
Title: The Referee Assignment Problem

Author: Farners Vallespí i Soro

Advisor: Robert Nieuwenhuis

Department: Computer Science

Academic year: 2018 / 2019

Degree in Mathematics

Universitat Politècnica de Catalunya

Facultat de Matemàtiques i Estad́ıstica

Degree in Mathematics

Bachelor’s Degree Thesis

The Referee Assignment Problem

Farners Vallesṕı i Soro

Supervised by Robert Nieuwenhuis

June 2019

I would like to thank Robert Nieuwenhuis, for helping me throughout the project, sharing his expertise
and giving me the chance to work in this project.

I would also like to acknowledge Oriol Porta and Pol Vallesṕı for always being there whenever I needed
a second opinion and supporting me throughout the whole process.

Abstract

In collaboration between a UPC spinoff, Barcelogic, and the Dutch Football Federation (KNVB), we define,
study, implement and evaluate different approaches for solving the so-called Referee Assignment Problem
(RAP). In this NP-complete constraint solving problem, numerous conditions must be met, such as the
balance in the number of matches each referee must officiate, the frequency of each referee being assigned
to a given team, the distance each referee must travel over the course of a season, etc.

Keywords

Referee Assignment, Sports Scheduling, Optimization, Integer Linear Programming, NP-Complete

1

Contents

1 Introduction 5

1.1 Referee Assignment Problem . 6

1.2 Related work on the RAP . 7

1.3 Other problems related to the RAP . 8

2 Definitions 10

2.1 Basic problem . 10

2.1.1 Problem description . 10

2.1.2 Hard constraints . 11

2.1.3 Soft constraints . 11

2.1.4 Model . 11

2.2 KNVB problem . 15

2.2.1 Problem description . 16

2.2.2 Hard constraints . 17

2.2.3 Soft constraints . 18

2.2.4 Model . 18

3 Complexity of the problem 29

4 Local Search solution for the basic problem 31

4.1 Local Search Algorithms . 31

4.2 Hill Climbing . 32

4.3 Simulated Annealing . 33

5 ILP solution for the basic problem 36

6 ILP solution for the KNVB problem 39

7 Experiments 41

7.1 Basic Problem . 41

7.2 KNVB Problem . 44

8 Conclusions and Further Work 49

References 51

A Local Search Code 53

B ILP Code for the Basic Problem 83

2

C ILP Code for the KNVB Problem 91

3

4

1. Introduction

Professional sports gather a lot of interest all around the world and move masses of people and huge quan-
tities of money. This is one of the main reasons optimization in sports has become a field that is gathering
more importance as time goes by. Football is one of the most popular and economically significant sports
followed by basketball and tennis, and with the money that it moves, it has gone past being considered
not only a sport but an industry, moving researchers in order to find ways to make more money.

Among the most important fields in sports operations research we find leagues and tournaments schedul-
ing, traveling tournament scheduling, playoff elimination and referee assignments. Other important areas
of study include deciding the best tactics and strategy and forecasting, although this is usually done by
individual competitors, and usually only those that have more to gain and move more money. In this project
we will be working with the Referee Assignment Problem (RAP), which will be explained in more detail
in section 1.1. Independently of its applications in practice, the RAP is also considered an interesting and
challenging problem by itself, due to its hard combinatorial nature. Further detail about the other fields is
given in subsection 1.3.

The RAP, once formulated, becomes a combinatorial optimization problem that can be solved with
different methodologies among which are using complete solvers or local search algorithms, which are
normally used in constraint satisfaction problems, where the goal is to find an assignment that fulfills all
the constraints formulated, or optimization problems, where the goal is to find an assignment such that
minimizes or maximizes a function. They are both methodologies that search virtual spaces, which are
the domain of the function to be optimized. With local search methods, these virtual spaces are created
with candidate solutions and are explored in order to find one that optimizes the objective function of the
problem.

