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Abstract
We propose a Lagrangian fluid formulation particularly suitable for fluid–structure 
interaction (FSI) simulation involving free-surface flows and light-weight structures. The 
technique combines the features of fractional step and quasi-incompressible approaches. 
The fractional momentum equation is modified so as to include an approximation for the 
current-step pressure using the assumption of quasi-incompressibility. The volumetric term 
in the tangent matrix is approximated allowing for the element-wise pressure condensation 
in the prediction step. The modified fractional momentum equation can be readily coupled 
with a structural code in a partitioned or monolithic fashion. The use of the quasi-
incompressible prediction ensures convergent fluid–structure solution even for challenging 
cases when the densities of the fluid and the structure are similar. Once the prediction was 
obtained, the pressure Poisson equation and momentum correction equation are solved 
leading to a truly incompressible solution in the fluid domain except for the boundary 
where essential pressure boundary condition is prescribed. The paper concludes with two 
benchmark cases, highlighting the advantages of the method and comparing it with similar 
approaches proposed formerly.
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1. Introduction
Fluid–structure interaction (FSI) problems involving 
incompressible fluid flows and flexible structures are found in 
many civil and mechanical engineering applications. Active 
research has been carried out in the field of FSI over past two 
decades and multiple numerical models were developed (a 
review can be found, e.g. in [1] ). For the problems involving 
light-weight structures interacting with free-surface flows quasi-
incompressible Lagrangian fluid formulations coupled to the 
standard structural formulations proved to be very 
advantageous. The evolution of the free-surfaces and FSI 
interfaces could be tracked since it was naturally defined by the 
position of the moving Lagrangian mesh. On the other hand, 
quasi-incompressible formulations circumvent the added mass 
effect [2] typically encountered when standard truly 
incompressible fluid formulations were used [3] . This benefit 
was achieved due to the relaxation of the incompressibility 
constraint introduced by the assumption of slight 
compressibility. Quasi-incompressible fluid formulations have 
been widely used for FSI simulation both in the finite element 
method (FEM) [4] ; [5] ; [6] ; [7] and the smooth particle 
hydrodynamics (SPH) contexts [8] ; [9] ; [10] ; [11] .

For designing monolithic FSI solvers (i.e. the ones that rely on 
the solution of the coupled problem using a single discrete 
system) quasi-incompressible formulations are particularly 
benefitial as they allow for pressure condensation in the fluid 
domain while maintaining the velocity/pressure coupling. This 
results in (a) better monolithic system conditioning due to 
elimination of the different variables scales (b) simplicity of 
coupling with the structure when both sub-domains are 
described using the same primary variable (displacement or 
velocity). In such case elements of the fluid and the structure 

simply share the same degrees of freedom at a contact node. 
Thus, a fluid–structure problem can be solved very similarly to a 
single-material one. Of course, in such approaches the use of 
fitting interface meshes is obligatory.

Under the assumption of quasi-incompressibility the pressure is 
related to the kinematic field (velocity or displacement) via a 
constitutive equation involving the compressibility constant, 
also called the bulk modulus . For high values of the bulk 
modulus quasi-incompressible formulations provide an 
acceptable approximation of the incompressible behavior. The 
bulk modulus must be sufficiently high to conserve mass in a 
satisfactory way and introduce the sound propagation speed at 
least 1 order of magnitude higher than the expected velocity of 
the bulk flow. For FSI problems the one can update the fluid 
pressure in the coupling step using the constitutive relation 
ensuring that the pressure accounts for the motion of the 
structure. As we shall see further, this pressure update does not 
involve linear system solution and is therefore computationally 
cheap.

