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Abstract 
Systematic formulation of software process models 

(SPM) is currently a challenging problem in software 
engineering. We present here an approach to define such 
models that encourages: reuse of both elements and 
models; modularity and incrementality in model 
construction; simplicity and naturality of the resulting 
model; and a high degree of concurrence in their 
enaction. In this paper we focus on model definition, 
distinguishing as usual its static and dynamic parts. We 
define the static part by means of formally defined 
hierarchies introducing the categories of elements that 
take part in SPA4 definition. Such hierarchies may be 
constructed and enlarged according to the requirements 
of any specific SPh! We present as an example a 
hierarchy for component programming that takes into 
account non-functional aspects of software (eficiency, 
etc). The dynamic parlf of the SPA4 is defined by means of 
precedence relationships between tasks that take part in 
the model. These precedence relationships are 
represented with precedence graphs. Development 
strategies are defined by encapsulating new precedence 
relationships in modules, that can be combined and 
reused. 

1. Introduction 

A model for a software development process [DWK97] 
(i.e., a software process model) is a description of this 
process expressed in some process modelling language. 
The process can be viewed as the execution in a suitable 
order of a set of tasks (e.g., requirements elicitation or 
module testing) intended to develop some documents 
(e.g., specification or test plan). These tasks are developed 
by some agents (e.g., people or hardware media) with the 
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help of some tools (e.g., editon or debuggers) and using 
some resources (e.g., data bases or computer networks). 

Hence, the definition of a software process model must 
state all the elements just mentioned, and also the way in 
which this model must be execute (enacted). This idea 
leads to the notion of static and dynamic parts of a model. 
The static part is given by the description of the tasks, 
documents, agents, tools and resources that take part in 
the software process model. On the other hand, the 
dynamic part consists of a description of the way in which 
software is developed; so, it mainly focuses in questions 
like what and how must be done to develop a piece of the 
model. The systematic description of both parts not only 
helps in understanding software development, but also 
makes feasible the construction of systems for supporting 
automation of the process up to an acceptable level, 
centered on the process modelling language. 

Many differents approaches to such systems currently 
exist; see [FKN94] for a sumey. Some of them have 
drawn a special attention within the scientific community, 
like EPOS [Con95], MERLIN [Jun95, RS971 or SPADE 
[BNF96], just to name a few of them. Although they 
support a lot of helpful properties in software 
development (e.g., process evolution, versioning, 
concurrency during enaction and cooperation among 
tasks), they seem to lack at least partially in supporting the 
following interesting ones: 

Modularity in model construction, i.e., the ability to 
build a model by combining several partial models 
using some operators. A,lthough there are some 
proposals in this sense (remarkably [Chr94]), most of 
the reported environments seem not to support it. 
Modularity at the process model is as important as at 
the product level, aiding a i  building, understanding, 
maintaining and reusing software models. 
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Simplicity in both the process of model construction 
and also the description of the resulting model. This 
property is not easily achieved in the systems we have 
studied so far, as we can see in the case studies 
appearing in [FKN94] and also [ABEL97]. Simplicity 
is a basic property in order to make these approaches 
useful for software teams developing real 
applications. 
Formalisation of the elements taking part in the 
software process models, and also of the notion of 
correctness of a model enaction. The existence of 
such formal basis would provide a well-established 
foundation to reason about model enaction. 

In this paper, we present a process model language 
aimed at supporting these properties. The language is the 
kernel of our PROMENADE approach (PROcess-oriented 
Modellization and ENAction of software DEvelopments), 
currently in progress. Concerning the static part, we 
describe process elements by means of OOZE [AG91] 
classes, which provides a modular and formal description; 
simplicity is added by providing a graphical notation to 
describe class relationships. About the dynamic part, we 
formulate our approach by establishing precedence 
relationships between tasks, and by defining encapsulation 
mechanisms that enhance modularity; also, we provide the 
notion of correctness of a software development with 
respect to a software model. The proposal relies on a 
previous paper [FR97], which introduced the basis for the 
current dynamic part, but which lacked from a proposal 
for the static one. 

Although we can consider this classification enough to 
start software process models definition, we plan to 
provide many default hierarchies for different 
development contexts. In this paper, we will take as case 
study a hierarchy for dealing with component 
programming (CP-hierarchy for short). New elements 
defined in terms of classes can be added at a certain place 
of the hierarchy. The definition of a new element involves 
the definition of the attributes that every instance of the 
element must possess, the operations that may be applied 
to an instance of the element and the requirements that 
must hold in all the instances of the element (invariant of 
an element). Using the hierarchy helps in achieving 
reusability during software process modelling: any part of 
the hierarchy is always available in the definition of new 
models. 