The main difference between both sets of methods is that complete algorithms are exhaustive, meaning
they explore all possible solutions if needed and if there is a solution they find it if given enough time,
meanwhile local search methods may become stagnated in the search and never find an optimum solution
or even a solution at all. This is due to the fact that local search algorithms don’t explore the whole search
space, they follow an heuristic that tells them which states to visit and when they find a local optimum,
they stop, restart or use some other method to escape from it, but they have no way of knowing whether
this state is only a local optimum or a global one without exploring the whole space.

Another important difference is that, if no solution is found for a problem, complete solvers are able
to prove the unsatisfiability of the problem and pinpoint the constraints that make the problem unable to
be solved. It is also important to notice that local search algorithms, although they may not find the op-
timum solution, are usually faster to give a solution since they don’t have to explore the whole search space.

Another procedure we have considered is breaking the problem into smaller sub-problems that are easier
to solve since they have less variables and take into account less constraints. This way of working can
produce good results with many problems, however, with optimization problems, it does not guarantee
finding the optimum since the results obtained for the main problem are conditioned by the results from
each sub-problem. This procedure, in fact, when working with constraint satisfaction problems, does not

5

even assure finding a solution for the problem, since solving the problem one sub-problem at a time may run
the problem towards a situation for which there is no assignment of values for the variables of the following
sub-problem that fulfills all the constraints, leaving the next sub-problem to be faced without solution.

Given the experience and know-how of Barcelogic in the formulation of sports planning problems and
the use of complete solvers, our aim in this project was to try to do this as well for the RAP and compare
efficiency with local search techniques.

In this project we address two versions of the Referee Assignment Problem, which are presented and
defined in section 2. The first version we work with is the basic one, which is introduced in subsection 2.1
and considers the general constraints taken into account when looking for refereeing assignments, and the
second one we work with, which is presented in subsection 2.2, is the version with the specific requirements
demanded by the Dutch Football Association (KNVB). For both of these versions of the RAP we present
a description of the problem in full detail and then expose their mathematical formulation.

Section 3 defines and proves the complexity of the decision version of the referee assignment problem,
section 4 presents the strategies used to solve the basic version of the problem using local search algorithms
and sections 5 and 6 present the methodology used to use complete solvers to solve respectively the basic
problem and the KNVB version of the problem. To use the complete solvers to face the RAP we have
formulated each problem as an integer linear programming problem looking for the most appropriate for-
mulation in terms of correctness and efficiency, since given the amount of data managed with this problem,
not all formulations were viable.

Lastly, the results from implementing the different methodologies are presented and compared in section
7 and the concluding remarks and further work extensions are included in section 8.

1.1 Referee Assignment Problem

The Referee Assignment Problem is a common problem that is faced in sports management whenever a
tournament or league is scheduled since all sports have at least one official that makes sure everything
goes according to the rules. It basically consists on finding an assignment of referees to the refereeing slots
that are generated for the games that are to be disputed. The calendar must be already scheduled before
facing this problem since it conditions the assignments, for example, a referee cannot be in two places at
the same time, so we have to know beforehand when will the games be disputed.

The RAP deals with a set of referees with different qualities, the calendar of the matches and informa-
tion about these matches, a set of constraints that need to be fulfilled for the assignment to make sense
and a set of preferences that are desired. Given all this information, the RAP looks for a feasible assignment
that respects all the constraints and fulfills as many preferences as possible.

Each sport, nation and competition has its own set of rules, meaning each case has to be taken as a
different problem since many things may vary, such as the number of refereeing slots that are generated for
each game and the frequency of the matches. For example, an American football match needs 7 referees, a
basketball game needs 3, a football match from La Liga, the Spanish top division league, needs 6 referees,
and a match from the English Premier League, the first division league in professional football in England,

6

needs 4 referees. This means each league will have its own set of constraints and preferences.

This makes the generalization of the problem quite difficult, so we will focus on the refereeing assignment
in football leagues, since most leagues follow similar rules making it easier to formulate the basic problem.