Quasi-incompressible fluid formulation based on linear velocity-
constant pressure finite elements was proposed in [4] . Element-
wise constant pressure formulation facilitated pressure 
condensation at an elemental level, i.e. prior to assembly. This 
facilitated solving the entire fluid–solid problem using a unified 
approach with the velocity being the only primary variable. 
However, the drawback of the formulation was the volumetric 
locking phenomenon (well-known in constant-pressure 
elements) that manifested already at moderately high values of 
the bulk modulus. On the other hand, low values of bulk 
modulus led to poor approximations of the incompressible 
behavior. In [6] ; [12] an alternative based on linear pressure 
interpolations was proposed. The formulation exhibited 
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superior behavior in terms of volumetric locking. Nonetheless, 
the computational cost of the solver increased due to the 
impossibility of condensing pressure elementally when using 
linear pressure approximation. The global pressure 
condensation procedure had to be introduced. Moreover, when 
approaching incompressibility limit the pressure instability 
problems (inf-sup instability [13] ) due to using equal order 
velocity-pressure interpolations manifested. In general, the 
ambiguity of the quasi-incompressible or penalty approaches 
can be expressed as follows: the compressibility constant must 
be large enough to approximate the incompressibility 
accurately, but at the same time it must be small enough not to 
lead to “stiff” governing systems. An improvement with respect 
to modeling the incompressible behavior can be found in [14] , 
where an idea of combining the above-mentioned quasi-
incompressible approaches with the fractional step strategy was 
proposed. The method consisted in using the momentum 
equation of a quasi-incompressible fluid as a prediction 
(fractional momentum equation). The subsequent solution of 
the pressure Poissons equation and the momentum equation 
correction led to the truly incompressible solution. The method 
allowed for using relatively low values of bulk modulus in the 
quasi-incompressible momentum equation, since the truly 
incompressible solution was recovered at the correction step. 
The necessity of the computationally expensive global pressure 
condensation inherited from [6] due to the use of linear 
pressure interpolations defined the main drawback of the 
methodology.

In the present work we propose one further improvement of 
the methods’ family developed in [4] ; [6] ; [14] . Following the 
idea of combining the quasi-incompressible prediction with the 
fractional step method, we propose to use the approximation of 
the volumetric term in the tangent matrix that allows for 
computationally efficient elemental pressure condensation, 
defining a major advantage in comparison with [14] . We also 
introduce the fluid–structure interaction coupling strategy 
where the modified fractional momentum equation is solved 
together with the momentum equation of the structure 
monolithically, while the subsequent “incompressible 
correction” steps are carried out in the fluid domain exclusively.

The paper is organized as follows. We first introduce the 
modified fractional momentum equation using the quasi-
incompressibility assumption. An approximate linearization of 
the volumetric term is introduced. Correction steps ensuring 
truly incompressible solution are specified next. Then the 
solution procedure for the FSI problems is outlined. The paper 
concludes with two challenging FSI benchmark examples.

2. Numerical model

2.1. Governing equations for the fluid

Let us consider a fluid domain Ω with the fixed boundary Γd . We 
shall consider viscous incompressible Newtonian fluids being 
the most common in the majority of the engineering 
applications. The governing system are therefore the 
Navier–Stokes equations equipped with the incompressibility 
condition. These can be written as:

ρ ∂v
∂t + ∇p + ρv ⋅ ∇v − μ∇ ⋅ (2ϵ (v)) = ρg ( 1)

∇ ⋅ v = 0 ( 2)

where v is the velocity vector, p the pressure, t the time, g the 
body force, ρ the density, μ the dynamic viscosity and ϵ = (∇ v + 
∇ Tv )/2 – the deviatoric strain rate.

At the fixed wall Γd , homogeneous Dirichlet boundary 
conditions are prescribed:

v = 0 at Γd ( 3)

2.1.1. Finite element formulation
The equal order linear velocity/pressure interpolations over 3-
noded triangles (2D) or 4-noded tetrahedra (3D) are used here 
for the space discretization of the governing equations Eqs. (1) 
and (2) . We assume Backward Euler time integration scheme 
exclusively for the sake of simplicity. All the arguments 
presented in the paper are valid for any implicit time integration 
scheme. In the implementation carried out in this work the 
second order Newmark–Bossak scheme is used [6] . Being 
standard, the space and time discretization are not discussed 
here (see e.g. [15] ; [16] ). Pressure stabilization term is added 
due to the use of the equal order velocity-pressure formulation 
(Algebraic Sub-Grid Scales (ASGS) stabilization [17] is 
implemented here). Lagrangian description of the fluid is 
considered.

