
Yield 
(%) 

Mn
d 

(g�mol-1) 
Mn

e 

(g�mol-1) 
Ð

e 
 

LPDL,Gl  /LAla
f 

(nm)/(nm) 

PPDL10-b-PAla30 1/30 26/74 80 4500 7300 2.1 19/11 

PPDL10-b-PAla60 1/60 15/85 80 6700 10200 2.9 19/22 

PPDL10-b-

PAla200 
1/200 5/95 70 16,600 14,000 1.4 19/73 

        
P[Gl20-g-(Ala)5] 1/5 25/75 80 9900 9200 4.3 39/2 

P[Gl20-g-(Ala)20] 1/25 8/92 60 23,500 19,700 3.9 39/8 
aCopolymer composition (in mole) expressed by subscripts are those given by NMR and rounded to the 
nearest five units. The subscript for Ala refers to block and side chain average number of units for block 
and graft copolymers, respectively. 
bMolar ratio of amino-functionalized macrolactone unit (ML-NH2, ML being PDL or Gl) to L-Ala NCA used in 
the feed for NCA ROP.  
cCopolymer composition (%-mole) determined by 1H NMR.  
dNumber-average molecular weight determined by 1H NMR.  
eNumber-average molecular weight and molar dispersity determined by GPC against PMMA standards.  
fAverage lengths of the PDL and Ala segments in the copolymers estimated on the basis of a fully 
extended conformation with an average projected bond length of 0.120 nm.   

All the copolymerization products were analyzed by GPC using HFIP as solvent.  

As it is shown in Figure 8.1, monomodal chromatograms were obtained which allow 

discarding the presence of homo-oligopeptides generated by uncontrolled initiation 
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caused by other nucleophiles that could be present in the reaction medium as it is 

water. The NMR analysis of the copolymers in TFA ascertained the hybrid constitution 

of the copolymers and afforded their molar composition in ML and Ala units which 

allowed appraising the coupling efficiency of the ROP reaction. For this purpose, the 

areas of the alpha proton arising from the alanine moiety at 4.3 ppm and the ML 

CH2CH2O signal of either PDL or Gl at 4.2 ppm were compared. Differences in 

composition between the block copolymer and their feeds were in all cases less than 

5% indicating that an almost complete incorporation of the α-amino acid was attained 

by block copolymerization. In the case of the P[Gl20-g-(Ala)5], copolymer and feed 

compositions were the same but strikingly about 20% of the fed amino acid was lost in 

the grafting ROP when the ML-NH2/Ala-NCA ratio was 1/25. Nevertheless the fact that 

Ala grafting took place on each amino-functionalized Gl unit demonstrated that the 

efficiency of the initiation reaction in this case is also high, and led to infer that chain 

growth must be the process that becomes hindered for high Ala-NCA conversions. 

Illustrative 1H NMR spectra illustrative of each copolymer type are reproduced in Figure 

8.2 with full assignment of all observed signals, and complementary 1H and 13C NMR 

spectra are available in Figures E5 and E6 of the Annex E.  

 

 

 

 

 

Figure 8.1. GPC traces of the PPDL10-b-PAlay diblock (a), and P[Gl20-g-(Ala)z] graft copolymers. 
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Figure 8.2. 1H NMR (CDCl3/TFA) spectra of PPDL10-b-PAla30 diblock (a), and P[Gl20-g-(Ala)5] 
graft copolymers (b). ai and bL correspond to the first and last repeating unit, respectively.   
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8.2.2 Thermal properties 

The thermal properties of the PPDL10-b-PAlay diblock and P[(Gl20-g-(Ala)z] graft 

copolymers were evaluated by TGA and DSC and compared with those of their parent 

homopolymers PPDL10 or PGL20 and PAla50 taken as references. All the decomposition 

and transition temperatures detected in these assays are listed in Table 8.2. 

Representative thermograms illustrating the thermal behavior are shown in Figures 8.3 

and 8.4 and this information is complemented with additional thermograms provided in 

Figures E7 and E8 of the Annex E.  

 

The TGA analysis of PPDL10 and PGl20 evidenced the high thermal resistance 

inherent to these polyesters. As it is seen in Figure 8.3, they decompose through a 

rather simple process that does not begin to be clearly perceivable up to above 400 ºC. 

PAla50 is also fairly stable to heat displaying a single decomposition temperature with 

maximum rate at 375 ºC. The thermal decomposition traces recorded for the 

copolyesters are in general more complex and show significant weight losses at 

temperatures intermediate of those registered for their corresponding homopolymers. 

Table 8.2. Thermal properties of the PPDL10-b-PAlay and P[(Gl20-g-(Ala)z] 
copolymers. 

Polymer 
TGAa 

 DSCb 

 1st heating  cooling  2nd heating 
o
Td 

oC 

max
Td 

oC 
Rw     

% 
 1

Tm 
oC 

1∆H   
J�g-1 

 Tc 
oC 

∆H   
J�g-1 

 
2
Tm 
oC 

2∆H   
J�g-1

 

PPDL10 285 425 1 
 

90 148 
 

76 -115 
 

91 134 

PPDL10-b-Ala30 210 415 11 
 

79, 90 54  78 -19  89 24 

PPDL10-b-Ala60 255 328 18 
 

75, 91 34  67 -9  90 2 

PPDL10-b-Ala200 267 340 21 
 

73, 91 10  - -  - - 

             

PGl20 370 420 2  54 84  29 -48  49 50 

Poly[Gl20-g-(Ala)5] 228 355 9  - -  - -  - - 

Poly[Gl20-g-(Ala)20] 190 380 7  - -  - -  - - 

             

PAla50 225 375 8  - -  - - 
 

- - 
aOnset for 5% weight loss (o

Td) and maximum rate (max
Td) thermal decomposition temperatures measured 

in the TGA analysis performed under inert atmosphere. Rw: weight (%) remaining after heating at 600 ºC.  
bMelting (Tm and ∆Hm) and  crystallization (Tc and ∆Hc) temperatures and enthalpies measured by DSC.  
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The derivative curves of these traces (Figure  E7 in the Annex E) contain 3-4 peaks 

corresponding to other so many decomposition steps (only the maxTd for the main peak 

has been listed in Table 2). The onset temperatures of the copolyesters (oTd measured 

for 5% of weight loss) were markedly lower than those of the poly(macrolactone)s and 

they tend to approach in general to that of PAla50. The onset decomposition 

temperatures also diminished with copolymerization but their values should be taken 

with caution since the presence of minor amounts of water, which is difficult to remove, 

may alter significantly their determination.    

 

 

 

 

 

 

 

 

Figure 8.3. TGA traces of PPDL10-b-PAlay and P[Gl20-g-(Ala)z] copolymers compared to those 
of their parent homopolymers.  

 

  The occurrence of thermal transitions taking place in the copolymers was 

examined by DSC of samples subjected to heating/cooling/heating cycles within the 

25-170 ºC range.  The cycle traces recorded for PPDL10-b-PLAla30 diblock and P[(Gl20-

g-(Ala)5] graft copolymers, which may be taken as representatives, as well as those 

recorded for their parent homopolymers are depicted in Figure 8.4. The DSC traces 

obtained for the other copolymers synthesized in this work have been added to the 

Annex E (Figure E8).  The traces registered for PPDL10 and PGl20 were characteristic 

of semicrystalline polymers showing 1Tm’s at 90 ºC and 54 at the first heating ºC, and 

1Tc’s at 76 ºC and 29 ºC, upon cooling, respectively. The recrystallized samples 

displayed melting peaks comparable to those observed for the pristine samples with 
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small deviations in temperatures and enthalpies. These results are in full agreement 

with data published on the high molecular weight PPDL [45] and PGl homologues [43]. 

On the other hand, the thermogram produced by a sample of PAla50 coming directly 

from synthesis showed a broad endotherm with its maximum at 70-80 ºC that was 

attributed to solvent volatilization since it almost fully disappeared when the sample 

was previously dried at 45 ºC for several hours under vacuum. No other heat exchange 

was detected for PAla50, neither at heating nor at cooling through the analyzed range of 

temperatures. This is in agreement with that has been reported for the thermal 

behavior of PAla in the solid state which is characterized by the occurrence of a phase 

transition from the α-form to the β-form taking place at temperatures above 300 ºC. 

Melting of PAla cannot be experimentally observed because it would take place at 

temperatures above decomposition. 

The DSC pattern characteristic of PPDL10-b-PAlay copolymers may be represented 

by that recorded for PPDL10-b-PAla30 which is shown in Figure 8.4a. The first heating 

trace taken from the copolymer (previously dried as it was indicated for PAla50) showed 

two endothermic peaks at 77 ºC and 90 ºC with similar intensities which are attributed 

to the respective melting of two copolymer populations differing in crystallite size. At 

cooling from 170 ºC, a crystallization peak was observed at 78 ºC, and at the second 

heating, the initial melting peak appearing at 90 ºC was recovered accompanied of a 

broad weak endotherm that spread over a 70-80 ºC range. These results doubtlessly 

indicate that the PPDL block in this copolymer is crystallized and that it can be 

reversibly melted and recrystallized. Similar results were observed for the other two 

block copolymers with the only difference that no recrystallization was observed for 

PPDL10-b-PAla200 which must be interpreted as due to the high diluent effect exerted by 

the long PAla block present in this copolymer (Figure E8). The DSC results obtained 

for the P[Gl20-g-(Ala)z] graft copolymers differed noticeably from those described for 

PPDL10-b-PAlay block copolymers in spite of that the melting-crystallization behavior 

displayed by PGl20 and PPDL10 was very similar. The heating-cooling traces registered 
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for P[Gl20-g-(Ala)5] (Figure 8.4b) did not display any sign of crystallinity indicating that 

PGl20 became unable to crystallize after grafting. The same result was obtained in the 

analysis of P[Gl20-g-(Ala)20]  (Figure E8). It can be therefore concluded that, as 

expected, the graft copolymers are essentially amorphous whereas the block 

copolymers are able to show crystallinity whichever is their composition.  

 

 

 

 

 

 

 

 
 
Figure 8.4. DSC traces recorded for a) PPDL10-b-PLAla30 diblock and b) P[Gl20-g-(Ala)5] graft 
copolymers and for their parent homopolymers.  
 

   The influence of the PAlay block on the crystallizability of the PPDL10 block in 

PPDL10-b-PAlay copolymers was examined by measuring the increment of the relative 

crystallinity produced in their isothermal crystallization as a function of time. Results 

obtained for the three block copolymers studied in this work as well as for the 

poly(pentadecalactone) homopolymer are plotted in Figure 8.5, where it is clearly 

shown that the presence of the PAlay block whatever its length enhanced the 

crystallization rate of the PPDL10 block. Such an enhancing effect seems to be however 

something more intense for shorter PAlay blocks, a fact that may be due to the high 

dilution produced by the PAla200 block. This result is in line with the non-observance of 

recrystallization for the PPDL10-b-PAla200 copolymer when it was cooled at constant 

rate from the melt to room temperature (Figure E8).     
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Figure 8.5. Evolution of the relative crystallinity as a function of time in the isothermal 
crystallization at 82 ºC of the PPDL10-b-PAlay diblock copolymers. 
 

8.2.3 Chain conformation and structure 

The crystal structure of poly(macrolactone)s has been reported by different 

authors. PPDL is known to adopt a pseudo-rhombic monoclinic structure with a unit cell 

of approximate dimensions a = 0.75 nm, b = 0.5 nm, and c = 2.0 nm and α = 90.0° 

[42,46]. The X-ray diffraction spacings characteristic of this structure are those at 0.40 

nm and 0.37 nm corresponding to 110 and 200 interplanar distances. On the contrary, 

the crystal structure of PGl has not yet been resolved but there indications that it must 

not be significantly dissimilar to that of PPDL [25]. On the other hand, the polypeptide 

PAlan is known to be usually arranged in one of the two ordered structures commonly 

found in polypeptides, i.e. the α-helical or the β-sheet forms, with preference for one or 

the other depending on both chain length and crystallization conditions. The helical 

structure consists of a hexagonal arrangement of 13/5 helices that is characterized by 

a strong reflection at about 0.75 nm.  The β-form is a layered structure made of nearly 

fully extended chains with characteristic X-ray reflections at 0.53 nm and 0.45 nm [47]. 

FTIR spectra are usually taken to support the chain arrangement adopted by 

polypeptides. The absorption bands at 1650 cm-1 (Amide I) and 1545 cm-1 (Amide II) 

are taken as characteristic of the α-helix whereas bands at 1630 (Amide I), 1535 
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(Amide II) and 700 cm-1 (Amide V) are used for identifying the β-form. The helical form 

is known to be favored by high molecular weights and temperatures. It has been also 

reported that the helical form is irreversibly converted into the layered form by heating 

at temperatures close to 300 ºC, a transition that may be followed by both XRD and 

FTIR [47].   