1.2 Related work on the RAP

The Referee Assignment Problem is considered to have been defined by Duarte et al. in 2006 [1], who
presented a general version of the problem and mentioned that each sport, nation and league would have
its own particularities. Duarte is nowadays considered one of the most important contributors to this field
of work.

The problem, however, had been studied before by Evans in 1984 [2] and 1988 [3], when the problem
was applied to the assignment of the umpires in the American Baseball League. In this version of the prob-
lem the resting time of the referees took a lot of importance and several rules or constraints were imposed
to take care of this, such as adding resting days between matches depending on the travelling distances
between the stadiums where two consecutive matches took place. To solve the problem Evans used a
support system to make decisions and optimization techniques, heuristic rules and the human judgment.

Since then, the techniques used to solve the problem have evolved and more promising ways to solve
the RAP have been presented. In 1991, an heuristic algorithm was proposed by Wright [4] to solve the RAP
applied to a cricket league from England, and in 2015 he himself published another article [5] adapting his
solution to the assignment of the referees to several cricket leagues with different relevance.

Duarte et al., in their first article in 2006 [1], used an integral model for the RAP which was solved
using a 3 phases heuristic-based algorithm. In the first phase a greedy heuristic looks for a feasible solution
to the problem by assigning as many referees to the slots without violating constraints as possible, and
then assigning the referees to the remaining refereeing slots until all of them are fulfilled. If the assignment
obtained violates any constraints, the second phase is applied and an iterated local search is used to repair
the solution by changing referee assignments one at a time for a given number of iterations. Finally an
algorithm based on a meta-heuristic is used to search for a local optimum. This, obviously, does not guar-
antee nor an optimal solution nor a feasible one since the second phase may not find a feasible solution. In
2007 Duarte et al. published an extension of their previous work in which an hybrid iterated local search
heuristic based on an integral mixed linear scheduling model was used in the third phase to look for the
local optimum [6].

Duran et al. have also made several important contributions to this problem with the scheduling of the
Chilean football league, however they have treated the problem mixed with the league scheduling. In 2005
[7] Duran et al. proposed the problem for the last matches of the first division games dividing the teams
into 4 groups due to the play-off format of the competition and with the intention to minimize the travel
time between consecutive matches. In 2010 [8] a new way to face the problem was proposed, which was
applied to the second division league in Chile. In this new version Duran et al. looked for an assignment
such that the number of times a team had two consecutive home or away matches was minimized. They
were the first to mix scheduling with referee assignment.

7

Since then others have also presented the problem to be solved altogether with the league scheduling,
the most important contribution being made by Atan and Hüseyinoǧlu, who in 2015 proposed an integral
mixed linear scheduling model for the Turkish football league using genetic algorithms [9].

In 2008 a model for the Turkish football league which was solved with local search algorithms was
presented by Yavuz et al. [10] avoiding frequent assignments between referees and teams and in 2007
and in 2010 Ferland and Lamghari presented several versions of the RAP solved with tabu search and
diversification strategies based on different neighborhoods [11], [12].

In 2013 Duran et al. proposed a new way to face the RAP [13], which was the most complete up to
date, taking into account more things than any other model up until then, and was based on integer linear
programming. Just like with his previous work, the model was applied to the First Division of the Chilean
professional football league. With this approach the main goal was to balance the number of matches
officiated per referee, the frequency of assignments per referee to a same team, the distance travelled and
the difference between the skills of the referee and the importance of the match. Two formulations were
given to solve this problem, one traditional and one based in pattern-based formulation, which got to reduce
considerably the execution times.

Finally, in 2019, Linfati, Gatica and Escobar [14] presented a paper in which a non-linear binary pro-
gram model was proposed. This model was intended to minimize the differences between the skills of the
referees and the importance of the matches they are assigned to. The model is proved against real data
from different sports such as football, volleyball and basketball and is solved using CPLEX.

Our model has been influenced by many of these works in different ways, mostly in order to decide how
to model the problem and which constraints to implement. Several ideas about how to face the problem
has also been gathered from these articles.