As mentioned above, and since one of our goals is to 
provide a formal framework for software process 
definition, it becomes essential to specify formally the 
elements that take part in model definition. We use the 
OOZE [AG91] formalism to do so. OOZE combines the 
widespread Z notation with some structuring mechanisms 
and, in particular, inheritance. So, the hierarchy drawn 
above can be inferred from OOZE classes. We plan to use 
the hierarchy as an external language for software process 
engineers and for documentation purposes too. Models 
described with OOZE have a well-defined formal 
meaning, which helps in determining the semantics of 
software processes. 

As an example, we are going to develop in more detail 
the part of the hierarchy concerning documents and tasks. 

2. The Static Part 
2.1. Documents 

The static part of the language is defined upon a hierarchy 
integrating all the items involved in software 
development: Documents, Tasks, Tools, Agents and 
Resources; also, we include a Domain class defining some 
auxiliary concepts (string, date, etc., and also many 
domain-specific ones). These items are encapsulated and 
defined formally through classes organised as a hierarchy. 
These classes act as classification criteria for other 
elements, introducing some attributes and operations that 
are inherited by their heirs. As shown in fig. 1, they are in 
turn heirs of the Type class, which is the root of the 
hierarchy. We use a plain arrow to represent inheritance. 

Document Agent Task Tool Resource Domain 

Fig. 1 : The upper levels of the static hierarchy. 

The category of documents, known as such for being 
heirs of the Document class, defines the artifacts produced 
during software development. For instance, some 
significant documents are (see fig. 2): SpecDoc, 
compounded of FspecDoc, that contains the functional 
specification of a component and NFSpecDoc, for its non- 
functional specification; ImplBehDoc, compounded of 
ImplDoc and BehDoc, for functional and non-functional 
parts of implementations, respectively; TestDoc, to model 
the tests that are to be performed on some document (and 
that are compounded of the test code, Testplan, and the 
test results, kept in AvalDoc). The Component itself would 
be another example of a composite document since it is a 
product of the process of software development that 
contains other kind of documents as attributes. This 
category also includes other artifacts as Workspace, that 
keeps the environment of an agent at a given instant, 
SpecLib (a library for storing specifications) and 

754 



Document 

Workspace Library Component TestDoc TestPlan AvalDoc SpecDoc ImplBehDoc 

A 

Fig. 2: The part of the CP-hierarchy concerning documents (only inheritance relaitionship is depicted). 

ImplLib (another one for storing implementation 
documents). 

Apart from the inheritance relationships depicted in 
fig. 2, other kind of relationships (for instance, part-of 
and consists-oA which1 are one inverse of the other) apply 
to document classes. We will present these relationships 
at the time they are needed. 

2.1.1 The Document class 
Document is defined with the following attributes: the 
document identifier, tlhe dates of creation and last update 
on that document (creation, update), the document status 
(which may be notComplete, complete and checked) and, 
finally, the document's owner. Document is the 
superclass for all document types and it is specified in 
fig. 3. 

Class Document < Type 

identi tier: String 
creation, update: Date 
status: StatDoc 
owner: Agent 

id?: String 
dat?: Date 
own?: Agent ii--------- 

identifier'=id? 
update'=dat? A creation'=dat? 
status'=notComplete 
owner'=own? 

This specification contains; some classes (like String 
and Date) that are defined in the Domain subhierarchy. 
Hereafter, operations for controlled attribute 
modification and selection are not shown. 

2.1.2 The Component class 
The Document subclass Com,ponent is defined with the 
following attributes: the specification document (spdoc), 
that contains the functional and non-functional 
specification for that component; and the implementation 
and behaviour document (ibdoc), which contains both 
the component implementation and the non-functional 
behaviour of that implementation. Notice that the 
attributes identijier, creation, update, status and owner 
are inherited from the class Document. 

The specification of Component class in OOZE is 
given in fig. 4. One remarkable aspect of this 
specification is the class invariant which states that the 
status of a component is checked if and only if the status 
of all the documents it is coimpounded of are checked; 
this property will be usual in compounded documents. 
Also, we state that if both documents are finished, the 
last update of the implementation must be greater or 
equal than specification's one. 

