
Supporting task creation inside FPGA devices

Jaume Bosch∗†, Carlos Álvarez∗†, Daniel Jiménez-González∗†
∗Barcelona Supercomputing Center, Barcelona, Spain
†Universitat Politècnica de Catalunya, Barcelona, Spain

E-mail: jbosch@bsc.es, {calvarez, djimenez}@ac.upc.edu

Keywords—Heterogeneous computing, Device offloading, Task
Based Parallel Programming Models, High-performance comput-
ing.

I. INTRODUCTION

The most common model to use co-processors/accelerators
is the master-slave model where the slaves (co-
processors/accelerators) are driven by a general purpose
cpu. This simplifies the management of the accelerators
because they cannot actively interact with the runtime and
they are just passive slaves that operate over the memory
under demand. However, the master-slave model limits system
possibilities and introduces synchronization overheads that
could be avoided.

To overcome those limitations and increase the possibilities
of accelerators, we propose extending task based programming
models (like OpenMP [1] or OmpSs) to support some runtime
APIs inside the FPGA co-processor. As a proof-of-concept,
we implemented our proposal over the OmpSs@FPGA en-
vironment [2] adding the needed infrastructure in the FPGA
bitstream and modifying the existing tools to support creation
of children tasks inside a task offloaded to an FPGA accelera-
tor. In addition, we added support to synchronize the children
tasks created by a FPGA task regardless they are executed in a
SMP host thread or they also target another FPGA accelerator
in the same co-processor.

II. DESIGN

The main design goal is to allow interaction of the FPGA
with the runtime to make both parts cooperate in the appli-
cation execution beyond the current offload model. The new
interaction capabilities include the creation of tasks inside a
device task and child task synchronization.

Listing 1 shows an example code where just replac-
ing the line 6 (with clause device(smp)) by line 7
(device(fpga)), we will have a FPGA accelerator that
creates and then synchronizes tasks inside the FPGA. All
interactions are based on queues (memory regions) where the
FPGA accelerators write requests to the runtime. Then, the
runtime reads these requests and makes the needed actions.
Some interactions are optimized and directly read and handled
inside the FPGA, avoiding the latency between the host and
the device. This way there is runtime support in both parts of
the machine and both are coordinated when needed to correctly
execute the application.

Queues and new IPs to manage them are placed inside
the Task Manager as shown in Fig. 1. The proposed design

1 #pragma omp target device(fpga) num_instances(3)

2 #pragma omp task copy_inout([BS]a)

3 void update_fpga(int *a, int val, size_t BS) {

4 for (size_t i=0; i<BS; ++i) a[i] += val;

5 }

6 #pragma omp target device(smp) //< Task exec. in SMP

7 //#pragma omp target device(fpga) //< Task exec. in FPGA dev.

8 #pragma omp task copy_inout([LEN]a)

9 void update_blocked(int *a, int val, size_t LEN, size_t BS) {

10 for (size_t i=0; i<LEN; i+=BS)

11 update_fpga(a+i, val, BS);

12 #pragma omp taskwait

13 }

14 int main(...) {

15 int *a = (int *)malloc(NUM_ELEMENTS*sizeof(int));
16 update_blocked(a, 2019, NUM_ELEMENTS, NUM_ELEMENTS_BLOCK);

17 #pragma omp taskwait

18 }

Listing 1: OmpSs example of FPGA nested tasks

includes three new memory modules: Internal Ready Queue
(Int. Ready Q), Remote New Queue (Remote New Q) and
Remote Finished Queue (Remote Fini. Q); four new IPs:
Remote Finished Task Manager (Rem. Fini. TM), New Task
Manager (New TM), Taskwait Task Manager (Taskwait TM)
and Scheduler Task Manager (Scheduler TM); and an addi-
tional interconnection network between the accelerators with
creation capabilities and the Task Manager. The new Task
Manager elements are automatically added to the design by
autoVivado when needed by any of the accelerators. More-
over, Mercurium adapts the wrapper around the accelerator to
support the runtime API calls from user code. Those calls may
be explicitly invoked by the user or automatically inserted by
the compiler during the translation phase where the OpenMP
directives are translated into API calls.

Task Manager

Ready TM

Finished TM

Accel. Usage

Ready Queue

Finished Queue

Accelerator 0
(Creation Capabilities)

Accelerator 1

Accelerator 2

Int. Ready Q.

Remote Fini. Q.
Rem. Fini. TM

Taskwait TMRemote New Q.

