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A scientist in his laboratory is not only a technician:

he is also a child placed before natural phenomena

which impress him like a fairy tale.

Marie Sklodowska Curie





Abstract

Quantum memories (QMs) for light represent a fundamental ingredient for

the development of a quantum internet. Among other applications, they

are a building block for the distribution of entanglement on large scale, i.e.

for the realization of a quantum repeater architecture.

Rare earth doped crystals (REDCs) are a promising candidate towards

this goal. In my thesis I use a Pr3+:Y2SiO5 crystal. The longest storage

time and the highest retrieval efficiency for a solid-state memory measured

so far, were demonstrated with this system (in the classical regime). How-

ever, the main advantages of solid-state platforms are their suitability for

miniaturization and integration as well as their inhomogeneous broaden-

ing, which enables broadband storage and spectral multiplexing.

In this thesis we demonstrate an on-demand solid-state QM for real single

photons. Moreover we study new platforms for integrated QM based on

the same material. We employ the atomic frequency comb (AFC) tech-

nique, which is the most promising storage protocol in terms of temporal

multiplexing up to now.

Until the start of my PhD there was still no demonstration of storage of

a real quantum state of light with an on-demand readout in REDCs. We

achieved this in the course of this thesis, measuring also for the first time

(and only, at the time of writing) non-classical correlation between a single

spin wave in a solid-state QM and a telecom photon.

After proving the suitability of Pr3+:Y2SiO5 crystals for on-demand QMs,

we demonstrated novel types of integrated optical memories based on the

same system. We studied the spectroscopic and coherence properties of

the ions in laser-written waveguides fabricated by fs-laser micromachining.

These projects were developed in collaboration with Dr. R. Osellame and

Dr. G. Corrielli at Politecnico di Milano, who fabricated the waveguides

and analysed their guiding properties. In a first kind of waveguide, called

type II, we performed the first storage with on-demand retrieval ever done

in solid-state integrated optical memories (with classical light).

We continued analysing a so-called type I waveguide, in which the mode-

size is comparable with the mode guided in a single-mode fiber at the same



wavelength. Here we showed storage of heralded single-photons for a pre-

programmed time. The demonstrated storage time, 5.5µs, is the longest

quantum storage demonstrated in any integrated waveguide up to now.

Finally, we performed in the same waveguide storage of the whole spectrum

of a frequency-multiplexed heralded photon, spanning a range of frequen-

cies of about 4 GHz. The photon is naturally multiplexed due to the

generation method used, namely cavity-enhanced SPDC. The possibility

of storing such a broad spectrum comes from the intrinsic inhomogeneous

broadening present in REDCs. Together with the 15 frequency modes con-

stituting the multiplexed photon, 9 temporal modes were stored thanks to

the intrinsic temporal multimodality of the AFC protocol.

The method used to fabricate our waveguides, fs-laser micromachining,

is the only one to our knowledge that allows for direct 3D fabrication

in the substrate. In the future, this will yield matrices of fiber-pigtailed

waveguide-based QMs, thus enabling a high degree of spatial multiplexing,

which nowadays is mostly exploited in atomic clouds, where temporal and

spectral multiplexing are more difficult to achieve.

The crystal, the protocol and the waveguide fabrication technique em-

ployed in this thesis, represent all together a very promising system, open-

ing the way for a future quantum repeater architecture based on scalable

highly multiplexed QMs.



Resum

Les memòries quàntiques (MQs) per a la llum constitueixen un ingredient

fonamental per al desenvolupament d’un Internet quàntic. Entre altres

aplicacions, són un element bàsic per a la distribució de l’entrellaçament a

llargues distancies, és a dir, per a la realització d’un repetidor quàntic.

Els cristalls dopats amb terres rares (REDC) són candidats prometedors

cap a aquest objectiu. En la meva tesi uso el cristall Pr3+:Y2SiO5. Amb

aquest sistema (en el règim clàssic) es va demostrar el temps d’ emma-

gatzematge més llarg i la major eficiència d’una memòria d’estat sòlid. No

obstant això, els principals avantatges de les plataformes en estat sòlid són

la possibilitat de miniaturització i integració, aix́ı com la ampliació inho-

mogènia dels seus perfils d’absorció, que permet emmagatzemar fotons amb

banda ampla o multiplexats en freqüència. En aquesta tesi demostrem una

MQ d’estat sòlid amb lectura on-demand per a fotons únics reals. A més,

estudiem noves plataformes per a MQs integrades basades en el mateix

material.

Utilitzem la tècnica de pinta de freqüència atòmica (AFC), que és el proto-

col d’emmagatzematge més prometedor per a multiplexació temporal fins

ara.

Al començament del meu doctorat no hi havia cap demostració d’ emma-

gatzematge d’un real estat quàntic amb una lectura on-demand del fotó

en REDC. Ho hem aconseguit en el curs d’aquesta tesi, mesurant també

per primera vegada (i única, en el moment d’escriure), una correlació no-

clàssica entre una única ona de spin en una MQ d’estat sòlid i un fotó de

telecomunicacions.

Després de demostrar la idonëıtat dels cristalls Pr3+:Y2SiO5 com MQs,

vam demostrar nous tipus de memòries òptiques integrades basades en el

mateix sistema.

Vam estudiar les propietats espectroscòpiques i de coherència dels ions en

guies d’ones escrites amb làser fabricades amb la tècnica del fs-làser mi-

cromachining. Aquests projectes van ser desenvolupats en col·laboració

amb el Dr. R. Osellame i el Dr. G. Corrielli del Politècnic de Milà, que



van fabricar les guies d’ones i van analitzar les seves propietats orienta-

dores. En un primer tipus de guia d’ona, anomenada tipus II, vam real-

itzar el primer emmagatzematge amb lectura on-demand mai realitzada en

memòries òptiques integrades en estat sòlid (amb llum clàssica).

Després vam analitzar un altre tipus de guia d’ondes anomenada tipus

I, en la qual la mida del mode és comparable amb el mode guiat en

una fibra monomode a la mateixa longitud d’ona. Aqúı vam mostrar

l’emmagatzematge de fotons simples durant un temps preprogramat. El

temps d’emmagatzematge demostrat, de 5.5µs, és fins ara l’ emmagatze-

matge quàntic més llarg demostrat en qualsevol guia d’ones integrada.

Finalment, es va realitzar en la mateixa guia l’emmagatzematge de tot

l’espectre d’un bi-fotó multiplexat en freqüència, abastant un rang de

freqüències de ∼ 4 GHz. El fotó és multiplexat de forma natural gracies al

mètode de generació utilitzat, és a dir, el SPDC millorat per cavitat. La

possibilitat d’emmagatzemar un espectre tan ampli prové de l’ampliació

intŕınseca de l’absorció inhomogènia present en els REDC. Juntament amb

els 15 modes de freqüència que constitueixen el fotó multiplexat, s’han

emmagatzemat 9 modes temporals gràcies a la multimodalitat temporal

intŕınseca del protocol AFC.

El mètode utilitzat per fabricar les nostres guies d’ona, fs-làser microma-

chining, és l’únic que coneixem que permet directament fabricar en 3D

en el substrat. En el futur, això donarà matrius de MQs basades en guies

d’onades integrades con fibres, que permetran un alt grau de multiplexació

espacial, que avui en dia s’explota sobretot en núvols atòmics, on el mul-

tiplexatge temporal i espectral és més dif́ıcil d’aconseguir.

El cristall, el protocol i la tècnica de fabricació de guies d’ona utilitzats en

aquesta tesi, representen tots junts un sistema molt prometedor, obrint el

camı́ per a una futura arquitectura de repetidors quàntics basada en MQs

escalables i altament multimodales.
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Chetan Jumanji, Estefáno Righeeti, Lukas, Georg, Chiara, Marco, Daniel,

Eliza, Boris, Patrick! Thank you veryck... Much!

And to the new-me Jelena and Sam good luck, I am sure you will have

a great time and amazing results (warning bad eye), continue to speak to

the experiment as you perfectly learned!!! I should also thank Jelena for

your constant help with english and for explaining me all those things you

know about REDCs and Sam, thanks a bunch for the corrections of the



thesis and for the discussions on those super-pignols interesting details you

find! Dai dai dai chicos!

I want to separately ringraziate my first officemate David and Fede for

adopting me in their family when I arrived! Thanks for your naturality,

warmness and enthusiasm! Siete bbelli!

Acknowledgements to Dr. R. Osellame and Dr. G. Corrielli for the samples

and for the great collaboration. Thanks Giacomo for your always deeply

scientifically super-long audio messages!

During the PhD there are days which seem infinitely long and problems

that seem unsoluxionatable and unarreglatable... but in the corridor or
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Chapter 1

Introduction

Fast communication on large scales is becoming a necessity in our society.

Huge quantities of data are shared through the internet each day. Most

of the smartphones are synchronised with the cloud and photos, music

and files in general are sent continuously around the world using internet.

We process daily bank transfers online to people and websites in the most

different places around the world. Moreover many new realities are growing

around the presence of internet, like domotics (automation of the smart

home which can be controlled remotely), self-guided cars, remote jobs and

many others. To sustain all of this, internet connections are getting faster

and faster and have to deal with a continuously growing amount of data

that people share and save online.

In this context cryptography plays an increasingly important role. The

cryptographic algorithms used nowadays are based on a high mathemati-

cal complexity, meaning that they are computationally secure but theoret-

ically solvable. In parallel with the traditional methods, possible solutions

to this problem are given by quantum cryptography, a field of research

that uses the laws of quantum mechanics to establish new cryptographic

protocols provably more secure than the classical ones discussed before.

Quantum laws find also other applications in the broader field of quantum

information science, opening new possibilities, like teleportation of quan-

tum information and dense coding, which would not be possible in the

classical regime.

In this chapter I will explain the concepts at the basis of a branch of

quantum information science, called quantum communication, and I will

place the work of my thesis in the context of this research field.

1



Chapter 1. Introduction

1.1 Quantum Communication

Quantum information (QI) science is the field of research that studies the

information present in a quantum system, how to encode this information

and how to process it or share it by developing techniques based on quan-

tum phenomena. The fundamental ingredients at the basis of QI science

are:

• Qubit - It is the quantum equivalent of a classical bit. But while a bit

can either be 0 or 1, a quantum bit (qubit) is associated to the state of a

quantum object and, as a consequence, it can be 0, 1 or a superposition

of both of them. For example, we can associate to 0 the quantum state

of a single photon polarized horizontally (we will write it |0〉), and 1 to

that of a single photon polarized vertically (|1〉). The state |ψ〉 of a photon

generated in a superposition of them would be described by:

|ψ〉 = α|0〉+ eiφβ|1〉

with α2 + β2 = 1 and φ the phase between the horizontal and vertical

components. When the qubit is measured along the same basis, it will

randomly give as a result |0〉 or |1〉 with probabilities α2 and β2, respec-

tively. In other words, the qubit will lay in a superposition state until the

measurement. When we measure it we project it into a classical state.

• Entanglement - Two or more qubits can be in a superposition state in

which they are mutually dependent (in mathematical terms, their state is

not factorable). An example of entangled state for two qubits is:

|ψ〉 = α|0A0B〉+ eiABβ|1A1B〉,

A and B being the two quantum systems in which the qubits are encoded.

Independently, both A and B can randomly be measured to be either |0〉
or |1〉, but once we measure one of them the other one is instantaneously

projected into the same state, no matter the distance that separates them.

•No-Cloning theorem - In quantum mechanics a quantum state cannot

be cloned, e.g. it is not possible to measure a qubit and to generate a second

identical one. While this is a limitation for the transmission of quantum
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information, the no-cloning theorem becomes a fundamental resource in

quantum cryptography.

Quantum communication (QC) science [1] is a branch of QI that aims at

distributing quantum resources between remote parties. In QC, usually,

information is carried from one place to another encoded in degrees of

freedom of photons (polarization, time-bin, spatial, optical-angular mo-

mentum, frequency, ...), our quantum carriers. This is mostly because of

their high speed and of their low decoherence when they travel in free-space

or through optical fibers at specific wavelengths.

In the last years a considerable effort is being made towards the creation

of a large-scale quantum network [2, 3, 4, 5, 6, 7, 8]. This would be com-

posed of quantum nodes, i.e. stations where qubits are generated, stored,

processed, teleported, etc., and quantum channels, through which quan-

tum information is sent from one node to another [9]. The ability to share

entanglement between arbitrary nodes of this quantum network is an es-

sential requirement for most QC protocols. This long term goal is the most

direct application of the work I did during my PhD thesis.

Even if research is going both in the direction of free-space [4, 10, 11]

and fiber-based QC, I will focus on the second scenario, a fiber-based

quantum network. As optical fibers already provide the infrastructure

for the classical internet, QC could be based on the same. The lowest

achievable losses in the present fiber network are > 0.2 dB/km at about

1550 nm1. In a direct configuration, where two entangled photons are

generated in an intermediate station and then sent through different fibers,

entanglement has been demonstrated up to a maximal distance of 300 km

[12]. After a few hundred km, in fact, losses become too high. For two

points 1000 km apart, for example, even in the best conditions, the photon

would experience an attenuation of 10−20.

In the optical classical internet, this problem has been solved by measuring

the optical signal and reamplifying it each few tens of km. This solution

cannot be adopted in the quantum regime due to the no-cloning theorem.

1The lowest losses in fiber nowadays are about 0.16 dB/Km at about 1550 nm (Corn-
ing SMF-28 ULL optical fiber), but the fibers installed are old, thus exhibiting higher
attenuation.
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Nevertheless, a new architecture was introduced to solve this issue, the

so-called quantum repeater.

1.2 Quantum Repeaters

Figure 1.1: Sketch of the swapping process: A (C) is entangled with B (D);
destroying the two pairs of entangled states by performing a Bell measurement
between B and C (e.g. mixing them with a beam splitter), one can create an

entangled state between A and D.

Most quantum repeaters (QR) are based on a quantum process called en-

tanglement swapping [13] that works as follows: let’s consider four quan-

tum states, A, B, C and D, entangled in pairs (A with B and C with D,

as represented with colours in fig. 1.1). After performing a Bell measure-

ment (i.e. a measurement that projects a quantum state into a Bell state)

between B and C, an entangled state would be generated between A and

D. The Bell measurement can be performed by mixing the quantum states

with a beam splitter, to erase the information on the origin of the measured

photon/s. In this way, at the cost of two entangled states (the ones be-

tween A and B and between C and D), we have an heralded entanglement

between two quantum states that never communicated directly between

each other.

To understand how a QR would work, let’s now consider two quantum

nodes, A and Z, separated by a distance d (fig. 1.2(a)). These two could

be entangled by sharing a pair of entangled photons, generated in a middle

station. As discussed in the previous section though, the photons would

experience an exponential loss along the channel and, for d higher than a

few hundreds of km, the process would be extremely inefficient.

Let’s now split the distance in many small intervals (fig. 1.2(b)) such that

we can entangle the neighboring quantum nodes, A and B, C and D, ...

and Y and Z, respectively. These pairs of neighboring nodes are called QR
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Figure 1.2: (a) Direct way to entangle two quantum nodes A and Z by sending
two entangled photons (orange arrows) generated by a photon-pair source S. (b)
Sketch of the quantum repeater scheme: Many intermediate nodes are added
between A and Z (B, C, ..., Y). Each neighboring pair is entangled: A with B, C
with D, ... Y with Z, as shown with colors. Entanglement swapping is used in all
the intermediate stations (B, C, .., Y) to transfer the entanglement to A and Z.

links. We then perform entanglement swapping in the intermediate states

(B and C, ..., X and Y). In this way, if all the Bell measurements succeed,

we destroy the intermediate entangled states previously created and we

herald the generation of an entangled state between A and Z.

If the success of each QR link is independent of the others, while the

losses would still scale exponentially within the subintervals, they would

only increase polynomially with the number of nodes, making it possible

to share entanglement between any two quantum nodes over much longer

distances than possible with direct transmission [2]. To make these links

independent and also to synchronize them, as most of the times they are

based on probabilistic processes, each node is provided with a quantum

memory, i.e. a device able to store a quantum state with the possibility of

retrieving it on-demand2.

1.2.1 Quantum Memories

In this thesis I will focus on quantum memories (QMs) for quantum states

of light, which are light-matter interfaces in which a photon is mapped into

an atomic excitation and can be read out on demand. QMs are important

2Some new generation all-photonic QR schemes do not need QMs [3, 14].

5



Chapter 1. Introduction

for different QI applications [15, 16], for example they can be used to syn-

chronize probabilistic events (e.g. in the QR scheme, or in linear-optical

quantum computation), they are studied for quantum metrology and mag-

netometry and, in some cases, they allow interaction between qubits, i.e.

they can be used as quantum gates [17]. The QR application is the one

that received the highest attention so far.

The necessary figures of merit for a QM to succeed in a QR scenario are:

• Efficiency - The storage efficiency of a QM (in the case of storage of an

external state of light) is given by the probability to absorb the state of

light to be stored times the probability to read it out in the expected time

window. The distribution rate of the entanglement scales exponentially

with the QM efficiency [17].

• Storage time - The required storage time of the QM depends on the

task it has to face. In the case of the QR, each link has to wait for all the

others to succeed. The storage time, then, if the entangling mechanism

of each link is probabilistic, has to be usually much longer than the time

needed to cover the distance d between the first and the last node of the

QR3.

• Multimodality (or multiplexing) - In a single-mode scenario, when

the nodes of a QR link become entangled, its QMs have to wait for the

adjacent links to succeed in order to repeat the process. This would heavily

decrease the rate of entanglement sharing. Moreover, in many QR schemes

the phase between all of the entangled states has to be kept stable during

the whole QR attempt. A possible, although not very scalable, solution

would be to have many parallel QR infrastructures. Another one is to have

multimode (or multiplexed) QMs, i.e. QMs able to simultaneously store

many different quantum states and to retrieve them in a distinguishable

way [19]. In this situation, for N modes stored, the QR protocol would be N

times faster [19]. Moreover, the stability requirements for the QR protocol

would be reduced [19]. In addition, for a high degree of multiplexing

(apart from temporal multiplexing), a QR scheme could be built using

QMs with a fixed storage time [18]. Nowadays, several approaches to

3This condition can be relaxed in some protocols, provided a high degree of multi-
modality to compensate for photon losses and finite storage efficiencies, i.e. provided
that the success of each QR link per trial is almost deterministic [18].
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multiplexing are being pursued, exploiting different degrees of freedom.

For optical QMs the main ones are: temporal [20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31]; spatial, that can involve different optical paths

[32, 33, 34, 35] and/or different spatial distributions of the phases of the

photons (along the same optical path), like orbital-angular momentum

states [36, 37, 38, 31]; frequency [18, 39, 31, 40]; polarization, even if

this degree of freedom is usually used for encoding qubits [41, 42, 43, 44].

In this thesis we will focus mostly on temporal, frequency and spatial

multiplexing, even if, in our kind of system, all the mentioned degrees

of freedom could be in principle achieved at the same time. In [31], for

example, temporal, spatial (in the form of optical-angular momentum) and

frequency multiplexing are demonstrated simultaneously in the same QM

system that I used in my thesis, a Pr3+:Y2SiO5 crystal.

• Fidelity - The fidelity, F, quantifies the similarity between the quantum

state before the storage, ρin, and the one retrieved after the storage in a

QM, ρout. We define it as F = Tr(ρin ρout). If the state is encoded in a

single photon, the maximum fidelity achievable with a measure-and-copy

classical approach is 2/3 (it is (N+1)/(N+2) if it is encoded in N photons

or N degrees of freedom of the same photon) [45]. This is defined as the

classical limit. An higher value, then, would demonstrate that our QM

works in the quantum regime. To preserve the non-local nature of the

entanglement, F after the storage should be higher than 85.4% [17]. In the

context of QMs, in general, we are interested in the conditional fidelity,

i.e. the fidelity conditioned on the re-emission of the photon.

• Robustness and integrability - Implementing devices with guided-

wave optics has several advantages, such as compactness, scalability, effi-

ciency due to enhanced light-matter interaction (which increases with the

confinement), and improved mechanical stability [46]. The possibility of

interconnection with other integrated quantum devices, i.e. single photon

sources, photonic circuits, and detectors, enables the implementation of

complex integrated quantum architectures. In addition, the compatibility

of these devices with fiber optics and with telecom photons would, possibly,

lead to the interconnection between QMs and the current fiber networks

[17]. To have correlations between a telecom photon and a state stored in

a QM we could either use QMs working at telecom wavelength [47, 39],

quantum frequency converters [48] or non-degenerate photon-pair sources
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with one photon resonant with the QM and one at telecom wavelength [28]

(further discussion in sec 1.2.2).

1.2.1.1 State of the art on quantum memories

To have efficient and reversible mapping of photons onto long lived atomic

coherences it is necessary to have a strong interaction between light and

matter. Unfortunately the interaction between a single photon and a single

atom is in general very weak. Possible solutions to this problem include

placing the atom into a high finesse cavity [49] or in a confined environment

[50]. Another way relies on using a collection of atoms: having an ensemble

of N atoms, in fact, enhances the light-matter interaction by a factor
√

N.

Even if the first quantum storage experiments have been demonstrated

in atomic gases [51, 52, 53], there are many solid state systems which

offer interesting perspectives for light storage, as color-vacancy centers in

diamond [54, 55], phonons in diamond [56], quantum dots [57, 58] or rare

earth doped crystals (REDCs), that will be the subject of this thesis.

The advantages of working with solid-state systems are the compactness

and simplicity of the optical system, the absence of atomic motion and

the prospect of integrated devices. All these aspects make these kinds

of systems good candidates for the development of large-scale quantum

networks.

Many different storage protocols have been proposed. These techniques can

be separated into two main groups, depending on whether they provide

an emissive QM, in which the QM generates a quantum state of light

correlated with a stored atomic excitation [2, 59, 29, 30], or an absorptive

one, in which an external quantum state is absorbed, stored and retrieved

on-demand.

Throughout my thesis I will focus only on absorptive QMs. In this con-

text, very important results have been obtained with electromagnetically

induced transparency (EIT) [60, 61], off-resonant Raman schemes [62],

spectral-hole memory (SHoMe) [63] and photon-echo based techniques,

such as gradient-echo memory (GEM) [64, 65], revival of silenced echo

(ROSE) [66, 47], hybrid photon echo rephasing (HYPER) [67] and atomic

frequency comb (AFC) [68]. Protocols like EIT rely on controlling the
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transparency of the medium. Photon-echo protocols, otherwise, are based

on a reversible absorption of the light in inhomogeneously broadened sys-

tems. Here the state of a photon is mapped onto a collective excitation

of atoms such that, after a certain time, the atoms experience a collective

rephasing, leading to a coherent re-emission of a photon-echo (this concept

will be analyzed in detail in Chapter 3).

The highest storage efficiency demonstrated up to now is 92% for classical

pulses [69] and > 85% for polarization-qubits encoded in real single pho-

tons [70] and have been both demonstrated in cold-atom experiments using

EIT. In a similar system, the EIT protocol has been used to store classical

light for more than 16 seconds [71]. The longest storage time measured

so far, longer than 1 minute, was also demonstrated with classical pulses

using EIT [72] but in a REDC, namely Pr3+:Y2SiO5, the same kind of the

one used along my thesis.

Remarkably high efficiencies (up to 87%) have been measured also using

GEM, both in cold-atom experiments [73] and in warm vapours [74]. This

protocol demonstrated very high efficiencies also for storage at the single

photon level, namely 73% in cold atoms [73], and the highest efficiency

ever measured in a solid-state memory, namely 69% with weak coherent

states in a Pr3+:Y2SiO5 REDC [65].

The SHoMe protocol was used to demonstrate the highest spin-wave stor-

age efficiency so far measured in a solid-state system at the single photon

level (> 30%). This was realized by our group in a Pr3+:Y2SiO5 REDC

[63].

The first light-matter interface in solid state working at the single-photon

level was demonstrated with the AFC protocol [75], the one used in this

thesis. This realization was performed for only pre-programmed storage

times in the excited state. In 2011, also, two groups measured light-matter

entanglement between a telecom photon and a collective atomic excitation,

using the same technique [22, 23]. The first solid-state quantum memory,

at the single photon level with an on-demand readout, was demonstrated

in our lab before the start of my PhD using the same protocol, storing

time-bin qubits as a spin wave in a Pr3+:Y2SiO5 REDC [24]. In my

thesis, I continued demonstrating the first (and only, thus far) absorptive

QM for real single photons in a REDC [28] (see Chapter 5). The best
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efficiency shown with the AFC protocol until now is 56%, measured with

classical light by embedding a low-absorptive crystal in an impedence-

matched cavity [76]. This is still lower than the best storage efficiencies

discussed, but has prospects for increase [77]. Nevertheless, the importance

of the AFC relies mostly on its intrinsic temporal multimodality [68]. In

fact, while the multimodality of EIT-based and Raman protocols scales as√
OD4, where OD is the optical depth of the transition, and in protocols

like GEM it scales linearly with the OD [78], AFC-based protocols are the

only ones in which the multimodality is independent from the OD of the

system, depending only on the spectral bandwidth of the memory and on

the storage time (a longer discussion can be found in sec. 3.3). Temporally-

multimode storage for a pre-programmed time of 64 optical modes at the

single-photon level was reported with the AFC protocol already in 2010

[20], followed by a demonstration with 1060 classical pulses [21] and, more

recently, a storage with on-demand retrieval of 50 classical pulses for more

than 0.5 ms [27]. Storage of time-bin qubits multiplexed over 26 frequency

modes and with selective readout was demonstrated with weak coherent

states [18] and, in another paper, storage of 6 frequency modes of an

heralded single photon [39]. This protocol is mostly used in REDCs, and

all the demonstrations I referred to are implemented in such systems.

While 51 orbital-angular momentum (OAM) modes and OAM-based en-

tanglement have been stored in solid-state devices [38], spatial-path multi-

plexing has not be highly exploited in these systems yet. The most impor-

tant demonstrations thus far, in fact, are performed in emissive quantum

memories based on atomic clouds [33, 34], although this is a degree of

freedom very suitable for solid-state integrated platforms.

Many quantum information schemes are dependent on a high ratio between

the storage time and the duration of the stored pulse. This is related to the

maximal multimode-storage capacity for temporally and/or spectrally mul-

tiplexed photons, while the photon duration dictates the maximal experi-

mental rate. The related figure-of-merit is called time-bandwidth product

(TBP) and it is the product between the storage time and the bandwidth.

A TBP of ∼ 5000 was demonstrated with efficiencies up to 30% using far

off-resonant Raman transfer in warm atomic vapour [79]. This protocol

may be particularly suitable for high-bandwidth on-demand single-photon

4A modified version of Raman was shown to scale linearly with the OD [78].
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sources and for heralded multiphoton generation rates from parametric

down-conversion sources. The AFC protocol also has proved high TBPs,

800 in [39] (extendable to 25000 in the same system), but this demonstra-

tion was for only pre-programmed storage times.

1.2.1.2 State of the art on integrated optical memories

Two approaches have been explored towards integrated rare-earth QMs so

far. The first one is to integrate rare earths in already available waveg-

uide systems [80, 81]. Quantum light storage has been performed in a

Ti4+:Tm3+:LiNbO3 waveguide fabricated by Ti4+ in-diffusion [23], where

also an integrated processor has been implemented [82], and, more recently,

in an Er3+:Ti4+:LiNbO3 waveguide [83]. Another remarkable example is

represented by weakly-doped erbium silica glass fibers [39], where spec-

tral and temporal multiplexed quantum storage of heralded single photons

at telecom wavelength was demonstrated. All these demonstrations were

limited to the mapping of light field into optical atomic excitations. The

drawback with LiNbO3 matrix and the glass host is that they degrade the

coherence properties of the rare-earth ions [23, 84] and they need to be

cooled down to much lower temperatures [39, 85, 83].

The second approach consists in realizing waveguides in crystals already

used for demonstrating bulk QM and suitable for long term storage of

quantum information, e.g. Y2SiO5. Photonic crystal waveguides and cavi-

ties have been fabricated in Nd3+:Y2SiO5, Nd3+:YVO4 and Er3+:Y2SiO5,

using focused ion beam milling [86, 87]. It was shown that the coher-

ence properties of the rare-earth ions are preserved during the fabrication

process. Moreover, in this system, storage of time-bin qubits was demon-

strated at the single photon level. This fabrication technique is however

challenging to extend to mm-long waveguides, which may be useful to

achieve high storage and retrieval efficiencies. Also, the ions used so far

possess only two-fold ground states, which restricts the storage of light

to the excited state, strongly limiting the achievable storage times (more

details in the next chapter).

In order to attain spin-wave storage, which enables long term storage and

on demand read out, ions with a three-fold ground state, such as Eu3+ or

Pr3+, should be used [88, 89, 90, 24]. Apart from our realizations, only one
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integration attempt has been done with Pr3+ ions so far, consisting of a

TeO2 slab waveguide deposited on a Pr3+:Y2SiO5 crystal. The coherence

properties of Pr3+ ions in this device have been measured to be consistent

with those of bulk ions [91], which is promising for the implementation of

integrated rare-earth based quantum devices. Nevertheless, in such a hy-

brid system the active ions are only evanescently coupled to the waveguide,

and the effective power in the substrate is just 7.2% of the total power in

the guided mode.

In this thesis I show the possibility to build a waveguide directly in the

bulk of a Pr3+:Y2SiO5 crystal with femtosecond laser micromachining

(FLM) [92, 28], preserving optical and coherence properties of the ma-

terial, strongly increasing the light-ions coupling and demonstrating the

first spin-wave storage in waveguide and the longest storage times and

efficiencies in integrated optical memories so far.

1.2.2 Possible implementation of a quantum repeater

There are many different proposals for the realization of a QR [15, 2,

19, 3, 93, 4, 5, 6]. Common to most of them is the ability to perform

entanglement swapping, i.e. one photon from each QR link has to meet

a photon from the neighboring one in an intermediate Bell-measurement

station5. To enable low loss transmission in optical fibers, these photons

should be in the telecom window, which, in most of the cases, is different

from the operational wavelength of a QM.

The QR scheme proposed by Duan, Lukin, Cirac and Zoller, called DLCZ

protocol [2], is based on emissive QMs, in which the QM generates entan-

gled states between a single photons and a stored atomic excitation. This

would be a perfect solution for multimode QMs operating at telecom wave-

length, such as Erbium based REDCs [39]. However, the most promising

results in terms of efficiencies and storage times up to date are demon-

strated in QMs operating at wavelengths far from the telecom window. It

becomes necessary, then, to use quantum frequency converters [48] which,

by introducing new loss channels, further decrease the success probability

5This is not true for all-photonic QR architectures, in which the entanglement swap-
ping is performed at the beginning of the protocol within the single-photon qubits present
in the same node [3, 14]
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of entanglement distribution. The proposal investigated in our laboratory,

inspired by that described in [2], relies on multimode absorptive QMs (in

which an external quantum state is absorbed, stored and retrieved on-

demand) and entangled photon-pair sources, in which one of the photons

is at the QM frequency and the other at telecom wavelength [19]. This so-

lution gives greater flexibility on the choice of both the photon-pair source

and the QM [15].

In our lab we use quantum sources of entangled photon pairs based on

spontaneous parametric down-conversion (SPDC) and solid state quantum

memories based on the atomic frequency comb technique [68] (details on

the QM system will be given in Chapter 3).

The SPDC is a probabilistic process in which pairs of photons, the signal

and the idler, are generated from a pump laser interacting with a non-

linear crystal. The photon pair generated is a two-mode squeezed state.

For low generation probability p, proportional to the pump laser, it can be

written as:

Ψ ∝ |0〉s |0〉i + p1/2 |1〉s |1〉i +O(pn/2) (1.1)

where s (i) refers to the signal (idler) photon. If we keep p low enough we

can neglect the higher order contributions [94].

Let’s consider now two different SPDC sources, S1 and S2, able to generate

a state of the form of eq. 1.1, with p� 1. If the two sources are coherently

excited, the pair is generated in a superposition of the two sources [19].

The generated idler fields are sent through a fiber and, then, mixed at a

beam splitter (BS) which erases the information about the origin of the

photon, provided that the two idler modes are indistinguishable. This

Figure 1.3: Sketch of half of the QR link that we want to realize.

detection would result in the entanglement swapping, i.e. it would herald
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the generation of an entangled state between the two signal fields, s1 and

s2. The entangled state would be of the form:

Ψs1,s2 =
1√
2

(
|1〉1 |0〉2 ± e

i∆φ |0〉1 |1〉2
)
, (1.2)

where the ± sign depends on the output of the BS where the photon

is detected and the phase ∆φ = φi1 − φi2 refers to the phase difference

acquired by i1 and i2 before they arrive to the BS. In each quantum node,

A and B, we map the two signals in two different quantum memories, QM1

and QM2. Each detection click after the BS, then, heralds the generation

of an entangled state between QM1 and QM2, i.e. between A and B.

The device shown in fig. 1.3 is half of a QR link 6 [2].

