
Final Master’s Thesis
Master’s Degree in Automatic Control and Robotics (MUAR)

Multi-robot Task Allocation System to
Improve Assistance in Domestic

Scenarios

THESIS
June 19, 2019

Autor: Louise Bonnefoy

Director: Joan Aranda López

Call: June 2019

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

Abstract

The AURORA project aims at developing new strategies to take assistive robotics a step further. In order to
provide extended services to potential users, engaging a team of simpler robots is often preferable to using a unique,
super-capable robot. In such multi-robot systems, the coordination for task execution is one of the major challenges
to overcome. The present thesis proposes a solution to the specific issue of multi-robot task allocation within an
heterogeneous team of robots, with additional inter-task precedence constraints.

The main elements of the state of the art that support this project are reported, including useful taxonomies
and existing methods. From the analyzed solutions, the one that better fits with the constraints of the project
is an iterated auction-based algorithm able to manage precedence constraints, which has been modified to handle
heterogeneity and partial scheduling.

The selected solution has been designed and implemented with the particular purpose of being applied to the
robotized kitchen setup of the AURORA project; it is however flexible and scalable and can therefore be applied to
other use-cases, for instance vehicle-routing problems. Several evaluation scenarios have been tested, that demonstrate
the good functioning and characteristics of the system, as well as the possibility to integrate humans into the task
assignation process.

2

Contents

Glossary and Acronyms 4

1 Introduction 5
1.1 Motivation . 5
1.2 Background . 6

2 Objectives 8

3 State of the art 10
3.1 Multi-Robot Systems . 10

3.1.1 Overview and Classification . 10
3.1.2 Challenges . 11

3.2 Multi-Robot Task Allocation . 12
3.2.1 The Multi-Robot Task Allocation problem . 12
3.2.2 MRTA problem taxonomies . 14
3.2.3 Methods for task allocation . 17

4 Solution design 20
4.1 Objective reminder and problem classification . 20
4.2 Solution . 21

4.2.1 Chosen method . 21
4.2.2 Problem formulation . 21
4.2.3 Mathematical model . 22
4.2.4 Algorithm . 24

4.3 Algorithm pseudo-code . 28

5 Solution implementation 31
5.1 Robots . 31

5.1.1 Capdi . 31
5.1.2 Kinova’s Mico . 32

5.2 Software . 34
5.2.1 The Robot Operating System (ROS) framework . 34
5.2.2 MoveIt! . 35

5.3 The AURORA setup . 37
5.3.1 General functioning . 38
5.3.2 Environment management (Localization and mapping) . 39
5.3.3 Grasping . 39
5.3.4 Kinematics plugins . 41
5.3.5 Planner for motion planning . 41

5.4 MRTA solution implementation and integration within AURORA . 42
5.4.1 General organization . 42
5.4.2 Auction process: auctioneer and bidders . 43
5.4.3 Communication . 44
5.4.4 Data structures . 46
5.4.5 Solving the STN . 47
5.4.6 Computing the bid . 48

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 3

5.4.7 Tightening the schedule . 48

6 Evaluation and results 49
6.1 Validation using Solomon’s VRP database . 49

6.1.1 Solomon’s database . 49
6.1.2 First test: simple task assignment . 50
6.1.3 Second test: task assignment with time window constraints 51
6.1.4 Third test: task assignment with precedence constraints . 53
6.1.5 Fourth test: task assignment with task type . 55

6.2 Evaluation on Aurora scenarios . 57
6.2.1 Task prioritization . 58
6.2.2 First scenario: robots only . 58
6.2.3 Second scenario: involving the user . 61
6.2.4 Performances . 64

7 Project impact 66
7.1 Economical impact and budget . 66
7.2 Environmental impact . 67
7.3 Social impact . 68

8 Conclusion 69

A Auctioneer and Bidder class definition 71

B Data structures definition 75

List of Figures 80

List of Tables 81

List of Algorithms 81

List of Listings 82

Bibliography 83

4

Glossary and Acronyms

API Application Programming Interface.
APSP All-Pair-Shortest-Path.

DCOP Distributed Constraint-Based.
DOF Degree Of Freedom.

GUI Graphical User Interface.

IK Inverse Kinematics.

KDL Kinematics and Dynamics Library.

MILP Mixed Integer Linear Programming.
MRS Multi-Robot System.
MRTA Multi-Robot Task Allocation.

PRM Probabilistic Roadmap Methods (motion planner).

ROS Robot Operating System.
RRT Rapidly-exploring Random Trees (motion planner).

STL Standard Template Library. An important C++ library that provides a set of generic algorithms and useful
data structures.

STN Simple Temporal Network.
STP Simple Temporal Problem.

TCSP Temporal Constraint Satisfaction Problem.

URDF Unified Robot Description Format, an markup language format used to represent a robot model.

VRP Vehicle-Routing Problem.

YAML YAML Ain’t Markup Language. A human-readable data serialization language, which is commonly used for
configuration files.

5

Chapter 1

Introduction

1.1 Motivation

Robot assistants are undeniably gaining ground. For instance, the development of Industry 4.0 comes with a
technological shift: the classical industrial robots safely guarded behind fences are now replaced by cobots which
work in close collaboration with human operators. This new paradigm does not only affect the industry; on the
contrary, it plays a major role in the redefinition of many activities from the service sector. Besides the need to
improve the accuracy and efficiency of the industrial tasks, helping customers and visitors, automating household
chores, providing support to an aging population and other is boosting the development of intelligent and human-
friendly assisting robots. As an illustration of the recent technological evolutions, one can mention the robots Tiago
(PAL Robotics), Pepper (SoftBank Robotics), PR2 (Willow Garage) and HRP4 (Kawada), among many others.

In particular, robots are gaining importance in the healthcare sector. This area indeed tends to suffer from
workforce and resource shortage while facing an ever-increasing demand. Robots can, therefore, be used profitably
to assist both caregivers and patients.

In the latter case, one can distinguish between various levels of support. Depending on the deterioration of the
user’s cognitive and/or motor abilities, the robotic system can be used for stimulation (to maintain cognitive or
physical activity), rehabilitation (to progressively enhance hampered skills) and assistance (to compensate irreversible
losses). Each level requires the study and development of safe and adaptive systems that can act or be commanded
according to the user’s needs and wishes.

In parallel to the progress made in such assisting systems, much effort has been put in the last decades to develop
multi-robot systems (MRS). Teams of mobile robots can for instance be used advantageously to achieve exploration
or multi-delivery missions. Another key motivation lies in the fact that working with a team of simpler robots is often
preferable to using a unique, super-capable robot: each item is often easier to develop, and provides more flexibility
to solve complex problems.

Obviously, the two topics that have been mentioned in this introduction intertwine in some applications. For
instance, one could mention the work by [2], in which a team of social robots assists caregivers in a retirement home;
the robots autonomously organize in order to visit, interact and play with each resident. As in this project, the work
carried out for this Final Master’s Thesis stands at the crossroad of these two topics: assisting applications and
multi-robot systems.

6 Master’s Thesis

1.2 Background

This thesis was written in partial fulfillment of the Master’s Degree in Automatic Control and Robotics of the
Barcelona School of Industrial Engineering (Escola Tècnica Superior d’Enginyeria Industrial de Barcelona, ETSEIB)
which is part of the Polytechnic University of Catalonia (Universitat Politècnica de Catalunya, UPC).

It was carried out within the laboratory of the Intelligent Robotics and Systems Research Group1 (GRINS) of the
UPC. The group gathers researchers from the former research group in Robotics and Vision, from the Biomedical
Engineering Research Center (CREB) as well as the Bioengineering Institute of Catalonia2 (IBEC).

Its main topics of interest are the study, evaluation and development of robotic systems with perception capabil-
ities, in order to obtain flexible and intelligent behaviours. More specifically, the research is centered around three
axes:

• design and development of vision and image-processing systems;

• cooperation in multi-agents systems;

• robotic systems adapted to specific tasks or surroundings (underwater robotics, industrial and services robotics
or more recently medical robotics).

Recent projects3 include for instance:

• the development of a low-cost rehabilitation system to assist children affected by severe motor disorders;

• the development of a smart walker (for rehabilitation as well);

• an important project in collaboration with two hospitals and several other academic institutions to improve
fetal surgery procedures.

In particular, the work presented in this report is situated within the frame of the AURORA project, which aims
at developing new distributed control strategies and human-robot cooperation in assistive setups [4]. This national
project is financed by the Spanish Ministry of Economy and Business and led by the GRINS with the collaboration
of the Bioengineering Institute of the Miguel Hernández University.

The AURORA project is centered around the study of health care systems endowed with distributed intelligence
elements, in order to enhance their global intelligence, efficiency and interpretation ability, therefore offering higher
levels of cooperation and assistance. To do so, the goal is to achieve greater parallelism to improve the efficiency
and reliability and to be able to establish optimal control strategies.

Attaining theses objectives calls for significant advancement in the interpretative and control schemes of the
system, with the development of new algorithms and methods to estimate the intention and state of the user and
of new interfaces to increase adaptive and proactive abilities of the setup, always keeping in mind the high safety
requirements.

Since it is intertwined with the AURORA project, the work achieved in this thesis focuses on healthcare and
assistive setups, and more specifically on domestic environments. Part of the laboratory dedicated to this project
therefore consists of a replica of a kitchen working surface, equipped with hobs and a sink, placed against a set of
three cupboards. The surface is high enough so that a disabled person using a wheelchair may move around. This
can be seen in figure 1.1.

1https://grins.upc.edu/en
2https://www.ibecbarcelona.eu/
3https://grins.upc.edu/en/projects/research-projects

https://grins.upc.edu/en
https://www.ibecbarcelona.eu/
https://grins.upc.edu/en/projects/research-projects

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 7

Figure 1.1: Kitchen setup

The kitchen is furnished with several household items such as pots, pans, glasses and cartons that can typically
be found in such domestic environments. The setup is equipped with different robots, which architecture and
characteristics will be presented in chapter 5, and several Kinect cameras to monitor the scene.

The remaining of this report is organized as follows:

• Chapter 2 presents the objectives and the work plan.

• Chapter 3 is dedicated to the literature review about the specific multi-robot task allocation problem, preceded
by a brief overview of multi-robot systems.

• Chapter 4 analyzes the requirements and presents the final solution design.

• Chapter 5 describes the implementation of the proposed solution.

• Chapter 6 gathers the description and results from the evaluation tests.

• Chapter 7 examines the project cost and environment impact.

• Chapter 8 concludes the thesis and gives suggestions about future work.

8

Chapter 2

Objectives

Using the tools and resources associated to the AURORA project, the main goals of the thesis are the de-
sign, implementation and evaluation of a Multi-Robot Task Allocation (MRTA) system adapted to an
heterogeneous team of robotic manipulators.

In the setup considered for this project, the team of robots is made up of several robots that should coordinate
to help a disabled user performing daily tasks in a kitchen. The nature of the tasks has a considerable impact on
the design of the solution. In our case, several task levels can be considered. The first level is constituted by the
high-level tasks, such as "making a coffee" or "pouring a glass of water". These types of actions are the ones that
will most likely be triggered by the user through any relevant user-machine interface. One understand that these
tasks or goals are actually compound or even complex tasks which requires the execution of various sub-tasks. For
instance, "pouring a glass of water" will require (1) to fetch an empty glass, (2) to grasp a bottle of water, (3)
to pour the water from the bottle into the glass. These tasks of lower level can themselves be decomposed into
sub-subtasks such as "picking the glass from its location", "placing the glass at a given location"...

In order to narrow the problem, the focus was set on the task allocation only. This thesis does not cover the
task decomposition problem. Because of its importance, it will be explained in the report when presenting the ins
and outs of the task allocation issue; however, we shall assume that the input to the MRTA algorithm is given and
does not need any further pre-processing, i.e. the task decomposition is given and fixed. Because working with
high-level tasks is not meaningful nor relevant to perform adequate task allocation, the tasks we will work with are
the tasks from the following layers. In terms of task classification, they are simple or elemental tasks (see 3.2.1.3).
For the decomposition to be correct however, one need to consider some ordering constraints, in order not to pour
the water before the glass has been placed on the table!

It results that the constraints we will be working with are of the following types:

• capability constraints: because the robots are heterogeneous, certain tasks may be performed by some of
the robots and not others. For instance, in the AURORA setup, the MICO robot offers a greater variety of
grasp orientation and can reach the shelves, while the CAPDI is the only one that can move an object from
one side of the table to the other.

• capacity constraints: each robot can perform a limited number of tasks at the same time, merely one.

• precedence constraints on the tasks.

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 9

The final solution to be implemented should therefore be able to handle these constraints. Ideally, it should also
have the following characteristics:

• flexibility: the implementation should be flexible so that the system may be used on various setups with no or
only minor alterations.

• scalability: the system should be adaptable to a various number of robots and not be limited to the current
AURORA setup.

• robustness: the system should be fault-tolerant, i.e. in the case of a failure, either be able to recover and
manage the error, or properly warn the user.

• functionality: it should be possible to run the system online, with consumer-level equipment, so that it can
be used in practice.

Finally, the development should take into account that the MRTA solution has to be integrated in a wider system
with assistive purpose, which implies the possibility to have a human in the loop.

Work plan

The project was developed over a five-month period, following the steps described below:

1. Study of the state of the art: as an initial objective, it is required to review the literature about MRS and
MRTA in order to collect relevant data and research results. The information obtained from the bibliographic
research is indeed one of the cornerstones of the analysis of the problem and potential solutions.

2. Development/Enhancement of the multi-robot system: from the already-existing elements of code, de-
velopment of the code and modules necessary to control the different manipulators.

3. Design of the MRTA solution: from the study of the state of the art and the analysis of the problem
specificities and constraints, selection of the relevant paradigms and techniques to use.

4. Development of the MRTA system: actual development and implementation of the algorithms for the task
allocation process.

5. Evaluation: definition and set up of the test cases in order to evaluate the implemented tool and its charac-
teristics.

6. Work documentation and redaction of the thesis.

10

Chapter 3

State of the art

Before going into the details of the task allocation issue, it is necessary to understand where the problem comes
from. That is why the first section of the chapter is dedicated to multi-robot systems in general. After this short
overview, we will introduce the elements and methods essential to understand and solve the MRTA problem.

3.1 Multi-Robot Systems

As a large and broad problem will gain at being divided into smaller sub-problems, or a huge project in a list of
small and precise tasks, it is often preferable to operate with several simple robots than designing one super-powerful
robot. Working with a team of robots provides several advantages [16], the first one being the possibility to combine
the capacities and abilities of multiple robots to accomplish complex tasks that would be out of the reach of one
individual. Multi-robots systems will then often be more cost-effective that single-robot systems. What’s more,
they are usually designed in a distributed and decentralized fashion and often exhibit redundancy, which considerably
improves the robustness and the reliability of the global system, and enables parallelism. [9][13]

3.1.1 Overview and Classification

Broadly speaking, a MRS is a system composed by two or more robots, that can be similar or not. It is possible
to imagine a great variety of MRS. To better apprehend this topic and ease the research, several classifications have
been proposed so far.

Most papers classifies MRS according to some characteristic architectural features. For instance, in [12], Farinelli
et al. organize systems around two axes: the coordination dimension and the system dimension. The former
describes the type of coordination that is achieved (in terms of cooperation, knowledge, coordination strength, and
organization), while the latter gathers the most relevant system features (communication, team composition, system
architecture and team size).

Another classification, proposed by Darmanin and Bugeja in [9], organizes the MRS according to their application
domain. The authors distinguish between six main functions, most of which can be found in [12] as well:

• Surveillance, Search and Rescue is an application that has gained in popularity with the development of
unmanned aerial vehicles. These drones and other robots can for instance be used to patrol and monitor
outdoor areas or for humanitarian assistance purposes.

• Foraging and Flocking are usually associated with swarm robotics, taking inspiration in the natural behaviour
of bees or ants.

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 11

• Formation and Exploration are contrary requirements imposed to a team of robots. In Formation, the robots
must preserve a strict arrangement and manage to avoid obstacles. In Exploration, they should distribute
themselves to optimally cover the area.

• Cooperative Manipulation is required in box-pushing or similar problems, in which several robots should coop-
erate and coordinate to move an object.

• Team Heterogeneity refers to MRS platforms made up of heterogeneous components, usually selected for their
complementary abilities. In their paper, Darmanin and Bugeja also consider scenarios involving human agents.

• Adversarial Environment designates applications in which a team of robots has to compete against some
opponents. The context can either be sport/play, like in the RoboCup robot soccer competition, or military
missions, with interventions on the battlefield.

3.1.2 Challenges

Since the late 1980s, much effort has been put to develop multi-robot systems. These setups come of course
with challenges to be tackled, notably:

Control and coordination The burden of multi-robot systems lies in the control of the several entities. To really
make the most of this particular design, it is important to design control such that the different agents are used
optimally. In swarm exploration for instance, if the robots have to examine a set of given targets, it would be useless
to have all agents explore the same target. In another type of example, if one want several mobile manipulators to
lift a box and move it to another location, it is crucial that all robots act in a coordinated fashion. The control can
be performed by one master that rules the whole system or can be implemented in a distributed way.

Communication For the first point to work properly, it is essential to ensure good communication between the
different elements of the system. As for the control, there is no one-size-fits-all solution: communication can be
centralized by one top entity or be managed by each team member. In swarm applications, it can even be implicit:
the transmission of information is performed through the environment, as when insects leave pheromone trails to
mark explored routes [13]. Communication also becomes an important challenge in exploration task, where distance
between robots and battery levels can complicate the process.

Localization and mapping In many applications, it is necessary for the robots to know their environments in order
to compute paths and move from one target to another, to avoid collisions or to retrieve the localization of an object.
Depending on the problem, the robots can either be provided with extensive information about their surroundings
or may have to build their own map of the environment. The latter is known as mapping. Localization refers to
finding one’s self location in the environment. These two problems are of course not restricted to multi-robot setups.
However, it can be underlined that, when working with several robots, the paradigm changes a little. On the one
hand, each robot may have to know the localization of its peers, which can be required to avoid collisions but also to
perform certain tasks. On the other hand, depending on their perception abilities, the different team members can
help one another to retrieve data about the environment and/or locate themselves more accurately.

12 Master’s Thesis

3.2 Multi-Robot Task Allocation

3.2.1 The Multi-Robot Task Allocation problem

3.2.1.1 Problem statement

As mentioned in the previous chapter, coordination is one of the most important theoretical aspects of MRS. As
in any team, it is indeed crucial to think about how to distribute the work and payload in an optimal manner, in order
to be as efficient as possible and to make the most of the MRS. That is why multi-robot task allocation (MRTA)
has become a key research topic.

MRTA aims at answering the following question:

Which task(s), and in which order, should execute which robot to complete the goal?

Formally, the MRTA problem instance can be stated as: Finding an optimal allocation A of a set of tasks T to a
subset of robots R, that will be in charge of carrying it out:

A : T −→ R

3.2.1.2 Problem modeling

The MRTA problem may be modeled in various manners, among which one can find [16]:

• ALLIANCE Efficiency Problem: The ALLIANCE algorithm is an optimization algorithm used to solve NP
problems. The algorithm is inspired by the situation in which several tribes, each with given skills (which model
capacities), attempt to conquer necessary resources that can be found in the environment. The tribes should
carry out alliances to organize themselves and optimize the resources retrieval.

• Fair Division Problem: In this problem, the set of tasks T is expected to be divided into fair shares between R
robots, so that each of them may accomplish an equivalent job. In this problem, the tasks can be considered
indivisible and assign entirely to one agent only, or divisible. In that case, the division is not necessarily
homogeneous, which allows to work with heterogeneous robot team.