The definition of Component as a union of various 
documents brings up the topic of the existence of other 
kind of relationships between classes. A new kind of 
relationship between classes may be introduced in this 
case: the consists-of relationship. We say that a class A 
consists of classes Cl ,  ..., Cn if and only if A can be 
defined as the Cartesian product of CI ,  ..., Cn, i.e., 
A = (CI x C2 x ... x Cn). We identify a consists-of 
relationship between the classes SpecDoc, ImplBehDoc 
and the class Component (a Component consists-of a 
SpecDoc and a ImplBehDoc). 

Fig. 3: The class Document 
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- Class Component < Document 

-- State 
spdoc: SpecDoc 
ibdoc: ImplBehDoc 

Status=checked a 
(spdoc.status=checked A ibdoc.status=checked) 
Status=checked 3 spdoc.update I ibdoc.update 

(the isolate update reference is applied to the current 
class, FSpecDoc in this case). The class TestDoc and its 
heirs are presented next. 

-- State 

spec: Specification 
limport: seq String 
testdocs: seq TestDocFS 

Status=checked e 
(Vtd: TestDocFS I tddestdocs 

td.avald.success=true A 

td.avald.update < update) 

~ 

Fig. 4: The class Component 

2.1.3 The classes for specifications 
SpecDoc consists-of the functional (FSpecDoc) and non- 
functional specification (NFSpecDoc) for a component. 
Its specification is similar to the one for Component and 
it is not shown. 

The FSpecDoc document is defined with the 
following attributes: spec (the functional specification of 
a component expressed in some formalism); limport (a 
list containing the functional specification documents 
that must be imported in order to complete this one); and 
testdocs (which contains a list with all the test cases for 
the verification of the functional specification document 
along with the results of each test). We are not choosing 
here a particular formalism for the specification; 
different components may be specified in a different 
way. Specification styles may come into existence just 
defining their characterisation by means of new OOZE 
classes declared as heir of the specification one. 

The specification of FSpecDoc document in OOZE is 
given in fig. 5. The class invariant establishes that 
FSpecDoc will be considered to be checked only after all 
tests planed to be run on it have finished successfully and 
they have been executed with the current version of the 
specification, which is checked using the last update date 

The class NFSpecDoc is defined in a similar way. Also, 
implementations work the same way as specifications do 
and are not shown here. 

2.1.4 The TestDoc class 
This is the class that performs some kind of test 
(including both the test code and the test results) on the 
different documents (namely FSpecDoc, NFSpecDoc, 
ImplDoc and BehDoc). We consider a different kind of 
TestDoc class for each class of document (i.e. TestDocFS 
for testing FSpecDoc classes; TestDocNFS for testing 
NFSpecDoc classes ...). Hence we need to enlarge the 
type hierarchy of fig. 2 by making these new classes heirs 
of TestDoc. 

Let us present, as example, the class TestDocFS. The 
attributes of this class are the following: testeddoc (the 
document which is being tested), testpl (the test code) 
and avuld (the document containing the result of such 
test). Fig. 6 contains a specification of this class with the 
usual class invariant involving status and dates. 

Test classes introduce another kind of relationship: 
is-tested-in. We say, for instance, that a FSpecDoc is- 

tested-in a TestDocFS. Unlike the ones presented up to 
now, this is a user-defined relationship, local just to a 
part of the hierarchy. These new relationships may be 
later used in the dynamic part of the model. On the other 
hand, the consists-of relationship may also be applied 
here since each kind of TestDoc class consists-of a 
TestPlan and an AvulDoc. 
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- Class TestDocFS < TestDoc 

- State - 
testeddoc: FSpecDoc 
testpl: TestF'lanFS 
avald: AvalDocFS 

Status=check.ed e 
(testpl.status=checked A 

avald.status=checked) 
Status=checked = testphpdate I avald.update 

..init and other operations 

Fig. 6: The class TestDocFS 

2.1.5 The classes fair libraries 
The class Library is meant to store developed 
documents. Hence it will only contain documents with a 
checked status. In the default CP-hierarchy, we consider 
just two kinds of libraries (although it can be worthy to 
define other ones): SpecLib, to store specification 
documents and ImplLib, to store implementation 
documents; note that tests are part of these documents. 
Another kind of relationship between classes rises with 
libraries: is-stored-in. For instance, a SpecDoc is-stored- 
in a SpecLib, while a ImplDoc is-stored-in an ImplLib. 
We store in the corresponding library the SpecDoc as a 
whole (it is not allowed to store only the FSpecDoc or 
the NFSpecDoc for a given component). Fig. 7 shows the 
specification of SpecLibrary class. The two class 
invariants state, respectively, that all the documents 
contained in the library are in a checked status and that a 
library is self-contained (i.e. all the documents imported 
by a document stored in the library must be also stored in 
the library). Note also that the invariant allows the stored 
version of the specification not to be the last one. 

