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A B S T R A C T

We review the major features of desert dust outbreaks that are relevant to the assessment of dust impacts upon
human health. Our ultimate goal is to provide scientific guidance for the acquisition of relevant population
exposure information for epidemiological studies tackling the short and long term health effects of desert dust.
We first describe the source regions and the typical levels of dust particles in regions close and far away from the
source areas, along with their size, composition, and bio-aerosol load. We then describe the processes by which
dust may become mixed with anthropogenic particulate matter (PM) and/or alter its load in receptor areas. Short
term health effects are found during desert dust episodes in different regions of the world, but in a number of
cases the results differ when it comes to associate the effects to the bulk PM, the desert dust-PM, or non-desert
dust-PM. These differences are likely due to the different monitoring strategies applied in the epidemiological
studies, and to the differences on atmospheric and emission (natural and anthropogenic) patterns of desert dust
around the world. We finally propose methods to allow the discrimination of health effects by PM fraction during
dust outbreaks, and a strategy to implement desert dust alert and monitoring systems for health studies and air
quality management.

1. Introduction

‘Desert dust’ is the mixture of particulate matter (PM) emitted from
the surface of arid and semi-arid regions. Due to the aridic nature of
these regions, soils are poor, and therefore this PM is mostly made up of
mineral matter. According to Dubief (1977), Prospero et al. (2002) and
Ginoux et al. (2012) large emitting regions are inland basins spor-
adically flooded (such as the Chad Lake and surroundings) by ephem-
eral surface water streams that do not reach the sea but terminate in
these internal basins, but other types and scales of emitting zones are
also frequent. High winds can then suspend the minerals deposited by
the washout-deposition processes. This process of suspension causes
extremely high PM levels locally; we commonly define this phenom-
enon as a ‘dust storm’. Furthermore, the frequent nocturnal thermal
inversions keep a ‘dust layer’ at high atmospheric levels that, when
winds of the mid-troposphere are intense, might be transported thou-
sands of kilometres (‘long-range transport’) from the source. These

processes of emission and transport are not continuous in time for a
given area, although large regions, such as North Africa, feature dust
activity quasi-permanently throughout the year. We will use the term
‘episode’ to refer to the distinctive sequence of dust emission from a
source or ensemble of sources, and the transport of the dust towards a
receptor area. We define a receptor area as an area located either close
or far away from the emission source, whose air quality is affected by
desert dust transport. The term ‘desert dust outbreak’ is used to describe
the dust event in the receptor area only. Desert dust is typically mixed
with the locally or regionally emitted PM at the receptor area; it may
also become mixed with other PM during the transport towards the
receptor area. Thus the increase of PM in the receptor regions during
dust outbreaks might be due not only to desert dust itself but also to
other anthropogenic and natural (e.g. sea salt) PM.

There are a number of relevant reviews or books on the phenom-
enology of desert dust outbreaks, dust particle size and composition,
including the biological fraction, as well as on the health effects of dust
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storms in different regions of our planet (Dubief, 1977; Prospero, 1999;
Prospero et al., 2002, 2012; Reid et al., 2003; Griffin, 2007; Hashizume
et al., 2010; Ginoux et al., 2012; Karanasiou et al., 2012, De Longueville
et al., 2010; Goudie, 2014; Knippertz and Stuut, 2014; Zhang et al.,
2016; Schuerger et al., 2018; Middleton et al., 2019; Duniway et al.,
2019, Achakulwisut et al., 2019; Bullard and Baddock, 2019; among
others). In spite of the above reviews, there is a need for a review on
health impact assessment of desert dust exposure in receptor regions
taking into account the different phenomenology of dust outbreaks
(e.g., varying intensity, anthropogenic mix of PM, meteorological pat-
terns, among others). We aim here to answer the following questions:
How do we quantify dust and anthropogenic PM contributions during
dust outbreaks? What PM features might be relevant for the assessment
of health effects? These are key questions for devising an exposure
analysis to feed epidemiological studies for desert dust affected terri-
tories. It might be or not the case that part of the conflicting results
obtained in epidemiological studies of desert dust are due to the use of
different methods to characterize exposure to dust or dust-related
components (Tobías et al., 2019).

In the first five sections of this review-assessment paper we provide
some light on the characterisation of exposure to dust and dust-related
PM components for short and long term cross-sectional epidemiological
studies, both at desert areas and dust receptor regions, with special
emphasis on those having a special importance to evaluate the potential
health impact of desert dust outbreaks. Following this we use this know
how to yield some recommendations to implement alert and monitoring
systems to provide health relevant data on exposure to air pollution for
health studies, and also to provide relevant information to apply mea-
sures to reduce this exposure during these dust events. This does not
intend to be a systematic review, but our intention is to review major
patterns of desert dust outbreaks and potentially associate co-pollutants
that might be relevant to design epidemiological studies, and on the
other side to highlight relevant health-related patterns of desert dust
events to atmospheric scientist.

This summarises the first part of a WHO–report on the Health
Effects of Dust and Sand Storms'. This report consists of a systematic
review of the scientific evidence on the health effects of desert dust and
sand storms, undertaken within the framework of the WHO air pollu-
tion global activities and the current update of the WHO Air Quality
Guidelines (AQGs). This systematic review revealed that there is an
urgent need to harmonise the characterisation of the exposure to desert
dust and co-pollutants to obtain consistent worldwide conclusions on
the health effects associated to desert dust outbreaks.

2. Source regions and emissions

Oceans and arid regions provide most of the atmospheric aerosol
load of the Earth, with 6.3–10.1 and 1.2–1.8 Giga (109)-tons (t)/year
(yr) of sea salt and PM10 soil dust, respectively, emitted into the tro-
posphere (Textor et al., 2006; Andreae and Rosenfeld, 2008; Huneeus
et al., 2011; Ginoux et al., 2012; Kok et al., 2017). Sea salt is made of
PM derived from sea/ocean droplets suspended into the atmosphere
that are subsequently evaporated and yielding salts, such as sodium,
chloride, magnesium, calcium, potassium, and sulphate. Soil dust
aerosols are created by wind erosion within arid regions, where soil
particles are loosely bound by the low soil moisture and absence of
vegetation. Dust sources have been identified empirically from satellite
radiance measurements (Prospero et al., 2002; Walker et al., 2009;
Ginoux et al., 2010) over the last few decades. Ginoux et al. (2012)
were able to derive the global distribution of dust sources at 10 km
resolution by counting the frequency of days marked by high dust op-
tical depth (DOD) (Fig. 1). The Sahara and Sahel regions in Northern
Africa are the most active dust sources in terms of emissions
(790–840million t/yr), followed by the Gobi and Taklamakan deserts
in East Asia (140–220million t/yr), the Middle East region
(13–20million t/yr), Central Asia, Eastern Australia, South America

(Atacama) and South Africa (10–60million t/yr each), and Southern
US-Northern Mexico (2–60million t/yr) (Prospero et al., 2002;
Washington et al., 2003; Huneeus et al., 2011; Ginoux et al., 2010,
2012; Varga, 2012). There are also other sparse sources of dust in dif-
ferent climatic regions, such as the active glacial outwash plains of
Iceland and specific areas in Alaska, Spain and Turkey (Prospero et al.,
2012; Ginoux et al., 2012). Dust source regions are active throughout
the year (Fig. 1) with the frequency and intensity of emission peaking in
specific seasons (see Section 3).

On the large scale, prolific dust sources correspond to topographic
depressions where a deep layer of alluvium has accumulated (Prospero
et al., 2002). However, many of the most important dust sources are not
always large regions with uniform emissions across them (Gillette,
1999). Dry lakes with unconsolidated fine-grained sediments are among
the most important sources. Also, ephemeral streams-rivers, lakes, and
playa-lakes or sebkhas (ephemeral lakes in inland basins without con-
nection with coastal areas), where sediments are deposited inter-
mittently can be prolific sources, as known from several decades ago
(Dubief, 1977).

