
A Structured Approach to Software Process Modelling1

Xavier Franch
franc h@lsi.upc. es

Universitat Politecnica de Catalunya
Jordi Girona 1-3,08034 Barcelona

Catalonia (Spain)
FAX: 34-93-401 7014. Phone: 34-93-401 6965

Abstract
Systematic formulation of software process models

(SPM) is currently a challenging problem in software
engineering. We present here an approach to define such
models that encourages: reuse of both elements and
models; modularity and incrementality in model
construction; simplicity and naturality of the resulting
model; and a high degree of concurrence in their
enaction. In this paper we focus on model definition,
distinguishing as usual its static and dynamic parts. We
define the static part by means of formally defined
hierarchies introducing the categories of elements that
take part in SPA4 definition. Such hierarchies may be
constructed and enlarged according to the requirements
of any specific SPh! We present as an example a
hierarchy for component programming that takes into
account non-functional aspects of software (eficiency,
etc). The dynamic parlf of the SPA4 is defined by means of
precedence relationships between tasks that take part in
the model. These precedence relationships are
represented with precedence graphs. Development
strategies are defined by encapsulating new precedence
relationships in modules, that can be combined and
reused.

1. Introduction

A model for a software development process [DWK97]
(i.e., a software process model) is a description of this
process expressed in some process modelling language.
The process can be viewed as the execution in a suitable
order of a set of tasks (e.g., requirements elicitation or
module testing) intended to develop some documents
(e.g., specification or test plan). These tasks are developed
by some agents (e.g., people or hardware media) with the

This work has been partially supported by the Spanish project
TIC97-1158, from the CICYT program.

Josep M. Rib6
j osepma@euip.udl, es
Universitat de Lleida

P. Victor Siurana 1,25003 Lleida
Catalonia (Spain)

FAX: 34-973-702062. PhLone: 34-973-702000

help of some tools (e.g., editon or debuggers) and using
some resources (e.g., data bases or computer networks).

Hence, the definition of a software process model must
state all the elements just mentioned, and also the way in
which this model must be execute (enacted). This idea
leads to the notion of static and dynamic parts of a model.
The static part is given by the description of the tasks,
documents, agents, tools and resources that take part in
the software process model. On the other hand, the
dynamic part consists of a description of the way in which
software is developed; so, it mainly focuses in questions
like what and how must be done to develop a piece of the
model. The systematic description of both parts not only
helps in understanding software development, but also
makes feasible the construction of systems for supporting
automation of the process up to an acceptable level,
centered on the process modelling language.

Many differents approaches to such systems currently
exist; see [FKN94] for a sumey. Some of them have
drawn a special attention within the scientific community,
like EPOS [Con95], MERLIN [Jun95, RS971 or SPADE
[BNF96], just to name a few of them. Although they
support a lot of helpful properties in software
development (e.g., process evolution, versioning,
concurrency during enaction and cooperation among
tasks), they seem to lack at least partially in supporting the
following interesting ones:

Modularity in model construction, i.e., the ability to
build a model by combining several partial models
using some operators. A,lthough there are some
proposals in this sense (remarkably [Chr94]), most of
the reported environments seem not to support it.
Modularity at the process model is as important as at
the product level, aiding a i building, understanding,
maintaining and reusing software models.

753
1089-6503198 $10.00 0 1998 IEEE

Simplicity in both the process of model construction
and also the description of the resulting model. This
property is not easily achieved in the systems we have
studied so far, as we can see in the case studies
appearing in [FKN94] and also [ABEL97]. Simplicity
is a basic property in order to make these approaches
useful for software teams developing real
applications.
Formalisation of the elements taking part in the
software process models, and also of the notion of
correctness of a model enaction. The existence of
such formal basis would provide a well-established
foundation to reason about model enaction.