The arrangements adopted by the block and graft PML-PAla copolymers in the 

solid state and the changes that they may undertake by effect of heating were 

examined by FTIR and XRD at variable temperature. Firstly the FTIR study was carried 

out using powder samples in order to get insight into the secondary structure adopted 

by the polypeptide chains. The 1500-1800 cm-1 region of the FTIR spectra, in which 

Amide I and Amide II bands appear, is displayed in Figure 8.6 for PPDL10-b-PAlay 

diblock and P[Gl20-g-(Ala)z] graft copolymers as well as for the homopolypeptide PAla50.  

Just to note that the band due to the polyester C=O stretching is observed in this 

region at 1730 cm-1 with an intensity that correlates well with the relative content of 

ester groups in the copolymers. The spectrum of PAla50 shows a main absorption peak 

at 1650 cm-1 with a prominent shoulder at 1630 cm-1 that correspond to the Amide I 

band of the helical and sheet forms, respectively. Accordingly, the Amide II band was 

found to consist of a broad absorption with a maximum at 1540 cm-1 and a poorly 

visible shoulder at around 1520 cm-1. The spectra recorded from the copolymers 

displayed a pattern similar to that of PAla50 but differing in the relative intensity of the 

Amide I and II bands arisen from each of the two 
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Figure 8.6. Amide I and II region of FTIR spectra of a) PPDL10-b-PAlay diblock and b) P[Gl20-g-
(Ala)z] graft copolymers. 

 

forms. In the case of the graft copolymers (Figure 8.6b) the amounts of polypeptide 

arranged in helical and extended conformation are comparable for a side chain length 

of 20 Ala units whereas the latter is the only almost conformation present when the 

length of the Ala segment reduced to 5 units. Strikingly the behavior observed for the 

block copolymers is just the opposite. In this case it is the α-form that is largely 

predominant for shorter polypeptide lengths although it is true also that the β-form 

seem to be minority along the whole series. It may be then speculated that the 

polyester in the crystallized state must exert certain influence on the molecular 

arrangement adopted by the polypeptide with the result of an inversion in its expected 

conformational preferences. The response given by FTIR spectra to heating is in line 

with these observations. The PPDL10-b-PAla200 copolymer containing similar amounts 
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of α and β-form at room temperature became entirely arranged in the α-form when 

heated at temperatures above 60 ºC which is close to the melting temperature of the 

polyester block. On the contrary, the α/β composition of P[Gl20-g-(Ala)20], in which the 

polyester counterpart is not ordered, appears to be invariable with temperature. Plots of 

the FTIR spectra of PPDL10-b-PAla200 and P[Gl20-g-(Ala)20], at temperatures increasing 

from 25 ºC to 250 ºC are shown in Figure E9 of the Annex E.   

The X-ray diffraction study was performed on powder samples using synchrotron 

radiation at variable temperature and recording the scattered light at real time. WAXS 

and SAXS data were simultaneously registered and the changes taking place by effect 

of heating or cooling were visualized by comparative representation of the scattering 

profiles as a function of temperature (Figure 8.7 and Figures E10-E12 in the Annex E).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7. Evolution of the WAXS (a and b) and SAXS (a’ and b’) diffraction profiles of PPDL10-
b-PAla30 diblock and P[Gl20-g-(Ala)20] graft copolymers recorded at increasing temperature from 
10 ºC to 200 ºC. 
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The WAXS profile registered at 10 ºC from PPDL10-b-PAla30 (Figure 8.7a) clearly 

showed the two characteristic peaks of PPDL at 0.41 nm and 0.37 nm. At heating 

these peaks kept unaltered until temperature reached around 90 ºC where they 

completely disappeared. According to DSC data such behavior corresponds to the 

melting of the crystalline PPDL block. In fact, both peaks were almost completely 

recovered upon cooling at temperatures around 60 ºC (Figure E10). A reflection at 0.76 

nm with a moderate intensity that slightly increased with temperature was also detected 

in the WAXS profiles. This reflection is made to correspond to the hexagonal packing of 

PAla30 α-helices. Additionally a careful inspection of the low temperature profile 

revealed the presence of low intensity peaks at 0.49 nm and 0.45 nm that stayed 

invariable at 200 ºC, and which could be attributed to the presence of some amount of 

polyalanine in the β-form. The SAXS profile registered for PPDL10-b-PAla30 (Figure 

8.7a’) at 10 ºC displayed weak reflections at 20, 10 and 5 nm that remained unaltered 

up to temperatures near to that of PPDL melting was reached. It seems therefore that a 

1D structure with a main spacing of 20 nm (second and fourth orders at 10 nm and 5 

nm) and consisting of a biphasic alternating arrangement of the two blocks, is adopted 

by this copolymer. Since all SAXS signals disappeared upon heating at temperatures 

close to 90 ºC, it can be inferred that the nanometric structure becomes unstable as 

soon as the polyester phase is molten.    

The X-ray diffraction results produced by the P[Gl20-g-(Ala)20] graft copolymer 

were largely dissimilar. As it is seen in Figure 8.7b, no peaks characteristic of polyester 

were observed in these profiles so that all the discrete reflections there present have to 

be interpreted to arise from the polypeptidic phase. Peaks at 0.49 nm and 0.45 nm 

characteristic of β-form and 0.76 nm of α-form observed at low temperature remained 

almost invariable at heating up to 200 ºC.  This behavior is in agreement with that 

observed by FTIR and confirms the thermal stability of the two forms in the graft 

copolymers over the studied range of temperatures.  The SAXS produced by P[Gl20-g-
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(Ala)20] and how it changed with temperature is shown in Figure 8.7b’.  No scattering 

was observed below ~150 ºC indicating the absence of any order or discrete phase 

segregation in this copolymer at low temperature. At high temperature, i.e. above 160 

ºC, a broad signal corresponding to a spacing of approximately 6.6 nm emerged and 

became more pronounced as temperature increased. Unfortunately, there are not 

enough data available nor accessible precedents that allow conjecturing with a 

minimum detail on the nature of the arrangement responsible for such scattering.  

8.2.4 Copolymer self-assembly in aqueous environment 

The copolymers studied in this work cannot be actually classified as amphiphilic 

since the PML block is highly hydrophobic and PAla, although its affinity for water is 

greater than that of the polyester, cannot not be considered a hydrophilic polypeptide. 

In fact, PAla segments have been combined with other segments made of charged α-

amino acids or water-soluble monomers in order to generate well-defined amphiphilic 

block or graft copolymers able to display a strong tendency to phase separation [28-

32].  

Nevertheless, it was interesting to explore in a comparative manner the 

spontaneous assembling behavior that could display PPDL10-b-PAlay block and P[Gl20-

g-(Ala)z] graft copolymers when they are freely placed in an aqueous environment. 

Both the emulsion-evaporation solvent and the nanoprecipitation techniques were used 

to drive the self-assembly of a selection of PML-PAla copolymers in recognizable nano-

objects and the obtained results are given in Table 8.3. Both PPDL10-b-PAla30 and 

PPDL10-b-PAla200 became self-assembled in nanoparticles with a low positive zeta-

potential and diameters about 300 nm and 350 nm, respectively. The DLS profiles and 

SEM images of these nanoparticles are shown in Figure 8.8. On the other hand, 

neither the emulsion-solvent evaporation nor nanoprecipitation method induced the 

self-assembling of P[Gl20-g-(Ala)5] copolymer so that only unspecific aggregates of 
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large sizes were observed instead. The DLS profile recorded from this sample is 

available in Figure E13 of the Annex E.  

 

Table 8.3. Characterization of nanoparticles by DLS.  
Polymer D (nm) DPI ζζζζ (mV) Used method 

PPPL10-b-PLAla30 300 0.29 6.3 emulsion-evaporation  

PPPL10-b-PLAla200 350 0.39 7.5 emulsion-evaporation 

P[Gl20-g-(Ala)5] 60/3000 0.88 - nanoprecipitation 

P[Gl20-g-(Ala)20] n.o. n.o - nanoprecipitation 

n.o. = not observed.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8. DLS profiles and SEM images of PPDL10-b-PAla30 (a) and PPDL10-b-PAla200 (b) 
diblock copolymers. 
 

8.3 Conclusions 

The sequencial ROP polymerization previously used by us for the synthesis of 
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proven to be extensible to the preparation of block and graft copolymers made of L-Ala. 

The polyester block in the poly(pentadecalactone)-block-poly(α-L-alanine) copolymers 

was in the crystalline state and was able to crystallize from the melt at a crystallization 

rate enhanced by the presence of the polypeptide block. On the contrary, the polyester 

main chain of the poly[globalide-grafte-(α-L-alanine)] copolymers was invariably in the 

disordered state. Regarding the polypeptide counterpart, a conformational mixture of α-

helical and β-forms was present in both types of copolymers but its dependence on the 

polypeptide length and its response to heating effect was found to be opposite. The 

conformational behavior observed in graft copolymers was in agreement with 

expectations but in block copolymers the α/β ratio decreased with the increasing length 

of the polypeptide chain and with decreasing temperature. The crystalline nature of the 

polyester domain and the melting-crystallization transition happening in the block 

copolymers could be invoked to be responsible for this anomalous behavior.  Such 

differences in crystallinity and conformation become reflected in the different ability 

displayed by these copolymers to be self-assembled. Only the block copolymers were 

able to form nanometric particles, a property that could be associated to the expected 

tendency of the polyester block to build a crystalline core with subsequent outwards 

segregation of the poly(α-amino acid) segment arranged in the α-helical form. The 

incapacity of the graft copolymers to form nanoparticles may be attributed either to a 

defective separation of the poly(α-amino acid) and polyester domains or to an 

extensive primary particle aggregation caused by hydrogen-bonding interaction 

between the peripheral polypeptide arranged in the β-form.        
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Chapter 9. Isomorphic pentadecalactone-globalide random copolyesters 
grafted with L-glutamic acid. Synthesis and nanocarrier properties 

  

Abstract 

The enzymatic copolymerization of globalide (Gl) and pentadecalactone (PDL) 

was performed in solution from macrolactones mixtures covering the whole 

comonomeric composition. The thermal properties and structure in the solid state of the 

resulting random copolyesters PGl-r-PPDL were evaluated by DSC, FTIR and XRD. 

Interestingly, the copolyesters were found to have an isomorphic behavior in 

crystallization. They all are crystalline and adopt the same crystal structure as the 

reference homopolyesters PGl and PPDL. Grafting of amino-functionalized PGl-r-PPDL 

by ROP of benzyl-L-glutamate NCA provided neutral poly(γ-benzyl-L-glutamate) grafted 

copolyesters that could be then readily converted into negatively charged hybrid 

copolymers by hydrolysis of the benzyl carboxylate group. Both water soluble and non-

soluble copolymers were produced depending on the copolymer charge and grafting 

degree, and their capacity to self-assemble in nano-objects was preliminarily 

comparatively examined. Well delineated 200-300 spherical nanoparticles were 

obtained by applying the solvent-evaporation technique to the chloroform soluble 

copolymers bearing benzyl glutamate chains. Conversely, micelle aggregates were 

spontaneously generated in the water solutions of the copolyesters grafted with side 

chains made of ten glutamic acid units in average. Copolymer micelles were able to 

load DOX with high efficiency by means of electrostatic interactions and to release the 

drug at a rate that was markedly depending on pH.      

Publication derived from this work: 

Ernesto Tinajero-Díaz, Antxon Martínez-de Ilarduya, Lourdes Urpí, Sebastián Muñoz-Guerra, 
Isomorphic pentadecalactone-globalide random copolyesters grafted with L-glutamic acid. 
Synthesis and nanocarrier properties, (2019) (submitted). 
 
Supporting information to this chapter in Annex F 
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9.1 Introduction  

Polypeptides can be regarded as a class of highly refined polymers that may 

have either natural or synthetic origin [1]. When synthetic polymers are married to 

polypeptides, the resulting hybrid conjugates are able to synergistically combine the 

properties of the individual components and overcome their separate limitations. Thus, 

the peptide component will provide functionality to the conjugate whereas the synthetic 

polymer component may improve the stability, solubility and biocompatibility of the 

system. The synthetic polymer can also introduce new properties such as amphiphilic 

character and heterophase behavior required for self-assembly, and it can even 

modulate the polypeptide  activity [2]. Particularly, the copolymers made of 

polypeptides and polyesters constitute a large family of hybrid materials with great 

interest in the biomaterial field [3]. The excellent complementing properties of these two 

types of polymers together with their good synthetic accessibility by means of ring-

opening polymerization [4,5] made their copolymers to be one of the preferred systems 

that are today under study.  

