
 1

An Approach to Reconcile the Agile and CMMI Contexts in Product Line

Development

Fredy Navarrete, Pere Botella and Xavier Franch

Universitat Politècnica de Catalunya {fjnavarrete, botella, franch}@lsi.upc.edu

http://www.lsi.upc.edu/~gessi

Abstract

Software product line approaches produce reusable

platforms and architectures for products set developed

by specific companies. These approaches are strategic

in nature requiring coordination, discipline,

commonality and communication. The Capability

Maturity Model (CMM) contains important guidelines

for process improvement, and specifies "what" we must

have into account to achieve the disciplined processes

(among others things). On the other hand, the agile

context is playing an increasingly important role in

current software engineering practices, specifying

"how" the software practices must be addressed to

obtain agile processes. In this paper, we carry out a

preliminary analysis for reconciling agility and

maturity models in software product line domain,

taking advantage of both.

1. Introduction

The way software products are being developed has

changed over the course of the time. Actually, software

product development tends to assure the needs of both

individual and grouped customers in order to adapt

these needs to different market types [1]. Therefore, the

ability to reuse and producing customizable software

steer the companies to use product line engineering to

improve software products development through reuse

of systems whose functionalities overlap [2]. A

software product line (hereafter, SPL) is a set of

products that together are focused in a particular

market segment or fulfill a particular mission [3]. The

main goals in a SPL are addressed to provide

customizable products at reasonable costs to satisfy the

needs of the market. To achieve these goals it is

necessary to define some important aspects, such as

identifying specific business environments, performing

the marketplace analysis, and defining a scope for the

SPL. Because of these aspects, the SPL emerges by the

recognition of different business opportunities having

into account the tradeoffs between exploring

commonality among software products, architecture-

centric development, and two-tiered organizational

structure [9]. Consequently, we can consider SPL

engineering as a paradigm to develop software

applications using platforms and mass customisation

[4], which needs a strong discipline to produce

products simultaneously, according with company

schedule.

Capability Maturity Models (CMMs) [12] contain

the essential elements of effective and disciplined

software processes. The CMMs have wide acceptance

in the industrial environment for their improvement

guidelines in the software process. The most recent

CMM model is the CMMI (Capability Maturity Model

Integration), which has grouped different CMMs

models in an integrated approach. Structurally, CMMI

is built upon a major organization element, the process

areas. In the capability context, the process areas refer

to “what to do” rather than “how to do it” [3].

On the other hand, in the software development

discipline, some agile methods such as eXtreme

Programming (XP) [13], Scrum [14], Crystal methods

[15], among others, are generating interest in the

industry by the importance of their software

development practices, which refer to “how” we can

drive the software processes to obtain agility. These

agile methods have generated controversy in software

engineering context, because they propose foundations,

processes, and activities to develop software that are

different of plan-driven approaches, for instance as

CMMs.

For this reason, the purpose of this paper is

suggesting an agreement point where we could obtain

mutual benefits for using together the maturity models

and agile methods, taking advantages of the strengths

 2

of both contexts to apply those advantages in a SPL

domain to specify what we can do (with CMMI) and

how we can do it (with the best practices of agile

methods).

The structure of this work begins with the

identification of the main processes involved in a SPL

domain. Then, we study an approach that analyzes the

CMMI in a SPL domain. Next, we study the influence

of the agile context in SPL processes. Afterwards, we

suggest a common point between the CMMI model and

the agile methods, with the help of an example applied

in a specific SPL process, for instance the selection of

Commercial Off-The-Shelf (COTS) component.

Finally, we provide the conclusions of our work.

2. SPL process and practice areas

In SPL the software-involved processes conform to

common platform in which it is possible to build

applications using a collection of reusable artifacts. For

this reason, the SPL engineering paradigm separates

two specifics processes [4, 16]:

o Domain engineering: are the set of processes

specified to define the commonality and the

variability of the SPL. The artifacts produced

during domain engineering are interrelated by

traceability to ensure the definition of the SPL.

o Application engineering: these sets of processes

are responsible of reusing the domain components

and the artifacts, deriving SPL applications from

domain engineering to exploit the commonality

and variability of the SPL.