Given v̄n  and p̄ n  at tn , the time discrete problem consists in 
finding v̄n +1 and p̄ n +1 at tn +1 as the solution of

M v̄n +1 − v̄n
Δt + μLv̄n +1 + G p̄ n +1 = F̄

( 4)

Dv̄n +1 + S p̄ n +1 = 0 ( 5)

where M , L , G and S are the mass, the Laplacian, the gradient 
and the stabilization matrices, respectively. v̄ and p̄  are the 
velocity and pressure, respectively, and F̄ is the body force 
vector. Subindices indicate the time step. Note the absence of 
the convective term due to the use of the Lagrangian kinematic 
framework.

The matrices and vectors are assembled from the elemental 
contributions defined as

M = ρ ∫Ωe
NNT dΩ

( 6)

L = ∫Ωe
∇N∇NT dΩ

( 7)

G = − ∫Ωe
∇NNdΩ

( 8)

F̄ = ∫Ωe
NρgdΩ

( 9)

S = ∫Ωe
(∇N)τ ( ρ

Δt N)dΩ
( 10)

D = − GT ( 11)

N stands for the vector of standard linear FE shape functions, 
Ωe is the element integration domain, τ  is an algorithmic 
stabilization coefficient defined as τ =
(((2| | v̄ | |)/h ) + (4ν /h2) )−1 , where h is the element size. Note 
also that the discrete operators given by Eqs. (6) , (7) , (8) , (9) , 
(10) ; (11) correspond to the unknown current configuration 
Xn +1 according to updated Lagrangian approach [6] ; [18] . Thus, 
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the system is nonlinear and must be solved in an iterative 
manner and the discrete operators must be updated at every 
nonlinear iteration.

Fractional step split. Following the basic idea of the fractional 
step methods [19] ; [20] ; [21] , the momentum equation is split 
into two parts by introducing the intermediate velocity v~

M v~ − v̄n
Δt + μLv̄n +1 + G p̄ n +1

g = F̄
( 12)

M v̄n +1 − v~
Δt + G( p̄ n +1 − p̄ n +1

g ) = 0
( 13)

Dv̄n +1 + S p̄ n +1 = 0 ( 14)

where v~ is the above-mentioned intermediate or “fractional” 
velocity and p̄ n +1

g  is the guess of the end-of-step pressure. Eq. 
(12) is known as “fractional momentum” and Eq. (13) as “end-of-
step momentum” equations.

The novelty of these equations in contrast to those of the 
standard second order fractional step approach consists in 
using p̄ n +1

g  instead of p̄ n  in the fractional momentum equation. 
This idea was originally proposed in [14] , where p̄ n +1

g  was 
computed assuming slight compressibility. This is particularly 
advantageous for the fluid–structure interaction problems since 
it implies that the fractional momentum equation becomes 
equivalent to the momentum equation of a quasi-
incompressible fluid, that can be successfully coupled to the 
momentum equation of the structure according to [6] or [4] . 
This type of coupling is completely free of the spurious added 
mass effect since the fluid pressure becomes coupled to the 
kinematic field (velocity or displacement) of the FSI problem via 
the pressure constitutive equation according to the quasi-
incompressibility assumption. When the classical fractional step 
method is applied, the fluid pressure becomes completely 
segregated from the kinematic field in the fluid–structure 
coupling step [3] .

The pressure Poissons equation is obtained by applying the 
incompressibility condition Eq. (14) to the end-of-step 
momentum equation (Eq. (13) ), leading to

Dv~ = ΔtDM−1G( p̄ n +1 − p̄ n +1
g ) + S p̄ n +1 ( 15)

Using the typical approximation DM−1G ≈ L , we arrive at the 
final system to be solved:

(M v~ − v̄n
Δt + μLv~ + G p̄ n +1

g ) = F̄
( 16)

Dv~ = ΔtL( p̄ n +1 − p̄ n +1
g ) + S p̄ n +1 ( 17)

M v̄n +1 − v~
Δt + G( p̄ n +1 − p̄ n +1

g ) = 0
( 18)