Concerning the anthropogenic contribution to dust emission, land
dissection, disturbance and desiccation of lakes and playa-lakes, agri-
cultural practices, and expansion of livestock grazing, among others,
have been identified as major causes of increased emissions in the last
century (Gill, 1996; Stout, 2001; Orlove, 2005; Neff et al., 2008; Cook
et al., 2009; Ma et al., 2010; Lee et al., 2012; among others). The
present-day contribution of land use (anthropogenic) dust emission
remains still subject to debate, with values ranging from 10% (Tegen
et al., 2004) to 50% (Tegen et al., 1996; Mahowald et al., 2004) due to
the large modelling discrepancies. Ginoux et al. (2012) attributed
sources to human activity in regions where the cultivated fraction ex-
ceeded 30%, according to the land use atlas of Klein Goldewijk (2001).
Maps of both natural and cultivated sources were introduced into a dust
transport model and the anthropogenic fraction of present-day dust
emission was estimated to be around 25%. However, the distinction
between natural and anthropogenic dust sources remains imprecise
(Ginoux et al., 2012). A region may contain both natural and anthro-
pogenic PM source types, and their distinction may not be possible with
the satellite retrievals at 10 km resolution. In Australia, 76% of the dust
sources were associated with land use by Ginoux et al. (2012). Within
the climatically important region of the Asian summer monsoon, the
anthropogenic emission fraction was estimated to be close to 30% to-
wards the Middle East and the Indian subcontinent, and 40% towards
East Asia. At the other extreme, the fraction due to human activity is as
little as 8% in Northern Hemisphere Africa, in part because of expansive
natural sources within harsh desert environments that are inhospitable
to cultivation.

Both natural and anthropogenic dust emissions are highly influ-
enced by the hydrological cycle and consequently these are highly af-
fected by climate variability (Bullard and Baddock, 2019; Achakulwisut
et al., 2019; among others). For example, a clear relationship between
the prior year rainfall in the Sahel region and the dust outbreak oc-
currence in the Caribbean region was demonstrated by Prospero and
Lamb (2003).

3. Transport and duration

The emitted soil dust is transported and distributed across the
planet. Both models and observations show that dust is highly variable
in space and time. Temporal variability is evident at multiple time-
scales, from the diurnal cycle to seasonal variations to multiannual
changes that are mostly driven by meteorological factors controlling
both the emission and transport processes. Fig. 2 shows the pathways of
long range transport and seasons of dust activity. Major pathways are
from the Sahara and Sahel towards the Caribbean, South America and
US; from the Sahara to Southern Europe, Turkey and Israel; from the
Taklamakan and Gobi regions towards the Pacific and reaching as far as
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the US; from Southern US towards Mexico and vice versa; from
Southern US towards Eastern US; from South Africa towards the
Atlantic; from South America to the Southern Atlantic; from the Middle
East towards Central and Southern Asia; from central Australia to dif-
ferent regions around, from Iceland towards Europe; and from Ukraine
towards Central Europe, among others. These dust events have a

marked seasonality (Figs. 1 and 2) and, although the above dust source
regions are active throughout the year, emissions peak in spring and
summer in Northern Africa, in summer and autumn in the Middle East,
Central Asia and Australia, and US, and autumn-winter in South
America, in summer in North and South America and Southern Africa,
and in autumn in Eastern Asia and winter and spring in India (Prospero

Fig. 1. Frequency of occurrence of dust optical depth (DOD) > 0.2 by season. Aerosol optical depth was retrieved at 10 km resolution using the MODIS Deep Blue
algorithm (Hsu et al., 2004, 2006), and the contribution by dust aerosols was attributed based upon the spectral dependence of the measured radiances. DJF refers to
December–January–February, MAM to March–April-May, JJA to June–July–August, and SON to September–October–November. Derived from Ginoux et al. (2012).

Fig. 2. Major desert dust transport fluxes, modified from Griffin (2007).
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et al., 2002; Ginoux et al., 2012).
Dust storms usually last from 1 to 24 h at the source points (Goudie,

2014), but this does not mean that high levels of dust in the atmosphere
persist only during these intervals. In desert areas, according to Dubief
(1977) and a large number of subsequent papers, such as Duce et al.
(1980), Zhang et al. (1997), Prospero et al. (2002); Ginoux et al.
(2012), Richter and Gill (2018), and Yu et al. (2019), among others,
convective processes inject dust at high atmospheric altitudes where
synoptic circulations are able to transport injected dust to very large
distances. During the night, thermal inversions isolate upper and lower
atmospheric layers and favour the continuous transport of dust.

Depending on the meteorological scenario, dust can be transported
near surface levels or lofted to high altitudes, becoming subject to long-
range transport. For example, Saharan dust is transported towards the
Canary Islands at surface levels in winter and at higher altitudes in
summer (Viana et al., 2002). In the first case, air quality is degraded
both due to the direct dust contribution and local pollution, whereas in
the second the dust plumes influence surface PM concentrations to a
lesser extent (Alastuey et al., 2005). Furthermore, the thickness of the
planetary boundary layer (PBL, a layer where air is continuously mixed
by convective turbulence caused by the diurnal heating of the surface)
might be significantly reduced during dust storms, due to the following
processes: i) dust layers decrease the insolation at surface levels and
accordingly the convective mixing, and ii) other dust-transport pro-
cesses cause atmospheric subsidence phenomena or thermal inversions,
resulting in a surface increase of local pollutant concentrations
(Pandolfi et al., 2014; Alastuey et al., 2005).

Dust reaches up to 5–6 km height over Western Africa (Tesche et al.,
2011). LIDAR instruments show that the altitude of dust-enriched air
masses leaving Western Africa towards the Caribbean region typically
ranges from 0.1 to 4–5 km (Ansmann et al., 2011; Rittmeister et al.,
2017). Over Europe, multiple dust layers of variable thickness
(0.3–7.5 km, mean 1.5–3.4 km, depending of the European region) are
transported at mean altitudes of 2.5 (base) and 5.9 km (top) and have a
maximum height of up to 10 km (Papayannis et al., 2005, 2008; Mona
et al., 2006). A thickness of 1 to 4 km was reported for the dust layer
over Eastern Asia and the Pacific during a Kosa event by Yumimoto
et al. (2009).

Over the continental areas the PBL might reach high altitudes and
accordingly, even if dust layers travel at high altitudes, dust might be
transported down to the surface by convective mixing. This effect is
very clear when observing surface dust maps showing low concentra-
tions below dust plumes over sea (where the marine boundary layer is
thin) and much higher over the land. See Fig. 3 as an example of a dust
episode over the Mediterranean on February 2016, when the column of
dust (right) is similar over Spain and the Mediterranean Sea, but dust
surface (left) levels are much higher over land.