1.2.2.1 State of the art on quantum repeaters

The first important results towards the QR architecture came after the

DLCZ proposal [2]. In 2005, a first realization demonstrated an heralded

entanglement between two cesium atomic ensembles ∼ 3 m apart [95]. In

the same lab, in 2007, the full QR link was demonstrated, with two pairs

of emissive QMs, one pair per node, again ∼ 3 m apart [96]. A pair of

QMs per node, in fact, is required in order to reduce the scaling of the

vacuum component per swapping (i.e. per QR link) [15]. The vacuum

component can be reduced even further combining the DLCZ and the

Briegel, Dur, Cirac and Zoller (BDCZ) [97] protocol. In this case only two

QMs are required, but it is necessary to measure two detections in the

Bell-measurement stage. This was demonstrated using cold atomic clouds

of 87Rb, separated by 300 m of fibers [98]7.

In more recent years a QR link has been demonstrated even in solid state.

The two most important results, shown using nitrogen-vacancy (NV) cen-

ters, are the demonstration of entanglement between two electron spins

placed 1.3 km apart (the best result in terms of nodes-distance for QR

6In the DLCZ proposal, each node of a QR link is composed of two DLCZ-QMs [2].
This reduces the vacuum component increase per swapping operation [15]. In our case,
each node would be composed of two QMs and two photon-pair sources.

7In this realization, with respect to the DLCZ one, there is no need of phase sta-
bilization of the travelling photons and the vacuum component can be highly reduced.
The drawbacks are the need of on-demand sources and the lower rates achievable [15].
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links nowadays) [99] and, very recently, the demonstration of determinis-

tic entanglement shared between two NV centers 2 m apart [5].

The main limitation to the distance reached in all these realizations is

given by the wavelength of the heralding photons traveling through the

fibers, which is not in the telecom window. For this reason, quantum fre-

quency converters (QFCs) from the QM wavelength to telecom have been

developed for different platforms: for single photons generated by NV cen-

ters [100]; for trapped ions, where, as a result, light-matter entanglement

could be demonstrated between an emissive QM and a photon detected

after 50 km of fiber [6]; for cold atomic ensembles [101, 48, 102]. In the

last paper, published during the writing of this thesis, two QMs separated

by up to 50 km of optical fiber have been entangled [102]; the heralding

photons generated in the two quantum nodes are converted to telecom us-

ing QFCs and, then, are sent to a detection station located in a different

place, through 11 km long fibers.

A QR link has not been realized with rare-earth ions yet. Nevertheless,

since the AFC protocol proposal, many building blocks have been demon-

strated towards this goal. In 2011, entanglement between a telecom pho-

ton and a collective atomic excitation has been measured by two different

groups [22, 23]. One year afterwards, heralded entanglement between two

centimeter-spaced REDCs was demonstrated [103], although the technique

used cannot be extended to long distances. Among other important re-

sults, the state of a telecom photon was teleported to an AFC excitation

[104] and a 3D photonic entangled in the OAM degree of freedom was

stored [38]. The main limitation of all these demonstrations is the fact

that storage has been performed only in the excited state of the ions (lim-

ited storage time) and only for a pre-programmed storage time. The first

(and so far only) demonstration of correlations between a telecom photon

and a single solid-state spin wave [28] is reported in this thesis in Chap-

ter 5. The demonstrated storage time, limited to ∼ 30µs, was still too

short to be used in a real QR link demonstration, but it could be increased

in the same system up to the minute regime [72]. Very important re-

sults have been demonstrated very recently also for emissive QMs based

on REDCs. In particular, entanglement between a quantum state of light

and a spin-wave has been demonstrated with the rephased amplified spon-

taneous emission (RASE) protocol [59]. Moreover, the DLCZ scheme has
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been extended to solid-state memories [29, 30] demonstrating non-classical

correlations up to the ms regime [30] and entanglement between a photon

and a spin wave, allowing the violation of a Bell inequality [105].

1.3 State of the art in our lab

In our lab, before the start of my PhD, quantum storage of polariza-

tion qubit in the excited state [41] was demonstrated with weak coherent

states using the AFC scheme. An ultra-narrowband source of spectrally-

multiplexed photon pairs had already been developed, with one photon of

the pair matching the operating wavelength of Pr3+:Y2SiO5 [106] and the

other at telecom wavelength. Then, storage of heralded single photons in

the excited state [107] was demonstrated. The best storage time achieved

for AFC storage of single photons was 4.5µs with an efficiency comparable

to 1%. This efficiency was increased to about 15% for the same storage

time and we could demonstrate AFC storage up to 12µs (measured with

the same photon-pair source, the results are reported in Chapter 5).

Spin-wave storage of weak coherent states with less than one photon per

pulse [24] had been shown using the same crystal demonstrating the first

quantum memory for time-bin qubits in solid state. The average efficiency

was about 6% at 5µs of pre-programmed storage time in the AFC and

3% after the spin-wave storage (total storage time of 13µs). We reached

a slightly higher SW efficiency with heralded single photons and we could

demonstrate a SW-QM with real quantum states of light. This will be the

subject of Chapter 5.

1.4 Photon statistics analysis

In the QR link realization reported in sec. 1.2.2, we described the photon-

pair source we want to use. We will analyze the generated photon pairs,

the signal (s) and the idler (i) photons, by means of the second-order cross-

correlation function, g
(2)
s,i , the unconditional autocorrelation function, g

(2)
s,s

(g
(2)
i,i ), and the heralded autocorrelation function, g

(2)
i:s,s. Part of this section

has been taken from [108, 109].
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1.4.1 Second-order cross-correlation function, g
(2)
s,i

The second-order cross-correlation function, g
(2)
s,i , is a measure of the cor-

relations between two photons, the signal (s) and the idler (i) photon. It

can be expressed as:

g
(2)
s,i (τ) =

〈E†s(t)E†i (t+ τ)Ei(t+ τ)Es(t)〉
〈E†i (t+ τ)Ei(t+ τ)〉〈E†s(t)Es(t)〉

,

where E†x (Ex) is the creation (annihilation) operator of the electric field

of a photon x. This expression can be written as:

g
(2)
s,i =

Ps,i
Ps · Pi

, (1.3)

where Ps,i is the probability to detect a coincidence between idler and signal

photons, while Pi and Ps are the uncorrelated probabilities to detect each

photon [110].

To get an intuition, if the signal and the idler photons are generated in

pairs, each time that we measure one of them the probability to detect the

other photon at the same time should be very high. On the other hand,

as we work in a condition in which the generation probability of photons

p is very low (see eq. 1.1), both Ps and Pi will be low. We expect then

the g
(2)
s,i at time 0 (0-delay between the two photons detected) to be much

higher than 1. The lower p, the higher we expect the g
(2)
s,i to be: namely,

for an ideal two-mode squeezed state, g
(2)
s,i = 1 + 1/p [111].

In our experiments we will not give the value of g
(2)
s,i at 0 delay, but we will

measure it in a limited time window. This lowers the g
(2)
s,i but avoids the

need to make any extra assumption, e.g. to fit the correlation function. In

this way the value can be directly calculated from the raw measured data.

The g
(2)
s,i can be used as a figure of merit to assess the compatibility with

the classical theory, but, in order to do that, we have to define also the

autocorrelation function g
(2)
x,x.
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1.4.2 Unconditional autocorrelation function, g
(2)
x,x

The autocorrelation function of a photon x, g
(2)
x,x, measures the self-correlation

of that photon. This quantity is measured by splitting the photon that we

want to analyse with a BS, in the so-called Hanburry-Brown and Twiss

configuration [112]. The coincidences between the detections measured at

the two output ports of the BS have to be studied unconditionally on the

detection of the other photon of the pair (in case of a photon-pair source).

We now can make a distinction depending on the outcome of such a

measurement. We consider three different possibilities: bunched light

(g
(2)
x,x(0) > 1), coherent light (g

(2)
x,x(0) = 1) and anti-bunched light (g

(2)
x,x(0) <

1) 8. The anti-bunching is the only effect that cannot be explained in a

classical vision, so that, measuring g
(2)
x,x(0) < 1, already tells that the light

we are measuring is a quantum state of light.

Each of the photons generated by an SPDC source is a thermal state and

follows the bunched-light statistics. For an ideal thermal state, g
(2)
x,x(0) = 2

[94]. For a multimode thermal state, xN, composed of N modes, we expect

a g
(2)
xN,xN(0) = 1 + 1/N [114]. When noise is added to the system, the

autocorrelation value decreases (as the noise statistics is random, i.e. with

autocorrelation value of 1). Moreover, as mentioned for the g
(2)
s,i , we will

not extract the autocorrelation value at 0-delay, we will measure it in a

time window, thus decreasing its value even more towards the value of 1.

1.4.3 R-parameter and quantum correlations

The unconditional autocorrelation and the second-order cross-correlation

functions together can be used as a measure of non-classical correlations. In

fact, one possible way to assess the nature of the correlation is by verifying

the so called Cauchy-Schwarz inequality [110]. Let’s consider a pair of

photons, s and i. The measured correlation between the two photons is

quantum if:

g
(2)
s,i >

√
g

(2)
s,s g

(2)
i,i . (1.4)

8The correct definition is g
(2)
x,x(0) > g

(2)
x,x(τ) for bunched light, g

(2)
x,x(0) = g

(2)
x,x(τ) for

coherent light and g
(2)
x,x(0) < g

(2)
x,x(τ) anti-bunched light [113]. In our case, for τ �

τC , with τC the coherence time of photon x, we assume to measure only uncorrelated
coincidences, i.e. that g

(2)
x,x(τ) = 1 [108].
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To prove quantum correlations we define the Cauchy-Schwarz parameter

[110]:

R =

(
g

(2)
s,i

)2

g
(2)
s,s · g(2)

i,i

. (1.5)

This value is expected to be lower than 1 for classical fields. A value higher

than 1 demonstrates non-classical correlations between s and i.

1.4.4 Heralded autocorrelation function, g
(2)
y:x,x

A last figure of merit, for a photon-pair source, is the heralded auto-

correlation, g
(2)
y:x,x, i.e. the autocorrelation function of the photon x, her-

alded by the detection of its twin photon y. Let’s consider again a photon

pair with a state as the one of eq. 1.1 and let’s focus on the case in which

g
(2)
i:s,s is measured, i.e. the autocorrelation function of the signal photon

heralded on the detection of an idler photon. In the low generation prob-

ability regime (p � 1), a detection click on the idler arm would herald

with high probability the presence of a single photon s. In this case, the

measured g
(2)
i:s,s(0) will approach the value of 0, as no coincidences will be

measured between the two outputs of the BS. For higher values of p, when

multi-photon generation becomes more probable, the g
(2)
i:s,s(0)-value grows.

It can be demonstrated [113] that:

• if g
(2)
i:s,s(0) < 1, s is a quantum state;

• if g
(2)
i:s,s(0) < 0.5, s is a single photon.

1.5 Summary of the thesis

The memory that I worked on during my PhD thesis is a solid-state device

based on Pr3+ ions, namely a Pr3+:Y2SiO5 crystal. In the next chapter,

Chapter 2, I will introduce the properties of rare-earth ions and rare-earth

doped crystals, focusing mostly on Pr3+:Y2SiO5.

Chapter 3 will be focused on light-matter interactions: after a first theo-

retical overview, I will explain the optical techniques that we use along the

thesis and, finally, the storage protocol used, the atomic frequency comb.

The technical details about the setup and the experimental sequences used

to implement the protocols are described in Chapter 4.
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In Chapter 5 I report on the first solid-state spin-wave storage of telecom-

heralded quantum states of light [28], where we demonstrated half a node

of a QR link [28] (following the scheme described in sec 1.2.2).

In 2015, we started a collaboration with Dr. Roberto Osellame and Dr.

Giacomo Corrielli of Politecnico di Milano with the goal of demonstrating

integrated quantum memories fabricated with a technique called fs-laser

micromachining [115]. We analysed two fundamentally different kinds of

waveguide: type II waveguides, described in Chapter 6 and type I waveg-

uides, described in Chapter 7. In type II waveguides we demonstrated the

first storage with on-demand readout in an integrated solid-state device

[92] (with classical optical pulses). In the type I waveguide we demon-

strated storage for pre-programmed time of heralded single photons [116].

The photon pairs generated by our photon-pair source are intrinsically

multimode in frequency. In Chapter 8, we proved that our memory, besides

the temporal multiplexing capability shown in Chapter 5, can store the

whole spectrum of the frequency multiplexed photon [40].

Figure 1.4: Sketch of a possible memory with spatial (waveguide matrix), tem-
poral (4 different temporal modes) and frequency (three different colors in the

third temporal mode) multiplexing.

Finally, I will conclude (Chapter 9) summarizing the main results achieved

during my PhD and giving an outlook towards the realization of a highly

multiplexed quantum memory based on Pr3+:Y2SiO5.
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Chapter 2

Rare-earth doped crystals

Our quantum memory is based on a crystal doped with a rare-earth ion

(REI) called praseodymium (Pr3+). In this chapter I will introduce the

properties of these ions when doped into a solid-state matrix. This chapter

is inspired by some books and theses [117, 118, 119].

2.1 Rare-Earth Ions

In the periodic table, fig. 2.1, the elements are divided in groups according

to the occupation number of atomic orbitals. On the left (plus helium, He)

there are the elements in which the s orbital is getting filled (yellow), on

the right the p orbital (blue) and in the center the d orbital (green). The

elements in which the electrons occupy the f orbitals (purple in the figure)

are usually separated from the rest of the elements and written below. The

first row of elements is usually called lanthanide series, named after the

first element of the series (lanthanum). These elements have very similar

chemical properties to scandium (Sc) and yttrium (Y) and, together with

them, they are referred to as rare-earth elements. In the lanthanide series,

the 4f shell is partially filled. Before filling the 4f orbital the electrons

occupy the 5s and the 5p (the rare-earth atoms have even 2 electrons in the

6s orbital and sometimes one in the 5d, but these are lost in the trivalent

ion [120]). As the fully filled 5s and 5p orbitals have bigger average radius

than the 4f (see inset in fig. 2.1), the electrons in the 4f shell are provided

with an electrical shielding from the outer environment. It is thanks to

this chemical property that the rare-earth ions (REIs), after being doped

in a crystal, show very sharp 4f-4f transitions.
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Figure 2.1: Periodic table of elements, with a color code identifying the orbital
being occupied by the electrons. Inset: The radial charge density, P2(r) as a

function of radius r, for the 4f, 5s, 5p, 6s orbitals of Gd+ from ref. [121].

When we consider the magnetic properties of ions, we can divide them

in two main groups: Kramers ions, with an odd number of 4f electrons,

and non-Kramers ions, with an even number of them. This distinction is

very important due to the strong correlations between pairs of electrons

in the unfilled shells. Kramers REIs, for example, due to their unpaired

electron, have stronger magnetic moments, which can induce decoherence

via magnetic dipole-dipole interactions.

Among the REIs, we will be working with Praseodymium, Pr3+. It is a

non-Kramers ion, with 2 electrons in the 4f shell. In our experiments, Pr3+

ions are doped in a Y2SiO5 host. In the next section I will focus on the

properties of the REI doped into crystals.

2.2 Rare-earth doped crystals

The electronic state of a REI when doped into a crystal is governed by the

Hamiltonian:

HTOT = H0 + HC + HSO + HCF + HHF + HZ (2.1)

As discussed previously, REIs do not interact strongly with the environ-

ment. Therefore, to understand their level structure, we can start from the

free ion case (first three terms of eq. 2.1) . Here, the degenerate levels are

defined by the kinetic and potential energy of the electrons moving around
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the nucleus, related to H0. The first splitting happens due to Coulomb

interaction between the 4f electrons (HC), which separates ground and ex-

cited levels. These levels are named after their quantum numbers L and S

(the total orbital angular momentum and the total spin angular momen-

tum, respectively) as 2S+1L and are called spectral terms. According to

the first two Hund’s rules [122], the level with the lowest energy is the

one with higher S and the higher L. The orbital angular momentum of an

electron in the 4f shell is l = 3. The lowest level configuration for Pr3+

ions, then, is the one in which the two electrons place themselves in ml = 3

and ml = 2 both with spin 1/2. This results in a total L = |
∑
ml| = 5

and S = |
∑
ms| = 1. The L quantum number is expressed by letters:

L = 0, 1, 2, 3, 4, 5, ... ≡ S, P,D, F,G,H, ... . Then, in our case, the result-

ing lowest spectral term corresponds to 2S+1L→ 3H. This level is further

split by the spin-orbit coupling, HSO, i.e. the interaction between the

electron spins and the magnetic field generated by the electrons orbiting

around the nucleus. The consequent manifold is described also by a third

quantum number, the total angular momentum J, as 2S+1LJ , where J can

have the values J=L+S, L+S-1, ..., |L-S|. Each manifold is composed of

2J+1 degenerate levels. The third Hund’s rule states that, for half or less

than half filled orbitals, the lower state is the one where J is minimized

[122]. Thus, for the free Pr3+ ion, with L=5 and two electrons in the shell,

i.e. with J = 6, 5 or 4, the lowest manifold is 3H4.

The crystal field interaction, HC, in rare-earth doped crystals (REDCs),

is smaller than the spin-orbit coupling. In fact, in most cases, the crystal

matrix just acts as a perturbation within a single manifold. The crystal

field levels in Pr3+ are defined as 3H4(n), with n = 0, 1, .. up to a maxi-

mum value of 2J (depending on the crystal symmetry [117]). Thanks to

the crystal field interaction the 4f-4f transitions become weakly allowed.

When we cool the crystal to cryogenic temperature, the phonons do not

have enough energy to excite the atoms to the higher levels of the ground

manifold. The level in the manifold we refer to, then, is 3H4(0). In this

thesis I will only consider the transitions between 3H4(0) and 1D2(0), be-

cause transitions involving levels with n = 0 show longer lifetimes and

coherence times.

The next term, HHF, represents the hyperfine interaction, i.e. the interac-

tion between the nuclear spin, I, and the total angular momentum of the
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Figure 2.2: Energy level scheme of interest of Pr3+ ions site 1 doped in a
Y2SiO5crystal, reporting the hyperfine separation of the lowest electronic sub-

levels (0) of the 3H4 ground and 1D2 excited manifolds.

electrons, J. In the only stable ion of Pr3+, the nuclear spin is I=5/2 [123].

The first-order hyperfine interaction acts only on the crystal field doublets

by splitting them into 2I+1 levels. As the levels in our transition of in-

terest are all singlets, the first-order splitting does not happen. In second

order, then, the hyperfine interaction splits each crystal field level into 3

new manifolds: ±1/2, ±3/2, ±5/2. The resulting energy level scheme of

interest for this thesis, relative to Pr3+ doped into a Y2SiO5 matrix, is

reported in fig. 2.2. Along the thesis I will mainly refer to the ground

levels as the ground |g〉, the spin |s〉 and the auxiliary state |aux〉.

Each of these levels could be further splitted into two Zeeman levels by

applying an external magnetic field. A more exaustive discussion of the

whole derivation can be found in [117].

2.2.1 Pr3+:Y2SiO5

The Y2SiO5 crystal is a widely used host for REIs thanks to the low

nuclear magnetic moment of its constituents. It has a monoclinic biaxial

structure. Being biaxial, three optical polarization axis can be defined:

one is the crystallographic direction (b), the other two axis, D1 and D2,

are perpendicular to b and between each other. The refractive index along

b is n =1.76. In the unit cell, Y is present in two different sites, called site

1 and site 2 [124]. When a Y2SiO5 crystal is doped with Pr3+ ions, these

substitute the Y3+ ions in both the crystallographic sites, but mostly in

site 1. Moreover, the dipole moment of the 4f - 4f transitions is higher for

atoms in the site 1. For these two reasons we will address Pr3+ ions in site
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1 (in the thesis I will always refer to them, unless explicitly specified). Our

transition of interest 1D2(0)→ 3H4(0), for these specific ions, is centered

at 605.977 nm. For maximum absorption, light will be polarized along the

optical axis D2.

2.2.2 Homogeneous Linewidth

Each atomic transition has an intrinsic absorption linewidth, called homo-

geneous linewidth, Γhom. It is called homogeneous because it is the same

for each ion. The homogeneous linewidth of the 4f-4f transitions in REDCs

is very small compared to other solid-state systems thanks to the screening

effect provided by the 5s and 5p orbitals discussed previously. The coher-

ence time, T2, depends directly on Γhom as T2 = 1
πΓhom

. A broadening of

Γhom results in a shorter T2.

The upper bound to the coherence time of a transition is fixed by twice

its lifetime (or population decay time), 2T1 [125]. Nevertheless, there are

many decoherence mechanisms that broaden Γhom. We can write:

1

T2
=

1

2T1
+

1

T deph2

,

where T deph2 , called pure dephasing, accounts for all these processes [125].

Having the ions trapped in a crystal matrix removes the decoherence given

by atomic motion, which is an important factor to take into account in

atomic-cloud experiments. The stronger limiting factors to the coherence

time in REDC are:

• Phonon-ion interactions, which represent the dominant effect at high

temperatures but are negligible at cryogenic temperatures;

• Spin flips caused by magnetic fluctuations of the surrounding atoms [126].

This effect is reduced for non-Kramers ions (e.g. Pr3+) and hosts

with a low nuclear magnetic moment (e.g. Y2SiO5);

• Instantaneous spectral diffusion, i.e. the interaction between the

dipole moments of different excited Pr3+ ions [126];

• Spectral diffusion, which represents a time-dependent shift in fre-

quency caused by a local change of the electric or magnetic field in

the position of the ion. This can be caused by interactions with
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other neighbouring Pr3+ spins or by interactions of single Pr3+ ions

with bistable two-level systems (TLS), being a dynamic fluctuation

between nearly equivalent lattice configurations [84].

The last two decoherence effects, which depend on the presence of other

Pr3+ ions, can be limited by using a REDC with low concentration of

dopants. For example, the concentration of Pr3+ ions in the samples we

use is ∼ 0.05%. Nevertheless, this results in a decreased optical depth (pro-

portional to the absorption of the crystal) and inhomogeneous broadening.

Other effects that can be highly reduced are the ones caused by magnetic

fluctuations. By applying an external magnetic field with a specific inten-

sity and direction, one can address the so-called zero first-order Zeeman

shift (ZEFOZ) transitions [127]. The ions under these conditions become

almost insensitive to low magnetic field changes (the frequency shift given

by low magnetic fluctuations becomes negligible). This, besides being very

important in Kramers ions which have a higher magnetic moment, is used

in non-Kramers ions also. The spin-coherence of Pr3+:Y2SiO5, for exam-

ple, was extended with this technique from ∼ 500µs to 860 ms [128].

2.2.3 Inhomogeneous broadening

When a dopant ion is hosted in a crystal, the surrounding matrix gets

distorted and applies a strain to it. This strain is different for each dopant

and comes, mostly, from lattice defects and chemical impurities, which are

inevitable in most of the crystal growth processes. This gives rise to the so-

called inhomogeneous broadening: depending on the different surroundings

and crystal fields felt, each ion suffers a shift in its levels, i.e. in the central

absorption frequency of its transitions. Thanks to it, the absorption of

REDCs is many orders of magnitude broader than the single ion Γhom. For

a Pr3+:Y2SiO5 crystal with a doping concentration of ∼ 0.05% we measure

inhomogeneous broadenings of the order of 10 GHz (two measured traces

are reported in Appendix B.3). Note that the inhomogeneous broadening

is static, as it is caused by inhomogeneities in the crystal field. We can

therefore tailor the absorption, which we will use for quantum memory

protocols (see section 3.3).
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Light-matter interaction

in rare-earth doped crystals

In this chapter I will shortly introduce a semiclassical formalism to describe

the interaction between light and atoms. Then I will explain the optical

protocols and techniques used along the thesis to characterize the spectral

and coherence properties of the ions. Finally I will focus on the storage

protocol, the atomic frequency comb, that we decided to use in this thesis.

3.1 Theoretical background

Most of the material of this section can be found in detail in [129, 130,

131]. Consider a quantized two-level atom and a classical monochromatic

radiation field addressing it. The temporally dependent state of a two level

atom can be described as:

|ψ〉 = cg(t) |g〉+ ce(t) e
−iω0t |e〉 (3.1)

with |cg(e)(t)|2 being the probability to have the atom in |g〉 (|e〉) at time

t and ω0 the resonance frequency of the transition |g〉 − |e〉. We call Ĥ0

the Hamiltonian relative to the unperturbed atom, whose eigenstates are

|g〉 and |e〉 with eigenvalues Eg = ~ωg and Ee = ~ωe, respectively, where

ωe − ωg = ω0.

3.1.1 Rabi frequency

The interaction between a monochromatic radiation field, E = E0cos(ωt),

and the atom is governed by the Hamiltonian ĤI = d · E. We call d the
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atoms electric dipole moment operator. This is a non-diagonal operator

such that 〈g|d |g〉 = 〈e|d |e〉 = 0 and 〈g|d |e〉 = 〈e|d |g〉 = d.

Solving the Schrodinger equation:

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 ,

where we consider a total Hamiltonian Ĥ = Ĥ0 + ĤI , we find:i~ ċg = cee
−iω0tcos(ωt) 〈g|d ·E0 |e〉

i~ ċe = cge
iω0tcos(ωt) 〈e|d ·E0 |g〉

→

i ċg = ce
(
ei(ω−ω0)t + e−i(ω+ω0)t

)
Ω/2

i ċe = cg
(
ei(ω+ω0)t + e−i(ω−ω0)t

)
Ω/2

,

(3.2)

where we projected along 〈g| or 〈e|, respectively. Here we introduced a new

quantity, Ω, called Rabi frequency. It is defined as ~Ω = 〈g|d · E0 |e〉 =

〈e|d·E0 |g〉. For an easier treatment we consider a radiation field polarized

along the electric dipole, for which ~Ω = E0d.

In our application we are interested in studying a radiation field close

to resonance with the two-level system, ω ∼ ω0. In this situation we

can neglect the fast-oscillating terms (ω + ω0) in eq. 3.2. This is called

rotating-wave approximation. We now calculate the derivative of the sec-

ond expression of eq. 3.2 and, after solving the system, we get:

c̈e + i(ω − ω0)ċe +
|Ω|2

4
ce = 0 (3.3)

For an initial condition |cg(0)|2 = 1 and |ce(0)|2 = 0, i.e. starting with all

the atomic population in the ground state |g〉, we find:

|ce(t)|2 =
Ω2

Ω2 + (ω − ω0)2
sin2

(√
Ω2 + (ω − ω0)2

2
t

)
ω=ω0−−−→ sin2

(
Ω

2
t

)
.

(3.4)

This means that a light field resonant with the atomic transition drives

the atomic population back and forth between the excited and the ground

state. For a given intensity of the radiation field and the dipole moment of

the atom, i.e. for a given Ω, the time for which we have the first inversion

of population, |ce(t)|2 = 1, is tπ = π/Ω and defines the so-called π−pulse.

More precisely, as can be seen from eq. 3.2 and 3.3, by applying a π−pulse

we get: cg|g〉 + ce|e〉 → −i(cg|e〉 + ce|g〉). Note that the higher is the
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Rabi frequency, the shorter tπ. This means that the Rabi frequency is

proportional to the light-atom interaction. Equivalently to the π−pulse,

we define the π/2−pulse as the shortest time needed to transfer half of

the atomic population to the excited state, |ce(t)|2 = 0.5. In the case of a

single atom in |g〉, a π/2−pulse drives it into the state (|g〉+ |e〉)/
√

2.

3.1.2 Optical Bloch equations

For the following analysis we define the density matrix ρ associated to a

quantum state, in this case to the state |ψ〉 of eq. 3.1, as:

ρ = |ψ〉 〈ψ| =

[
|cg|2 cgc

∗
e

c∗gce |ce|2

]
=

[
ρ11 ρ12

ρ21 ρ22

]
. (3.5)

The diagonal elements are the probabilities to have the atom in one of the

two states (the atomic population in case of many atoms), while ρ12 and

ρ21, called the coherences of the system, are related to the response of the

system to a driving frequency. For example, if we calculate the expectation

value of the dipole moment d for an atom with state ψ, we find that it

only depends on the coherences:

〈ψ|d |ψ〉 = d
(
cgc
∗
ee
iω0t + c∗gcee

−iω0t
)

= d
(
ρ12e

iω0t + ρ21e
−iω0t

)
. (3.6)

Let’s now define:

c̃g = cg e
−i(ω−ω0)t/2 and c̃e = ce e

i(ω−ω0)t/2. (3.7)

Rewriting |ψ〉 in terms of these variables and calculating ρ̃ as in eq. 3.5, we

find the new coherences, ρ̃12 e
−i(ω−ω0)t and ρ̃21 = (ρ̃12)∗ (the population of

the two states remain unvaried). In these terms eq. 3.6 becomes:

〈ψ̃|d|ψ̃〉 = d
(
ρ̃12e

iωt + ρ̃21e
−iωt) = d(u cos(ωt)− v sin(ωt)). (3.8)

With the new coherences we directly see the response of the system to ω,

the frequency of the applied radiation. In a second step we define u and

v, which are related to the real and imaginary part of ρ̃12, respectively as:u = Re(ρ̃12)/2 = ρ̃12 + (ρ̃12)∗ = ρ̃12 + ρ̃21

v = Im(ρ̃12)/2 = −i[ρ̃12 − (ρ̃12)∗] = −i(ρ̃12 − ρ̃21).
(3.9)
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The set of expressions in 3.2 and 3.3, in terms of u and v, become:
u̇ = δv

v̇ = −δu + Ωw

ẇ = −Ωv

, (3.10)

where δ = ω − ω0 is the detuning of the radiation field with respect to

the resonance frequency of the atom and where we defined a new variable

w = ρ11 − ρ22 (remind that ρ11 + ρ22 = 1). w represents the difference of

population in the two levels of the atom, while u and v are proportional

to the in-phase and in-quadrature components of the dipole moment (see

eq. 3.8).

It is possible to see that |u|2 + |v|2 + |w|2 = 1. The normalized sphere

defined by these three variables is called Bloch sphere. If we associate

the three variables to perpendicular axes, they define the Bloch vector, as

shown in fig. 3.1.

Figure 3.1: Bloch sphere with the vectors correspoding to the three components
u, v and w.

To include the effect of dephasing into our model, we consider a damping

effect, Γ. In analogy with the model of a damped classical oscillator [129],

and considering as the energy of our system ρ22~ω0 (proportional to the

population in |e〉), we can rewrite the last equation of the system 3.10 as:

˙̃ρ22 = −Γρ̃22 + Ωv/2.

Solving this expression in the case of no radiation field, the population in

the excited state would decay exponentially as e−Γt. In this analogy, then,
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Γ = 1/T1, where T1 is the lifetime of the transition (see section 2.2.2).

Following the analogy to the same model [129], it is possible to see that

the coherences, and therefore u and v, are affected by a damping parameter

Γ/2, which defines the coherence time T2 (see section 2.2.2). The set of

equations 3.10 considering the damping becomes:
u̇ = δv− Γ

2 u

v̇ = −δu + Ωw− Γ
2 v

ẇ = −Ωv− Γ(w− 1)

. (3.11)

This set of equations is known as optical Bloch equations and describes

the behaviour of a two-level system interacting with a radiation field close

to resonance and in presence of spontaneous decay.

T1 and T2 can be seen as the relaxation time of the energy and of the

phase, respectively. In this simple model we find that T2 = 2T1. As

discussed in sec. 2.2.2, most often we have T2 ≤ 2T1. The set of equations

in 3.11, should be rewritten in terms of T1 and T2 to account for this.

3.1.3 Maxwell-Bloch equations

Equivalently to a classical oscillating dipole, an atom oscillating between

the ground and excited state radiates. To consider this effect on the radi-

ation field we start from the classical Maxwell equation [130, 131]. Let’s

call z the direction of propagation of the light through the system. The

interaction between system and radiation field depends on z, so that we

consider the dependence on z of Ω, u, v and w. The classical Maxwell

equation in the rest frame can be written as:

O2E(z, t)− n2

c2

∂2

∂t2
E(z, t) =

1

ε0c2

∂2

∂t2
P (z, t) (3.12)

where n is the refractive index of the medium, c is the speed of light, ε0

the vacuum permittivity and P (z, t) is the macroscopic polarization of our

system, that is what will mostly determine the effect of the atomic system

on the radiation field. For an inhomogeneoulsy broadened ensemble of N
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atoms [131], P (z, t) can be described as:

P (z, t) =
Nd

2π

∫ ∞
0

[u cos(ωt− kzz)− v sin(ωt− kzz)] g(δ) dδ (3.13)

where g(δ) is the function associated to the inhomogeneous broadening.