2.1.6 The Workspuce class 
The Workspace class represents a document repository 
compounded of those documents that are visible to an 
agent at a given instant. This includes some documents 
taken from some library and some other documents 
which are being constimcted. 

The relationship between classes is-stored-in may also 
apply here. But in this case it is not compulsory to store 
in the workspace the pair of specification (or 
implementation) documents, because documents may be 
incomplete in the workspace. The OOZE specification is 
straightforward and WI: do not include it here. 

Class SpecLib < Library 

State 
SI: seq SpecDoc 

r- 

Vd: SpecDoc I d E SI 0 d.status=checked 

Vd: SpecDoc I d E sl 0 

(Vd': SpecDoc 1 cl ' E d.limport d' E SI) 

.. init and other operations; 

Fig. 7: The class SpecLibrary 

2.2. Tasks 

A task represents an action that must be performed in the 
process of software development. It may be a composite 
action, which, in turn, will be decomposed in more 
simple tasks called subtasks, or an atomic one. 

Since the software process model we propose is 
mostly task-oriented, task elements have a major 
importance in it. We define tasks as classes in the type- 
hierarchy. Tasks are specified by means of OOZE classes 
which attributes represent the parameters of the task. An 
additional parameter keeps track, at enaction time, of the 
task's subtasks that have been executed. The class is also 
provided with two methods, named respectively begin 
and end that are called at the starting and end instants of 
the task execution. Both methods perform everything 
needed to keep the consistency of the task (e.g. begin 
puts the task status to a c h e ,  initalizes some task 
parameters, etc.; end calculates the success condition of 
the task, puts the task status to complete, etc.). 

The issue of how to get the functionality of the task 
(i.e. in which way we describe the actions to be 
undertaken in order to get the task goals) is the main 
matter of the dynamic part of the model, developed in 
the next section. 
We present in fig. 8 and 9 two exemples of task 
specification: the class Task which acts as superclass for 
all tasks, and TestFSpec, which performs the test of a 
functional specification docurnent) with respect to some 
test plan. The parameters of this last task are the 
FSpecDoc (see fig. 5)  we want to test and the TestDoc (in 
this case TestDocFs, see fig. 6 )  used to perform this test. 
At the beginning, the link between the specification 
document and the tests is created. At the end, the success 
condition of the task, success I ,  evaluates to true if all the 
single tests which is compounded of have been executed 
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successfully. We call SingleTestFSpec the class of tasks 
that performs a single test on a functional specification 
document; we consider that each of these tasks includes a 
test plan, a test result and success condition. Finally we 
state that the test results stored in the evaluation 
document are exactly those produced by the application 
of SingleTestFSpec tasks on the actual instance of 
FSpecDoc. 

sb?: P Task 
status’=idle 
subtasks ’ =sb? 

- Class Task < Type 

status’= complete 

-- State 

status: StatTask 
success: Boo1 
subtasks: P Task 
executed: seq Task 

ran executed c subtasks 
status = complete ran executed = subtasks 

Fig. 8: The class Task 

3. The Dynamic Part 

The dynamic part of the model states (1) what must be 
done during model enaction (i.e. what tasks are to be 
executed), and (2) what constraints are to be applied in 
such enaction (i.e. what precedences in task 
executionmust be satisfied). We rely on task 
decomposition in order to state what a task must do (i.e. 
what subtasks are involved in its execution) and we 
define precedence relationships between tasks in order to 
establish precedence constraints involving task enaction 

- Class TestFSpec < Task 

- State - 

fspecld: FSpecDoc : test: TestDocFs 

-- begin 

fspecdoc?: FSpecDoc 
testp?: TestPlanFS 

fspecld’ =fspecdoc? 
test’.testpl=testp? 
test’.testeddoc=fspecdoc? 
fspecld’.status=complete 