Fractional momentum equation solution and pressure prediction. 
The momentum Eq. (16) is nonlinear due to the dependence of 
the discrete operators on the unknown current configuration 
Xn +1 . Thus, it must be solved iteratively. For this reason, let us 
define the residual of the fractional momentum equation

r~m = F̄ − (M v~ − v̄n
Δt + μLv~ + G p̄ n +1

g ) ( 19)

According to the assumption of quasi-incompressibility the 
unknown current-step pressure can be computed by adding the 
term proportional to the divergence of velocity to the pressure 
of the previous step (see [6] ; [14] for details):

pn +1
g = pn + δp = pn + K ∫tn

tn +1

∇ ⋅ vdt
( 20)

where K is the bulk modulus of the fluid. The space-discrete 
form of the constitutive Eq. (20) using linear velocity-pressure 
finite elements reads

Mp p̄ n +1
g = Mp p̄ n + K ∫tn

tn +1

Dv̄dt
( 21)

where Mp is the pressure mass matrix.

In order to avoid matrix inversion for obtaining the current step 
pressure, the pressure mass matrix Mp will be taken in the 
lumped format. Multiplying Eq. (21) by the inverse of the mass 
matrix and performing time integration one obtains:

p̄ n +1
g = p̄ n + δ p̄ ( 22)

where

δ p̄ ≈ KΔtMp
−1Dv~ ( 23)

Now the unknown pressure increment is expressed in terms of 
the fractional velocity. Since its computation involves 
multiplication of assembled (global) matrices M and D , it can be 
called the “global pressure condensation”.

Expressing the pressure increment as a function of velocity 
according to Eq. (23) allows us to solve the nonlinear equation

r~m = 0 ( 24)

(with r~m  defined by Eq. (19) ) exclusively for velocity:

Hδ v̄ = r~m (v~i , p̄ i ) ( 25)

with the subsequent velocity and pressure update: v~i +1 = v̄n +
δ v̄ and p̄ n +1

g = p̄ n + KΔtMp
−1Dv~i +1 , where “i” stands for the 

nonlinear iteration index at time tn +1 and H is the tangent 
matrix defined as

H = − ∂r~m
∂v̄

( 26)

As the non-constant pressure term is now included in the 
residual, it must be accounted for in the linearization. Using Eq. 
(22) permits to linearize the pressure gradient term with respect 
to velocity, giving

∂G p̄
∂v̄ = KΔtGMp

−1D
( 27)

thus leading to the following expression for the dynamic 
tangent:

H = M
Δt + μL + KΔtGMp

−1D ( 28)

However, calculation of the volumetric term KΔtGMp
−1D in the 
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tangent matrix is a computationally tedious procedure and is 
feasible only if matrix-free methods are applied [6] for avoiding 
global matrices’ multiplication and storing the product. Instead, 
we propose an approximation of this term that corresponds to a 
element-wise constant pressure approximation. Note that this 
approximation will be used exclusively in the tangent matrix 
maintaining linear pressure elsewhere.

Discontinuous approximation for the pressure in the tangent 
matrix. In case of element-wise constant pressure 
approximation, the pressure increment (Eq. (20) ) can be 
computed as:

δ p̄ ≈ [Δt ∫Ωe
CK BdΩe ]v~

( 29)

where the operator B and volumetric constitutive matrix CK are 
defined (in 2D) as

B = (
∂N1
∂x 0 ∂N2

∂x 0 ∂N3
∂x 0

0 ∂N1
∂y 0 ∂N2

∂y 0 ∂N3
∂y

∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x

∂N3
∂y

∂N3
∂x

)
( 30)

CK = 1
2 (K K 0

K K 0
0 0 0) ( 31)

The pressure gradient can be approximated as

G p̄ n +1
g = G( p̄ n + δ p̄ ) ≈ G p̄ n + [Δt ∫Ωe

BT CK BdΩe ]v~
( 32)

Thus, the linearization of the pressure gradient with respect to 
velocity can be expressed as:

∂G p̄
∂v̄ ≈ Δt ∫Ωe

BT CK BdΩe

( 33)

and the resulting tangent matrix is

H = M
Δt + μL + Δt ∫Ωe

BT CK BdΩe

( 34)

Now the linearization of the gradient of pressure increment 
involves elemental matrices B and CK exclusively. Thus, using 
element-wise constant pressure approximation permitted to 
condense pressure at the elemental level minimizing the 
associated the computational cost.