Substituting 3.13 into 3.12 and performing the so-called slowly varying

envelope approximation, i.e. assuming that the envelope of the radiation

field varies slowly with respect to the optical frequency ω, we find:(
∂

∂z
+
n

c

∂

∂t

)
Ω(z, t) =

iα

2π

∫ +∞

−∞
[u(z, t; δ)− iv(z, t; δ)] g(δ) d(δ), (3.14)

where we defined the absorption coefficient α. This is called Maxwell-Bloch

equation. In our experiments we are not interested in effects varying as

fast as L/c (being L the length of our medium) so that we can neglect the

terms that goes like n
c
∂
∂t [131].

The Maxwell-Bloch equations can be written as a function of σ = u − iv,

or separating the real and imaginary components of the formula:∂ΩRe
∂z = α

2π

∫ +∞
−∞ v g(δ) d(δ)

∂ΩIm
∂z = α

2π

∫ +∞
−∞ u g(δ) d(δ)

. (3.15)

This formalism can be used to understand the storage protocol that I

will use throughout the thesis, the atomic frequency comb [68], and, more

generally, photon-echo experiments [132].

3.1.4 Ω: optical nutation

As we saw in the previous analysis, if we excite a two-level system with

a detuned laser, the Bloch vector associated with the atomic state oscil-

lates between the ground and excited levels as
√
δ2 + Ω2 t/2, δ being the

detuning (see eq. 3.4). This oscillation of the Bloch vector is called opti-

cal nutation [125]. In an inhomogeneously broadened transition, different

atoms excited have a different detuning. The average optical nutation,

in this case, is proportional to Ω2 J0(ω t) [133], with Jn(x) the nth-order
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Bessel function of the first kind at x. Finally, for a Gaussian beam, aver-

aging the effect along the transverse profile of the field, we get an atomic

excitation oscillating as Ω2 J1(ω t)/(ωt) [133].
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I 
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a
.u

.]

t

Figure 3.2: Simulation of a typical optical nutation measurement trace, showing
the intensity of a laser, in resonance with a two-level atom, measured in transmis-
sion. The arrow and the red point indicate the first population inversion (from

the ground to the excited state)

To measure the Rabi frequency, then, we shine a laser resonant with an

inhomogeneously broadened transition into our sample. Provided that we

can initialize all the atoms in one ground state, the excited-state population

|ce|2 will vary as discussed above. The more atoms are transferred to the

excited state, the less the intensity of the laser is absorbed. In transmission,

then, we will measure a transmitted laser intensity

I ′ ∝ 1−MΩ2 J1(ω t)/(ωt),

M being a constant parameter (see fig. 3.2). In this case, tπ happens in

the first maximum of I ′, namely Ωtπ ∼ 5.1.

3.1.5 T2: two-pulse photon echo

We measure the T2 of an optical transition by means of the two-pulse

photon echo (TPE) technique. The experimental procedure is sketched

in fig. 3.3. We start with all the atoms in a certain level |g〉. A π/2-

pulse at time 0 transfers half of the population to a second state |e〉 (see

sec. 3.1). If the transition is inhomogeneously broadened, each excitation

evolves with a different phase (due to their different central absorption

frequencies). After a certain time τ , a π−pulse inverts the phases of the

excited atoms (sec. 3.1). In this way the atomic excitations get back to

rephase, restoring the atomic coherence at a time 2τ . Here the atoms fall
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back to |g〉, resulting in a coherent photonic emission, the two-pulse echo

(TPE) [132, 134].

(b)

0 2

(a)

/2

Figure 3.3: Sketch of the two-pulse photon echo (TPE) protocol. A π/2-pulse
creates an atomic excitation at time 0. A π-pulse at time τ inverts the phases of
the atoms excited. At time 2τ the coherence of the atomic excitation is restored
and an echo is emitted. (a) Phases of the atoms in the Bloch sphere. (b) Temporal

sequence.

Besides the static inhomogeneous dephasing, which is reversed by the

π−pulse, all the other decoherence or relaxation mechanisms that con-

tribute to decreasing the number of atoms participating in the rephasing,

i.e. to the echo generation, are irreversible (see sec. 2.2.2). As these pro-

cesses can happen in each moment between the first pulse and the time

of the echo (2τ), increasing τ results in a decay of the TPE. From the

exponential decay of the echo intensity (proportional to the square of the

oscillation amplitude) while increasing the time τ , we extract the coherence

time of the ions. The usual T2 measured in our samples ranges from 50 to

110 µs, depending on the density of ions excited (beam size, power of the

π/2−pulse and number of ions prepared in the ground state). In fact, the

higher the number of ions excited, the more our T2 is limited by ISD. In

Pr3+:Y2SiO5, the highest reported T2 to my knowledge is 111 µs without

any external magnetic field, comparable to our best measurements, and it

arrives to 152 µs when applying a magnetic field [126].

3.1.6 T1: fluorescence

The T1 of the optical transition is associated with the population decay

time (see sec. 3.1). This can be measured by a fluorescence measurement:

we excite many atoms by sending a pulse in resonance with the transition

of interest and we wait for the atomic population to decay. Each time that

one atom falls back to the initial level, it emits one photon, resulting in a

34



Chapter 3. Light-matter interaction in REDCs

fluorescence signal. Fitting the data to an exponential decay, we measured

the T1 of one of our samples to be ∼ 160µs [119], compatible with the

value of 164 µs reported in the literature [126].

The T1 of a transition can be also measured by adding a third pulse to the

TPE scheme of sec. 3.1.5. This scheme, called three-pulse photon echo or

stimulated photon echo (SPE), is explained in Chapter 7.

3.2 Spectral hole-burning

In some inhomogeneously broadened media, shining pulses of light at a

specific frequency in the absorption profile can cause the generation of a

transparency window, i.e. an increased transmission at that specific fre-

quency. This process takes the name of spectral hole-burning and it is a

fundamental tool for all the protocols used in the thesis [135].

Let’s consider the level scheme of fig. 2.2. A pulse resonant with the

±1/2g → ±1/2e transition excites part of the atoms that were in the±1/2g

level. These atoms will consequently decay in the three ground states

with different probabilities (related to the dipole moment, or oscillator

strength, of the transitions). This results in a lower number of atoms in

the ±1/2g level, i.e. in a lower absorption in the three transitions starting

from the ±1/2g state, generating a series of holes in the absorption profile.

Consequently, the increased number of atoms in the ±3/2g and ±5/2g

states creates anti-holes in the absorption profile of the crystal. From

these holes and anti-holes it is possible to reconstruct the energy separation

between the levels involved [135]. Their height is related to the oscillator

strength of the transitions.

Note that, to perform protocols based on spectral hole-burning in which

we redistribute the population in the spin levels to tailor the absorption

profile of the system, we need the population lifetime of the spin transition

Ts
1 to be much longer than the optical To

1. In fact these protocols need

many repetitions of optical sequences that excite the optical transition,

during which the spin population should not redistribute.

35



Chapter 3. Light-matter interaction in REDCs

987654321

Figure 3.4: Sketch of the 9 classes of ions present in Pr3+:Y2SiO5 due to inho-
mogeneous broadening.

3.2.1 Classes of ions

The inhomogeneously broadened absorption profile of the 4f-4f transitions

in our crystal is composed of Pr3+ ions all with about the same Γhom and

hyperfine separation (fig. 2.2), but each of them with a different central

absorption frequency. As a consequence, provided that the inhomogeneous

broadening is much bigger than the separation between the hyperfine lev-

els, when a narrowband light pulse of frequency ν is sent through the

crystal it can be resonant to different transitions for different ions (see

fig. 3.4). In particular, within each window of about 40 MHz in the in-

homogeneous line, we can define 9 different classes of ions according to

the transition addressed. This discretized description can help us to sim-

plify the understanding of such a complex system. At the same time, the

spectral hole-burning technique explained before, becomes more compli-

cated when we take into account all the classes. A simple explanation of

the hole-burning technique in presence of more than one class of ions can

be found in [119]. An experimental trace of the holes and antiholes gen-

erated by a narrowband laser shined within the inhomogeneous line of a

Pr3+:Y2SiO5-waveguide is shown in Appendix C.3.1.

3.2.2 Single-class absorption feature in Pr3+

Throughout the thesis we will refer to the level scheme of fig. 2.2. Here I

explain how to address only one of the nine classes of ions. In particular,

how to populate in a controlled way a single class of ions, for example class

2, in the ±1/2g → ±3/2e transition via spectral hole-burning.
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Figure 3.5: Optical transitions of the 9 classes of Pr3+ ions. The transition
defined by each line is indicated in the first row. Each row is a different class of
ions (see column on the right). The shift of each class with respect to the first
one is written in the gray column. The height of the lines is proportional to the

dipole moment of the transition.

In the following explanation I will refer to fig. 3.5. In this figure we

report the 9 transitions, their height being proportional to their oscillator

strength, for each class of ions (rows). For each row the three red (blue)

[green] lines correspond to the transitions from the ±1/2g (±3/2g) [±5/2g]

state, to the ±1/2e, ±3/2e and ±5/2e states. The frequency shift of each

class with respect to the first class of ions is reported in the gray column.

At the bottom of the transitions of the first class I report the frequency

difference (in MHz) of those transitions with respect to the ±1/2g →
±1/2e (first red line). I quantify the absorption in terms of optical depth,

OD, that accounts for the number of atoms we are interacting with. It is

defined as OD= αL, where α is the absorption coefficient of the crystal

(see sec. 3.1) and L its length.
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We first create a spectral pit, i.e. a ∼ 16 MHz broad hole around the

±1/2g → ±3/2e, ±1/2g → ±5/2e, ±3/2g → ±1/2e and ±3/2g → ±3/2e

transitions of the second class of ions, as shown as a green rectangle in fig.

3.6 (a). While interacting with the second class of ions, we interact also

with other classes (all the transitions highlighted in the green rectangle are

addressed). In the frequency window considered, we interact with the ions

of the first four classes. For this reason, from the next step we will not

consider any ion belonging to higher classes. Moreover, creating a hole in

a transition starting from a certain ground state, as explained previously,

has the effect to empty that ground state, i.e. to create a hole even in the

other two transitions starting from the same ground state. The transitions

emptied by generating a spectral pit are depicted as thinner lines. A sketch

of the resulting zero absorption around the frequency of the spectral pit is

depicted in the inset of the same figure.

Figure 3.6: Sketch of the protocol used to create a single class absorption feature
in the ±1/2g → ±3/2e and ±1/2g → ±5/2e transitions of the second class of
Pr3+ ions. The protocol consists of three parts: the spectral pit (a), the burn-
back (b) and the clean (c). At the top of each panel the classes and transitions

involved, at the bottom the OD in the frequency window considered.

Secondly we shine a pulse, the burn-back (bb) pulse, on the±5/2g → ±5/2e

transition of class 2 (green rectangle in fig. 3.6(b)). This, beside emptying

the resonant transitions, repopulates the ±1/2g and ±3/2g states of the

second class with the resulting anti-holes. This is important because we

can repopulate the desired ground states in a controllable way, i.e. with the

desired OD (depending on the power and repetitions of the bb-pulse) and

width (depending on the frequency chirp of the bb-pulse). The resulting

absorption profile within the pit is depicted in the inset of fig. 3.6(b). Note

that the bb-pulse is not in resonance with any transition of the first class

of ions, so that we can avoid considering any class of ions lower than the

second.
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Finally, to eliminate the third and fourth classes from the selected fre-

quency range, we shine a clean pulse around the frequency of the ±3/2g →
±3/2e transition of the second class (green rectangle in fig. 3.6(c)). This

pulse empties the ground state ±3/2g of the second class, as well as the

levels ±1/2g and ±3/2g of the third and the ±1/2g of the fourth. At this

stage, the only populated level in the considered frequency window will be

the ±1/2g of the second class.

In conclusion, we populated in a controlled way two single-class transitions,

the ±1/2g → ±3/2e and the ±1/2g → ±5/2e transitions of the second

class, as shown in the inset of fig. 3.6(c) (the OD of the second transition

is smaller because of its lower oscillation strength).

3.3 Atomic frequency comb

The storage protocol that we use is the so-called atomic frequency comb

(AFC) technique [68]: a periodical structure (the AFC) is tailored in the

inhomogeneous absorption of the crystal, with a separation of ∆ between

its peaks. A photon absorbed by such structure is mapped into a collective

excitation of atoms. A single photon has enough energy to excite only one

atom, so that the collective excitation is a superposition of single atomic

excitations where only the atom k is promoted to the excited state |e〉, while

the others remain in the ground state |g〉. This can be mathematically

described as a Dicke state of the form:∑
k

e−i2πδktck|g · · · ek · · · g〉.

In the phase term, the frequency detuning δk of an atom k with respect to

the central frequency of the photon is a multiple of ∆ and can be written

as δk = mk∆. Its amplitude ck depends on its specific position in the

crystal and central absorption frequency. After an initial inhomogeneous

dephasing, the atomic excitations will rephase at a time τ = 1/∆ giving

rise to a re-emission of the photon in the forward direction, the so-called

AFC echo [68]. The storage and retrieval efficiencies of the process depend

mostly on the optical depth, OD, on the background OD, d0, i.e. the

absorption given by atoms remaining in the unwanted frequencies (fig.

3.7(a)), and on the finesse of the comb, F = ∆/γ, with γ the width of
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Figure 3.7: (a) Level scheme of the transition of interest in Pr3+:Y2SiO5. The
chosen Λ-scheme for the storage is indicated by arrows. The prepared spectral
features in the atomic populations of the three ground states are sketched on the
right side in orange. (b) Temporal sequence of the AFC storage: an optical pulse
(or a photon) is sent at time 0. In presence of an AFC, it is absorbed and an AFC
echo is reemitted after a time τ . In the inset the intrinsic temporal multimodality
of the protocol: if N pulses are sent at N different times, each of them will be
absorbed and reemitted after a time τ . (c) Temporal sequence of SW storage:
a control pulse before the AFC echo (CP1), transfers the excitation to the spin
state. The atoms not transferred due to the imperfect CP1, rephase and result
in an AFC echo (the dotted line being the AFC echo without CP1). A second
control pulse (CP2) brings back the excitation to the excited state. A SW echo

is emitted at time τ+Ts

the peaks [68] (the formula can be found in sec. 3.3.2). It is important to

remark that this scheme provides just a pre-programmed storage time.

An example of single-class AFC tailored in the ±1/2g → ±3/2e transition

(|g〉→|e〉) is sketched in figure 3.7(a). The input single photon and AFC

echo are represented as a solid thin orange arrow and a dashed one, respec-

tively. The atoms optically pumped away from the ground state |g〉 are

transferred to the auxiliary state ±5/2g. In this way the spin-state, |s〉,
is kept empty and can be used to store photons for longer times as spin-

waves, and with an on-demand readout (see sec. 3.3.1). A sketch of the

temporal trace of the AFC storage is reported in fig. 3.7(b). A very impor-

tant property of the AFC technique is its intrinsic temporal multimodality,

i.e. the possibility to store and retrieve multiple distinguishable temporal

modes. As shown in the inset of fig. 3.7(b), if many photons arrive at

different times (solid line, dashed line and dotted line represent three dif-

ferent photons), each of them will rephase after a time τ , independently

from the others. With an AFC-based memory the maximum number of

temporal modes that can be stored is proportional to the number of peaks
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of the AFC [68]. The ultimate limit is given by the maximum width of the

comb, about 4 MHz in Pr3+, and the smallest peak that can be burned,

limited by the laser linewidth and the homogeneous linewidth of the ions

(about 3 kHz in our crystal without applying an external magnetic field

[126]). This is not true for the other storage protocols, like EIT, GEM or

Raman schemes, where the number of temporal modes that can be stored

depend on the OD of the system [136] (see sec. 1.2.1.1).

The experimental procedure followed to tailor an AFC is described in detail

in the next chapter (sec. 4.4).

3.3.1 Spin-wave storage

The AFC protocol can be exploited to perform a long-lived storage with

on-demand read-out, called full AFC protocol or spin-wave (SW) storage

[68]. The storage sequence is sketched in fig. 3.7(c): before the rephasing of

the atoms the collective excitation is mapped onto the so-called spin-state,

|s〉, using a strong optical pulse, called control pulse (CP1, first gray arrow

in fig. 3.7(a)). The spin excitation is described by:
∑

k ck|g · · · sk · · · g〉.
The phases of the spins remain frozen until they are transferred back to the

excited state with a second control pulse identical to the first one (CP2,

second gray arrow in fig. 3.7(a)). Here the atomic excitations complete

the rephasing, finally emitting the so-called SW echo after a total storage

time TSWS = τ+Ts, with Ts the time spent in the spin-state (i.e. the

time between the two control pulses). Ts is then limited by the coherence

of the spin-state, which can be increased using different techniques [127]

up to a maximum fixed by the population lifetime of the spin state, Ts
1.

The longest demonstrated storage time in the spin state of Pr3+ ions is

∼ 1 minute for classical light pulses and using another storage protocol,

namely electromagnetically induced transparency [72].

3.3.1.1 Spin Inhomogeneity

The inhomogeneous broadening shifts also the ground states of the doped

ions, i.e., when the atoms are mapped into the spin state each of them

will be slightly detuned [88]. Therefore, after the time Ts between the

two control pulses they will acquire different phases, thus degrading the

retrieval efficiency of the protocol. Studying the decay of the SW echo as a
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function of Ts, we can measure the inhomogeneous broadening of the spin-

state, called spin inhomogeneity, as proportional to exp
[
−(γinhTs)2

2log(2)/π2

]
. In

samples like ours this is usually measured to be ∼ 25 kHz [88, 119, 28, 137]

(an experimental trace measured in a bulk sample is shown in section

5.4.3). This spin inhomogeneity results in a quite fast decay of the spin-

wave echo, on the order of tens of µs. Nevertheless the inhomogeneous

dephasing can be compensated with spin-echo techniques [138, 128], i.e.

using π-RF-pulses, resonant to the |g〉-|s〉 transition, to invert the phases

of the atoms and let them rephase at the time of the second control pulse

(using the same idea behind the TPE of sec. 3.1.5).

3.3.2 AFC and SW storage efficiencies

The maximum efficiency achievable using the AFC protocol is limited to

ηfwAFC = 54% if the echo is retrieved in the same direction as its input

(forward retrieval). This effect is caused by the re-absorption of the re-

trieved light in the memory [68]. If, instead, we recall it back-propagating

(backward retrieval) the maximal efficiency can reach ηbwAFC = 100% [68].

The formulas [109], considering an AFC with square peaks (the best case

scenario in terms of efficiencies [139]), are:

ηfwAFC = d̃2e−d̃sinc2(π/F )e−d0 , (3.16)

ηbwAFC =
(

1− e−d̃
)2

sinc2(π/F )e−d0 . (3.17)

To retrieve the stored light backward, one could embed the memory into an

impedance-matched cavity or perform SW storage using two CPs counter-

propagating between each other. For SW storage, the achievable efficiency

is related to ηAFC, being:

ηSW = ηAFC η2
T ηC, (3.18)

where ηT is the transfer efficiency of each CP and ηC accounts for the

dephasing experienced in the spin-state due to spin inhomogeneity.
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Experimental setup

The experimental setup consists of three main parts: (1) the laser prepa-

ration part, where the light at 606 nm generated by the laser is split in

different beams to be modulated and locked in frequency; (2) the memory

setup, where the storage and retrieval processes and the characterization

measurements take place; (3) the photon-pair source setup (PhD project

of other students of the group). In this chapter I will give the general

experimental details of these three parts. Then I will focus on the optical

sequence used to tailor a single-class atomic frequency comb (AFC).

4.1 Laser operation and modulation

Our laser source at 606 nm, a second harmonic generation laser (Topica,

DL-SHG-pro), is stabilized in frequency, using the Pound-Drevel-Hall tech-

nique, to a Fabry-Perot cavity hosted in a home made vacuum chamber

[107]. From this laser we derive all the beams necessary to prepare and

operate the memory (see figure 4.1). Both amplitude and frequency of the

different beams are modulated with double pass acousto-optic modulators

(AOMs) driven by an arbitrary waveform generator (Signadyne). The four

AOMs are used independently for the four different paths.

A first beam is used to prepare the quantum memory by spectral hole

burning techniques. We call it the preparation beam. A second beam is

used to probe and characterize the memory, either sending classical optical

pulses or weak coherent states. A third beam is used to prepare a narrow

spectral window in a second crystal, that we call filter crystal (FC in fig.

4.2). This crystal is used as a narrowband tunable spectral filter for the
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Figure 4.1: Setup for the laser modulation: the light emitted by the laser at 606
nm, is split in two parts by a polarizing beam-splitter (PBS). The reflected beam is
divided again in 3 paths. Before each PBS a λ/2 is used to change the powers going
to the different beams. Each path is modulated via independent AOMs aligned
(to the mode +1) in a double pass configuration (giving a modulation of twice the
resonance frequency). The beam transmitted by the first PBS is modulated by
an electro-optic modulator (EOM). Another PBS is used to split the beam: the
light reflected is modulated with an AOM and is sent to the photon-pair source.
The transmitted light is sent into a Fabry-Perot cavity, and it is used to stabilize
the frequency emitted by the laser using the Pound-Drevel-Hall technique. For
each AOM, a λ/4 waveplate in double pass changes the initial polarization to its
perpendicular. The light is focused into the AOMs and recollimated with 25 cm

lenses.

experiments of spin-wave storage at the single photon level. These three

beams are fiber-coupled and sent to another table where the memory is

hosted. The last beam is first modulated with a frequency of 12.5 MHz

with an electro-optic modulator (EOM) to provide the sidebands necessary

for the locking system. This beam is split in two paths, one of which is sent

to the Fabry-Perot cavity and is used to lock the 606 nm laser. The other

one, after passing through its double pass AOM, is sent to the photon-pair

source. We call this beam reference light, as it is used as a reference for the

source to generate photons at the same frequency at which the memory is

prepared (see section 4.3).

4.2 Memory experimental setup

The experimental setup used for the storage is similar for all the exper-

iments described in this thesis. I report here the general details of the
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setup, which is shown in fig. 4.2. The main differences from an experi-

ment to another depend on whether we use a bulk sample or a waveguide.

In both cases, the memory consists of a Pr3+:Y2SiO5 crystal cooled down

to < 3 K (usually ∼ 2.8 K) in a cryostat (closed-cycle cryocooler, Oxford

Instruments). The Pr3+:Y2SiO5 crystals that we use are produced by Sci-

entific Materials, with an active-ion concentration of 0.05 %. The length

of the samples used will be specified in each experiment and ranges from

3 mm to 1 cm.

Temporal

gate

BPFShutter

(a)

(b)

Figure 4.2: Memory experimental setup. Two crystals, the memory (QM) and
the filter crystal (FC) are placed in a cryostat at a temperature of < 3 K. When
the FC is used, a fast temporal gate, composed by two AOMs, is placed between
the two crystals. A shutter and a band pass filter (BPF) are placed before the

fiber that guide the light to the detector.

The incoming light to store, either single photons or classical pulses, is

sent through the memory crystal along the Y2SiO5 crystalline b-axis and

it is polarized along its D2-axis (to address Pr3+ ions in site 1).

After the memory we can follow two different strategies. When we perform

spin-wave (SW) storage of single photons (Chapter 5), we protect the

single photon detector (SPD) from the control pulses by adding a fast

temporal gate (composed of two AOMs). The AOMs are also used to

avoid the preparation of a hole in the filter crystal by the leakage of the

control pulses. Moreover, to filter out the noise generated by the control

pulses, which is only 10.2 MHz away from the frequency of the stored

light, we put a second Pr3+:Y2SiO5 crystal into the cryostat, and we use it

as a narrow-band spectral filter (the already mentioned filter crystal). We

further filter the light with a band-pass filter (centered at 600 nm, linewidth

10 nm, Semrock). In all the other experiments, where we either store

single photons without performing SW storage or we store classical pulses,
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the light is directly sent to the detection stage. When measuring at the

single photon level we further protect the SPD with a mechanical shutter

which remains closed during the whole memory and filter preparation.

Two other shutters, in anti-phase with the first one, are installed before

the memory and filter preparation beams, respectively (see fig. 4.1), and

remain closed during the single photon measurement period, blocking the

leakage from the preparation AOMs. The shutter is not present in the

memory preparation for spin-wave storage measurements, as we use that

beam to send control pulses. All the experiments are synchronized with

the cycle of the cryostat (1.4 Hz) to reduce the effect of the mechanical

vibrations. More details, specific to each experiment, will be reported

chapter by chapter.

Our main SPD at 606 nm is a Silicon Avalanche photodiode (Laser Compo-

nents) with 50 % detection efficiency and 10 Hz dark-count rate. For auto-

correlation measurements we add a second Si-SPD: either a tau-SPAD,

detection efficiency 45 %, dark count rate 15 Hz from PicoQuant (Chapter

5) or an Excelitas SPD with 50% detection efficiency and 50 Hz dark-count

rate (Chapters 7). In Chapter 8 we use various SPDs for different mea-

surements (it will be stated directly in the Chapter).

4.3 Photon-pair source

In the following experiments we will show storage of photons generated

by two different photon-pair sources. They have been developed during

the PhD projects of two students in our group, Dr. Daniel Rielander and

Dario Lago Rivera. They are based on the same scheme that I am going

to describe in this section. I will give more details about the properties of

the generated photons in the following subsections.

Our photon-pair sources (fig. 4.3) are based on cavity-enhanced sponta-

neous parametric down conversion (CSPDC) in a 2 cm-long type I periodically-

poled lithium niobate (PPLN) crystal [106]. The non-linear crystal is

pumped with a 426 nm laser (Toptica TA SHG) to produce widely non-

degenerate photon pairs. One photon of the pair, the idler, is at telecom

wavelength (Telecom E-band, 1436 nm), while the other, the signal, is at

606 nm. The crystal is placed inside a bow-tie cavity (BTC). To ensure that

the signal photons are resonant with the quantum memory, the length of
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Figure 4.3: Experimental setup for storage of heralded single photons (PPLN:
periodically-poled lithium niobate; DFG: difference frequency generation; DM:
dichroic mirror; FCav: filter cavity; LPF: low pass filter; BPF: band pass filter;

AOM: acousto-optical modulator; SPD: single photon detector).

the BTC is locked via Pound-Drever-Hall technique to the reference beam

described in fig. 4.1. A classical beam at 1436 nm, generated in the PPLN

by difference frequency generation (DFG) of the pump beam at 426 nm and

the reference beam at 606 nm, is used as reference to ensure the maximum

transmission of the idler photons through the BTC. This lock of the DFG

signal is operated by acting on the 426 nm pump frequency by changing

the current sent to the laser diode. Two mechanical choppers are used to

alternate between the locking period and the single-photon measurement,

the duty cycle being about 45%. The photons of the pair are generated

collinearly and separated after the BTC using a dichroic mirror (DM, fig.

4.3).

In order to achieve cavity enhancement, both signal and idler modes should

be resonant with the BTC. However, as the two photons are widely-

nondegenerate, only a few modes are doubly resonant (clustering effect

[140, 106, 141]). At the cavity output the measured spectrum therefore

consists of several (between 6 and 15, depending on the source) ultra-

narrowband frequency modes in the main cluster separated by the cavity

free spectral range. In Chapter 8 we characterize and store the whole spec-

trum of the photons described in section 4.3.2. In all the other demonstra-

tions we operate in single-mode regime. To do so, the idler photons are

sent through a homemade Fabry-Perot filtering cavity (FCav, linewidth

80 MHz, free spectral range 16.8 GHz), then coupled into a single mode

fiber and sent to a SPD (InGaAs APD, ID230, IDQuantique, 10% effi-

ciency and 10 Hz of dark-count rate). The FCav ensures a single-mode

herald. The signal photons are filtered with an etalon, which suppresses
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broadband noise and possible side clusters, and a bandpass filter (centered

at 600 nm, linewidth 10 nm, Semrock) before being sent to the quantum

memory. The heralding efficiency of both the sources, i.e. the probability

to find a signal photon after the optical fiber conditioned on a detection in

the idler channel, is ηSPDC
H ∼ 25% with a single frequency-mode idler. For

the auto-correlation measurement of the idler photons, we use a second

SPD (ID220, IDQuantique), with 10% efficiency and 400 Hz of dark-count

rate.

4.3.1 CSPDC source 1

The first CSPDC source that was built in our lab is the project of the PhD

thesis of Dr. Daniel Rielander. It was used for the experiment described

in Chapter 5. All the details about this source can be found in [141]. The

generated heralded signal is a Lorentzian with a linewidth of 2.8 MHz and

a free spectral range of 423 MHz. To access its spectrum we compare two

measurements:

• The temporal distribution of coincidences between the signal and idler

photons of the source, shown in fig. 4.4(a), is taken from the data published

in [141]. The correlation time of our heralded photons can be estimated

by fitting the histogram with two exponential decays, as

∝ e−2π Γs t Θ(t) + e2π Γi t Θ(−t) + c0,

where Γs (Γi) is the bandwith of the signal (idler) photon, Θ(t) is the

heaviside function to distinguish the rising and falling exponentials related

to the idler and signal photons, respectively, and c0 is an offset [141]. The

two decay times are different due to the different losses experienced in the

cavity by the signal and the idler photons, generated at widely different

frequencies. We can extract the linewidth of the signal (idler) photon to

be Γs = 3.7 MHz (Γi = 2.3 MHz). The resulting biphoton coherence time

is τc = ln2
2πΓs

+ ln2
2πΓi

= 78 ns, from which we can calculate the biphoton

linewidth as Γ = ln2
πτc

= 2.8 MHz [141], being also the linewidth of the

heralded single photons.
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Figure 4.4: (a) Time-resolved coincidence histogram between signal and idler
photons. The black dashed line is the temporal fit of the biphoton correlation.
The data of this plot are taken from [141]. (b) A trace of a single-class AFC for
τ = 7.3µs (brown trace) tailored in the ±1/2g → ±3/2e transition is centered at
0 MHz1. The diamonds are signal-idler coincidence rates taken after the memory
crystal used as a tunable spectral filter (preparing 800 kHz broad transparency
windows at different frequencies). The error is smaller than the data points. The
black line is a simulation of a Lorentzian peak with FWHM = 2.8 MHz convoluted

with a 800 kHz-wide spectral hole.

• In a second experiment we employ the Pr3+:Y2SiO5 memory crystal as a

tunable frequency filter [142, 143, 24]. We prepare a 800 kHz-wide spectral

hole. We record coincidence histograms between the idler detections and

the signal photons passing through the crystal, while tuning the central

frequency of the spectral hole by about 10 MHz around the frequency of

the signal photons. The photons passing through the transparency win-

dow are directly steered to the APD for detection. The coincidence rate

as a function of the hole position (black diamonds overlapped to the AFC

in fig. 4.4(b)) gives a measure of the spectral distribution of the heralded

single photons at 606 nm. The result of this measurement agrees with the

spectrum extrapolated from the signal-idler coincidence histogram mea-

sured immediately after the SPDC source. This is confirmed by the good

overlap between the diamonds and the black dotted line, which represents

the convolution of a Lorentzian curve of width 2.8 MHz and the trace of

the 800 kHz-wide spectral hole.

1The AFC absorption profile in our transition of interest, ±1/2g → ±3/2e, occupies
about 4 MHz. Other absorbing features on either side come from adjancent transitions.
On its left side the ±1/2g → ±1/2e of the same class of ions (where a comb profile is
present too) and other transitions of different classes of ions are probed. On the right
side, for a single-class AFC, we can have two different situations: if the ±3/2g ground
state is kept empty during the AFC preparation, as in the present case or in fig. 5.3
and fig. 6.5, the atoms in that position belong to the ±1/2g → ±5/2e transition, where
the comb is tailored too (the AFC feature in this transition looks smaller because of its
lower dipole moment). Otherwise, for a non-empty ±3/2g level, as in the case of the next
section, namely fig. 4.5(b), or in fig. 6.8(c), we also interact with the ±3/2g → ±1/2e
transition which is overlapped with the previous one.
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4.3.2 CSPDC source 2

In the experiments described in Chapters 7 and 8, our heralded single

photons are created with a new generation CSPDC source [144], which

has been a project of the PhD student Dario Lago Rivera in our group. A

longer BTC was built to decrease the linewidth of the generated biphoton

to 1.8 MHz (FSR 261 MHz).
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Figure 4.5: As in fig. 4.4. In (b) the transparency window prepared in the
crystal is 1.6 MHz-wide (the measurement was performed in the waveguide type

I described in Chapter 7).

We access the spectrum of the biphoton performing the same measure-

ments as for the previous source, reported in fig. 4.5. From the right (left)

decay of the coincidence histogram in fig. 4.5(a) we extract the linewidth

of the signal (idler) photons to be Γs = 2.5 MHz (Γi = 1.4 MHz). The

resulting biphoton coherence time is 121 ns.

4.4 AFC experimental preparation

The storage protocol used in all our experiments is the atomic frequency

comb (AFC) technique explained in detail in sec. 3.3. In this section I

describe the general experimental procedure that we follow to generate our

AFCs in Pr3+:Y2SiO5 . We always prepare single-class AFC features in the

|g〉-|e〉 transition (see fig. 4.6(a)). When spin-wave storage is performed

we keep the |s〉 state empty. The timings given to the different parts of the

pulse sequence will vary, as well as the powers used and the repetitions. I

will recall shortly the main differences chapter by chapter.