4. PM concentrations during dust outbreaks

The long range transport of dust impacts significantly air quality
over large receptor regions. Carlson and Prospero (1972), Prospero and
Carlson (1980/1981), Prospero et al. (1995), Chiapello et al. (1995,
1997) and Prospero (1999) described the large influence of African dust
outbreaks on the levels of ambient total suspended particles (TSP) over
the equatorial and tropical Atlantic. Prospero and Lamb (2003) and
Prospero et al. (2001) demonstrated this influence in ambient levels of
PM10 (particles with a size lower than 10 μm) in the Caribbean and
Florida; Van Curen and Cahill (2002), Jaffe et al. (2003), Fairlie et al.
(2007) reported similar results on the Asian dust contributions to sur-
face PM in western North America. In Europe Bergametti et al. (1989a,
1989b), Dayan et al. (1991) and Kubilay and Saydam (1995) reported
on the high influence of African dust outbreaks on ambient levels of
TSP. Querol et al. (1998a) reported that a number of annual ex-
ceedances of the daily air quality limit value for PM10 (first air quality
daughter directive, 1999/30/CE) in Spain were due to African dust
contributions. Thereafter, a number of studies have described similar
findings in Spain (including the Canary Islands) and Southern Europe
(Querol et al., 1998b, 2009; Viana et al., 2002; Rodríguez et al., 2001;
Escudero et al., 2005, 2007a; Pey et al., 2013; among others). While the
influence is particularly pronounced for ambient TSP and PM10, PM2.5
(particles with a size lower than 2.5 μm) levels also peak, especially
during strong events. There are many other studies evidencing the large
effects of dust on the air quality of different regions including among
other, Northern Africa (e.g., Gillies et al., 1996; De Longueville et al.,
2010), the Mexican desert region (e.g., Rivera Rivera et al., 2010;
Grineski et al., 2011), Central Asia (e.g., Wiggs et al., 2003), Australia
(e.g., Aryal et al., 2012); East Asia (e.g., Mori et al., 2003), Israel
(Krasnov et al., 2014); and the Middle East (Engelbrecht et al., 2009).

PM10 and PM2.5 concentrations can reach very high levels during
desert dust episodes, especially in the proximity of the source areas, but
also at distant regions. These episodes are known as Kosa (or Yellow
Dust) in the Pacific region and Calima in the Canary Islands. Mori et al.
(2003) measured ambient PM at eight locations in China and Japan
during a Kosa episode (March 2001). TSP concentrations reached up to
6700 μg/m3 on a 8 h basis in the Inner Mongolia Autonomous Region
(China); 1500 μg/m3 at Beijing (on a 6 h basis, with 93% of the mass
concentration being in the 2.1–20 μm fraction); and 230 μg/m3 at a
remote island in Japan (on a 24 h basis, with 64% in the 2.1–20 μm
fraction). Sotoudeheian et al. (2016) reported daily PM10 concentra-
tions up to 650 μg/m3 in central Iran cities during July 2009. Querol
et al. (2009) and Achilleos et al. (2014) reported daily PM10 con-
centrations during African dust episodes reaching up to 250 μg/m3 in
remote sites of Spain and up to 470 μg/m3 in Nicosia. Viana et al.
(2002) reported daily PM10 concentrations reaching up to 675 μg/m3

Fig. 3. NMMB-BSC modelling outputs for a dust episode over the Mediterranean on 22nd February 2016. Left: dust surface concentrations. Right: aerosol optical
depth (representing the aerosol load in the whole atmospheric column).
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during a Calima event in February–March 2000 at Tenerife (Canary
Islands, Spain). In Sydney, during a very intense dust episode in Sep-
tember 2009, up to 11,800 μg/m3 hourly PM10 levels were recorded,
with 50% of TSP made up of PM10 (Aryal et al., 2012). According to
Querol et al. (2009) and Pey et al. (2013), African dust impacts air
quality around the Mediterranean Basin 17 to 37% of the days within a
year, with a contribution of 9 to 43% of the annual ambient PM10 le-
vels measured at remote sites of this region. This represents a con-
tribution to the annual mean from 1 to 8 μg/m3 of PM10. These con-
tributions decrease from south to north and from east to west, although
also with the altitude over sea level (since desert dust layers are
transported preferentially at high altitudes, see below). They also found
that in most southern regions of Europe the proportion of African dust
days exceeding daily dust concentrations of 25 μg/m3 in PM10 reached
25–30%; whereas in the Northern Mediterranean it was around 10%.
Closer to the source regions these contributions greatly increase. For
example, PM10 concentrations of up to 2000 μg/m3 have been observed
in the city of Beer-Sheva, Negev, Israel, with 10% of the days exceeding
71 μg/m3, and an average daily net contribution of dust to PM10 of
122 μg/m3 for the dust days during the period of 2001–2012 (Krasnov
et al., 2014). Prospero et al. (2005) reported that around 35 days per
year in Barbados recorded African dust contributions higher than
50 μg/m3, and 7 days exceeded 100 μg/m3.

Table 1 summarises the findings of a review by Goudie (2014) on
desert dust levels. Maximum levels of 43–86, 63–700 and 42–911 μg/
m3 of PM2.5 during dust outbreaks over Southern Europe, Eastern Asia
and other regions (Iran, Australia, US, Israel), respectively, are re-
ported, with 43–47, 11–61 and 13–40%, respectively, of the PM10 mass
falling in PM2.5. Also, Engelbrecht et al. (2009) reported mean annual
data from the Middle East in a range of 72–303 and 35–111 μg/m3 of
PM10 and PM2.5, respectively, with a PM2.5/PM10 ratio of 21–60%.
Goudie (2014) also compiled information on maximum PM10 con-
centrations at receptor sites, ranging from 150 to 2500 μg/m3 in
Southern Europe and from 134 to 3006 μg/m3 in Japan-China-Taiwan-
Korea receptor sites; and at sites closer to sources from 266 to
15,366 μg/m3 in Australia, 312 to 5000 μg/m3 in Western Africa, 123 to
65,112 μg/m3 in North America, and 700 to 5619 μg/m3 in the Middle
East.

5. Size of desert dust

Reid et al. (2003) reviewed and inter-compared methods for char-
acterizing desert dust size distributions and concluded that the median
desert dust mass diameter equals to 4.5 ± 1.3 μm (9 ± 2 μm if optical
counters are taken into account), with values ranging from
3.0–3.5 ± 0.5–1 μmin remote oceans, Sahara, Algeria, Barbados and
Puerto Rico to 5.0–7.0 ± 1 μm in Turkey-Libya, Negev, Canary Islands,
Texas, Owens and Tadzhikistan (5 to 13 ± 1.5 to 2 μm with optical
counters in the two later groups). Similar modes are reported by
Mahowald et al. (2014) for a number of sites around the globe. Mori

et al. (2003) determined that the largest mass fraction for the crustal
element concentrations in the aerosol collected at Yamaguchi in Japan
during an intense Kosa episode was in the size range of 3.3–4.7 μm,
whereas in Beijing (closer to the Gobi-Taklamakan desert) it was in the
range 4.7–7.0 μm in aerodynamic diameter. In a dust episode affecting
Australia, > 50% of the TSP fell in the PM10 fraction (Aryal et al.,
2012), and 13% of the PM10 fell in the PM2.5 fraction (Jayaratne et al.,
2011). Thus, it seems that far from sources, a 3–5 μm mean/median
mass-size is very often measured, whereas close to them, 5–7 μm are
obtained. These values refer to the mean/median values but obviously
when high concentrations of dust are recorded, the finer and coarser
size tails influence highly PM2.5 and PM10–20 absolute concentrations.
As an example Kandler et al. (2009) found that close to the source
points and for the most acute episodes, only 3% of TSP was made of
PM10, and<35% of PM10 was PM2.5. For other dusty days, PM10 to
TSP proportions varied from 1 to 9%, and PM2.5 to PM10 ones from 15
to 36%.

Fig. 4 includes the data compiled by Goudie (2014) and Engelbrecht
et al. (2009) on PM2.5/PM10 proportions from desert dust influenced
sites. Taking only PM2.5 concentrations exceeding 100 μg/m3, in 92%
of the cases the proportion PM2.5/PM10 ranges between 10 and 40%,
and in 67% of the cases between 10 and 30%; whereas for lower PM2.5
levels the range of percentage of PM2.5 in PM10 is much wider
(10–60%). Studies on the ultrafine particle concentrations during dust
outbreaks are scarce. Jayaratne et al. (2011) and Wehner et al. (2004)
reported data for desert dust outbreaks in Brisbane and Beijing, re-
spectively. Both studies found a decrease in levels of ultrafine particles,
probably due to dispersion of local pollution and agglomeration and
coagulation of locally emitted ultrafine particles on the abundant dust
particles.