Essentially, these processes are addressed to preserve

the tradeoffs between the development of core assets,

products development, and management of these

developments for the organization benefits [17]. To

preserve these tradeoffs it is necessary that any

organization must master a collection of activities to

carry out successfully the essential work in a SPL

(software engineering practice areas; technical

management practice areas; and organizational

management practice areas). Based on [3], we

describe briefly the main practice areas in SPL context:

o Software engineering Practice Areas: embrace all

technical activities necessary to create and

developing products. These activities are:

Architecture Definition, Architecture Evaluation,

Component Development, COTS Utilization,

Mining Existing Assets, Requirements

Engineering, Software System Integration, Testing,

and Understanding Relevant Domains.

o Technical Management Practice Areas: represents

all the management activities that are necessary to

support the right way to develop the software

engineering activities. These activities are:

Configuration Management, Data Collection,

Metrics, and Tracking,

Make/Buy/Mine/Commission Analysis, Process

Definition, Scoping, Technical Planning,

Technical Risk Management, and Tool Support.

o Organizational Management Practice Areas: its

responsibility is addressing the organization

around the SPL processes coordinating the

management activities. These activities are:

Building a Business Case, Developing an

Acquisition Strategy, Funding, Launching and

Institutionalizing, Market Analysis, Operations,

Organizational Planning, Organizational Risk

Management, Structuring the Organization,

Technology Forecasting, and Training.

3. Process maturity in SPL

The lack of maturity involved in the software processes

has a negative impact on the successful development of

SPL, because a good definition of software processes is

necessary to help modelling the variability in a SPL.

For this reason recognising CMMs models in SPL life-

cycle could help us achieving a strategic discipline to

address the processes improvement in SPL. Indeed, we

must take into account the disciplined processes to

provide the foundations and attain predictability and

quality [7]. The CMMI model is defined in [5] as a

“process improvement approach that provides

organizations with the essential elements of effective

processes”. Like previous models [12], CMMI

provides guidelines to specify “what” software process

should possess. The CMMI provides the ability to

generate multiple models that may reflect contents from

different bodies of knowledge (e.g., systems

engineering, software engineering, Integrated Product

and Process Development) [6]. CMMI models have

two structured representations: staged representation

and continuous representation. These representations

differ in how they organize the processes areas. These

process areas are a set of related activities that are

performed together to achieve the specific and generic

goals.

 Currently, some organizations applying the CMMI

over the SPL domain to provide process improvement

in their software processes [7]. We use the Table I

which is extracted from [3], to present the influence of

CMMI processes areas over SPL practices areas, where

the process areas define where an organization should

have processes, while the practices areas describe

where an organization should have expertise [3].

 3

Product Line Practice Areas CMMI Process Areas

Software Engineering Practice Areas

Architecture Definition Technical Solution

Architecture Evaluation Verification

Component Development Technical Solution

COTS Utilization Supplier Agreement

Management

Mining Existing Assets (none)

Requirements Engineering Requirements Development

Software System Integration Product Integration

Testing Verification/Validation

Understanding Relevant

Domains

(none)

Technical Management Practice Areas

Configuration Management Requirements Management/

Configuration Management

Data Collection, Metrics, and

Tracking

Measurement and Analysis/

Project Monitoring and

Control/Integrated Project

Management

Make/Buy/Mine/Commission

Analysis

Decision Analysis and

Resolution/ Supplier Agreement

Management

Process Definition Organizational Process

Definition

Scoping (none)

Technical Planning Project Planning

Technical Risk Management Risk Management

Tool Support (none)

Organizational Management Practice Areas

Building a Business Case (none)

Customer Interface

Management

(none)

Developing an Acquisition

Strategy

Supplier Agreement

Management

Funding (none)

Launching and

Institutionalizing

(none)

Market Analysis (none)

Operations (none)

Organizational Planning Project Planning

Organizational Risk

Management

Risk Management

Structuring the organization (none)

Technology Forecasting (none)

Training Organizational Training

Table I. Associations between Product Line Practices

Areas and CMMI Process Areas, taken from [3].

Although the impact of process areas is not direct over

a SPL, because some process areas do not cover the

same ground of practice areas, CMMI is able to

provide guidelines to improve the process discipline

that can steer the SPL development. For example in

[7], CMMI was adopted in a SPL environment

obtaining an important foundation for SPL practices.