New TMScheduler TM

Accelerator 3

Fig. 1. OmpSs@FPGA bitstream organization with the proposed design

6th BSC Severo Ochoa Doctoral Symposium

34



III. EVALUATION

To analyze the performance, we used the synthetic bench-
mark in listing 1 that updates all elements of an array.
Therefore, we parameterize the benchmark with the length of
the array and the chunk length. The tools used to generate
the application bitstream and binary are: Vivado Design Suite
2016.3, GNU C/C++ Compiler 6.2.0, PetaLinux Tools 2016.3
and all modified OmpSs@FPGA tools of release 1.2.1. The
applications are run in a Zynq Ultrascale+ MPSoC Chip
XCZU9EG-FFVC900 [3].

Fig. 2 shows the average execution time (y-axis) when
decreasing the task size (chunk length) and increasing the
number of tasks (x-axis). Note that the total amount of work
remains constant for all the executions, as the array size equals
the chunk length times the number of tasks. The same result
is shown for different configurations, all of them executed
within the OmpSs@FPGA environment. The label of each
configuration defines the location where the tasks are created
and the number of accelerators used to execute them.

Fig. 2. Synthetic benchmark execution time with different configurations

The results show that the creation and management of
FPGA tasks directly from the FPGA is faster than doing it
from the host side. For any pair of benchmark arguments, the
reduction of the execution time increases with the number
of accelerators. This is because of the lower task creation
overheads in our proposed implementation in comparison to
the already implemented management in the host runtime.
Consequently, the FPGA creation is able to discover more
parallelism, increasing the accelerators utilization and reducing
to overall execution time. In contrast, the host management and
the FPGA management take a similar execution time when the
task size is large enough to hide the runtime overheads with
the tasks execution.

(a) smp (b) fpga

Fig. 3. Execution traces of synthetic benchmark with 5 accelerators, 1.000
task size and 10.000 tasks

The execution traces in Fig. 3 show that the FPGA tasks
execution take less time when they are directly created on

the FPGA than when they are created and sent by the SMP
threads. In addition, the FPGA_acc 1 accelerator does not
execute any task when the FPGA tasks are created by the
SMP threads and it runs the update_blocked task until all
children tasks finish. The FPGA accelerators does not have the
possibility to block a task and pick another one for execution,
in contrast to SMP threads.

As Fig. 3b shows, the SMP threads are under-utilized
when the FPGA creates the tasks directly. In contrast, they
are needed in the SMP creation to create the tasks, offload
them to the FPGA and retrieve the finalization messages that
allow the host synchronize the remote tasks. With the proposed
extension, we are able to replace the general purpose cores by
an small FPGA accelerator that consumes a small portion of
power when compared but does the same work.

IV. CONCLUSION

This paper presents an extension of the OmpSs@FPGA
ecosystem to support task creation and synchronization oper-
ations in the FPGA co-processors. This extension enables a
new dimension of possibilities for application programmers
as they can mix tasks for different devices and nest them
without restrictions. Finally, the initial performance results
show that the creation of FPGA tasks inside the same FPGA
device allows the usage of very fine-grain tasks thanks to the
significant overheads reduction.

V. ACKNOWLEDGMENTS

This work is under review for proceedings of the Interna-
tional Symposium on Memory Systems (EUROPAR), 2019.
This work is partially supported by the European Union H2020
Research and Innovation Action through the EuroEXA project
(GA 754337) and HiPEAC (GA 687698), by the Spanish
Government (projects SEV-2015-0493 and TIN2015-65316-P,
grant BES-2016-078046), and by the Generalitat de Catalunya
(contracts 2017-SGR-1414 and 2017-SGR-1328).

REFERENCES

[1] L. Dagum and R. Menon, “OpenMP: an Industry Standard API for
Shared-Memory Programming,” Computational Science Engineering,
IEEE, vol. 5, no. 1, pp. 46–55, Jan 1998.

[2] J. Bosch and et al., “Application Acceleration on FPGAs with
OmpSs@FPGAS,” 2018 International Conference on Field-
Programmable Technology (FPT), 2018.

[3] Xilinx, Inc. (2019, April) ZYNQ Ultra-
Scale+ MPSoC Overview. [Online]. Available:
www.xilinx.com/support/documentation/data sheets/ds891-zynq-
ultrascale-plus-overview.pdf

Jaume Bosch received the B.S. and M.S. degrees
in Computer Science from the Technical University
of Catalunya (UPC) in 2015 and 2017, respectively.
Currently, he is is a PhD student in the department of
Computer Architecture of UPC and in the Program-
ming Models Group of Barcelona Supercomputing
Center (BSC). His research interest lies in paral-
lel, distributed and heterogeneous runtime systems
for High Performance Computing, specially systems
with hardware accelerators like FPGAs or many-core
architectures.

6th BSC Severo Ochoa Doctoral Symposium

35