We start by preparing a 4 MHz-broad single-class-populated 1/2g − 3/2e

transition. The theoretical description and detailed explanation of the

approach that we use can be found in section 3.2.2.
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Figure 4.6: (a) Level scheme of the transition of interest in Pr3+:Y2SiO5. The
atomic populations of the three ground states after the AFC preparation are
sketched in orange. (b) Example of desired atomic frequency comb, with opti-
mized finesse; (c) pulse train obtained by performing the Fourier transform of the
comb shown in panel (a). The shaded rectangle shows the principal part of the

waveform that we select.

We create the comb structure using a procedure inspired by [27]: we simu-

late the desired comb (an example being shown in fig. 4.6(b)), deciding the

shape of the peaks (square), fixing the optical depth (OD) and the back-

ground optical depth (d0), and calculating the best finesse for each partic-

ular AFC storage time (τ). We perform the Fourier transform of the sim-

ulated comb. In this way we generate a temporal sequence of pulses (blue

line in fig. 4.6(c)) containing all the spectral information of the desired

AFC. This optical pulse train, fixed in frequency to the |g〉-|e〉 transition,

would generate, ideally, the AFC of fig. 4.6(b). We modulate the laser

light temporally according to this temporal function, using a double-pass

AOM (see fig. 4.1). To maintain the duration of the preparation within

the limit imposed by the cryostat cycle, we consider only the principal

part of the Fourier transform, as highlighted in fig. 4.6(c) by the shaded

rectangle (the temporal part considered varies from one experiment to the

other, as well as the desired AFC parameters used, which we kept opti-

mizing throughout my PhD thesis). This pulse is finally renormalized for

the non-linear response of the double-pass AOM. We optically pump the

|g〉-|e〉 transition with this pulse train many times (about 1000 times, but

different for each storage time and for the different experiments described

in the following chapters).

If we want to perform spin-wave storage, parallely to the comb preparation,

we keep emptying |s〉 (see fig. 4.6(a)) with optical pulses resonant with the
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|s〉-|e〉 transition and chirped by ∼ 5 MHz. We want this spin-state to be

as empty as possible, in order to reduce the noise generated by the control

pulses (CPs) in the temporal window of the spin-wave echo.
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Spin-wave storage of

heralded single photons

In this chapter we demonstrate a building block for a quantum repeater link

(see fig. 5.1), performing spin-wave (SW) storage with on-demand retrieval

of heralded single photons with a telecom heralding. This is achieved in a

Pr3+:Y2SiO5 crystal using the full atomic frequency comb (AFC) scheme

described in sec. 3.3.1. Pairs of non-degenerate single photons are gener-

ated one resonant with an optical transition of Pr3+:Y2SiO5 and the other

at telecom wavelength (the source is the PhD project of Dr. D. Rielander,

see sec. 4.3.1). The telecom photon is used to herald the presence of the

signal photon, which is stored as a spin-wave in the crystal and retrieved on

demand after a controllable time. We measure second-order cross correla-

tion values between the heralding and the retrieved photons, which exceed

the classical bound fixed by the Cauchy-Schwarz inequality for storage

times longer than 30µs, effectively demonstrating quantum correlations

Figure 5.1: Sketch of the performed experiment in a possible quantum repeater
link
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between telecom photons and single spin waves in a solid. Moreover we

demonstrate that our memory can store spin-waves in multiple indepen-

dent temporal modes.

The results of this experiment were published in Physical Review X [28]

and also featured in Physics as a ViewPoint by J. Nunn [145]. The con-

tent of this chapter is mostly taken from the paper and its supplementary

material.

5.1 Introduction

Most protocols for long distance quantum communication require quan-

tum memories connected to communication channels through fibers. One

possible direction is to use telecom quantum memories, e.g. based on er-

bium doped solids [146, 39] or optomechanical systems [147]. However,

the most efficient and long lived storage systems up to date are working

at wavelengths far from the telecom window, leading to large loss in op-

tical fibres. Possible solutions to overcome this problem include quantum

frequency conversion [148, 57, 101, 149, 48, 150] or non-degenerate photon

pair sources to establish entanglement between quantum memories and

telecom photons [19]. The latter approach has been demonstrated using

the atomic frequency comb scheme [68] in rare earth doped single crystals

or waveguides [22, 23, 107], but the storage of photonic entanglement was

performed so far only in the excited state for short and pre-determined

storage times.

Longer and programmable storage times can be obtained by transferring

the optical atomic excitations to long lived spin collective excitations (spin

waves) using control laser pulses (see sec. 3.3.1). Recently, spin wave

storage of weak coherent states at the single photon level [24, 90], in-

cluding time-bin qubit and polarization qubit storage [24, 44], has been

demonstrated with rare-earth doped crystals. The generation and stor-

age of continuous variable entanglement between a multimode solid-state

quantum memory and a light field has also been reported recently [59]. In

this experiment, light-matter entanglement was created within the mem-

ory between spontaneously emitted light and spin waves, the latter then

being converted into a light field. This is an emissive quantum memory

[16] with the generated light fields being, for this demonstration, outside
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the telecommunication band. This motivates the need for an absorptive

quantum memory that can store an externally prepared quantum optical

state that shares a quantum correlation with a telecom band photon (see

sec. 1.2.2).

The demonstration of such a quantum memory with single photons re-

quires an efficient quantum light source matching the spectral properties

of the quantum memory [106, 141], and the quasi-suppression of the noise

generated by the strong control pulses. These tasks are challenging due

to the small spectral separation between the hyperfine states of the opti-

cally active ions (a few MHz in our system). We show here that we could

achieve this goal, demonstrating for the first time an on-demand spin-wave

solid-state quantum memory for telecom-heralded single photons.

5.2 Experimental details

Etalon

BPF

Signal

Idler
DMFCav

SPD

Figure 5.2: The photon pairs are generated by CSPDC with a setup similar
to fig. 4.3 (sec. 4.3). The optical path of the preparation light and the control
pulses (CPs) is aligned at an angle of ∼ 3o with respect to the input photons and
is counter propagating to them. The retrieved single photon is spectrally filtered
using a filter crystal (FC) before being detected by a Silicon SPD. Temporal fil-
tering is achieved with acousto-optic modulators, placed after the memory crystal

and opened only when we expect the SW echo.

Fig. 5.2 depicts the experimental setup. A single-class atomic frequency

comb (AFC) is prepared, following the spectral hole burning procedure

described in section 3.2.2, at the frequency of the 1/2g−3/2e transition (the

level scheme of interest is reported in fig. 2.2). To perform SW storage, an
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optical control pulse drives the coherence from the 3/2e state to the empty

3/2g state (the spin-state |s〉). The beam for memory preparation and

control pulses (with a maximum power of 21 mW) has a waist of 175µm

(bigger than the 45µm of the single photons path), and is sent with a small

angle with respect to the photons (about 3o) and counter propagating. In

this way we can spatially filter out some noise generated by the control

pulses. In [119], where the CPs were co-propagating with the stored and

retrieved light and with an angle between the beams of only 1.5o, the

extinction ratio of this spatial filter was of 10−5. The narrow-band spectral

filtering of the noise resulting from the control pulses is accomplished with

a second Pr3+:Y2SiO5 crystal, the filter crystal FC, where a 5.5 MHz-

broad transparency window is burnt at the frequency of the AFC [24].

An example of AFC prepared in the memory crystal overlapped with the

narrow spectral hole burnt in the filter crystal is reported in fig. 5.3. The

actual shape of the comb peaks is Gaussian rather than square, due to

power broadening. Between the memory and the filter crystal we add

a fast temporal gate composed of two AOMs. This prevents additional

holeburning in the filter crystal and the SPD from being blinded by a

possible leakage of the control pulses. Then, the retrieved photons pass

through a band-pass filter (centered at 600 nm, linewidth 10 nm, Semrock)

and are sent to an SPD through a single mode fiber.

Our CSPDC source, described in section section 4.3, produces ultra-narrow

photon pairs where one photon, the idler, is in the telecom E-band at

1436 nm, and the other is resonant with the Pr3+ optical transition at

606 nm, specifically with the transition where the AFC is prepared [106,

107]. The pump at 426.2 nm is kept at the average power of 3.3± 0.5 mW

for the measurements presented in this chapter. The probability to obtain

a single signal photon in front of the quantum memory conditioned on a

detection in the idler SPD (i.e. the heralding efficiency) is ηH = (20.9 ±
0.5)%.

To prepare the AFC we use the technique described in section 4.4. During

the preparation of the memory crystal, the SPDs of both idler and signal

arms are gated off. After each AFC preparation, the gates are opened

and we detect the arrival time of both photons of the pair during a mea-

surement time of about 100 ms, leading to a memory duty-cycle of 14%.
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Figure 5.3: AFC for τ = 7.3µs (brown trace). The light gray trace is the
transparency window that we burn in the filter crystal. The diamonds are signal-
idler coincidence rates taken after the memory crystal used as a tunable spectral
filter (preparing 800 kHz broad transparency windows at different frequencies).
The error is smaller than the data points. The dotted blue line is a simulation
of a Lorentzian peak with FWHM = 2.8 MHz convoluted with a 800 kHz-wide

spectral hole.

Further details about the experimental setup and the preparation of the

AFC feature can be found in Chapter 4.

In order to reduce the noise generated by the CPs during the spin-wave

storage, we send 100 CPs separated by 25µs after the preparation of the

comb and, afterwards, another 50 with a separation of 100µs. If these

cleaning CPs are too close to each other the atoms are coherently driven

between the ground and the excited state and some might remain in the

former.

5.3 Spin-wave storage of heralded single photons

The heralded single photons that we want to store have a Lorentzian spec-

trum with a linewidth of 2.8 MHz (see section 4.3.1). The spectrum of

the biphoton, shown in fig. 5.3 as a blue trace, matches with the prepared

AFC structure, brown trace. We estimate the spectral overlap between the

heralded single photons and the AFC to be about 66 %, which limits the

AFC storage efficiency in this experiment. The correlation between the

idler and signal photons is inferred by measuring the normalized second-

order cross-correlation function, g
(2)
s,i , in a time window ∆td = 320 ns (see

sec. 1.4.1). This is extracted from coincidence histograms, constructed by

taking the detection of the idler photons as a start and the detection of
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signal photons as stop. Before the memory we measure g
(2)
s,i (∆td) = 57± 1

(pump power 3.4 mW).

Spectral pit

We first prepare in the memory crystal a 18 MHz-wide transparency win-

dow (spectral pit of sec. 3.2.2). We measure the coincidence histogram

when the signal photons are sent through the spectral pit (blue input trace

in fig. 5.4(a)). The correlation time between the signal and idler photon,

measured by fitting their coincidence histogram with a double exponential

decay as explained in sec. 4.3, is τc = (89 ± 4) ns, leading to a heralded

photon linewidth of (2.5 ± 0.1) MHz [141]. The measured g
(2)
s,i (∆td) value

is 96± 321.
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Figure 5.4: (a) Time histograms of the input photons (dark blue trace peaked
at 0µs) and the AFC echo (brown trace, including the transmitted signal in light
orange). The shaded rectangles mark the areas used to measure the uncorrelated
noise in the calculation of the g2AFC,i value. The transmitted part of the input
photon is delayed due to slow-light effects when interacting with the features
shown in fig. 5.3. (b) AFC storage efficiency for different storage times, τ . The

filled square is τ = 7.3µs, whose coincidence histogram is shown in panel (a).

Then we prepare a single-class AFC (fig. 5.3), following the approach

described in sec. 4.4, obtaining, for a pre-programmed storage time τ =
1
∆ = 7.3µs, an efficiency ηAFC = (11.0±0.5) % and g

(2)
AFC,i(∆td) = 130±31.

The signal and the uncorrelated coincidences used to measure the g
(2)
AFC,i

are, respectively, the brown echo at about τ and the gray rectangles around

1This value increases after transmitting the signal photon through the pit because
part of the uncorrelated signals that are measured with just the source are filtered by
the memory crystal.
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it (i.e. the stored signal and the stored noise) in fig. 5.4(a). The efficiency

is extracted from the coincidence histogram by dividing the counts in the

AFC echo window by the number of expected photons in front of the

memory. Figure 5.4(b) shows the AFC efficiencies achieved for different

storage times τ , the filled square being the efficiency at τ = 7.3µs.

The shown g
(2)
AFC,i represents an improvement by more than one order of

magnitude compared to the state of the art in the same system [107]. The

g
(2)
s,i value increases after the AFC storage due to the fact that the stored

photons are transferred to a temporal mode free of noise (as the pump

laser of the CSPDC is switched off upon the detection of the idler pho-

ton) [107]. After the retrieval, we measure τc = (147 ± 7) ns, larger than

the value measured before storage. We attribute this temporal stretch-

ing to spectral mismatch between the input photons before the memory

(FWHM = 2.8 MHz) and the atomic frequency comb (total width 4 MHz),

as highlighted in fig. 5.3.

SW storage

We then perform SW storage experiments (sec. 3.3.1) by sending pairs of

strong control pulses after the detection of each heralding photon. The

control pulses, detected with a reference photodetector, are displayed in

fig. 5.5(a) as plain pulses and are separated by Ts = 6µs. They are mod-

ulated in amplitude and frequency with Gaussian and hyperbolic tangent

waveforms, respectively, as described in the Appendix A.1. Their peak

power is 21 mW.

In the coincidence histogram of fig. 5.5 we observe a SW echo at 13.3

µs, as expected from τ and Ts. The efficiency of our quantum memory,

ηsw = (3.6±0.2) %, is inferred with a coincidence window of ∆td = 320 ns,

containing 80 % of the signal (see Appendix A.3) and including the loss

induced by the filter crystal. Fig. 5.5(b) shows a magnification of the SW

echo, normalized by the average value of the noise measured outside the

peak. This plot quantifies the signal-to-noise ratio (SNR) of the stored and

retrieved photon in each bin and could be used to infer g
(2)
swe,i (that will be

measured accurately in the next section). We observe a maximum SNR

of around 5. With our filtering strategy we reach a noise floor of (2.0 ±
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0.1) × 10−3 photons per storage trial at the memory crystal2 (horizontal

dashed line in the SW echo temporal mode). The correlation time of

Figure 5.5: (a) Time histograms of the input photons (black trace), the AFC
echo at τ = 7.3µs (brown trace), and the SW echo (blue trace) acquired over an
integration time of 343 min. The coincidence count rate in the AFC echo is 4/min
and in the SW echo ≈ 1/min. The control pulses are shown in gray. The dashed
vertical lines indicate the coincidence window for the signal (∆td = 320 ns), while
the dashed horizontal line represents the noise floor. (b) Coincidence counts for
the SW echo at T = τ + Ts = 13.3µs normalized by the average noise level,
along with its fit to a double exponential function, to account for the Lorentzian

spectral shape of the SPDC photons.

τc = (200± 40) ns exceeds the one after storage in the excited state. This

further increase after the SW storage is attributed to the limited frequency

spanned by the control pulses (called chirp).

5.4 Quantum correlation between single telecom

photons and single spin waves

To investigate the non-classical nature of the photon correlation after the

SW storage, we measure g
(2)
swe,i(∆td) and compare it to the unconditional

autocorrelation of the idler (g
(2)
i,i (∆td)) and retrieved signal (g

(2)
swe,swe(∆td))

fields (see sec. 1.4.2). To access these quantities we perform a measurement

in which we store photons unconditioned on the detection of heralding

photons. This sequence is sketched in fig. 5.6. After the preparation of

the memory, we perform 500 storage trials, separated by 190µs. We choose

this time, longer than the relaxation time of the excited state, in order to

reduce accumulated noise from the CPs in the SW echo mode due to the

multiple storage trials. Each storage trial consists of two transfer pulses,

the write (CP1) and the read (CP2), separated by Ts = 6µs. The gate of

2The noise floor measures the number of noise counts detected in a coincidence win-
dow ∆td, back-propagated to the output of the memory.
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...x500 trials
Ts+

ti ts

Period

tsti

Ts+ 

CP1 CP2

SPDC

Pump

Figure 5.6: Unconditional sequence: storage of single photons not conditioned
on the detection of the heralding photon. The blue line shows the voltage sent to
the AOM in front of the SPDC cavity, thus the switching on and off of the pump

laser.

the idler detector is opened for a time ∆ti = 6µs and it closes when the

write pulse arrives to its maximum intensity. For this measurement, we

assemble a Hanbury-Brown Twiss setup after the memory (splitting the

signal photon with a fiber BS at the detection stage) such that we can

reconstruct both the cross-correlation g
(2)
swe,i between the retrieved photons

and the heralding photons and the auto-correlation of the retrieved photons

g
(2)
swe,swe. The two detectors of the signal are switched on 1.3µs after the

read pulse and are maintained open for a time ∆ts = 4.5µs. Together with

the closing of the idler gate, an RF-signal is sent to the AOM of the pump

laser of the source in order to keep it off for 30µs during the detection of

the signal photons (purple line in fig. 5.6).

We reconstruct the g
(2)
swe,i value as the ratio between the coincidences de-

tected at a storage time τ + TS = (7.3 + 6)µs = 13.3µs within the same

storage trial and the average of the coincidences between signal and idler

photons detected in the spin wave temporal mode of the 20 neighboring

storage trials (fig. 5.7(a)). In both cases the integration window is 320 ns.

We find g
(2)
swe,i = 6.1 ± 0.7. We note that our g

(2)
swe,i is limited by the

SW read-out efficiency, that we estimate to be approximately ηR = 24 %,

while the write efficiency is ηW = 31 % (see Appendix A.2 for a detailed

discussion).

The classical bound from the Cauchy-Schwarz inequality g
(2)
swe,i <

√
g

(2)
swe,swe · g(2)

i,i

is indicated in fig. 5.7(a) as a horizontal line (see sec. 1.4.3). We build

the coincidence histogram between the signal photons at the two outputs

of the fiber (BS) considering the whole detection window, as the signal
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Figure 5.7: (a) Unconditional cross-correlation between the idler photons and
the retrieved signal photons. All the coincidences are normalized to the average

value of the noise counts (storage trial difference 6= 0). The g
(2)
swe,i value for this

measurement is 6.1 ± 0.7. The classical bound given by the Cauchy-Schwarz in-
equality is reported as a horizontal line. The error bars are calculated considering
Poissonian statistics. (b) Second-order autocorrelation histogram of the stored

and retrieved single photons g
(2)
swe,swe. The darker bar indicates the coincidence

counts in a window ∆td = 320 ns about 0 delay in the same storage trial. The
red line is the average of the counts with storage trial difference 6= 0. (c) Second-
order autocorrelation time-resolved histogram of the idler photons measured in
CW configuration. The region marked with darker bars indicate the coincidence
window ∆td = 320 ns. The red line is a double exponential fit of the histogram.

can arrive everywhere in ∆ts thanks to the multimodality of the AFC pro-

tocol. We calculate g
(2)
swe,swe as the ratio of the coincidences between the

signal detections in the same storage trial and the coincidences in the 20

neighbouring storage trials [151, 141]. We consider a coincidence window

∆td = 320 ns around 0µs delay, to be consistent with the cross-correlation

measurement. The result is shown in fig. 5.7(b) and the value that we

extract is g
(2)
swe,swe(320 ns) = 1.0 ± 0.4. The large error bar is due to the

low statistics. This value is remarkably lower than expected for a thermal

state produced by a SPDC process [94] (sec. 1.4.2). This is, mainly, a con-

sequence of the noise produced by the storage protocol. As the noise is not

bunched, the higher is the level of noise, the closer to 1 the g
(2)
swe,swe. In fact,

in an unconditional measurement, the probability to detect a retrieved sig-

nal photon over the probability to detect a noise count is very low, being

SNRunc = (Pswe−Pn)/Pn = 0.030± 0.003. The finite coincidence window

also contributes to decrease the autocorrelation [141].

The unconditional autocorrelation for the idler photons is measured in a

CW configuration (without gating), as no storage is involved [141]. A
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typical measurement for a pump power of 4.3 mW is shown in fig. 5.7(c)

from which we calculate a value of g
(2)
i,i (320 ns) = 1.32± 0.04.

5.4.1 Cauchy-Schwarz R-parameter

To confirm the quantum correlation between the idler and the retrieved

SW echo, we calculate the Cauchy-Schwarz parameter R =
(g

(2)
swe,i)

2

g
(2)
swe,swe·g

(2)
i,i

(see sec. 1.4.3). Using the measured values reported before, we calculate

R = 28±12, which exceeds the classical benchmark of 1 by more than two

standard deviations. The sizable errorbar is due to the low statistics in the

second-order autocorrelation measurements of the retrieved signal photons,

g
(2)
swe,swe. Considering a wider coincidence window for the auto- and cross-

correlation value calculation, e.g. ∆td = 1µs, the uncertainty decreases

due to better statistics (the auto- and cross-correlation values also decrease

due to the bigger contribution of uncorrelated noise). Nonetheless, the

Cauchy-Schwarz inequality is violated by more than 3 standard deviations,

as shown in Table 5.1.

∆td 320 ns 1µs

g
(2)
swe,swe 1.0± 0.4 1.1± 0.2

g
(2)
i,i 1.32± 0.04 1.14± 0.02

g
(2)
swe,i 6.1± 0.7 3.1± 0.3

R 28± 12 8.3± 2.3

Table 5.1: Second-order auto- and cross-correlation values of idler and retrieved
signal photons as obtained from the experimental histogram when considering
different coincidence windows. The corresponding Cauchy-Schwarz parameters R

are also reported.

The confidence level for the measured Cauchy-Schwarz inequality violation,

i.e. for observing a non-classical correlation between the telecom heralding

photon and the single SW stored in the crystal, is 98.8 % if we consider a

window ∆td = 320 ns. If a larger coincidence window is considered, ∆td =

1µs, the R value is reduced, but the confidence level for the demonstration

of non-classical correlation rises up to 99.92 %.

63



Chapter 5. Spin-wave storage of heralded single photons

Figure 5.8: (a) Scheme representing the analysis of the cross-correlation mea-
surement to evidence the multimodality. Both idler and retrieved signal detection
windows are divided into many intervals of 640 ns. The correlation is calculated
between the different intervals. (b) Cross-correlation value between idler and re-
trieved signal photons, each of them measured in different temporal intervals.

The g
(2)
swe,i exceeds the classical threshold only for windows separated by the total

storage time T = 13.3µs (same # window in both idler and signal). (c) Cross-
correlation value between the idler photons and the retrieved signal photons (full
circles) and the coincidence counts in the SW echo (empty squares) as a function
of the detection window for the idler photons (considering the full signal list). The
classical threshold is also reported as a horizontal line. The integration time for
this measurement is 38.5 h. The error bars are calculated considering Poissonian

statistics.

5.4.2 Temporal multimodality

The main advantage of the full AFC protocol is the multimode storage.

In our case we show the possibility to store multiple distinguishable tem-

poral modes, while maintaining their coherence and quantum correlation

[68]. This ability is crucial for applications in quantum information pro-

tocols, e.g. to enable temporally multiplexed quantum repeater protocols

with high communication speed [19] and storage of time-bin qubits robust

against decoherence in optical fibers. To test this aspect, we perform ex-

periments with detection gates much longer than the photons duration.

We divide both the idler and the retrieved signal detection windows into

many temporal modes of width 640 ns (longer than what considered in

the former analyses in order to have better statistics), as sketched in fig.

5.8(a). We then check that we have non-classical correlations between

modes separated by the total storage time T = Ts + τ = 13.3µs and clas-

sical correlations between modes separated by T 6= 13.3µs, as shown in

fig. 5.8(b). Contrarily to other temporally multimode storage protocols
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[65, 152, 59], in the full AFC protocol the total storage time is maintained

for the different temporal modes (see sec. 3.3). With ∆td = 640 ns, con-

taining the 94 % of the coincidence peak (as shown in appendix A.3), we

confirm non-classical storage of 7 temporal modes (each interval of fig.

5.8(b)). However, considering ∆td = 320 ns, which still contains the 80 %

of the SW echo, a 4.5µs-wide gate can accommodate up to 14 independent

temporal modes.

To additionally demonstrate that the multimode capacity does not imply

any increase of the noise, we compute g
(2)
swe,i for idler gate windows varying

from 320 ns to 4.5µs, as shown in fig. 5.8(c) (full circles) together with

the coincidence counts measured in the center peak for each window size

(empty squares). As expected, the latter increases with increasing idler

gate window but the g
(2)
swe,i value remains constant, within the error bar,

and well above the classical bound over the whole range.

5.4.3 Different storage times

Finally, to illustrate the ability to read-out the stored spin wave on de-

mand, we perform storage experiments at different SW storage times. For

these measurements, we implement a semi-conditional storage sequence in

order to obtain good statistics with shorter integration time.

Ts+ 

ti ts

Period

ts

Heralded Storage Non-Heralded Trials

x15

ti

CP1 CP2

SPDC

Pump

Figure 5.9: Semi-conditional sequence: storage of single photons conditioned on
the detection of the heralding photon. After each conditional storage we perform
15 other unconditional storage trials. The blue line shows the voltage sent to the

AOM in front of the pump, thus the switching on and off of the pump laser.

In this sequence, sketched in fig. 5.9, after the preparation of the memory

we open the idler gate and continuously check for heralding events (every

80 ns). Each time that we detect an idler photon we close the gate of
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the telecom detector, we switch off the SPDC pump (for 40µs), and we

start the SW storage cycle. As for the unconditional case, after the second

control pulse CP2, the signal gate is opened for a time ∆ts (see fig. 5.9)

to detect the retrieved photon. To estimate the noise, after the retrieval

we send 15 pairs of CPs (unconditional) with a period of 190µs.
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Figure 5.10: (a) Cross-correlation measurement for a spin wave storage Ts =
6µs, using the semi-conditional sequence: the bar at 0, in dark blue, represents
the sum of the coincidences in a 320 ns window placed τ + Ts = 13.3µs after the
heralding photon. The other bins represent coincidences (for the same coincidence
window size and position) between the heralding and signal detections in the
following 15 storage trials, the green line being the average value and the green
shaded area the standard deviation. (b) Cross-correlation measurement of the
noise using the semi-conditional sequence, as (a) but blocking the signal photons

in front of the quantum memory.

We calculate the g
(2)
swe,i, as in the unconditional sequence (sec. 5.4). The un-

correlated noise is estimated from the average of the coincidences in the fol-

lowing 15 storage trials. The resulting coincidence histogram is reported in

fig. 5.10(a), to be compared with the unconditional coincidence histogram

shown in fig. 5.7(a). The g
(2)
swe,i for the semi-conditional measurement is

5.0 ± 0.3. Note that in the same conditions (pump power and storage

time), the semi-conditional sequence provides a slightly lower g
(2)
swe,i value,

mainly due to the higher noise floor, (2.0±0.1)×10−3, with respect to the

unconditional sequence ((1.3± 0.1)× 10−3 photons per storage trial). We

attribute this result to the fact that the number of control pulse pairs per

comb is larger in the unconditional sequence. This probably contributes

to a further emptying of the spin storage state. We also repeated the same

measurement while blocking the signal photons before the quantum mem-

ory with a beam block. In this way we can measure the cross-correlation of

the noise, which is g
(2)
n,i (320 ns) = 1.1±0.3 (g

(2)
n,i (3µs) = 1.0±0.1), as shown

in fig. 5.10(b). As previously discussed, the biggest contribution to the

signal unconditional autocorrelation is given by the noise (see sec. 5.4) and

66



Chapter 5. Spin-wave storage of heralded single photons

that this is not bunched. Thus, any modification in the measurement that

increases the noise (e.g. the use of the semi-conditional sequence), would

only further approach the autocorrelation to the value of 1, thus lower-

ing the classical threshold. For simplicity we will consider the measured

unconditional autocorrelation of the signal.
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Figure 5.11: (a) Spin-wave storage efficiency as a function of the storage time
Ts. The solid line is a fit of the experimental data taking into account a Gaussian
inhomogeneous broadening of the spin state. The spin inhomogeneous broadening

extracted from the fit is γinh = (20±3) kHz. (b) g
(2)
swe,i(320 ns) value as a function

of the storage time. The classical threshold is reported as horizontal line. In both
panels, the error bars are calculated considering Poissonian statistics and the

circled data points refer to the measurement reported in fig. 5.10.

This sequence has been employed to measure g
(2)
swe,i for different Ts. The

storage and retrieval efficiencies, measured dividing the counts in the swe

by the estimated input before the memory, are reported in fig. 5.11(a). A

Gaussian fit, blue line, accounts for the inhomogeneous broadening of the

spin-state (see section 3.3.1). As a fitting parameter we obtain the spin

inhomogeneous linewidth γinh = (20 ± 3) kHz, in good agreement with

what was measured in different experiments on the same crystal [24, 137].

This further confirms that the photons are stored as spin waves. The

measured second-order cross-correlation function g
(2)
swe,i for increasing SW

storage times Ts is shown in panel (b) of fig. 5.11. The red dashed curve

is the expected behaviour for the SNR. It is calculated by considering

the Gaussian fit of the signal decay (solid curve in panel (a)), normal-

ized by the source heralding efficiency ηH and the average noise floor of

(1.9 ± 0.2) × 10−3 photons per trial (averaged over the different Ts). We

measure non-classical correlations between the idler and the retrieved sig-

nal photons up to a total storage time T = τ + Ts = 32.3µs. Note that,
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while we measure the Cauchy-Schwarz parameter R for T = 13.3µs, to as-

sess the non-classicality for longer storage times we make the assumption

that the retrieved signal autocorrelation does not change with the storage

time. This is a conservative estimate, since the g
(2)
swe,swe value is mainly

determined by the noise in the read-out, that we verify to be constant over

the whole range of storage times investigated. Under this hypothesis, the

Cauchy-Schwarz inequality is violated at T = 32.3µs with a confidence of

94 % for ∆td = 320 ns.

5.5 Discussion and conclusion

We have reported the first demonstration of quantum storage of heralded

single photons in an on-demand solid state quantum memory. We have

shown that the non-classical correlations between the heralding and the

stored photons are maintained after the retrieval, thus demonstrating non-

classical correlations between single telecom photons and single collective

spin excitations in a solid. Finally we showed that the full atomic fre-

quency comb protocol employed allows storing single photons in multiple

independent temporal modes. These results represent a fundamental step

towards the implementation of quantum communication networks where

solid state quantum memories are interfaced with the current fiber net-

works operating in the telecom window [19].

The demonstrated quantum correlation between a telecom photon and a

spin wave in a solid is an essential resource to generate entanglement be-

tween remote solid state quantum memories [19]. The measured value of

g
(2)
swe,i after spin wave storage is currently limited by the signal-to-noise

ratio of the retrieved photon, which is in turn mostly limited by the low

storage and retrieval efficiency. This could be greatly improved by us-

ing a higher optical depth [65] with higher quality combs, or crystals in

impedance matched cavities [76, 153]. The storage time is currently limited

by the spin inhomogeneous broadening and could be increased using spin-

echo and dynamical decoupling techniques [90], with prospect for achieving

values up to one minute [72] in our crystal, while even longer storage times

(of order of hours) may be available in Eu3+:Y2SiO5 [154]. Finally our

experiment could be extended to the storage of entangled qubits, e.g. in

time-bin [24].
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Chapter 6

Integrated optical memory:

Type II waveguide

In this chapter I report on the first realization of an integrated optical

memory for light based on a laser-written waveguide in a rare-earth doped

crystal. This project was done in collaboration with Dr. Roberto Osellame

and Dr. Giacomo Corrielli of Politecnico di Milano. The waveguides were

fabricated by them in a Pr3+:Y2SiO5 crystal using femtosecond laser mi-

cromachining. The guiding properties were characterized mostly in their

lab, while we performed optical characterization and storage experiments.

We demonstrated that the waveguide inscription does not affect the co-

herence properties of the material and that the light confinement in the

waveguide increases the interaction with the active ions by a factor of 6.

We also demonstrated that, analogously to the bulk crystals, we can oper-

ate the optical pumping protocols necessary to prepare the population in

atomic frequency combs, that we used to demonstrate light storage both

in the excited and in the spin state of praseodymium ions. These results

represent the first realization of laser written waveguides in a Pr3+:Y2SiO5

crystal and the first implementation of an integrated on-demand spin-wave

optical memory, opening new perspectives for integrated quantum memo-

ries.

Most of the following results are published in Phys. Rev. Applied [137],

selected as editor suggestion. The content of this chapter is mostly taken

from the paper. Some unpublished measurements taken on new waveguides

type II fabricated in a different sample are reported at the end of the

chapter.
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6.1 Introduction

In order to progress towards large scale quantum information architectures

involving several quantum memories (QMs), it is important to rely on de-

vices that can be easily duplicated and integrated. This would facilitate the

scalability and the realization of complex optical circuitry involving QMs.