__ end - 

success’= (Vp: Code I p E test.testp1.specbody 
(3tpart: SingleTestFSpec 

tpart E executed A 

tpart.plan=p A 

tpart.success=true)) 
Vr: Result r E test.avald’.lresults e 

(3tpart: SingleTestFSpec I 
tpart E executed 
(tpart.result=r A 

tpart.success=true)) 
fspecld’.status=checked e success’=true 

Fig. 9: The class TestFSpec 

3.1. Precedence relationships 

Precedence relationships between tasks state the 
requirements that must be satisfied in order to be able to 
start the execution of a task. These requirements are 
established in terms of the tasks whose execution must 
have finished successfully in order to start the execution 
of a given task. More precisely, we say that there is a 
precedence relationship from task A to task B (A 3 B) 
iff a requirement needed in order to initiate task B is that 
task A has been completed successfully (i.e. with success 
condition evaluating to true). 
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/ 
TestFspec(sp.fspec) TestNFspec(sp.nfspec) 1 / 

Store(speclib, sp) 

IFig. 10: A possible precedence graph for developing specifications. 

We can represent precedence relationships between 
tasks by means of precedence graphs, being their nodes 
tasks, and their edges precedences. Fig. 10 presents a 
precedence graph for developing a specification with 
functional and non-functional parts. We use tasks for 
defining the operations of the component, to create both 
parts, to design tests for them, for carrying the tests out 
and for storing the two parts in the specification library 
as a whole. Note that tasks appear parameterised, using 
the attributes introduced in the involved classes. This 
example graph is a default one in PROMENADE, and it 
could be inferred from some relationships stated at the 
static level, mainly having to do with dates and success 
conditions. 

It is important to notice that by describing tasks using 
precedence relationships we state all the interactions that 
must be observed between tasks during model enaction. 
Apart from those interactions, the process engine is free 
to select any other execution order among not related 
tasks. This improves the concurrency of model enaction. 

3.2. Development strategies 

Given the modelisation of precedence relationships using 
graphs, we can consider a development strategy as a set 
of new edges binding nodes of these graphs. Sometimes, 
edges will relate tasks (nodes) in the same graph, to say 
things like “the functional specification of a component 
must be developed before the non-functional one”; 
however, in the general case, edges will involve tasks 
appearing in graphs bound to different modules, as in “it 
is necessary to specify all the components imported by a 
component M before any implementation of A4 is built”. 
Sets of related rules are encapsulated in strategy 
modules. For instance, we show in fig. 11 three different 

strategy modules that add edges to the graph presented in 
fig. IO. The first one forces the finalization of the 
functional specification before starting the non- 
functional one. The second oine implements the idea of 
bottom-up specification, saying that imported 
specifications must be finished before starting new ones. 
Last, a new strategy can be stated just by combining the 
previous ones. 

strategy FUNCTIONAL-BEFORE-NON-FUNCTIONAL 
sp: SpecDoc 
Fspecify(sp.fspec) -> Nfspecify(sp.nfspec) 

end module 

strategy BOTTOM-UP-SPECIFICATION 
sp, Z: SpecDoc 
for all Z in sp.fspec.limport: 

Fspecify(Z.fspec) -> Fspecify(sp.fspec), 

NFspecify(Z.nfspec) -> NFspecify(sp.nfspec) 
NFspecify(sp.nfspec) 

end module 

combines BOTTOM-UP-SPECIFICATION, 
FUNCTIONAL~BEFORE~I’JO“CTI0NAL 

end module 

Fig. 11 : Some strategies for specification 
development. 

3.3 Modular process construction 

In PROMENADE, model definition is intended to allow 
software process model conslmction in a modular and 
incremental way. One part of this modular construction 
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of models relies on the reusability and extensibility of the 
hierarchy containing the static elements of the model. 
The other, and more fundamental part, deals with the 
process of task description. 

Tasks play the role of ruling process development by 
appliying strategies. Constructing a software process 
model in a modular way consists in selecting within a 
strategy libra y those ones with the required 
functionality and combining them with some suitable 
precedence relationships in order to build a description 
graph for the model. This will define the model strategy. 

Following this process, it is possible to combine many 
partial models to form the final one. These combination 
may be of two kinds. On the one hand, we can build 
precedence graphs for a subset of software documents 
(specifications, libraries, working context, etc.) by 
adding new precedences to an initial graph, by joining 
two graphs with the same nodes, etc. On the other hand, 
we can just put together some of these graphs to obtain a 
new one covering more documents (i.e., dealing with 
more software development stages); for instance, we can 
put together the graph of fig. 10 with other concerning 
implementation construction, to obtain a graph covering 
the whole component development process. The 
resulting graphs, if convenient, may be in turn, stored in 
a library for future reuse. 