6. Dust composition

6.1. The mineral load

Mineral dust is typically made up of crustal components (Table 2)
such as quartz (SiO2), a large variety of clay minerals (kaolinite, illite,
chlorite/clinochlore, montmorillonite/smectite and palygorskite/ver-
miculite), Ca (Fe, Mg) carbonates, Na/K/Ca feldspars-plagioclase, Fe-
oxides (goethite, hematite, magnetite), and a variable proportion of
salts such as gypsum (Ca-sulphate) (Coudé-Gaussen et al., 1987; Schütz
and Sebert, 1987; Molinaroli et al., 1993; Gomes, 1990; Sabre, 1997;
Caquineau, 1997; Caquineau et al., 1998; Avila et al., 1997; Moreno
et al., 2006; Formenti et al., 2008; Claquin et al., 1999; Scheuvens et al.,
2013; Nickovic et al., 2012; Journet et al., 2014, Scanza et al., 2015; Ito

Table 1
Ranges of PM10 and PM2.5 maxima levels, and % of PM2.5 in PM10, in sites
affected by desert dust outbreaks in different regions of the planet. Data ob-
tained from Goudie (2014) Ranges reflect the lowest and highest maxima values
reported for different areas of a given region.

PM10 PM2.5 PM2.5/PM10

Region µg/m3 µg/m3 %
Southern Europe 150–2500 43–86 43–47

Eastern Asia 134–3006 63–700 11–61

Australia 266–15366

Western Africa 312–5000

North America 123–65112

Middle East 700 to 5619

Fig. 4. Cross correlation plot of PM2.5 maximum or annual mean concentra-
tions, as well as % of PM2.5 in PM10 in sites affected by desert dust outbreaks
in different regions of the planet. Data obtained from Goudie (2014) for max-
imum concentrations over the world, Jayaratne et al. (2011) for a dust storm in
Brisbane, and Engelbrecht et al. (2009) for annual mean concentrations in
Middle East sites.
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and Wagai, 2015). Fresh water diatomea skeletons are also a frequent
component of African dust (Darwin, 1845; Ehrenberg, 1862; Moreno
et al., 2006; Querol et al., 2008). Journet et al. (2014) provide estimates
of soil mineralogy at global scale for the clay and silt size ranges of the
soil sediment. Note that the emitted dust is a mixture of clay and silt
size particles or aggregates of particles. In the clay size fraction
(< 2 μm), phyllosilicates are the main mineral components (63–71% in
most desert areas and 80–83% in those from N. Africa, Fig. 5). Quartz
contents vary much less, with 3–5% in all regions, as free iron oxides
minerals do (3–5%, Fig. 5). Calcite contents range in 2–4% in most
areas and 6–9% in Asia, Sahara and M. East dust (Fig. 5). Concerning
the clay minerals, illite content is relatively homogeneous, making up
25–29% of the clay minerals, whereas kaolinite 36–42% of the clay
content in most areas and 49–51% in S. African and S. American dust.
The variation of the contents of smectite is reverse to the one of kao-
linite, with 20–26 and 10–11% of the clay minerals of these regions,
respectively (Fig. 5). In the silt size range (~2 to 50 μm) calcite, quartz
and feldspars are the key minerals, with an increased dominance of
quartz and feldspar with particle size.

Many of the above experimental and modelling studies have shown
that kaolinite, quartz and hematite prevail in the Sahel region, whereas
illite-palygorskite, quartz, and calcite dominate Saharan dust compo-
sition. Experimental data on North-eastern China desert dust proved
that this is made of illite, kaolinite (around 47–52% total clay content),
quartz (25–27%), feldspar and plagioclase (6–7%), calcite and dolomite
(13–18%), with traces of gypsum, hornblende (an Al-silicate), and ha-
lite (NaCl) (Shen et al., 2009). Engelbrecht et al. (2009) reported that
dust from Middle East-Central Asia was made up also by quartz, other
silicate minerals, carbonates, oxides, sulphates, and salts in various
proportions. In comparison with the Sahara, China, US, and world dusts
(Goudie and Middleton, 2006 and Labban et al., 2004), Middle East
samples had lower SiO2 and higher CaO and MgO contents (the latter
present as carbonate minerals); however, Fe- and Mn-oxides occurred in
lower contents. Australian desert dust is made up of a composite mix-
ture of quartz, anatase (TiO2), calcite, feldspars, halite, hematite, and
clays (kaolinite, illite-muscovite and montmorillonite) (Aryal et al.,
2012). Thus, concerning the mineral load of dust outbreaks it is mainly
made up of quartz, a variety of clays, with a lower content of ions (K+,
Fe2+, Mg2+, Cl−, F−) in their frameworks as increasing the degree of
weathering of the geological terrains, and variable contents of carbo-
nate minerals (mostly calcite and dolomite), iron oxides and salts, such
as gypsum. Accordingly, the major oxides madding up the dust are
SiO2, Al2O3, CaO, Fe2O3, K2O, MgO, Na2O, TiO2, MnO and P2O5.

Relatively high contents of dust related elements, such as Ti, Mn, Rb, V,
Cr, Li, Sc, Be, Rare Earth Elements, among others, can be also expected
compared with non-dust days data.

6.2. Mixtures of anthropogenic pollutants and desert dust

In addition to the mineral matter (typically the dominant PM
component during dust outbreaks), the anthropogenic PM contribution
may be significant. The following processes might give rise to an in-
crease of the anthropogenic PM load of the dust: i) specific desert areas
with nearby anthropogenic emission sources, such as the large petro-
chemical and power plants and industrial states present in Northern
Africa, China, and Middle East deserts (Moreno et al., 2010; Pérez et al.,
2010; Rodríguez et al., 2011); ii) the transport of aged air masses from
highly polluted regions towards or through deserts might cause their
interaction with dust particles, and also the deposition of anthropogenic
pollutants that subsequently are re-suspended with dust (Kallos et al.,
1998, 2008; Gangoiti et al., 2006; Chin et al., 2007); iii) relatively
unaltered dust particles are transported towards areas with high an-
thropogenic emissions and interactions of organic and inorganic pol-
lutants and sea salt with mineral dust particles might occur locally in
the receptor area, or before arriving to the receptor area (Levin et al.,
1996; Zhang et al., 2003; Alastuey et al., 2005; Hwang and Ro, 2006;
Sullivan et al., 2007; Tobo et al., 2009; Abdelkader et al., 2015), having
a major role in the mineralogy of the dust particles (Krueger et al.,
2004); and iv) as stated above, according to Pandolfi et al. (2014), the
PBL height is progressively reduced with increasing intensity of dust
outbreaks (due to the lower incident radiation reaching the surface,
thermal inversions or subsidence flows), thus causing a progressive
accumulation of anthropogenic pollutants and favouring the increase of
concentrations, or even the formation of new fine particles, and also the
condensation of health relevant species on dust particles surface.

The above four processes might enrich dust PM with sea salt and
anthropogenic pollutants, increasing the hygroscopicity of particles and
also the load in organic pollutants, sulphate, nitrate, ammonium, black
or elemental carbon (BC or EC) and metals, which in turn might in-
crease the health impact of dust outbreaks. There is large body of lit-
erature on these issues, mainly concerning to process of enrichment,
reactions, and comparison of levels of co-pollutants between dust and
non-dust days, but not much on their actual effects on the impacts on
human exposure and health.

Long data series of PMx and gaseous pollutants analysed by Pandolfi
et al. (2014) revealed very high non-dust PM1, CO and NO2 levels

Table 2
Minerals typically present in desert dust. Asterisks indicate abundance: ***** very high (tens of wt%) to * low (< 1wt%).