As monomers, macrolactones stand out as ideal candidates for green polymer 

chemistry [6]. They are produced from renewable materials and they are susceptible of 

ring-opening polymerization conducted by different methods specially including that 

mediated by enzymes. ω-Pentadecenlactone (Gl) and ω-pentadecalactone (PDL) are 

16-membered macrolactones (ML) that only differ in the presence of one double bond 

located in the carbon chain of the former. Both ML are highly hydrophobic compounds 

that are commercially available because their traditional use in perfumery [7].  PDL has 

been extensively studied in these two last decades for the synthesis of aliphatic 

polyesters and copolyesters with high potential as biodegradable and bioresorbable 

medical materials whereas the interest for Gl has been so far much more contained. 

Copolymerization of PDL with other lactones constitutes the major approach towards 

the production of highly hydrophobic polyesters with adjusted thermal and mechanical 

properties, and it includes a variety of compounds such as L-lactide [8,9], ε-
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caprolactone [10-12], p-dioxanone [13] δ-valerolactone and γ-butyrolactone [14] among 

others [15]. It is remarkable that in a good number of cases the copolymerization was 

accomplished by enzymatic catalysis using Novozyme 435 [10,11,13,15,16]. However 

a limitation of the polyesters coming from PDL is that they have no functionality other 

than chain ends. Dove and coworkers used a modified ε-caprolactone, i.e. menthide, to 

introduce side chain functionality into PPDL copolymers, which were able to undergo 

post-polymerization modification. However, the synthesis of the menthide was long and 

tedious [17].  

The unsaturation present in Gl provides a chemical handle for functionalization. 

Gl has been homopolymerized in several occasions to produce polyglobalide (PGl), an 

unsaturated polyester [18] that could then be modified by click reaction to produce 

cross-linked polymers [19,20] or polypeptide grafted copolymers [21]. However Gl has 

never been copolymerized with PDL, as far as we know. The work here reported is 

focused on the copolymerization of Gl and PDL with the final purpose of using the 

resulting unsaturated copolyesters for preparing amphiphilic hybrid polypeptide-

polyester graft copolymers with potential as drug nanocarriers. Several aspects were 

taken into consideration to justify such a choice. a) An entirely bio-based green system 

could be built by combining the enzymatic polymerization with the natural origin of all 

the implied monomers. b) Nothing has been reported on copolymerization of 

macrolactones, in particular of two macrolactones with the same number of carbons. 

The crystalline behavior of the PGl-PPDL copolyesters regarding possible isomorphism 

will be of general interest in the polymer crystallization field. c) The hybrid copolymers 

built by amino acid grafting of the PGl-PPDL copolyesters will exhibit a great 

hydrophilic character as a consequence of the combination of the high hydrophobicity 

provided by the macrolactone counterpart and the highly polar nature inherent to the 

polypeptide side chain, in special when it is in the charged state. The nanoparticles 

rendered by these systems should be expected to be well stable due to the occurrence 
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on interior strong hydrophobic interactions and to be capable of loading charged drugs 

with good efficiency and releasing it at pH depending rates. 

9.2. Results and discussion 

9.2.1 Synthesis of PGl-r-PDL copolyesters 

The route followed for the overall synthesis of the L-Glu-grafted poly(globalide-

random-pentadecalactone) copolyesters with the L-Glu either protected as benzyl ester 

(BLG) or with the carboxyl groups in the free form, i.e. P[(Gl-g-BLGz)x-r-PDLy] and 

P[(Gl-g-LGAz)x-r-PDLy],  that have been studied in this work, is depicted in Scheme 9.1. 

Firstly, a series of random copolyesters made of globalide (Gl) and pentadecalactone 

(PDL), namely P(PGlx-r-PDLy), covering the whole range of compositions, was 

prepared by enzymatic ring-opening polymerization (eROP) mediated by Candida 

antarctica Lipase B (CALB) (Novozymes 425). The results obtained in these 

copolymerizations are shown in Table 9.1. The eROP method, which had been 

previously used by different authors for the polymerization of both Gl and PDL 

separately [22-24] has afforded satisfactory results in the copolymerization of these two 

macrolactones with yields ranging between 75 and 90% and moderate deviations in the 

copolymer compositions respect to feed compositions. NMR was used for the chemical 

characterization of the copolymers including composition and chain length. The 1H and 

13C NMR spectra of P(Gl13%-r-PDL87%) are given in Figure F1 of the Annex F associated 

to this Thesis,  and 1H NMR spectra for the whole series are compared in Figure F2. 

Number-average molecular weights (Mn) determined by end-group analysis were in the 

9000-12,000 g�mol-1 range with differences being small and showing no apparent 

correlation with compositions. Determination of the comonomers distribution along the 

copolymer chain was not feasible because NMR spectra were scarcely sensitive to 

sequential effects due to the long distance between ester groups and also 

exceptionally complex due to the existence of both constitutional and steric isomerism. 

In fact, the Gl used in this work consisted of a mixture of two monounsaturated isomers 
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corresponding to the double bond placed at the 11 or 12 positions in a 81/19 ratio with 

an overall diastereomeric E/Z configuration ratio of 78/22. These ratios were 

approximately maintained in the PGl-r-PDL copolyesters. Compared 1H NMR spectra 

of Gl and PGl are afforded in Figure F3. Nevertheless, a random distribution may be 

assumed to be present in these copolymers since that should be expected from the 

well-known indiscriminate transesterase activity of lipases [25] and is also according 

with the microstructure generated in the eROP of diverse PPDL copolyesters 

previously reported [10,11,13,14].  

 

Scheme 9.1. Synthesis of P[(Glx-co-PDLy)-g-Gluy] copolymers.  
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Table 9.1. Yield, composition and molecular weight of the 
P(PDLx-r-Gly) copolyesters. 
Polyestera  Yield 

(%) 
 Compositionb 

(Gl)/(PDL)(mol/mol
) 

Mn
c  

(g�mol-1) 

 
 

 feed copolyme
r 

  

PGl  70  100/0 100/0     9700 

P(Gl82-r-PDL18)  80  90/10 82/18  10,500 

P(Gl73-r-PDL27)  75  70/30 73/27     9450 

P(Gl48-r-PDL52)  88  50/50 48/52  11,900 

P(Gl33-r-PDL67)  80  30/70 33/67  10,650 

P(Gl13-r-PDL87)  90  10/90 13/87  11,760 

PPDL  90  0/100 0/100  12,300 
aSubscripts x and y indicate the %-mole composition of the copolymer in 
Gl and PDL units, respectively. 
b%-mole composition of the feed and the resulting copolymer determined 
by 1H NMR. 
cNumber-average molecular weight of the resulting copolymer determined 
by end-group 1H NMR analysis.  

 

9.2.2. Thermal properties and crystallization of P(Glx-r-PDLy)  copolyesters 

The thermal decomposition behavior of P(Glx-r-PDLy) copolyesters was examined 

by TGA within the 20-600 ºC under an inert atmosphere. Their TGA traces and those 

recorded for the two parent homopolyesters (PGl and PPDL) as well as the respective 

derivative curves of all them are shown in Figures F4 of the Annex F.  Onset and 

maximum rate decomposition temperatures and remaining weights estimated in these 

assays are listed in Table 9.2.  Approximately the same thermal decomposition pattern 

was displayed by the copolyesters and the homopolyesters as it is evidenced by the 

similarity between their derivative curves. In fact, decomposition appears to proceed 

along two main steps in the 400-500 ºC range with maxTd values closely around those of 

PGl and PPDL.  As it is commonly shared by most of aliphatic polyesters and as it 

should be largely expected from the high resistance to heat displayed by the parent 

polymacrolactones, the TGA data collected in this study ascertain the high thermal 

stability of P(Glx-r-PDLy) copolyesters as well as their ability to decompose cleanly 

without hardly leaving residual product.   
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Table 9.2. Thermal properties of P(Glx-r-PDLy) copolyesters.  

Copolyester   TGAa   DSCb 

   1st heating  cooling  2nd heating 

 
o
Td

a 
(oC) 

max
Td 

(oC) 
Rw 
(%) 

 Tm 
(oC) 

∆Hm 
(J�g-1) 

 Tc 
(oC) 

∆Hc 
(J�g-1) 

 Tm 
(oC) 

∆Hm 
(J�g-1) 

PGl  349 419, 466 4  42 46  17 -31  27 31 

P(Gl82-r-PDL18)  376 417, 466 2  54 55  38 -52  53 56 

P(Gl73-r-PDL27)  387 420, 469 1  65 90  50 -62  66 82 

P(Gl48-r-PDL52)  378 423, 470  1  74 120  57 -80  74 82 

P(Gl33-r-PDL67)  374 431, 469 1  81 135  65 -97  80 92 

P(Gl13-r-PDL87)  381 426, 470 1  90 135  74 -100  90 97 

PPDL  396 427, 472 1  95 150  81 -126  95 135 

aOnset for 5% weight loss (o
Td) and maximum rate (max

Td) thermal decomposition temperatures measured by TGA 
under inert atmosphere. Rw: weight (%) remaining after heating at 600 ºC. 
bMelting (Tm and ∆Hm) and  crystallization (Tc and ∆Hc) temperatures and enthalpies measured by DSC.  
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Figure 9.1 DSC traces of P(Glx-r-PDLy) copolyesters recorded at the first heating and cooling in 
the -30-200 ºC range.  

The DSC analysis of the P(Glx-r-PDLy) copolyesters was performed by recording 

heating-cooling-heating cycles over -30 ºC and 200 ºC. The first heating and cooling 

traces are shown in Figure 9.1 and those recorded at the second heating are 
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accessible in Figure F5 of the Annex F.  The traces recorded for PGl and PPDL 

displayed melting peaks corresponding to Tm of 42 ºC and 95 ºC respectively, 

according to what is recurrently reported for these polymacrolactones. It was noticed 

however that the peak recorded for PGl was broader and had a much lower associated 

enthalpy than for PPDL. These features are indicative that PGl is made of more 

defective crystals and attain lower crystallinity, as it should be expected from the 

isomeric mixture present in this unsaturated polyester. P(Glx-r-PDLy) copolyesters were 

all crystalline and showed linearly decreasing melting temperatures as their content in 

Gl increased over the whole composition range (Figure 9.2a). A similar trend was 

observed for the copolyesters melting temperatures recorded at the second heating 

with values very close to those registered in the first heating run in spite of that 

significant supercoolings (around 15-20 ºC) were required for crystallization. It is also 

noteworthy that melting enthalpy displayed a steady increasing when going from PGl to 

PPDL (Figure 9.2b). Although the trend is by no means even, it indicates that the 

crystallinity of the copolyesters was not depressed when comonomers were mutually 

replaced. These results strongly suggest that GL and PDL units must be sharing the 

same crystal lattice, a prediction that will be supported by the X-diffraction study 

described below.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.2. Melting temperatures (a) and enthalpies (b)  of P(Glx-r-PDLy) copolyesters 
as a function of their content in PGl units. 
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9.2.3. XRD of P(Glx-r-PDLy) copolyesters. Isomorphism 

Aliphatic polyesters of A-B type tend to crystallize with chains in fully-extended 

conformation and side-by-side packed in a pseudo-rhombic crystal lattice containing 

two monomeric units in opposite orientation [26].   Specifically, the PPDL unit cell is 

described in the literature [27] as monoclinic (P21 space group) with dimensions: a = 

0.749 nm, b  = 0.5034 nm, c (chain axis) = 2,00 nm and α = 90.06°. The WAXS pattern 

of PPDL is characterized by two strong reflections at 0.41 nm and 0.37 nm arising from 

110 and 200 interplanar distances, respectively, in addition to a weak reflection at 1.95 

nm corresponding to the length of the repeating distance along the polymer chain. The 

crystal structure of globalide has not been determined yet but it has been suggested to 

be very close to that of PPDL since the dominating features of the powder diffraction 

patterns are shared by both polyesters [18]. 

In this work, the XRD study of P(Glx-r-PDLy) copolyesters has been performed 

using synchrotron radiation on powder samples that were subjected to heating-cooling 

cycles within the 0-120 ºC range. By this means the scattering produced in the wide 

and small angles regions (WAXS and SAXS) could be simultaneously recorded in real 

time. As an illustrative example, the evolution of the intensity profiles registered for 

P(Gl82-r-PDL18) as a function of temperature is shown in Figure 9.3,  and all those 

obtained for the other copolyesters as well as for PPDL and PGl, are afforded in 

Figures F6 and F7 of the Annex F. The Bragg spacings measured at 0 ºC (both before 

and after heating) and at 120 ºC are collected in Table 9.3. The two sharp peaks 

observed in WAXS for PPDL at low temperature (110 and 200) are in full agreement 

with data previously reported for this polyester [27]. Both their disappearance at 

temperatures above 90 ºC and their almost total recovery upon cooling at around 70-80 

ºC, are clear evidences of the reversible melting-crystallization transition characteristic 

of PPDL. The broad peak at 0.46 nm that appeared after melting is the characteristic 

scattering produced by polyesters in the disordered state. 
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The SAXS profiles of PPDL and PGl have in common the reflection at 1.9-2.0 nm 

indexed as 001 and corresponding to the repeat of the polyester chain in zigzag 

conformation with a backbone C-C and C-O bonds average projection length of ~0.125 

nm. It seems that the small length shortening that could be expected for the GI unit 

(around 0.05 nm) due to the presence of the double bond cannot be distinguished in 

these diffractograms. Furthermore, it can be inferred from these results that the ~20% 

of Z-stereoisomers present in PGl, must have been segregated from the crystal lattice. 