Pressure Poissons equation and the correction step. The next step 
to be carried out is the correction of the pressure, i.e. obtaining 
the end-of-step incompressible pressure using Eq. (17) . Solution 
of Eq. (17) requires to impose the pressure boundary conditions 
due to the presence of the Laplacian L . According to the 
methodology presented in [14] , p̄ n +1 = p̄ n +1

g  can be used as an 
essential boundary condition for the pressure necessary for 
solving the Poissons equation. The quality of this approximation 
depends exclusively on the value of the bulk modulus K  used in 
the prediction step. Having the pressure fixed to the predicted 
value p̄ n +1

g  at the free surface (or at the interface with the 
structure in the FSI problems), pressure Poissons equation is 
solved elsewhere in the domain to give the end-of-step 

pressure p̄ n +1 .

This step can be thus viewed as a correction of the predicted 
pressure p̄ n +1

g  to the correct end-of-step one everywhere except 
for the free surface (or FSI interface), where the “slightly 
compressible” pressure is maintained. Consequently, the 
projection step is carried out according to Eq. (18) and returns 
the end-of-step divergence-free velocity everywhere in the 
domain except for the pressure boundary, where the 
divergence-free velocity is approximated. The implementation 
procedure of the modified fractional step scheme is 
summarized in Table 1 .

Table 1. Implementation procedure of the modified 
fractional step scheme.

1. Solve the modified fractional momentum Eq. (24) using 
the iterative procedure according to Eq. (25) and tangent 

matrix defined by Eq. (34)
 • Update pressure according to Eq. (20) and add it to the 

fractional momentum residual
 • Compute the new nodal position Xn +1 and move the nodes 

and update discrete operators
 • Repeat until convergence in terms of velocity is achieved
2. Solve the pressure Poissons Eq. (17) , using the predicted 

pressure as the boundary condition
3. Solve the end-of-step momentum Eq. (18)

3. Coupling with a structure

The present approach can be incorporated into the FSI 
strategies proposed in our works on quasi-incompressible 
Lagrangian fluids [6] ; [7] . According to these approaches, a 
unique discretization is applied to the entire domain containing 
both the fluid and the structure. A single monolithic FSI system 
of equations is solved. Thus, the interaction becomes an 
intrinsic feature of the method and does not involve iterative 
boundary conditions’ exchange between the fluid and the 
structure sub-domains. The fractional momentum equation for 
the fluid and the momentum equation of the structure can be 
assembled into a single system of equations. This step 
completely coincides with the procedure proposed in [6] ; [7] . 
The coupling can be applied to any structure provided that its 
only nodal degree of freedom is velocity (see e.g. [4] for the 
velocity-based formulation for solids). Alternatively, the 
equations for the fluid can be rewritten in terms of 
displacements instead of velocity in order to facilitate the 
coupling with displacement-based structural formulations. This 
ensures the compatibility of the degrees of freedom in the 
nodes shared by the fluid and the solid elements.

The coupled solution involves a monolithic step where fractional 
momentum of the fluid and the momentum equation of the 
structure are solved in a single system of equations and a 
subsequent correction step carried out in the fluid domain 
exclusively. The correction step consists in solving the pressure 
Poissons equation and end-of-step momentum equation. It 
ensures that the true incompressibility in the fluid domain is 
fulfilled.

The solution strategy of the coupled system is summarized in 
Table 2 .

Table 2. Implementation procedure of the monolithic 
solution for the FSI problems using the proposed fluid 
formulation.
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1. Start the nonlinear loop
 • Assemble the monolithic FSI system (consisting of the 

modified fractional momentum for the fluid and the 
structural momentum equation) in a standard FE manner

 • Solve the monolithic FSI system for the primary kinematic 
variable (velocity or displacement)

 • At every nonlinear iteration update the guess for the fluid 
pressure using the quasi-incompressible fluids’ constitutive 

relation
 • Repeat until convergence in velocity is achieved

2. Prescribing the pressure to the predicted value at the FSI 
interface, solve the pressure Poissons equation for the end-

of-step pressure in the fluid domain.
3. Perform the correction of the momentum equation in 

the fluid domain
4. Go to next time step

4. Examples

In this section two fluid–structure interaction examples are 
simulated using the formulation proposed. These benchmarks 
are characterized by the density ratio of the fluid and the 
structure close to 1, which defines a challenging setting for 
conventional fluid–structure interaction coupling schemes.