3.4. Correctness concerns 

Using the precedence graphs and also the success 
conditions stated in the static part of the model, it is 
possible to formulate some correctness conditions, both 
concerning the model itself and also concerning a 
particular development process with respect to a model. 
This issue has been outlined in [FR97] and has been 
refined by incorporating the idea of three dimensional 
graphs, in which an axis corresponds to precedence 
relationships and the other to task decomposition. 

Another point concerning the correctness is the 
matching between the static and the dynamic parts of the 
model. Obviously, precedence relationships between 
tasks and decomposition of elements into smaller parts 
must agree. We are currently working on the 
characterization of this matching. 

think are not currently totally covered in the field. The 
PROMENADE approach plays a part in a more 
ambitious system called ComE'roLab [FBBR97] defined 
to support many different aspects of component 
programming, 

In our proposal, the language consists of static and 
dynamic parts. Concerning the static part, we use a 
hierarchy to introduce software process elements 
(documents, tasks, etc.), which are encapsulated using 
OOZE classes and thus provided of a clear semantics. 
With respect to the dynamic part, we use precedence 
graphs as the underlying model of task enaction 
ordering, and we allow the definition of development 
strategies using modules that can be reused and 
combined. 

We can classify and evaluate the adequacy of our 
approach with respect to the aspects proposed by 
Conradi and others in [CLJ91]. We put a star (*) on 
those issues still not covered but just planned to: 

Basic process model apparatus: Precedence 
relationships between tasks modelled by 
precedence graphs. Static part covered by class 
hierarchies. 
Coverage of process entities: products, activities, 
tools, agents, roles and resources. Our approach is, 
however, activity-oriented. 

* Coverage of software process life-cycle: All steps 
can be modelled in our approach, including 
specification of software attributes (non-functional 
specification). 
Task structuring: We present a fully task structuring 
by means of task abstraction. 
Type structuring: Yes, in an object-oriented way. 
We define a default hierarchy of types that may be 
extended on demand. 
(*) Customization and evolution of the process 
model: It will be allowed by using meta-types. 

*Concurrence: Supported by the fact that just 
precedence relationships avoid concurrent enaction 
of tasks. 
(*) Configuration management: A usual versioning 
system will be provided. 

We think that the most interesting points of our 
approach are: 

Moaulurity/reusabiZitylity: PROMENADE offers the 
possibility of reusing fragments of existing models under 
an object-oriented approach. Hence, in order to build a 
new model it is possible to reuse tasks, documents, roles 
and any other element previously generated to construct 
some other model, which makes the process of model 
construction much more simple. PROMENADE shares 
this feature with some other systems like EPOS and E3. 

4. Conclusions and future work 

We have presented the process modelling language of 
the PROMENADE approach. This language addresses to 
many interesting properties at the process level which we 
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On the other hand, some well-known systems like 
SPADE, ADELE or IMERLIN lack this property or, at 
least, it is not shown explicitly how to get it in the 
revised literature. 

What is new in PROMENADE with respect to the 
revised systems is its explicit ability of constructing in a 
modular manner new models adding some strategies to 
existing ones. These strategies are encapsulated in what 
we call strategy modules, which are presented briefly in 
section 3.2 and in more detail in [FR97]. 

Simplicity/comp,rehensibility; PROMENADE 
seems to facilitate the generation of software process 
models (SPMs) in an intuitive and quite simple way by 
means of a graphical representation (that will be 
translated into a formally defined language, which is 
currently being defined). This graphical representation is 
based on defining hierarchies of entities (for the static 
part) and new tasks by means of stating the precedence 
relationships that must hold between some other tasks 
(for the dynamic one). 

On the other hand, once the SPM has been 
constructed, precedence graphs make it quite 
comprehensible. Precedence graphs (i.e. diagrams which 
depicts the precedence relationships between activities) 
are crucial in order to understand the whole process of 
software development. Curiously enough, most of the 
Process-centered Sofihvare Engineering Environments 
(PSEEs) we have explored do not use this kind of 
diagrams. 