Silicates & aluminium-silicates Silicates Quartz SiO2 (mineral grains or diatomea fragments) *****
Clay minerals Kaolinite Al2Si2O5(OH)4 ****

Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] ****
Chlorite ((MgFe)5Al)(AlSi3)O10(OH)8 ***
Palygorskite (Mg,Al)2Si4O10(OH)·4(H2O) ***
Montmorillonite (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O ***

Feldspars Albite NaAlSi3O8 **
Anorthite CaAl2Si2O8 **
Microcline/orthocl. KAlSi3O8 **

Other silicate Zircon ZrSiO4 *
Hornblende Ca2(Mg,Fe,Al)5(Al,Si)8O22(OH)2 *

Carbonates Ca & Mg carb. Calcite CaCO3 ****
Dolomite (CaMg)2CO3 **

Oxides Iron oxides Hematite Fe2O3 **
Magnetite Fe3O4 *
Goethite α-FeO(OH) **

Other oxides Anatase & rutile TiO2 *
Salts Chlorides Halite NaCl *

Sulphates Gypsum CaSO4.2H2O **
Tenardite Na2SO4 *
Epsomite MgSO4 *

Phosphates Apatite Ca5(PO4)3(F,Cl,OH) *

X. Querol, et al. Environment International 130 (2019) 104867

6



4%

0%

6%
4%

23%

3%

71%

1%
2%

4%

19%

QUARTZ CLAY MINERALS FELDSPARS CALCITE IRON OXIDES
OTHER MINERALS (GYPSUM, ANATASE, RUTILE, DOLOMITE)

0 1 2 3 4 5

S. AMERICA
S. AFRICA

AUSTRALIA
ASIA

SAHARA
SAHEL

ARABIA

GOETHITE
HEMATITE

40%

27%

22%

5%
6%

51%
28%

11%

4%
6%

KAOLINITE ILLITE SMECTITE CLINOCHLORE VERMICULITE

43%

25%

24%

5% 3%

5%

71%

1%

3%
5% 15%

4%

83%

3%

3% 3% 4%

4%

80%

1% 9%

4% 2% 4%

66%1%

9%

3%
17%

63%

49%

27%

10%

4% 10%

35%

29%

24%

5%
7%

42%

28%

20%

6%

4%

36%

29%

26%

7%

2%

3%

67%
0%

4%

22%

%wt

Fig. 5. Mineralogy of desert dust from different regions. Top: content of different mineral groups, in wt%. Middle: content of free iron oxide minerals, in wt%.
Bottom: proportion of different minerals to the above contents of clay minerals. Data from Journet et al. (2014) on mineralogy of desert dust modelled from soil

X. Querol, et al. Environment International 130 (2019) 104867

7



during the most intense dust episodes over Barcelona (NE Spain), at-
tributed to the thinning of the PBL caused by the dust events. Also long
data series of PMx speciation in the Western Mediterranean evidenced
the marked increase of sulphate and nitrate levels during African dust
outbreaks over Spain (Querol et al., 2001, 2019; Galindo et al., 2008;
among others). Over the Canary Islands, in July 2002, sulphate levels of
around 3.7 and 2.5 μg/m3 were measured in TSP and PM2.5 in the dust
plume in the free troposphere, whereas 25 and 8.3 μg/m3 were obtained
simultaneously at surface levels for the same period (Alastuey et al.,
2005), suggesting the interaction of dust with locally emitted gaseous S-
bearing pollutants. Li et al. (2012) demonstrated that surface levels of
HNO3, SO2 and O3 decreased by up to 90, 40 and 30%, respectively
during Kosa events in 2010, due to the heterogeneous reactions on dust
particles. Kandler et al. (2009) reported that the hygroscopicity of the
finer dust particles (< 0.72 μm) increased by a factor of two in a
Morocco June 2006 episode, due to an increased load of ammonium
sulphate ((NH4)2SO4), as a main component of the anthropogenic
aerosol. In China and Japan the simultaneous increase of sulphate, ni-
trate and dust was already reported by Mori et al. (1999) and Arimoto
et al. (2004) and Wang et al. (2005), among others; and Huang et al.
(2009) described the pathways of sulphate enhancement by natural
dust in China.

Concerning organic aerosols, in Barcelona, Querol et al. (2019) re-
ported also an enrichment of organic carbon during African dust out-
breaks compared to non-dust days, although this enrichment was much
less marked than for sulphate. Garrison et al. (2006) suggested that
Saharan dust might act as a carried of persistent organic pollutants,
metals (Pb in their specific study), and microbes to the Caribbean. In
fact, some organic persistent pollutants, such as pesticides have been
described to be potentially emitted from desert areas such as the Aral
Sea (Ataniyazova et al., 2001; O'Hara et al., 2000). García et al. (2017)
reported long data series on organic speciation of dust in the free tro-
posphere over the Canary Islands, on his way to the Caribbean, and they
identified levoglucosan, dicarboxylic acids, saccharides, n-alkanes, ho-
panes, polycyclic aromatic hydrocarbons and organic compounds
formed after oxidation of α-pinene and isoprene; and revealed a high
correlation of secondary organic and inorganic aerosols during dust
episodes.

Concerning the enhancement of anthropogenic metals during dust
episodes, Querol et al. (2019) by interpreting long datasets of PM10
speciation in the city of Barcelona showed an enrichment of elemental
carbon metals from local road traffic (Sb, Sb, Cu, Zn) and industrial
sources (As, Pb, Mn) during dust days, again probably due to the
thinning of the PBL. Ho et al. (2019) found an increase of biorecativity
of particles during dust episodes in Xi'an, China, due to increase of
metals from local emissions. Garrison et al. (2014) reported that In-
halable PM from dust episodes in Bamako, Mali, was enriched in
transition metals, known to produce reactive oxygen species and in-
itiate the inflammatory response, and other potentially bioactive and
biotoxic metals/metalloids. They found that most enriched metals/
metalloids were likely emitted from oil combustion, biomass burning,
refuse incineration, vehicle traffic, and mining activities. Moreno et al.
(2010) measured the composition of a dust outbreak plume leaving
Western Africa over the Atlantic and showed that the La/Ce/Sm rates
obtained for specific 24 h samples approached the typical ones from oil
refining using the La-cracking process and not the typical dust-crustal
Rare Earth Element ratios. Ravelo-Pérez et al. (2016) found also that Fe
solubility from dust collected over the Canary Islands increased with
the aging of dust particles. The Fe solubility rose from 0.5% in the pure
Gobi dust to 3–5% in the Northwestern Pacific, resulting from oxidi-
zation of SO2 on dust particles (Li et al., 2012). Radionuclides from
nuclear accidents (Chernobyl), regions were nuclear test were carried
out in the past, and uranium mining areas, seem to be enriched in desert
dust from some regions (Papastefanou et al., 2001; Ogorodnikov, 2011;
Csavina et al., 2012; among others).

There is a small body of evidence that the non-dust load of PMx

during dust outbreaks over Spain might be very relevant, even more
relevant that the miner dust PMx load, when evaluating the health ef-
fects of African desert dust outbreaks over the Western and Central
Mediterranean (Pérez et al., 2012). Based on this in the last section of
this article we propose a monitoring strategy that allows measuring
bulk PMx concentrations during dust episodes and calculate the mineral
dust PMx and the non-dust PMx, and thus evaluate health effects for
these three components, and in later case compare the effect mod-
ification with bulk PM during non-dust days.

6.3. The bio-aerosol load

Goudie (2014) reports at least 11 studies on biological material in
dust storms from Kuwait, Iraq, Iran, West Africa, Taiwan, Japan, Korea,
Israel, Southern Europe and Turkey for the period 2006–2013; 14 were
reported by Griffin (2007) for prior years. According to Griffin (2007),
Griffin and Kellogg (2004) and Kellogg and Griffin (2006) this bioma-
terial consist of pollen spores, bacteria, fungi and viruses, that are
capable of surviving during long-range transport of dust and then dis-
persed globally. Many of these have potential health implications
(Griffin, 2007).