4. Agile methods in SPL context

Agile methods are proposed nowadays as a way to

support software systems procurement. The agile

context has had an increasing role in the practices of

software engineering [8]. The starting point of agile

methods was the “Agile Manifesto” [28]. Agile

methods have emerged in software engineering for

some important reasons: traditional methodologies like

plan-driven methods are much automated to be used

with a lot of detail, transforming them into a fictitious

image seeking control over software processes [18];

there are a lot of standards and methods in software

engineering that are not applied by the industry for

ignorance, for their difficulty to be implemented or

because they do not represent the reality of the

organizations [19]. Therefore, agile methods have

generated a wide debate for the controversy of their

foundations, some important argued subjects are: the

tacit knowledge [20, 25], innovation in agile methods

[21], misconceptions about agile methods [22, 23, 25],

among others. Beyond these controversies, the agile

methods have gained in a few years a wide acceptance

in industrial environment, and some software

specialists have recommended their use [26, 27],

specially because the agile methods suggest the best

practices to specify “how” the software development

could be driven to obtain agility.

In the SPL domain some important agile aspects

may be considered, such as: the need of division of

work in a SPL oblige us to consider sharing the

knowledge between different disciplines involved [29];

there are not specialized techniques for any SPL

inspections, reviews, or structured walkthroughs [4];

the need to obtain flexibility in a SPL architecture that

may be adaptable either to different customers

requirements or different software components (like

COTS components) [3]. These aspects could be

supported by agile methods, because these agile

approaches have practices based on time-boxed

iteration, evolutionary development, adaptive planning,

evolutionary delivery, and inclusion of other values and

practices that encourage agility in software

development context [30]. In addition, the SPL may

take advantage of three important aspects that define

the agility to affront the SPL variability: creating and

responding to change, being nimble and able to

improvise, and balancing flexibility and structure [31].

Although there is not a lot of literature analyzing

agile values and principles in the SPL context, we must

take into account some important aspects of SPL before

accepting agile foundations, such as: the SPL tends

toward a long-lived life-cycle, for this reason to

maintain the information is necessary; the conceptual

integrity in a SPL is very important, for this aspect the

requirements of customers specifics may affect it; the

SPL targets satisfying the needs of various customers

 4

rather satisfying the individual needs; among others.

These aspects help us to evaluate the influence of agile

principles over SPL practice areas. Therefore, in Table

II we have analyzed this influence, representing it with

a plus sign if the agile principle has a positive impact in

the practice area, or with a less sign to represent the

negative impact of agile principle over the practice

area; besides, the zero number represents the absence

of this principle over the practice area. In this analysis

it is possible to find together both the plus and less

signs indicating that the same principle may have

contradictory effects. We identify the agile principles

in the columns with a capital letters, and identify SPL

practice areas in the rows.

Agile Principles Product Line

Practice Areas
A B C D E F G H I J K L

Software

Engineering

+

—

+

—

+ + +

—

+

—

+

—

+ + — +

—

+

—

Technical

Management
+ +

—

+ + +

—

— +

—

+ + — +

—

+

Organizational

Management
+ + 0 +

—

+

—

+

—

0 + + — — +

Table II. Impact of agile principles into Practice Areas.

Next, we describe briefly the main outcome of our

analysis by each agile principle over SPL practice

areas:

A Our highest priority is to satisfy the customer

through early and continuous delivery

o “—” in SPL there is not a unique customer to

be satisfied,

o “+” but is important that the SPL can be

driven to satisfy the multiple variability of

grouped customers.

B Welcome changing requirements, even late in

development. Agile processes harness change for

the customer’s competitive advantage

o “—”in some practice areas the requirements

are freezing, e.g. in the core asset design,

o “+” but the architecture must be flexible to

support the changing requirements of grouped

customers to develop a product-specific.

C Deliver working software frequently, from a

couple of weeks to a couple of months, with a

preference to the shorter time scale

o “0” this principle focuses in the software

development,

o “+”although some practice areas need to

develop software for a successful integration

of COTS components (e.g., glue code) and to

deliver specific software products.

D Business people and developers must work

together daily throughout the project

o “+” many disciplines must work together in a

SPL, to obtain a knowledge shared between

the teams,

o “—” but the geographic distribution of SPL

teams can avoid a fluid communication.

E Build projects around motivated individuals. Give

them the environment and support they need, and

trust them to get the job done

o “—” the SPL is market-driven, for this

reason, it is not easy to embrace individual

expectations of specific customer to build a

SPL project,

o “+” although all practice areas needs well

formed teams to achieve the goals project.