In this paper, we present a process model language
aimed at supporting these properties. The language is the
kernel of our PROMENADE approach (PROcess-oriented
Modellization and ENAction of software DEvelopments),
currently in progress. Concerning the static part, we
describe process elements by means of OOZE [AG91]
classes, which provides a modular and formal description;
simplicity is added by providing a graphical notation to
describe class relationships. About the dynamic part, we
formulate our approach by establishing precedence
relationships between tasks, and by defining encapsulation
mechanisms that enhance modularity; also, we provide the
notion of correctness of a software development with
respect to a software model. The proposal relies on a
previous paper [FR97], which introduced the basis for the
current dynamic part, but which lacked from a proposal
for the static one.

Although we can consider this classification enough to
start software process models definition, we plan to
provide many default hierarchies for different
development contexts. In this paper, we will take as case
study a hierarchy for dealing with component
programming (CP-hierarchy for short). New elements
defined in terms of classes can be added at a certain place
of the hierarchy. The definition of a new element involves
the definition of the attributes that every instance of the
element must possess, the operations that may be applied
to an instance of the element and the requirements that
must hold in all the instances of the element (invariant of
an element). Using the hierarchy helps in achieving
reusability during software process modelling: any part of
the hierarchy is always available in the definition of new
models.

As mentioned above, and since one of our goals is to
provide a formal framework for software process
definition, it becomes essential to specify formally the
elements that take part in model definition. We use the
OOZE [AG91] formalism to do so. OOZE combines the
widespread Z notation with some structuring mechanisms
and, in particular, inheritance. So, the hierarchy drawn
above can be inferred from OOZE classes. We plan to use
the hierarchy as an external language for software process
engineers and for documentation purposes too. Models
described with OOZE have a well-defined formal
meaning, which helps in determining the semantics of
software processes.

As an example, we are going to develop in more detail
the part of the hierarchy concerning documents and tasks.

2. The Static Part
2.1. Documents

The static part of the language is defined upon a hierarchy
integrating all the items involved in software
development: Documents, Tasks, Tools, Agents and
Resources; also, we include a Domain class defining some
auxiliary concepts (string, date, etc., and also many
domain-specific ones). These items are encapsulated and
defined formally through classes organised as a hierarchy.
These classes act as classification criteria for other
elements, introducing some attributes and operations that
are inherited by their heirs. As shown in fig. 1, they are in
turn heirs of the Type class, which is the root of the
hierarchy. We use a plain arrow to represent inheritance.

Document Agent Task Tool Resource Domain

Fig. 1 : The upper levels of the static hierarchy.

The category of documents, known as such for being
heirs of the Document class, defines the artifacts produced
during software development. For instance, some
significant documents are (see fig. 2): SpecDoc,
compounded of FspecDoc, that contains the functional
specification of a component and NFSpecDoc, for its non-
functional specification; ImplBehDoc, compounded of
ImplDoc and BehDoc, for functional and non-functional
parts of implementations, respectively; TestDoc, to model
the tests that are to be performed on some document (and
that are compounded of the test code, Testplan, and the
test results, kept in AvalDoc). The Component itself would
be another example of a composite document since it is a
product of the process of software development that
contains other kind of documents as attributes. This
category also includes other artifacts as Workspace, that
keeps the environment of an agent at a given instant,
SpecLib (a library for storing specifications) and

754

Document

Workspace Library Component TestDoc TestPlan AvalDoc SpecDoc ImplBehDoc

A

Fig. 2: The part of the CP-hierarchy concerning documents (only inheritance relaitionship is depicted).

ImplLib (another one for storing implementation
documents).

Apart from the inheritance relationships depicted in
fig. 2, other kind of relationships (for instance, part-of
and consists-oA which1 are one inverse of the other) apply
to document classes. We will present these relationships
at the time they are needed.

2.1.1 The Document class
Document is defined with the following attributes: the
document identifier, tlhe dates of creation and last update
on that document (creation, update), the document status
(which may be notComplete, complete and checked) and,
finally, the document's owner. Document is the
superclass for all document types and it is specified in
fig. 3.

Class Document < Type

identi tier: String
creation, update: Date
status: StatDoc
owner: Agent

id?: String
dat?: Date
own?: Agent ii---------

identifier'=id?
update'=dat? A creation'=dat?
status'=notComplete
owner'=own?