Furthermore, the integration of QMs with other required devices, such as

quantum light sources and single photon detectors, would be greatly sim-

plified. The possibility to write matrices of waveguides in the same sample

would allow easy and stable access to spatially multiplexed QMs. Finally,

the tight light confinement achieved in waveguide structures would lead to

a strong enhancement of the light matter interaction. Solid state systems

are well suited for the exploration of integrated QMs. Among them, rare-

earth doped solids showed promising properties for QM applications with

bulk crystals [17, 15].

In the first chapter, sec. 1.2.1.2, I report a detailed state of the art for inte-

grated REI-based memories. The different examples discussed follow two

approaches: either integrating REIs in already available guiding systems

[80, 81, 23, 82, 39, 84, 85] or fabricating waveguides in crystals already

used for demonstrating bulk QMs [86, 91, 87].

In this chapter, following the second approach, we propose an alternative

way to fabricate waveguides in Pr3+:Y2SiO5 using femtosecond laser mi-

cromachining (FLM), where the active ions are directly coupled to the

light. FLM demonstrated in the past two decades to be a very pow-

erful technology for the direct inscription of high quality optical waveg-

uides in the bulk of both amorphous and crystalline transparent substrates

[155, 156, 157, 158]. Several complex integrated photonic devices have

been developed with this technique, ranging from all-optical routers [159]

and power dividers [160], to modulators [161], and frequency converters

[162, 163]. Moreover, it has been shown that laser written waveguide

circuits in glass are suitable for supporting the propagation of photonic

qubits [164], and represent a promising platform for the development of

the rapidly growing field of integrated quantum photonics [165, 166, 167].

The class of materials where waveguide writing with FLM has been demon-

strated includes several rare-earth doped crystals, e.g. Nd:YAG, Yb:YAG,

Nd:YVO4 , and Pr:YLF among others, with applications mainly oriented
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towards the realization of integrated laser sources [168, 169, 170, 171].

FLM in Pr3+:Y2SiO5 crystals was never reported in the literature before,

and it allows us to take advantage of the direct access to the active ions as

well as profiting of the exceptional performances as light storage medium.

6.2 Fabrication and experimental setup

Figure 6.1: (a) Microscope picture of the waveguide cross section. The distance
between the damage tracks is 25 µm. The red-dashed ellipse indicates the e−2

contour of the guided mode. Scale bar is 15 µm. (b) CCD-acquired near-field
intensity profile of the guided mode. Scale bar is 15 µm. (c),(d) Normalized
intensity profiles of the waveguide mode along the x and y sections indicated
in panel (b). The resulting full widths at half maximum (FWHM) are ∆x =
11.3µm and ∆y = 8.6µm (green solid level). The measured e−2 diameters are

τx = 18.5µm and τy = 15.8µm (red dashed level).

The substrate used is a Pr3+:Y2SiO5 bulk crystal (Scientific Material),

10 mm-long (along the crystal b-axis) and with a concentration of active

ions of 0.05 %. Optical waveguides are fabricated by FLM adopting the so-

called type II configuration [115], where the fs-laser irradiation is used to

directly inscribe into the substrate two closely spaced damage tracks, where

the material locally expands and becomes amorphous. This gives rise to

the formation of a stress field in their proximity, which, in turn, causes a

material refractive index alteration. By tailoring properly the irradiation

parameters and geometry, it is possible to obtain a light guiding region with

a positive refractive index change localized between the two tracks. It is

worth highlighting that in type II waveguides the core region (where most

of the light remains confined) is only marginally affected by the fabrication

process, hence preserving all its bulk properties. Single mode waveguides

for 606 nm light have been fabricated with this method by inscribing pairs

of damage tracks with a reciprocal distance of 25 µm and buried 100 µm

beneath the sample top surface. Figure 6.1(a) shows a microscope picture

of the waveguide cross section, in which the two damages are clearly visible.
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The mode supported by the waveguide, when it is coupled with 630 nm

light polarized parallel to the Y2SiO5 crystalline D2-axis, is reported in

fig. 6.1(b). From the horizontal and vertical intensity profiles, shown in

panels (c) and (d), respectively, we estimate the full width at half maximum

(FWHM) of the guided mode to be ∆x = 11.3µm and ∆y = 8.6µm. This

analysis was performed in Milan. Before assembling the sample in our

setup, we measured the guided mode also in our lab for 606 nm light,

confirming the numbers measured in Milan (∆x = 11.4µm and ∆y =

8.5µm).

Figure 6.2: Sketch of the setup used for the measurements in Pr3+:Y2SiO5

waveguide. The preparation light, control pulses (CPs) and input pulses come
from the same beam. The Pr3+:Y2SiO5 crystal is placed in a cryostat at a
temperature <3 K. After an optical path of ∼ 1.8 m, the coupled light is split

and detected with a camera (CCD) or a detector.

A sketch of our setup is depicted in fig. 6.2. We use the same beam for

both memory preparation and input light pulses. As a consequence, we

only use one AOM (contrary to all the other experiments in this thesis, see

sec. 4.1). The coupling of the light into the waveguide is done by means of

an external 75 mm focal length lens assembled on a translation stage. The

final diameter (full width at half maximum) of the beam at the waveguide

input facet is 28.3µm. After the waveguide, the light is recollected with

a 100 mm focal length lens. After ∼ 1.8 m, the mode coming from the

waveguide is cleaned from the light scattered at the input facet with an

iris and is sent to a detection stage. The detection is implemented with a

CCD camera, for imaging and alignment, or with a photo-detector.

The measured transmission of the light through the optical waveguide

for different input powers (see Appendix B.2), called coupling efficiency,

is about C = 50 %. It includes coupling mode mismatch and waveguide

propagation loss. Fresnel losses at the waveguide input and output facets

are quenched by a specific anti-reflection coating. The resulting waveguides

support only one polarization mode (see Appendix B.2), parallel to the

D2-axis of the crystal, which interacts with Pr3+ ions in site 1 [172]. In
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a bulk crystal, light polarized perpendicularly to the D2-axis would only

weakly interact with the Pr3+ ions, thus experiencing a higher transmission

through the sample. In our case, as only the polarization along the D2-axis

is supported, we can confirm that the light is guided through the waveguide

by rotating the polarization of 90 ◦ and checking that the transmission

drops to 0 (see Appendix B.2).

6.3 Optical measurements

Coherence time, T2
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Figure 6.3: (a) Pulse sequence for the two-pulse photon echo (TPE) experiment.
The three lines are measured traces for three different storage times, with an
arbitrary background added for clarity. The π/2− and π−pulse are cut because
we want to zoom in the echo. (b) Echo efficiency as a function of the time delay
2τ . The fitting of the experimental data to an exponential decay is also shown
(red solid line). For this set of data an optical coherence time T2 = 50± 11µs is
extrapolated. (c) Optical coherence times T2 measured in the waveguide (dots)

and in an equivalent bulk sample (squares) as a function of the quantity
OD×Pπ/2

tπ/2
.

The circled data point in panel (c) refers to the decay shown in panel (b).

To probe the coherence properties of the material after the waveguide fabri-

cation we perform two-pulse photon echo (TPE) experiments and measure

the optical coherence time T2. The used protocol is described in sec. 3.1.5.

The pulse sequence used is shown in fig. 6.3(a). When the time delay τ

between the π/2− and π− pulse is increased, the amplitude of the echo is

reduced due to the atomic decoherence. We estimate the optical coherence

time T2 from the decay of the echo (fig. 6.3(b)) by looking at the area of

the pulse. We measure T2 in single-class absorption features of different
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optical depths (ODs) on the 1/2g → 3/2e transition (prepared as explained

in sec. 3.2.2) and for different powers in the π/2−pulse, Pπ/2. To ensure

efficient population transfer even when decreasing the pulse power the du-

ration of the pulses tπ/2 is simultaneously increased, thus reducing their

spectral bandwidth. Figure 6.3(c) summarizes the T2 value obtained as a

function of the quantity
OD×Pπ/2

tπ/2
, which gives a measure of the excitation

intensity (purple circles). In fact, the more ions are excited the shorter are

the coherence times measured due to instantaneous spectral diffusion (see

sec. 2.2.2). It is worth noting that the obtained values agree with those

reported as black squares in fig. 6.3(c), measured when the laser beam

is shifted towards the center of the same Pr3+:Y2SiO5 crystal, far from

the laser-written waveguide, but maintaining the same focusing conditions.

This demonstrates that the micromachining procedure does not affect the

coherence properties of the material in the spatial mode where the light is

guided.

Rabi frequency, ΩR

The strength of the interaction between the light and the active ions is

associated to the Rabi frequency ΩR of the transition (see section 3.1).
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Figure 6.4: (a) Intensity of a long light pulse, P ≈ 2.6mW , transmitted by a
single class absorption feature with optical depth OD= 2.35. The Rabi frequency
ΩWG
R ≈ 2π × 1.3 MHz /

√
mW is estimated from the rising time tπ (indicated in

the figure with vertical solid lines). The gray line is the trace where oscillations
faster than 10MHz are removed. (b) Rabi frequency as a function of the pulse
power measured in the waveguide (circles) and in the bulk (squares). The circled

data point in panel (b) refers to the pulse reported in panel (a).
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We measure ΩR by means of optical nutation (see section 3.1.4): we send a

long pulse resonant to a single-class feature prepared in the optical transi-

tion 1/2g → 3/2e and we collect it at the photodiode after the transmission

through the optical waveguide (solid curve in fig. 6.4(a)). The population

inversion time, tπ is indicated with the solid vertical lines. We calculate

the Rabi frequency from tπ, as ΩR ·tπ = 5.1 (sec. 3.1.4). The Rabi frequen-

cies measured for different input light powers coupled in the waveguide are

shown in fig. 6.4(b) as a function of the square root of the input power.

For high P the pulse exhibits a fast oscillation with a frequency of about

10.2 MHz, i.e. the separation between the 1/2g and 3/2g ground states. We

attribute the oscillation to beatings between the two transitions 1/2g−3/2e

and 3/2g − 3/2e that might be simultaneously excited by the pulse due to

imperfect optical pumping. For this reason, in the present experiment the

Rabi frequency is calculated in a trace corrected from the fast oscillation

by removing frequencies higher than 10 MHz from the Fourier transform of

the trace (gray dashed curve in fig. 6.4(a)). The error bar is given by the

difference between ΩR calculated from the measured trace and from the

corrected one. For input powers up to about 2.6 mW the Rabi frequency

scales as the square root of the power, as expected, but at higher powers

the slope changes. This could be because the beatings between the two

involved transitions becomes too high to be neglected, making our analy-

sis too simplified. Alternatively, the deviation from the expected behavior

could be caused by a saturation effect, given by the limited spectral width

of the single-class absorptive feature prepared. When moving the beam

into the bulk (black squares), the Rabi frequency scales with
√
P with a

much lower slope than that observed in the waveguide (the maximum be-

ing Ωb
R ≈ 0.4 MHz at 15 mW). For input powers at which the behavior is

linear, the waveguide features light-ion interaction strengths higher than

in the bulk by about a factor 6, due to the efficient light confinement.

6.4 Light storage

Finally, we test the storage capabilities of our device by using the atomic

frequency comb protocol [68]. We first tailor a single class 1/2g → 3/2e

transition in the center of the inhomogeneous broadening of the Pr3+ (fol-

lowing the procedure explained in sec. 3.2.2). The AFC, differently from

the usual procedure (sec. 4.4), is prepared by burning the holes of the
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AFC one by one in the absorption feature of the transition. The state

Figure 6.5: Example of a single-class AFC with ∆ = 400 kHz.

3/2g, used for spin-wave (SW) storage, is kept empty during the prepara-

tion of the AFC by sending optical pulses resonant with the 3/2g → 3/2e

transition (see end of sec. 4.4). An example of AFC structure with peri-

odicity ∆ = 400 kHz is shown in fig. 6.5.

The results of the AFC storage experiments performed in this waveg-

uide are shown in fig. 6.6. A Gaussian light pulse (black dashed curve,

FWHM = 345ns) linearly polarized along the D2-axis of Y2SiO5 is first

sent through a spectral pit ∼ 18 MHz-wide, prepared in the Pr3+ absorp-

tion line, and used as a reference. The solid lines in fig. 6.6(a) correspond

to AFC echoes for different AFC spacings ∆. The internal storage and

retrieval efficiency achieved, calculated as the ratio between the AFC echo

and the input pulse transmitted through a transparency window, is re-

ported in fig. 6.6(b), the maximal being ηAFC = 14.6% for a storage time

of 1.5µs. The efficiency decreases when the storage time is increased due

to a reduction of comb quality and finesse [68, 107]. The AFC echo, ac-

tually, decays much faster than the coherence time T2 of the transition,

namely 7.1 µs as extracted from the fit of fig. 6.6(b) [27], due to inefficient

comb preparation. This is mostly due to a limited preparation time, as

the light is coupled into the waveguide only for half of the cryostat cycle.

This obliges us to increase the power during the AFC tailoring, that de-

grades the peaks due to power broadening. The device efficiency ηDevice,

considering our memory as a black box, is defined as the ratio between the

AFC echo and the input pulse before the crystal and it is reported in fig.

6.8(b) (purple dots). ηDevice can be calculated by multiplying ηAFC by the

waveguide transmission (50 %) and by e−d0 , where d0 is the background

absorption in the transparency window, due to imperfect optical pumping
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(in our case d0 = 1, see dashed line in fig. 6.5). We emphasize that the

waveguide coupling and background losses are not fundamental limitations

and can be significantly reduced, for the former by improving the mode

matching and, for the latter, by using shorter waveguides and/or optimized

optical pumping techniques1. At the end of this chapter, in section 6.5, we

show unpublished results of ηAFC, d0 and ηDevice taken in a shorter sample.
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Figure 6.6: AFC storage in the excited state. (a) Temporal experimental trace.
Dashed (dotted) line: 345 ns long input pulse transmitted through a spectral pit
polarized parallel (perpendicular) to the Y2SiO5 crystalline D2-axis, divided by
10 for clarity. Solid lines: AFC echoes for different comb spacings ∆. (b) Internal
AFC efficiencies ηAFC for the different storage times τ , extracted from the traces

in (a). The decay of ηAFC extracted from the fit (dashed line) is 7.1µs.

We then perform SW storage (as explained in sec. 3.3.1 and demonstrated

in Chapter 5). When a control pulse is applied before the rephasing of the

atomic excitations the AFC echo is partially suppressed, as the transfer

to the spin state 3/2g takes place (see fig. 6.7(a)). After a controllable

time Ts, a second control pulse is applied and the SW echo is retrieved

(solid light blue curve). The control pulses have a Gaussian waveform and

are frequency chirped by 1.5 MHz. To confirm that the input light field

is stored as a spin wave, we measure its decay when increasing the spin

storage time Ts (see fig. 6.7(b)). Assuming a Gaussian decay, we extract an

inhomogeneous spin-broadening of γinh = (23.6 ± 7.7) kHz (as explained

in sec. 3.3.1), compatible with those evaluated in different SW storage

experiments in bulk Pr3+:Y2SiO5 [88, 89, 24]. We observe an echo up to

a total storage time of ts = 1/∆ + Ts = 15 µs, more than two orders of

magnitude longer that previous AFC demonstrations (at the excited state)

in waveguides [82]. The maximal internal SW efficiency, calculated as the

ratio between the SW echo and the input pulse transmitted through a

transparency window, is ηSW = 2 %. Similarly to the storage in the excited

1In the present experiment the performances were probably limited also by unusual
impurities in the memory crystal (see sec. 6.5).
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state, waveguide and background loss have to be taken into account for

estimating the device efficiency. The transfer efficiency of each control

pulse is ηT = 50 % for a laser power P = 375µW. The transfer efficiency

is estimated from the formula ηSW = ηAFC × ηT 2 × ηC where ηC accounts

for the decoherence in the spin state and is evaluated from ηC = ηSW
ηSW (0) ,

where ηSW (0) is the storage efficiency at Ts = 0. It is worth noting that
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Figure 6.7: (a) Spin-wave storage. Dashed (dotted) black line: 260 ns long input
pulse transmitted through a spectral pit polarized parallel (perpendicular) to the
Y2SiO5 D2-axis, divided by 20 for clarity. Purple dashed line: AFC echo for a
storage time of τ = 2.5µs (in absence of control pulse). The internal efficiency is
ηAFC = 8.3%. The gray plain pulses are the control pulses, detected before the
sample. The light blue solid line is the output when control pulses are applied,
with a time difference of TS = 3.6µs: the AFC echo is partially suppressed and
a SW echo appears 6.1µs after the input. The internal efficiency of the SW echo
is 2 %. The additional noise due to the detector has been subtracted by the SW
storage trace. (b) Normalized SW echo intensities as a function of the storage time
TS . The experimental data (dots) are fitted to a Gaussian decay to account for the
inhomogeneous spin-broadening, from which we obtain γinh = (23.6± 7.7) kHz.

the transfer efficiencies of the CPs achieved in this waveguide sample (ηT =

50 %) are comparable to those obtained in the previous chapter with a bulk

sample of 5 mm (ηT = 73 %), but the laser power of the control beam is

more than 50 times lower. This result is promising in view of extending

the storage protocol to the quantum regime, where the suppression of the

noise induced by the control pulses is a crucial aspect [24, 90].

6.5 Type II new crystal

In 2016 our collaborators from Politecnico di Milano fabricated new type

II waveguides in a new sample (again Pr3+:Y2SiO5 with 0.05 % doping

concentration from Scientific Material). The fabrication parameters are

slightly different (reported in the Supplementary Material of [116]), op-

timized to maximize the coupling efficiency for single-mode waveguides
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with different mode-sizes. The length of the new sample is 3.7 mm. The

measured mode size of this new waveguide in FWHM is 8.5µm along the

horizontal direction and 7.7µm along the vertical one (the distance be-

tween the two damage tracks is 20µm).

A main difference regards the inhomogeneous broadening: the ions in the

1 cm sample, besides the usual inhomogeneous absorption that could be

fit by a Gaussian of about 5.5 GHz, show a second broader absorption of

about 25 GHz of FWHM (see Appendix B). This twofold contribution was

measured only in this specific sample, both in waveguide and in the bulk

crystal before the waveguides fabrication. The broader inhomogeneous

line could be explained by lutetium oxyorthosilicate (Lu2SiO5) impurities

in the Pr3+:Y2SiO5 sample [173].

In the new waveguides we measure the optical coherence time T2, the

background optical depth d0 and the AFC efficiency for different storage

times. Much lower instantaneous spectral diffusion seems to occur while

we measure the T2, having an average of T2 = 72 ± 5µs even for a high

number of atoms excited compared to the values of sec. 6.3 (see sec. B.4

in appendix).

To measure d0 we create a spectral pit, like in the previous measurements,

and we compare the transmitted signal through the waveguide with the

input measured before the waveguide (renormalized for the coupling effi-

ciency): the absorption into the spectral pit results in d0 = 0.27, much

lower than the d0 = 1 measured in the 1 cm sample.
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Figure 6.8: (a) AFC internal efficiencies. The filled purple points and line are
taken from fig. 6.6(b); the empty circles are the efficiencies measured in a new
sample 3.7 mm long. The AFC decay is 19.1µs for the new sample (7.1µs the old
one). (b) Same of panel (a) considering the d0 and coupling loss in the efficiency
calculation. The measured coupling efficiency was 50% for the 1 cm sample and
49% for the 3.7 mm one. (c) Example of a single-class AFC with ∆ = 250 kHz

measured in the new sample.
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Finally we prepare different AFC features for different storage times. We

use the technique described in sec. 4.4. After analyzing more carefully the

transmission through the waveguide along the cryostat cycle, we optimize

the pulse sequence for a faster preparation of a single-class feature, in order

to have more time for the creation of the AFC. The results obtained for

different storage times (again with classical light) are shown in fig. 6.8,

panels (a) and (b), as empty circles (the purple points being the results

for the 1 cm waveguide extracted from fig. 6.6): in panel (a) we show

the ηAFC, being the internal efficiency of the AFC, without considering

coupling efficiency and background absorption d0; in panel (b) the total

efficiency of the device, ηDevice, considering the memory as a black box

and dividing the measured echo by the input pulse measured before the

cryostat. A measured trace of an AFC prepared in the new sample for a

storage time τ = 4µs is shown in panel (c).

6.6 Conclusions

In conclusion, we demonstrated an optical memory based on laser written

waveguides in a Pr3+:Y2SiO5 crystal. We showed that the waveguide

fabrication does not alter the coherence properties of the bulk crystal,

and that the light confinement in the crystal increases the light-matter

interaction (as measured by the Rabi frequency) by a factor of 6 compared

to a bulk crystal with the same focusing. In addition, we reported a proof-

of-principle experiment of light storage using the full AFC protocol. We

stored strong light pulses both in the excited and ground states of Pr3+

ions. The latter represents the first demonstration of an integrated on-

demand spin-wave memory. We also show preliminary results on a new

sample where we could perform better AFC preparation. These results

show that integrated optical memories can be realized using laser written

waveguides, a versatile and widely used technique in integrated quantum

photonics. This opens new perspectives for the realization of long-lived

integrated spin-wave quantum memories.
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Storage of heralded single pho-

tons in a Type I waveguide

In this chapter we demonstrate quantum light storage on a different type

of laser-written waveguide, called type I. Differently from the waveguides

described in the previous chapter, in which two tracks were fabricated

along the crystal and light was guided between them, in type I waveg-

uides only one track is required and light is directly guided into it. The

new writing regime adopted allows us to attain waveguides with improved

confining capabilities compared to type II ones. Apart from the increased

light-matter interaction, this is important because the mode size of this

kind of waveguides is compatible with the one of single mode fibers at the

same wavelength. Despite the invasive fabrication process, the coherence

properties of this waveguides are maintained to a high extent. Although

only in the excited state and for pre-programmed storage times, we demon-

strate storage times longer than previous realizations with single photons

in integrated quantum memories, achieving storage efficiencies comparable

to those observed in bulk samples. Our system promises to effectively ful-

fil the requirements for efficient and scalable integrated quantum storage

devices.

The investigated type I waveguides were fabricated by our collaborators

Dr. Roberto Osellame and Dr. Giacomo Corrielli at Politecnico di Milano.

There they analysed the guiding properties of different type I and type II

waveguides fabricated in the same sample. The characterization of the

coherence of the ions in the new type II waveguides is reported at the end

of the last chapter, together with the demonstration of storage (sec. 6.5).
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The results of this chapter are published in Optica [116], and the photo

of our waveguide was selected as the Cover of the same issue of the Jour-

nal. The content of this chapter is mostly taken from the paper. Some

unpublished data are present at the end of the chapter, where we report

on a new setup that we used to increase the preparation time of the AFC.

Thanks to it, we could increase the time for the preparation of the AFC,

reducing the power used, and we could show a significant increase of the

storage time. This improvement opened the way to the realization of the

experiment reported in the next chapter.

7.1 Introduction

We showed in the previous chapter that optical channel waveguides can be

fabricated in the bulk of crystalline substrates by femtosecond laser micro-

machining (FLM). Another possibility, using the same technique, consists

in adopting a different writing regime and fabricating directly the waveg-

uide core. This is a substantially different type of waveguide, called type I.

In this case, a much lower energy fluence is required for a positive refrac-

tive index change at the irradiated material volume. Identifying a process-

ing window for fabricating type II waveguides is relatively simple, in fact

they have been demonstrated in numerous different materials, including

rare-earth doped crystals, mainly for integrated laser source applications

[174, 175, 176]. On the contrary, the fabrication of type I waveguides in

crystalline substrates is a very challenging task, since it requires finding

a very narrow window of processing parameters, if any. So far, this fab-

rication regime has been demonstrated only in a very limited number of

cases [177, 178, 179], including lithium niobate [180, 162, 181], potassium

dihydrogen phosphate (KDP) [182] and polycrystalline matrices [183, 184].

We report on the realization of type I waveguides in a Pr3+:Y2SiO5 crystal.

A characterization of the light guiding properties at 633 nm was performed

in Politecnico di Milano by Dr. Giacomo Corrielli. The small dimensions

of the waveguide modes guarantee the compatibility with optical fibers

and a significant enhancement of the light-matter interaction. Moreover,

spectroscopic investigations reveal that the fabrication does not affect the

measured optical properties of Pr3+ ions in the light guiding region. Fi-

nally, to assess the potential of our new platform as quantum memory,
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we implement quantum storage of heralded single photons. The achieved

storage times are 100 times longer than in previous experiments with single

photons in waveguides [23, 83].

7.2 A new waveguide writing regime in Pr3+:Y2SiO5

Fabrication of type I waveguides

Type I waveguides have been directly written by FLM in the volume of a

3.7 mm long Pr3+:Y2SiO5 crystal with a dopant concentration of 0.05%,

100 µm below the sample top surface. The waveguide was fabricated such

that only light polarized along the crystal D2 axis is guided. The refractive

index change of the core with respect to the substrate was estimated nu-

merically from the guided mode profile (according to the method described

in ref. [185]) as ∆n ≈ 1.6×10−3. As type I waveguides in crystals are often

thermally unstable [181], it is worth mentioning that no visible degrada-

tion of our type I waveguides in Pr3+:Y2SiO5 was observed, after several

months of exposure to normal ambient and cryogenic conditions. More

details about the fabrication of the waveguides can be found in Appendix

C.

The physical mechanisms that contribute to inducing a type I waveguide in

crystals strongly depend on the specific material considered, encompassing

the formation of lattice defects and a local change in the material polar-

izability. Understanding their relative weight is a difficult task. Detailed

studies performed on type I waveguides written in LiNbO3 and Nd:YCOB

crystals showed that the positive refractive index change in these materi-

als results mainly from a weak lattice distortion and partial ion migration

effects taking place at the irradiated area [180, 178]. Such modifications,

typically observed in a regime close to the material processing threshold,

essentially preserve the bulk properties of the crystal, as demonstrated

for type I waveguides in LiNbO3 [162]. Regarding type I waveguides in

Pr3+:Y2SiO5, a fundamental explanation of the origin of the positive in-

dex change induced by ultrafast laser irradiation is still unknown.
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Benchmarking type I vs. type II waveguides

Our collaborators in Milan fabricated in the same sample different type

II and type I waveguides and characterized them experimentally. All the

details about the fabrications and measurements can be found in the Sup-

plemental Material of the paper [28].
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Figure 7.1: (a) Optical microscope image of the waveguide transverse cross
section (top row) and guided mode intensity profile (bottom row) of all fabricated
waveguides. The numbers above the figures specify the separation between the
laser tracks in type II waveguides. The scale-bar is 10 µm. (b) Insertion losses vs
FWHM mode diameter in horizontal direction for type I (blue circle) and type II
(black squares) waveguides. (c) Microscope picture of the longitudinal profile of a
type I (top) and a type II waveguide with d = 10 µm (bottom). The scale-bar is
20 µm. (d) Bending losses as a function of the radius of curvature for type I (blue
circles) and type II (black squares) waveguides. Dashed lines are best exponential
fits of experimental data [186]. Error-bars in plots (b) and (d) are smaller than

the data markers.

Five type II waveguides have been compared, with different separation d

between the tracks forming the cladding, ranging from 10 µm to 20 µm.

Light at 633 nm from a He-Ne source, polarized along the D2 crystal axis,

was coupled into a type I and the different type II waveguides. The nor-

malized mode intensity profile of all waveguides, measured with a CCD

camera, is reported in figure 7.1(a) together with a microscope picture of
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their transverse cross sections. In addition, the total insertion losses (IL),

defined as the ratio between the light power measured before and after the

waveguide, was measured for every waveguide. The results of this mea-

surement as a function of the mode diameter (horizontal in FWHM) are

shown in fig. 7.1(b). It is clearly visible that for the type II waveguides

(black squares) the reduction of d reduces the mode size, but, at the same

time, leads to a dramatic increase of IL. On the other hand, the type

I waveguide (blue circle) supports the smallest mode (3.1 µm × 5.9 µm

FWHM diameters) and, simultaneously, exhibits the lowest value of IL

among all waveguides analyzed. This fact is readily explained by looking

at the waveguides longitudinal profiles shown in fig. 7.1(c): the type I

waveguide features a smooth and very uniform profile along the propaga-

tion direction, while the side tracks of type II waveguides present a rough

and less uniform profile that increases light scattering, especially for small

values of d. A more detailed analysis of the different contributions to the

waveguide IL can be found in the Supplemental Material of the paper [28].

As a further comparison, the measured bending losses (BL) for the two

types of waveguide, caused by the coupling of light to leaking modes during

the propagation in a curved guided path, are shown in fig. 7.1(d). The

curved waveguides were fabricated with constant radius of curvature RC .

This measurement was performed for values of RC of 30 mm, 50 mm,

and 90 mm, both on the type I and on type II waveguides with d =

20 µm, fabricated in a dedicated sample (total sample length = 9 mm). As

expected, the values of BL increase for shorter RC for both types. However,

in type I waveguides the measured BL reach particularly low values, and

become almost negligible for RC >90 mm. This is to be expected, as BL

decreases for increasing confinement of the guided light [186].

This experimental analysis allows us to conclude that type I waveguides in

Pr3+:Y2SiO5 show better guiding performances than their type II counter-

parts, both in terms of waveguide losses and in terms of light confinement.

Interestingly, the measured values of BL for type I waveguides are com-

patible with the fabrication of complex integrated devices, i.e. directional

couplers or waveguide arrays, as bending radii in the order of tens of mm

allow for a flexible engineering of evanescent waveguide coupling, even in

samples with a limited length.
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7.3 Experimental setup

Fig. 7.2 shows the experimental setup for the spectroscopy and single

photon storage measurements, presented in the next paragraphs.

SPD

Memory

Preparation

(input 1)

Signal

(input 2) 75 mm 50 mm

~2 m

BS

Etalon

BPF

Signal

Idler
DMFCav

CLICKSPD

Figure 7.2: Setup: a pump laser at 426 nm (blue beam) is shined to a
periodically-poled lithium niobate (PPLN) crystal in a bow-tie cavity. Photon
pairs are generated by spontaneous parametric down-conversion and separated
with a dichroic mirror (DM). The idler photon at 1436 nm (brown beam), is sent
to a filter cavity (FCav). The signal photon at 606 nm (orange beam) passes
through a band-pass filter (BPF) and an etalon and enters the input 2 of a fiber
beam-splitter (BS). The signal photon and the preparation light (from input 1 of
the BS) emerging from one output of the BS are coupled into the Pr3+:Y2SiO5

waveguide.

The preparation pulse sequence, as usual, is produced modulating our CW

laser at 606 nm with AOMs in double-pass configuration (see sec. 4.1).

The preparation light is coupled into one input port of a 50:50 fiber beam

splitter (BS, input 1 in fig. 7.2). The signal (either classical pulses to

probe the crystal or heralded single photons to be stored) is coupled into

the second input port (input 2). One output port of the fiber BS is sent

to an independent optical table (yellow rectangle) where the Pr3+:Y2SiO5

crystal is maintained at 2.8 K, while the second output is used as reference

to monitor the pulses that we send into the waveguide. The light is coupled

into the waveguide using a 75 mm lens, which focuses the beam to a waist

< 10µm at the input facet of the crystal. The outcoming light from the

waveguide is collected with a 50 mm lens and sent to a detection stage,

after a path of about 2 m. The detection is implemented with a CCD

camera for imaging and alignment, with a photo-detector for protocols with

classical light, or with a single photon detector (SPD) for experiments with
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single photons. For autocorrelation measurements a Hanbury Brown-Twiss

setup is assembled with fiber beam splitters and additional SPDs. All

the experiments are synchronized with the cycle of the cryostat (1.4 Hz).

Because of vibrations, the light is efficiently coupled in the waveguide only

for less than 300 ms in each cycle (see Appendix C.2.1).

Our heralded single photons are generated with a new generation photon-

pair source build in our group by the PhD student Dario Lago Rivera (see

sec. 4.3.2 for more details). It is based on cavity-enhanced type I sponta-

neous parametric down-conversion (CSPDC) (fig. 7.2). The bow-tie cavity

(BTC), pumped with a 426 nm laser, is in resonance both with the signal

photon at 606 nm and its heralding photon at 1436 nm (idler). Due to the

clustering effect of the BTC the signal and idler photons are distributed

along many spectral modes (an analisys of the spectrum will be performed

in the next chapter). The idler photons pass through a home-made Fabry-

Perot filter cavity (FCav in fig. 7.2, linewidth 80 MHz, FSR=17 GHz),

to guarantee single-spectral-mode heralding. They are then coupled into a

single mode fiber to an SPD. The 606 nm photons, after passing through an

etalon filter, are coupled to a single-mode polarization-maintaining (PM)

fiber, and then to the input 2 of the fiber BS. The heralding efficiency of

the SPDC source is ηSPDC
H ∼ 25% after the PM fiber and ηWG

H ∼ 7% in

front of the waveguide. The loss is due to the BS and to mode-diameter

mismatch between the PM fiber and the fiber BS, and could be readily

reduced by using a fiber switch.