F The most efficient and effective method of

conveying information to and within a

development team is face-to face conversation

o “—” in a SPL it is common that different

teams works in separate places,

o “+” but for the successful develop of practice

areas it is necessary to have into account flow

communication.

G Working software is the primary measure of

progress

o “0” this principle focuses in software

development,

o “+”although in SPL, delivering software for

product-specific it is necessary,

o “—” but maybe, would be necessary using

others measures in specifics practice areas to

obtain the project progress.

H Agile processes promote sustainable development.

The sponsors, developers, and users should be

able to maintain a constant pace indefinitely

o “+” in SPL context many disciplines and

roles have to communicate between them.

I Continuous attention to technical excellence and

good design enhances agility

o “+” the technical excellence in SPL process

helps to achieve well-defined processes for the

domain engineering and application

engineering.

J Simplicity--the art of maximizing the amount of

work not done--is essential

o “—” the SPL process embraces complex

activities for this reason it is difficult

reconciling simplicity with the practice areas.

K The best architectures, requirements, and designs

emerge from self-organizing teams

o “—” a good definition of SPL structure

depends on a lot of factors behind the self-

organizing teams,

 5

o “+” but practice areas need well-formed

teams to define the main aspects to develop

the SPL successful.

L At regular intervals, the team reflects on how to

become more effective, then tunes and adjusts its

behavior accordingly

o “+” the SPL involves different disciplines

that need shared knowledge, the regular

reflections can improve the behaviour of SPL

teams,

o “—” but is not clear that the regular

reflections can be applied over all SPL

process.

The important thing with this analysis is how we can

apply in an appropriate way the agile principles over

SPL context, because some agile principles seem

impact negatively or positively. Apparently, the best

way to apply them depends on suitable or unsuitable of

the principle at the moment of SPL processes

development.

5. Common points between agile and

CMMI contexts

In previous sections we have studied the agile and

CMMI contexts applied in the SPL context. In this

section, we suggest a balance that shows a situation

which help us to determine an agreement point of

reconciliation among the necessary discipline to

develop SPL processes and the necessary activities to

carry out agile processes, so we can define “what we

can do” and “how we can do it” to develop

successfully the SPL processes, taking advantage of

CMMI and Agile contexts.

These two contexts have generated controversy in

software development [21]. In section 4, we have

introduced some subjects of this controversy. Next, we

describe briefly some specific subjects about CMM: in

CMM models, the people who work in the project

development should make an effort to practice and to

achieve skills which will be institutionalized by the

organization, forcing them not to pay attention in the

tasks and needs of the project, to pay attention in

objectives and practices that have not been carried out

still, besides, we need in the processes development to

have many candidates practices rather that bureaucratic

and fixed practices [32]; or some authors point out that

the CMMI model help us to manage the bureaucracy

and boilerplate with its emphasis on risk management

and integrated teaming [27]. Beyond these controversy

subjects that have been raised for these contexts [20,

21, 22, 23, 25], some authors are seeking the right way

to work together with CMMs and Agile contexts,

where it is possible to take advantage of two contexts.

For example, Paulk analyzes XP from CMM

perspective [31], he highlights the discipline and

effectiveness of some XP practices; or Boehm, and

Turner suggest to identify 5 critical dimensions (size,

criticality, dynamism, personnel, and culture), that can

be used to describe an organization or a project in

terms of its agile and plan-driven characteristics [33].

In a SPL the practices areas are strategic-driven, so

they require coordination, discipline, and commonality

of an approach than a more independent effort [7]. If

we are able to steer these dependencies properly, we

can obtain high quality, which is the key to high speed

[10]. For this reason we may use the CMMI

organization, because it contains a set of standardized

processes that refer to the organizational maturity level

and includes management, techniques, and support for

the organizational processes [11] specifying what we

must do to address the needs of different projects.

Furthermore, we may aim to take from the agile context

its three main basic aspects such as project

management, collaboration between stakeholders, and

technical excellence [24] to suggest agile practices to

provide a way to specify how the standardized

processes can be driven.

In Figure I, we can observe a possible agreement

point to work together with the disciplined processes

(using CMMI), and the best practices to drive a main

practice areas of SPL (using agile practices). This

agreement point suggests a balance among the agility

and discipline that may be achieved through

improvement is provided over the SPL processes.