This specification contains; some classes (like String
and Date) that are defined in the Domain subhierarchy.
Hereafter, operations for controlled attribute
modification and selection are not shown.

2.1.2 The Component class
The Document subclass Com,ponent is defined with the
following attributes: the specification document (spdoc),
that contains the functional and non-functional
specification for that component; and the implementation
and behaviour document (ibdoc), which contains both
the component implementation and the non-functional
behaviour of that implementation. Notice that the
attributes identijier, creation, update, status and owner
are inherited from the class Document.

The specification of Component class in OOZE is
given in fig. 4. One remarkable aspect of this
specification is the class invariant which states that the
status of a component is checked if and only if the status
of all the documents it is coimpounded of are checked;
this property will be usual in compounded documents.
Also, we state that if both documents are finished, the
last update of the implementation must be greater or
equal than specification's one.

The definition of Component as a union of various
documents brings up the topic of the existence of other
kind of relationships between classes. A new kind of
relationship between classes may be introduced in this
case: the consists-of relationship. We say that a class A
consists of classes Cl , ..., Cn if and only if A can be
defined as the Cartesian product of CI , ..., Cn, i.e.,
A = (CI x C2 x ... x Cn). We identify a consists-of
relationship between the classes SpecDoc, ImplBehDoc
and the class Component (a Component consists-of a
SpecDoc and a ImplBehDoc).

Fig. 3: The class Document

755

- Class Component < Document

-- State
spdoc: SpecDoc
ibdoc: ImplBehDoc

Status=checked a
(spdoc.status=checked A ibdoc.status=checked)
Status=checked 3 spdoc.update I ibdoc.update

(the isolate update reference is applied to the current
class, FSpecDoc in this case). The class TestDoc and its
heirs are presented next.

-- State

spec: Specification
limport: seq String
testdocs: seq TestDocFS

Status=checked e
(Vtd: TestDocFS I tddestdocs

td.avald.success=true A

td.avald.update < update)

~

Fig. 4: The class Component

2.1.3 The classes for specifications
SpecDoc consists-of the functional (FSpecDoc) and non-
functional specification (NFSpecDoc) for a component.
Its specification is similar to the one for Component and
it is not shown.

The FSpecDoc document is defined with the
following attributes: spec (the functional specification of
a component expressed in some formalism); limport (a
list containing the functional specification documents
that must be imported in order to complete this one); and
testdocs (which contains a list with all the test cases for
the verification of the functional specification document
along with the results of each test). We are not choosing
here a particular formalism for the specification;
different components may be specified in a different
way. Specification styles may come into existence just
defining their characterisation by means of new OOZE
classes declared as heir of the specification one.

The specification of FSpecDoc document in OOZE is
given in fig. 5. The class invariant establishes that
FSpecDoc will be considered to be checked only after all
tests planed to be run on it have finished successfully and
they have been executed with the current version of the
specification, which is checked using the last update date

The class NFSpecDoc is defined in a similar way. Also,
implementations work the same way as specifications do
and are not shown here.

2.1.4 The TestDoc class
This is the class that performs some kind of test
(including both the test code and the test results) on the
different documents (namely FSpecDoc, NFSpecDoc,
ImplDoc and BehDoc). We consider a different kind of
TestDoc class for each class of document (i.e. TestDocFS
for testing FSpecDoc classes; TestDocNFS for testing
NFSpecDoc classes ...). Hence we need to enlarge the
type hierarchy of fig. 2 by making these new classes heirs
of TestDoc.

Let us present, as example, the class TestDocFS. The
attributes of this class are the following: testeddoc (the
document which is being tested), testpl (the test code)
and avuld (the document containing the result of such
test). Fig. 6 contains a specification of this class with the
usual class invariant involving status and dates.