• Multiple Traveling Salesman Problem: It consists in a variant of the Traveling Salesman Problem, in which
there are several salesmen. The Traveling Salesman Problem is a classical optimization problem in which a
salesman should determine the best possible route to visit a list of cities, starting and ending at a the same
given origin city. In the multiple version, the aim is to determine for each of the salesmen a route so that they
all at least visit one city and return to the base city, while covering as a group all the cities and minimizing the
total cost (usually distance or time).

• Optimal Assignment Problem: The MRTA problem may be seen as an instance of a fundamental combinatorial
optimization problem. Given a set of tasks and a set of agents, one agent should be assigned to each task in
order to complete the whole set. Usually the problem requires to optimize some cost. If the number of agents
is equal to the number of tasks and the total cost is the sum of the cost for each agent, the assignment problem
is said to be linear.

The MRTA problem can be solved by merely looking for a feasible solution, i.e. one that enables to accomplish
the given set of tasks without violating any of the potential constraints. In most cases, however, the objective is also
to maximize/minimize some function of the reward/cost, in order to optimize the resources and/or the efficiency of
the system. Problems can naturally be multi-objectives. Among the common optimization objectives, one may
find [15]:

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 13

• Minimize the sum of path costs over all the robots (MiniSUM). The most common cost to be considered is
the distance traveled.

• Minimize the maximum path cost over all the robots (MiniMAX). Similarly, the objective can be to minimize
the makespan, i.e. the time needed to accomplish the complete set of tasks.

• Minimize the average per task cost of the path over all the robots (MiniAVE).

• Minimize lateness or tardiness.

• Maximize the number of tasks that are eventually completed.

• Minimize the number of robots that are used.

• Maximize the profit, i.e. the difference between the reward gained and the cost paid for each task.

As an example, consider the basic instance of the problem, in which any robot ri, i ∈ [1, m] may perform any
task tj, j ∈ [1, n] and can perform a maximum of Ni tasks. Let cij denotes the cost of ri performing tj and let aij be
the binary variable equal to 1 if tj is assigned to ri and 0 otherwise. Then the problem can be formulated as a linear
programming instance:

min
aij

m

∑
i=1

n

∑
j=1

aijcij

subject to 
∑m

i=1 aij = 1, ∀j = 1, ..., n

∑n
j=1 aij = Ni, ∀i = 1, ..., m

aij ∈ {0, 1} ∀i, j

3.2.1.3 Task decomposition

As mentioned in introduction when stating the objectives, it is assumed in the present work that the final task
decomposition is given to us. Still, it seemed important to give some insight about task decomposition, in order to
understand at which point in the process our work integrates itself.

The starting point of the problem is the necessity to achieve a given overall goal, for instance "move the box
B to point P" or "make a coffee". As one can see, these instructions are quite high-level, and they require more
than one action to be completed. The first part of the analysis is therefore to break down the global goal into more
specific subgoals. In [28], Zlot considers the following task decomposability properties:

• Decomposability: a task is decomposable if there exists a set of subtasks which, satisfying some specified
combinations, achieve the given task.

• Multiple decomposability: a task is multiply decomposable if it admits more than one possible decomposition.

• Full decomposability: a task is fully decomposable if there exists a set of simple subtasks that can be derived
within a finite number of decomposition steps.

Based upon these definitions, Zlot defines the task classification reported below:

• Elemental (or atomic) task: task that is not decomposable.

14 Master’s Thesis

• Decomposable simple task: task that can be decomposed into elemental or decomposable simple subtasks,
provided that there exists no decomposition of the task that is multirobot-allocatable.

• Simple task: task that is either an elemental task or a decomposable simple task.

• Compound task: task that can be decomposed into a set of simple or compound subtasks, provided there is
exactly one fixed full decomposition of the task.

• Complex task: task that is multiply decomposable and for which there exists at least one decomposition that
is a set of multirobot-allocatable subtasks. The subtasks may be simple, compound or complex.

One can easily understand that the task decomposition has an impact on the MRTA results and the performance
of the MRS. Therefore, an additional question to be answered prior to the allocation is this one: which simple tasks
should be considered? This is of particular importance when dealing with complex tasks that admit more than one
decomposition.

The initial user orders most likely consist in complex or compound tasks. In our work, it is assumed that they
have been split into elemental tasks, that make up the input to the system to be developed.

Note that this hypothesis implies another implicit assumption: it is that the final system follows the decompose-
then-allocate paradigm, in which the tasks are decomposed into subtasks that are then allocated. Another approach
is the allocate-then-decompose, in which the tasks are assigned to robots and then decomposed locally [16]. Both
approaches have drawbacks that the other does not present. For instance, the decompose-then-allocate technique
can be less flexible since it can lead to costly plans that cannot be changed. The allocate-then-decompose method,
however, can suffer from the fact the task decomposition will be dependent on the agent, yielding sub-optimal
solutions. Consequently, it may not be suited for heterogeneous teams - which supports our choice of approach.

3.2.2 MRTA problem taxonomies

The multi-robot task allocation problem is quite general, and can be found within a great variety of configurations.
It is therefore useful to be able to classify the specific problem to be tackled, in order to narrow down the scope
of possibilities. This is the object of the different taxonomies presented here.

3.2.2.1 Gerkey and Matarić’s taxonomy

Gerkey and Matarić were the firsts to present a formal study of MRTA problems, in an attempt to provide
grounding to the research on multi-robot coordination. Their work had a significant impact on the community, and
most of the research in MRTA is based on their original analysis. In [14], they proposed a general taxonomy of MRTA
problems along three axes (fig. 3.1):

• Single-task robots (ST) vs multi-task robots (MT): each robot can execute at most one task at a time
(ST) or some robots can execute multiple tasks simultaneously (MT).

• Single-robot tasks (SR) vs multi-robot tasks (MR): each task requires exactly one robot to achieve it (ST)
or some tasks can require multiple robots (MR).

• Instantaneous assignment (IA) vs time-extended assignment (TA): the information about the robots,
tasks and environment may only allow an instantaneous assignment of tasks (IA); if more information is
available, like how will tasks arrive over time, it may be possible to plan taking into account future allocations
(TA).

Each particular problem can then fall into a category denoted by a triple of two-letter abbreviation. For instance
ST-SR-IA refers to the Single-Task Robots. Single-Robot Tasks, Instantaneous Assignment problem. This is

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 15

Figure 3.1: Gerkey and Matarić’s taxonomy

the simplest situation which can be considered as an instance of the optimal assignment problem. In their publication,
Gerkey and Matarić dwelled on each category, analyzing the theory behind each problem. This also explains why
their work was such a founding one.

This taxonomy is however not exhaustive and do not consider some important problems. In their approach,
Gerkey and Matarić considered utility as the main measure to be optimized, where the utility is defined as:

URT =

QRT − CRT if R can execute T and QRT > CRT

0 otherwise

where QRT is the expected quality of execution and CRT the cost if robot R executes task T. One issue is the fact
that the utilities for different tasks may be interrelated, meaning the robots’ utility for a task may depend on the
other scheduled tasks: in their classification, Gerkey and Matarić assumed independent utilities.

Besides utility independence, a strong assumption of their work is the independence of tasks, meaning the task
execution sequence has no importance. This is a significant limitation, since it does not allow to consider constraints
among the tasks such as precedence or simultaneity ones. As a workaround, the authors suggest to consider a set of
constrained tasks as one large multi-robot task, admitting that this considerably complicates the problem.

3.2.2.2 Korsah et al.’s iTax

Since constrained tasks are quite common, further research has been carried since the publication of this first
taxonomy. Around a decade later, Korsah et al. presented a new taxonomy for MRTA, called iTax [17]. This
comprehensive taxonomy aims at taking into consideration the key issues mentioned above.

In particular, constraints are defined as functions that restrict the space of feasible solutions. They can be of
various types, for instance:

• Capability constraints: some robots may not be able to perform certain tasks.

• Capacity constraints: a robot can only perform a certain number of tasks at a time.

• Simultaneity constraints: two tasks must be performed at the same time.

• Non-overlapping constraints: two tasks must not be performed simultaneously.

• Precedence constraints: one task must be performed before another.

16 Master’s Thesis

Figure 3.2: iTax task allocation taxonomy [17]

• Proximity constraints: two tasks must be performed at a certain distance from each other.

These constraints can be used to perform task decomposition, following the terminology developed by Zlot in
[28] (see 3.2.1.3). As a consequence, a problem can be equivalently represented using either a set of independent
compound tasks, either a set of simple tasks related by some inter-task constraints.

To tackle the problem of interrelated utilities, the definition is adapted as follows:

URT =

QRT − CRT if subteam R can execute subset T

− inf otherwise

The iTax is built upon the original classification by Gerkey and Matarić. To the three axes, it adds another
dimension, namely the degree of interdependence of agent-task utilities. This dimension is characterized by a single
categorical variable which values can be:

• No Dependencies (ND): problem with simple or compound tasks that have independent agent-task utility.

• In-Schedule Dependencies (ID): problem with simple or compound tasks with intra-schedule dependencies,
i.e. the effective utility of an agent for a task depends on its other assigned tasks.

• Cross-Schedule Dependencies (XD): problem with simple or compound tasks with inter-schedule dependen-
cies, i.e. the effective utility of an agent also depends on the schedule of the other agents.

• Complex Dependencies (CD): problem that exhibits inter-schedule dependencies for complex tasks, i.e. the
dependencies are determined by the chosen task decomposition.

The final taxonomy is shown in figure 3.2: it consists in two levels. The first level is the additional dimension
proposed by Korsah et al., while the second level follows Gerkey and Matarić’s work. It is interesting to note that
not all the theoretical subcategories are represented; some are indeed not relevant.

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 17

3.2.2.3 Nunes et al.’s MRTA/TOC

More recently, Nunes et al. proposed a more specific taxonomy for task allocation problems with temporal and
ordering constraints [23]. The MRTA/TOC classification (which name stands for Multi-Robot Task Allocation with
Temporal and Ordering Constraints) is also based on Gerkey and Matarić’s earlier work. More specifically, it maintains
its subcategories but extends the time-extended assignment (TA) part by considering:

• on the one hand, temporal constraints in the form of time windows (TA:TW).

• on the other hand, temporal constraints in the form of synchronization and precedence constraints (TA:SP).

A time window constraint is a constraint on the start or finish time (or both) of a task that is expressed in the
form of a temporal interval. It usually sets the earliest start time and latest finish time of the task. Precedence
and synchronization constraints are constraints that specify an order for the task sequence. This second type of
constraints can be expressed implicitly by time windows, but it is generally not enough.

Additionally, one can distinguish when meaningful between:

• hard and soft temporal constraints. Hard temporal constraints are constraints that cannot be violated: if they
are executed out of their specified time, the gained utility is null. On the contrary, tasks with soft temporal
constraints may be started early or finished late with only an additional penalty that decreases the utility (until
it eventually reaches a hard deadline).

• deterministic and stochastic models. In the former, the output is completely determined by the initial conditions
while the latter takes into account uncertainty.

3.2.3 Methods for task allocation

Now that the study of the different problem taxonomies helped to clarify the problem, let’s present some of the
possible solutions for the actual task allocation process. This section is not intended as an exhaustive review, and
focuses on the most common methods.

Due to the complexity of the MRTA problem and the broad variety of problem instances, countless approaches
have been undertaken in an attempt to solve this question. A common criteria to classify the different techniques is the
team organizational paradigm, which distinguishes between centralized and decentralized methods [16]. Centralized
methods depend on a central controller to perform the task assignment. All the robots must maintain a connection
to the central unity, in order to send it all the information they have. On the contrary, in decentralized methods,
each agent participates to the task allocation process.

3.2.3.1 Centralized methods

In centralized methods, the controller, which can be one of the robot or a ground station, is responsible for the
entire MRTA process. Therefore, the autonomy of the other agents in the system is limited or null. This architecture
provides some advantages, among which the possibility to better optimize the efforts and resources to save cost and
time [16], as well as the fact that the controller usually has complete knowledge about the environment [11]. On the
other hand, this approach can be expensive in terms of communication resources. Above all, it suffers from a major
drawback which is the single point of failure, i.e. if the central entity breaks down, the whole system is impacted.
Also, fully centralized approaches are restricted to small-sized teams, since the central controller is a bottleneck of
the system.

18 Master’s Thesis

The main methods within centralized solutions are optimization-based approaches.

Optimization-based approaches: As mentioned in section 3.2.1.2, the MRTA issue can be modeled as an opti-
mization problem. Given some constraints that reduce the set of feasible solutions, the idea is to find the optimum
solution, i.e. the feasible solution that best fulfills the objectives. Optimization is a broad field of mathematics,
and there exist lots of algorithms. They can be deterministic, like the classical or numerical methods (such as
gradient-based methods, quadratic programming, etc), or stochastic.

When looking for an optimal solution, it may be possible in some cases to find an exact solution. Nonetheless, it is
most often impractical because of the computational issues. A naive exhaustive search for all the possible allocations
that satisfy the problem constraints is intractable: the worst case for |T| tasks and |R| robots indeed leads to a
complexity O(|T|!)|R|. More efficient methods include the branch-and-bound algorithm and its variants, or specific
tools designed to solve Mixed Integer Linear Programming (MILP) formulations. To overcome the computational
issues, it is possible to work with metaheuristic approaches or MILP-based heuristics. This approximate methods
are a good way to reduce the computational time, at the cost of a lower quality solution in general.

3.2.3.2 Distributed methods

Distributed setups are often preferred, since they can provide better reliability, flexibility and scalability. In case
one agent fails, the rest of the team may carry on, and a new agent can be more easily added. Less communication
is needed, which can be of interest when working with mobile robots or with few resources. In particular, auction-
based methods in which each robot maintains its schedule and computes its utility are a good way to cut down on
communication costs [15]. These advantages, like in all solutions, come with some weaknesses - the main drawback
of decentralized methods being the fact they can generate sub-optimal solutions [16].

Among decentralized approaches, the most popular methods are Distributed Constraint-Based (DCOP) and
auction-based ones.

Distributed Constraint-Based approaches: MRTA problems that include constraints may be formulated as Dis-
tributed Constraint Optimization Problem and therefore solved using the corresponding tools. Finding an exact
solution however is often impractical since it is NP-Hard. Consequently, most approaches are approximate DCOP
techniques [15].

Market-Based approaches: Among the most popular methods, one can find auction- and negotiation-based ap-
proaches, which are economically inspired. The algorithms mimic an auction, in which each agent receives the set
of tasks to be assigned and bids according to its utility. The auction-based algorithm can be summarized as follows
[11][16]. Each auction round consists in several phases:

1. Announcement: the set of available tasks is communicated to each agent by the auctioneer.

2. Submission: each robot computes a bid for each task put up for auction and sends its best offer to the
auctioneer. This bid is a number that reflects the utility or the cost if the robot executes the task.

3. Selection: all the bids are collected by the auctioneer which then selects the winning bidder according to the
optimization objectives.

4. Contract: the result is communicated to all the robots-bidders, and the winner can add the task to its schedule.

The process is repeated until all the tasks have been assigned. Depending on the exact process, the communication
needs are more or less demanding. Different auction schemes exist, for instance combinatorial auctions or single
sequential item auction, the latter being more parsimonious.

Market-based approaches have gained in popularity thanks to several advantages [16]. First, they work using local
information and the preferences/capabilities of each team member, which make them efficient. Since they are based

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 19

on a distributed paradigm, they offer robustness and scalability depending on their implementation. What’s more,
they can be easily implemented to work online, which allow to process dynamic arrival of tasks. Of course, they
are no miracle solution. As their main flaw, it should be mention that, because each agent is "self-interested", the
solution that is obtained can be sub-optimal. Additionally, it may be difficult to properly design the bid calculation
functions.

Summary

This chapter covered the review of the state of the art, introducing first multi-robot systems. Within the presented
classification and related challenges, our problem falls within the Team Heterogeneity category and tackles, notably,
the coordination challenge.

The second part of the chapter focused on the specific task allocation issue. The problem, which can be
formulated as finding an optimal allocation of a set of tasks T to a subset of robots R, can be modeled in various
ways and usually involves an optimization objective, for instance minimizing the completion time or the distance
covered. MRTA problems are generally classified using a three-axis taxonomy, which distinguishes between single- or
multi-task robots (ST/MT), single- or multi-robot tasks (SR/MR), and instantaneous or time-extended assignment
(IA/TA). This taxonomy, however, needs to be extended to take into account inter-task relations, in particular
precedence constraints. Finally, the chapter also presented the main methods to perform task allocation; among
them, auction-based solutions seem the most promising.

20

Chapter 4

Solution design

Taking into account the information from the state of the art reviewed in the previous chapter, and considering
the objectives stated at the beginning of this report, it is now possible to move on to the design of the MRTA solution
that better fits the AURORA needs. This chapter presents the chosen method considering the previous analysis. It
also dwells on the formal modelization of the MRTA problem instance with precedence constraints.

4.1 Objective reminder and problem classification

As mentioned several times previously, the MRTA problem is a complex issue to solve. That is why in this work,
the focus was only set on building a feasible schedule from a given set of elemental tasks. Let us briefly remind the
constraints to be taken into account:

• heterogeneous capabilities of the robots,

• capacity of the robots (at most one task),

• intertask constraints due to precedence relationships,

• presence of a human in the loop.

What is more, the system should exhibit the following characteristics:

• flexibility,

• scalability,

• robustness,

• functionality.

From the analysis of the different constraints, one can see that our problem falls within the general ST-SR-TA
category from Gerkey and Matarić. It is interesting to note that this classification would be totally different, had
we considered the higher-level tasks. In that case, the whole set of tasks would not be known prior to the system
start up and would be on the contrary dynamically updated according to the user’s needs. What’s more, a given task
would require the intervention of several robots. The problem would therefore have been labeled as ST-MR-IA.

As underlined before, because we work with the lower-level tasks, it is essential to take into account precedence
constraints. The gap in Gerkey and Matarić classification can be filled by using the enhanced taxonomy by Nunes et
al. which has been presented in section 3.2.2.3. Following [23], our problem can be categorized as ST-SR-TA:SP.

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 21

4.2 Solution

4.2.1 Chosen method

Despite the plethora of algorithms that can be found in the literature, several critical aspects are given little
consideration, in particular complex tasks allocation, dynamic task allocation, constrained task allocation and het-
erogeneous allocation [16]. Most examples actually deals with variant of the vehicle-routing problem (VRP), or make
strong hypotheses about the task independence that limit their reuse.

Now, our problem being an instance from the ST-SR-TA:SP category, it is crucial to be able to deal with
intertask constraints.

An interesting method is presented in [21], in which the tasks are divided in disjoint sets. To keep to the
precedence constraints, the sets are strictly ordered and each robot may perform at most one task per set. The
algorithm proposed relies on a distributed auction-based technique and is proven to be complete and sound. The
drawback of the method is of course that it strongly constrains the achievable precedence graphs. In particular, the
authors assume that all the tasks require the same amount of time to be completed.

For this thesis, it was decided to follow the work by McIntire et al. who presented in [22] an iterated multi-robot
auction process for precedence-constrained task scheduling. Despite certain drawbacks, auction-based methods are
indeed the most appropriate to work with heterogeneous teams, since they are the most suited to take into account
the different capabilities [16].

The algorithm proposed is proven to be sound and complete with a complexity T(n, m) that satisfies

O(
n5

m4) ≤ T(n, m) ≤ O(
n6

m4)

with m the number of robots and n the number of tasks. The experiments reported in the original paper are all
based on data sets created for the vehicle routing problem. Currently, it seems that no data set dedicated to MRTA
problem with task ordering constraints exists. Consequently, those data sets were modified to include precedence
constraints in order to properly test the algorithm.