Nevertheless the fact that the 001 peak becomes significantly broad for PGl, which is 

demonstrative of the fluctuation of its associated spacing, could be taken as due to the 

coexistence of homogeneous crystallites made of E and Z stereoisomers. A 

comparative plot of the 001 signals produced by every polyester suitably enlarged to 

show their differences in detail has been included in the Annex F (Figure F8). Other 

reflections appearing for both PPDL and PGl in the 5-20 nm range of the SAXS region 

must be related to crystallite size and they have found to be different not only for the 

two polyesters but also for samples of the same polyester with different thermal history. 

The precise understanding of these subtle reflections, which might arise both from 

copolyester crystallites with different PDL/Gl composition or from crystallites made of 

different E/Z stereoisomers, is very challenging. A study in depth supported by further 

Table 9.3 X-ray diffraction spacings (nm) for P(Glx-r-PDLy) copolyesters at different temperatures. 

Copolyester 
 

0 oCa  120 oC  0 oCb 

 

SAXS  WAXS SAXS 
 

WAXS SAXS  WAXS 

PGl 17.4,         1.9   0.41, 0.37 
 

-  0.46 
 

21.6, 5.7, 1.9  0.41, 0.37 

P(Gl82-r-PDL18) 13.0, 6.5,  1.9  0.41, 0.37 
 

-  0.46 
 

20.0,        1.9  0.41, 0.37 

P(Gl73-r-PDL27) 13.0, 6.5,  1.9  0.41, 0.37 
 

-  0.46 
 

20.0,        1.9  0.41, 0.37 

P(Gl48-r-PDL52)                  1.9  0.41, 0.37 
 

-  0.46 
 

               1.9   

P(Gl33-r-PDL67) 13.0, 6.5,  1.9  0.41, 0.37 
 

-  0.46 
 

20.0, 7.5, 1.9  0.41, 0.37 

P(Gl13-r-PDL87)  9.5,  4.7,  1.9  0.41, 0.37 
 

-  0.46 
 

20.0. 7.3, 1.9  0.41, 0.37 

PPDL 
  

               1.9  0.41, 0.37 
 

-  0.46 
  

 0.41, 0.37 
aData recorded from the original sample. 
bData recorded from the cooled sample after being heated at 120 ºC.  
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experimentation, which is clearly out of the scope of this paper, would be required to 

attain a rational interpretation of the scattering associated to crystallite thickness.   

The plots shown in Figure 9.3 for P(Gl82-r-PDL18) may be taken as representative 

of that is observed for the whole copolyester series. Main features revealed by these 

plots are the following: a) Characteristic reflections 110 and 200 with spacings at 0.41 

nm and 0.37 nm respectively are dominating the WAXS profiles at low temperatures. 

These reflections disappeared upon heating just above the melting temperature of the 

polyester and the broad peak at 0.46 nm characteristic of amorphous material came 

out instead. After cooling, both reflections reappeared with lower intensity. b) The 1.9-

2.0 nm reflection observed in SAXS (indexed as 001) showed the same response to 

heating as the 110 and 200 reflections with the difference that it was more hardly 

recovery after cooling. The intensity and breadth of this reflection was depending on 

the copolymer composition. c) A signal around 13 nm and its second order 6.5 nm 

were present in the profiles at low temperatures to vanish at melting. After cooling a 

new signal with spacing around 20 nm appeared.   

 

 

 

 

 

 

 

 

 

Figure 9.3 Evolution of the X-ray diffraction profiles recorded for P(Gl82-r-PDL18) at heating and 
cooling over the 0-120 oC range in the WAXS (a, a’) and SAXS (b,b’) regions.  
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The conclusions inferred from the XRD study is that P(Glx-r-PDLy) copolyesters 

crystallize following the side-by-side chain packing arrangement commonly adopted by 

both PPDL and PGl, and that differences with homopolyesters are circumscribed to the 

relative azimuthal alignment of the chains. Such differences are probably due to some 

chain misalignment motivated by the uneven presence of the double bond throughout 

the lattice. The weakening or even full disappearance of the 001 reflection is reported 

as a clear evidence of cocrystallization of random copolyesters made of monomeric 

units of different length as it has been reported for the case of P(PDL-r-CL) [11]. Since 

the degree of azimuthal misalignment in these copolyesters is dependent on the 

PDL/Gl ratio, it does make sense that different crystallite thicknesses are observed for 

different copolymer compositions. These XRD results are in full agreement with DSC 

results and combination of both is taken as demonstrative of the occurrence of 

isomorphism in the crystallization of P(Glx-r-PDLy) copolyesters.        

9.2.4 Grafting of P(Glx-r-PDLy) copolyesters with glutamic acid units: Synthesis 

of P[(Glx-r-PDLy)-g-(LGlu)z] copolymers 

In order to make the P(Glx-r-PDLy) susceptible to grafting, amino functionalities 

were inserted in the Gl units by thiol-ene click reaction with 2(Boc-amino)ethanethiol 

(BAET) followed by removal of the Boc group, as it is depicted in Scheme 9.1. This 

method has been proven before to be effective for the preparation of polyaminated PGl 

used as macroinitiator in its grafting with other amino acids by NCA ROP [21,28]. The 

evolution of the click reaction was followed by 1H NMR (spectra are available in Figure 

F9) that allowed determining the coupling efficiency of BAET to the copolyester, which 

was found to be 90% and 50% for P[(Gl13-r-PDL87) and P[(Gl48-r-PDL52), respectively.  

The amino-functionalized P(Glx-r-PDLy) copolyesters were then grafted by ROP 

of the BLG-NCA initiated by the amino groups with an amino conversion close to 

100%. The GPC analysis of the grafted copolymers provided unimodal chromatograms 

(Figure F10) that ascertained the achievement of the grafting reaction and the absence 
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of contaminant free homopolypeptide. After acidic treatment of P[(Glx-r-PDLy)-g-(BLG)z] 

with a TFA/HBr mixture, the COOH functionality of glutamic acid was readily 

regenerated to render P[(Glx-r-PDLy)-g-(LGlu)z] copolymers which were then duly 

characterized by NMR. The 1H NMR spectra of P[(Gl13-r-PDL87)-g-(BLG)10] and P[(Gl13-

r-PDL87)-g-(LGA)10] are shown in Figure 9.4 for illustrative purposes, and those 

registered from P[(Gl48-r-PDL52)-g-(BLG)2] and P[(Gl48-r-PDL52)-g-(LGA)2] are included 

in the Annex F as Figure F11.  The area comparison of the 5.15 ppm signal arising 

from BLG-CH2 with any of the signals characteristic of the copolyester (Figure 9.4a) 

demonstrated the success attained in the grafting reaction and allowed a precise 

estimation of the average length of the polypeptide chains grafted on the polyester. The 

total absence of aromatic signals in the spectra of the deprotected copolymers, which 

is indicated by the disappearance of the 5.15 ppm signal,  was taken as demonstrative 

that COOH groups had been fully recovered (Figure 9.4b).   Compositions, yields and 

average molecular weights of the grafted copolymers are collected in Table 9.4.    

Table 9.4 Synthesis of P[(Glx-r-PDLy)-g-(LGlu)z] copolymers: Composition and 
molecular weight. 
Copolymera Gl-BAETb 

(%) 
 Copolymerc 

Gl/PDL/Gl-LGlu 
Side chain 
lengthd 

(LGlu units) 

Yielde 

(%) 
Mn

f 

(g�mol-1) 

P[(Gl13-r-PDL87)-g-(BLG)10] 90  6/38/56 10  93 27,700 

P[(Gl48-r-PDL52)-g-(BLG)2] 50  24/26/49 2  85 16,700 
       

P[(Gl13-r-PDL87)-g-(LGA)10] 90  6/38/56 10 70 21,400 

P[(Gl48-r-PDL52)-g-(LGA)2] 50  24/26/49 2 74 15,100 

aSubscripts for Gl (including both modified and unmodified) and PDL are their molar percentages in the 
copolymer. Subscripts  for BLG and LGA represent the average number of such units in the grafting side 
chains. 

bMolar percentage of amino-functionalized Gl units estimated by 1H NMR  Calculated by comparing peak 
areas that correspond to the double bond in PGl with the peak areas representative of methylene group 
adjacent to hydroxyl terminal group.   

cCopolymer composition (%-mole) with explicit content in PDL and both modified and unmodified Gl units.  
dAverage number of L-Glu (either BLG or LGA) units in the side chains of the grafted copolyesters. 
eYield of the grafting reaction. 
fNumber-average molecular weight of the copolymer determined by 1H NMR. 
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Figure 9.4. 1H NMR spectra of P[(Gl13-r-PDL87)-g-(BLG)10] and P[(Gl13-r-PDL87)-g-
(LGA)10] copolymers. Arrows point to signals arising from the CH=CH protons 
contained in the 1% of Gl units present in these copolymers. Simplificar formula 
eliminando el residuo de Gl1% 
 

9.2.5. Thermal properties and solid-state structure of P[(Glx-r-PDLy)-g-(LGlu)z] 

copolymers. 

Thermal decomposition and transition temperatures of P[(Glx-r-PDLy)-g-(LGlu)z] 

copolymers measured by TGA and DSC, respectively, are collected in Table 9.5. The 

TGA traces of the four grafted copolymers along with their respective derivative curves 

are displayed in Figure F12 of the Annex F. Comparison of TGA results with those 

obtained for the P(Glx-r-PDLy) copolyesters (Table 9.2) reveals a noticeable decrease 
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in thermal stability as a consequence of grafting. Furthermore, the decomposition 

processes became more complexes and the amount of residue left after heating at 600 

ºC was considerable, in particular as far as the deprotected copolymers were 

concerned. These results are in line with those previously obtained for other amino 

acid-grafted polymacrolactones copolymers [21,28] and confirm the deleterious effect 

of the polypeptide on the thermal stability of the polyester.  

The DSC traces recorded at heating and cooling for the four P[(Glx-r-PDLy)-g-

(LGlu)z] together with those recorded for the PBLG50 and PLGA50 polypeptides are 

shown in Figure 9.5. Melting and crystallization temperatures and enthalpies measured 

by DSC are compared in Table 9.4. Although grafting made to decrease significantly 

the initial crystallinity of the P(Glx-r-PDLy) copolyesters, melting and crystallization 

peaks associated to the presence of random Gl-PDL segments were still observed for  

 

the four grafted copolymers. What it is particularly meaningful however is the presence 

of a broad endotherm spread over the 100-130 ºC range (centered about 115 ºC) on 

the first heating trace recorded from P[(Gl13-r-PDL87)-g-(BLG)10]. Noticeably the DSC 

trace of PBLG50 also showed an endothermal peak at 120 ºC whereas no heat 

exchanged at all was detected for PLGA50 . Such a peak is commonly interpreted in the 

Table 9.5. Thermal properties of P[(Glx-r-PDLy)-g-(LGlu)z] copolymers. 

Copolymer 

TGA
a 

 DCS
b
 

  first heating  cooling  
second 
heating 

 

o
Td 

oC 

max
Td 

oC 
Rw     

%  
Tm 
oC 

∆H 
J�g-1

TLC
c 

oC 
∆H   

J�g-1  

Tc   
oC 

∆H   
J�g-1  

Tm 
oC 

∆H   
J�g-1 

P[(Gl13-r-PDL87)-g-(BLG)10] 235 230-280 18  52,76 4 115 2  34 -9  75 5 

P[(Gl48-r-PDL52)-g-(BLG)2] 220 290-320 12  68 21 - -  43 -31  44 26 
               

P[(Gl13-r-PDL87)-g-(LGA)10] 285 310-450 42  80-95 9 - -  58 -2  83 1 

P[(Gl48-r-PDL52)-g-(LGA)2] 215 270-400 29  72 18 - -  48 -11  56 10 
aOnset temperature for 5% of weight loss (o

Td), maximum rate (max
Td) decomposition temperature and remaining weight (Rw) 

after heating at 600 ºC.  
bGlass transition (Tg), melting (Tm and ∆Hm) and crystallization (Tc and ∆Hc) temperatures and enthalpies measured by DSC. 
c
TLC is the temperature for the structural transition undergone by the polypeptide hexagonal phase.  
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literature as due to the irreversible conformational transition taking place in the PBLG 

α-helices [29-31].    
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Figure 9.5. First heating and cooling DSC traces of P[(Glx-r-PDLy)-g-(LGlu)z] copolymers.  
 