Test classes introduce another kind of relationship:
is-tested-in. We say, for instance, that a FSpecDoc is-

tested-in a TestDocFS. Unlike the ones presented up to
now, this is a user-defined relationship, local just to a
part of the hierarchy. These new relationships may be
later used in the dynamic part of the model. On the other
hand, the consists-of relationship may also be applied
here since each kind of TestDoc class consists-of a
TestPlan and an AvulDoc.

756

- Class TestDocFS < TestDoc

- State -
testeddoc: FSpecDoc
testpl: TestF'lanFS
avald: AvalDocFS

Status=check.ed e
(testpl.status=checked A

avald.status=checked)
Status=checked = testphpdate I avald.update

..init and other operations

Fig. 6: The class TestDocFS

2.1.5 The classes fair libraries
The class Library is meant to store developed
documents. Hence it will only contain documents with a
checked status. In the default CP-hierarchy, we consider
just two kinds of libraries (although it can be worthy to
define other ones): SpecLib, to store specification
documents and ImplLib, to store implementation
documents; note that tests are part of these documents.
Another kind of relationship between classes rises with
libraries: is-stored-in. For instance, a SpecDoc is-stored-
in a SpecLib, while a ImplDoc is-stored-in an ImplLib.
We store in the corresponding library the SpecDoc as a
whole (it is not allowed to store only the FSpecDoc or
the NFSpecDoc for a given component). Fig. 7 shows the
specification of SpecLibrary class. The two class
invariants state, respectively, that all the documents
contained in the library are in a checked status and that a
library is self-contained (i.e. all the documents imported
by a document stored in the library must be also stored in
the library). Note also that the invariant allows the stored
version of the specification not to be the last one.

2.1.6 The Workspuce class
The Workspace class represents a document repository
compounded of those documents that are visible to an
agent at a given instant. This includes some documents
taken from some library and some other documents
which are being constimcted.

The relationship between classes is-stored-in may also
apply here. But in this case it is not compulsory to store
in the workspace the pair of specification (or
implementation) documents, because documents may be
incomplete in the workspace. The OOZE specification is
straightforward and WI: do not include it here.

Class SpecLib < Library

State
SI: seq SpecDoc

r-

Vd: SpecDoc I d E SI 0 d.status=checked

Vd: SpecDoc I d E sl 0

(Vd': SpecDoc 1 cl ' E d.limport d' E SI)

.. init and other operations;

Fig. 7: The class SpecLibrary

2.2. Tasks

A task represents an action that must be performed in the
process of software development. It may be a composite
action, which, in turn, will be decomposed in more
simple tasks called subtasks, or an atomic one.

Since the software process model we propose is
mostly task-oriented, task elements have a major
importance in it. We define tasks as classes in the type-
hierarchy. Tasks are specified by means of OOZE classes
which attributes represent the parameters of the task. An
additional parameter keeps track, at enaction time, of the
task's subtasks that have been executed. The class is also
provided with two methods, named respectively begin
and end that are called at the starting and end instants of
the task execution. Both methods perform everything
needed to keep the consistency of the task (e.g. begin
puts the task status to a c h e , initalizes some task
parameters, etc.; end calculates the success condition of
the task, puts the task status to complete, etc.).

The issue of how to get the functionality of the task
(i.e. in which way we describe the actions to be
undertaken in order to get the task goals) is the main
matter of the dynamic part of the model, developed in
the next section.
We present in fig. 8 and 9 two exemples of task
specification: the class Task which acts as superclass for
all tasks, and TestFSpec, which performs the test of a
functional specification docurnent) with respect to some
test plan. The parameters of this last task are the
FSpecDoc (see fig. 5) we want to test and the TestDoc (in
this case TestDocFs, see fig. 6) used to perform this test.
At the beginning, the link between the specification
document and the tests is created. At the end, the success
condition of the task, success I , evaluates to true if all the
single tests which is compounded of have been executed

757

successfully. We call SingleTestFSpec the class of tasks
that performs a single test on a functional specification
document; we consider that each of these tasks includes a
test plan, a test result and success condition. Finally we
state that the test results stored in the evaluation
document are exactly those produced by the application
of SingleTestFSpec tasks on the actual instance of
FSpecDoc.

sb?: P Task
status’=idle
subtasks ’ =sb?