4.1. Deformation of a rubber seal
This example studies the deformation of an elastic plate 
subjected to water pressure. It was proposed and studied in 
detail in [8] ; [9] . A water container of width A = 0.1 m with water 
level L = 0.14 m is closed by a rubber cover of height H = 0.079 
m and width s = 0.005 m, which is fixed at the top (see Fig. 1 ). 
The cover is released and exposed to the water column, which 
induces deformation. The rubber cover is modeled with the 
following properties: density ρ = 1100 kg/m3 , Youngs modulus 
E = 6 MPa and Poissons ratio ν = 0.4

Fig. 1.

Elastic seal subjected to water pressure.

Rubber is a nonlinear material, however in the present study 
linear elastic approximation is used. The value of the Youngs 
modulus is approximated here as 0.5(E0 + E100 ), where E0 is the 
Youngs modulus of the virgin material and E100 is the value that 
corresponds to the deformation of 100% (these values are taken 
from [9] ).

Water is modeled using actual properties of water. The bulk 
modulus value used in the prediction step was K = 10 KPa. The 
unstructured uniform mesh with the elemental size of 0.001 m 
was.

Qualitative comparison among the results of the present 
simulation and the experimental data published in [8] is shown 
in Fig. 2 . The domain configurations at t = 0.04, 0.12, 0.28 and 
0.4 s are displayed. One can see a good agreement between the 
numerical and experimental data both in terms of the free 
surface of the fluid and the seal deformation.

Fig. 2.

Elastic seal subjected to water pressure.

Quantitative comparison is shown in Fig. 3 . Fig. 3 a and b shows 
the evolution of horizontal and vertical displacements of the 
middle of the seal tip, respectively. One can see that the 
maximum horizontal and vertical displacements (around 0.042 
and 0.017 m, respectively) are very close to the experimental 
values. Certain discrepancy is observed once the maximum 
deformation is obtained, which suggests that the hyper-elastic 
effects of the real rubber are considerable. However, in the 
elastic region the numerical and the experimental results match 
well. Overall, one can see a good agreement among the results 
obtained with the present simulation and the ones presented in 
[8] . In particular, our simulation could predict the slight 
“reopening” of the seal, i.e. the increment of displacements 
observed around 0.35 s. The difference in the maximum value is 
less than 10/vertical directions.

Fig. 3.

Displacement of the rubber seal: numerical results vs. experimental data.

4.2. Vertical elastic beam in a shallow oil 
sloshing

This example was studied in [5] , where experimental data and 
simulation results are provided. It models rotational motion of a 
rectangular container filled with liquid and a vertical elastic 
beam clamped at the bottom. The geometry of the model is 
shown in Fig. 4 a. The tank has a length L = 0.609 m and a 
height H = 0.3445 m. The real set-up has a width of 0.039 m. The 
container moves around a fixed point located in the mid-point 
of the bottom wall (x = 0.3045 m, y = 0 m). The motion with an 
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amplitude of 4 degrees and a period of 1.21 s is prescribed to 
the container walls. The beam is made of polyurethane resin 
with the following properties: the density is 1100 kg/m3 , the 
Young modulus measured in a traction test amounts 
approximately 6 MPa. The beam has a thickness b = 0.004 m 
and width of 0.0332 m which is enough to simulate a 2D flow 
without touching the lateral walls.

Fig. 4.

Oil sloshing in the container with an elastic beam.

The tank was filled with sunflower oil, with the density of 917 
kg/m3 and the kinematic viscosity of 5e−5 m2 /s. The original 
free surface level of the liquid coincided with the beam height (h 
= 0.1148 m). It is important to note that in the experiment, when 
the motor is started there is a transition from the rest state to 
the harmonic motion due to inertia. The numerical simulation 
accounted for this shift by introducing a delay of 0.25 s in the 
onset of the tank motion. Uniform unstructured mesh with size 
of 0.003 m was used.