Two aspects that also help in the achievement of 
simplicity are the object-oriented approach we undertake 
and the high level constructs we provide for our system. 
Unlike other PSEEs, like SPADE or APPLiA, we do not 
require the software engineer to explain how the SPM 
will be enacted (which is usually a criptic matter) but 
instead, what must be done in order to develop software, 
which is clearly what the software engineer knows (and 
what heishe is interested in modelling). 

Although the simplicity property should be a very 
important one for PSEEs, most of them fail (at least to 
some extent) in achieving it2. SPADE and APPLiA are 
directly enactable PSEEs that get a remarkable 
performance in model enaction. Since they achieve that 
performance on the basis of a low level construction, we 
think that SPM written in these systems (specially in 
SPADE) are difficult to write, difficult to read and 
difficult to understand. MERLIN and EPOS are high 
level PSEEs, but in our opinion, it is difficult to get with 
them fully comprehensible models: the resulting model 

Although in some cases it is possible that the complexity of the 
model is a consequence of the inherent complexity of the problems 
that are to be solved. 

in MERLIN is working-context-oriented which makes it 
difficult to grasp the whole development process model. 

In EPOS the task sequence to be executed in the 
resulting SPM is not obvious amd the advantage of using 
an AI planner is not clear. Finally, E3 provides simplicity 
on the basis of a wide range of diagrams (including 
precedence ones), an object-oriented approach and high 
level constructs. This leads lo a very comprehensible 
model but with quite simplistic constructs. 

Direct enactability: There is a usual correlation 
between the level of the constructs offered by the system 
in order to generate a SPM and the enactability of the 
resulting model. For instance, directly enactable systems 
like APPLIA and SPADE offer quite low level 
constructs. On the other haind, systems like E3 and 
MERLIN, by far more high-level systems, cannot be 
enacted directly; they need a translation into a lower 
level language. 

PROMENADE achieves a lbalance between the level 
of the language to create the model (which is clearly high 
level) and the SPM enactabiliity, since a PROMENADE 
SPM is directly enactable by the application of the 
algorithm described in [FR97]. 

Concurrent model enaction: Not only offers 
PROMENADE an enactable SPM but also a very natural 
concurrent model based on a imultiagent approach (each 
agent is responsible for executing some tasks) with the 
restrictions imposed by the precedence relationships 
between tasks. We are cunrently working on these 
enaction aspects. An overview of them may be found in 
[FR97]. 

Concurrent models offered by some other PSEEs need 
synchronization between tasks (the case of APPLIA 
since it uses Ada tasks). In other cases (as SPADE) the 
concurrent model is based on ,a formal mechanism (Petri 
nets). This leads to a very efficient but low level 
approach. In some other cases of not directly enactable 
models (MERLIN, E3), the concurrence of the final 
enactable model is not reported. 

It is important to say that, unlike other systems like 
ADELE or MERLIN, we do not deal, for the moment, 
with concurrent accesses to documents, which is a very 
important research area. 

Formality: This is one of the shortcomings of most 
PSEEs, for only a few of them are constructed on the 
basis of a formal approach. 

One of the goals of PROMENADE is to define a SPM 
established on some formal basis. This will allow the 
complete understanding of the specification of the 
elements (classes and relations) that take part in model 
definition; the rigorous definition of the mechanism of 
model enaction; the establishment of the correctness of a 
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model enaction with respect to a model definition; the 
accurate definition of what a SPM is and what is 
compounded of; the formal reasoning about the 
properties that hold in any part of the SPM, etc. 

We achieve this property by the formal specification 
of classes by means of the OOZE language (see section 
2), the rigorous model definition and the formalization 
of model enaction (which includes the notion of 
correctness of a software system development with 
respect to a SPM). Both aspects are shown in our 
previous work [FR97]. 

Some points of our approach have not been included 
here. In fact, the language has just been outlined. We 
have a catalogue of class relationships in the static part. 
In the dynamic one, we have a special kind of 
precedence relationship called grouping (simultaneous 
enaction of several tasks) that has been proved to be 
useful. Also the actions to be taken in case of task 
failure have not been shown here; they take the form of 
adding new kind of edges to the precedence graphs. 

Other points have not been addressed yet in our work. 
Remarkably, we have not defined the meta-level, and our 
way to deal with component redevelopment is very 
nai’ve. Also absolute time must be added in our approach 
and combined with precedence relationships in a proper 
way. However, we feel that all these issues could fit in 
PROMENADE in a natural way. 
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