- Class Task < Type

status’= complete

-- State

status: StatTask
success: Boo1
subtasks: P Task
executed: seq Task

ran executed c subtasks
status = complete ran executed = subtasks

Fig. 8: The class Task

3. The Dynamic Part

The dynamic part of the model states (1) what must be
done during model enaction (i.e. what tasks are to be
executed), and (2) what constraints are to be applied in
such enaction (i.e. what precedences in task
executionmust be satisfied). We rely on task
decomposition in order to state what a task must do (i.e.
what subtasks are involved in its execution) and we
define precedence relationships between tasks in order to
establish precedence constraints involving task enaction

- Class TestFSpec < Task

- State -

fspecld: FSpecDoc : test: TestDocFs

-- begin

fspecdoc?: FSpecDoc
testp?: TestPlanFS

fspecld’ =fspecdoc?
test’.testpl=testp?
test’.testeddoc=fspecdoc?
fspecld’.status=complete

__ end -

success’= (Vp: Code I p E test.testp1.specbody
(3tpart: SingleTestFSpec

tpart E executed A

tpart.plan=p A

tpart.success=true))
Vr: Result r E test.avald’.lresults e

(3tpart: SingleTestFSpec I
tpart E executed
(tpart.result=r A

tpart.success=true))
fspecld’.status=checked e success’=true

Fig. 9: The class TestFSpec

3.1. Precedence relationships

Precedence relationships between tasks state the
requirements that must be satisfied in order to be able to
start the execution of a task. These requirements are
established in terms of the tasks whose execution must
have finished successfully in order to start the execution
of a given task. More precisely, we say that there is a
precedence relationship from task A to task B (A 3 B)
iff a requirement needed in order to initiate task B is that
task A has been completed successfully (i.e. with success
condition evaluating to true).

758

/
TestFspec(sp.fspec) TestNFspec(sp.nfspec) 1 /

Store(speclib, sp)

IFig. 10: A possible precedence graph for developing specifications.

We can represent precedence relationships between
tasks by means of precedence graphs, being their nodes
tasks, and their edges precedences. Fig. 10 presents a
precedence graph for developing a specification with
functional and non-functional parts. We use tasks for
defining the operations of the component, to create both
parts, to design tests for them, for carrying the tests out
and for storing the two parts in the specification library
as a whole. Note that tasks appear parameterised, using
the attributes introduced in the involved classes. This
example graph is a default one in PROMENADE, and it
could be inferred from some relationships stated at the
static level, mainly having to do with dates and success
conditions.

It is important to notice that by describing tasks using
precedence relationships we state all the interactions that
must be observed between tasks during model enaction.
Apart from those interactions, the process engine is free
to select any other execution order among not related
tasks. This improves the concurrency of model enaction.

3.2. Development strategies

Given the modelisation of precedence relationships using
graphs, we can consider a development strategy as a set
of new edges binding nodes of these graphs. Sometimes,
edges will relate tasks (nodes) in the same graph, to say
things like “the functional specification of a component
must be developed before the non-functional one”;
however, in the general case, edges will involve tasks
appearing in graphs bound to different modules, as in “it
is necessary to specify all the components imported by a
component M before any implementation of A4 is built”.
Sets of related rules are encapsulated in strategy
modules. For instance, we show in fig. 11 three different

strategy modules that add edges to the graph presented in
fig. IO. The first one forces the finalization of the
functional specification before starting the non-
functional one. The second oine implements the idea of
bottom-up specification, saying that imported
specifications must be finished before starting new ones.
Last, a new strategy can be stated just by combining the
previous ones.

strategy FUNCTIONAL-BEFORE-NON-FUNCTIONAL
sp: SpecDoc
Fspecify(sp.fspec) -> Nfspecify(sp.nfspec)

end module

strategy BOTTOM-UP-SPECIFICATION
sp, Z: SpecDoc
for all Z in sp.fspec.limport:

Fspecify(Z.fspec) -> Fspecify(sp.fspec),

NFspecify(Z.nfspec) -> NFspecify(sp.nfspec)
NFspecify(sp.nfspec)

end module

combines BOTTOM-UP-SPECIFICATION,
FUNCTIONAL~BEFORE~I’JO“CTI0NAL

end module

Fig. 11 : Some strategies for specification
development.