The photons generated by this source are 1.8 MHz broad (narrower than

those generated by the previous source, see Chapter 5). The overlap of

these photons with our AFC (about 4.6 MHz) is estimated to be about

78 % (see inset of fig. 7.7(a)).

7.4 Spectroscopic and coherence measurements

The inhomogeneous broadening of the transition of Pr3+ at 606 nm in the

waveguide has been estimated from the transmission of an optical pulse

through the crystal while tuning the laser frequency. The full-width at

half maximum (FWHM) is ∼ 9 GHz in optical depth (OD) (see Appendix

B.2), in good agreement with bulk samples with similar ion concentrations.

Moreover it is important to note that the central frequency did not shift
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with respect to the bulk. The hyperfine splitting of the levels (Appendix

C.3.1) and the oscillator strength of the transitions (Appendix C.3.2), mea-

sured following the spectral hole burning experiments described in section

3.2, are also consistent with those measured in the bulk [135]. The un-

altered spectroscopic properties confirm that the fabrication process does

not substantially affect the crystalline structure of the irradiated region.

For quantum memory application, the coherence of the ions in the waveg-

uide should be also maintained. Coherence and lifetime of the optical

transition are measured by means of, respectively, two-pulse (TPE) [134]

and three-pulse stimulated photon echo (SPE) [187] experiments.

Coherence time, T2

The TPE technique is explained in sec. 3.1.5: two pulses separated by

a time τ2 are sent in resonance with the single-class transition |g〉-|e〉.
Increasing τ2 results in a decay of the two-pulse echo, TPE (fig. 7.3(a)).

From the exponential decay of the echo intensity with increasing time

τ2 (fig. 7.3(a)) we extract the coherence time of the Pr3+ ions in the

waveguide.
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Figure 7.3: (a) Decay in the echo intensity for a two-photon echo pulse mea-
surement. The black solid line is the fit to an exponential decay and the dotted
lines indicate the error. The inset shows the temporal sequence used. The time
interval between the first and the second pulse is called τ2 (solid arrow). (b) Ex-
amples of heterodyne detected TPE at different times τ2. The solid orange line
is the experimental signal and the dotted black line the sinusoidal fit. The echo

intensity is proportional to the square of the oscillation amplitude.

Usually we measure TPE with direct detection (as in Chapter 6). To keep

the power of the π/2 low and thus to limit the dephasing caused by in-

stantaneous spectral diffusion effects (sec. 2.2.2), the T2 of fig. 7.3(a) is

measured with heterodyne detection, i.e. magnifying the TPE by sending
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a third pulse, detuned by 10 MHz, in the time mode where the TPE is

expected. A typical pulse sequence for the heterodyne detection of the

TPE is shown in the inset of fig. 7.3(a). The echo is detected in form of

oscillations on a probe pulse 10 MHz detuned with respect to the excita-

tion and rephasing pulses. Fig. 7.3(b) represents examples of heterodyne

detected TPE at different storage times. The echo intensity is calculated

as the square of the envelope of these oscillations. In our case, by probing a

single-class absorption feature at the 1/2g− 1/2e transition, we measure a

maximum coherence time T2 = 57±10µs. This is lower than the maximal

T2 measured in bulk samples or type II waveguides (see Chapter 6). We

note however that the T2 is affected by instantaneous spectral diffusion

and that higher values could in principle be achieved by decreasing the

average number of atoms excited (see section 6.3).

Lifetime, T1

To study the lifetime (T1) of the transition and slow dephasing mecha-

nisms, e.g. spectral diffusion (see sec. 2.2.2), we analyze the SPE. The

effect of two optical pulses on an inhomogeneous transition can be imag-

ined as the generation of a spectral grating in which the distance between

the peaks is the inverse of the temporal interval between the pulses (1/τ2).

If a third pulse is sent through this spectral grating it is diffracted, giving

rise to an echo after a time τ2, the SPE (fig. 7.4(b), a mathematical de-

scription can be found in [187]). During the time τ1 between the generation

of the spectral grating (second pulse) and the third pulse, atoms can fall

from |e〉 to |g〉 due to spontaneous emission or other irreversible relaxation

mechanisms. As a consequence, the optical contrast of the grating would

decrease, resulting in a lower SPE.

A typical output of a SPE experiment (measured with direct detection) is

shown in fig. 7.4(a) while panel (b) sketches the temporal sequence used.

To reduce the errorbar, we perform these measurements with a higher

excitation power than that used in the TPE measurement (i.e. interacting

with more ions), thus we expect the absolute value of T2 to be lower due to

instantaneous spectral diffusion. We measure the decay of the SPE with

τ2 for different values of τ1. By fitting these decays with exponentials, we

extract the expected areas of the SPE (τ1) for τ2 = 0, SPE (τ1; τ2 = 0)

(fig. 7.4(c)). The decay of SPE (τ1; τ2 = 0) directly depends on the lifetime
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Figure 7.4: (a) Area of the stimulated photon echo (SPE), in arbitrary units,
varying the times τ1 and τ2; (b) Temporal trace of the SPE process. The SPE
signal is highlighted by the orange area. The time interval between the second
and third pulse is called τ1 (dotted arrow); (c) Values of the SPE areas at τ2 = 0
(extracted from the exponential decays of the SPE areas over τ2) plotted as a
function of τ1. From the decay of the SPE vs τ1 (for τ2 = 0) we extract the
excited state lifetime of the ions, T1; (d) Homogeneous broadening of the optical
transition for increasing τ1. The values are extracted from the decays of the SPE
vs τ2 for different τ1 values. The black solid line is the value extracted from the

T2 measurement for τ1 = 0, the dashed lines indicating the error.

of the excited state |e〉, namely T1 = 118 ± 35µs. This value is lower

than that obtained from previous fluorescence measurements in a different

Pr3+:Y2SiO5 crystal (about 160µs [119]) but in good agreement with that

measured with SPE in the same bulk sample, T1 = 103± 11µs (measured

in the middle of the bulk crystal, focusing with an incoupling lens with

focal length of 20 cm). In presence of spectral diffusion, the ions could

experience frequency shifts induced by flips of the surrounding nuclear

spins. This would cause a slow broadening of the ions linewidth, Γhom,

for increasing τ1 [188]. However, as we can clearly see from fig. 7.4(d),

Γhom(τ1) = 1/ [π T2(τ1)] remains consistent over time with the value at

τ1 = 0 (solid line) (about 10 kHz), proving the absence of spectral diffusion

in the timescale and excitation power analyzed. The same trend is observed

in SPE measurements in the bulk crystal.

The T1 of the ions in the waveguide has been measured, at a later stage,
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with a fluorescence experiment (see sec. 3.1.6): after preparing a single-

class feature on the |g〉-|e〉 transition, we send a resonant optical pulse ex-

citing some of the atoms. From the exponential decay of the noise detected

after the pulse, which accounts for the decay of the excited population, we

extract a lifetime T1 = 142±11µs (see Appendix C.3.3). This value is close

to the value usually measured in bulk in our labs, T1 ∼ 160µs [119], but it

has never been measured in the present bulk sample. The reason why the

two measurement of T1 give different values is still under investigation.

Rabi frequency, ΩR

One of the advantages of optical waveguides is the enhanced light-ions in-

teraction due to the strong light confinement. As in the previous chapter,

we quantify the strength of this interaction measuring the Rabi frequency

ΩR of the optical transition by means of optical nutation (see section 3.1.4):

we prepare a single-class absorption feature on the ±1/2g − ±3/2e tran-

sition and measure the population inversion time tπ induced by a long

resonant probe pulse as in fig. 7.5(a). We calculate the Rabi frequency as

ΩRtπ = 5.1 (sec. 3.1.4) for several probe powers, P (orange filled points

in fig. 7.5(b)).
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Figure 7.5: (a) A long light pulse, P = 0.51mW, measured before the crystal
(dotted gray line) and after being transmitted by a single-class absorption feature
(solid orange trace). (b) Rabi frequency as a function of the pulse power measured
in the type I waveguide (filled orange circles), compared with the ΩR of fig. 6.4,
measured in a longer bulk sample (empty black squares) containing also a type
II waveguide (empty purple circles). The dashed lines are the linear fits to the
experimental data. The green solid line is the expected behavior for the type
I waveguide from the slope of the type II fit, scaled according to the different
diameters. The circled data point in panel (b) refers to the pulse in panel (a).
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We show in fig. 7.5(b), for comparison, the measured ΩR for different

P in a waveguide type II and in bulk (respectively purple empty circles

and black empty squares), from the previous chapter (see fig. 6.4). From

the linear fit of ΩR vs
√
P for the type I (orange dotted line), we extract

ΩR = 2π×1.75 MHz/
√

mW, i.e. an increase of 1.6 with respect to the type

II waveguide and almost one order of magnitude with respect to the bulk

crystal (maintaining the same optics). This result fully matches with the

expected increase due to the stronger light confinement (green solid line

below the fit), which has been calculated from the fit of the type II (purple

dotted line), renormalized for the different mode diameter in the waveguide

type I. Moreover this value agrees quite well with that calculated from the

dipole moment of the investigated transition (1.45× 10−32 C m [189]), i.e.

2π × 1.6 MHz/
√

mW. For this calculation we consider a Gaussian mode

with the average FWHM diameter measured at 606 nm with the same

setup used for the optical nutation measurements. For both simulations,

the measured diameters (4.5 µm and 7.6 µm in the horizontal and vertical

directions, respectively) are different than those quoted in fig. 7.1, being

the modes in fig. 7.1 calibrated in a different setup (i.e. with different

light wavelength, objective and CCD camera).

7.5 Storage of heralded single photons

Before storing the heralded signal photons, we analyse their non-classical

correlations. We quantify the non-classicality of the photon-pair corre-

lations measuring the normalized second-order cross-correlation function:

g
(2)
s,i (∆t) (see sec. 1.4.1). We build a coincidence histogram using the idler

detection as start and the signal photon as stop (inset in fig. 7.6(a)). The

g
(2)
s,i is extracted from the coincidence histogram. The measured g

(2)
s,i values

for a window ∆t = 400 ns for different pump powers are plotted in fig.

7.6a (empty orange circles). The highest value, g
(2)
s,i (400 ns) = 209 ± 9, is

achieved at the lowest measured pump power (P = 0.1 mW), and decreases

while increasing P, as expected for a two-mode squeezed state (sec. 1.4.1).

We demonstrate the quantum nature of the signal-idler correlations by

violating the Cauchy-Schwartz (CS) inequality. The classical bound is
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Figure 7.6: (a) Measured g
(2)
s,i , for different pump powers, with just the source

(empty light orange dots) and after the pit (full brown points). The inset rep-
resents the time-resolved signal-idler coincidence histogram with just the source:

the darker region is the window considered for the calculation of the g
(2)
s,i (400 ns)

and the black dashed line is the temporal fit of the biphoton correlation; (b, c)
Coincidences between signal photons splitted with a fiber BS, respectively be-
fore and after passing through a pit in the waveguide, sorted by the number of

heralding photons between pairs of contiguous signal counts.

given by the parameter R =
(g

(2)
s,i ) 2

g
(2)
s,s ·g

(2)
i,i

≤ 1, where g
(2)
s,s (g

(2)
i,i ) is the auto-

correlation of the signal (idler) photons (sec. 1.4.3). The measured auto-

correlations, using an integration window ∆t = 400 ns for comparison with

the g
(2)
s,i , are g

(2)
s,s (400 ns) = 1.051 ± 0.002 and g

(2)
i,i (400 ns) = 1.25 ± 0.03.

Using these values we find, for the lowest pump power, R = (3.3± 0.3)×
104, surpassing the classical bound by more than 10 standard deviations.

Even for the highest pump power (P = 2 mW), where the measured cross-

correlation is g
(2)
s,i (400 ns) = 13.8±0.3, we find R = 145±6, which violates

the CS inequality by more than 20 standard deviations, thanks to the

better statistics.

To demonstrate the single photon nature of our source we measure the

heralded auto-correlation of the signal photon, g
(2)
i:s,s(∆t) (sec. 1.4.4). This

can be extracted from the histogram of fig. 7.6(b), built like in ref. [151,

141]. We find g
(2)
i:s,s(400 ns) = 0.12 ± 0.01 for a pump power of 1.7 mW.

This value is considerably lower than the classical bound g
(2)
i:s,s ≥ 1 and

compatible with the single photon behavior (g
(2)
i:s,s ≤ 0.5) [190].
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Spectral pit

We then send the signal photons through the waveguide, where we hole-

burn a transparency window of ∼ 16 MHz (spectral pit of sec. 3.2.2, orange

line in the inset of fig. 7.7(a)). We measure the g
(2)
s,i vs pump power after

sending the signal photons through the pit (full brown circles in fig. 7.6(a)).

The correlations after the pit become remarkably higher because the crys-

tal acts as a spectral filter: the pit selects a single frequency mode while

all the others are absorbed by the Pr3+ ions spread over the whole inho-

mogeneously broadened absorption line [107, 142, 143] (before the crystal

there is only an etalon filtering the signal photons, while the idler photons

are filtered by the FCav). We find R = 524± 84 after the pit for the high-

est measured power, violating the CS inequality by more than 6 standard

deviations. As we do not have enough statistics to measure the uncondi-

tional autocorrelation of the signal photons after the pit, the R-value is

calculated by assuming g
(2)
s,s = 2. Note that this is a consevative choice, as

it increases the classical bound of the CS inequality. Finally, we measure

the g
(2)
i:s,s(∆t) of the signal photons after the pit : from the histogram of

fig. 7.6(c), we extract g
(2)
i:s,s(400 ns) = 0.06± 0.04 (P∼ 1.7 mW). We know

that the g
(2)
i:s,s is inversely proportional to g

(2)
s,i for two-mode squeezed states

and low pump powers [191]. This is verified in our measurement, as the

heralded auto-correlation is lower after the pit, where the cross-correlation

is higher. For a pump power of 1.7 mW, using g
(2)
s,s = 2 and the measured

value for g
(2)
i,i , we find g

(2) th
i:s,s = g

(2)
s,s · g(2)

i,i /g
(2)
s,i ∼ 0.06 which matches with

the measured heralded auto-correlation.

Storage with AFC

The sequence of optical pulses used to create a single-class AFC is very

similar to the one explained in section 4.4: after populating the 1/2g level

with a single class of ions (duration ∼ 80 ms), we send a series of pulses,

resonant with the 1/2g − 3/2e transition, whose Fourier transform is the

AFC that we want to create (duration ∼ 35 ms). The measurement is

performed in the remaining time (∼ 150 ms), resulting in a duty cycle

for the AFC storage of ∼ 21% (accounting for the duty cycle due to the

cryostat vibrations, see Appendix C.2.1). The generated feature, for a

storage time of 1.5µs, is plotted as a brown line in the inset of fig. 7.7(a),
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Figure 7.7: (a) Time-resolved histogram of the idler-signal coincidences for
signal photons passing through the pit (gray histogram) or the AFC for τ = 1.5µs
(orange histogram). The counts in the AFC are multiplied by 3. The darker

regions of the peaks show the windows considered for ηAFC and g
(2)
s,i calculations.

The black and brown dashed lines are the temporal decays of the correlations
(inset of fig. 7.6(a)), renormalized for losses and efficiencies after the pit and
the AFC, respectively. The shaded rectangle is the region in which the accidental
counts for the AFC echo are measured. The absorption profiles of the pit (orange)
and the comb (brown) are plotted in the inset, with the spectrum of the single
photons (black points and line, see section 4.3.2); (b) Internal storage efficiency
ηAFC at different storage times τ for single photons (full orange points, error
bars account for Poissonian statistics) and classical light (empty black circles); (c)

Cross-correlation values between idler photons and stored signal photons, g
(2)
AFC,i ,

for different τ . The dashed line is the classical upper bound,
√
g
(2)
s,s · g(2)i,i =

1.58± 0.02 (assuming g
(2)
s,s = 2).

together with the spectrum of the input photons (black line, see section

4.3.2). Thanks to the enhanced light-ions interaction, the maximum power

that we inject in the waveguide during the AFC creation is ∼ 100µW, i.e.

two orders of magnitude lower than what is usually necessary in bulk, in

agreement with the ΩR increase.

When a herald is detected, an AOM in front of the pump laser is closed

to reduce the noise coming from the source during the AFC echo retrieval

(position of the vertical line in fig. 7.7(a)). The minimum response time

of this gate is toff
P = 1.2µs, which limits our minimum storage time to
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τ = 1.5µs. For longer storage times, toff
P is delayed in order to maintain

τ − toff
P = 0.3µs. The AFC echo for a storage time τ = 1.5µs is shown in

fig. 7.7(a) (orange trace). The exponential fit of the biphoton temporal

decay, measured before the memory crystal (sec. 4.3.2, black dashed line

of the inset in fig. 7.6(a)), is plotted on top of the input (black dashed

line) and the AFC echo (brown dashed line), renormalized for the differ-

ent count-rates. Note that the linewidth of the photons, both after the

pit and emitted by the comb, remains similar, confirming that there is a

good match between the width of the comb and the spectral profile of the

photons.

We measure the coincidences between the idler photons and the signal

ones transmitted through the pit before and after each storage experi-

ment. We consider the average of the two as our reference input (gray

peak in fig. 7.7(a)) to account for fluctuations in power. We evaluate the

storage efficiency by integrating the counts of the histogram in a 400 ns

window centered at the AFC echo (dark orange region at about 1.5µs,

fig. 7.7(a)) divided by the counts inside a 400 ns window centered at the

input (dark gray region about 0µs, fig. 7.7(a)), the latter normalized by

the transmission through the pit (85%, see inset in fig. 7.7(a)). The re-

sulting efficiency is the internal efficiency of the process, ηAFC . The total

efficiency of our device, i.e. the ratio between the output signal and the

input signal before entering the waveguide, is calculated multiplying ηAFC

by the coupling efficiency into the waveguide (∼ 40%). We perform stor-

age experiments with an average pump power of 1.7 mW. The internal

efficiencies for different storage times are shown in fig. 7.7(b) (full orange

points). For comparison we measure the internal efficiency of our memory

with classical pulses (empty black circles in fig. 7.7(b)), using the same

comb preparation sequences, showing a good overlap between the quan-

tum and the classical regimes. The efficiency decrease for increasing τ is

fitted with an exponential decay, e−4/(T ∗2 ∆) [27], from which we extract the

effective coherence time of our storage protocol, T ∗2 = 8µs, much smaller

than the T2 (see section 7.4). This suggests that our storage time is at

the moment limited by technical issues and not yet by the coherence time

T2 of the Pr3+ in the waveguide. An important contribution is probably

given by instantaneous spectral diffusion and power broadening because,

due to the time limit imposed by the cryostat cycle, we implement the

optical pumping for the AFC preparation with relatively high power. The
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remaining mismatch between T ∗2 and T2 is likely due to the finite laser

linewidth. In section 7.7 we show an increase of storage time by a factor

of 2 given by a longer preparation cycle.

The g
(2)
AFC,i of the AFC echo is measured similarly to the one of the input:

we find ps,i integrating the counts in a window of 400 ns centered at the

AFC echo (the same region considered for ηAFC); ps · pi is measured in-

tegrating the accidentals coincidences after the AFC echo up to the last

stored noise count, toff
P + τ (light orange rectangle in fig. 7.7(a)), renor-

malized to a 400 ns window. Fig. 7.7(c) shows the g
(2)
AFC,i values for AFC

echoes measured at different τ . The cross-correlation increases after the

storage up to 61 ± 12 for a storage time of 1.5µs, with respect to 36 ± 3

after the pit. This could be explained by the presence of broadband noise

from the SPDC source, which is not in resonance with the inhomogeneous

absorption line of the Pr3+ ions. Such noise would not be present in the

temporal mode of the AFC echo, where the pump is gated off [107]. Af-

ter the AFC, the g
(2)
AFC,i decreases for long storage times. This happens

because, as ηAFC decreases, our signal-to-noise ratio becomes limited by

additional background noise. If we did not have any background noise, the

value of the g
(2)
AFC,i should remain constant for different τ , as the storage

efficiency would be the same for the AFC echo and for the stored noise.

Nevertheless, the g
(2)
AFC,i remains higher than the classical bound (orange

dashed line) for all the measured storage times up to τ = 5.5µs, for which

we violate the CS inequality with R = 34± 18 (above the classical bound

by almost 2 standard deviations), effectively demonstrating the longest

quantum storage in an integrated solid-state optical memory (100 times

longer than the previous demonstrations of single photon storage in waveg-

uides [23, 83]). Moreover, thanks to the convenient energy level scheme,

our system enables the full spin-wave AFC storage, thus giving access to

both longer storage times and on-demand read-out (sec. 3.3.1).

7.6 Spin-wave storage

For the quantum repeater application we want to demonstrate in our group

(section 1.2.2) we would need to store photons as spin-waves (SW), with

the possibility to retrieve them on-demand, after long storage times. Some
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preliminary analysis on SW storage with classical light in a type I waveg-

uide will be described below. Nevertheless, going to single photon level

would require a much longer and detailed analysis of the noise, as well as

higher storage and retrieval efficiencies.

A storage sequence is shown in fig. 7.8(a). The input pulse (black line) is

divided by 20 to better see the retrieved echoes. The AFC echo (orange

line) is retrieved after τ = 2.5µs with an internal efficiency of ηAFC = 2.8 %.

This is lower than what shown in fig. 7.7 because we have to keep the spin-

state empty during the preparation, loosing again time for the AFC gener-

ation. To perform SW storage we send two control pulses (CP1 and CP2,

gray shaded areas). CP1 maps the excitation into the spin-state. Then

the light can be retrieved on-demand by sending CP2 after a time Ts. The

brown trace shows a spin-wave echo retrieved after a time τ+Ts = 9µs

and with an efficiency ηSW = 0.6 %. Repeating this measurement for dif-

ferent Ts, we can study the decay of the spin-wave echo (brown points in

fig. 7.8(b)). From its fit to a Gaussian fit (black line) we exctract the

inhomogeneity of the spin-state (see section 3.3.1), being γinhom = 84± 5

kHz. This value is more than 3 times higher than the usual spin inho-

mogeneity measured in bulk (fig. 5.11(a)) and in type II waveguides (fig.

6.7(b)) and it causes a faster decay. Nonetheless, it should not represent

a fundamental limit to our storage time, as it could be compensated by

applying spin-echo rephasing techniques [192]. The spin-inhomogeneity

measured in the bulk of the same sample after the waveguides fabrication

is γinhom = 12 ± 1 kHz (see Appendix C.3.4). This value is about half of

that usually measured in bulk samples with similar ion concentration (we

measured ∼ 20 kHz in Chapter 5 and ∼ 24 kHz in Chapter 6). This is due

to a µ-metal shield placed around the crystal, which reduces the external

magnetic fields [193].

Unfortunately, the γinhom had not been measured in this sample before

the fabrication of the waveguide, so we can only give some tentative ex-

planation for the inconsistency. Surface effects seem unlikely, considering

that both type I and type II waveguides are fabricated at the same depth

(100µm below the crystal surface). So far, the most likely explanation

is that the sample where the type I waveguide were fabricated had been

obtained by cutting a bigger one, without proper annealing treatments.

Further investigations are being carried on at the time of writing.
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Figure 7.8: (a) Spin-wave storage. The black curve is the input optical pulse
(divided by 20 for clarity). The light orange line is the AFC echo (for τ = 2.5µs,
internal efficiency of ηAFC = 2.8%) in absence of control pulses. The gray plain
pulses are a sketch of the control pulses. The brown line is the spin-wave echo,
retrieved when control pulses are applied. The time difference between the control
pulses is TS = 5.5µs. The internal efficiency of the spin-wave echo is 0.6 %.
(b) Normalized spin-wave echo intensities as a function of the storage time TS .
The experimental data (dots) are fitted to a Gaussian decay to account for the

inhomogeneous spin-broadening, from which we obtain γinh = (84± 5) kHz.

We performed a few measurements with weak coherent states to measure

the µ1 of our system, i.e. the number of photons required in the input to

have a signal-to-noise ratio of 1 in the retrieved SW echo [24]. Similarly to

Chapter 5, we add a second crystal that we use as a tunable spectral filter

(filter crystal, 5 mm long in the present experiment); moreover, we place

before it an AOM which acts as a fast temporal gate. With a mean value

of 122 photons per pulse in the input (a Gaussian of FWHM ∼ 300 ns),

we measured a signal-to-noise ratio of 4.1, corresponding to a µ1 = 29.9

(summing the counts in a window of 720 ns around the echo, ηSW = 0.6%).

Note that these measurements are just preliminary. To store real single

photons we need to prepare better combs (i.e. to increase ηAFC) and to

reduce the population in the spin state. To achieve this goal we need longer

preparation time, limited in this moment by the vibrations of the cryostat.

Having a fiber pig-tailed sample would be a fundamental step along this

direction. Also the transfer efficiency of the CPs is very limited, meaning

that they have to be further optimized (which would probably help also

to better clean |s〉). If these solutions would not be enough, other filtering

strategies will be considered, as, for example, a longer filter crystal to

increase the absorption at the unwanted frequencies (in the SW storage

experiment described in Chapter 5 we used a 3 mm-long filter crystal).
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7.7 Higher AFC efficiency (counter-propagating

preparation)

As discussed in section 7.5, the main motivation for our fast decay of the

AFC efficiency with storage time is given by our limited preparation time.

In fact, having little available time, we have to increase the optical power

used for the preparation of the AFC. As a consequence, instantaneous

spectral diffusion effects and power broadening increase, degrading our

optimal AFC.
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Figure 7.9: Sketch of two different setups used for measurements in waveguide
type I. (a) The preparation and probe beam are coupled into the waveguide from
the same optical path, coming from two different ports of a fiber BS. (b) The
preparation beam is aligned counter-propagating to the probe light thanks to a
90:10 (T:R) BS. In this way the two beams can be coupled into the waveguide
independently, during the two different phases defined by the cryostat cycle. The
insets are the measured transmissions for each beam (both in CW) vs time, being
the black line the probe beam and the brown one the preparation light. The green
area describes the moment in which the measurement is performed, the brown

one defines the preparation phase.

To have more time for the preparation of the AFC (as well as for the

measurement), we send the preparation beam couter-propagating to the

probe, making them independent. The old and new setups are sketched,

respectively, in the panels (a) and (b) of fig. 7.9. Having two independent

paths, we can align the preparation beam and the probe in order to couple

them into the waveguide during two different phases of the cryostat cycle

(see insets on the right). In the experiment presented so far in this chapter

the two beams were coupled simultaneously (black trace), and we had to

use that limited time both to prepare the memory (orange area) and to

probe it (green area). In the second situation, the memory is prepared
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when only the preparation beam is coupled into the waveguide (brown

trace). When, due to vibrations of the cryostat, its coupling is lost, the

probe beam is coupled (black trace) and the measurement starts.

This gives us a much longer time to prepare the memory, together with a

longer duty cycle for the experiment (300 ms/ 707ms). The best efficiencies

measured in the two different situations are plotted in fig. 7.10: our old

efficiencies (filled points, taken from fig. 7.7(b)) decay with a T∗2 = 8±1µs,

while the measurements done with the new setup (empty points, measured

with classical light) show a T∗2 = 16 ± 1µs, which represents an increase

by a factor of 2 in decay time.

0 5 10

τ [µs]

0

5

10

15

20

25

η
A

F
C

[%
]

Figure 7.10: Decays of ηAFC for AFCs prepared with the setup sketched in
panel (a) (full points) and (b) (empty points) of fig. 7.9.

The experiment described in the next Chapter will be performed with the

setup sketched in panel (b) of fig. 7.9.

7.8 Conclusion and Outlook

In this chapter we proposed a new platform for the implementation of

integrated quantum storage devices. We demonstrated the generation of

type I waveguides in a Pr3+:Y2SiO5 crystal using fs-laser micromachin-

ing in a new writing regime. We showed that the fabrication of type I

waveguides preserves the measured spectroscopic properties of Pr3+. We

implemented a quantum storage protocol for heralded single photons, ob-

serving high non-classical correlations for storage times 100 times longer

than in previous waveguide demonstrations. We show some preliminary

results on SW storage experiments in these kind of waveguides. The use

of type I waveguides in Pr3+:Y2SiO5 gives several advantages with respect
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to type II ones. In type I waveguides, the guided mode is in general sensi-

bly smaller than what obtainable in a type II waveguide with comparable

losses. This yields an enhancement in the interaction of the guided light

with the rare earth dopants. Moreover, the mode matching between type I

waveguides and standard single mode optical fibers would allow us to glue

directly the Pr3+:Y2SiO5 samples to fiber patch cords with low coupling

losses, greatly simplifying the procedure of light coupling inside the cryo-

stat and avoiding the temporal constraints on the photon storage given

by the cryostat vibrations. We show, in fact, that having longer memory

preparation times would allow us to burn better AFCs. High-quality type

I waveguides will also allow to produce linear cavities with high quality

factors by directly writing Bragg gratings superimposed to the waveguide

[194]. In addition, type I waveguides in Pr3+:Y2SiO5 could also be easily

interfaced with laser written optical circuits in glass, potentially opening

the way to the realization of integrated hybrid glass/crystal platforms [195]

embedding quantum memories. Remarkably, taking advantage of the in-

trinsic three-dimensional capabilities of FLM, one can envision high spatial

multiplexing by an efficient exploitation of the substrate volume, with ma-

trices of quantum memories interconnected to linear fiber arrays by glass

circuits. Finally, for this kind of waveguides, the absence of lateral dam-

age tracks (present in the type II counterpart) enables greater freedom in

engineering the evanescent coupling of light between different waveguides.

This, together with the tighter bending radii achievable in type I waveg-

uides, permits to easily inscribe optical circuits in Pr3+:Y2SiO5 crystals

embedding directional couplers and other integrated optics devices, for

performing complex tasks besides quantum light storage, fully on chip.
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Chapter 8

Quantum storage

of frequency-multiplexed

heralded single photons

In this chapter I report on the quantum storage of a heralded frequency-

multiplexed single photon in an integrated laser-written waveguide fabri-

cated in a rare-earth doped crystal. The single photon contains 15 discrete

frequency modes separated by 261 MHz and spanning across 4 GHz. It

is obtained from the non-degenerate photon pair created using a source

based on cavity-enhanced spontaneous down conversion, where the herald-

ing photon is at telecom wavelength and the heralded photon is at 606 nm.

Both the type I waveguide and the photon pair source are the same as the

previous chapter. The frequency-multimode photon is stored by creat-

ing multiple AFCs within the inhomogeneous broadening of the crystal.

Thanks to the intrinsic temporal multimodality of the AFC scheme, each

spectral bin also includes 9 temporal modes, such that the total number of

stored modes is about 130. We demonstrate that the storage preserves the

non-classical properties of the single photon, and its normalized frequency

spectrum.

The results reported in this chapter are published in [40]. The content of

this chapter is mostly taken from the paper and its supplementary material.
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8.1 Introduction

We showed in the first chapter that multimode QMs would greatly help

the scaling of quantum networks by decreasing the entanglement distri-

bution time between remote quantum nodes [19, 15]. Current research

focuses mostly on time multiplexing in rare-earth doped crystals [20, 21,

22, 23, 24, 26, 27, 28, 29, 30, 31] and in spatial multiplexing in atomic

gases [32, 36, 37, 33, 34, 35]. Beyond these demonstrations, rare-earth

doped crystals represent a unique quantum system thanks to their wide

inhomogeneous broadening, which could also add another degree of free-

dom for multiplexing, i.e. the storage of multiple frequency modes [18].

The ability to perform frequency-multiplexed storage allows for a QR ar-

chitecture to be built based on active feed-forward and QMs with only

pre-programmed storage times, without the need for QMs with an on-

demand retrieval capability [18]. This unique ability could also enable the

generation of high-dimensional light-matter frequency entanglement [196].

Furthermore, it could provide a QM for frequency bin-encoded qubits,

which are gaining interest both in quantum information and computation

[197, 198, 196, 199, 200].

Very few experiments have explored the storage of frequency-multiplexed

photonic states. Qubits encoded with weak coherent states have been

stored in up to 26 frequency modes in the excited state of a Tm-doped

waveguide [18], and up to two modes in the spin state of a Pr-doped crystal

[31]. Parts of the spectrum of a broadband single photon were also stored

in up to 6 frequency bins in an Er-doped optical fiber [39]. In contrast,

our source naturally generates photon pairs in discrete frequency bins [116]

that can all be stored in our crystal.

In this chapter I report on the first demonstration of quantum storage

of a frequency-multiplexed single photon into a laser-written waveguide

integrated in a Pr3+:Y2SiO5 crystal (sec. 7.2). We demonstrate the non

classicality of the correlations of the multiplexed biphoton after a pre-

programmed storage time of 3.5 µs. We also show that the normalized

spectrum of our single photon is well preserved during the storage. The

multimode capability of our memory is further increased thanks to the

intrinsic temporal multimodality of the AFC protocol (sec. 3.3). The

great advantage of using waveguides is that the power required to prepare

104



Ch. 8. Quantum storage of frequency-multiplexed heralded single photons

the quantum memory is strongly reduced due to the increased light-matter

interaction. This enables simultaneous preparation of several memories at

different frequencies, with a moderate laser power.