African dust storms over Southern US have been known as an ex-
posure pathway for various fungal diseases including coccidioidomycosis
(Williams et al., 1979). Microorganisms are present in African dust
transported towards the Atlantic and Caribbean (Griffin et al., 2003;
Kellogg et al., 2004; Prospero et al., 2005; Kellogg and Griffin, 2006;
Weir-Brush et al., 2004), also in Australian dust outbreaks (Lim et al.,
2011). In Taiwan, ambient air aspergillosis fungi peak events were at-
tributed to the effect of Gobi dust storms (Chao et al., 2012).
Polymenakou et al. (2008) identified 23 microorganisms and pathogens
in winter African dust outbreaks over the Eastern Mediterranean, both
in the fine and the coarse PM factions. Sánchez de la Campa et al.
(2013) found a low microbial biodiversity associated with the African
dust over Southern Spain, dominated by Firmicutes and Proteobacteria
and results suggested that the transported microbes were alive or pre-
sent as spores that germinated under favourable conditions. These
cultivable microbes in the form of spores were highly resistant to de-
siccation, heat, and UV light. Favet et al. (2013) concluded that few
pathogenic strains were found in the Bodelé dust (Sahel), suggesting
that bioaresol in African dust is not a large threat to public health. In
any case, Schuerger et al. (2018) recently reported on science questions
and knowledge gaps to study microbial transport and survival in Asian
and African dust plumes reaching North America.

It seems that only in some cases a direct relation between the
bioaerosol load of dust storms and health effects are demonstrated. In
Japan Watanabe et al. (2011a, 2011b) found a relationship between
asthma and pollen in Kosa dust air masses, not so clear during dust days
without pollen. Metcalf et al. (2012) reported the occurrence of cya-
notoxines in desert dust. Coccidioides (C. immitis and C. posadasii) fungi
cause Valley fever (coccidioidomycosis or cocci) when inhaled
(Pappagianis and Einstein, 1978; Leathers, 1981; Comrie, 2005; Zender
and Talamantes, 2005). Anderson (2013) reported 150,000 cases/year
in US. According to Sprigg (2016) the exact location of these endemic
fungi in North America is poorly known, but these occur in alternately
damp and dry soils of hot areas of US. Also according to this author, it is
clear that the Coccidioides fragments (3–5 μm) might be transported
with dust, from North American desert areas to neighbouring populated
areas, and he gave a number of references reporting of dust-Valley fever
outbreaks in Mexico and Southern US regions, reaching even the Wa-
shington State (Litvintseva et al., 2015). As an example, Pappagianis
and Einstein (1978) attributed 379 cases of Valley fever in California to
a dust outbreak. Nguyen et al. (2013) reviewed the state of the science
of the Valley fever.

The broad spatial pattern and seasonality of meningitis epidemics in
the African Sahel (Sultan et al., 2005; Martigny and Chiapello, 2013)
suggests that certain environmental factors, such as low absolute
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humidity (Cheesbrough et al., 1995; Molesworth et al., 2003) and re-
lative humidity (Dukic et al., 2012), temperature (Dukic et al., 2012)
and dusty atmospheric conditions (Sultan et al., 2005; Thomson et al.,
2006, 2009; Agier et al., 2013; Deroubaix et al., 2013; Pérez García-
Pando et al., 2014; Sprigg, 2016) play an important role. Identifying the
specific climate factors that drive meningitis epidemics is challenging
because many environmental variables have a prominent seasonal cycle
that co-varies with disease incidence, and the effects of climate and dust
on the pathogenesis and transmission of the bacteria have not been
studied in vivo. The most accepted hypothesis is that the transition from
endemic to ubiquitous hyperendemic conditions would be caused by an
increased risk of invasion of a virulent strain due to damage of the
pharyngeal mucosa by dry and dusty climate (Thomson et al., 2006,
2009; Pérez García-Pando et al., 2014).

7. What might cause health effects during desert dust and what
should be monitored of a dust outbreak to evaluate its potential
health effects?

7.1. Possible causes of health effects of desert dust

Based on the review outputs of prior sections, we provide in this
section a short overview of the dust-related scenarios that have a direct
or indirect potential relationship with health effects. The first potential
health impact might be related with the high concentrations of mineral
dust, exceeding 1000 μg/m3of PM10 on a daily basis close to emission
areas, but also daily concentrations reaching up to 400–600 μg/m3of
PM10 at receptor sites influenced by dust transport (see prior section on
dust concentrations). Furthermore, Derbyshire (2007) proposed that
acute exposure to mineral dust can, at its extreme, cause silicosis
(“desert lung” syndrome). As also evidenced in prior sections, desert
dust grain size modes reach 3–7 μm in most cases, so that the most
influenced size is PM10; however for high concentrations of dust, even
if the proportion of PM2.5 in PM10 reaches only 5–35%, the PM2.5
absolute concentration might be very high as well (see particle size
distribution above).

Another cause of health impacts of dust outbreaks might be related
with the anthropogenic load of dust outbreaks. As stated abive, this
man made pollution load of dust outbreaks can be attributed to the
following processes: i) co-emission of anthropogenic pollutants with
dust in specific areas (i.e., large petrochemical plants in Northern
Africa, Rodríguez et al., 2011); ii) co-transport of pollutants with dust
(i.e., Chinese industrial and urban pollution incorporated into the high
dust air mass during Kosa-Yellow Dust episodes from Taklamakan desert
towards the Pacific Ocean (Kang and Kim, 2014; Majbauddin et al.,
2016; Kim et al., 2012, Onishi et al., 2012), or the mix of European
pollution and dust caused by Northern air mass fluxes affecting the
Mediterranean Basin and transporting the polluted air masses over
Libya and Algeria, Kallos et al., 1998, 2008; Gangoiti et al., 2006); iii)
coating of dust with anthropogenic pollutants due to chemical and
physical interactions of mineral dust with local pollutants emitted in
the receptor region where dust arrives (Levin et al., 1996; Alastuey
et al., 2005); and iv) concentration of locally emitted pollutants caused
by the decrease of the thickness of the PBL during dust outbreaks
(Pandolfi et al., 2014, see prior sections on the causes of the thinning of
the PBL during dust episodes).

These four processes might result in an increase of the PM2.5 and
PM1 fractions, but it is also possible that coarse particles (PM2.5–10)
become coated or mixed with anthropogenic pollutants.

A third cause of the possible health impacts of dust is the biological
and microbiological load of dust. Examples are the asthma episodes
during dust outbreaks loaded with pollen over Japan (Watanabe et al.,
2011a, 2011b), the impact of dust loaded with the fungi coccidioido-
mycosis on Valley fever in US dry regions (Williams et al., 1979), and
other potential effects caused by microorganisms present in desert dust
(viruses and bacteria among others, Griffin, 2007). See the section on

bio aerosols reported in prior sections.

7.2. Parameters to be monitored to evaluate health impact of desert dust
outbreaks

The first indicator to be used is the mass of PM10 (highly affected by
dust outbreaks, most of them with PM modes from 3 to 7 μm as reported
in prior review sections). However, this will include both the desert
dust and the anthropogenic PM mixed or transported with dust. If
PM2.5 is added to the monitoring, the ratio PM2.5/PM10 will provide
the load of fine particles that in part might be attributable to anthro-
pogenic pollution. However, PM2.5/PM10 ratios in pure mineral dust
might also vary as a function of the source area and the transport
pathways and duration. Most of the anthropogenic PM pollution falls in
the PM2.5 fraction and if increased it will increase the PM2.5/PM10
ratio.