3.3 Modular process construction

In PROMENADE, model definition is intended to allow
software process model conslmction in a modular and
incremental way. One part of this modular construction

759

of models relies on the reusability and extensibility of the
hierarchy containing the static elements of the model.
The other, and more fundamental part, deals with the
process of task description.

Tasks play the role of ruling process development by
appliying strategies. Constructing a software process
model in a modular way consists in selecting within a
strategy libra y those ones with the required
functionality and combining them with some suitable
precedence relationships in order to build a description
graph for the model. This will define the model strategy.

Following this process, it is possible to combine many
partial models to form the final one. These combination
may be of two kinds. On the one hand, we can build
precedence graphs for a subset of software documents
(specifications, libraries, working context, etc.) by
adding new precedences to an initial graph, by joining
two graphs with the same nodes, etc. On the other hand,
we can just put together some of these graphs to obtain a
new one covering more documents (i.e., dealing with
more software development stages); for instance, we can
put together the graph of fig. 10 with other concerning
implementation construction, to obtain a graph covering
the whole component development process. The
resulting graphs, if convenient, may be in turn, stored in
a library for future reuse.

3.4. Correctness concerns

Using the precedence graphs and also the success
conditions stated in the static part of the model, it is
possible to formulate some correctness conditions, both
concerning the model itself and also concerning a
particular development process with respect to a model.
This issue has been outlined in [FR97] and has been
refined by incorporating the idea of three dimensional
graphs, in which an axis corresponds to precedence
relationships and the other to task decomposition.

Another point concerning the correctness is the
matching between the static and the dynamic parts of the
model. Obviously, precedence relationships between
tasks and decomposition of elements into smaller parts
must agree. We are currently working on the
characterization of this matching.

think are not currently totally covered in the field. The
PROMENADE approach plays a part in a more
ambitious system called ComE'roLab [FBBR97] defined
to support many different aspects of component
programming,

In our proposal, the language consists of static and
dynamic parts. Concerning the static part, we use a
hierarchy to introduce software process elements
(documents, tasks, etc.), which are encapsulated using
OOZE classes and thus provided of a clear semantics.
With respect to the dynamic part, we use precedence
graphs as the underlying model of task enaction
ordering, and we allow the definition of development
strategies using modules that can be reused and
combined.

We can classify and evaluate the adequacy of our
approach with respect to the aspects proposed by
Conradi and others in [CLJ91]. We put a star (*) on
those issues still not covered but just planned to:

Basic process model apparatus: Precedence
relationships between tasks modelled by
precedence graphs. Static part covered by class
hierarchies.
Coverage of process entities: products, activities,
tools, agents, roles and resources. Our approach is,
however, activity-oriented.

* Coverage of software process life-cycle: All steps
can be modelled in our approach, including
specification of software attributes (non-functional
specification).
Task structuring: We present a fully task structuring
by means of task abstraction.
Type structuring: Yes, in an object-oriented way.
We define a default hierarchy of types that may be
extended on demand.
(*) Customization and evolution of the process
model: It will be allowed by using meta-types.

*Concurrence: Supported by the fact that just
precedence relationships avoid concurrent enaction
of tasks.
(*) Configuration management: A usual versioning
system will be provided.

We think that the most interesting points of our
approach are:

Moaulurity/reusabiZitylity: PROMENADE offers the
possibility of reusing fragments of existing models under
an object-oriented approach. Hence, in order to build a
new model it is possible to reuse tasks, documents, roles
and any other element previously generated to construct
some other model, which makes the process of model
construction much more simple. PROMENADE shares
this feature with some other systems like EPOS and E3.