8.2 Experimental setup

The setup, fig. 8.1(a), consists of two main parts: the photon-pair source

and the memory. The first is based on cavity-enhanced spontaneous para-

metric down conversion (CSPDC) (explained in detail in sec. 4.3). The

cavity, resonant both with the idler (at 1436 nm, telecom E-band) and

the signal (606 nm) frequencies, redistributes the bi-photon spectrum in

narrow frequency modes (fig. 8.1(b)). These modes are separated by the

cavity free spectral range (FSR = 261.1 MHz) and have a linewidth of 1.8

MHz (measured in sec. 4.3.2). Because the signal and idler photons have

different FSR, only a few modes (15 in our case) are generated [140] (a more

detailed explanation in Appendix D.1). So far, only the central frequency

mode (at frequency 0 in fig. 8.1(b)) was heralded and stored (Chapters

5 and 7). For most of the measurements reported in this chapter, the

idler photon is directly sent to a single photon detector (SPD), resulting

in a frequency-multimode heralding (MMi). Occasionally, a home-made

Fabry-Perot filter cavity (FCav in fig. 8.1(a)) is used to provide a single

frequency heralding (SMi).

The signal photon, filtered with an etalon, is coupled into a SM fiber and

sent to the memory optical table. We store the signal photons in the

same Pr3+:Y2SiO5 -based type I waveguide of Chapter 7 (at cryogenic

temperature, ∼2.8 K). The setup of the memory, shown in fig. 8.1(a),

is described in detail in the previous chapter, sec. 7.7. If we want the

photons to be transmitted through the waveguide, we produce a spectral

pit around the signal frequency mode. The implemented storage protocol

is the atomic frequency comb (AFC) technique (see sec. 3.3). To store

the whole spectrum of the frequency-multiplexed photons, we send the

preparation beam to two cascaded electro-optical modulators (EOM1,2)

with resonance frequencies equal to 1×FSR and 3×FSR of the CSPDC

source, respectively (see spectrum in fig. 8.1(d)). With this method, using

the same preparation time that we would need to prepare just one comb, we

simultaneously tailor many AFCs (up to 15 demonstrated here), all for the
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Figure 8.1: (a) Experimental setup. From the photon-pair source (CSPDC) the
idler photon (purple beam) is coupled to a fiber, either directly or after passing
through a filter cavity (FCav). The signal photon (orange beam) is sent through
an etalon and then to the memory crystal (waveguide type I). The preparation
light (bottom) is modulated with two EOMs: EOM1 (EOM2) is driven with a
voltage controlled oscillator VCO1 @261.1 MHz (VCO2 @3x261.1 MHz). A 90:10
(T:R) beam splitter couples 10% of the preparation beam into the waveguide,
counter-propagating with the signal photons. The modulation given by each
EOM is in (e), the resulting spectral distribution of the preparation light after
both EOM is shown in (d). (b) Sketch of the generated bi-photon spectrum. (c)
Sketch of the inhomogeneous broadening, tailored with many atomic frequency
combs (AFCs). The inset is a trace of a measured AFC in OD (τ = 3.5µs,
measured internal efficiency ηAFC = 8.5%, see sec. D.2 of the appendix for more

details).

same τ (3.5µs) and with the same internal efficiency (ηAFC = 8.5%) within

the inhomogeneous absorption profile of Pr3+ (fig. 8.1(c), the inset shows

a measured AFC trace). Hence, to perform multimode storage (MMs) we

switch on both EOMs, while we switch them off to store just a single mode

(SMs).We note that this method has a very favorable scalability, as the

number of spectral modes stored scale exponentially with the number of

EOMs used (> 3#EOMs). The total efficiency of the storage, considering

the memory as a black box, is given by ηAFC times the coupling of the

photon into and out of the waveguide, which is measured to be 40% in the

present experiment (see sec. D.2 of the appendix for more details).
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8.3 Non-classical nature of the heralded photon

before and after the memory

As a figure of merit for our photon pairs we use the second-order nor-

malized cross-correlation function between signal and idler fields, g
(2)
s,i (∆t)

(see sec. 1.4.1). We measured g
(2)
s,i vs pump power (P) of the heralded

photons before and after the storage (brown empty and orange full dots in

fig. 8.2(a), respectively). Here, both the idler and signal photons are mul-

timode (MMi - MMs). An example of a trace from which we extract the

g
(2)
s,i is shown in the inset of fig. 8.2(a): the brown and orange traces repre-

sent coincidence histograms between idler and signal photons (P=3 mW)

measured before the memory setup and after the storage, respectively. The

coincidence window considered, ∆t = 400 ns, is shown as a darker region

in both the traces. Thanks to the intrinsic temporal multimodality of the

AFC scheme [68] and to the CW nature of the CSPDC source, we store

τ/∆t = 3.5µs/400ns ∼ 9 distinguishable temporal modes. Note that the

temporal coherence of our heralded photon is 120 ns; we could consider

smaller detection windows, thus increasing both the g
(2)
s,i and the number

of temporal modes stored at the cost of a slightly lower storage efficiency.

As expected for a two-mode squeezed state (sec. 1.4.1), the g
(2)
s,i increases

while decreasing P (fig. 8.2(a)). Except for the point at 0.5 mW, where

the coincidence rate becomes comparable to the noise rate, the g
(2)
s,i after

the storage follows the same behaviour of the measurement with the source

only. All the data points are above the classical limit (gray dotted line),

defined by the Cauchy-Schwarz inequality as
√
g

(2)
i,i · g

(2)
s,s (sec. 1.4.2). The

expected autocorrelation for the photon x (x = s, i), multiplexed over N

modes, is g
(2)
x,x = 1 + 1/N [114]. Moreover, the g

(2)
x,x is considered in a 400

ns window, further approaching the expected value to 1. For simplicity,

in the plot, we do the consevative choice of assuming a classical limit of 2

(expected value for a single mode thermal state, see sec 1.4.2).

To fully characterize the non-classicality of the bi-photon, we measured the

heralded autocorrelation of the signal photon g
(2)
i:s,s(∆t) [151] (sec. 1.4.4).

Here again, both the heralding and the signal photons are multimode (MMi

- MMs). A g
(2)
i:s,s(∆t) histogram measured before the memory setup for

P = 0.25 mW is reported in fig. 8.2(c). The g
(2)
i:s,s(∆t) has been measured

before the memory setup for different P, the lowest point (extracted from
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Figure 8.2: (a) Second order cross-correlation value g
(2)
s,i (∆t) vs pump power

(P) for the photon-pair source alone (empty brown circles) and after the storage
of the signal (plain orange points). The inset shows a temporal coincidence his-
togram between signal and idler photons at P=3 mW (the input photon in brown
and AFC echo in orange). (b) Conditional autocorrelation of the signal photon

g
(2)
i:s,s(400ns) vs P for the source alone (empty brown circles). g

(2)
i:s,s(400ns) for the

signal photon transmitted through a spectral pit (plain brown dots) or after stor-
age (plain orange points) are also shown for P = 3 mW (magnified in the inset). (c)
Conditional autocorrelation histogram for the source alone for P = 0.25 mW. (d)
Conditional autocorrelation histogram of the stored signal photons for P = 3 mW

(measurement time > 44 hours).

fig. 8.2(c)) being g
(2)
i:s,s(400 ns) = 0.052 ± 0.007, widely in the single pho-

ton regime. To overcome the low statistics, we repeated the measurement

of the g
(2)
i:s,s(∆t) for P = 3 mW sending the signal photons to the mem-

ory setup, and preparing a multimode spectral pit or AFC. The com-

parison of the results for the same pump power is shown in the inset of

fig. 8.2(b). All the measured data points of fig. 8.2(b) are below the

classical limit of 1. Moreover the g
(2)
i:s,s(∆t) measured at 3 mW after the

spectral pit (g
(2)
i:s,s(400 ns) = 0.45 ± 0.04) or after the storage in the AFC
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(g
(2)
i:s,s(400 ns) = 0.42± 0.15) are both compatible with the measurement

performed before the memory setup (g
(2)
i:s,s(400 ns) = 0.40±0.03). We thus

conclude that the storage in the memory does not degrade the statistics of

the single photons.

8.4 Number of effective modes

As the spectrum of our bi-photon is not flat (fig. 8.1(b)), the count rate

does not increase linearly with the number of stored modes. We define an

effective mode as a mode whose count rate is the same as the one of the

central frequency mode. Hence, if we store just the central mode (SMs),

we store 1 effective mode. On the other hand, the whole spectrum of the

photon (15 spectral modes) will be equivalent to 5.6 effective modes. By

using different EOM configurations (as sketched in fig. 8.3(c)), we can

vary the number of effective modes stored (NeM , more details in Appendix

D.2.2). The light orange data points in fig. 8.3(a) show the measured coin-

cidence rate in the retrieved AFC echo versus NeM . For this measurement

the idler photon is not filtered (MMi).
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Figure 8.3: (a) Normalized coincidences between idler detections and signal
photons, either after being transmitted through a spectral pit (black dots) or
being stored (orange dots), versus number of effective modes NeM . The gray line
is a linear regression fixed to pass through the origin and the first orange point
(NeM = 1), the gray area being the error. The coincidence rate after the spectral
pit is multiplied by the storage internal efficiency (ηAFC = 8.5%), to compare all

the results with the same line. (b) g
(2)
s,i versus number of effective stored modes.

The orange full (empty) points are measured with P=3 mW (1 mW). The gray
dotted line is the theoretical classical limit, which scales with the number of modes
N as 1+1/N (the real bound would be lower, due to noise and a finite detection

window of 400 ns). (c) Sketch of the different EOMs configurations.

When increasing NeM , the coincidence rate increases linearly, as expected.

The same measurement is performed by preparing a multimode spectral

pit (black dots in fig. 8.3(a)). For each EOM configuration considered in
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fig. 8.3(a), we also measure the cross-correlation of the AFC echo (full

points of fig. 8.3(b)). In this case, the g
(2)
s,i increases with NeM because,

even if both the coincidences and the stored noise increase linearly, there

is a part of uncorrelated noise (due to dark counts or broadband noise),

which remains constant (see sec. D.9 in Appendix).

8.5 Temporal beating between spectral modes
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Figure 8.4: (a) Temporal coincidence histogram between idler and signal pho-
tons after the source (brown) or after storage (orange). The rectangle between

4 and 6 µs is the stored noise, i.e. the accidental counts pspi in the g
(2)
s,i of the

AFC echo (the accidental counts for the input are measured before the brown
peak). (b), (c) zoom in the peaks, where the beating between the spectral modes

is visible.

We now study the spectrum of our signal photons, before and after the stor-

age. A signature of the presence of different frequency modes is the beating

between them in the temporal g
(2)
s,i function (fig. 8.4(a)). As described in

the supplementary material of [106], the g
(2)
s,i in the case of doubly-resonant

CSPDC takes the form:

g
(2)
s,i (τ) ∝

∣∣∣∣∣
∞∑

ms,mi=0

e−2πΓs(τ−(τ0/2))sinc(iπτ0Γs) τ > τ0
2

e+2πΓi(τ−(τ0/2))sinc(iπτ0Γi) τ < τ0
2

∣∣∣∣∣
2

, (8.1)

where ms,i are the mode indices, τ0 is the transit time difference be-

tween the signal and idler photons through the SPDC crystal and Γs,i =

γs,i/2 + ims,i FSRs,i, being γs,i the cavity damping rates for signal and
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idler and FSRs,i their free spectral ranges. The expected beating in the

g
(2)
s,i histogram, thus, has a periodicity of ∼ 1/FSR = 3.8 ns. We thus re-

calculate the histograms with increased resolution (fig. 8.4(b) before the

storage, fig. 8.4(c) after). The clear beating in the AFC echo, with the ex-

pected periodicity, is a strong signature that the storage protocol preserves

the frequency multimodality of the photon. We show in the Appendix, sec.

D.4, that if we store only one frequency mode (SMs) the beating disappears

as expected.
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Figure 8.5: (a) In blue (empty circles), the theoretical prediction of the scaling
of the ratio between the width of our beating and the FSR of our source versus
the number of spectral modes interfering. In purple (stars), the expected behavior
given our experimental jitter. The shaded area corresponds to the points com-
patible with the error of the fit reported in fig. 8.4(b). (b) Comparison of the
simulated beatings for 6 spectral modes with (dotted line) and without jitter (solid
line). (c) Same histogram as the one of fig. 8.4(b). Here the line corresponds to

the simulated behavior expected for 6 spectral modes.

From eq. 8.1 we expect the width of the oscillation peaks to decrease with

the number of spectral modes interfering. The width (in FSR unit) vs the

number of modes is reported as blue empty circles in figure 8.5(a) (the

solid line in panel (b) representing the corresponding interference peaks).

We expect a width of 600 ps for a beating of 6 spectral modes (close to

our effective stored modes). This is comparable to the time jitter of our

detection system, namely 730 ps (measurement in Appendix D.3). If we

convolute the theoretical beating (blue solid line in the inset) with the

measured jitter (fig. D.3 of the appendix), the expected width of the

beating peaks increases, as can be seen in purple in fig. 8.5 (stars in panel

(a) and dotted line in (b)). The shaded area in fig. 8.5(a) is the width of

the beating-peaks extracted from the fits in panels (b) and (c) of fig. 8.4,

namely 910 ps, which agrees with the 970 ps expected when taking the

jitter into consideration.
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From this measurement it is difficult to extract the number of spectral

modes involved, but we can give a lower bound of 5. Moreover, without

making any consideration on the temporal jitter of our detection system,

we can infer that the interfering modes are at least 4 (being our measure-

ment compatible with the theoretical expectation for 4 modes, blue line of

fig. 8.5(b)). Figure 8.5(c) reports the same beating histogram shown in

fig. 8.4(b). In this case the black line is the expected beating for 6 modes,

taking into account our jitter (purple dotted line of fig. 8.5(b)), plotted

with the same bin-size of the measured histogram (567 ps).

8.6 Biphoton spectrum scanning the filter cavity

To quantify the number of generated and stored frequency modes we send

the idler photons into the FCav (fig. 8.1(a)) that we scan about 4 GHz to

cover its whole spectrum. We thus herald different signal frequency modes

at different times. The coincidences detected before and after the storage

are plotted in figs. 8.6(a) and 8.6(b) in brown and orange, respectively. In

the SMs case, we just detect coincidences when the FCav is in resonance

with the stored mode (fig. 8.6a); if we switch on the two EOMs (MMs),

we can store and retrieve the whole spectrum of the signal photon (fig.

8.6(b)), i.e. about 15 spectral modes. As the spectrum of the preparation

beam is almost flat for the nine central modes (fig. 8.1(d)), the biggest

part of the spectrum is stored with the same efficiency of the SMs case.

Despite the lower preparation power, also the other modes are stored with

comparable efficiencies (see Appendix D.2).

We quantify the similarity between the normalized spectrum of the her-

alded photon before and after the storage from the measurements shown

in fig. 8.6(b). To do so we create one idler list for each spectral mode.

In this way we want to post process a single mode idler case. In the Ap-

pendix (sec. D.7) we show that the analysis is not equivalent to having a

single-mode configuration in the idler, due to the cross-talk between the

modes. However we can compare the coincidence rates (fig. 8.6(c)) and

g
(2)
s,i (fig. 8.6(d)) for each frequency mode, between the post-processed idler

lists and the signals in three different cases: just the source, black bars in

the plots; sending the signals through spectral pits, brown bars; storing
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Figure 8.6: (a)-(b) Heralded signal detections triggered to the scan of the FCav
in the case of SM and MM storage, respectively. The brown (orange) histogram
is measured with the source alone (after the storage). The solid lines are fits
to the brown histogram, renormalized to overlap with the orange trace (see sec.
D.6 in appendix for more details). (c) Relative amplitude of the count rates if
we isolate the contribution of each spectral mode in post processing. The black
and brown bars are renormalized to the average of the orange ones in order to
better compare the spectrum. (d) Cross correlation of each spectral mode after
post processing individually each of them. In both (c) and (d) the signal photons
are measured right after the source (plotted in black), after passing through a

spectral pit (brown bars) and after the AFC (orange bars).

the signals with AFC, light orange bars. From both plots, it is possible to

see that the shape of the spectrum is maintained after the storage.

We call CRCSPDC the vector containing the coincidence rates between the

signals and idlers for each spectral mode with just the source (black bars

in fig. 8.6(c)) and CRAFC the one measured after the storage (light orange

bars). CRCSPDC, in the figure, is normalized to the average CRAFC in

order to compare the two spectra. The two vectors are then normalized

as: CRx = CRx/
√

CRx ·CRx. We quantify the overlap between the

spectrum before and after the storage by measuring the scalar product

between the vectors CRCSPDC and CRAFC. We find CRCSPDC·CRAFC =

0.97 ± 0.03. The overlap has been measured in the same way for the

g
(2)
s,i measurement, again with the g

(2)
s,i between signal and idler measured

with just the source (g
(2)
s,i CSPDC, black bars in fig. 8.6(d)) and after the

storage (g
(2)
s,i AFC, light orange bars). We find g

(2)
s,i CSPDC·g(2)

s,i AFC = 0.98 ±
0.06. As in the previous case, each vector is renormalized to its modulus.
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The spectrum of the stored and retrieved photons has been measured in

the different EOMs configurations (see sec. D.8 of the Appendix).

8.7 Discussion, conclusions and outlook

The multimode storage technique demonstrated in this paper is directly

suitable for storing the frequency bin entanglement naturally generated by

our source [196]. For that purpose it is desirable to reach higher values of

g
(2)
s,i . An easy way to increase the g

(2)
s,i without destroying the entangled

state is to reduce the pump power of the source (as shown in fig. 8.2).

We measure the g
(2)
s,i versus NeM , for P = 1 mW (empty orange points in

8.6(d)). Despite the fact that the coincidence rate decreases with P, the

g
(2)
s,i increases remarkably with respect to the previous measurement. The

g
(2)
s,i would increase further by filtering broadband noise before the idler

detection with an etalon.

Another possible application of frequency multimode storage is to use each

spectral channel as an independent quantum memory, leading to spectral

multiplexing, e. g. for quantum repeaters (sec. 1.2). For this purpose we

should distinguish the different heralding frequency modes, i.e. separate

the modes of the idler photon [201]. This would destroy the frequency bin

entanglement, but the count rate and duty cycle of the experiment would

increase, without decreasing the g
(2)
s,i . We perform a series of measurements

to validate our statement. In table 8.1 we compare the g
(2)
s,i measured with

a single mode (SMi) or multimode heralding photon (MMi), storing either

one mode (SMs) or the whole spectrum (MMs) of the signal photon.

SMs MMi 2.48± 0.17

MMs MMi 4.35± 0.22

MMs SMi 15.8± 1.5

SMs SMi 72± 12

Table 8.1: Measured g
(2)
s,i after storage in different configurations for P = 3 mW.

We note that, by distinguishing the spectral modes of the heralding de-

tections (SMi), the g
(2)
s,i of the retrieved multimode echo would increase.

Moreover, if we could retrieve independently the different modes of the

signal (fourth case), the g
(2)
s,i for each spectral mode would be increased by

114



Ch. 8. Quantum storage of frequency-multiplexed heralded single photons

a factor of 16, without decreasing the experiment count rate. With cur-

rent technology it is challenging to distinguish the different idler frequency

modes due to their small separation. Being able to do it, we could find

different applications for the signal photon stored into the memory. For

example we could perform spin-wave storage [88, 28] addressing spin-states

for each frequency mode individually, e.g. using serrodyne frequency shift-

ing of the control beams [202], having therefore a SMs SMi configuration.

In conclusion, we demonstrated quantum storage of a frequency multi-

plexed single photon, counting 15 spectral modes over 4 GHz, in an inte-

grated rare-earth-doped laser-written waveguide. Our work opens prospects

for the realization of frequency multiplexed quantum repeaters, and for the

demonstration of high dimensional frequency entanglement between light

and matter. Together with the 9 temporal modes stored as an intrin-

sic property of the AFC protocol, we demonstrate the storage of more

than 130 individual modes. Our results show that integrated waveguides

in rare-earth doped crystals can be used as versatile light-matter inter-

action platforms with both time and frequency multiplexing capabilities.

Moreover, the unique 3-dimensional fabrication capability of laser-written

waveguides [203] also holds promises for implementing large memory ar-

rays in one crystal and allows fabrication of optical angular momentum

compatible waveguides [204]. The ability to combine several multiplex-

ing capabilities in one system would open the door to the realization of

massively multiplexed quantum memories.

This experiment is a rather complete highlight of the advantages of our

system. The generation of narrowband, highly-nondegenerate photons in

CSPDC naturally results in frequency-multiplexed photons. In REDCs we

can take advantage of the intrinsic inhomogeneous broadening to store the

whole spectrum of the photon. Moreover, solid-state systems allow us to

implement integrated devices. The confinement of light given by waveg-

uides increases the light-matter interaction by a factor of 10. Thanks

to it we can generate simultaneously one AFC per spectral mode of the

multiplexed heralded photon without loosing in preparation time or mea-

surement duty cycle, one of our biggest limiting factors at this moment.

These waveguides can provide high spatial multimodality (thanks to the

3-dimensional capability of fs-laser micromachining); namely we can have

one fiber pigtailed waveguide type I each 127 µm (∼ 62 waveguides per
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mm2). The AFC protocol is the best candidate for temporal multimodal-

ity (as shown in Chapter 5). Finally, the problem of demultiplexing the

stored frequency modes could be solved with spin-wave storage, which

would allow us to retrieve the photons separately and on-demand.
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Chapter 9

Conclusions and Outlook

The work presented in my thesis followed two main paths. The first one

was to realize a multimode quantum memory for real single photons based

on a solid state system. Secondly, we wanted to demonstrate quantum

storage on a new kind of integrated memory. The memory used in all the

experiments is based on a rare-earth doped crystal, namely Pr3+:Y2SiO5.

This crystal already showed great promise, due to its long storage times

[72], high efficiency [65] and on-demand operation at the single photon

level [24]. Here I summarize the main results of the thesis and, then, I give

an outlook for the next possible steps, both on the short and long term.

9.1 Main results of the thesis

Firstly we measured non-classical correlations between a single spin wave

in a quantum memory and a telecom photon. In this experiment, pub-

lished in [28] and reported in Chapter 5, we demonstrated half a node of

the quantum repeater link described in sec. 1.2.2. The used protocol, the

atomic frequency comb (AFC) technique, is intrinsically temporal multi-

mode. This allowed us to store and retrieve on demand 14 temporal modes

in a long-lived state. This experiment represented the first (and only until

now) absorptive quantum memory for real quantum states of light based

on rare-earth doped crystals.

A main reason to invest on solid-state quantum systems is their easier

scalability and miniaturization, which would bring the idea of a quantum

internet closer to a physical realization. This motivated our parallel re-

search projects aimed at demonstrating new kinds of integrated memories.
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In these works, carried out in collaboration with Dr. Roberto Osellame

and Dr. Giacomo Corrielli at Politecnico di Milano, we demonstrated

two different kinds of laser-written waveguides, called type II and type I.

These waveguides have been fabricated by our collaborators with fs-laser

micromachining. In both types we could show that the fabrication does

not significantly degrade the coherence and spectral properties of the ions

and we demonstrated spin-wave storage of classical light. These results, as

measured in the type II waveguide, are published in [137] and reported in

Chapter 6. In the type I waveguide we moved forward, demonstrating the

storage of heralded single photons for a pre-programmed storage time in

the excited state of the ions and measuring the longest quantum storage

achieved in an integrated memory, about 100 times longer than any other

demonstration with single photons up to now. These results are published

in [116] and reported in Chapter 7.

Waveguide-based memories provide an increase in the light-matter inter-

action, resulting from the tight confinement of the guided light along the

whole length of the crystal. This important advantage, together with the

large inhomogeneous broadening present in rare earth doped crystals, al-

lowed us to store the whole spectrum of a frequency-multiplexed photon

(15 modes), spanning about 4 GHz of frequency. This experiment is re-

ported in Chapter 8 and published in [40]. There we could demonstrate

a storage of about 130 modes, 15 spectral and 9 temporal, in the excited

state of the ions.

9.2 Outlook

Both research directions aimed at the same objective, namely realizing

the quantum repeater link described in sec. 1.2.2. A few more steps are

necessary to reach this ambitious goal. First of all, longer storage times

have to be achieved. The quantum memory, in fact, has to store the

quantum state for a time long enough for the heralding telecom photon to

travel to the measurement stage and for the information on the detection

event to come back to the station where the memory is placed, the lab in

the first instance of the experiment. For a distance of 50 km between the

memory station and the detection stage, we would need a minimum storage

time of about 500µs, which corresponds to the T2 of the spin transition
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in Pr3+:Y2SiO5. In order to reach this storage time, it is required to

overcome the inhomogeneous broadening of the spin transition, that can

be done thanks to spin echo techniques. Longer storage times can be

achieved in our system by means of dynamical decoupling techniques and,

if necessary, by applying external magnetic fields to reach the ZEFOZ

points (sec. 2.2.2).

A second necessary step will focus on increasing the successful count rates

detected after the memory. This can be done by improving the storage

efficiency and multimodality. One way to increase drastically the efficiency

of our memory could be to embed it in an impedance-matched cavity [77];

in our system and at the actual conditions we could arrive to > 80%

storage efficiency, and this option is currently investigated as the PhD

project of a student in our group. On the short term we can further

improve the linewidth of our preparation laser and our AFC preparation

sequence. A notable limiting factor for the latter is the limited preparation

time imposed by the cryostat cycle. This would not be present in the case

of a fiber-pigtailed waveguide-based memory.

In fact, the next natural step for type I waveguides will be the demonstra-

tion of a fiber-pigtailed memory. This will be an improvement in terms of

mechanical stability of the system (which could become independent on

the cryostat cooling cycle), optical alignment and scalability. On the long

term, this demonstration would open the way to embedding our quantum

memory in more complex optical circuits. Moreover, working in waveg-

uides would allow us to fabricate matrices of spatially multiplexed mem-

ories, thanks to the unique 3D capability of the laser-writing technique

[203].

Finally, the demonstration of spin-wave storage at the single photon level

in an integrated quantum memory will be a fundamental step to boost

waveguide-based quantum memories beyond their equivalent in bulk crys-

tals. Spin-wave storage is already a very challenging task in bulk crystals

because of the noise generated by the strong optical control pulses (see

Chapter 5). Filtering this noise becomes more difficult in waveguide, as

spatial filtering is not as straightforward as in the bulk case. Neverthe-

less, a fiber-pigtailed memory, where the protocol-preparation light is uni-

formly coupled along the whole cryostat cooling cycle, would allow us to
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optimize the preparation sequence to further reduce the atomic popula-

tion in the spin-state, decreasing the fluorescence generated by the control

pulses. Moreover, a longer filter crystal would increase the extinction ratio

of the spectral filter. In case of a successful spin-wave storage of her-

alded photons, we could demonstrate an AFC-DLCZ memory in waveg-

uide, which was already demonstrated in a bulk Pr3+:Y2SiO5 [29] and

in another rare-earth doped crystal [30]. The possibility to have an inte-

grated emissive quantum memory based on our waveguides would pave the

way to a scalable spatially-multiplexed quantum repeater, as the memory

would provide itself the heralding photon. Matrices of quantum memo-

ries, moreover, would provide a very important tool for the generation of

multi-photon states [205] and cluster states [206].

The experiment on frequency-multimode storage described in Chapter 8

can follow two different paths. One would be the demonstration of fre-

quency multiplexing in a real quantum repeater scenario. As pointed out

in sec. 8.7, unfortunately, the frequency modes of the heralding photons

are too close in frequency to be easily separated with present day tech-

nology, meaning that currently we cannot herald separately the different

frequency modes of the stored signal to be retrieved. Nevertheless, with

the technique used in the present experiment we can demonstrate light-

matter frequency entanglement, namely entanglement between a frequency

multiplexed telecom photon and collective atomic excitations at different

frequencies. In fact, this entanglement should be preserved by the storage

protocol, as almost the whole spectrum of the photon is stored uniformly

and all the frequency modes are retrieved at the same time. This entan-

glement has already been demonstrated with our photon-pair source [196].

A violation of the Bell inequality was also demonstrated in the context of

the Big Bell Test, a worldwide quantum experiment involving many re-

search groups, powered by human randomness [207]. I took part to that

experiment, helping to automatize the software.

Until now we have demonstrated storage of up to 130 modes (Chapter 8).

In Appendix E I show that we could store more than 105 different modes in

our system, among the temporal, spectral and spatial domains. Provided

that in a realistic situation we have to account for photon losses through

the fiber, finite storage efficiencies and non-perfect optical elements and
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detectors, such high multimodality will be necessary to realize a quantum

repeater scheme with success probability per attempt very close to 1.
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Appendix A

Further details for Chapter 5

A.1 Control Pulses

The waveform that we use to generate our control pulses (CPs) is a Gaus-

sian (blue dashed trace in fig. A.1) with full-width at half maximum

FWHM = 2.4µs. As the AOM that we use to modulate the amplitude

and frequency of the pulses has a non-linear response, the output wave-

form looks more squarish (gray solid trace). The FWHM, though, remains

almost the same. This shape increases the efficiency of the CPs, so that

we can take advantage of having shorter waveforms. This is important

in particular for the semi-conditional storage (section 5.4.3), in which we

have to send the CPs as fast as possible after the heralding detection. In

this case using longer waveforms means having the second CP closer to

the echo, thus increasing the noise floor. These CPs are frequency chirped

with a hyperbolic tangent (red dotted trace in fig. A.1), that makes the

transfer more effective around the central frequency [208, 209].
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Figure A.1: Control pulse waveform. The blue dashed trace is the waveform
fed into the AOM. The resulting shape of the CPs looks like the gray solid trace.

The CPs are chirped following the red dotted trace.
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The transfer efficiency of the control pulses ηT is measured by preparing an

AFC and sending the first control pulse before the rephasing of the atoms:

calling ηAFC the efficiency of the AFC storage and η′AFC the efficiency of

the AFC rephasing after the control pulse, we have: ηT = 1 − η′AFC
ηAFC

=

(72.5± 1.3) %.

A.1.1 Noise generated by the control pulses

We use a semi-conditional sequence (explained in more detail in section

5.4.3) to measure the noise generated by the first control pulse and by

both of them. Each time that we detect a heralding photon we send a

CP, then the temporal gate is opened in the position of the AFC echo and

closed before the second CP is sent. We open it again and measure the

noise generated by both pulses in the temporal mode of the spin wave echo

(fig. A.2). The noise generated by the first control pulse is higher than the

noise after both CPs. Specifically the noise after the two CPs (red trace

around 18µs) is (2.3±0.1)×10−3 photons per storage trial, i.e. 86% of the

noise after the first CP (red trace about 7.3µs), measured in the position

of the AFC.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

CP1 CP2

Delay (µs)

C
o
in

ci
d
en

ce
s

Figure A.2: Trace of the noise generated by one control pulse (CP1 is the
temporal mode of the AFC echo) and by both control pulses (CP2 being the

position of the spin wave echo).

If the 3/2g spin state is not well cleaned, a portion of the remaining atoms

depending on the transfer efficiency, is promoted to the excited state by

the first control pulse, possibly giving rise to incoherent fluorescence. This
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excess of population at the excited state might then be coherently trans-

ferred to the ground state by the second control pulse, thus decreasing the

contribution to the noise.

A.2 Comb analysis

The efficiency of the AFC echo can be predicted by analyzing the trace

of the comb (fig. 5.4(c)) according to the model described in ref. [68].

Assuming Gaussian peaks, we express the AFC internal efficiency with the

following equation:

ηintAFC = d̃2e−
7
F2 e−d̃e−d0 ,

where ∆ = 1/τ is the distance between the peaks of the comb, γ is their

full width at half maximum, F = ∆/γ is the comb finesse, d̃ = OD/F

is the effective optical depth, and d0 is the absorption background due

to imperfect optical pumping. The total efficiency that we measure is

reduced by a factor ηBW ≈ 66 %, due to the bandwidth mismatch between

photons and comb (see sec. 5.3). Assuming for the comb reported in

fig. 5.4 a finesse F = 3.8± 0.3, average optical depth and linewidth of the

peaks OD = 3.5±0.2 and γ = (36±3) kHz, respectively, and a background

d0 = 0.27±0.1, the expected total efficiency is ηAFC = (10.7±1.3) % which

agrees very well with the experimentally measured ηexpAFC = (11.0± 0.5) %.

With the same comb parameters, the expected internal efficiency, assuming

no loss due to the bandwidth mismatch, would be ηintAFC = (16± 2) %.