The 1800-1500 cm-1 region of the FTIR spectra recorded from P[(Glx-r-PDLy)-g-

(LGlu)z] copolymers in the powder form are shown in Figure 9.6. The Amide I and 

Amide II bands appearing respectively at 1655 cm-1 and 1550 cm-1 on the spectra of 

both P[(Gl13-r-PDL87)-g-(BLG)10] and PBLG50 with strong intensity and the complete 

absence of absorption around 1650 cm-1 are firm indications of the existence of the 

polypeptide in α-helix conformation exclusively [32,33]. On the contrary, the spectra 

produced by P[(Gl48-r-PDL52)-g-(BLG)2] shows a noticeable peak at 1630 cm-1 that 

reveals the presence of a considerable amount of β-form.  The spectra of the 

unprotected copolymers showed broad amide bands more according with the 

polypeptide in a disordered state although the  band at 1620 cm-1 observed in the 

spectrum of P[(Gl48-r-PDL52)-g-(LGA)2] reveals the presence of β-form in this 

copolymer. The indications provided by the FTIR spectra of P[(Glx-r-PDLy)-g-(LGlu)z] 

are in good agreement with expectations, i.e. the preference for the α-helical 

conformation vs the β-sheet arrangement in polypeptides is favored by longer amino 

acid sequences but it becomes unstable in the presence of ionic charges [34,35]. The 

effect of temperature on the polypeptide conformation was examined for the P[(Gl13-r-
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PDL87)-g-(BLG)10] and P[(Gl48-r-PDL52)-g-(BLG)2] copolymers in the 20-200 ºC (spectra 

are reproduced in Figure F13 of Annex F). No absorption changes were apparent for 

neither of the two cases indicating that α-helix/β-sheet interconversion or disruption into 

the random coil state did not take place over such range of temperatures. This is in full 

agreement with the high stability of the two typical conformational forms of 

polypeptides, which are known to resist temperatures up to well above 200 ºC [36,37].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.6. FTIR spectra of P[(Glx-r-PDLy)-g-(LGlu)z] copolymers. 

 

WAXS and SAXS profiles of the P[(Gl13-r-PDL87)-g-(BLG)10] copolymer recorded 

at real time over the 10-200 oC range are shown in Figure 9.7. The 0.41 and 0.37 nm 

peaks characteristic of the crystal structure adopted by P(Glx-r-PDLy) copolyesters are 

present in the low temperature WAXS profiles registered at both heating and cooling. 

As expected, these peaks were absent at temperatures above melting/crystallization 

and therein replaced by the broad peak at 0.46 nm arising from the disordered state. 

Additionally a set of peaks corresponding to lattice spacings roughly related by the 

1:√3:2 ratio, (i.e. 13.5, 0.75, 0,65 nm) was present in the SAXS. As it has been 

reported in several previous occasions [38-40], such diffraction pattern is indicative of 

the occurrence of two-dimensional hexagonal packing of the PBLG α-helices with a 

diameter of approximately 1.5 nm. A detailed inspection of the variation of such pattern 

with temperature revealed that the all three peaks were intensified at high temperatures 
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to practically disappear upon cooling below the temperature at which the polyester 

crystallized. This behavior is in agreement with both DSC and FTIR results commented 

above and it has been observed before for block copolymers made of PPDL and PBLG 

[21,38].  Such a behavior suggests that melting of the polyester phase favored the 

building of the polypeptide columnar phase. Results obtained in a similar analysis 

carried out on P[(Gl48-r-PDL52)-g-(BLG)2] are available in Figure F14 of the Annex F. In 

this case, the low temperature profiles showed also the diffraction peaks characteristic 

of the crystallized polyester and their response to heating was also similar but they 

were not recovery after cooling. Moreover the diffraction peaks expected to arise from 

the columnar phase were only hardly detected at high temperature and they 

disappeared almost completely at low temperature. On the other hand the XRD 

analysis of the deprotected materials contained the 0.41 nm and 0.37 nm peaks as the 

only meaningful features. All other signals detected in these profiles were very weak 

and of difficult interpretation (Figure F15).     

 

 

 

 

 

 

 
Figure 9.7. Evolution of the WAXS (heating and cooling) and SAXS (heating) profiles recorded 
from P[(Gl13-r-PDL87)-g-(BLG)10] copolymer over the 0-200 oC range.  
 

9.2.6. Self-assembly of P[(Glx-r-PDLy)-g-(LGlu)z] copolymers in aqueous media 

The chemical form in which the amino acid units are found in the P[(Glx-r-PDLy)-

g-(LGlu)z], i.e. with the carboxyl group free or in the ester form, decided the solubility 

properties of these copolyesters, and consequently determined the method that has to 

be used for promoting their self-assembly into nanoparticles. Thus the emulsion-
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solvent evaporation method was applied to the non-water soluble P[(Gl13-r-PDL87)-g-

(BLG)10] copolymer to  obtain nanoparticles of average diameter around 250 nm with 

moderate dispersity and displaying a zeta potential of -3.75 mV. The SEM analysis of 

these nanoparticles revealed that they have a round shape and are well delineate 

without show apparent aggregation (Figure 9.8).    

 

 

 

 

 

 
Figure. 9.8. DLS profile and SEM images of nanoparticles made of P[(Gl13-r-PDL87)-g-
(BLG)10] copolymer. Additional SEM images are available in Figure F16 of Annex F.  

 

Deprotection of the COOH functionalities of P[(Gl13-r-PDL87)-g-(BLG)10] led to the 

strongly amphiphilic and water-soluble P[(Gl13-r-PDL87)-g-(LGA)10] copolymer. The 

emulsion-solvent evaporation method successfully used with the protected copolymer 

was not applicable after deprotection due to the non-solubility of the carboxylic 

copolymer in the usual volatile solvents required for preparing the organic solution. 

Conversely, when this copolymer was dissolved in water at concentrations above 0.5 

mg�mL-1 it became spontaneously self-organized to form micelle-like objects as it was 

revealed by the DLS analysis. The critical micelle concentration (cmc) of P[(Gl13-r-

PDL87)-g-(LGA)10] measured by this technique was 0.15 mg�mL-1. The micelle size 

increased with copolymer concentration with average diameter values ranging between 

200 and 600 nm to become bimodal at 3.0 mg�mL-1 (Figure F17 of the Annex).  The Z-

potential of these micelles was around 34 mV with negative sign as it should be 

expected for nanoparticles containing carboxylate groups that are presumably located 

on the particle surface.   
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DOX is a well-known amphiphilic drug that is commonly used in cancer therapy. It 

contains an amino group attached to the sugar moiety that becomes positively charged 

at pH below 5 (Figure F18 in Annex F). DOX hydrochloride (DOX�HCl) has been used 

in several occasions to test the drug loading capacity of negatively charged 

nanoparticles made of carboxylic polymers able to interact electrostatically with the 

NH3
+ group [41-46].  To assess the potential of P[(Gl13-r-PDL87)-g-(LGA)10] as 

nanocarrier, it was mixed with DOX�HCl  in water at different LGA/drug molar ratios 

(1:0.4, 1:0.15 and 1:0.07) and the resulting DOX-loaded micelles examined by DLS. 

The results found for a copolymer concentration of 1.25 mg�mL-1 and 3 mg�mL-1 a 

LGA/drug ratio of 1:0.4 are shown in Figure 9.9.   

 

 

 

 

 

 

Figure 9.9. DLS profiles (a) and zeta potential (b) of the P[(Gl13-r-PDL87)-g-(LGA)10] copolymer 
and the P[(Gl13-r-PDL87)-g-(LGA)10] �DOX conjugate.  

The copolymer particles without DOX showed a practically monomodal 

distribution of sizes with an average diameter of 250 nm. The DLS of the DOX loaded 

particles revealed instead a bimodal distribution of sizes with average diameters of 

about 80 and 400 nm, respectively. As expected, the negative zeta potential of the 

particles decreased upon loading as a consequence of the partial neutralization of the 

copolymer negative charge that takes place by interaction with DOX.The suitability of 

P[(Gl13-r-PDL87)-g-(LGA)10] for DOX loading was quantified by estimating the Drug-

Loading-Eficiency (DLE) and Drug-Loading-Content (DLC) for the LGA/drug molar 

ratios tested in this study. The bar plot in Figure 9.10a shows the DLE and DLC 
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parameters values estimated for the three cases. Both parameters increased with the 

increasing amount of added DOX to attain values of 66% and 21% respectively for the 

LGA:drug ratio of 2.5, which was the lowest ratio assayed. This system was in fact the 

chosen one for evaluating the ability of P[(Gl13-r-PDL87)-g-(LGA)10]�DOX to deliver the 

drug as well as to assess their response to pH changes. The DOX releasing profiles 

obtained upon incubation of this conjugate at pH 4.2 and 7.4 are compared in Figure 

9.10b.  In both cases, DOX was delivered following an asymptotic trace without burst 

that confirms that all the loaded DOX was chemically attached to the copolymer. The 

maximum amount of delivered DOX under neutral conditions was about 60% and it 

was attained after one day of incubation. On the other hand, more than 95% of DOX 

was released in 10 h when the loaded particles were incubated at pH 4.2. The 

observed differences must be attributed to the notable decrease in the ionization 

degree of the LGA moieties that is produced at acidic pH with the subsequent 

disruption of the copolymer-drug electrostatic interactions.  

 

 

 

 

 
 
Figure 9.10. (a) DLE and DLC of P[(Gl13-r-PDL87)-g-(LGA)10]�DOX at different LGA/DOX ratios. 
(b) Cumulative releasing profiles of DOX from the at the two indicated pHs. The data presented 
are means of ±SD (n=3). 
  

9.3. Conclusions 

Random copolymacrolactones made of globalide (Gl) and pentadecalactone 

(PDL) and covering the whole range of compositions were successfully prepared by 

enzymatic ROP. These copolyesters were crystalline for any composition and able to 

recrystallize from the melt. Their melting temperatures increased almost linearly with 
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the content in PDL units, and their crystallinity was fairly well maintained over the whole 

range of compositions. The combined WAXS-SAXS results showed that 

homopolyesters PGL and PPDL adopt the same pseudo-rhombic crystal lattice with 

identical lateral dimensions and differing only in the monomeric length, which is about 

0.1 nm shorter in the former. The copolyesters were found to share the same crystal 

structure for any composition with tiny differences in the axial repeat. The outstanding 

conclusion drawn from this combined thermal-diffraction study is that PGl-r-PPDL 

cocrystallized with the two comonomeric units  being isomorphically replaced within the 

crystal lattice, a property that has been found so far only for a few aliphatic 

copolyesters and never for copolymacrolactones.  

Amino acid grafting of the PGl-r-PPDL copolyesters has been satisfactorily 

performed by ROP of BLG-NCA initiated by amino functions previously inserted in the 

Gl units. The benzyl protecting group could be then readily removed to produce 

strongly amphiphilic copolyesters bearing free carboxyl groups in the side chains. Both 

the amount of grafted Gl units as well as the average length of the grafting 

polyglutamate chains was precisely controlled, and copolymers displaying different 

water solubility could be therefore prepared. Neutral non-water soluble copolymers 

were able to self-assemble approximately spherical nanoparticles of 200-300 nm in 

average diameter. The water-soluble copolymers bearing polyglutamic side chains 

produced micelles that were able to load fair amounts of DOX drug with high capturing 

efficiency. Electrostatic ammonium-carboxylate interactions were responsible for the 

good loading capacity exhibited by the grafted copolymer, and also for the remarkable 

changes in the drug delivery profile displayed by the DOX loaded micelles when 

incubated in aqueous medium at different pH’s.          
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Chapter 10. PEGlylated nanoparticles of poly(ethylene glycol-globalide) 

block copolymers grafted with L-phenylalanine 

Abstract 

Triblock/grafted poly(ether-ester-peptide) copolymers made or PEG, 

poly(globablide) and poly(L-phenylalanine) were synthesized by sequential ROP 

starting from diaminated PEG as first initiator. The aromatic functionality of L-

phenylalanine inserted on the globalide units was utilized to impart the amphiphilicity 

required to drive their self-assembly in water and to provide aromaticity of potential 

value for the efficient loading of aromatic drugs. Depending of the method used for 

preparation, nanoparticles possessing diameters between 25 and 600 nm were 

obtained by self-assembling in aqueous medium.   
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10.1 Introduction 

Success of polymeric nanocarriers is due to their physicochemical features such 

as nanoscopic size, surface charge, enhanced solubility of poorly soluble drugs, high 

encapsulation efficiency, target specific delivery, and improved therapeutic efficacy [1]. 