To evaluate the direct health effects of desert dust, the best indicator
would be the net mineral load of PM10 dust during dust outbreaks.
Chemical speciation of PM10 samples collected using high or low vo-
lume samplers can provide the mineral dust load. Low volume samplers
equipped with Teflon® filters and subsequent analysis by XRF might be
a good approach. If wet chemistry is used for the analysis of PM samples
(ICP-AES or ICP-MS), be aware that sample digestion methods for de-
sert dust require the use of hydrofluoric acid (HF) in the sample dis-
solution procedure. Otherwise silicates and aluminium silicates will not
be dissolved (Querol et al., 2001). Also note that when HF is used and
evaporated before introducing the sample in the spectrometers, Si is
lost. If wet chemistry is the only available tool for chemical analysis, we
recommend using quartz microfiber filters, high volume samplers,
HF:HNO3:HClO4 digestion, evaporation of HF, and calculation of
SiO2content from the experimental Al2O3*2.5 to 3.0 (Querol et al.,
2001; Alastuey et al., 2016). There are also online XRF analysers that
might supply concentrations of dust elements on a 15min to 1 h basis if
required, but the costs of the instrument (approx. 150 K€) and its
maintenance are high in the order of 10 K€ a year. These procedures
might result in large monitoring expenses because daily PM10 samples
shall be analysed. To avoid these costs, Escudero et al. (2007b) devel-
oped a statistical approach based on the evaluation of PM10 mass
concentration measured at twin stations (an urban and a close by re-
mote or regional background site). See in the next section the de-
scription of the method.

Furthermore, modelling outputs for surface dust concentrations
might also be used as reference parameters for health studies. We
caution that although these models have improved significantly their
performance in recent years, current uncertainties to reproduce the
actual PMx surface concentrations may still be too large for accurate
health studies. However, modelling outputs are basic to detect the oc-
currence of dust outbreaks (also supported by surface PM concentration
data), to evaluate the source region of dust and the transport pathways,
as well as the thickness and dust load of the atmospheric dust layer to
evaluate possible effects of reducing the PBL depth, and consequently
on the concentration of local pollutants. Models are especially relevant
for forecasting dust episodes to inform the most susceptible population
and/or allow preparations for more detailed measurements during the
episode.

In addition to the mineral dust load, levels of metals and other in-
organic and organic pollutants with specific interest in health studies
might also be analysed when dust arises from highly polluted regions or
is transported over them before reaching the dust receptor site.

For specific areas where the biological (fungi, pollen, bacteria,
viruses) dust load might be relevant for health effects, it is also re-
commended to evaluate it. Prospero and Lamb (2003) reported a large
range of ratios for microorganisms and dust concentrations for the
different dust outbreaks. In specific areas, such as the Valley fever re-
gions in US and the north African high meningitis region, the control of
the biological load of dust might be very relevant to evaluate or discard
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health effects of dust. It is important to note that the effect of dust in the
development of specific health problems might be indirect, such as
favouring transmission of pathogens in intense episodes when popula-
tion is preferentially confined to indoor environments, of the dete-
rioration of epithelia and other pathogen barriers due to their damage
by extremely high dust concentrations (Thomson et al., 2006, 2009;
Pérez García-Pando et al., 2014).

Finally, in this section it is also relevant to state that the review
presented above indicates that atmospheric dust layers over receptor
regions influenced by long range dust transport might reach a thickness
of several kilometres. In many cases dust might not directly affect the
surface, but affects indirectly by reducing the PBL depth by a relevant
proportion (up to 40% as a mean for the most intense dust episodes
over Barcelona, Spain, Pandolfi et al., 2014) than in turn might cause an
increase inof the concentration of local pollutants at surface levels.
Therefore, models, sounding or LIDAR measurements might help de-
tecting the presence of high altitude and thick atmospheric dust layers,
even if dust concentrations at surface are low. This is usually frequent in
summer over the Canary Islands. Under this scenario it may also be
relevant to evaluate the PM health effects of high anthropogenic PM
levels.

Based on the above key parameters and process that might be of
relevance for monitoring the desert dust impact on air quality in health
studies and to protect population, in the next section we describe a
desert dust alert and monitoring system that might be implemented in
region affected by this air quality problem.

8. Desert dust alert and monitoring systems for health studies and
air quality management

Besides the above scenarios we consider that desert dust alert and
monitoring systems might be a very powerful tool for i) alerting the
most sensible or exposed population to air pollution to take special
measures to protect themselves from high desert dust exposure levels;
ii) alerting in advance the administrations to take special measures to
reduce local/regional atmospheric emissions to abate anthropogenic
pollutants that might be intensively concentrated during dust out-
breaks; iii) to obtain reliable data on exposure to anthropogenic pol-
lutants and desert dust to evaluate health effects of PMx and its dif-
ferent mineral and non-mineral components during dust outbreaks.

We describe here the monitoring and alert systems build up by
Spain and Portugal, which operates continuously since 2001. This
system is made up of three modules allowing the forecasting and sub-
sequent demonstration of the occurrence of desert dust events, as well
as the quantification of the daily desert dust contributions to PM10 and
PM2.5 ambient concentrations.

8.1. The forecast system

The forecast or alert module mainly consists of two concatenated
tasks.

The first one consists in obtaining forecast air mass back-trajectories
using different tools such HYSPLIT (NOAA, Stein et al., 2015) or FLE-
XPART (NILU, Stohl et al., 2005), among others, to detect the transport
of African air masses over the receptor areas of Spain and Portugal (see
Fig. 6 as an example for Spain) from which data will be reported.

The second one is based on evaluating free available outputs from
different modelling teams for the emission, transport and surface desert
dust concentrations. To this end we recommend using the information
provided the WMO (World Meteorological Organization) Sand and Dust
Storm Warning Advisory and Assessment System (SDS-WAS, http://
www.wmo.int/pages/prog/arep/wwrp/new/Sand_and_Dust_Storm.
html), consisting in a model inter-comparison and evaluation of desert
dust forecasts, with three regional centres, one for Northern Africa,
Middle East and Europe; another for China, Japan and South Korea; and
another for the Americas and Barbados. This system provides

comparable modelling output information from a large number of re-
search teams. Table 3 as an example summarises the models and con-
tact details for the models included by the Regional Centre for of
Northern Africa, Middle East and Europe. We recommend taking daily
information on the forecast of the different models included in one of
the three regional centres, depending on the location of the receptor
region, in order to obtain an expert evaluation and recommendation for
the forecast of dust outbreaks and feed the first module of the alert
system. The Spanish-Portuguese system sends by email to a large list of
air quality stake holders the report of the forecast 24 h in advance of
each event. The forecast is also updated in the websites of the respective
ministries of environment. See at https://www.miteco.gob.es/es/
calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/
calidad-del-aire/evaluacion-datos/fuentes-naturales/default.aspx, the
case of Spain, as an example.

8.2. Validation and reporting on the occurrence of desert dust episodes

We built up a very important module for the demonstration of re-
cent (the year under evaluation) dust outbreaks that consists of three
consecutive sub-tasks: i) evaluating the data provided from a network
of surface regional background or remote air quality monitoring sta-
tions reporting online PM10 and PM2.5 concentrations in order to de-
monstrate or discard the occurrence of dust episodes (for Spain and
Portugal this is made by a network of 25 remote stations, Fig. 6); ii)
running air mass back trajectories with the above tools with validated
meteorological data for recent dust outbreaks in order to demonstrate
or discard the occurrence of dust episodes; iii) evaluation of the above
model outputs but this time focusing on validated outputs and not on
the forecast ones.