At first sight, the VRP does not appear as linked to our problem. Still, two comments can be made. First, it is
actually possible to draw a parallel between the two problems. In the AURORA setup, it is indeed possible to assign
a location to each task: the glass should be placed at point A, the robot must reach point B to pick the bottle... and
so on. To a certain extent, it can therefore be conceived as similar to the VRP. Second, the paper has the advantage
to provide a general model for task allocation with any type of precedence constraints, meaning its application is not
restricted to VRP instances.

4.2.2 Problem formulation

4.2.2.1 Task set

Let T = (ti)i be the set of n tasks. Each task is associated a location where it will have to be executed. Some
precedence constraints between the tasks may exist: they are represented using a precedence graph Gp = (T, E). E
is the set of edges that are effectively used to represent the constraints: (ti, tj) ∈ E means that task tj is a successor
of task ti and can not be started before ti has been completed. Contrary to [21], any precedence graph may be
considered; however, one should note that for the problem to be feasible, Gp must be a directed acyclic graph.

22 Master’s Thesis

4.2.2.2 Robot set

Let R = (ri)i be the set of m robots. Each robot has an initial location. In the original paper, R is considered
to be homogeneous: this is obviously not the case in our scenario. To take into account heterogeneity, some
modifications are introduced to the algorithm. They will be explained later on.

4.2.2.3 Objective

As mentioned several times when presenting the general MRTA problem, the objective is to find a valid schedule
for task execution, that will consist in 1) partitioning T across R and 2) scheduling the tasks assigned to each robot
so that the precedence constraints are respected. The optimization objective will be to minimize the makespan, i.e.
the total schedule duration.

4.2.3 Mathematical model

Let’s consider the following decision variables:

• Z, the makespan

• Stj and Ftj , the start and finish times of task tj, j = 1, ..., n

• Ari
tj
, the binary assignment variables:

Ari
tj
=

1 if task tj is assigned to robot ri

0 otherwise

• Yri
tj
, the binary assignment variables:

Yri
tj
=

1 if task tj is the last task assigned to robot ri

0 otherwise

• Xri
tj ,tk

, the precedence ordering variables

Xri
tj ,tk

=

1 if robot ri performs task tj just before task tk

0 otherwise

Additionally, let’s consider:

• d(tj, tk), the travel time between the respective locations of task tj and task tk

• dur(tj), the duration of task tj

• Td a set of dummy tasks with no duration that are used to represent the starting position of each robot

• Tprec the set of task dependencies

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 23

The problem can then be formulated as the Mixed Integer Programming instance reported (again following [22])
in the equations below:

minimize Z (4.1)

subject to

Z ≥ Ftj, ∀tj ∈ T (4.2)

∑
ri∈R

Ari
tj
= 1, ∀tj ∈ T ∪ Td (4.3)

∑
tj∈Td

Ari
tj
= 1, ∀ri ∈ R (4.4)

∑
tj∈T

Yri
tj
= 1, ∀ri ∈ R (4.5)

∑
tj∈T∪Td ,tj 6=tk

Xri
tj ,tk

= Ari
tj

, ∀tk ∈ T, ri ∈ R (4.6)

∑
tk∈T,tj 6=tk

Xri
tj ,tk

+ Yri
tj
= Ari

tj
, ∀tj ∈ T ∪ Td, ri ∈ R (4.7)

Ftj + d(tj, tk)−M(1− Xri
tj ,tk

) ≤ Stk , ∀tj, tk ∈ T, ri ∈ R (4.8)

0 ≤ Stj ≤ ∞, ∀tj ∈ Td (4.9)

0 ≤ Ftj ≤ ∞, ∀tj ∈ T ∪ Td (4.10)

Ftj − Stj ≥ dur(tj), ∀tj ∈ T (4.11)

Stk − Ftj ≥ 0, ∀(tj, tk) ∈ Tprec (4.12)

Ari
tj
∈ {0, 1}, ∀tj ∈ T ∪ Td, ri ∈ R (4.13)

Yri
tj
∈ {0, 1}, ∀tj ∈ T, ri ∈ R (4.14)

Xri
tj ,tk
∈ {0, 1}, ∀tj, tk ∈ T ∪ Td, ri ∈ R (4.15)

• Constraint (2) defines the makespan Z as the global latest finish time (Z = maxtj∈T Ftj).

• Constraint (3) ensures that each task is assigned to exactly one robot.

• Constraint (4) ensures that each robot has exactly one dummy task.

• Constraint (5) ensures that each robot has exactly one final task.

• Constraint (6) ensures that each task that is not first in the schedule has a predecessor.

• Constraint (7) states that if robot ri does task tj, then tj is the last task in ri’s schedule or has a successor.

• Constraint (8) ensures that the robot has time to travel between executing two tasks.

• Constraint (9-10) states that the start and finish times of a task should be positive.

• Constraint (11) enforces the task duration to be respected.

• Constraint (12) ensures that the precedence constraints are respected, by enforcing the start time of a task to
be greater than the finish time of its predecessor.

• Constraint (13-15) define the admissible values for the binary assignment variables.

24 Master’s Thesis

4.2.4 Algorithm

4.2.4.1 Auction preparation

As mentioned previously, the algorithm developed in [22] is a form of auction algorithm. In the proposed solution,
the tasks are scheduled in batches. As a key hypothesis, it is assumed that in each batch, the tasks are pairwise
independent. This enables to schedule all the tasks from one batch without considering the scheduling of the other
tasks in the batch. The batch selection is performed by the auctioneer, which takes as input the precedence graph
Gp defined above. At each iteration, it selects the tasks that have either no predecessor or which predecessors have
all been scheduled. These tasks are said to be free. One can therefore split the precedence graph into layers (see
figure 4.1):

• the first layer is made by the free tasks TF;

• the second layer TL, which are the tasks to be auctioned next, corresponds to the free tasks in T\TF;

• the rest of tasks, which are hidden, is denoted as TH = T\{TF ∪ TL}.

This way of grouping the tasks ensures that the task pairwise independence assumption is respected and that no
precedence constraint links two tasks from a same batch.

Figure 4.1: Example of precedence graph and layer splitting

Figure 4.2: Example of precedence graph and layer splitting with priorities

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 25

Priorities: In the algorithm proposed by McIntire et al., tasks can also be assigned some numerical priorities in
order to bias the process. In that case, the auction batch is constituted of the free tasks which priority is greater or
equal than the highest priority of the second-layer tasks (see figure 4.2). This additional feature can be used to delay
some of the first-layer tasks, in order to complete earlier more important tasks that are currently not free.

4.2.4.2 Auction course

The main body of the algorithm is roughly the same than the process explained in section 3.2.3. Once the batch
of tasks to auction has been selected, it is broadcast to all bidders. To take into account heterogeneity, McIntire’s
solution is modified by adding the following step: before computing the bid for a task, the robot evaluates if it can do
it with respect to its capabilities. Each robot then computes for each feasible task in the batch and for each possible
position in its current schedule a bid.The best result of each robot is sent to the auctioneer, which selects the best
"offer" and communicates the winner to the robots. The winner updates its schedule and all participants remove the
assigned task from the tasks to be auctioned. The process is repeated until all the tasks from the auctioned batch
have been scheduled.

Partial schedules: In order to increase the robustness of the process, we add to the algorithm proposed by
McIntire the possibility to label tasks as unfeasible. If the offers received by the auctioneer are all null, it means
that no bidder may perform the tasks remaining in the current batch. If this happens, these tasks and their
successors are labeled as "unfeasible" and the auctioneer proceeds with the next batch. The successor tasks, that
cannot be performed, are not considered. For instance, in the example of figure 4.1, if no robot can perform task 3,
it is labeled as unfeasible, and so are tasks 6, 8 and 9. The process continues with a new batch composed of tasks 5
and 7.

As of now, the crux of the method has not been presented. It has been seen how the task independence assumption
in each batch can be respected - however, the precedence constraints should at some point be taken into account:
how can one make sure that they will indeed be satisfied? This is the object of the next paragraphs.

4.2.4.3 Task schedules

The process that has been described until now does not consider the ordering constraints on the tasks. The
auctioneer will play no role in this, and all the responsibility is delegated to the set of bidders. As it can be inferred
from the process explained above, each robot keeps in memory its own task schedule. The idea is therefore
that each robot makes sure that its schedule remains valid, considering the task start and finish times as well as the
possible travel time between locations.

The task schedules are represented using Simple Temporal Networks (STN), introduced in [10]. STNs are data
structures similar to graphs, in which nodes symbolize events and edges symbolize timing constraints on the events.

In a typical temporal constraint satisfaction problem (TCSP), one can consider for each event a continuous
variable X that represents a time point while the constraints are represented by a set of intervals. The constraints
can be unary, i.e. constraining the value of the variable Xi, or binary, i.e. restricting the domain of the distance
between two time points. Usually the point X0 represents the beginning of times, to which all time points are
relative. In particular, this enables to transform the unary constraint into binary constraints. The same approach
will be applied to the MRTA problem, in which a dummy task with no duration will be used to represent the initial
location and time.

The set of variables (Xi)i and unary/binary constraints forms a network that may be easily represented by
a directed constraint graph. When looking for a solution to the temporal problem, one therefore looks for an
assignment tuple X = (X1 = x1, ..., Xn = xn) that complies with all the constraints. If at least one such solution
exists, the network is said to be consistent.

26 Master’s Thesis

In our case, we shall consider only one interval per constraint. It is therefore possible to focus on what Dechter
et al. call a simple temporal problem (STP), which is an instance of the TCSP in which all edges are labeled by a
single interval representing a constraint of the form:

aij ≤ Xi − Xj ≤ bij ⇐⇒

Xi − Xj ≤ bij

Xj − Xi ≤ −aij

Considering the right-hand inequalities, it is possible to represent the STP directed constraint graph as another graph
in which the edges are doubled and labeled only by one scalar. This graph is called the distance graph.

If, in the distance graph, several paths may connect two nodes i and j, it is possible to verify that the distance
between two points must be smaller or equal to the shortest path dij between the two nodes.

As a consequence, it can be stated that a given STP is consistent if and only if its distance graph has no
negative cycles. This theorem is of interest and it will be used to determine if a robot schedule remains valid after
inserting a new task into it.

The corollary of this theorem is at least as important, since it enables to find a solution to the STP:
Let consider a consistent STP. Two consistent scenarios (i.e. solutions) are given by:

S1 = (d01, ..., d0n) (4.16)

S2 = (−d10, ...,−dn0) (4.17)

which respectively assign its latest and earliest possible time to each variable. For more details, the interested
reader can refer to [10].

Figure 4.3 shows a very simple example of robot schedule in which two tasks t1 and t2 have been inserted. The
nodes of the STN are made up by the start and finish times of the two tasks. The nodes that correspond to the start
and finish times of a given task are connected by an edge (in green) that specifies the task duration constraint: it
should elapse between the task start and finish at least dur(ti), hence the semi-infinite interval. The edge between
t1 and t2 (in yellow) specifies that t2 must start after t1, and not before it has elapsed enough time for the robot
to travel from one location to the other. For simplicity, the origin point has not been represented. Rather, self-loop
arrows (in blue) give the absolute value domain for each time point, i.e. start and finish times.

Figure 4.3: Example of robot schedule as a STN

As explained above, it is possible to associate to this network a distance graph: it can be seen in figure 4.4. Two
representations are given: the first one is the graphical representation showing the treatment of the edges/constraints;
the second is the matrix form D = (dij) of the distance graph. In the latter, the coefficient dij represents the distance
from node i to node j.

Because of its importance, we have in this section lingered over the STN theory and how we shall rely on it,
following [24]. Going back to the MRTA problem, let’s sum up the main steps to maintain the task schedule:

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 27

(a) Graph

0 St1 Ft1 St2 Ft2
0 0 LSt1 LFt1 LSt2 LSt2

St1 -ESt1 0 ∞ ∞ ∞
Ft1 -EFt1 -durt1 0 ∞ ∞
St2 -ESt2 ∞ -TTt1t2 0 ∞
Ft2 -EFt2 ∞ ∞ -durt2 0

(b) Matrix representation

Figure 4.4: STN distance graph

• Schedule representation:

– the nodes of the STN represent the start and finish times of each task assigned to the robot.

– the duration of a task constrains the time between its start and finish times.

– the travel time of the robot constrains the time between the finish time of a task and the start time of
its successor.

– additional interval constraints specify the absolute values of the start and finish times of a task.

• Task insertion:

– new task assignment are evaluated by checking for each possible insertion point in the schedule if the new
schedule is valid.

– the schedule is considered valid if no negative cycle occurs in the associated distance graph.

• Bidding:

– the bid associated to a schedule is obtained by solving the STN and computing the corresponding
makespan.

To respect precedence constraints, each robot sends at the end of an auction iteration the earliest finish times
f of all the tasks in its schedule. The content of f serves two purposes:

• first, it is used to introduce new constraint in the STN, so that the task once scheduled may not be delayed;

• second, it is returned to the auctioneer which uses this information when updating the precedence graph.
When a task is moved from TL to TF in order to be auctioned, its associated possible earliest start time value
is updated to the latest finish time of its parent tasks.

This ensures that a task may not start before its predecessors has finished. What’s more, it should be underlined that
the exchange of information through the earliest start time and finish time vectors enables to respect the precedence
constraints even if a task and its parents/children are not assigned to the same agent.

28 Master’s Thesis

4.3 Algorithm pseudo-code

As a conclusion to this chapter, we provide the pseudo-codes for the different parts of the algorithm, as well as
flowcharts describing the auction process for the auctioneer (fig. 4.5) and the bidders (fig. 4.6).

Figure 4.5: Auction process flowchart - auctioneer

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 29

Figure 4.6: Auction process flowchart - bidder

Algorithm 1 Auctioneer’s algorithm
1: procedure Auctioneer(Precedence graph G = (T, C), bidders R)
2: TS, TU ← ∅, TF ← f ree(T), TL ← f ree(T \ TF), TH ← T \ (TF ∪ TL)
3: F ← 0, PC ← 0
4: while |TS| < |T| do
5: c← max(priorities(TL))
6: Tauct ← t ∈ TF : prio(t) ≥ c
7: Send Tauct, PC
8: count← 0
9: while count < |Tauct| do

10: Receive bids
11: if all bids == null then
12: for all unassigned task t ∈ Tauct do
13: Move t, successors(t) −→ TU
14: Tauct ← Tauct \ t
15: end for
16: else
17: Select lowest bid
18: Send winner
19: count← count + 1
20: end if
21: end while
22: F ← Receive finish times
23: for all t ∈ Tauct do
24: Update precedence graph(t)
25: end for
26: end while
27: end procedure

30 Master’s Thesis

Algorithm 2 Update precedence graph
1: procedure Update precedence graph(task t)
2: Move t: TF −→ TS
3: for all t′ ∈ TL∩ children(t) do
4: if parents(t′) ⊂ TS then
5: Move t′: TL −→ TF
6: PC[t′]← maxtp∈parents(t′)(F[tp])

7: for all t′′ ∈ TH∩ children(t′) do
8: if parents(t′′) ⊂ TS ∪ TF then
9: Move t′′: TH −→ TL

10: end if
11: end for
12: end if
13: end for
14: end procedure

Algorithm 3 Bidder r’s algorithm for each iteration
1: procedure Bidder(Tauct, PC)
2: while |Tauct| > 0 do
3: m← ∞, tbid ← ∅
4: for all t ∈ Tauct do
5: if is_ f easible(t) then
6: for all position p in schedule S do
7: S∗ ← try insert t at p in S
8: if is_consistent(S′) and makespan(S′) < m then
9: m← makespan(S′), tbid ← t

10: end if
11: end for
12: end if
13: end for
14: Send m, tbid
15: rwin, twin ← Receive winner
16: if rwin == r then
17: Insert twin in S
18: else if rwin == none then
19: Tauct ← ∅
20: end if
21: Tauct ← Tauct \ twin
22: end while
23: F ← Tighten schedule
24: Send F
25: end procedure

Algorithm 4 Tighten schedule
1: procedure Tighten schedule(finishing times F, latest finish times LF, schedule S)
2: for all t ∈ S do
3: e f t← compute earliest finish time for t
4: F[t]← e f t
5: LF[t]← e f t . Add constraint to avoid delays
6: end for
7: end procedure

31

Chapter 5

Solution implementation

The present chapter is dedicated to the implementation of the solution designed in the previous chapter. We
will first describe in more details the AURORA setup, starting with the different hardware and software tools that
are available. Next, some specific details of the AURORA implementation will be presented. The remaining of the
chapter will focus on the specific implementation of the algorithm introduced previously.

5.1 Robots

5.1.1 Capdi

(a) Structure frame (b) Arm with Robotiq adaptive gripper

Figure 5.1: The CAPDI robotic arm

Architecture The Capdi robot is a custom robot that has been designed, built and rebuilt within the laboratories
of the UPC, first for the INHANDS project. It is a Cartesian three-DOF robot. It is composed of a vertical telescopic
arm that allows moves along the z-axis mounted on a structure built of two frames that allow moves in x- and
y-direction. The structure is attached to the ceiling, as it can be seen in figure 5.1a. Its simple design enables to
adapt it easily to the user’s kitchen.

32 Master’s Thesis

Hardware The robot movements are controlled using three MERCURY motion controller boards from IngeniaCAT.
The communication between the central computer and the hardware is performed over a CAN-BUS connection, using
the PCAN Driver for Linux developed by the company Peak System (version 8.5.1).

End-effector The architecture of the Capdi makes it well suited to move objects from one side of the kitchen to
the other or to supply the required products to the user. To this purpose, Capdi is equipped with Robotiq’s 3-Finger
Adaptive Robot Gripper (figure 5.1b), which comes along dedicated ROS packages. The hand is a versatile tool that
provides four grip modes ("Pinch", "Wide", "Scissor" and "Basic") and is able to manipulate objects from various
shapes and masses (see table 5.1). It is worth noting that the gripper is fixed to the wrist of the Capdi as it is and
that its orientation is therefore constant - meaning that objects can only been grasped in one manner (the orientation
of the gripper is constant).

Specification Value
Gripper opening (mm) 0-155
Gripper weight (kg) 2.3
Object diameter for encompassing (mm) 20-155
Max. recommended payload encompassing grip (kg) 10
Max. recommended payload, fingertip grip (kg) 2.5
Grip force, fingertip grip (N) 30-70

Table 5.1: Specifications of the Robotiq’s 3-Finger Adaptive Gripper

5.1.2 Kinova’s Mico

The kitchen is also equipped with a MICO robotic arm from the Canadian company Kinova, which can be seen in
figure 5.2. It is part of their JACO robotic arm range which has been specifically designed for the Assistive Robotics
and Service Robotics fields [3].

Figure 5.2: Kinova’s MICO robotic arm

Architecture The Mico robot is a six-DOF robotic arm that is able to mimic the movement of the human shoulder,
elbow and wrist. The MICO version is slightly smaller than the JACO arm and is made of reinforced plastic instead
of carbon fiber. Still, it is a lightweight robot that can easily be integrated to various setups. Among other

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 33

Figure 5.3: Kinova’s KG-2 gripper

applications is for instance the arm being mounted on a wheelchair to provide additional assistance to disabled users.
Its specifications are presented in table 5.2.

Control Various interfaces can be used to control the arm: a Software Development Kit that includes both high-
and low-level APIs, a joystick, and ROS packages, which is the option of interest in our case. The provided tools
offer various modes to control the robot: force/torque control or trajectory control, which can be position, velocity or
admittance (i.e. force-reactive) control. For each mode it is possible to choose between Cartesian or angular control,
i.e. to specify the desired translation and orientation or the position of each joint.

Hardware The Mico is connected to the central unit through USB 3.0. The controller is integrated in the base of
the robot, which makes this latter quite compact. The arm embeds various sensors:

• in the base: supply voltage, temperature and accelerometer.