4. Conclusions and future work

We have presented the process modelling language of
the PROMENADE approach. This language addresses to
many interesting properties at the process level which we

760

On the other hand, some well-known systems like
SPADE, ADELE or IMERLIN lack this property or, at
least, it is not shown explicitly how to get it in the
revised literature.

What is new in PROMENADE with respect to the
revised systems is its explicit ability of constructing in a
modular manner new models adding some strategies to
existing ones. These strategies are encapsulated in what
we call strategy modules, which are presented briefly in
section 3.2 and in more detail in [FR97].

Simplicity/comp,rehensibility; PROMENADE
seems to facilitate the generation of software process
models (SPMs) in an intuitive and quite simple way by
means of a graphical representation (that will be
translated into a formally defined language, which is
currently being defined). This graphical representation is
based on defining hierarchies of entities (for the static
part) and new tasks by means of stating the precedence
relationships that must hold between some other tasks
(for the dynamic one).

On the other hand, once the SPM has been
constructed, precedence graphs make it quite
comprehensible. Precedence graphs (i.e. diagrams which
depicts the precedence relationships between activities)
are crucial in order to understand the whole process of
software development. Curiously enough, most of the
Process-centered Sofihvare Engineering Environments
(PSEEs) we have explored do not use this kind of
diagrams.

Two aspects that also help in the achievement of
simplicity are the object-oriented approach we undertake
and the high level constructs we provide for our system.
Unlike other PSEEs, like SPADE or APPLiA, we do not
require the software engineer to explain how the SPM
will be enacted (which is usually a criptic matter) but
instead, what must be done in order to develop software,
which is clearly what the software engineer knows (and
what heishe is interested in modelling).

Although the simplicity property should be a very
important one for PSEEs, most of them fail (at least to
some extent) in achieving it2. SPADE and APPLiA are
directly enactable PSEEs that get a remarkable
performance in model enaction. Since they achieve that
performance on the basis of a low level construction, we
think that SPM written in these systems (specially in
SPADE) are difficult to write, difficult to read and
difficult to understand. MERLIN and EPOS are high
level PSEEs, but in our opinion, it is difficult to get with
them fully comprehensible models: the resulting model

Although in some cases it is possible that the complexity of the
model is a consequence of the inherent complexity of the problems
that are to be solved.

in MERLIN is working-context-oriented which makes it
difficult to grasp the whole development process model.

In EPOS the task sequence to be executed in the
resulting SPM is not obvious amd the advantage of using
an AI planner is not clear. Finally, E3 provides simplicity
on the basis of a wide range of diagrams (including
precedence ones), an object-oriented approach and high
level constructs. This leads lo a very comprehensible
model but with quite simplistic constructs.

Direct enactability: There is a usual correlation
between the level of the constructs offered by the system
in order to generate a SPM and the enactability of the
resulting model. For instance, directly enactable systems
like APPLIA and SPADE offer quite low level
constructs. On the other haind, systems like E3 and
MERLIN, by far more high-level systems, cannot be
enacted directly; they need a translation into a lower
level language.

PROMENADE achieves a lbalance between the level
of the language to create the model (which is clearly high
level) and the SPM enactabiliity, since a PROMENADE
SPM is directly enactable by the application of the
algorithm described in [FR97].

Concurrent model enaction: Not only offers
PROMENADE an enactable SPM but also a very natural
concurrent model based on a imultiagent approach (each
agent is responsible for executing some tasks) with the
restrictions imposed by the precedence relationships
between tasks. We are cunrently working on these
enaction aspects. An overview of them may be found in
[FR97].

Concurrent models offered by some other PSEEs need
synchronization between tasks (the case of APPLIA
since it uses Ada tasks). In other cases (as SPADE) the
concurrent model is based on ,a formal mechanism (Petri
nets). This leads to a very efficient but low level
approach. In some other cases of not directly enactable
models (MERLIN, E3), the concurrence of the final
enactable model is not reported.

It is important to say that, unlike other systems like
ADELE or MERLIN, we do not deal, for the moment,
with concurrent accesses to documents, which is a very
important research area.