For the actual validation and reporting on the demonstration of the
occurrence of the desert dust outbreaks for each of the regions con-
sidered, as reported in Fig. 6 (see https://www.miteco.gob.es/es/
calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/
episodiosnaturales2017_tcm30-482151.pdf as an example for the 2017
annual report for Spain) we developed a module for the calculation of
the daily desert dust contribution to ambient air PM10 and PM2.5 levels
(Escudero et al., 2007a, 2007b; EC, 2011) involves the five tasks de-
scribed below.

First, we collected daily data of PM10 and PM2.5 levels measured at
the network of regional background or remote air quality monitoring
stations reported in Fig. 6. Following this, at each of the reference sites,
we exclude the levels of PM10 or PM2.5 of the dust days and then
calculate the 30 days moving 40th percentile (originally was a 30th
percentile, but later the method was modified to be accepted as a re-
ference method by the EC, EC, 2011) for these days, with the specific
dust day being in position 15 of the 30 moving average. This 40th
percentile value for the dust day will be equivalent to the PM10
background without the dust contribution. Obviously, methods using
other approaches, such as chemical speciation or other statistical ap-
proaches might be applied to this end. For example Barnabaa et al.
(2017) do not use the regional background monitoring data but they
modified the method by applying it directly to the individual urban
background sites for which dust loads are calculated and by reducing
the number of days for the moving average percentile. In a third step,
we subtract this background PM10 value to the bulk PM10 concentra-
tion to obtain the net mineral dust PM10 load.

Following these calculations, in a given urban twin (of a given re-
ference remote station) site we obtain the urban PM10 concentration
for a given dust day, and we subtract from this the net dust PM10 load
as obtained in the reference site for this day to obtain the anthropogenic
PM10 load during the dust day. Thus according to the results of our
review reported in the first sections on health relevant parameters when
monitoring air quality in desert dust outbreaks, these three parameters
(bulk PMx, net dust load in PMx, and the non-dust fraction of PMx
during the specific dust day, as non-dustPMx=PMx-dustPMx) might
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be used independently in cross-over studies or other health related
studies in providing basic information for air quality policy actions.
Epidemiological studies with PMx from urban areas should also eval-
uate health effects of PMx during desert dust episodes compared with
non-desert dust episodes, but also health outcomes derived from desert
dust PMx and from non-dustPMx during desert dust episodes, and how
the later compare with health outcomes for PMx in non-dust days.

Also according with the review presented in the first sections, and
additionally to these modules, others such as the one on the char-
acterisation of the bio-aerosol load, the chemistry of PM or the use of
instrumentation for the characterisation of the PBL depth or the
thickness of the dust layer (such as LIDAR and ceilometers) can be also
implemented to monitor direct and indirect effects on health of dust
outbreaks. According also with the review of the first sections, the
monitoring of the height of the PBL during and out of the desert dust
episodes in the receptor site might give very relevant information to
interpret the air quality data and the possible causes of marked in-
creases of local pollution during dust outbreaks. To this end ceilometers

might yield very valuable information (Gobbi et al., 2019, and refer-
ences therein; among others).

This system can also be used for alerting populations and also to
implement some exposure abatement measures, such as reducing local
emissions of pollutants, washing and sweeping dust from streets after
intense episodes to avoid resuspension by road traffic.

8.3. Source apportionment with receptor modelling

Another possible approach to characterize the daily dust PMx and
non-dust PMx load during and out of desert dust outbreaks is the im-
plementation of source apportionment analyses based on receptor
modelling (Zheng et al., 2005; Zhao et al., 2006; Song et al., 2006; Yuan
et al., 2008; Nicolás et al., 2008; Amato et al., 2016; Cardoso et al.,
2018; Ho et al., 2019; are examples). This is based on the sampling and
chemical analysis of PMx (see sections above on sampling and analy-
tical requirements needed to proper accounting for mineral dust when
analysing PMx). For epidemiological analysis it is necessary having long
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data series and to carry out cross over studies for short term effects, and
multi-annual averages to evaluate long term effects. Due to the high
costs of these long term source apportionment studies, multiyear source
apportionment data are not very common in desert dust affected re-
gions. Most of the studies cover one year or less, and use multivariate
receptor models because the availability of libraries on emission che-
mical profiles is very limited. The most common receptor model used
nowadays is Positive Matrix Factorization (PMF, Paatero and Tapper,
1994), whose version 5 (Norris and Duvall, 2014) might be free
downloaded from the US-EPA.

Most of the studies in urban areas identified, bulk Al, Si, Ti, Fe, and
K concentrations as tracers of desert dust (Querol et al., 2001; Zhao and
Hopke, 2004; Yuan et al., 2008; Nicolás et al., 2008; Amato et al., 2016;
Cardoso et al., 2018; Ho et al., 2019). Chloride, sea-salt-Na+, -Mg2+

and -SO4
2− trace the sea salt contribution; Vi-Ni and SO4

2− (and in
some cases a low Ce/La rate) the one from fuel-oil combustion and
petrochemical emissions; soluble K+ and polysaccharides the one form
biomass burning; As and Se the one from coal combustion; EC OC, Cu,
Ba, Zn, Sb the one from road traffic; Cu, As, Pb, Zn, Fe, Mn, or some of
them, metallurgical emissions; among others (Zhao and Hopke, 2004;
Nicolás et al., 2008; Yuan et al., 2008; Amato et al., 2016; Ho et al.,
2019).

Focusing on dust, and in urban areas, the ratios Ca/Al, Fe/Al, K/Al
and Si/Al might widely vary among the different source regions (see
section on compositional patterns of dust from the first sections). This is
an important inconvenience for source apportionment, because a con-
stant chemical profile is required to properly identify relevant sources,
but these geography tracing patterns can be used to identify source
areas for the dust outbreaks that might complement the back-trajectory
analysis. As examples, high free-Fe/Al and low Ca/Al have been re-
ported for dust outbreaks from Sahel, whereas high Ca/Al were mea-
sured for Saharan dust outbreaks (Chester et al., 1971, 1993; Chiapello
et al., 1997; Moreno et al., 2006, among others), and high Ca/Al was
used as a tracer of Western China deserts in PMx from Beijing, while
lower ratios pointed to a Northern China desert origin (Yuan et al.,
2008). Other tracers of source regions for dust are stable isotopes and
radionuclides (Papastefanou et al., 2001; Aba et al., 2018; Goudie and
Middleton, 2006, and references therein; among others) (see also sec-
tion on compositional patterns of dust).

In spite of the high potential of the source receptor models it is
important to note that this tool is very useful for receptor sites where
the impact of dust outbreaks on air quality is frequent and severe. In
urban areas relatively far from the dust emission sources where other
important sources of non-desert dust are common, problems of com-
positional co-linearity might difficult separating local soil dust or urban
dust from desert dust. Thus, Amato et al. (2016) carried out

simultaneously a source apportionment analysis in five Mediterranean
cities, and they were only to individually apportion for contributions of
desert dust with this chemically based source receptor approach in one
of the cities, the most heavily impacted by dust outbreaks. For the other
four cities the 40th percentile method described above had to be ap-
plied to identify desert dust outbreaks and quantify the net desert dust
loads. Nicolás et al. (2008) were able to identify individually urban dust
and desert dust in Elx (E Spain); Zheng et al. (2005), Zhao et al. (2006),
Yuan et al. (2008), and Ho et al. (2019); among others, in several
Chinese cities; and Cardoso et al. (2018) in Cabo Verde. Usually, urban
dust is having a very high Ca/Al and Fe/Al as compared to desert dust
(see again section on compositional patterns above and Querol et al.,
2019). A possible solution to properly identify and quantify desert dust
contributions using receptor modelling in urban areas with high dust
load is implementing the analysis in a reference rural/remote site close
to the population where the epidemiological study is going to be carried
out.

It is also important to highlight that the receptor modelling tool
might be a very relevant one to validate the results obtained with the
statistical method described in the prior section.
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