• in each actuator: optical position encoder, absolute position, torque, current, temperature and accelerometer.

• in each fingers: current, temperature, optical position encoder.

End-effector The MICO at the GRINS laboratory is equipped with Kinova’s KG-2 gripper, which is a two-finger
pliers-like gripper (figure 5.3). The fingers are flexible and under-actuated, which enables the robot to adapt to the
shape of the object to be manipulated. The specifications of the gripper are presented in table 5.3.

Specification Value
Payload (kg) 2.1
Reach (mm) 700
Max. linear speed (mm/s) 200
Robot weight (kg) 4.6

Table 5.2: Specifications of the Kinova’s MICO2 robotic arm

Specification Value
Weight (kg) 0.556
Gripping force (N) 25
Object diameter range for cylindrical grip (mm) 55-100
Max. opening, at fingertip (mm) 175
Min. object diameter for object-on-the-ground pinch (mm) 8

Table 5.3: Specifications of the Kinova’s KG-2 gripper

34 Master’s Thesis

5.2 Software

The whole project has been developed using the ROS framework, with C++ and Python as main program-
ming/scripting languages, and runs on Ubuntu 16.04 (Xenial). The following sections are more specifically directed
to readers unfamiliar with this technology, and aim at briefly presenting ROS as well as the most relevant packages
(MoveIt!) that have been worked with.

5.2.1 The Robot Operating System (ROS) framework

The acronym ROS stands for Robot Operating System [25]. This open-source “operating system” provides a set of
frameworks for robot software development, including standard services such as hardware abstraction, low-level device
control and message exchanges between processes1. It is a handy way to manage the various modules (packages)
that will be part of the robot software. Many tools and libraries are also available to help developers write, build and
run code across several machines. The framework is intended to be flexible in order to encourage code reuse and to
simplify the development of complex yet robust robots.

ROS was first developed in 2007 by the Standford Artificial Intelligence Laboratory as a mere framework intended
to be used in the STAIR project. The framework was then developed at Willow Garage, and from 2013, by the Open
Source Robotics Foundation 2. As of now, a total of eleven ROS distributions have been released. The AURORA
setup relies on the Kinetic Kame release of May, 2016. The list of distributions as well as there end-of-life date may
be found at3. Currently, only Unix-based platforms may be used.

The following paragraph is intended as a quick and thus highly non exhaustive introduction to ROS concepts.
Detailed information may be found in abundance on the ROS Wiki website 4. Some tutorials are also available at 5.

ROS is all about Nodes and Topics.

• Nodes are instances of executables. A node may be seen as the receptacle of one subprogram. Nodes are
independent from one another and can run on different computers. Nodes may provide Services or Actions,
which can be seen as functions at the system level. As an example, one can imagine a node A in charge of the
global behaviour of a robot, which sends a request to a node B that provides an action to move the arm of the
robot.

• Topics ensure communication. A node may publish messages on a topic, to broadcast information, and
subscribe to other topics in order to receive information. Topics are a way to carry information and data in a
“many-to-many” architecture (a topic may have several publishers and/or several subscribers). The messages
are data structures defined in .msg files, that may contain various data types (booleans, floats, ints... or custom
types).

At the beginning, ROS core process, the master, is launched. The master knows the list of the nodes and put
them into contact. The nodes are then able to communicate directly through the different topics. ROS is based on a
client-server distributed architecture, also meaning that the nodes may run on different machines, with a multi-master
synchronization. The global parameters of the robot are defined within the parameters server, which consists in a
memory shared by all nodes (to ensure parameters consistency).

1http://wiki.ros.org/ROS/Introduction
2http://www.ros.org/history/
3http://wiki.ros.org/Distributions
4http://wiki.ros.org/
5http://wiki.ros.org/ROS/Tutorials

http://wiki.ros.org/ROS/Introduction
http://www.ros.org/history/
http://wiki.ros.org/Distributions
http://wiki.ros.org/
http://wiki.ros.org/ROS/Tutorials

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 35

All those elements (nodes, messages, services, as well as config and/or launch files) are gathered within packages,
which enable modularity.

ROS comes with many tools. In particular, we will use RViz in order to simulate and visualize the system - which
greatly eases the development and testing process. The kitchen environment can be recreated so that the simulation
matches the reality, see figure 5.4.

Figure 5.4: Recreation of the real environment in RViz

5.2.2 MoveIt!

5.2.2.1 Overview

The MoveIt! Motion Planning framework is a set of packages for ROS that was designed to provide tools for
motion planning and collision management [5], targeting manipulation applications in industrial, commercial and
research environments [6]. It was originally developed in 2011 by S. Chitta, I. Sucan, G. E. Jones, A. Pooley, S.
Gedikli, and D. Hershberger at Willow Garage. The growth of the project is now supervised by a multi-background
team of maintainers and core contributors, under the leadership of PickNik Consulting.6 MoveIt! is entirely open-
source and all the code is available on the dedicated github repository7.

MoveIt! is written in C++ and includes some Python bindings. By default, it relies on ROS build and messaging
systems. In order to provide high flexibility and ease code reuse, most of the functionalities are implemented as
plugins, also called capabilities. The basic plugins that comes along MoveIt! are listed in table 5.4.

One of the challenge in developing robotic software is the heterogeneity of the platforms - with their specific
architecture, morphology, sensors, actuators, communication channels etc. One of the advantage of MoveIt! is the
fact it is robot-agnostic [6]. It can therefore be used with any robot once it is provided with the relevant configuration
files. These configuration files are used to define the architecture of the robot and its control. They can be generated
quite easily using a convenient GUI tool called the MoveIt! Setup Assistant.

6https://moveit.ros.org/about/
7https://github.com/ros-planning/moveit

https://moveit.ros.org/about/
https://github.com/ros-planning/moveit

36 Master’s Thesis

Plugin Functionality
MoveGroupCapability base class to build plugins upon
KinematicsBase implementing forward and IK solver
PlannerManager base class for planners
PlanningRequestAdapter adjusting motion planning request/result
MoveItControllerManager interface to robot controllers
ControllerHandleAllocator handlers for action based controllers
MoveItSensorManager integrating sensor data to the planning process
CollisionPlugin collision detection

Table 5.4: MoveIt! default capabilities (plugins)

As proof of its usefulness, official MoveIt! packages have been created for more than a hundred robots8, including
ones from well-known companies such as Universal Robots, Kinova, Kuka, Fanuc, ABB etc. In the particular case
of the CAPDI, since it is a custom robot, the MoveIt! files were generated in a previous project using the Setup
Assistant.

5.2.2.2 Architecture

Figure 5.5 represents the general, high-level architecture of the system. In the center in pale yellow is the
move_group node, which constitutes the core of the framework. It is indeed employed to wrap up all the func-
tionalities offered by MoveIt! through the use of ROS Services and Actions (depicted as red and blue arrows) or
topic communication (green arrows). The scheme shows well how MoveIt! can be integrated in the general ROS
environment:

• Blue boxes illustrate communication with the robot. The move_group node is able to manage movement
execution with the robot by sending action requests to the controllers; by subscribing to topics, it has access
to the sensor data.

• The pale green box represents the ROS Parameter Server, from which all the information about the archi-
tecture and morphology of the robot as well as other configuration parameters may be retrieved.

• Finally, the grey box encapsulates all the interfaces available for the user, which can be APIs or GUIs.

5.2.2.3 Motion planning

Motion planning in MoveIt! is performed using external motion planners that are interfaced through a plugin,
which therefore allows the use of various tools from different libraries. As primary source, MoveIt! uses the planners
from the open-source Open Motion Planning Library (OMPL). The OMPL (developed between others by Ioan Sucan,
also author of MoveIt!) provides several state-of-the-art sampling-based motion planning algorithms [27], such as
PRM, most RRT variants, KPIECE...

Through the plugin, the user can send a motion plan request specifying the desired location of the end-effector or
joint position of a group. The user also has the possibility to declare constraints on position, orientation, joint value...
that should be observed. If achievable, the move_group returns a trajectory (i.e. path, velocities and accelerations)
to reach the target.

The whole motion planning pipeline combines the motion planner itself with planning request adapters that are
used to pre-process the request or post-process the result. By default, MoveIt! includes several adapters that are
summarized in table 5.5.

8https://moveit.ros.org/robots/

https://moveit.ros.org/robots/

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 37

Figure 5.5: Architecture of the MoveIt! framework: Overview

Planning adapter Functionality
FixStartStateBounds fixes the joint start state to be within the limits specified in the URDF
FixWorkspaceBounds specifies a default workspace for planning
FixStartStateCollision samples a collision-free configuration near start state if needed
FixStartStatePathConstraints uses a constraint-satisfying configuration near start state if needed
AddTimeParameterization applies velocity and acceleration constraints to generated motion plans

Table 5.5: MoveIt! default planning adapters

5.2.2.4 Planning scene and collision checking

In order to perform accurate motion planning, it is crucial to have good knowledge and representation of the
surrounding world as well as the state of the robot. In MoveIt!, all this information is stored in the planning scene
which is maintained inside the move_group node by the planning scene monitor. The latter listens to the various
topics on which are published the world geometry, the joint states and the sensor data if any (figure 5.6).

The world geometry is built as an occupancy map using user input and/or sensor information. The occupancy
map is maintained through an octomap that can be passed to the Fast-Collision Library that MoveIt! uses to compute
collision checking operations. MoveIt! can also work with collision objects built from meshes or primitive shapes
(boxes, cylinders, etc.).

To reduce the computational burden that collision checking represents, it is possible to ignore some collision
checks using the Allowed Collision Matrix that stores a binary value for pairs of bodies (objects or robot links). A
value of 1 means that it is not necessary to check for the collision between the two corresponding bodies.

5.3 The AURORA setup

Chapter 3.1 presented some of the most relevant insights about MRS. With this in mind, let’s focus on the setup
used in this project. The first part of the work was indeed to build up the MRS from what was available at the start
of the thesis. Subsection 5.3.1 presents the cornerstones of our MRS, in relation with the features and concepts
presented in the previous section of this chapter. The following subsections linger over some specific details.

38 Master’s Thesis

Figure 5.6: Architecture of the MoveIt! framework: the Planning Scene Monitor

5.3.1 General functioning

As presented in section 5.2, the system is developed using the ROS framework. The source code of the project
is distributed in several packages:

• The capdi_metapack is a metapackage that gathers all the packages containing the description files of the
CAPDI as well as the code for the hardware and for the control interface.

• The mico_metapack is a metapackage containing the packages developed by Kinova to control the MICO
robotic manipulator arm.

• The robotiq_metapack is the metapackage containing all the code to use the Robotiq Gripper attached to
the CAPDI.

• The cobot_metapack is the core metapackage that implements all the code related to the MRS. The packages
in this metapackage depends (among others) on the previously mentioned packages.

An essential requirement of the system is to be able to plan trajectories that are collision-free, in order to preserve
the integrity of the system itself, but also avoid damaging the objects or hurting the user. That is why we use the
MoveIt! plugin, presented in the previous section. To be able to work with MoveIt! in a satisfactory way, each of
the available robot is defined as a move group in the general description file of the robot.

Because we are using ROS, all the control schemes are implemented within different packages, mainly using
action servers which will use MoveIt! features to plan and execute paths. Taking advantage of the abstraction layer
provided by ROS, the work is limited to computing and sending the adequate trajectories; we shall not go deeper
into the lower levels of control.

As explained in section 5.2, the communication between the different elements of the MRS happens through
topics, on which are sent messages, service calls/responses and action requests/results. In the current state of the
setup at the laboratory, both the MICO and the CAPDI are connected to the same computer. Therefore, it is only
necessary to run one instance of ROS, and the whole system is managed by the same ROS Master. Note that it is
possible to work with different machines, in a multi-master configuration (which of course complicates the setting
up, in particular due to synchronization issues).

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 39

5.3.2 Environment management (Localization and mapping)

The states of the robots are maintained by ROS thanks to the data coming from the various sensors/encoders and
the architecture information. From the joint state values that are retrieved, the end-effector position and orientation
can indeed be easily computed.

The robots that are used are blind, meaning they do not have any sensors that allow them to get information
about their environment. Instead, the state of the real world is maintained through the MoveIt! planning scene. The
planning scene gathers information from three sources:

• the initial model (i.e. the kitchen, see section 1.2),

• the joint values of the robots that are published on the joint_state topic,

• the object recognition process.

Let’s briefly discuss the last point. To perform object recognition, the kitchen is equipped with three RGB-D
cameras, two Microsoft Kinects and one Asus Xtion. These two types of cameras are similar. They are cheap
consumer-level sensors which provide both RGB images and a depth map of the scene. The data is then processed
by the object recognition algorithm that performs several actions:

• plane segmentation, to identify the table and shelves,

• proper object recognition using a trained support vector machine (SVM),

• table partitioning as a grid to generate an occupancy map

The recognized objects (see figure 5.7 for some examples) are then published as collision objects in the planning
scene. To this purpose, one node subscribes to the topics on which are published the recognition results and updates
the planning scene accordingly.

Figure 5.7: Examples of objects in the kitchen setup

5.3.3 Grasping

Grasping may appear as quite simple at first glance, since it is an action that most of us human beings perform
naturally everyday. Without thinking much or thinking at all, we are able to seize all kinds of objects that exhibit
great diversity in shape, texture, size and weight. In the considered MRS, the way the CAPDI robot grasps an object
is not an issue, since its architecture inherently limits the number of available configurations (there is only vertical
accessibility). The MICO robotic arm, however, is supposed to be able to mimic a human arm and is able to reach
objects with a great variety of configurations.

40 Master’s Thesis

Grasping has been studied for many years by the robotics community. When it comes to implementing what
seems natural to us in a robot, it indeed turns out to be a much more complex problem. Until recently, robots were
more known for their clumsiness than their manual dexterity. The progress made in the past few years in Artificial
Intelligence and Machine Learning have changed the paradigm, and many applications have gained from using data-
driven approaches such as Reinforcement Learning [18][20]. Since it is not the subject of this thesis, it was decided
to only implement a quite simple grasping feature for the MICO robot. The approach is based on the fact that the
robot is mainly manipulating box-shaped or cylindrical objects. The grasp pose always sets the gripper perpendicular
to one of the lateral or the upper face of the object. Therefore, twelve grasp approaches are considered. Figure 5.8
shows schemes of the different approaches. The nomenclature is explained in table 5.6.

Figure 5.8: Grasp approaches for the MICO robot

The figure shows six of the grasp approaches defined for the MICO robot with their names. The blue and red arrows
represent respectively the z- and x-axis of the reference frame attached to the end-effector. The other six configurations

(names between parentheses) are obtained by a rotation of π radians around the z-axis.

#1 Gripper w.r.t surface #2 Object grasped #3 Gripper x-axis pointing

h parallel to support surface

b from back

o/u down/upf from face
l from left
r from right

v orthogonal to support surface
d depthwise l left

r right

w widthwise b back
f face

Table 5.6: Grasp nomenclature

Each grasp configuration is identified by a three-letter name; each letter encodes information about the pose.

The grasping feature was implemented as a C++ library that is used by the action servers for the MICO. The
main function returns a vector containing three poses that constitutes a complete pick (resp. place) approach: the
pre-grasp, grasp and post-grasp (resp. pre-place, place and post-place) poses. These poses depends on the type
of grasp. Apart from the twelve configurations mentioned earlier, the grasp can also be configured by passing two
arguments:

• The grasp_height enables to change the height at which the object will be grasped. It takes values between
-0.5 and 0.5, 0 being the default grasp at half the object.

• The grasp_depth specifies how deep is the grasping, i.e. for instance if the object is grasped using the
complete fingers or only with the tip of the fingers.

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 41

5.3.4 Kinematics plugins

In order to perform motion planning, it is necessary to be able to compute the inverse kinematics (IK), i.e. for a
given pose in the 3D space, find if possible adequate joint values for the robot.

Having a robust and reliable kinematics plugin is important for two reasons. The first one is that the application
considered here implies that we mainly work by specifying pose and not joint targets. The second one is the fact that
when specifying path constraints (whether orientation or position ones), MoveIt! reasons in the space of possible
positions of the end-effector. Therefore, IK computations are performed for every sampled state.

The default Kinematics plugin integrated in MoveIt! uses the Kinematics and Dynamics Library (KDL) by Orocos9.
The Inverse Kinematics solver provided by the KDL uses the common inverse Jacobian method with convergence
algorithms based on Newton’s method. The main issue is that in presence of joint limits, as it is the case for the
MICO robotic arm, the KDL implementation turns out to have poor performances. As an alternative, it was therefore
decided to use the TRAC-IK plugin[1], which performs much better (see table 5.7 for some results).

Chain DOFs Orocos’ KDL TRAC-IK
Solve rate Avg Time Solve rate Avg Time

Baxter 7 60.98% 2.22 ms 99.44% 0.50 ms
Jaco2 6 26.22% 3.79 ms 99.61% 0.50 ms

Table 5.7: Comparison between Orocos’ KDL and TRAC-IK solvers 10

This solver runs two IK computations in parallel. The first one is an extension of the KDL’s Newton-based
convergence algorithm that takes into account joint limits. More precisely, it escapes local minima due to joint limits
by performing random jumps. The second thread runs a sequential Quadradic Programming nonlinear optimization
process which better manage joint limits. The plugin offers four modes to know which solution to return:

• Speed mode returns the first solution that is found (either by the first or the second method).

• Distance mode returns the solution that minimizes the sum of squared error from the seed.

• Manipulation1 mode returns the solution that maximizes
√

det(J ∗ JT), where J is the Jacobian matrix.

• Manipulation2 mode returns the solution that minimizes cond(J).

Apart from Speed (which is the default mode), all modes run for the full timeout, which is left at its default value,
i.e. 5ms. Because the first solution that is returned is sometimes unsuitable for object manipulation, we discard the
use of the Speed mode. Among the remaining options, all have been tried without noticeable difference, so for now,
any mode seems suitable.

For the CAPDI robot however, the implemented kinematics plugin is based on KDL. Since the CAPDI kinematic
chain is much simpler than the one of the MICO arm, working with KDL yields results that are good enough.

5.3.5 Planner for motion planning

Among the different planners that are available in the OMPL library, it was decided to work with the popular
RRT Connect algorithm [19]. The RRT Connect is a variant of the RRT method. In the latter, at each iteration,
the tree is extended by adding a new vertex that depends on a randomly-selected configuration q. It the configuration
is not free, it is rejected. If it is, the algorithm selects the vertex in the tree qnear that is nearest to q and:

• if q is closer than an incremental distance ε, q is connected to qnear (situation: REACHED).

9http://www.orocos.org/kdl
10https://bitbucket.org/traclabs/trac_ik/src/master/

http://www.orocos.org/kdl
https://bitbucket.org/traclabs/trac_ik/src/master/

42 Master’s Thesis

• if the distance to q is greater than ε, the tree is grown in direction of q by adding a vertex that satisfies the
distance constraint (situation: ADVANCED).

The process can be seen in figure 5.9. Since the probability that a vertex is selected to perform the extension
is proportional to the area of its Voronoi region, the RRT is biased to rapidly explore. The RRT Connect variant
introduces two major changes. First, it relies on a new heuristic to perform the tree extension, the Connect heuristic.
Basically, if the randomly-sampled configuration q is reachable, the tree is repeatedly extended until q is REACHED.
Second, two trees are grown, using the initial configuration qinit and the goal configuration qgoal as seeds. The two
trees are extended alternatively, and, after each extension step, the algorithm tries to connect both trees.