The colloidal nanocarriers are however cleared from the systemic circulation as a result 

of opsonization and subsequent uptake by the reticuloendothelial system (RES) [2]. A 

promising strategy to make nanocarriers less susceptible to recognition by RES, is 

coating with poly(ethylene glycol) (PEG) which avoids their interactions with 

components of bloodstream, imparting “stealth” properties.  

On the other hand, the modification of the core is as important as modifying the 

surface of the nanocarriers. Some drugs have affinity to certain functional groups 

present on the core, thus improving the encapsulation of them [3–6]. When PEG 

comes to poly(α-amino acids), it is also highly biocompatible, non-toxic, and economic 

with versatile functional groups such as hydroxyl, carboxyl, amino, thiol or aromatic 

groups. Such a variety of functional groups is of great benefit to modify the chemical 

structure of the core for drug conjugation [7,8]. In this paper we wish to report the 

preparation of novel nanocarriers in where both the surface and the core were 

designed by marrying poly(ethylene glycol) to poly(globalide) and poly(L-phenylalanine) 

to yield an amphiphilic copolymer able to self-assemble in aqueous milieu forming 

nanoobjects with diameters between 20 and 600 nm. 

10.2 Results and discussion 

10.2.1 Synthesis of P(Gl-g-Phez)x-b-(PEG56)-b-P(Gl-g-Phez)x copolymers.  

The first stage in the preparation of these block/graft copolymers was devoted to 

the synthesis of the amino-functionalized P(Gl-NH2)x-b-PEG56-b-P(Gl-NH2)x triblock 

copolymers to be used as macroinitiators for the grafting reaction. These copolymers 

were obtained according to the synthetic route depicted in Figure G2 and results are 

shown in Table G1. The enzymatic ring-opening polymerization (eROP) of globalide 
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initiated by bisamino-ended PEG (Mn~2600 g�mol-1) provided two copolymers, namely 

PGl15-b-PEG56-b-PGl15 and PGl70-b-PEG56-b-PGl70, differing in the length of the 

polyglobalide blocks Then, the application of thiol-ene click chemistry using 2-

(Bocamino)ethanethiol (BAET) as coupling reactant and AIBN as thermoinitiator 

allowed inserting amino-protected groups onto the poly(globalide) blocks with a 

coupling efficiency between 50% and 90% as revealed by 1H NMR (Figure G3 of the 

Annex G). The regeneration of the NH2 groups was readily achieved by treatment of 

the P(Gl15-BAET)y-b-PEG56-b-P(Gl15-BAET)y with TFA t for 2 h. The P(Gl15NH2)y-b-

PEG56-b-P(Gl15-NH2)y copolymers with y values of 15 and 70, respectively, were thus 

obtained with a yield close to 100%. The NMR spectrum of the copolymer with y = 15 is 

shown in Figure G4 of the Annex G.  

  

    

 

 

 

 

 

 

 

 

 

 

Scheme 10.1. Synthesis of P(Glx-g-Phey)-b-PEG56-b-P(Glx-g-Phey) copolymers and a likely self-
assembly behavior in water. 

The ROP of NCA is normally initiated by primary amines in such a way that the 

initiator remains attached to the terminated polymer chain [11,12]. As it is depicted in 

Scheme 10.1, poly(L-phenylalanine) chains were grafted onto the polyglobalide blocks 



 

 Chapter 10 231 

 

by ROP of L-phenylalanine N-carboxyanhydride (Phe-NCA) using the amino 

functionalized copolymer. The success of the copolymerization was confirmed by SEC 

as well as by 1H NMR and FTIR spectroscopies. Comparison of the SEC peaks of the 

P(Gl15-NH2)-b-PEG56-b-P(Gl15-NH2) triblock copolymer and the P(Gl-g-Phe4)15-b-PEG56-

b-P(Gl-g-Phe4)15 block/graft copolymer confirmed an increase of the molar mass upon 

grafting according to what should be expected from the amount of amino acid attached 

to the copolymer (see Figure G5 of the Annex G). Yields, Mn, and Ð of the synthesized 

block/graft copolymers are collected in Table 10.1.  

Table 10.1. Results for the synthesis of amphiphilic P(Glx-g-Phey)-b-PEG56-b-P(Glx-g-Phey) 
copolymers 

Polymer Yield 
(%) 

Mn
a 

(g�mol-1) 
Mn

b 

(g�mol-1) 
Ð

b
 

P(Gl15-g-Phe2)-b-PEG56-b-P(Gl15-g-  Phe2) 70 13,500 16,500 1.8 

P(Gl15-g-Phe4)-b-PEG56-b-P(Gl15-g-Phe4) 80 13,800 21,000 1.9 

P(Gl70-g-Phe8)-b-PEG56-b-P(Gl70-g-Phe8) 84 45,160 22,600 4.6 
bDetermined by 1H NMR end-group analysis.   
bDetermined by GPC using PMMA as standards. 

 

NMR spectroscopy was used to elucidate the chemical structure of the block/graft 

copolymers. Figure 1 displays the 1H NMR (CDCl3/TFA) spectrum of a representative 

polymer, i.e. P(Gl15-g-Phe4)-b-PEG56-b-P(Gl15-g-Phe4). The alpha and aromatic 

hydrogens characteristic of the phenylalanine units are identified at 4.6 ppm and 7.2 

ppm, respectively along with signals arising from EG (peak a) and globalide (peaks 

c,d,f) units. Furthermore, a new signal at 3.4 ppm arising from the amide bond formed 

in the ROP of Phe NCA confirmed the success of the grafting reaction. The number of 

grafted Phe units was assessed comparing the integration ratio of the macroinitiator 

(CH2NHCO, peak h) to the α-protons from Phe (CH, peak α). 1H NMR spectra of the 

P(Gl15-g-Phe2)-b-PEG56-b-P(Gl15-g-Phe2) and P(Gl70-g-Phe8)-b-PEG56-b-P(Gl70-g-Phe8) 

copolymers are shown in Figure G6 of the Annex G. 
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Figure 10.1 1H-NMR (CDCl3/TFA) spectrum of the P(Gl15-g-Phe4)-b-PEG56-b-P(Gl15-g-Phe4) 

copolymer. 

10.2.2 Structure of the graft/block copolymers in the solid state 

The thermal stability of the three P(Glx-g-Phey)-b-PEG56-b-P(Glx-g-Phey) 

copolymers was measured by TGA (Figure G7 of the Annex G). They did not lose 

appreciable weight until around heated at the proximities of 200 ºC and bulk 

decomposition was found to take place around 300 ºC. The DSC analysis of the 

copolymers was performed to check the occurrence of thermal transitions. No sign of 

heat exchange was detected on the DSC traces recorded from the copolymers (Figure 

G8 of the Annex G) in spite that polyglobalide is a semicrystalline polyester with a Tm 

around 50 ºC. In the grafted copolymers the PGl segments were unable to crystallize 

because the severe alteration of their chemical structure produced by grafting. The 

PEG block was also in the disordered state, a fact more difficult to explain unless than 

the topological constrain exerted by the P(Gl-g-Phe) block is taken into consideration.   
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Poly(L-phenyl alanine) (PPhe) is a polypeptide that displays a scarce tendency to 

crystallize, a property that is reflected in the DSC traces recorded from the P(Glx-g-

Phey)-b-PEG56-b-P(Glx-g-Phey) copolymers.  Nevertheless, it could be expected that 

PPhe side chains are arranged in some of the conformations characteristic of 

polypeptides. Information on the secondary structure of PPhe adopted in these 

copolymers was obtained by FTIR spectroscopy. The Amide I + II region of these 

spectra (Figure 10.2) shows two peaks at 1630 cm-1 and 1680 cm-1, respectively. 

indicative of the presence of β-sheet structure, more probably in the antiparallel 

arrangement [14,15].  
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Figure 10.2. (a) FTIR spectra of the P(Glx-g-Phey)-b-PEG56-b-P(Glx-g-Phey) copolymers in the 
1500-1800 cm-1region. (b) Spectra of P(Gl15-g-Phe4)-b-PEG56-P(Gl15-g-Phe4) copolymer 
recorded at different temperatures. 

As expected, the intensity of these peaks was observed to increase with the 

content in Phe in the copolymers. On the other hand, the effect of heating on the Amide 

I band was insignificant according to the thermal stability of the sheet structure which is 

known to remain unaltered up to temperatures well above 200 ºC. 

To get insight into a possible ordered organization existing in the copolymers at 

either molecular or supramolecular level, a real-time X-ray diffraction study was carried 

out on samples subjected to variable temperature using synchrotron radiation. Both 

wide and small angle scattering were simultaneously recorded at either heating or 

cooling within the 10-200 ºC temperature range. The evolution followed by the 
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scattering profile of a pristine sample of P(Gl15-g-Phe4)-b-PEG56-b-P(Gl15-g-Phe4) with 

temperature changes is displayed in Figure 10.3. Reflections in the SAXS region 

(Figure 3a) corresponding to the spacing d=3.8 nm that increased up to 5.3 nm with 

temperature could be attributed to the presence of a lamellar biphasic structure [14]. 

Some reflections in the WAXS profiles (Figure 10.3b) are indicative that the copolymer 

is arranged in the β-sheet form. The reflection at d=0.46 nm could be made to 

correspond to the separation of between adjacent peptide chains organized into β-

strands. SAXS and WAXS cooling profiles are available in Figure G9 of the Annex G).   
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Figure 10.3. Evolution of the X-ray diffraction profiles of P(Gl15-g-Phe4)-b-PEG56-P(Gl15-g-Phe4) 
recorded at heating over the 10-200 oC range: (a) SAXS and (b) WAXS.  

10.2.3 Self-assembly in aqueous media 

Spherical NPs were prepared by the emulsion-solvent evaporation method 

previously used by us for other related systems. Particles with diameters between 220 

nm and 600 nm, as measured by DLS were thus obtained. Scanning electronic 

microscopy (SEM) revealed the almost spherical morphology of these particles, as 

shown in Figure 4a for the P(Gl15-g-Phe4)-b-PEG56-b-P(Gl15-g-Phe4) copolymer. Such 

nanoparticles were found to be stable up to three weeks of storing as measured by 

DLS (see Figure G1 of the Annex G). Similarly, NPs of P(Gl70-g-Phe8)-b-PEG56-b-

P(Gl70-g-Phe8’) exhibiting similar well-spherical morphologies could be also prepared. 

SEM images of these particles are available in Figures G11-G13 of Annex G. 
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Since the copolymers are DMSO-soluble, the nanoprecipitation method using this 

solvent was also used to drive the self-assembly of the P(Glx-g-Phey)-b-PEG56-b-P(Glx-

g-Phey’) copolymers.  

Table 10.2. Characterization of nanoparticles derived of the P(Glx-g-Phey)-b-PEG56-b-P(Glx-
g-Phey) copolymers 

Copolymer Method D (nm) PDI 

P(Gl15-g-Phe2)-b-PEG56-b-P(Gl15-g-Phe2) nanoprecipitation 108 0.19 
emulsion-solvent 
evaporation 

160/820 0.44 

P(Gl15-g-Phe4)-b-PEG56-b-P(Gl15-g-Phe4) nanoprecipitation 20/190 0.50 

emulsion-solvent 
evaporation 

620 0.05 

P(Gl70-g-Phe8)-b-PEG56-b-P(Gl70-g-Phe8) 
 

nanoprecipitation 25/190 0.40 

emulsion-solvent 
evaporation 
 

220 0.17 

 

DLS analysis was performed after removing DMSO by dialysis. By this method, 

the three copolymers self-assembled in NPs with diameters between 20 nm and 190 

nm (DLS profiles are accessible in Figure G10 of the Annex G). Table 2 collects the 

obtained results. TEM was used to probe the morphology displayed by the NPs made 

of P(Gl70-g-Phe8)-b-PEG56-b-P(Gl70-g-Phe8) after self-assembly (Figure 10.4b).  Despite 

no apparent differences observed in the morphology of the NPs, the diameter 

decreased noticeably when self-assembly was induced by nanoprecipitation. 
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Figure 10.4. (a, a’) NPs prepared by emulsion-solvent evaporation from the P(Gl15-g-Phe4)-b-
PEG56-P(Gl15-g-Phe4) copolymer, and (b, b’) and NPs prepared by nanoprecipitation from the 
P(Gl70-g-Phe8)-b-PEG56-P(Gl70-g-Phe8) copolymer.  