Fig. 4 b displays the evolution of the horizontal displacement dx 
of the beams upper left corner. The results obtained with the 
present method are compared with the experimental data and 
the numerical simulation [5] ; [22] . One can see a good 
agreement with the experimental data and an almost exact 
match with the numerical results.

Let us examine next the benefits of the methodology proposed 
in the present paper in comparison with the former Lagrangian 
FSI formulations based on quasi-incompressibility assumption, 
such as [4] ; [5] or [6] . The quality of the quasi-incompressible 
approximations strongly depends upon the value of the bulk 
modulus. Fig. 5 a shows the evolution of the horizontal and 
vertical displacement of the elastic beam for different values of 
the bulk modulus K obtained using the quasi-incompressible 
formulation. One can see that for the value of K = 1000 KPa a 
perfectly smooth solution is obtained. When K = 100 Pa is used 
spurious oscillations appear and the solution deteriorates. For K 
= 10 KPa the spurious oscillations become considerably large 
and the fluid behavior cannot be considered incompressible 
anymore. These oscillations represent the compressibility 
effects that manifest when the bulk modulus is not large 
enough and the corresponding pressure waves travel with low-
enough velocity to create a series of compressions–extensions 
in the medium.

Fig. 5.

Vertical and horizontal displacements of the elastic beams tip in sloshing problem.

The present methodology, on the contrary, exhibits perfectly 
smooth solutions even for small values of the bulk modulus. Fig. 
5 b shows the solutions obtained for K = 100 KPa and K = 10 KPa. 
One can see that the graphs practically coincide. No spurious 
oscillations are observed. This proves that the correction step 
carried out after the quasi-incompressible prediction 
considerably improves the solution quality in the fluid domain. 
Note that even in the limiting case of K = 0 one would simply 
recover the classical fractional step solution. However, non-zero 
values of bulk modulus must be used in order to ensure 
convergent fluid–structure interaction solution. Fig. 6 shows 
average computational time per time step versus bulk modulus 
value (the simulations were executed on Intel i7 (4 cores, 2.80 
GHz) PC). One can see that for the problem at hand using K = 
1000 KPa leads to computational cost practically five times 
higher than that of K = 10 KPa. This comparison does not 
pretend to represent any exact estimate of the computational 
benefit of the proposed method. It merely indicates the gain in 
the computational efficiency. It is worth noting that in 3D the 
improvement in the computational efficiency due to the 
possibility of using low bulk modulus values is even higher.

Fig. 6.

Average computational cost per time step in sloshing simulation for different values of the 
bulk modulus.

5. Summary and conclusions

This paper presented a fluid formulation that combined the 
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features of fractional step and quasi-incompressible 
approaches. It consisted of the prediction for the velocity and 
the pressure under the assumption of quasi-incompressibility 
and their subsequent correction by means of pressure Poissons 
equation and end-of-step momentum equation. The 
formulation maintained the attractive features of the formerly 
proposed quasi-incompressible formulations for the 
fluid–structure interaction coupling. However, it led to truly 
incompressible solutions even when using low bulk modulus 
values in the prediction step which defines an important benefit 
of the proposed approach. Moreover, the proposed 
approximation of the volumetric term in the tangent matrix 
permitted elemental pressure condensation at the prediction 
step, defining an important improvement of our former 
formulation, where computationally expensive global pressure 
condensation was mandatory [6] .

Using the presented formulation we achieved:

Truly incompressible solution in the fluid domain

Possibility of using low values of bulk modulus in the 
prediction step

Straight-forward and stable coupling to the structure

Possibility of using conventional pressure stabilization 
techniques (in the Poissons equation)

Computationally efficient solution strategy

No added mass effect

The permissible time step in the proposed method is restricted 
by the non-negativity requirement of the elements’ Jacobian (i.e. 
no element can be inverted within a time step). This restriction 
can be possibly alleviated by using innovative streamline time 
integration techniques proposed in [23] . This defines one clear 
research line for the future.
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