The AFC efficiency can be separated into different contributions as follows:

ηAFC = ηabsηrephηloss,

where ηabs (ηreph) is the absorption (rephasing) efficiency of the comb.

The factor ηloss accounts for the loss due to absorption in the background.

The absorption efficiency in the comb can be calculated as ηabs = (1 −
e−d̃)ηBW = 43 %. The rephasing efficiency of the comb is thus ηreph =

34 %.

The spin wave efficiency can be analogously expressed as ηSW = ηAFC η2
T ηC,

assuming the transfer efficiency ηT be the same for both control pulses and

the spin state exhibit a Gaussian inhomogeneous broadening leading to a

decoherence effect quantified by ηC = exp
(
− (Ts·Γinhom)2

2·log(2)) · π2
)

= 87.3 %
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[88, 89, 24]. The expected value of the spin wave efficiency is ηsw =

(5.2± 0.6) %. The small mismatch with the experimentally measured one,

ηexpsw = 3.6 ± 0.2 %, can be due to the fact that our chosen coincidence

window, ∆Td, contains about 80 % of the echo and that the filter crystal

might have residual background due to imperfect optical pumping.

Given the control pulse efficiency ηT = 72.5 % (see section A.1), we de-

fine a spin wave write and read-out efficiency as ηW = ηabsηT and ηRO =

ηT ηreph, respectively (thus rewriting the total spin-wave efficiency as ηsw =

ηlossηW ηCηRO), which we estimate to be 31 % and 24 %, respectively. Tak-

ing this into account and considering that the first control pulse gives a

measured noise floor of (2.3 ± 0.1) × 10−3, we infer non-classical correla-

tion between the single telecom photons and the collective spin excitations

during the storage with a g
(2)
sw,i of the order of 20.

A.3 g
(2)
s,i and ηAFC for different detection windows

In this section we show a plot of the measured g
(2)
swe,i value, along with the

spin wave efficiency, as a function of the integration window ∆(ts). The

results are shown in fig. A.3(c).
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Figure A.3: Second order cross-correlation between idler and retrieved signal
(circles) and spin-wave echo efficiency (squares) as a function of the integration

window, ∆td.
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B.1 Type II waveguide fabrication

Each track is fabricated by focusing a femtosecond laser beam (a home

made Yb:KYW oscillator, λ=1030 nm, pulse duration τ=300 fs) inside

the crystal volume, with optimized irradiation parameters: energy per

pulse of 570 nJ, repetition rate of 20 kHz, uniform sample translation

along the b-axis at the speed of 57 µm/s. A microscope objective with 50x

magnification and 0.6 numerical aperture is used as focusing optics. Note

that, for higher laser repetition rates and equal energy deposited per unit

volume (at a fixed pulse energy) we observed the formation of periodic

disruptions along the damage tracks [210], which degrade the waveguide

homogeneity and increase significantly the waveguide propagation losses.

During the fabrication, the crystal orientation is such that the fs-pulsed

laser beam is parallel to the D1-axis.

B.2 Type II waveguide characterization

We characterize the transmission through the waveguide for different pow-

ers (fig. B.1(a)) and for different polarization (fig. B.1(b)). In both the

measurements we couple into the waveguide our laser @ 606 nm in CW. In

fig. B.1(a) we can see that the coupled light is linearly proportional to the

input light. The coupling efficiency, i.e. the ratio between the measured

power after and before the waveguide, is, in average, ∼ 50%.

In fig. B.1(b) we show that the guiding property of the waveguide is highly

dependent on the polarization of the coupled light. In fact, just a specific

linear polarization is guided. The measured extinction ratio between the

two orthogonal polarization coupled into the waveguide is 98% (99.9% from

the fit).
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Figure B.1: Measured intensity of CW light at 606 nm after being coupled
in a type II waveguide plotted either versus the input power (a), or versus the

incoming polarization (b).

B.3 Inhomogeneous broadening
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Figure B.2: Inhomogeneous broadening measured in optical depth OD. The
purple points are measured in the 1 cm sample, the empty circles are measured

in a new sample 3.8 mm long.

We measure the OD of the ions in our waveguides around the usual center

of their inhomogeneous broadening (∼ 494.726 THz). The same measure-

ment has been performed both for the type II waveguide in the 1 cm sample

(see Chapter 6) and for the type I waveguide in the 3.7 mm sample (Chap-

ters 7 and 8). The center of the inhomogeneous broadening is not shifted

in any of the waveguides, and the width of the absorption line is consistent

with the usual values measured in crystals with the same doping concen-

tration. The double Gaussian measured for the type II was measured also

in the same bulk sample before the fabrication of the waveguides. One

possible explanation for the broader inhomogeneity, as explained in the

main text in section 6.5, is an unwanted amount of LSO impurities in the

YSO substrate [173].
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B.4 T2 in the new sample

We measured the coherence time of the optical transition ±1/2g → ±3/2e

for the type II waveguides in the 3.7 mm sample (sec. 6.5). This has been

measured for different powers and duration of the π/2−pulse while keeping

fixed the OD of the prepared single-class transition (0.6).

The results are shown in fig. B.3, together with those of sec. 6.3.
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Figure B.3: Optical coherence times T2 measured in the 1 cm (purple points,
waveguide, and black squares, bulk, sec. 6.3) and in type II waveguides fab-
ricated in a new sample (blue points, sec. 6.5), as a function of the quantity

Log10

(
OD×Pp

tp

)
. The circled data points are the measurements considered to

extract the mean T2 reported in sec. 6.5.
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C.1 Type I waveguide fabrication

Type I waveguides have been directly written by FLM in the volume of a

3.7 mm long Pr3+:Y2SiO5 crystal with a dopants concentration of 0.05%.

A fs-pulsed laser, highly focused on the sample, is shined along the crys-

tal D1 axis, while the sample is translated along the b crystallographic

direction. The laser pulses are focused 100 µm below the sample top sur-

face. The optimal irradiation parameters for obtaining high quality optical

waveguides which supports a single optical mode at the wavelength of 606

nm are reported in the Supplemental Material of the paper [28].

C.2 Type I waveguide characterization
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Figure C.1: Measured intensity of CW light at 606 nm after being coupled in a
type I waveguide plotted either versus the input power (a), or versus the incoming

polarization (b).

We characterize the transmission through the waveguide for different pow-

ers (fig. C.1(a)) and for different polarization (fig. C.1(b)). In both the

measurements we couple into the waveguide our laser @ 606 nm in CW. In

fig. C.1(a) we can see that the coupled light is linearly proportional to the

input light. The coupling efficiency, i.e. the ratio between the measured
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power after and before the waveguide, is, in average, ∼ 40%. The maxi-

mum transmission achieved without the cryostat for the same waveguide

and with the same optics is ∼ 60%. The coupling drops down to ∼ 40%

as soon as we close the cryostat, probably due to a distortion in the beam

profile given by the windows of the cryostat.

In fig. C.1(b) we show that the guiding of the waveguide is highly de-

pendent on the polarization of the coupled light. In fact, just a specific

linear polarization is guided (along the crystal D2, interacting with Pr3+

ions in site 1). The measured extinction ratio between the two orthogonal

polarization coupled into the waveguide is 99% (98% from the fit).

C.2.1 Coupling during the cryostat cycle
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Figure C.2: Measured intensity of CW light coupled to the type I waveguide
during the cycle of the cryostat. The vertical lines define the different stages of the
optical sequence for the preparation of a single-class AFC feature. The green trace
is the TTL signal used to gate the APDs and the mechanical shutters during the
single photon measurements. The gray rectangle defines the time during which

the measurements are performed.

Due to vibrations induced by the cryostat, we can optimze the coupling

of light into the waveguide for a limited amount of time per cycle. Fig.

C.2 shows the transmission of CW light coupled into the waveguide and

measured after an imaging path of about 2m (see fig. 7.2).
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C.3 Spectroscopic and coherence properties

C.3.1 Level scheme via hole burning
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Figure C.3: Holes and antiholes generated in the absorption line of a
Pr3+:Y2SiO5-based waveguide with spectral hole burning shining a pulsed se-

quence at frequency 0.

A single spectral hole is generated within the inhomogeneous profile of

a Pr3+:Y2SiO5-based waveguide type I. The process is explained in sec.

3.2. When a hole is generated in the absorption line of the ions (at 0-

frequency of fig. C.3), from the resulting holes and antiholes it is possible

to reconstruct the level scheme of the ions involved, as highlighted in fig.

C.3.

C.3.2 Relative oscillation strength of the transitions

Here we measure the relative oscillation strength of the transitions of inter-

est in a Pr3+:Y2SiO5-based waveguide type I, following the measurements

described in [135]. The results are shown as blue empty points in fig. C.4.

The red points, for comparison, are the values reported in [135].

We start by creating a spectral pit and applying a burn-back pulse, as

described in sec. 3.2.2. As a first measurement we empty the ±1/2g level

for a single class of atoms. With a burn-back pulse we repopulate it. We

then read with a weak pulse the antiholes relative to the three transitions

starting from the ±1/2g state. In transmission we measure the area of

these generated antiholes and we reconstruct the relative strength of the
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Figure C.4: Relative oscillation strength of the transitions shown in fig. 2.2.
The points refer to transitions between the ground states indicated at the top of
the three figures and the excited states written in the x-axis of the plots. In blue
we report the data measured in our sample, in red the values published in [135]

for comparison.

three transitions. The sum of their oscillation strengths is renormalized to

1. The same is done for single class transitions starting form the ±5/2g

level. The oscillation strength of the transitions starting from the level

±3/2g are derived from the other 6, thanks to the fact that the strength of

the three transitions arriving to the same excited level also are normalized

to 1 [135].

C.3.3 T1 from fluorescence
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Figure C.5: Fluorescence measurement. Decay of the population (black his-
togram) excited to |e〉 by a Gaussian pulse at time 0 (leakage in the black his-
togram). The AOM, used as a fast temporal gate, is switched on after ∼ 10µs.
The gray dotted line is the offset of our measurement, measured switching on the
AOM without sending any transfer pulse. The red solid line is an exponential fit

to the decay, the dotted lines being the error of the fit.
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In section 7.4 we measured the lifetime (T1) and coherence time (T2) of

the ions excited in the |g〉-|e〉 transition by means of two-pulse and (three-

pulse) stimulated photon echo. A more direct way of measuring the T1,

is performing a fluorescence measurement (see Section 3.1.6). As in sec.

7.4 we populate a single-class transition |g〉-|e〉. At time 0 we send a

Gaussian pulse resonant with the transition. The population transferred

to the excited state will decay to the ground-state, generating photons.

We measure this decay with an SPD (fig. C.5). From the fit (red solid

line) we estimate a T1 = 142± 11µs. For this measurement, an AOM was

placed in front of the SPD and used as temporal gate, the +1 mode aligned

to the detector, to prevent burning the SPD while sending the Gaussian

pulse at time 0 (the leakage can be seen in fig. C.5).

C.3.4 Spin-inhomogeneity in the bulk sample

We measured the spin-inhomogeneity in the bulk of the sample in which

the type I waveguides analysed in this Appendix has been fabricated. The

optics used is not the same one used for coupling into the waveguide. The

75 mm lens of fig. 7.2 was removed, and the light was coupled into the

sample using a 20 cm lens. The AFC was prepared for a storage time of

τ = 2.5µs (ηAFC = 0.8%). The efficiency of the spin-wave echo was 0.3

% for Ts = 5µs. We measure a spin inhomogeneity smaller than what

we usually measure in bulk samples with similar ion concentration. This

is probably due to the presence of a layer of µ-metal inside the radiation

shield of the cryostat, which reduces the external magnetic fields in the

position of the memory crystal.
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Figure C.6: Normalized spin-wave echo intensities vs Ts. From the fit to the
experimental data (dots) we extract an inhomogeneous spin-broadening γinhom =

12± 1 kHz.
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D.1 Frequency multiplexed photon pair source

To produce narrow single photons we embed a type-I periodically-poled

lithium niobate (PPLN) crystal inside an optical cavity. The effect of a cav-

ity around the crystal is that only photons compatible with the resonator

spectrum (linewidth 1.8 MHz) will be generated. In our case, we pump the

cavity-enhanced spontaneous parametric downconversion (CSPDC) source

with a cw laser at 426 nm producing a pair of photons at 606 nm (signal)

and 1436 nm (idler).

Having a double resonance with non-degenerate photons has a fundamental

implication for this work. The refractive index of the nonlinear crystal is

slightly different for 606 nm and for 1436 nm. This implies that the free

spectral range (FSR) of the two different wavelengths, being the distance

in frequency between the spectral modes transmitted by the cavity, will be

also slightly different (as sketched in fig. D.1). Due to the double lock of

the cavity, only the pairs where both photons are resonant are extracted.

This creates a clustering effect [140]. The size of the cluster depends on

the relation between the linewidth of the photons and the FSR. In our

case the biphoton linewidth is measured to be 1.8 MHz and the FSR 261.1

MHz.

Measurements performed also within Chapter 8 with a spectrum analyser

(FCav in fig. 8.1, linewidth = 80 MHz, FSR = 17 GHz) revealed that our

source generates up to 15 spectral modes within the central cluster.

For our measurements we switch off the pump laser of the CSPDC source

triggered on the detections of idler photons to reduce broadband uncor-

related noise while the AFC echo is expected. Before sending the signal
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Figure D.1: Top: sketch of the spectral modes structure of the 606 nm photons
(orange) and 1436 nm photons (purple) that have slightly different FSR inside
our cavity. Bottom: sketch of the photon pairs generated inside the cavity, given
by the overlap between signal and idler spectra. The linewidth of the individual

modes was increased on purpose for the sake of clarity.

photon to the memory table, we filter it from broadband noise with an

etalon (fig. 8.1(a), linewidth 4.25 GHz, FSR 100 GHz).

D.2 AFC efficiency and spectral pit transmission

for different spectral modes

As we do not access independently the different spectral modes of the signal

photons, the storage efficiency and the transmission through the spectral

pit are not measured directly for each of them. Our calibration involves

only the central mode: we prepare the AFC and spectral pit, in a single

mode configuration (EOM1,2 off), for different preparation powers. The

results (measured with classical light) are shown in figs. D.2(a) and D.2(b),

respectively. The power that we want to have, for each of the 9 central

spectral modes of the preparation, is 160 µW before the waveguide (this is

what we call 1 in the x-axis of the figures). For this power, in a single mode

configuration, we measured an internal efficiency ηAFC = 8.5%, reported

as a dotted line in fig. D.2(a). This efficiency takes into account only the

losses in the memory crystal, without considering the coupling efficiency in

the waveguide (C = 40%). The total efficiency, called device efficiency, i.e.

considering our device a black box, can be calculated dividing the light in

the AFC echo time window measured after the cryostat by the input light

measured in front of the cryostat. In practice this can be calculated from

each point of fig. D.2(a) by multiplying ηintAFC × C.
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Figure D.2: Calibration measurements to estimate the expected efficiency of
the pit and the AFC for the different spectral modes. (a) Dependence of the
AFC efficiency on the power that we use to prepare it. (b) Dependence of the
transmission efficiency through the pit on the power that we use to prepare it. For
(a) and (b) in the x axis a value of 1 corresponds to the optimum value of power
to send to the waveguide. (c) Amplitude (normalized to the input power) of the
spectral modes of the preparation light after the two EOMs. Gray rectangles are

used to guide the reader to the expected efficiency for each mode.

When we switch on the EOMs, the preparation power is shared between

many spectral modes. The power in each mode, for the decided configura-

tion of our experiment, is described in figure D.2(c). From this calibration,

we can infer the expected storage efficiency and transmission through the

spectral pit for the central 9 modes (dark gray region in fig. D.2), the

modes ±5 and ±6 (gray region) and the modes ±7 (light gray region).

We note that the efficiency of the AFC seems to get visibly lower only for

the modes ±7 (fig. D.2(a)), while the spectral pit does not worsen while

decreasing the power (in the range of powers analyzed).

An equivalent calibration was performed for the cases of only EOM1 on or

EOM2 on: in the single EOM case, the central 5 modes are stored with

almost flat efficiency; the modes ±3, where the preparation power is about

10% of the central ones, are also stored, but with a much lower expected

efficiency (∼ 3.5%).
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D.2.1 AFC efficiency (SM): comb analysis

The internal efficiency of an AFC with Gaussian peaks [68] can be calcu-

lated using the formula:

ηintAFC = d̃2e−
7
F2 e−d̃e−d0 ,

being ∆ = 1/τ the distance between the peaks of the comb, γ their full

width at half maximum, F = ∆/γ the finesse of the comb, d̃ = OD/F

the effective optical depth and d0 the absorption background. The ex-

perimental values, extracted from the measured AFC trace (inset of fig.

8.1(c) of the main text), are: γ = 560 kHz, OD = 3.15 and d0 = 0.29,

from which F = 5.09 and d̃ = 0.62. Knowing that ∆ = 1/(3.5µs) we

find ηintAFC = 11.8%. Due to the bandwidth mismatch between the pho-

tons (Lorentians with 1.8 MHz of FWHM) and the comb (about 4.2 MHz

broad), the efficiency is reduced by about 76%, resulting in an expected

ηintAFC = 9%, which agrees very well with the experimental measurement.

We can separate the AFC efficiency into three different contributions:

ηintAFC = ηabsηrephηloss,

with ηabs (ηreph) the absorption (rephasing) efficiency of the comb and

ηloss the loss due to absorption background d0. Knowing that ηabs = (1−
e−d̃) = 46 % (35 % if we consider the bandwidth mismatch), the rephasing

efficiency of the AFC is thus ηreph = 34 %.

The achievable efficiency with the present optical depth (3.15) is about

34% for a comb with square peaks and with a finesse of about 2.4. To

tailor such an AFC we would need longer preparation times, otherwise we

are obliged to increase the preparation power, which degrades our AFC

peaks mostly due to power broadening and instantaneous spectral diffu-

sion. Other limitations involve the limited linewidth of our laser (about 25

kHz) and the temporal shape of the pulses that we use to tailor the AFC,

which could be further optimized following [27].
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D.2.2 Number of Effective Modes, NeM

As the spectrum of our bi-photon is not flat, the count rate does not

increase linearly with the number of stored modes. Hence, for the analysis

of fig. 8.3, we define a quantity that we call effective mode, which is a mode

whose count rate is the same as the one of the central frequency mode. If

we store just the central mode, we store 1 effective mode. On the other

hand, the whole spectrum of the photon (15 spectral modes) is equivalent

to 5.6 effective modes.

By using different EOM configurations, we can vary the number of effective

modes stored, NeM . This quantity is calculated starting from the spectrum

of the photon and of the preparation beam in all the EOMs configurations.

Knowing these quantities, we estimate the storage efficiency or transmis-

sion through the spectral pit for each mode, using the method described in

the previous subsection. For example, in fig. 8.3(a), the points, from left to

right, are measured with both EOMs off (NeM = 1), EOM2 on (NeM = 1.8,

as we store mainly the modes with low count rate), EOM1 on (NeM = 3.3,

bigger than EOM2 as we store the central part of the spectrum) and both

EOMs on (NeM = 5.5, different than the case of the only source because

the modes ±7 are stored with a slightly lower efficiency), respectively.

D.3 Temporal jitter of our detection system
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Figure D.3: Measured temporal jitter of our detection system.

As explained in [106], the width of the peaks in the beating of the second-

order cross-correlation measurement gives information about the number

of modes that are coherently interfering. However, in our case, the time

resolution required to perform this measurement is comparable to the tem-

poral jitter of our detection system.
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To measure the time resolution of our detectors, we measure photon pairs

coming directly from a SPDC process in a similar non-linear crystal. Their

bandwidth corresponds to hundreds of GHz. Therefore, the time width of

the measured correlation peak will correspond to the convolution of all the

experimental jitters that are affecting our measurements. This measure-

ment (brown histogram) together with its fit to a Gaussian function (black

dotted line) is shown in fig. D.3. From the fit we extract a jitter of 730 ps.

D.4 Single mode and multimode comparison

In this section we check that the beating vanishes for the storage of only

1 frequency mode.

0 261 522
Frequency [MHz]

A
m

p
lit

u
d

e
 [

a
.u

.]

Figure D.4: Fourier transform of the correlations histogram around the AFC
echo. The light orange line (shifted vertically for semplicity) corresponds to the
case where we store all the spectral modes and the dark gray line to the case

where we only store 1 spectral mode.

In fig. D.4 we report the Fourier transform of the coincidence histogram

between the idler photon and the stored signal, around the correlations

peak at 3.5 µs: in light orange, with an arbitrary vertical offset, for the

case of multimode AFC preparation (MMs), in dark gray for the storage

of only 1 frequency mode (SMs).

D.5 Spectrum analysis of the heralded photons

In this section I explain how we build the histogram of fig. 8.6(a) and (b)

(and fig. D.7 of this Appendix).

To analyse the spectrum of our photon pair we use a Fabry-Perot cavity

with 80 MHz of linewidth (Lorentzian) and a FSR of 17 GHz, installed in

the idler optical path (FCav in fig. 8.1).
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Figure D.5: Schematic of our spectrum analyser.

By scanning the FCav we are able to sweep in time the spectrum of the

idler photons. In fact, at a specific time, only one specific frequency will be

resonant with the cavity and thus detected. We post-select only the signal

photons that are correlated with the detected idler photons. Consequently

we are able to build a histogram by correlating the trigger of the scan with

the heralded signal list. This histogram will correspond to the convolution

between the spectrum of the photons and the spectrum of the FCav (see

sec. D.7 of this Appendix).

We scan a piezoelectric element installed in one of the mirrors of the FP

cavity. We send an asymmetric ramp signal generated in a function gener-

ator that we map into a voltage ranging from 0 V to 150 V. The frequency

of the scan is 30 Hz. We tune the offset of the signal in order to center the

spectrum of our photons to the center of the slow part of the sweep (see

fig. D.5). For all the measurements performed in this work, we scanned

the FCav over ∼ 4 GHz, that should be enough to observe all the spectral

modes of our photons.

D.6 Fit to the spectrum of the CSPDC

This section explains the fits that we used for fig. 8.6(a) and (b) and for

fig. D.7 of this Appendix.

We compare the spectrum of the stored frequency multiplexed heralded

single photons with the photons right after the CSPDC source. For this

propose, we fit the spectrum of the photons after the CSPDC source to a
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train of Lorentzian functions:

S =
14∑
i=1

ai
σ/2

(x− bi)2 + (σ/2)2
+ d. (D.1)

Note that, since we use a Fabry-Perot cavity that is much broader than

the photons to perform this measurement, it is fair the fit to Lorentzian

functions (given that the spectrum of a Fabry-Perot cavity is Lorentzian).

For comparison with the spectrum after the storage, instead of doing a

new fit we just re-scaled the original fit while preserving the same relative

amplitudes.

D.7 Post-processed analysis of the spectrum be-

fore and after the storage

By scanning the idler spectrum with a filter cavity, we are in resonance at

different times with different spectral modes. This means that at different

times our idler detections herald different modes in the signal path. We

plot a coincidence histogram between the triggers and the idler detections.

We then cut the idler list around each spectral mode and create one idler

list for each spectral mode. In this way we want to post process a single

mode idler case. Just for comparison we report in figure D.6 the spectrum

of the photon (a), the simulated spectrum scanning the cavity (b), and the

spectrum that we would have by locking the cavity to the central mode

(c). In figure D.6(b), the background in the central mode is given only by

the sum of the contribution of the other modes.
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Figure D.6: (a) Frequency spectrum of the generated photons. (b)-(c) Simulated
spectrum of the photons after a Fabry-Perot filter cavity (FCav) with 80 MHz of
linewidth, scanned over the spectrum or locked to the central mode, respectively.
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In sec. 8.7 we state that the g
(2)
s,i expected in the case of a SMi for the

central mode is 15.8 ± 1.5 (see table 8.1). This is actually the measured

value with the idler passing through the FC locked around the central

mode. When we scan the filter cavity, an important contribution around

the frequency of the central mode is given by the other spectral modes.

Taking those contributions into consideration, we expect a g
(2)
s,i = 9.8± 1.1

for the central mode in the case of just the source. This value matches

with the measured value of 9.1± 0.5.

D.8 Different EOM combinations

We show here the spectrum of the retreived photons for all the EOMs

combinations: in the main text we focus our analysis to the case where

we store all the modes of the incoming spectrum (fig. 8.6(b), reported

here as fig. D.7(d)) and we compared it with the single mode case (fig.

8.6(a) of the main text, reported here as D.7(a)). If we switch on just the

EOM1, that we drive with an RF signal at 261.1 MHz, we prepare the

AFC for 5 ÷ 7 spectral modes (for the same reason explained in section

D.2) separated by 261.1 MHz (fig D.7(b)). If we just switch on the EOM2,

that we drive at 783.3 MHz, we prepare our AFCs for modes separated by

783.3 MHz (fig D.7(c)).

The results have been fitted according to the criteria introduced in the

Section D.6, keeping the same parameters of the fit extracted from the

brown trace and suppressing the contribution of the non-stored modes.

D.9 Scaling of g
(2)
s,i (∆t) with the number of effec-

tive modes

From fig. 8.3(b) we see that the value of the cross correlation depends

on the number of effective modes (NeM ). In this section we are going to

explain the reason of this behaviour.

The expression for the cross correlation is: g
(2)
s,i (∆t) = ps,i/(ps ·pi). We call

M the number of modes generated by our source. For the measurement

of fig. 8.3(b), only a band-pass filter was used in the idler arm (>1 nm of

linewidth), therefore all the spectrum of the idler photons was measured.
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Figure D.7: Spectrum of the stored photons for different cases: (a) Both EOMs
off, single mode case. (b) Just EOM1 on. (c) Just EOM2 on. (d) Both EOM on,

fully multimode case.

NeM is the number of modes addressed in the storage. We call ps,i the

coincidence probability for the case of NeM = 1 and ps(i) the probability to

detect independently a signal (idler) photon in a certain time window ∆t,

again for NeM = 1. We can rewrite the expression of the cross correlation

as a function of NeM and M as:

g
(2)
NeMs,Mi(∆t) =

NeMps,i
NeMps ·Mpi

=
ps,i

ps ·Mpi
(D.2)

So far, according to the previous expression, the cross correlation should

not depend on NeM . But we are considering the case of no dark counts

in the detectors and no broadband noise. Both of them will add non

correlated counts to the measurements. Since the idler detection does

not depend on NeM , we will consider that it is already intrinsic to the
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expression Mpi. We can introduce the noise in the signal arm as:

g
(2)
NeMs,Mi(∆t) =

NeMps,i
(NeMps +B) ·Mpi

, (D.3)

where B represents the probability of both detecting dark counts or broad-

band non-correlated noise. If B is comparable with ps, the effect of this

term will only affect our measurements for small values of NeM . While our

NeM increases we see an asymptotic trend towards the value of eq. D.2.
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Multimodality in our system

• Temporal multimodality

The AFC storage time τ is ultimately limited by the coherence time of

the optical transition. Assuming an AFC echo decay consistent with the

maximally measured coherence time in Pr3+:Y2SiO5, T2 = 111µs [126],

the storage efficiency would decay as a function of τ as in fig. E.1(a) [27].
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Figure E.1: (a) AFC maximal storage efficiency in the excited state vs storage
time τ . The decay assumes an AFC effective coherence time equal to 111µs. The
considered storage time of 10µs is highlighted with a red point. (b) As in panel
(a), with the number of temporal modes in the x-axis. In the inset the shape of
the considered photons (sec. 4.3.2), with, in red, the chosen temporal window for

each temporal mode.

The heralded photons generated by our photon pair source (sec. 4.3.2) are

reported in the inset of fig. E.1(b). The coherence time of the photon is

about τc = 120 ns. In terms of rate we would like to consider a big window

of interest, ∆t, around the peak of the photon, in order not to loose counts.

On the other hand, the bigger the window considered, the less the number

of modes stored, namely N=τ/∆t. In the inset we consider a window

∆t= 2τc = 240 ns (red solid line). As a consequence, I report in (b) the

same plot as in panel (a), but with the number of temporal modes in the
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x-axis and with a maximal efficiency limited by the considered temporal

window ∆t.

• Spectral multimodality

In the inhomogeneous broadening we can create a single class AFC each

∼ 80 MHz. I report in fig. E.2(a) the OD along the inhomogeneously

broadened absorption profile of the ions, being a Gaussian of about 9 GHz

(as measured in Chapter 7). The maximum OD considered (10) is the

expected OD for a 5 mm sample like ours, calculated as OD=αL, where α

is the absorption coefficient (23/cm[119]) and L is the length of the crystal.

For a fixed OD, the maximum AFC efficiency that we can get is defined by

the formula ηAFC = d̃2 e−d̃ sinc2(π/F) e−d0 , where F is the finesse of the

peaks of the comb and d̃ =OD/F and considering a square comb with a

null backgroud OD, d0 = 0 [68]. I plot the maximum efficiency achievable

along the inhomogeneous broadening of panel (a) in panel (b) versus the

number of frequency modes, considering 1 mode each 80 MHz [31]. With

the photon-pair source that we have in our lab, we would need a bow-tie

cavity as long as 3.75 m in order to have such a FSR. The dotted line

in panel (b) is the achievable efficiency in case of d0 = 0.25, the usually

measured d0 in our lab.
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Figure E.2: (a) Inhomogeneously broadened absorption profile (Gaussian, 9
GHz in FWHM) in OD. (b) Maximal AFC storage efficiency in the excited state
vs frequency modes (the dotted line is calculated for d0 = 0.25). The x-axis is
the same as in panel (a), divided by 80 MHz (minimum spacing between single-
class AFCs [31]). In both panels, the spectral bandwidth considered within the

inhomogeneous broadening of the memory is highlighted in red.

It can be noticed that, within the FWHM of the inhomogeneous broad-

ening (in red in fig. E.2), the efficiency per spectral mode is almost flat

(the average efficiency along the red line being 49%). Note that the AFC

protocol is limited to 54% efficiency for storage in the excited state [68],
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and it can be higher in the case of backretrieval of the stored light (for

example with SW storage).

For both temporal and frequency multiplexing, the bigger the number of

modes we want to store, the lower is the total storage efficiency. In a real

scenario we will have to find a threshold between the number of stored

modes and the efficiency. In fig. E.3 I put together the analysis done in

figs. E.1 and E.2. The efficiency considered for the frequency modes is the

average efficiency (each mode will have a slightly different efficiency, see

fig. E.2(b)).
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Figure E.3: AFC storage efficiency vs number of temporal (vertical axis) and
frequency (horizontal) modes stored. The plot puts together the analysis of fig.

E.1(b) and E.2(b).

• Spatial multimodality

I want to consider the spatial multimodality on its own. With memories

integrated in fiber-pigtailed waveguides the spatial multimodality scales

as 62 modes per mm2 of crystal surface (see fig. E.4). This is because

the standard distance of commercial fiber arrays is 127 µm. For spatial

multiplexing the storage efficiency does not change with the number of

modes, differently from the other two cases.

In the case of emissive quantum memories [2, 29, 30], in which the QM itself

generates the photon correlated with a stored state, spatial multiplexing

would be an ideal solution. In case of absorptive QM, to use it in our QR

link scenario (see sec. 1.2.2), we would need to couple each waveguide with

a different photon-pair source, making this solution less scalable. However,

even in our proposal, spatial multiplexing can be very useful to reduce

drastically the problem of the duty cycle of the memory. In fact each
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Figure E.4: Spatial modes (red dots) in case of a standard matrix of fiber-
pigtailed waveguides.

cycle of the cryostat we need a few hundreds of ms to prepare the memory

(∼ 400 ms, usually). The storage is performed during the following ∼ 100

to 200 ms. Moreover, as described in Chapter 5, each time that we perform

SW storage, we cannot perform any other storage trial until we do not

retrieve the stored quantum state. In this view, each time that a memory

is not available for storage, we could use another spatial mode, approaching

our duty-cycle to 1. Other important applications that we can imagine is

the generation of cluster states or multiphoton states.

• Possible number of stored modes

We consider for the temporal modes the storage time highlighted in red

in fig. E.1, namely 10 µs. With this we can store about 41 temporal

modes with 50% of the total achievable efficiency. The frequency modes

that we can store within the FWHM of the inhomogeneous broadening

(red in fig. E.2) are about 113, with an average storage efficiency of 49%

(38% in case of d0 = 0.25). Adding 62 spatial modes per mm2 of crystal

surface, we can store a total of 41 · 113 · 62/mm2 ∼ 290 000 modes/mm2,

with a maximum storage efficiency of ∼ 25%, for storage in the excited

state. With a CSPDC as long as ours (261 MHz in FSR), the number of

modes that we could store would decrease to about 90 000/mm2.

If we want to store polarization qubits, or add 2 polarization modes ([41, 42,

44]) we would need two waveguides for each polarization as our waveguides

are polarization sensitive. In laser written waveguides, moreover, orbital

angular momentum states have been coupled (only 3 until now [204]). In

the future, maybe, this degree of freedom could be added to our system,

further increasing the multiplexing capabilities.
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