10.3 Conclusions 

A versatile and facile route for building PEGlylated nanoparticles based on fully 

biobased building blocks has been developed. The amino functionalized poly(ether-

ester) macroinitiator was able to initiate the ROP of NCA and to afford amphiphilic-

hybrid copolymers with controlled branches lengths. Self-assembly of the copolymers 

in water afforded nanoparticle with sizes roughly adjustable by selecting the method 

used for assembling. Since the surface of the nanostructures is “PEGylated” and the 

core is composed of aromatic-functional groups, these materials are highly promising 

as drug nanocarriers.    
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General conclusions 

I. ROP of macrolactones has normally been carried out with alcohols as initiators 

whereas the use of amines has been under-estimated and not tested before. In 

this Thesis, the efficacy of amino-ended compounds for initiating the ROP of ω-

pentadecalactone has been demonstrated. Furthermore, the use of an amino 

initiator carrying a second functionality susceptible of post-polymerization 

modification to create additional amino groups has been shown to be an 

excellent approach to design copolymers exhibiting complex architectures and 

controlled compositions.  

II. The synthesis of hybrid poly(ester-peptide) copolymers has over-exploited the 

use of medium-ring size lactones such as ε-caprolactone or L-lactide. 

Combination of macrolactones (PGl or PDL) with glutamic acid and lysine for the 

synthesis of poly(ester-peptide) copolymers as it has been carried out in this 

Thesis generated biphasic materials with the two phases organized in ordered 

arrangements. The poly(ester-peptide) copolymers with the amino acids  

conveniently protected were able to self-assemble in nanoparticles in spite of 

their poor amphiphilic character. Water-soluble copolymers were obtained by 

deprotection of the amino acid residues, which were able to self-assemble in 

water to form 100-200 nm nanoparticles. The peripheral location of the either 

positive or negative charged segments made these nanoparticles particularly 

suitable for anchoring charged molecules by ionic coupling.    

III. Macrolactones with inherent functionalities are interesting monomers to design 

complex polymeric architectures. The double bond present in the globalide 

backbone afforded the possibility to perform post-polymerization reactions 

entailing the introduction of amino functionalities suitable for triggering NCA 

polymerizations. Graft copolymers were prepared from Gl and glutamic acid and 

lysine using this approach. The P[Gl20-g-(LGA)z] and P[Gl20-g-(LL)z] copolymers 
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were found to exhibit a great potential as hosts for  doxorubicin and DNA, 

respectively. 

IV. The amino-functionalized macroinitiators PPDL10-NH2 and P(Gl8-co-(Gl12-NH2) 

were proven to initiate the polymerization of Ala-NCA to render diblock and graft 

poly(macrolactone-alanine) copolymers. A conformational mixture of α-helical 

and β-sheet forms was adopted by the polyalanine counterpart in both types of 

copolymers. The diblock copolymers formed nanoparticles with diameters 

between 300 and 350 nm while only large aggregates from P[Gl20-g-(Ala)z] 

copolymer were obtained instead.  

V. Copolymerization of macrolactones (Gl or PDL) mediated by Novozyme 435 in 

solution afforded PGl-r-PPDL copolyesters covering the whole range of 

compositions. Interestingly, the copolymers were found to adopt the same crystal 

structure for any composition. It seems that the two monomeric units   are 

isomorphicallly replaced within the crystal lattice. 

VI. Gl served as excellent comonomer to introduce functionalities in their copolymers 

making them susceptible to undergo post-polymerization reactions. Amino groups 

were introduced in PGl-r-PPDL copolyesters through the Gl moieties, which were 

then used to initiate the BLG-NCA polymerization. After the removal of Bn 

groups, hybrid copolymers bearing COOH functional groups were formed with the 

capacity of entrapping  DOX�HCl and to release it at a pH-controlled rate.  

VII. PEGlylation is a well-recognized method of minimizing opsonization of polymeric 

nanoparticles while running in the blood flow. P(Gl-g-Phez)y-b-PEG56-b-P(Gl-g-

Phez)y copolymers were prepared by using diamino-ended PEG as initiator for 

ROP of Gl and subsequent grafting of the amino-functionalized Gl units by ROP 

of Phe NCA.   Well shaped nanoparticles with a core integrated by Gl-(Phez) 

segments and the PEG block located on the surface were made by self-

assembling of these copolymers. The presence of the L-phenylalanine on 
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nanoparticle core will improve their affinity for aromatic drugs enhancing therefore 

the entrapping efficiency as nanocarrier.  
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Annexes 

Annex A. Supporting information of Chapter 4 
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Figure A1.  1H NMR spectra of: a) Allylamine, b) AllA-PPDL before purification, and c) 
AllA-PPDL after purification (Table 1, entry 8). 

 

Figure A2. 1H NMR spectrum of PPDL initiated by hexylamine before purification 
(Table 1, entry 2). 
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Figure A3. 1H-NMR spectra of the PPDLxPEG56PPDLx triblock copolymers. 
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Figure A4. 1H NMR spectra of a) A-PEG56-A, b) copolymer PPDL46PEG56PPDL46 
before purification, and c) copolymer  PPDL46PEG56PPDL46 after purification. 
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Figure A5. 1H NMR spectra of: a) HA-PPDL, b) PPDL-DEG-PPDL, c) AllA-PPDL. 
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Figure A6. 1H NMR spectra of the triblock copolymers displaying the end-group 
analysis of: a) PPDL16PEG56PPDL16, b) PPDL46PEG56PPDL46, and c) 
PPDL191PEG56PPDL191. 

 

 

 

 

 

 

 

 

 

Figure A7. WAXS profiles of PPDL191PEG56PPDL191 triblock copolymer (a) at heating, 
and (b) at cooling 
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Figure A8. Size distribution profiles of nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A9. SEM images of nanoparticles made from PPDL16PEG56PPDL16 (a), 
PPDL46PEG56PPDL46 (b) and PPDL191PEG56PPDL191(c) triblock copolymers. 
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Figure A10. Compared DSC traces for PPDLxPEG56PPDLx triblock copolymers in bulk and as 
nanoparticles.  

 

 

 

 

 

 

 

Table A1. Melting temperatures and enthalpies of  PPDLxPEG56PPDLx 

triblock copolymers in bulk and as nanoparticles. 
In bulk  NPs 

Copolymer 
Tm   

ºC 
∆Hm    
J�g-1   

Tm 

   ºC 
∆Hm 
J�g-1  

PPDL16PEG56PPDL16 92 122 
  

88 8 
 

PPDL46PEG56PPDL46 94 132 
  

92 109 
 

PPDL191PEG56PPDL191 95 180 
  

93 46 
 

40 60 80 100 120 140

Nanoparticles

H
ea

t 
flo

w
 (

u
p)

Temperature (oC)

PPDL
16

-PEG
56

-PPDL
16

a

40 60 80 100 120 140

H
ea

t 
flo

w
 (

up
)

Temperature (oC)

Nanoparticles

PPDL
46

-PEG
56

-PPDL
46

b

40 60 80 100 120 140

H
ea

t f
lo

w
 (

up
)

Temperature (oC)

PPDL
191

-PEG
56

-PPDL
191

Nanoparticles

c



 

 Annex B  253 

 

Annex B. Supporting information of Chapter 5 
  

Calculations based on 1HNMR data for molecular weight determinations 

1H NMR spectroscopy was used to determine polymer number-average 
molecular weights (Mn).  

Firstly, the Mn of the macroinitiator was assessed according the 1HNMR spectrum 
shown in Figure S1A. To calculate the number of repeating units (x) in the PPDL-NH2, 
the peak area of protons a (CONHCH2, δ 3.28) and protons b (CH2OH, δ 4.12) signals 
were compared as followed   

) =
(31.35 + 2.06)/2

2/2
= 16.7~15 

The PPDL15-b-PBLG30 copolymer is taken as representative for Mn copolymer 
determination. The 1HNMR spectrum is displayed in Figure S1B. By comparing the 
area of  signal a (δ 3.51) and signal b (δ 4.52), the degree of polymerization y of the 
PBLG block was obtained according to the equation: 

5 =
34.65/1

4/4
= 34.65~30	

With the respective values of x and y for the PPDL and PBLG blocks, the Mn of the 
block copolymer PPDL15-b-PBLG30 was estimated: 

Mn= [(240*15) + (132) + (219*30)] g�mol-1 

Mn=10,300 g�mol-1 
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Figure B1. 
13C NMR of representative PPDLx-b-pPAAy copolymers.  
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Figure B2. 1H MNR spectra used for calculation of PPDLx-b-pPAAy copolymer compositions. 

 

 



 

 Annex B  256 

 

0 4 8 12 16 20 24 28 32 36 40

D
et

ec
to

r 
re

sp
on

se
 (

a.
u.

)

Retention time (min)

 PPDL
15

-b-PBLG
30

 PPDL
15

-b-PBLG
180

 

 

 

 

 

 

 

 

 

Figure B3. Top: GPC chromatograms of representative PPDLx-b-pPAAy copolymers. Bottom: 
GPC chromatogram from the PPDL15-b-pPBLG30 sample injected in neat HFIP to evidence the 
salt effect.   
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Figure B4. TGA plots of PPDLx-b-PBLGy (a) and PPDLx-b-PZLLy (b) copolymers and their 
respective derivative curves (b and b’). 
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Figure B5. Second heating DSC traces of PPDLx-b-pPAAy copolymers. a) PPDLx-b-PBLGy; b)  
PPDLx-b-PZLLy.     
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Figure B6. SAXS profiles of the indicated copolymers at both heating and cooling. 

 

 

 

 

 

 

 

Figure B7. Polarizing optical micrographs of the PPDL15-b-PBLG80 copolymer taken at room 
temperature from a film casted from chloroform (a) and from a film solidified from the melt (a’).  

a a’ 

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

PPDL
15

-b-PBLG
80

0.3 0.6 0.9 1.2 1.5

27 nm

 

13.5 nm

13.5 nm

27 nm

150 oC
 

q (nm-1)

10 oC

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

0.2 0.4 0.6 0.8

27 nm

13.5 nm

13.5 nm

150 oC

 

q (nm-1)

10 oC

27 nm

0.2 0.4 0.6 0.8 1.0 1.2 1.4

PPDL
20

-b-PZLL
100

130 oC

 

q (nm-1)

10 oC

0.2 0.4 0.6 0.8 1.0 1.2 1.4

 

q (nm-1)

10 oC

130 oC



 

 Annex B  259 

 

1800 1750 1700 1650 1600 1550 1500

200 oC

160 oC

100 
o
C

60 oC

T
ra

ns
m

itt
an

ce
 

wavenumber (cm-1)

25 oC

a)

α-helix

 

1800 1750 1700 1650 1600 1550 1500

β-sheet

T
ra

ns
m

itt
an

ce

wavenumber (cm-1)

200 oC

160 oC

100 oC

60 oC

25 oC

b)
α-helix

 

Figure B8. FTIR spectra recorded at different temperatures highlighting the amide I and II 
bands region: a) PPDL15-b-PBLG80 and b) PPDL20-b-PZLL100. 
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Figure B9. Relative crystallinity vs crystallization time for the isothermal crystallization of 
the indicated copolymers previously heated at 93 oC.  
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Figure. C1. 
1H-NMR (CDCl3) spectra of: (a) polyglobalide, (b) poly[Gl8-co-(Gl-AET)12], and (c)  

poly[Gl8-co-(GlNH2)12] (DMSO-d6). 
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Figure C2. 
13C NMR (CDCl3/TFA) spectra of a) poly[Gl20-graft-(BLG)5] and b) poly[Gl20-graft- 

(ZLL)5] copolymers. 
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Figure C3. GPC traces of poly[Gl20-graft-(AA)z] copolymers and precursors: BLG-grafted (left) 
and ZLL-grafted (right). a: poly[Gl8-co-(AA-NH2)12], b: poly[Gl20-graft-(BLG or ZLL)5], c: poly[Gl20-
graft-(LGA or LL)5]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C4. TGA traces (a,b) registered for protected poly[Gl20-graft-(AA)z] copolymers 
and their respective derivative curves (a’,b’). 
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Figure C5. TGA traces (a,b) registered for deprotected poly[Gl20-graft-(AA)z] copolymers 
and their respective derivative curves (a’,b’). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C6. DSC curves (2nd heating) of protected poly[Gl20-graft-(pAA)z] copolymers and their 
parent homopolymers. 
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Fig. C7. Scattered light intensity vs. concentration for deprotected poly[Gl20-graft-(AA)z] 
copolymers. The CMC is taken as the point of intersection of the two straight lines. 
 

 

 

 

 

 

 

 

 

 

   

 

Figure C8. Size distribution profiles and TEM micrographs of nanoparticles made of: a) 
Poly[Gl20-graft-(LGA5)] and b) Poly[Gl20-graft-(LL12)] by using the nanoprecipitation method.  
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Figure C9. Size distribution profiles of nanoparticles measured along incubation time in water: 
a) Poly[Gl20-graft-(LGA)5] and b) poly[Gl20-graft-(LL)12]. c) Plot of diameters against incubation 
time. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C10. DLS profile of the poly[Gl20-graft-(LGA)5] + poly[Gl20-graft-(LL)12]. polyplex formed 
upon addition of the former to the latter. 
 