Figure 5.9: The extend step in the RRT algorithm [19]

5.4 MRTA solution implementation and integration within AURORA

Now that we have presented the different components and some of the technical choices for the multi-robot
system that will be used, let’s describe more in depth the actual MRTA system. To integrate it to the AURORA
setup, the code was developed within the ROS framework, using as main language C++. This section will present
the architecture of the MRTA system. Since this would be of little interest, we shall not cover every line of code but
on the contrary, focus on the most interesting and relevant points.

5.4.1 General organization

The system was developed as a ROS metapackage, that gathers two packages:

• the mrta_pia package contains the core files for the MRTA system, i.e. the definition and implementation of
the different classes as well as the auctioneer and bidder nodes.

• the mrta_pia_msgs package contains, as it can be inferred from its name, the ROS messages that will be used
during the auction process to exchange information between the different parties.

The source and header files gathered in the mrta_pia package are classified within three folders:

• the mrta_pia folder contains the files in which are defined the C++ classes for each basic component of the
system: the graph, the tasks, the bids, the STN and the robot representation. Theses classes all serve to define
data structures with useful attributes and associated methods. This folder also contains the definition of the
auctioneer and bidder classes that will be presented in more details in another subsection.

• the utils folder contains useful auxiliary functions. In particular, the file stn_utils.cpp implements functions
to propagate and evaluate the consistency of a STN, using Floyd-Warshall algorithm.

• the test folder contains utility functions that were used when testing the system (see chapter 6 about results).

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 43

The content of each folder is compiled as a library, named mrta_pia_lib, mrta_pia_utils and mrta_pia_test
respectively, using the command add_library() in the CMakeLists.txt file of the mrta_pia package. This means
that none of these files contain a main function. The only files of the package that yield actual executables are the
auctioneer.cpp and bidder.cpp, which initialize ROS nodes to run instances of the Auctioneer and Bidder
classes. It is possible to run as many bidder nodes as necessary, and the solution is not limited to the Aurora setup:
it is possible to define various bidders using the YAML configuration file (see as example figure 5.10).

mico:
topic : "example_mico_joint_states"
capabilities_list : [0,1,2,3,4,8]
workspace_bounds : [0.3,1.4,0,0.7,0.6,1.5]
location :

x : 0.85
y : 0.075
z : 0.84

velocity : 0.07
capdi:

topic : "example_capdi_joint_states"
capabilities_list : [0,1,2,4,8]
workspace_bounds : [0.48,1.0,0.2,2.5,0.81,2.0]
location :

x : 0.60
y : 1.32
z : 1.53

velocity : 0.12

Figure 5.10: Example of configuration file robots.yaml

Involving the user: In particular, it is possible to include the user into the team of agents, by treating them
like a robot. To introduce the user variable in the system, a new bidder is added into the configuration file described
earlier. The same characteristic fields can be filled; however, only the action types that cannot be performed by the
robots are added to the user’s capability list. This ensures that the person is not solicited if the robots are able to
carry out the tasks. Of course, introducing a human in the loop implies higher uncertainty, since it is possible for
the user to not achieve a task, which compromises the established schedule. This issue should be taken into account
when dealing with failures and system dynamics at the execution time; consequently, it is out of the scope of the
present work and will not be discussed in this report.

5.4.2 Auction process: auctioneer and bidders

To start running an auction, the auctioneer needs as inputs a vector of Task objects specifying the tasks to be
assigned, and a precedence Graph which gives the ordering constraints. These two classes are explained in further
details in section 5.4.4. In the current architecture, the auctioneer also needs to know the names of the participants.
This vector of names is used to create two records (using C++ std::map<> containers) in which the auctioneer can
note whether it received the bid and the finish time information from each bidder. The records are updated within
the callback functions of the corresponding ros::Subscribers. Auction and batch counters are used to make sure
the messages correspond to the current iteration (see next subsection). The bid record is cleared before each new
round, and the finish time record before each new batch.

The auctioneer is in charge of managing the precedence graph, which is used to build the auction batches at
each step. The auction is published and the auctioneer waits for all the offers. This choice of architecture is suitable
for the Aurora setup in which the team of bidders is highly heterogeneous; therefore, if a bidder becomes suddenly
unavailable, it is likely that the system has broken down and that the task allocation/execution will fail anyway.

44 Master’s Thesis

Another possibility, though, would be for the auctioneer to ignore the number and names of bidders, and to wait
during a certain time and only consider the bids received before the time out.

The bids are stored in a vector (C++ std::vector STL container). When all have been received, the auctioneer
sorts the bids by ascending value. The first bid (i.e. the one that offers the smallest makespan) is declared winning
bid, provided its value is not infinite. In the latter case, it means that no bidder can perform a task in the current
auction batch, so the iteration is stopped and the task are categorized as unallocated. Once the batch has been
entirely auctioned, the auctioneer receives and stores the finish times in a vector. This information is used to update
the precedence graph.

All the code is encapsulated in the class mrta_pia::Auctioneer, split into various private member functions.
The process is easily run by calling in the auctioneer node the public member function run_auction(). The definition
of the class can be seen in listing A.1.

The counterpart of the Auctioneer class is the Bidder class. Among the main class attributes, the robot_
is used to store the characteristics of the bidder (for instance its velocity and capabilities), and the schedule_
to store the STN instance maintaining the agent’s schedule. These two attributes are instances of the classes
mrta_pia::Robot and mrta_pia::STN respectively (see section 5.4.4). As for the auctioneer, private member
functions are used to implement the different steps of the bidding algorithm. They are all called in the body of the
public function run_auction(). The contents of the header file defining the Bidder class can be seen in listing A.2.

When the process finishes, each bidder solves its STN, and publishes as output its sequence of assigned tasks,
along with the associated start and finish times.

5.4.3 Communication

Figure 5.11: Communication topics between the auctioneer and bidder nodes

Since the system is developed using ROS framework, all the communication is done via topics, which can be seen
in figure 5.11. Some custom messages have been created. Following a common way of organizing the ROS packages,
they are grouped in the mrta_pia_msgs folder. Their definitions are presented in listings 5.1 to 5.4. They are rather
self-explanatory. It might only be needed to explain the auction, batch and round fields of some of the messages:
they are used to identify to which iteration of the process the message refers, so that old messages can be discarded.

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 45

Listing 5.1: Auction.msg

int32 id
int32 batch
int32 round
mrta_pia_msgs/Task[] tasks
float32 [] pc_values

Listing 5.2: Bid.msg

int32 auction
int32 batch
int32 round
string bidder
int32 task_id
float64 value

Listing 5.3: FinishTimes.msg

int32 auction
int32 batch
string bidder
int32[] task_indices
float32 [] finish_times

Listing 5.4: Task.msg

int32 TYPE_DUMMY = -1
int32 TYPE_PICKPLACE = 0
int32 TYPE_PICK = 1
int32 TYPE_PLACE = 2
int32 TYPE_POUR = 3
int32 TYPE_HOLD = 4
int32 TYPE_MIX = 5
int32 TYPE_OPEN = 6
int32 TYPE_CLOSE = 7
int32 TYPE_REMOVE = 8

int32 id
int32 type
float64 priority

geometry_msgs/Point location

string object
string surface

float64 duration
float64 earliest_start_time
float64 latest_start_time

46 Master’s Thesis

5.4.4 Data structures

In this subsection will be presented the different data structures implemented to manage different aspects of the
MRTA process. The corresponding header files are reported in appendix B.

5.4.4.1 Graph

The precedence graph is a data structure G = (V,E), where V is the set of vertices (i.e. tasks) and E the set
of edges (i.e. constraints) between the vertices. The two most common structures to computationally represent a
graph are adjacency lists and adjacency matrices [7]. An adjacency list is an array of |V| lists; the ith list contains
the vertices adjacent (i.e. connected) to vertex i in G. The second representation uses a |V|-square matrix M, with
element (i,j) equal to 1 (or to the edge weight) is there exists an edge from vertex i to vertex j.

In our case, the graph is implemented as a C++ class, which is used to store the actual graph structure (i.e.
the precedence constraints) as well as the vectors that represent the layers. A simple, functional structure is used to
represent the nodes, which are identified by their id and two lists of incoming and outgoing edges. These edges are
the actual representation of the ordering constraints.

The current implementation of the layer vectors Ts, Tl, etc. is a binary implementation in which the ith element
is equal to 1 if the ith node is in the corresponding layer and equal to 0 otherwise. The class implements the necessary
methods to manage these attributes, in particular the graph update, following the algorithm given in section 4.3.

5.4.4.2 Robot

As mentioned earlier when describing the Bidder class, a specific class was implemented to store the charac-
teristics of the robot. These characteristics are retrieved from the configuration file (see figure 5.10) and are used
when computing the bids. In particular, the velocity is used to calculate estimates of the travel time between two
tasks. The workspace bounds and capability list are used within the member function can_reach and can_perform.
This functions are used by the Bidder instance to check whether a task is a priori feasible. If it is not, the task
is not further considered; in particular, the agent does not try to insert it into its schedule. This enables to save
computation time but, most of all, to take into account the team heterogeneity.

5.4.4.3 STN

One of the most important data structures is the STN class, which is used to represent and manage the robots’
schedules. Its main attributes are a vector of Task objects to store the scheduled tasks and two vectors of vectors
of floats to represent the distance graph and its working copy. We use vectors of vectors to build a matrix-like
structure, which is the one expected by the Floyd-Warshall algorithm used to check the consistency (see section
5.4.5).

Several member functions are defined and used to insert a task. For clarity, the process is split into several
functions. One is used to expand the matrix with two new rows and two new columns, corresponding to the start
time point and finish time point of the new task. When adding new columns/rows, the elements are set to infinity
(except the diagonal ones which are zero). The values are updated calling two other functions; one to add the
constraints related to the task duration, and one to add the travel time constraints between successors. Another
function is used to deal with the particular case of the first task to be inserted.

As it can be seen in listing B.3, all these functions exist in two versions: one for the definitive insertion, and one
for the temporary insertion done when evaluating the possibility to add a task to the schedule. The main difference
is that in the definitive case, the distance graph is expanded using the STL method std::insert, to insert elements
at the specified position. This function is however computationally expensive, since it requires many copies of the
matrix. This is why, in the temporary insertion which is called much more often, the new task is systematically added
at the end of the working copy of the distance graph, so that we can work with the push_back method which is

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 47

more economical. Of course, this last method could be adopted for the final insertion as well, but it seemed clearer
to respect the scheduled task order in the distance graph.

As in the other classes, most of the methods are private, the sequence of calls to these functions being
encapsulated into one public class method. Among the other important functions, the STN class also implements
the tighten_schedule function.

5.4.4.4 Task

The Task structure definition (see listing B.4) is similar to the ROS Task message, since they are used to store
the same information: the task id, its type, its location, its temporal information as well as its optional priority and
object/surface information. The definition can be found in listing B.4. The task type belongs to a given list that can
be modified in function of the application; the only restriction is the dummy type that is mandatory.

5.4.5 Solving the STN

As seen previously, the schedule is consistent if the corresponding STN has no negative-weight cycle. A way to
detect negative-weight cycles in a graph is to compute the shortest path between all pair of nodes: if the shortest
distance from a node to itself becomes negative, then the graph contains a negative cycle.

By computing the shortest path from the node corresponding to the initial time instant to the node representing
the start/finish time of a task, it is also possible to obtain the possible values for these time instants, i.e. one can
solve the STN. Therefore, in order to check the consistency of the schedule as well as retrieving the solution values,
we have to solve what is commonly known as the All-Pair-Shortest-Path (APSP) problem [8]: Given a weighted
directed graph G = (V, E), find for every pair of vertices i, j ∈ V, the least-weight (or shortest) path from i to j,
where the weight of a path is the sum of the weights of its constituent edges.

There exists several methods to solve the APSP problem. Following Dechter’s work in [10], we will use Floyd-
Warshall algorithm to propagate and solve the STN. The Floyd-Warshall algorithm is a dynamic programming
method. Its main idea is to compute the shortest path from i to j considering a growing set of intermediate vertices
by which the path may pass. For instance, at step k, the path from i to j may only pass through vertices in the set
{1,2,...,k}. The dynamic programming equation is:

d(k)ij =

wij i f k = 0

min(d(k−1)
ij , d(k−1)

ik + d(k−1)
kj) i f k ≥ 1

(5.1)

where wij is the weight of the edge from i to j (set to ∞ if the edge does not exist).

The shortest path is given by the final value d(n)ij where n is the number of vertices. The algorithm runs in O(V3)

time. It is given in Algorithm 5 along with the pseudo-code to check the consistency of the schedule in Algorithm 6.

Algorithm 5 Floyd-Warshall algorithm
1: for i = 1 to n do
2: dii ← 0
3: end for
4: for i,j = 1 to n do
5: dij ← wij
6: end for
7: for k: = 1 to n do
8: for i,j = 1 to n do
9: dij ← min{dij, dik + dkj}

10: end for
11: end for

48 Master’s Thesis

Algorithm 6 Check schedule consistency
1: function is_consistent(distance graph d)
2: r ← f loyd_warshall(d)
3: n← size(r)
4: for i=1 to n do
5: if rii < 0 then . Look for negative cycles
6: return f alse,−1
7: end if
8: end for
9: m← |rn1| . Makespan is latest finish time

10: return true, m
11: end function

5.4.6 Computing the bid

At every round, each robot loops on the tasks in the current batch. For each task, it first uses the functions
can_perform() and can_reach() presented earlier in subsection 5.4.4.2. If the task is a priori feasible by the agent,
it tries to insert it in its current schedule at the different possible positions. Then, using the Floyd-Warshall algorithm
presented in the precedent subsection, it is possible to determine if the new schedule is consistent and to retrieve
the corresponding makespan value if it is the case. If this makespan value is the smallest encountered so far, the
robot updates its best bid data. It also keeps in memory the corresponding insertion position, to avoid repeating the
calculations if it ends up winning the task.

5.4.7 Tightening the schedule

Solving the STN is also used to compute the earliest finish times for each task: by propagating the distance
graph using Floyd-Warshall algorithm, it is possible to retrieve the smallest possible value for the finish time points
of the different tasks. These values are returned to the auctioneer and are also used to update the distance graph
components.

Summary

The present chapter has presented some elements of the AURORA setup related to the implementation. In
particular, the available robots are a Kinova MICO (a 6-DOF robotic arm) and a custom 3-axis cartesian robot, the
CAPDI; the main software tools are ROS with the MoveIt! package.

It has also explained the organisation of the specific MRTA algorithm implementation within the ROS framework.
The auctioneer and bidder processes are defined in ROS nodes that instantiate objects of the C++ classes Auctioneer
and Bidder. For clarity, various class methods are used to implement the different steps. Theses two classes and
their functions use custom C++ classes or data structures that have been implemented to specifically represent tasks,
precedence graphs, schedules or robots.

49

Chapter 6

Evaluation and results

Now that the design of the solution as well as its implementation have been detailed, this chapter will present
the results obtained from different tests that were set up to evaluate the MRTA system. All experiments were run on
a octa-core machine equipped with an Intel Core i7-4770K (3.50GHz) processor and 16GB of RAM running Ubuntu
16.04 LTS (Xenial).

6.1 Validation using Solomon’s VRP database

The research done for this project has not permitted to find an evaluation database that would be specific for
MRTA problems with manipulators; instead, most of the available databases are instances of the vehicle-routing
problem. Still, it was decided as a first test to evaluate the implemented solution using the popular Solomon’s
database [26] for VRP.

The reasoning that supports this choice is the following: since the MRTA solution that was adopted is supposed
to be quite general, the ROS implementation should not be limited to our problem within the AURORA setup. On
the contrary, using the database is a good way to validate the different features of the system presented in chapters
4 and 5, as well as its general functioning, scalability and portability. In particular, the evaluation aims at ensuring
that, besides mere task assignment, the system can properly take into account time constraints (within the
form of time windows or precedence constraints) and heterogeneity.

The following subsections will therefore present this VRP database and a sample of results obtained with it.

6.1.1 Solomon’s database

The Solomon’s database is constituted of a set of several instances of a vehicle-routing problem, in which a fleet
of vehicles has to serve a given number of customers. The files associated to the database specify the number of
vehicles and their capacity (all have the same), as well as the list of customers to be served. For each customer, it
is indicated:

• the customer id

• the x and y coordinates

• the demand

• the ready time and the due date

• the service duration

50 Master’s Thesis

In our evaluation, we shall not consider the capacity of the vehicles, since the system is intended for single-robot
tasks, nor the demand, since in this first part task prioritization will not be considered. The customer information is
used to build the tasks, in the following way:

• the customer id gives the task id

• the x and y coordinates give the task location

• the ready time and due date are used to define the task earliest and latest start time (time window constraints)

• the service duration specifies the task duration

The several instances of the Solomon’s database1 are classified within six general problems: R1, R2, C1, C2,
RC1 and RC2. R means the task locations are randomly distributed, C that they are clustered, and RC is a mixed
situation. Problems identified with a 1 have short scheduling time horizon, while problems identified with a 2 have
large scheduling time horizon.

Within one type of problem (R, C or RC) the task coordinates are the same; the several instances differ in the
density and width of the time windows.

6.1.2 First test: simple task assignment

In this project, we shall not perform an exhaustive analysis of the implemented solution over the whole Solomon’s
dataset. The focus is set on the R type instances. The first test aims at testing the basic functioning of the system,
and consists in a simple task assignment in which there is absolutely no constraint:

• no capability constraints (all robots can do all the tasks),

• no time-window constraints: all tasks are available since the beginning and can be performed at anytime,

• no precedence constraints: tasks can be performed in any order.

Figure 6.1 shows the resulting route for one instance of the R problems with sixteen tasks (which coordinates
are given in table 6.1) and four identical robots. All the robots are initially located at the same point, the base,
represented by a red asterisk. One can see that, in absence of all constraints, the robots naturally go to the nearest
available task, which is the logical way to reduce the makespan. It is also possible to notice that the task distribution
between the different robots is quite fair, despite the robots having no knowledge of the other schedules. This is a
characteristic of the implemented auction-based solution with scheduled management: if a robot already has a high
number of tasks to perform, its bid is likely to be higher than an other robot that would be idle.

The resulting schedule for the same problem with only one robot can be seen in figure 6.2. When working with
only one agent, the total time necessary to accomplish all the tasks is of 302.3 time units (t.u.), i.e. three times
more than when using four robots.

Additional remark: The chosen architecture is flexible and allows to work with a varied number of bidders: it is
only necessary to specify the characteristics of the robots within the .yaml configuration file and to give the auctioneer
the list of bidders that will actually take part in the auction. The system could therefore be tested with fifty tasks
and ten bidders. In a no-constraint scenario, the auction is successfully completed within a few seconds. Working
with many bidders requires, however, to explicitly slow down the process of message publication by inserting a delay
of around 0.1 second. If not slowed down, the ROS message publication gets slightly chaotic and some messages are
lost, despite the communication being latched. This is one limitation of the system.

1they can be found at http://web.cba.neu.edu/~msolomon/problems.htm

http://web.cba.neu.edu/~msolomon/problems.htm

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 51

Figure 6.1: Solution to one R instance with 16 tasks, 4 robots, unconstrained (makespan: 94.9 t.u.)

Figure 6.2: Solution to one R instance with 16 tasks, 1 robot, unconstrained (makespan: 302.3 t.u.)

6.1.3 Second test: task assignment with time window constraints

As a second test, the MRTA system was launched with the same instance, but this time taking into account
time-window constraints that restrict the start time of a task. This should modify the obtained routes, since some
tasks can only be started within a given time period. Not all tasks are constrained, and the time windows vary
between the tasks.