Formality: This is one of the shortcomings of most
PSEEs, for only a few of them are constructed on the
basis of a formal approach.

One of the goals of PROMENADE is to define a SPM
established on some formal basis. This will allow the
complete understanding of the specification of the
elements (classes and relations) that take part in model
definition; the rigorous definition of the mechanism of
model enaction; the establishment of the correctness of a

761

model enaction with respect to a model definition; the
accurate definition of what a SPM is and what is
compounded of; the formal reasoning about the
properties that hold in any part of the SPM, etc.

We achieve this property by the formal specification
of classes by means of the OOZE language (see section
2), the rigorous model definition and the formalization
of model enaction (which includes the notion of
correctness of a software system development with
respect to a SPM). Both aspects are shown in our
previous work [FR97].

Some points of our approach have not been included
here. In fact, the language has just been outlined. We
have a catalogue of class relationships in the static part.
In the dynamic one, we have a special kind of
precedence relationship called grouping (simultaneous
enaction of several tasks) that has been proved to be
useful. Also the actions to be taken in case of task
failure have not been shown here; they take the form of
adding new kind of edges to the precedence graphs.

Other points have not been addressed yet in our work.
Remarkably, we have not defined the meta-level, and our
way to deal with component redevelopment is very
nai’ve. Also absolute time must be added in our approach
and combined with precedence relationships in a proper
way. However, we feel that all these issues could fit in
PROMENADE in a natural way.

References

[ABEL97] J. Arlow, S. Bandinelli, W. Emmerich and L.
Lavazza. “Fine grained Process Modelling: An Experiment at
British Airways”. Software Process Improvement and Practice.
Wiley, 1997.

[AG91] A.J. Alencar, J.A. Goguen. “OOZE: An Object-
Oriented Z Environment”. European Conference on Object-
oriented Programming (ECOOP ’91), Geneva (Switzerland),
July 199 1 .

[BNF96] S. Bandinelli, E. Di Nitto, A Fuggetta.
“Supporting Cooperation in the SPADE- 1 Environment”. IEEE
Transactions on Software Engineering, 22(12), December
1996.

[Chr94] G. Chroust. “Partial Process Models”. Software
Systems in Engineering, PD-vol. 59, 1994.

[CLJ91] R. Conradi, C.Liu, M. L. Jaccheri. “Process
Modeling Paradigms: An Evaulation”. Position paper at 7th
International Software Process Workshop (ISP W7), Yountville
(Ca, USA), 199 1.

[Con951 R. Conradi. “PSEE architecture: EPOS process
models and tools” . Workshop on Proces-centered Software
Engineering Environments Architecture, Milano, March 1995.

[DWK97] J.C. Demiame, B. Warboys and A.B. Kaba
(eds). Sofmare Process: Principles, Methodology, Technology.
Springer Verlag, 1997.

[FBBR97] X. Franch, X. Burgues, P. Botella, J.M. Ribo.
“ComProLab: A Component Programming Laboratory”.9th
International Conference on Software Engineering and
Knowledge Engineering (SEKE), Madrid (Spain), 1997.

[FKN94] A. Finkelstein, J. Kramer, B. Nuseibeh. Software
Process Modelling and Technology. J. Wiley & sons, 1994.

[FR97] X. Franch, J. M. Ribo. “Software Process
Modelling as Relationships between Tasks”. 23rd
EUROMICRO, Budapest (Hungary), September 1997.

[Jut1951 G. Junkennann. “A Dedicated Process Design
Language based on EER-models, Statecharts and Tables”. 7th
International Conference on Sofmare Engineering and
Knowledge Engineering (SEKE), Rockville, (Maryland, USA),
June 1995.

[RS97] W. Reimar, W. Schafer. “Towards a Dedicated
Object-Oriented Software Process Modelling Language”.
Workshop on Modeling Software Process and Artifacts, held at
the 1 Ith European Conference on Object-oriented
programming, Jyvaskyta (Finland), June 1997.

762