500 
nm  

1 µm

0 24 48 72 96 120 144 168
10

100

1000

Poly[Gl20-graft-(LGA)5]

Poly[Gl20-graft-(LL)12]

S
iz

e 
(n

m
)

Time (h)

c)

1 10 100 1000 10000
Size (nm)

 Poly[Gl
20

-graft-(LL)
5
]

 Poly[Gl
20

-graft-(LGA)
5
]

 Polyplex 

1 10 100 1000 10000
0

2

4

6

8

10

12

In
te

n
si

ty

Size (nm)

 0
 24 h
 48 h
 72 h
 96 h
 120 h
 148 h

b)

1 10 100 1000 10000
0

1

2

3

4

5

6

7

8
In

te
ns

ity

Size (nm)

 0
 12 h
 24 h
 48 h
 72 h
 96 h
 120 h
 148 h

a)



 

 Annex C  266 

 

10 100 1000
In

te
ns

ity
 (

a.
u.

)

D (nm)

      N/P
 7
 10
 15
 20
 40
 70
 140
 Poly[Gl

20
-graft-(LL)

5
]

 
Figure C11. DLS profiles of polyplexes formed from poly[Gl20-graft-(LL)5] and stDNA. 
 
 



 

 Annex D  267 

 

Annex D. Supporting information of Chapter 7 
 
 

 

 

 

 

 

 

Scheme D1. Synthetic pathway leading to tPPDL-NH2 macroinitiator . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D1. 1H NMR (CDCl3/TFA) spectra of PPDLx-b-PAAy diblock copolymers: (a) PPDL15-b-
PLGA180, and (b) PPDL20-b-PLL190  
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Figure D2. TGA traces (a, b) and derivative curves (a’,b’) of the PPDLx-b-PAAy diblock 

copolymers.  
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Figure D3. DSC curves (second heating) of the PPDLx-b-PAAy diblock copolymers.  
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Figure D4. Enlarged region of the PPDL20-b-PLL100 diblock copolymer XRD profiles evidencing 
the presence of the 1.4 nm reflection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D5. Critical micelle concentration of the PPDLx-b-PAAy copolymers: (a) PPDL15-b-
PLGA80 and (a’) PPDL15-b-PLGA180 and (b) PPDL20-b-PLL100 and (b’) PPDL20-b-PLL190.  
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Figure D6. 1H NMR spectrum (TFA-d) of the (PPDL15-b-PLGA80)+DOX conjugate containing 
dioxane as internal standard. 
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Figure E1. 1H NMR (DMSO-d6) spectrum of Ala-NCA.  

 

Figure E2. 
1H NMR (CDCl3) spectra of PPDL10 (a) and PGl20 (b). 
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Figure E3. 1H NMR (CDCl3/TFA) of PAla50.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E4. 1H NMR spectra of the PPDL10NH2 (CDCl3) and P[Gl8-co-(GlNH2)12] (DMSO-d6) 
macroinitiators.  
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Figure E5. 1H and 13C NMR (CDCl3/TFA) spectra of the indicated PPDL10-b-PAlay diblock 
copolymers. 
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Figure E6. 1H NMR (CDCl3/TFA) spectrum of P[Gl20-g-(Ala)20] graft copolymer. *DMF. 

 

 

 

 

 

 

 

 

 

 

 

Figure E7. Derivative curves of the TGA traces registered for analysis of the PPDL10-b-PAlay 

diblock (a) and P[Gl20-g-(Ala)z] (b) graft copolymers. 
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Figure E8. DSC curves of PPDL10-b-PAla60 and PPDL10-b-PAla200 diblock and P[Gl20-g-(Ala)20] 
graft copolymers. 

 

 

 

 

 

 

 

 

 

 

Figure E9. FTIR 1800-1500 cm-1 spectral region displaying the Amide I and Amide II bands 
recorded at heating over the 25-250 ºC range of temperatures.  a) PPDL10-b-PAla200 and b) 
P[Gl20-g-(Ala)20] copolymers. 
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Figure E10. WAXS profiles at cooling and heating of PDL10 (a, a’), PGl20 (b, b’) and PAla50 (c). 
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Figure E11. WAXS (a) and SAXS (b) profiles of P[Gl20-g-(Ala)20] graft copolymer registered  at 
cooling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E12. WAXS and SAXS profiles registered at heating from PPDL10-b-PAla60 (a, a’) and 
PPDL10-b-PAla200 (b, b’) block copolymers. 
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Figure E13. DLS profile of particles prepared from P[Gl20-g-(Ala)5] graft copolymer.  
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Annex F. Supporting information of Chapter 9 

 

 

 

 

 

 

 

 

 

 

 

Figure F1. 1H NMR (CDCl3) of the P(Gl13-r-PDL87) copolyester. 

 

Figure F2. 1H NMR (CDCl3) of the P(Glx-r-PDLy) copolyesters 
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Figure F3. 
13C-NMR spectra of Gl and PGl highlighting the peaks of the different isomers.  
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Figure F4. TGA traces (a) and derivative curves (b) of the P(Glx-r-PDLy) copolyesters.  
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Figure F5. DSC traces of P(Glx-r-PDLy) copolyesters recorded at the second heating in the -30-
200 ºC range.  
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Figure F6. Evolution of the X-ray diffraction (SAXS and WAXS) profiles recorded at heating 

over the 0-120 oC range of poly(globalide) (a, a’) and poly(ω-pentadecalactone) (PPDL) (c,c’). 
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Figure F7. Evolution of the X-ray diffraction (SAXS and WAXS) profiles recorded at heating 
over the 0-120 oC range of the P(Gl33-r-PDL67) (b, b’).  
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Figure F8. SAXS profiles highlighting the signal at 1.9-2.0 nm arising from the axial 
repeat of the crystal structure of P(Glx-r-PDLy) copolyesters: a) recorded at 0 ºC and b) 
recorded at 0 ºC after heating at 120 ºC.   

 

Figure F9. 1H NMR (CDCl3) spectra of the P[(Gl-BAET)13-r-PDL87] (a), and P[(Gl-NH2)13-r-
PDL87]. 
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Figure F10. GPC curves of the P[(Glx-r-PDLy)-g-(LGlu)z] copolymers. Peaks observed at elution 
times longer than 25 min are due to salts present in the running solvent.  

 

Figure F11. 1H NMR (CDCl3/TFA) spectra of the P[(Gl48-r-PDL52)-g-(BLG)2] (a), and P[(Gl48-r-
PDL52)-g-(LGA)2]. 
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Figure F12. TGA traces (a, a’) and derivative curves (b, b’) of the P[(Glx-r-PDLy)-g-(BLG)z] and 
P[(Glx-r-PDLy)-g-(LGA)z] copolymers.  
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Figure F13. FTIR spectra highlighting the Amide 1800-1500 cm-1 region at different 
temperatures of: (a) P[(Gl13-r-PDL87)-g-(BLG)10] and (b) P[(Gl48-r-PDL52)-g-(BLG)2] copolymers.  
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Figure F14. Evolution of the X-ray diffraction (WAXS and SAXS) profiles of the P[(Gl48-r-PDL52)-
g-(BLG)2] graft-copolymer  recorded at heating and cooling over the 10-120 oC range.  

 

 

Figure F15. Evolution of the X-ray diffraction (SAXS and WAXS) profiles of the P[(Gl48-r-PDL52)-
g-(LGA)2] graft-copolymer  recorded at heating and cooling over the 0-200 oC range.  
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Figure F16. SEM images of nanoparticles made of P[(Gl13-r-PDL87)-g-(BLG)10] copolymer. 
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Figure F17. DLS profiles (a), and critical micelle concentration (b) of micelles-like objects 
derived of the P[(Gl13-r-PDL87)-g-(LGA)10] copolymer.  
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Figure F18. DOX�HCl is an amphiphilic drug containing a protonable amino group in the sugar 
moiety. 
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Annex G. Supporting information of Chapter 10 

 

Figure G1. 1H-NMR (DMSO-d6) spectrum of the L-phenylalanine N-carboxyanhydride (Phe-
NCA). 

 

 

Fig. G2. Synthesis of the (PGlx-NH2)-PEG56-(PGlx-NH2) macroinitiator. 
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Table G1. Results for the synthesis of (PGl)y-b-PEG56-b-(PGl)y triblock copolymers 

Polymer Feed molar 
ratio 

NH2 /Gl 

Yiel
d 

(%) 

Molar
a
 

compositon 
PEG/PGl 

Mn
a 

(g�mol
-1

) 
Thiol-ene 

Coupling 

effiency
b
 

(%) 

PGl15-b-PEG56-b-PGl15  1/40 90 62/38 10800 96 

(PGl)70-b-PEG56-b-PGl70 1/150 89 28/72 36850 65 

aCopolymer composition (%-mole) 
bCalculated from 1H-NMR. 

 
 

 

Figure G3. 1H-NMR (CDCl3) spectra of: a) PGl15-b-PEG56-b-PGl15 and b) (PGl-BAE)15-b-PEG56-
b-(PGl-BAE)15. 
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Figure G4. 1H-NMR (DMSO-d6) spectrum of the (PGlx-NH2)-b-(PEG56)-b-(PGlx-NH2) 
macroinitiator. *Traces of acetone. 
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Figure G5. SEC traces of (a) P(Gl15-g-Phe4)-b-PEG56-b-P(Gl15-g-Phe4) and (b) P(Gl70-g-Phe8)-

b-PEG56-b-P(Gl70-g-Phe8) copolymer. 
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Figure G6. 1H-NMR (CDCl3/TFA) spectra of: (a) P(Gl15-g-Phe2)-b-PEG56-b-P(Gl15-g-Phe2) 

and (b) P(Gl70-g-Phe8)-b-PEG56-b-P(Gl70-g-Phe8) copolymer. *Traces of solvent. 

 



 

 Annex G  292 

 

100 200 300 400 500 600 700

R
em

a
in

in
g

 w
e

ig
ht

Temperature (oC)

P(Gl
15

-g-Phe
2
)-b-PEG

56
-b-P(Gl

15
-g-Phe

2
)

P(Gl
15

-g-Phe
4
)-b-PEG

56
-b-P(Gl

15
-g-Phe

4
)

 P(Gl
70

-g-Phe
8
)-b-PEG

56
-b-P(Gl

70
-g-Phe

8
)

a)

 

100 200 300 400 500 600
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0

D
er

iv
at

iv
e 

re
m

ai
ni

ng
 w

ei
gh

t 
(%

 0
C

-1
)

Temperature (0C)

 P(Gl
15

-g-Phe
2
)-b-PEG

56
-b-P(Gl

15
-g-Phe

2
)

 P(Gl
15

-g-Phe
4
)-b-PEG

56
-b-P(Gl

15
-g-Phe

4
)

 P(Gl
70

-g-Phe
8
)-b-PEG

56
-b-P(Gl

70
-g-Phe

8
)

b)

 

Figure G7. (a) TGA traces and (b) derivative curves of the (PGlx-g-Phey)-b-PEG56-b-(PGlx-g-

Phey) copolymers.   
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Figure G8. DCS curves of the (PGlx-g-Phey)-b-PEG56-b-(PGlx-g-Phey) copolymers.   
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Figure G9. Evolution of the X-ray diffraction profiles of P(Gl15-g-Phe4)-b-PEG56-P(Gl15-g-Phe4) 
recorded at cooling over the 10-200 oC range: (a) SAXS and (b) WAXS. 
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Figure G10. DLS profiles of nanoparticles prepared by (a) nanoprecipitation and (b) emulsion-
solvent evaporation.  

 

 

4 6 8 10 12 14 16 18 20

200 oC

 

q (nm-1)

10 oC

0.46 nm

1.2 nm

b)

1 2 3 4

200 oC

 
q (nm-1)

10 oC

5.3 nm

3.8 nm

a)



 

 Annex G  294 

 

   

Figure G11. SEM images of nanoparticles derived of the P(Gl70-g-Phe8)-b-PEG56-b-P(Gl70-g-
Phe8’) copolymer. NPs were prepared by the emulsion-solvent evaporation method. 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

Figure G12. (a) SEM and (b) TEM images of nanoparticles made of P(Gl70-g-Phe8)-b-PEG56-
P(Gl70-g-Phe8). NPs were prepared by the nanoprecipitation. 
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Figure G13. SEM images of nanoparticles derived of the P(Gl15-g-Phe4)-b-PEG56-b-P(Gl15-g-
Phe4) copolymer. NPs were prepared by the emulsion-solvent evaporation method. 
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Figure G14. Size measurements by DLS over the time to evaluate the stability of the 
nanoparticles derived of the P(Gl15-g-Phe4)-b-PEG56-P(Gl15-g-Phe4) copolymer.  

 

 



 

 

 