Figure 6.3 shows the solution to the problem described above, with the same tasks and robots than in figure
6.1. When comparing the two, the difference between the routes is striking, and, in the second experiments, the

52 Master’s Thesis

Task id Coordinates (x,y) Task id Coordinates (x,y)
0 (41,49) 8 (55,60)
1 (35,17) 9 (30,60)
2 (55,45) 10 (20,65)
3 (55,20) 11 (50,35)
4 (15,30) 12 (30,25)
5 (25,30) 13 (15,10)
6 (20,50) 14 (30,5)
7 (10,43) 15 (10,20)

Table 6.1: Task coordinates for the 16-task R instance

Figure 6.3: Solution to one R instance with 16 tasks, 4 robots, constrained start time

results seem much more disorganised. To understand better the results, one has to take into account the fact that
the restrictions implicitly define a loose ordering between the tasks.

It is not easy to schematically represent the time windows information. In figure 6.3, each task is labeled with a
color to translate the time-window constraint. The green tasks are tasks that are not constrained, meaning they are
available since the beginning. The rest of colors represent intervals in which are included the time-window constraints.
The earliest time windows are depicted in yellow, the latest in dark red.

One can therefore see that every robot first performs tasks that are labeled in green, which are available at start.
The tasks colored in yellow, orange and red are performed after, since they may not be start earlier than some time
instant. That is why the task at coordinates (30, 25), labeled in red, is one of the last task to be complete, despite
being close to the origin. In comparison, in the first experiment, this task was one of the firsts to be completed.

To apprehend better the task assignment process, the routes are represented again in the figure 6.4 which shows
in series of subfigures the progression as new tasks become available.

As an additional remark, it can be highlighted that the results of course depend on the robots characteristics,
for instance the speed: if the robots are faster, they can easily reach farther tasks. On the contrary, if they are
slower, they will be less likely to cover great distances since the bids for farther tasks will be much higher. This
leads to a second remark: here, the optimization objective is to minimize the makespan, i.e. the total time used

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 53

(a) (b)

(c) (d)

Figure 6.4: Task assignment progression with time window constraints

to complete the tasks. In Solomon’s dataset, the optimal results that are given are obtained when minimizing the
covered distance. The latter objective makes more sense in VRP, but, as mentioned earlier, in our application, the
aim is to serve the user as fast as possible. If we had chosen to minimize the distance, the obtained routes would
likely be more clustered.

6.1.4 Third test: task assignment with precedence constraints

For the third test, the same problem instance was used, this time considering explicit precedence constraints
between the tasks.

For n tasks, n/2 precedence constraints are defined, so that the obtained graph is sparse. To build a constraint
(edge), two tasks (nodes) are randomly selected. To be added to the graph however, the constraint should verify the
following conditions:

1. the edge between the selected nodes should not exist already,

2. the edge should not create a cycle in the graph, which must be directed acyclic,

3. the constraint should be "doable" with respect to the time windows, i.e. for task i to precede task j one should
have:

esti + duri <= lstj

where est (resp; lst) is the task earliest (resp. latest) start time and dur denotes its duration.

54 Master’s Thesis

(a) Solution (b) Precedence graph

Figure 6.5: R instance with 16 tasks, 4 robots, precedence constraints - Case 1 (makespan: 117.2 t.u.)

(a) Solution (b) Precedence graph

Figure 6.6: R instance with 16 tasks, 4 robots, precedence constraints - Case 2 (makespan: 131.8 t.u.)

Figures 6.5 to 6.8 show the routes obtained for some sample instances of the problem. To represent the precedence
constraints, we use different symbols as well as different colors. Each symbol denotes a precedence tree, and the
color gradation green−→orange−→red−→purple indicates the task level within the tree. For instance:

• in figure 6.5, the tasks at (41,49) and (25,30), represented by green squares, are predecessors of the task at
(15,30), represented by an orange square.

• in figure 6.7, the task at (20,65), represented by a green diamond, is a predecessor of the tasks at (10,20) and
(15,10), represented by orange diamonds.

As it can be seen, the results depend a lot on the task ordering, which was randomly generated for each trial.
From the graph, it is not possible to check exactly that the precedence constraints are satisfied, but one can see
that in general, the tasks from the first level (tasks that are free) are executed before the tasks from the subsequent
layers. Also, the more complex the precedence graph, the more complex the schedule, and the greater the makespan.

As an additional remark, one can see that the system allows to respect the precedence constraints, although
the robots have no knowledge about these restrictions or about the other agents’ schedules. About the process
performances: the mean execution time over thirty trials for the auction process to complete is of 520 ms (with

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 55

(a) Solution (b) Precedence graph

Figure 6.7: R instance with 16 tasks, 4 robots, precedence constraints - Case 3 (makespan: 106.5 t.u.)

(a) Solution (b) Precedence graph

Figure 6.8: R instance with 16 tasks, 4 robots, precedence constraints - Case 4 (makespan: 108.2 t.u.)

a standard deviation of 70 ms). In average, it could successfully assign 15 tasks over the 16 to execute (with a
minimum of 13). This last point can be accounted for by the fact that the precedence constraints are randomly
picked up; the feasibility is checked for one particular constraint but not for the whole problem, hence the result.

6.1.5 Fourth test: task assignment with task type

The last experiment of that first part of the evaluation was done with the same set of randomly distributed tasks.
Its goal is to assess the correct management of heterogeneity during the task allocation process. In this test, each
task is characterized by a type which is denoted by one of the following values: 0, 1 or 2. The types are randomly
assigned for each instance of the problem; the probability of assigning one type or another is uniform and equal to
one third. Using this setup enables to test the MRTA process with an heterogeneous robot team, in which some
members may perform only certain types of tasks. In our test, robots R0 and R1 can perform tasks of type 0 and 1,
and robot R2 and R3 can perform tasks of type 0 and 2.

Figure 6.9 shows the resulting task assignment for three trials of the problem with task types. Each task is
represented by a dot which color indicates the type. As one can see, the routes for R0 and R1 only contain blue and
red dots (type 0 and type 1 tasks), while the routes for R2 and R3 only contain blue and yellow dots (type 0 and
type 1 tasks). For these three trials, the makespan is quite low, and the resulting scheme is quite harmonious.

56 Master’s Thesis

(a) Case 1 (makespan: 108.4 t.u.) (b) Case 2 (makespan: 101.6 t.u.)

(c) Case 3 (makespan: 116.0 t.u.) (d) Legend

Figure 6.9: Solution to three R instances with 16 tasks, 4 robots, heterogeneous tasks and team

Figure 6.10 shows two other plots of the same problem that illustrate one weakness of the algorithm, which is the
counterpart of the rigidity which is necessary to ensure ordering constraints are and remain satisfied. Here, although
the tasks are correctly assigned regarding their types and the capabilities of the robots, the solutions are sub-optimal.
For instance, in Case 4 (figure 6.10a), it would have been better to schedule task 1 (30,5) before task 14 (33,17)
in robot R1’s route. This would (slightly) reduce the makespan to 101.6 t.u. (though the covered distance would
be increased). In Case 5 (figure 6.10b), the optimal solution requires to assign task 14 (15,10) to R3 instead of R0.
This way, the makespan would be reduced by 10.5%, from 136.6 t.u. to 122.2 t.u..

This sub-optimal behaviour is the result of two facts:

• first, in the current implementation, when the auctioneer receives two bids that are equal, the winner is the
one which offer has been received first;

• second, robots can only modify their schedule by inserting new tasks at appropriate positions, which is mandatory
to preserve precedence; the order of assigned tasks may not be changed, neither can tasks be reassigned to
another robot.

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 57

(a) Case 4 (makespan: 102.7 t.u.) (b) Case 5 (makespan: 136.6 t.u.)

Figure 6.10: Solution to two R instances with 16 tasks, 4 robots, heterogeneous tasks and team

Because of this, in case 4 example, R1 bids and obtains tasks 12, 1 and 14 which are scheduled in this order.
At the end, its bid for task 9 is the best, since the other agent able to perform that kind of task is R0 which is
already occupied. R1 therefore wins task 9 and insert it at the end of its schedule, which is the best position; it
cannot however reschedule task 14 before task 1. In case 5, R0 wins first tasks 5 and 4, while R3 wins tasks 12 and
15. Because it is ready first, R0 can win task 14. It wins tasks 10 and 6 at the end, but they are inserted at the
beginning of the schedule which is the best position. This delays the execution of task 14 which could have been
executed earlier by R3; but it is not possible to reassign the task to another bidder.

Over thirty repetitions of the same problem, only one case was not entirely feasible, in which the MRTA system
could only assign 15 of the 16 tasks. In all the other trials, a solution to perform the whole set of tasks has been
encountered. In average, the total time necessary to perform the sixteen tasks is of 111.1 time units, with a standard
deviation of 9.3 t.u., the minimum being 99.6 t.u. and the maximum 136.6 t.u.. The auction process needed in
average 268 ms to be completed (with a standard deviation of 29 ms).

6.2 Evaluation on Aurora scenarios

Using the Solomon’s VRP database enabled to evaluate the functioning of the MRTA system and gave an insight
of its performances. The objective of this second and last series of experiments is to come back to the main motivation
behind this project and to test the system on plausible Aurora scenarios that involve precedence constraints. The
bidders are robotic arms like the CAPDI or the MICO presented in chapter 5, and the general setting is similar to
the kitchen presented in figures 1.1 and 5.4.

Two scenarios involving different teams and different tasks to complete are proposed and solved. In particular,
the first scenario involves only robots, while in the second one the team includes the user. They are presented, as well
as the corresponding output schedules, in the remaining of this section. As mentioned when presenting the adopted
MRTA solution, it is possible to prioritize the tasks. The tests were run with various prioritization policies, which are
explained in the next subsection.

58 Master’s Thesis

6.2.1 Task prioritization

One can think about several methods to determine the priority of a task. Here, three policies are considered:

• no priority: no priority is applied which is equivalent to the tasks having the same priority. In practice, all the
tasks have priority 0, but one could use any other scalar.

• c-policy: the c in the name of this policy stands for "children". In this policy, the priority is set to the number
of children a task has in the precedence graph. All layers are taken into account and not only the direct children.
Tasks with a lot of successors therefore have a high priority. The idea is to bias the batch selection so that
these tasks are performed earlier, in order to free the set of tasks that depends on them.

• α-policy: the last policy, here called α-policy, is defined according to McIntire et al.’s proposal in [22]. They
suggest the following heuristic:

pα(t) = (1− α) L(t) + α U(t), 0 ≤ α ≤ 1 (6.1)

with


L(t) = dur(t) + max

t′∈children(t)

(
L
(
t′
))

U(t) = dur(t) + max
t′∈children(t)

(
d
(
t, t′
)
+ U

(
t′
)) (6.2)

where dur(t) denotes the duration of task t and d (t, t′) the travel time from task t to task t′. L(t) is the
minimal time necessary to complete task t and the whole sequence of its successors. U(t) is the total time a
single robot would need to execute the sequence. The two terms are pondered by α, which can be coarsely
interpreted as the weight of travel time in the priority computation. As the c − policy, this rule biases the
batch selection in favor of the tasks that have a lot of successors; however, it also takes into account the time
dimension. As a result, a task with one single child that takes time to complete may have a higher priority than
a task with several low-duration successors. In our scenarios, the travel time between most tasks is negligible
in comparison with the task duration. Consequently, U(t) ' L(t) for almost all t, and the choice of α does
not impact the prioritization. The resulting schedules presented afterwards were calculated with α = 0.5, but
would be the same for any value of α within the interval [0,1].

6.2.2 First scenario: robots only

6.2.2.1 Scope

The first scenario conditions are actually slightly different from the real Aurora setup. In particular, we consider
the case where the kitchen is equipped with one CAPDI robot and three, instead of one, MICO arms. This enables
to test more demanding scenarios, as well as to evaluate the possibility of parallel task execution, which is rather
limited in the real Aurora setup. In the rest of this subsection, the three MICOs will be identified as "M0", "M1"
and "M2". M0 is the arm that corresponds to the current position of the MICO in the real setup, at the left edge of
the table. M1 is the arm that has been placed closer to the middle, and M2 is the robot located on the right edge
of the table. This arrangement, which can be seen in figure 6.11, enables to reach both cupboards to store objects,
and to create parallelism.

As mentioned in introduction, the problem is solved for different task prioritization policies. In order to evaluate
the interest of having two MICOs on the left side of the table, the MRTA is carried out on the same scenario but
without M1.

6.2.2.2 Tasks

The following situation is considered: a box containing various food items has to be unpacked, and each item be
stored to its place (one can imagine the user has just gone shopping or had their purchase delivered at home). In the

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 59

Figure 6.11: Evaluation scenario 2 - environment

studied scenario, a small piece of furniture is added to the Aurora kitchen environment to place the box. The robots
have to store six items:

• sugar (green box in fig. 6.11) and coffee (brown box), to be stored on the shelves of the left cupboard;

• a tomato sauce can (in red) and pasta (in blue), to be placed on the shelves of the right cupboard;

• a carton of milk (in pale yellow) and a bottle of juice (in orange), that have to be stored in the fridge (imagining
for instance a fridge with an automatic door). They should be placed in a position reachable by the user, on
the middle of the table, between M1 and the sink.

Some of the tasks can be performed by several agents, while others can only be achieved by one of the team
member, depending on the agent’s capabilities and reachable workspace. The precedence graph is represented in
figure 6.12. Each task is represented by a circle divided in two: in the upper half is given the action type, and in
the lower part the associated object. As one can see, the global precedence graph is composed of six disconnected
branches which can be performed in parallel. The bold number at the left of each circle indicates the task index.
Table 6.2 gives more details about each task, in particular the locations associated to each task. One can observe that
all the tasks of type REMOVE (task type 8) have the same location of arrival: this is because it is only an indication
of where the object should be left; the actual locations can be computed at execution by searching for a free point
around this location. In this example, only precedence constraints are considered, so the time window is the same
for all the tasks ([0,∞]).

6.2.2.3 Output schedule

The output schedules obtained for the different variants of the first scenario are presented in tables 6.3 and 6.4.
The first column of each table gives the task ids, classified in ascending order with respect to their start times. For
each task, its start and finish times are specified, along with the agent to which it has been assigned. The makespan
is indicated in bold; for all cases, it corresponds to the finish time of the last task to be started. For this example,
the no-priority and the c-policy yielded the exact same output; that is why only the latter is reported.

60 Master’s Thesis

Figure 6.12: Evaluation scenario 1 - task precedence graph

Id Type Duration(s) Position 1 Position 2 Object Surface c-priority α-priority
0 8 30 (1.32 0.12 0.89) (0.85 0.45 0.89) sugar table 1 60
1 0 30 (0.85 0.45 0.89) (0.31 0.32 0.85) sugar lower left shelf 0 30
2 8 30 (1.18 0.33 0.87) (0.85 0.45 0.87) coffee table 1 60
3 0 30 (0.85 0.45 0.87) (0.31 0.32 1.20) coffee middle left shelf 0 30
4 8 30 (1.29 0.39 0.86) (0.85 0.45 0.86) tomato table 2 105
5 0 45 (0.85 0.45 0.86) (0.65 2.37 0.86) tomato table 1 75
6 0 30 (0.65 2.37 0.86) (0.31 2.48 1.20) tomato middle left shelf 0 30
7 8 30 (1.28 0.23 0.89) (0.85 0.45 0.89) pasta table 2 105
8 0 45 (0.85 0.45 0.89) (0.85 2.28 0.90) pasta table 1 75
9 0 30 (0.85 2.28 0.90) (0.31 2.41 1.20) pasta middle left shelf 0 30
10 8 30 (1.17 0.18 0.92) (0.85 0.45 0.92) milk table 1 60
11 0 30 (0.85 0.45 0.92) (0.55 1.20 0.92) milk table 0 30
12 8 30 (1.36 0.31 0.92) (0.85 0.45 0.92) juice table 1 60
13 0 30 (0.85 0.45 0.92) (0.55 1.10 0.92) juice table 0 30

Table 6.2: Evaluation scenario 1 - Task list

As it can be seen, the prioritization does influence the outcome. For instance, in the c-priority case, the first
batch to be auctioned is composed of the tasks 0, 2, 4, 7, 10, 12, while with the α-policy, the first batch is the set 4,
7. This results in a different task sequence; in the latter case, task 7 is scheduled second instead of seventh, which
enables M2 to complete the succeeding tasks earlier. One can see that the makespan obtained with α-prioritization
is 13% smaller than the one obtained with the c-policy. The task distribution is also different. In the first case, the
Capdi has two tasks to complete, the ones to bring the pasta and tomato sauce to the other side of the table. In the
second case, it is also in charge of giving the milk and juice to the user, tasks that are completed by M1 otherwise.

In the variant without M1, the same observation can be made about prioritization, the task sequence and the
makespan. The task distribution is the same however; and the saving in time is of just 1%. This can be accounted
by the fact that, since each task can actually be performed by only one agent, there is less flexibility in the solution.

Comparing the two variants, results are as expected: the makespan is higher with one robot less; removing M1
led to 60% and 41% increases in the total task completion time for the two subcases. In the first variant, one can
indeed highlight the visible fact in the task distribution that M0 and M1 works in parallel most of the time.

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 61

Task Start time(s) Finish time(s) Agent
4 5.7 35.7 M1
7 6.7 36.6 M0
8 36.6 81.6 Capdi
2 40.8 70.8 M1
0 44.8 74.8 M0
12 78.3 108.3 M1
10 80.8 110.8 M0
9 81.6 111.6 M2
5 96.8 141.8 Capdi
13 108.3 138.3 M1
3 111.8 141.8 M0
6 141.8 171.8 M2
11 148.6 178.6 M1
3 151.1 181.1 M0

(a) α-priority

Task Start time(s) Finish time(s) Agent
4 5.7 35.7 M1
0 6.8 36.8 M0
5 35.7 80.7 Capdi
2 40.8 70.8 M1
10 42.8 72.8 M0
12 78.3 108.3 M1
7 79.7 109.7 M0
6 80.7 110.7 M2
11 96.8 126.8 Capdi
13 108.3 138.3 M1
1 110.3 140.3 M0
8 133.6 178.6 Capdi
3 149.6 179.6 M0
9 178.6 208.6 M2

(b) c-priority

Table 6.3: Scenario 1 output schedules - with four robots

Task Start time(s) Finish time(s) Agent
7 6.6 36.6 M0
8 36.6 81.6 Capdi
4 42.9 72.9 M0
2 77.9 107.9 M0
9 81.6 111.6 M2
5 96.8 141.8 Capdi
0 116.2 146.2 M0
6 141.8 171.8 M2
12 153.7 183.7 M0
13 183.7 213.7 Capdi
10 189.7 219.7 M0
11 219.7 249.7 Capdi
1 220.7 250.7 M0
3 260.1 290.1 M0

(a) α-priority

Task Start time(s) Finish time(s) Agent
0 6.8 36.8 M0
10 42.8 72.8 M0
11 72.8 102.8 Capdi
12 80.3 110.3 M0
13 110.3 140.3 Capdi
7 117.2 147.2 M0
8 147.2 192.2 Capdi
2 152.3 182.3 M0
4 188.6 218.6 M0
9 192.2 222.2 M2
5 218.6 263.6 Capdi
1 218.8 248.8 M0
3 258.1 288.1 M0
6 263.6 293.6 M2

(b) c-priority

Table 6.4: Scenario 1 output schedules - with three robots

6.2.3 Second scenario: involving the user

6.2.3.1 Scope

In the second scenario, the environment (fig. 6.13) matches the current Aurora setup, with only one MICO to
work with the CAPDI. One can therefore test the MRTA solution on a potential real case. This experiment is done
with a number of tasks similar to the previous one, but with longer precedence chains and less parallelism. It also
involves the user: some of the tasks that cannot be performed by the robots will be assigned to the user. Having in
mind the general framework of the Aurora project, it is imagined that the user is sitting in a wheelchair next to the
table between the hobs and the sink, and has limited mobility.