For this reason, this agreement point seeks to be

complemented with two important dimensions that

influence any development methodology which takes

into account the system criticality of SPL processes

(system criticality such as: lost of comfort, lost of

discretionary money, lost of essential money, lost of

lives) and the number of people that play a role the

project [15]. With these two dimensions we would be

able to regulate the necessary discipline inside the

processes SPL, using practices that may be adjusted to

the specific needs of the SPL projects, because the

number of people that participate inside the SPL

project and the criticality of SPL processes help us to

apply more or less discipline depending on SPL

processes ceremony.

 6

Figure I. Maturity levels and best practices applied in a

product line practice areas.

This balance may be regarded in one particular SPL

activities, namely acquiring or licensing a COTS

component from the marketplace to be integrated into a

SPL. In Table I we may see the importance and

influence of COTS components over the practice areas

of SPL, because COTS components selection demand

new activities and processes that are different from

software development processes. On the other hand,

the formality and discipline that should be applied

during the selection of a specific component varies

according to component criticality and according to its

impact over processes ceremony. For example, if we

consider integrating two new components into a SPL

that develops a family of products for decision making

based on organizational information, one for the

financial management of data, and another for the

management of the organization news, the necessary

degree of ceremony to acquire these components can

vary, according to the number of people that participate

during the selection and according to processes

criticality. In Figure II, we may observed that the tool

for financial management (represented with the black

box) needs for their selection and integration between 7

- 20 people due to the criticality level of the financial

tool, on the other hand, the tool for news management

(represented with the grey box) needs less staff because

it implies a smaller effort and a smaller criticality level

than the financial tool. We can evaluate with this

identification over which tool we need more planning,

more qualified personal and less ceremony for SPL

processes development.

Figure II. Maturity levels and best practices applied in a

product line practice areas, based on [15].

6. Conclusions

The processes involved in SPL development require

activities and roles to apply coordination, discipline,

and commonality, besides it is necessary to share the

knowledge generated among different disciplines that

participate to attain SPL, with the purpose of creating a

family of products that satisfies the necessities of

grouped customers.

This study analyzes the influence of agile and

CMMI contexts over SPL processes, which have

generated controversy inside the software engineering,

with the purpose of suggesting an agreement point of

reconciliation and balance among the necessary

discipline required to develop a process SPL, and the

agility that we are able to provide to develop a SPL.

For this reason, we seek to take advantage of the

discipline proposed in CMMI, and the agility of the

best agile practices, to identify a point of balance that

define the number of people involved in the SPL

process development and the system criticality that

should be having into account at the moment to carry

out a SPL [15]. These contexts can be applied over

SPL development in a suitable or unsuitable way,

having into account the necessity of ceremony or

formality that are required in SPL processes, helping us

to define what we can do and how we can do it to

develop a SPL satisfactorily.

Currently, the CMMI application over the SPL

context has been studied by the Software Engineering

Institute (SEI) reporting satisfactory results of different

SPL projects where the CMMI model was applied

inside the projects development, e.g., [7]. Moreover,

we have not found literature that analyzes the agile

methods over the SPL context in a similar way that we

have done for COTS selection [34]. For this reason,

this study also seeks to be a beginning point to generate

 7

the necessary foundations to consider the inclusion of

agile methods inside the SPL context.

References

[1] Ulkuniemi, P., and Seppänen, V., “COTS Component

Acquisition in an Emerging Market”. IEEE Software

(Vol. 21, No. 6) 2004, pp. 76-82.

[2] Bayer, J., Gacek, C., Muthig, D., and Widen, T.,
“PuLSE-I: Deriving instances from a product line

infrastructure”. in Proc. Engineering of Computer Based

Systems (ECBS 2000) 2000, pp. 237 – 245

[3] Clements, P., and Northrop, L., Software Product Lines,
Addison-Wesley, 2002.

[4] Pohl, K., Böckle, G., and Linden, F., Software Product
Line Engineering, Springer-Verlag Berlin Heidelberg

2005.

[5] CMMI Web Page. Software Engineering Institute.
Available in: http://www.sei.cmu.edu/cmmi/cmmi.html

(Last Accessed: April 2006).

[6] CMMI Team., “Capability Maturity Model® Integration
(CMMISM), Version 1.1”. Technical report CMU/SEI-

2002-TR-011, ESC-TR-2002-011. 2002.

[7] Jones, L., and Northrop, L., “Product Line Adoption

in a CMMI Environment”. Technical report CMU/SEI-

2005-TN-028. 2005.

[8] Cockburn, A., and Highsmith, J. “Agile Software
Development: The People Factor”. IEEE Computer,

December 2002.