The user is easily included to the team following the explications given in section 5.4.1, i.e. using the configuration
file to declare an additional bidder with the same characteristics as the others.

62 Master’s Thesis

Figure 6.13: Evaluation scenario 2 - environment

6.2.3.2 Tasks

The story line of the test is the following one: let’s imagine the user wants to prepare at hot chocolate. This
general goal requires to complete various subgoals. In particular, one should heat up milk in a pan, and add chocolate
powder in a glass. These two subgoals can then be decomposed into various atomic tasks, as shown in the precedence
graph presented in figure 6.14. In comparison with the previous case, this graph has less disconnected components
but longer branches. As previously, the figure gives for each task its type, the associated object as well as its id.
Tasks 8 and 9 are the ones that should be performed by the user; they correspond respectively to the actions of
opening the chocolate powder box, and putting powder in the glass (closing the box afterwards).

The different objects required for this scenario can be seen in figure 6.13 at their respective initial positions: the
Nesquik box (represented in yellow) in the left cupboard, the pan (in grey) on the hob, the glass (in blue) next to the
sink and the milk (in pale yellow) on the right side of the table. The task list can be found in table 6.5: the robots
should pour milk in the pan, then place the pan on the hob and replace the milk at its initial position; in parallel,
they should also bring to the user the glass and the Nesquik box, which must be put back in place after the user has
finished using it.

6.2.3.3 Output schedule

The output schedules are reported in table 6.6. As for the previous experiment, they present the task sequence
in ascending start time order, giving also the finish time and the agent.

As a first remark, one can see that the user is well integrated to the schedule. Since it was declared to the system
as any other bidder, this could be expected.

Again, it is possible to see that the task prioritization does have an impact of the task sequence and the resulting
makespan. The schedule obtained using the c-policy is quite close to the one obtained with the α-policy: except for
the position of task 1, the task sequences are identical. As a consequence, the makespans are almost equal, with a
slight advantage for the c-policy case (1.5% better).

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 63

Id Type Duration(s) Position 1 Position 2 Object Surface c-priority α-priority
0 0 45 (0.90 2.30 0.92) (0.96 0.35 0.92) milk table 3 120
1 0 30 (0.86 0.82 0.83) (0.86 0.35 0.83) pan table 3 105.7
2 3 30 (0.96 0.35 0.92) (0.96 0.35 0.92) milk table 2 75
3 8 45 (0.96 0.35 0.92) (0.90 2.30 0.92) milk table 0 45
4 0 30 (0.86 0.35 0.83) (0.86 0.82 0.83) pan table 0 30
5 0 45 (0.31 0.50 0.97) (0.72 0.35 0.88) nesquik table 5 240
6 0 30 (0.72 0.35 0.88) (1.01 1.10 0.88) nesquik table 4 195
7 0 30 (0.52 1.63 0.85) (1.01 1.17 0.85) glass table 3 165.4
8 6 30 (1.01 1.10 0.88) (1.01 1.10 0.88) nesquik table 3 165
9 9 45 (1.01 1.10 0.88) (1.01 1.10 0.88) nesquik table 2 135
10 0 45 (1.01 1.10 0.88) (0.72 0.35 0.88) nesquik table 1 90
11 8 45 (0.72 0.35 0.88) (0.31 0.50 0.97) nesquik lower left shelf 0 45

Table 6.5: Evaluation scenario 2 - Task list

Figure 6.14: Evaluation scenario 2 - task precedence graph

The worse results are obtained for the unprioritized case, with a makespan that is almost 14% greater than the
best case value. This can be accounted for by the fact that in this version, the tasks 6 and 8 are achieved later, which
postpones the execution of the rest of the longer chain. In the other two sub-cases, the task that are completed last
are the tasks 3 and 4, the lasts of the small chain in the precedence graph.

As a last remark, one could argue that here, it might be more important to put the pan on the hob before serving
the Nesquik, since the milk needs time to heat up. Once more, this is related to task prioritization. Here the different
policies only take into account the constraint data from the precedence graph, and not the higher-level information.
One can possibly imagine a way of computing the priorities that also depends on the nature of the tasks.

64 Master’s Thesis

Task Start time(s) Finish time(s) Agent
7 6.3 36.3 Capdi
5 9.8 54.8 M0
6 54.8 84.8 Capdi
8 84.8 114.8 User
0 94.9 139.9 Capdi
9 114.8 159.8 User
1 143.9 173.9 Capdi
2 173.9 203.9 M0
10 180.3 225.3 Capdi
11 225.3 270.3 M0
4 226.5 256.5 Capdi
3 260.5 305.5 Capdi

(a) α-priority

Task Start time(s) Finish time(s) Agent
7 6.3 36.3 Capdi
5 9.8 54.8 M0
1 39.5 69.5 Capdi
6 70.7 100.7 Capdi
8 100.7 130.7 User
0 110.7 155.7 Capdi
9 130.7 175.7 User
2 155.7 185.7 M0
10 175.7 220.7 Capdi
11 220.7 265.7 M0
4 221.9 251.9 Capdi
3 255.9 300.9 Capdi

(b) c-priority

Task Start time(s) Finish time(s) Agent
7 6.3 36.3 Capdi
5 9.8 54.8 M0
0 45.7 90.7 Capdi
1 94.8 124.8 Capdi
2 124.8 154.8 M0
6 126.0 156.0 Capdi
8 156.0 186.0 User
4 162.4 192.4 Capdi
9 186.0 231.0 User
3 196.4 241.4 Capdi
10 251.6 296.6 Capdi
11 296.6 341.6 M0

(c) No priority

Table 6.6: Scenario 2 output schedules

6.2.4 Performances

To evaluate the computational performances of the system, each one of the four problem instances for scenario
1 and of the three instances for scenario 2 (considering the different priority policies) was run thirty times. The
execution times for the auction process are reported in the box plots of figure 6.15. The bottom and top edges of
each box indicate the 25th and 75th percentiles while the red line marks the median, and the whiskers extend to the
most extreme values.

As it can be noticed, for scenario 1, the execution time tends to be higher when using the c-priority policy.
This can be accounted for by the fact that the priorities influence the batch selection, and therefore the number of
iterations. There are no differences however between the two subcases: using three or four bidders does not impact
the results. It therefore appears that it is the auctioneer process that has the most impact on the execution time.

In scenario 2, one can only study the influence of the different priority policies. The c-policy yields almost the
same output than in the no-priority case, and the variation is rather insignificant. The difference with the α-priority
case is more marked, the median execution time being smaller in the latter case. A possible explanation to these
results is that in the auctioneer process, the batch selection (which has an influence on the number of iterations) is
more similar in the former cases than in the latter one.

Comparing the results obtained with the two scenarios, it is not possible however to identify a policy that would
be significantly better regarding the execution time: it depends on the tasks and the precedence constraint layout.
As a last comment, however, it can be highlighted that in most cases, the execution time is between 140 ms and 190
ms. This is suitable for Aurora-like applications, and means the implemented solution can easily be used online.

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 65

Figure 6.15: Auction process execution time for each scenario

Execution time computed over thirty trials for each problem instance. S1-1: first scenario with four robots; S1-2: first
scenario with three robots; S2: second scenario. The letter between parentheses indicates the priority policy: a for α-policy, c

for c-policy and n for no priority.

66

Chapter 7

Project impact

To complete this report, this chapter provides a brief analysis of the economical and environmental impact
associated to the project.

7.1 Economical impact and budget

The work developed in this thesis is limited to research and is not currently designed to provide a marketable
product. Therefore, it does not have any direct economic benefits. That is why we will only evaluate the cost of the
project, considering equipment, workforce and energy expenses. Note that this estimation only takes into account the
direct costs, i.e. the expenses that are directly imputable to the project. In particular, we shall not take into account
the general expenses for the building - whether it is maintenance, cleaning or ordinary electricity/water consumption.

To reflect the reality of the equipment expenses, one have to take into account the amortization and not the
cost of purchase. Table 7.1 presents the list of equipment used for the project as well as the associated cost of
purchase and amortization time used to compute the actual corresponding expense. Note that this is an estimation
only, since not all invoices were available. The depreciation periods were chosen according to classical values1.

Item Cost of purchase (AC) Useful life (years) Cost (AC/month)
Kinova robot arm (with Gripper) (*) 22 300 10 185.83

CAPDI structure and arm (*) 15 000 10 125.00
CAPDI Robotiq gripper (*) 15 000 10 125.00

Kitchen setup: cupboards set (*) 300 10 2.50
Kitchen setup: hobs 411.80 10 3.43
Kitchen setup: sink 69.60 10 0.58
Kitchen setup: table 57.72 10 0.48

Laboratory computer 1 (*) 600 3 16.67
Laboratory computer 2 (*) 600 3 16.67

Total 476.16

Table 7.1: Equipment expenses estimation (using linear depreciation; (*) = estimated)

The main workforce is formed by one graduated engineer (Group 2 within the UPC classification) working full-
time during a period of five months and a supervisor dedicating 10% of his/her time to the project. The corresponding
gross salary according to the UPC’s official remuneration tables of the administration and labor service staff is reported
in Table 7.2.

1See for instance http://132.248.9.34/hevila/Revistahaciendamunicipal/2013/no120/3.pdf

http://132.248.9.34/hevila/Revistahaciendamunicipal/2013/no120/3.pdf

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 67

Employee Gross salary full-time (AC/m) Rate Associated cost (AC/m)
Main engineer 1 979.29 100% 1979.29
Project director 4 282.77 10% 428.28

Total 2407.57

Table 7.2: Workforce expenses estimation

Finally, one can estimate the energy expenses associated to the electricity consumption. These values are
gathered in Table 7.3.

Item E (W) Use (h/day) E (kWh/month) Cost (AC/month)
MICO 25 1 0.58 0.06
CAPDI 300 1 6.90 0.75

Robotiq Adaptive Gripper 10 1 0.23 0.03
Computer 1 (Dell T1500) 350 8 64.40 7.08

Monitor Computer 1 (Dell E2211H) 20 8 3.68 0.40
Monitor Computer 1 (Dell P190Sb) 25 8 4.60 0.51

Computer 2 (Dell T7500) 350 8 64.40 7.08
Computer 2 (Dell T7500), idle 20 16 7.36 0.81

Monitor Computer 2 (TV Panasonic) 425 1 9.78 1.08
Office lighting (neon tube x4) 600 4 55.20 6.07

Total 23.88

Table 7.3: Energy expenses estimation (with electricity cost: 0.11AC/kWh, 23 days per month)

The total cost of the project is obtained by adding the elements previously detailed. The results are shown in
Table 7.4.

Item Cost per month (AC) Cost for project (AC)
Equipment 476.16 2 380.80

Energy expenses 23.88 119.42
Workforce 2407.57 12 037.85

Total 2 907.61 14 538.07

Table 7.4: Estimated total cost for the project

7.2 Environmental impact

Besides the economical aspects, it is important to evaluate the social and environmental impact of the project. The
evaluation procedure is framed at national level by the Environmental Impact Assessment Law (Ley 21/2013, de 9 de
diciembre, de evaluación ambiental2), following a directive from the European Union. This law establishes the bases
that should govern the environmental impact evaluation of projects, in order to promote sustainable development
and protect the environment.

The work presented in this Master’s Thesis did not have any significant impact on the environment other than the
one associated to the equipment that was used. The main impact of the project is linked to the energy consumption -
to which one could add the hidden impact derived from the resource consumption that were necessary to manufacture
the different elements (computers, robots, furniture...). The estimated energy consumption is presented in Table 7.5.

2https://www.boe.es/buscar/pdf/2013/BOE-A-2013-12913-consolidado.pdf

https://www.boe.es/buscar/pdf/2013/BOE-A-2013-12913-consolidado.pdf

68 Master’s Thesis

Item Power (W) Use (h/day) E (kWh/month) Total (kWh)
MICO 25 1 0.58 2.88
CAPDI 300 1 6.90 34.50

Robotiq Adaptive Gripper 10 1 0.23 1.15
Computer 1 (Dell T1500) 350 8 64.40 322.00

Monitor Computer 1 (Dell E2211H) 20 8 3.68 18.40
Monitor Computer 1 (Dell P190Sb) 25 8 4.60 23.00

Computer 2 (Dell T7500) 350 8 64.40 322.00
Computer 2 (Dell T7500), idle 20 16 7.36 36.80

Monitor Computer 2 (TV Panasonic) 425 1 9.78 48.88
Office lighting (neon tube x4) 600 4 55.20 276.00

Total project 217.12 1 085.60

Table 7.5: Energy consumption estimation (5 months, 23 days per month)

Using the 2017 report on the Spanish electricity system3 by Red Eléctrica de España, we can estimate the carbon
footprint of the electricity used to be of around 0.28 kgCO2/kWh, which gives for our project an equivalent emission
of around 304 kg of CO2.

7.3 Social impact

As such, this project is not intended to design an actual product to be commercialized. Still, research done within
the frame of of projects such as the AURORA project have the potential to impact people’s lives when they are
subsequently used to build marketable items.

One of the main societal issue would probably be the price of such devices, since the robots are far from being
affordable for every individual. This particular point comes within bigger political and societal considerations to be
solved at national or even international level, in which we should question our vision of assistance and healthcare.

Besides this complex question, the general impact however remains positive, since such systems are a way to
assist disabled or elderly users in their daily life, so that they can be more independent at home. By helping these
persons being more autonomous, that kind of robotized system also helps relieving the burden of caregivers.

3https://www.ree.es/sites/default/files/11_PUBLICACIONES/Documentos/InformesSistemaElectrico/2017/
spanish-electricity-system-2017.pdf (see p.45)

https://www.ree.es/sites/default/files/11_PUBLICACIONES/Documentos/InformesSistemaElectrico/2017/spanish-electricity-system-2017.pdf
https://www.ree.es/sites/default/files/11_PUBLICACIONES/Documentos/InformesSistemaElectrico/2017/spanish-electricity-system-2017.pdf

69

Chapter 8

Conclusion

The work presented aimed at analyzing possible solutions and developing a multi-robot task allocation system,
with in mind as end application the AURORA project. The identified main requirements for the solution were the
following:

• the system should be able to handle the heterogeneity of the robot team members that have different capabilities,

• the system should be able to handle precedence constraints that partially impose the order of the task execution
sequence,

• the system should be able to run online, so that it can be used in practice.

The first part of the work consisted in reviewing the existing literature on multi-robot systems and multi-robot
task allocation to better apprehend the stakes of the problem and to select the relevant methods that could be applied
to our project. This review of the state of the art has been presented in the report. In particular, several useful MRTA
taxonomies were presented and discussed. Analyzing our objective through the prism of this classification helped to
select one of the possible MRTA methods that have been mentioned and explained as well.

More specifically, the key application considered here falls into the ST-SR-TA:SP category within the MRTA/TOC
taxonomy. What is more, because of the heterogeneity requirements, auction-based assignment methods are the best
suited. Taking into account these two aspects, it was decided to implement the MRTA solution following the method
developed by McIntire et al. who presented an iterated multi-robot [auction algorithm] for precedence-constrained
task scheduling.

The model presented is quite general and flexible. It has been adapted to take into account capabilities, in order
to deal with heterogeneous teams; it was also extended with the possibility to provide only partial schedules. The
corresponding code has been developed in C++ using the ROS framework. The implementation, also presented in
this report, is therefore structured to be compatible with ROS.

The solution has been tested on various scenarios. A first set of evaluation tests using the Solomon’s VRP
database proved the basic good functioning of the solution, while showing its flexibility and performance. A second
set of tests demonstrated the possible use of the implemented algorithm applied to real AURORA scenarios. Since the
algorithm gives the possibility to add priorities, several prioritization policies have been tested. From the experiments,
prioritization appears to improve the results, though for now it is not possible to conclude about which policy is the
best. Some results also illustrated a weakness of the algorithm, which yields in some cases sub-optimal outputs; this
is the counterpart of the necessary restrictions that enable management of precedence constraint and online real-time

70 Master’s Thesis

execution. The measured execution times and communication processes ensure the practical aspect of the solution,
that can even take into account human users.

Besides the exposed main requirements, one can also say that, with respect to the stated objectives:

• the solution is indeed flexible and scalable; it can be used for various problems with different configurations
and number of bidders.

• the solution allows for partial scheduling if some tasks are unfeasible, which ensures robustness.

• the solution offers the possibility to take into account human-in-the-loop scenarios.

Future work

Of course, there are still many ways to improve and complete the proposed solution. This section provides a few
points that could be further explored:

• extending the robot team: currently, the actual scenarios that can be studied in "real life" only include
the Capdi robot in collaboration with a Kinova Mico robotic arm. The laboratory where the AURORA setup
is installed also has a Rethink Robotics Baxter robot and a KUKA robot. Baxter is a two-armed robot that
can be used for various manipulation tasks. It is between 175 cm and 190 cm tall, and is equipped with an
animated face and some camera sensors. The KUKA robot is a more classical robotic arm. Both could be
added to the system to extend its global capabilities. Also, the abilities of the CAPDI could be enhanced by
taking advantage of the dexterity offered by the Robotiq Adaptive gripper.

• task decomposition management: the task decomposition management was out of the scope of this thesis.
It is however a crucial aspect of task allocation. For the application considered here, it is also necessary to be
able to generate from higher-level goals the relevant list of atomic tasks, with the associated constraints. This
decomposition is essential for the system to work, and the chosen methodology has a significant influence on
the outcome. A possible future work proposal could therefore focus on this particular aspect.

• execution dynamics management: along with the task decomposition, further work is required in order to
implement the essential features to manage failures and exceptions, a part that was out of the scope of the
present project. This part would greatly enhance the system by making it reliable and fully usable. In link with
this point, it is possible to work towards a better integration of the user, focusing on communication as well
as uncertainty management because of the user behaviour.

These points are just some of the leads that can be explored. Multi-robot task allocation is a complex and broad
research field, and no doubt that there is still a lot to study, discover and learn.

71

Appendix A

Auctioneer and Bidder class definition

Listing A.1: Definition of the class Auctioneer

#ifndef AUCTIONEER_H
#define AUCTIONEER_H

#include <ros/ros.h>

#include <mrta_pia/bid.h>
#include <mrta_pia/graph.h>
#include <mrta_pia/task.h>

#include <mrta_pia_msgs/Auction.h>
#include <mrta_pia_msgs/FinishTimes.h>
#include <std_msgs/Bool.h>

#include <utils/utils.h>

/** @class Auctioneer class for the iterated -auction MRTA process
*/

class Auctioneer
{

public:

Auctioneer(ros:: NodeHandle n);
~Auctioneer ();

void get_f(std::vector <float > &f);
void get_pc(std::vector <float > &pc);
int get_number_of_scheduled_tasks ();

// Public functions to run auction
void init_auction(mrta_pia ::Graph* graphPtr ,

std::vector <mrta_pia ::Task > tasks ,
std::vector <std::string > bidders);

void run_auction ();
void stop_auction ();
void reset ();

private:

72 Master’s Thesis

ros:: NodeHandle nh_;

mrta_pia :: Graph* graph_; // Precedence graph
std::vector <mrta_pia ::Task > tasks_; // Tasks to assign

std::vector <float > f_;

int nb_ts_; // Number of tasks to schedule
int ts_count_; // Counter of scheduled tasks

std::vector <std::string > participants_; // Robots actually participating
int nb_bidders_auct_;

int auct_count_; // Counter - general auction process
int auct_batch_; // Counter - iteration (= 1 batch to auction)
int auct_round_; // Counter - round within iteration
std::vector <int > tauct_; // Tasks to be auctioned
std::vector <int > tauct_assigned_; // Tasks from batch assigned
int maxprio_; // Maximum priority of second layer tasks

std::vector <mrta_pia ::Bid > bids_; // Collected bids
mrta_pia ::Bid* best_bid_;
float best_bid_value_;
const float inf = 99999; // A large value to serve as infinite

// Received bids and finish time records
std::map <std::string ,bool > receivedBidsRecord_;
std::map <std::string ,bool > receivedFRecord_;

bool received_all_bids_ ();
bool received_all_f_ ();

// Publishers and subscribers for communication
ros:: Publisher stop_pub;
ros:: Publisher auction_pub;
ros:: Publisher winner_pub;
ros:: Subscriber bids_sub;
ros:: Subscriber f_sub;

// Auctioneer core methods
void build_tauct_ ();

void send_auction_ ();
void select_winner_ ();
void announce_winner_ ();

void receive_bids_(const mrta_pia_msgs ::Bid &msg);
void receive_f_(const mrta_pia_msgs :: FinishTimes &msg);

void mark_unassigned_ ();

};

#endif // AUCTIONEER_H

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 73

Listing A.2: Definition of the class Bidder

#ifndef BIDDER_H
#define BIDDER_H

#include <ros/ros.h>

#include <mrta_pia_msgs/Auction.h>
#include <mrta_pia_msgs/Bid.h>
#include <mrta_pia_msgs/FinishTimes.h>
#include <mrta_pia_msgs/Task.h>
#include <std_msgs/Bool.h>

#include <mrta_pia/bid.h>
#include <mrta_pia/robot.h>
#include <mrta_pia/stn.h>

#include <vector >

namespace mrta_pia
{

class Bidder
{

public:

Bidder(ros:: NodeHandle n, mrta_pia :: Robot* robot);
~Bidder ();

void run_auction ();

private:

ros:: NodeHandle nh_;
mrta_pia :: Robot* robot_; // Robot features

std::vector <mrta_pia_msgs ::Task > tauct_; // Auctioned batch of tasks
std::vector <float > pc_; // Received PC values

mrta_pia ::STN* schedule_; // Schedule
std::vector <int > assigned_tasks_; // Assigned tasks
std::vector <float > f_; // Corresponding finish times

mrta_pia ::Bid* best_bid_;
mrta_pia ::Bid* winning_bid_;
int best_bid_position_;
int best_bid_index_;

int auction_id_; // Auction counter
int batch_id_; // Batch counter
int round_id_; // Round counter

// Publishers and subscribers for communication
ros:: Publisher bid_pub_;
ros:: Publisher f_pub_;
ros:: Subscriber auction_sub_;

74 Master’s Thesis

ros:: Subscriber winner_sub_;
ros:: Subscriber stop_auction_sub_;
ros:: Publisher schedule_pub_;

bool continue_;
bool received_winner_;
bool received_auction_;

// Bidder core methods
void receive_auction_(const mrta_pia_msgs :: Auction &msg);

void compute_bid_ ();
void send_bid_ ();

void receive_winner_(const mrta_pia_msgs ::Bid &msg);
void update_tauct_(int sold_task_id);

void tighten_schedule_ ();
void send_f_ ();

void stop_auction_(const std_msgs ::Bool &msg);

};

}

#endif // BIDDER_H

75

Appendix B

Data structures definition

This appendix gathers the header files that define the different data structure and C++ classes presented in
section 5.4.4. For sake of brevity, and because the structure is certainly the most important, the source code files
are not presented.

Listing B.1: Graph class definition

#ifndef GRAPH_H
#define GRAPH_H

#include <iostream >
#include <iterator >
#include <algorithm >
#include <vector >
#include <string >

#include <mrta_pia/task.h>
#include <utils/utils.h>

namespace mrta_pia {

class Graph {

public:

struct node {
typedef std::pair <int ,node*> edge;
std::vector <edge > in , out;
int id;
node(int i): id(i){}

};

Graph(int nb_nodes);
~Graph ();

void init ();
void print ();
void add_node(node n);

void get_parents(const node &t, std::vector <int > &parents);
void get_children(const node &t, std::vector <int > &children);

76 Master’s Thesis

bool is_in_tf(int task);
bool is_in_tl(int task);

void get_PC(std::vector <float > &pc);
void get_F(std::vector <float > &f);

float get_pc_el(int index);

void set_F(std::vector <float > f);

void update(const int task_index);
void mark_unfeasible(int task_index);
void get_unfeasible_tasks(std::vector <int > &unfeasible);

private:

std::vector <node > nodes_;

std::vector <int > ts_; // Scheduled tasks
std::vector <int > tu_; // Unfeasible tasks
std::vector <int > tf_; // Free tasks
std::vector <int > tl_; // Second -layer tasks
std::vector <int > th_; // Hidden tasks

std::vector <float > pc_; // Earliest start time
std::vector <float > f_; // Finishing times

// Methods to build layers at graph initialization
void build_tf_ ();
void build_tl_ ();
void build_th_ ();

// Move task with id from v1 to v2
void move_(const int id, std::vector <int > &v1 ,

std::vector <int > &v2);
// Update PC value
void update_pc_(node t);

// Utilitary functions
bool parents_are_all_scheduled_(int node_id);
bool parents_are_scheduled_or_free_(int node_id);
void node_index_from_id(const int id , int &i);

};
}
#endif // GRAPH_H

Listing B.2: Robot class definition

#ifndef ROBOT_H
#define ROBOT_H

#include <iostream >
#include <string >
#include <vector >
#include <geometry_msgs/Point.h>

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 77

namespace mrta_pia
{

class Robot
{

public:

Robot ();
Robot(std:: string name , std:: string topic ,

std::vector <int > capabilities ,
std::vector <float > workspace ,
geometry_msgs ::Point location ,
float velocity);

~Robot ();

std:: string get_name ();
std:: string get_state_topic ();
std::vector <int > get_capabilities ();
std::vector <float > get_workspace ();
geometry_msgs ::Point get_location ();
float get_velocity ();

void update_location ();

bool can_perform(int task_type);
bool can_reach(geometry_msgs ::Point p);

private:

// Private attributes with default values
std:: string name_ = "";
std:: string state_topic_ = "";
std::vector <int > capabilities_ = {};
std::vector <float > workspace_ = { -0.5 ,0.5 , -0.5 ,0.5 , -0.5 ,0.5};
geometry_msgs ::Point location_;
float velocity_ = 0;

};

}

#endif

Listing B.3: STN class definition

#ifndef STN_H
#define STN_H

#include <vector >
#include <cmath >

#include <mrta_pia/task.h>
#include <geometry_msgs/Point.h>

78 Master’s Thesis

#include <utils/stn_utils.h>

namespace mrta_pia {

class STN
{

static const int inf = 999999; // Large nb to serve as infinity

public:

STN(geometry_msgs :: Point robot_location , float robot_velocity);
~STN();

std::vector <mrta_pia ::Task > get_scheduled_tasks ();

// Temporary insertion in working copy
bool try_insert(const mrta_pia ::Task &task , float pc_value ,

float &r_makespan , int &r_position);
// Final insertion at given position
void insert(const mrta_pia ::Task task , int position ,

float pc_value);

std::vector <float > tighten_schedule ();

void print ();

private:

std::vector <mrta_pia ::Task > scheduled_tasks_;

std::vector <std::vector <float >> dgraph_; // Distance graph
std::vector <std::vector <float >> w_dgraph_; // Working copy

float makespan_;
float travel_speed_;

// Methods for final insertion
bool insert_first_task_(const mrta_pia ::Task &task);
void insert_task_in_graph_(const mrta_pia ::Task &task , int p);
void insert_task_constraints_(const mrta_pia ::Task &task ,

int p, float pc);
void insert_travel_constraints_(const mrta_pia ::Task &task ,

int p);

// Methods for temporary insertion
bool tmp_insert_first_task_(const mrta_pia ::Task &task);
void tmp_insert_task_in_graph_ ();
void tmp_insert_task_constraints_(const mrta_pia ::Task &task ,

float pc);
void tmp_insert_travel_constraints_(const mrta_pia ::Task &task ,

int p);

// Compute travel time from t1 to t2
float compute_travel_time_(const mrta_pia ::Task &t1,

const mrta_pia ::Task &t2);

Multi-robot Task Allocation System to Improve Assistance in Domestic Scenarios 79

// Restrict latest finish time
void add_lft_constraint_(const mrta_pia ::Task &task , float lft);

};
}

#endif // STN_H

Listing B.4: Task structure definition

#ifndef TASK_H
#define TASK_H

#include <geometry_msgs/Point.h>
#include <mrta_pia_msgs/Task.h>

namespace mrta_pia {

struct Task {

// Task type list
static const int TYPE_DUMMY = -1;
static const int TYPE_PICKPLACE = 0;
static const int TYPE_PICK = 1;
static const int TYPE_PLACE = 2;
static const int TYPE_POUR = 3;
static const int TYPE_HOLD = 4;
static const int TYPE_MIX = 5;
static const int TYPE_OPEN = 6;
static const int TYPE_CLOSE = 7;
static const int TYPE_REMOVE = 8;

int id;
int type;
float priority;
geometry_msgs ::Point location_1 , location_2;
std:: string object , surface;
float duration , est , lst;

// Constructor and copy constructors
Task(int t_id , int t_type , float t_dur , float t_est , float lst ,

geometry_msgs ::Point p1 , geometry_msgs ::Point p2 ,
std:: string obj , std:: string surf , float prio);

Task(const Task &task);
Task(const mrta_pia_msgs ::Task &msg);

// Conversion to ROS message
void toMsg(mrta_pia_msgs ::Task &msg);

bool operator ==(const Task& task) const;
bool operator !=(const Task& task) const;

};
}
#endif

80

List of Figures

1.1 Kitchen setup . 7

3.1 Gerkey and Matarić’s taxonomy . 15
3.2 iTax task allocation taxonomy [17] . 16

4.1 Example of precedence graph and layer splitting . 24
4.2 Example of precedence graph and layer splitting with priorities . 24
4.3 Example of robot schedule as a STN . 26
4.4 STN distance graph . 27
4.5 Auction process flowchart . 28
4.6 Auction process flowchart . 29

5.1 The CAPDI robotic arm . 31
5.2 Kinova’s MICO robotic arm . 32
5.3 Kinova’s KG-2 gripper . 33
5.4 Recreation of the real environment in RViz . 35
5.5 Architecture of the MoveIt! framework: Overview . 37
5.6 Architecture of the MoveIt! framework: the Planning Scene Monitor 38
5.7 Examples of objects in the kitchen setup . 39
5.8 Grasp approaches for the MICO robot . 40
5.9 The extend step in the RRT algorithm [19] . 42
5.10 Example of configuration file robots.yaml . 43
5.11 Communication topics between the auctioneer and bidder nodes . 44

6.1 Solution to one R instance with 16 tasks, 4 robots, unconstrained 51
6.2 Solution to one R instance with 16 tasks, 1 robot, unconstrained . 51
6.3 Solution to one R instance with 16 tasks, 4 robots, constrained start time 52
6.4 Task assignment progression with time window constraints . 53
6.5 R instance with 16 tasks, 4 robots, precedence constraints - Case 1 54
6.6 R instance with 16 tasks, 4 robots, precedence constraints - Case 2 54
6.7 R instance with 16 tasks, 4 robots, precedence constraints - Case 3 55
6.8 R instance with 16 tasks, 4 robots, precedence constraints - Case 4 55
6.9 Solution to three R instances with 16 tasks, 4 robots, heterogeneous tasks and team 56
6.10 Solution to two R instances with 16 tasks, 4 robots, heterogeneous tasks and team 57
6.11 Evaluation scenario 2 - environment . 59
6.12 Evaluation scenario 1 - task precedence graph . 60
6.13 Evaluation scenario 2 - environment . 62
6.14 Evaluation scenario 2 - task precedence graph . 63
6.15 Auction process execution time for each scenario . 65

81

List of Tables

5.1 Specifications of the Robotiq’s 3-Finger Adaptive Gripper . 32
5.2 Specifications of the Kinova’s MICO2 robotic arm . 33
5.3 Specifications of the Kinova’s KG-2 gripper . 33
5.4 MoveIt! default capabilities (plugins) . 36
5.5 MoveIt! default planning adapters . 37
5.6 Grasp nomenclature . 40
5.7 Comparison between Orocos’ KDL and TRAC-IK solvers . 41

6.1 Task coordinates for the 16-task R instance . 52
6.2 Evaluation scenario 1 - Task list . 60
6.3 Scenario 1 output schedules - with four robots . 61
6.4 Scenario 1 output schedules - with three robots . 61
6.5 Evaluation scenario 2 - Task list . 63
6.6 Scenario 2 output schedules . 64

7.1 Equipment expenses estimation . 66
7.2 Workforce expenses estimation . 67
7.3 Energy expenses estimation . 67
7.4 Estimated total cost for the project . 67
7.5 Energy consumption estimation . 68

List of Algorithms

1 Auctioneer’s algorithm . 29
2 Update precedence graph . 30
3 Bidder r’s algorithm for each iteration . 30
4 Tighten schedule . 30
5 Floyd-Warshall algorithm . 47

82 Master’s Thesis

6 Check schedule consistency . 48

Listings

5.1 Auction.msg . 45
5.2 Bid.msg . 45
5.3 FinishTimes.msg . 45
5.4 Task.msg . 45
A.1 Definition of the class Auctioneer . 71
A.2 Definition of the class Bidder . 72
B.1 Graph class definition . 75
B.2 Robot class definition . 76
B.3 STN class definition . 77
B.4 Task structure definition . 79

83

Bibliography

[1] P. Beeson and B. Ames. TRAC-IK: An open-source library for improved solving of generic inverse kinematics.
In Proceedings of the IEEE RAS Humanoids Conference, pages 928–935, Nov. 2015.

[2] K. E. C. Booth, G. Nejat, and J. C. Beck. A constraint programming approach to multi-robot task allocation
and scheduling in retirement homes. In M. Rueher, editor, Principles and Practice of Constraint Programming,
pages 539–555, Cham, 2016. Springer International Publishing.

[3] A. Campeau-Lecours et al. Kinova modular robot arms for service robotics applications. International Journal
of Robotics Applications and Technologies, 5:49–71, July 2017.

[4] A. Casals et al. Plataforma para un entorno asistencial inteligente heterogéneo. Jornadas Nacionales de Robótica
2018, June 2018.

[5] S. Chitta, I. Sucan, and S. Cousins. Moveit! [ROS topics]. IEEE Robotics and Automation Magazine, 19:18–19,
Mar. 2012.

[6] D. Coleman et al. Reducing the barrier to entry of complex robotic software: a moveit! case study. Journal of
Software Engineering for Robotics, 5(1):3–16, May 2014.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Section 22.1: Representation of graphs. In Introduction
to Algorithms (2nd ed.), pages 527–530. MIT Press and McGraw-Hill, Oct. 2006.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Section 25: All-pairs shortest paths. In Introduction
to Algorithms (2nd ed.), pages 620–642. MIT Press and McGraw-Hill, Oct. 2006.

[9] R. N. Darmanin and M. K. Bugeja. A review on multi-robot systems categorised by application domain. In 2017
25th Mediterranean Conference on Control and Automation (MED), pages 701–706, July 2017.

[10] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence, 49(1):61–95, May 1991.

[11] M. D’Emidio and I. Khan. Multi-robot task allocation problem: Current trends and new ideas. In Joint
Proceedings of the 18th Italian Conference on Theoretical Computer Science and the 32nd Italian Conference on
Computational Logic co-located with the 2017 IEEE International Workshop on Measurements and Networking
(2017 IEEE M&N), pages 99–103, Sept. 2017.

[12] A. Farinelli, L. Iocchi, and D. Nardi. Multirobot systems: A classification focused on coordination. IEEE
Transactions on Systems, Man and Cybernetics (Part B), 34(5):2015–2028, Oct. 2004.

[13] A. Gautam and S. Mohan. A review of research in multi-robot systems. In Proceedings of the 2012 IEEE 7th
International Conference on Industrial and Information Systems (ICIIS), pages 1–5, Aug. 2012.

[14] B. P. Gerkey and M. J. Matarić. A formal analysis and taxonomy of task allocation in multi-robot systems. The
International Journal of Robotics Research, 23(9):939–954, Sept. 2004.

[15] M. Gini. Multi-robot allocation of tasks with temporal and ordering constraints. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, pages 4863–4869. AAAI Press, 2017.

84 Master’s Thesis

[16] A. Khamis, A. Hussein, and A. Elmogy. Multi-robot Task Allocation: A Review of the State-of-the-Art, pages
31–51. Springer International Publishing, Cham, 2015.

[17] G. A. Korsah, A. Stentz, and M. B. Dias. A comprehensive taxonomy for multi-robot task allocation. Internation
Journal of Robotics Research, 32(12):1495–1512, Oct. 2013.

[18] A. Kothari et al. Grasping objects big and small: Human heuristics relating grasp-type and object size. 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 1–6, May 2018.

[19] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query path planning. In
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation.,
volume 2, pages 995–1001, Apr. 2000.

[20] H. Lipson. Robots on the run. Nature (online), Mar. 2019.

[21] L. Luo, N. Chakraborty, and K. P. Sycara. Multi-robot assignment algorithm for tasks with set precedence
constraints. 2011 IEEE International Conference on Robotics and Automation, pages 2526–2533, May 2011.

[22] M. McIntire, E. Nunes, and M. Gini. Iterated multi-robot auctions for precedence-constrained task scheduling. In
AAMAS 2016 - Proceedings of the 2016 International Conference on Autonomous Agents and Multiagent Sys-
tems, pages 1078–1086. International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS),
Jan. 2016.

[23] E. Nunes et al. A taxonomy for task allocation problems with temporal and ordering constraints. Robotics and
Autonomous Systems, 90(C):55–70, Apr. 2017.

[24] E. Nunes and M. Gini. Multi-robot auctions for allocation of tasks with temporal constraints. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pages 2110–2216. AAAI Press, 2015.

[25] M. Quigley et al. ROS: an open-source robot operating system. volume 3, Jan. 2009.

[26] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window constraints.
Operations Research, 35(2):254–265, Mar. 1987.

[27] I. A. Sucan, M. Moll, and L. E. Kavraki. The open motion planning library. IEEE Robotics Automation Magazine,
19(4):72–82, Dec. 2012.

[28] R. M. Zlot. An Auction-Based Approach to Complex Task Allocation for Multirobot Teams. PhD thesis,
Robotics Institute, Carnegie Mellon University, Oct. 2006.

	Glossary and Acronyms
	Introduction
	Motivation
	Background

	Objectives
	State of the art
	Multi-Robot Systems
	Overview and Classification
	Challenges

	Multi-Robot Task Allocation
	The Multi-Robot Task Allocation problem
	MRTA problem taxonomies
	Methods for task allocation

	Solution design
	Objective reminder and problem classification
	Solution
	Chosen method
	Problem formulation
	Mathematical model
	Algorithm

	Algorithm pseudo-code

	Solution implementation
	Robots
	Capdi
	Kinova's Mico

	Software
	The Robot Operating System (ROS) framework
	MoveIt!

	The AURORA setup
	General functioning
	Environment management (Localization and mapping)
	Grasping
	Kinematics plugins
	Planner for motion planning

	MRTA solution implementation and integration within AURORA
	General organization
	Auction process: auctioneer and bidders
	Communication
	Data structures
	Solving the STN
	Computing the bid
	Tightening the schedule

	Evaluation and results
	Validation using Solomon's VRP database
	Solomon's database
	First test: simple task assignment
	Second test: task assignment with time window constraints
	Third test: task assignment with precedence constraints
	Fourth test: task assignment with task type

	Evaluation on Aurora scenarios
	Task prioritization
	First scenario: robots only
	Second scenario: involving the user
	Performances

	Project impact
	Economical impact and budget
	Environmental impact
	Social impact

	Conclusion
	Auctioneer and Bidder class definition
	Data structures definition
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Bibliography