[9] McGregor, J., Northrop, L., Jarrad, S., and Pohl, K.,
“Initiating software product lines”. IEEE Software

(Volume 19), 2002, pp. 24 – 27

[10] Martin, C., Agile Development: Principles, Patterns and
Process. Prentice Hall, 2002.

[11] Ahern, D., Clouse, A., and Turner, R., CMMI®
Distilled: A Practical Introduction to Integrated

Process Improvement. Addison Wesley, 2003.

[12] Paulk, M., Curtis, B., Chrissis, M., and Weber, C.,
“Capability Maturity Model SM for Software Version

1.1”, Technical Report CMU/SEI-93-TR-024, ESC-TR-

93-177, 1993.

[13] Beck, K., Extreme Programming Explained: Embrace
Change, Addison Wesley, 1999.

[14] Schwaber, K., “The Scrum development process”. in
Proc. OOPSLA ’95 Workshop on Business Object

Design and Implementation, Austin, 1995.

[15] Cockburn, A., Crystal Clear. A human-powered
methodology for small teams, including The Seven

Properties of Effective Software Projects. Addison

Wesley 2002.

[16] Linden, F., “Software product families in Europe: the
Esaps & Cafe projects”. Software IEEE

(Volume 19), 2002. pp. 41 – 49.

[17] Clements, P., Jones, L, Northrop, L, and McGregor, J,
“Project management in a software product line

organization” Software, IEEE (Volume 22), 2005. pp.54

– 62.

[18] Nandhakumar, J., and Avison, D., “The fiction of
methodological development: a field study of

information systems development”. Information

Technology & People, 12(2), pp. 176-191, 1999.

[19] Wiegers, K., “Read my lips: no new models!”. Software,
IEEE Volume 15, 1998 pp. 10 – 13.

[20] Boehm. B., “Get ready for Agile Methods, with care”.
Computer (IEEE), pp. 64-69, 2002.

[21] Berard. E., “Misconceptions of the Agile zealots”.
Report the Object Agency, Available in:

http://www.svspin.org/Events/Presentations/Misconcept

ionsArticle20030827.pdf, 2003. (Last Accessed April

2006).
[22] Jeffries, R., “Misconceptions about XP” an Agile

Software Development Resource January 2002.

Available in:

http://www.xprogramming.com/xpmag/Misconceptions.

htm (Last Accessed January 2006)

[23] Fowler, M.: “Is design dead?” XP2000 Proceedings.
Available in:

http://www.martinfowler.com/articles/designDead.html,

Last Significant Update: 2004 (Last Accessed April

2006).

[24] Tate, K., Sustainable Software Development: An Agile
Perspective. Addison Wesley Professional, 2005.

[25] McBreen, P., Questioning Extreme Programming.
Addison Wesley, 2003.

[26] Jacobson, I., “A resounding Yes to Agile Processes –
But also to more”. Cutter IT Journal January 2002.

[27] DeMarco, T., and Boehm, B., “The agile Methods
Fray”. IEEE Computer, Vol. 35, No. 6, 2002, pp. 90-92.

[28] Beck, K., and et al., “Manifesto for Agile Software
Development”. Available in:

http://www.agilemanifesto.org, 2001 (Last Accessed

April 2006).
[29] Vesiluoma, S., “Ways of Knowledge Sharing in Agile

and Product Line Based Software Development” in

Proc. 27th Information Systems Research Seminar in

Scandinavia, 2004.

[30] Larman, C., “Agile & Iterative Development. A
Manager’s Guide” Addison-Wesley, 2004.

[31] Marchesi, M., Succi, G., Wells, D., and Williams, L.,
Extreme Programming Perspectives. Addison Wesley,

2002.

[32] DeMarco, T., and Lister, T., Peopleware—Productive
Projects and Teams, 2nd Ed., Dorset House, 1999.

[33] Boehm, B., and Turner, R., “Balancing Agility and
Discipline: Evaluating and Integrating Agile and Plan-

Driven Methods”. in Proc. of the 26th International
Conference on Software Engineering (ICSE’04), 2004.

[34] Navarrete, F., Botella, P., and Franch, X., “How Agile
COTS Selection Methods are (and can be)?”, 31st

EUROMICRO Conference on Software Engineering

and Advanced Applications, 30 August - 3 September,

2005, Porto, Portugal, pp. 160-167.