1.3 Other problems related to the RAP

As mentioned before, the other problems that are most relevant in sports operations research are the Playoff
Elimination Problem, the League Scheduling Problem and the Travelling Tournament Problem.

The Playoff Elimination Problem arose from the eagerness of the fans, the press and the team employees
to know whether the team is qualified for the playoffs of a competition or not and what does the team need
to achieve in order to qualify, which usually requires acquiring a minimum position in the regular league.
This problem takes into account the matches that have already been disputed and the possible outcomes
from all the remaining matches to answer these questions.

This problem was first approached by Schwarts in 1966 [15], who applied a maximum-flow algorithm
to solve it. In 1970 Hoffman and Rivlin [16] extended the problem adding the conditions necessary and
sufficient to eliminate a team that is in a given position k or below this position in the league. In the year
1991 Robinson published another article [17] in which, using linear programming, he applied this problem
to the baseball playoff eliminations and got results that eliminated the teams up to 5 days earlier than with
the results from the league that took place in 1987.

8

The League Scheduling Problem consists on finding an assignment of teams to matches in a league
alternating home and away games as much as possible and making each team play twice against the
other teams. Initially the goal was characterizing the schedule so that it had as few breaks in the alter-
nations as possible, however, as time has gone by and sports have become an industry this problem has
evolved and now other goals are also contemplated, such as maximizing the profits obtained by the league
and the clubs, which depend on the dates of the matches, their importance, the capacity of the venues, etc.

One of the versions of the League Scheduling Problem problem that has awakened more interest is
the Travelling Tournament Problem, in which the main goal is to find the assignment that minimizes the
travelling distance the teams must travel throughout the season, although other objectives are usually also
considered. Besides the travelling distance other things are taken into account, just like in the League
Scheduling Problem, such as logistic issues, different types of constraints that must be followed, stadiums
availability, conflicting interests, etc.

The basic version of the League Scheduling Problem was first presented by Werra in 1981 [18], who
also presented several theoretical models of the problem formulated with graphs in 1988 [19] and then
faced a real case of this problem in 1990 and solved it using oriented factorization of complete graphs [20].

Throughout the years several approaches or techniques have been used to solve this problem, such
as a mathematical programming approach, which has been used among others by Mcaloon, Tretkoff and
Wetzel in 1997 [21], simulated annealing, which was used by Biajoli et al. in 2003 [22] and Van Hentenryck
and Vegados in the year 2005 [23], and constraint-based programming approaches, which were used by
Nemhauser and Trick in 2001 [24] and by Henz, Müller and Thiel in 2004 [25].

The Travelling Tournament Problem was first approached by Easton, Nemhauser and Trick in 2002
[26], who defined the problem making the tournament follow a double round robin schedule and solved
it with a combined integer programming and constraint programming approach. In the year 2009, Uthus
and Riddle [27] presented a conference paper in which they used an exact method to solve this problem,
more precisely a depth first search, obtaining known optimal solutions in fewer computational time than
past approaches. Later on an improved neighbourhood search was proposed by Langford in 2010 [28] and
in the year 2012 Miyashiro, Matsui and Imahori presented a randomized approximation algorithm [29].

Hybrid methods have also been used to solve both versions of the problem and have showed better
results. Some examples of hybrid method approaches are a combination of constraint and integer pro-
gramming, which was presented in 2001 by Benoit et al. [30], and a mix of Tabu Search and agent based
techniques, which has been used in an article by Adriane et al. presented this 2019 [31].

9

2. Definitions

In this chapter we will present both the basic or more general problem and the KNVB version of the problem
adjusted to the needs of the Dutch Football Federation. We will describe both problems and expose their
mathematical formulations.

2.1 Basic problem

The basic problem consists on assigning referees to all the matches of a football league. As this problem
is being constructed in order to serve as a basis for as many different leagues as possible, no matter their
specific needs, we will only consider constraints and preferences that are taken into account in most leagues.

While working the problem we will find hard constraints, meaning they are to never be broken if we
want a consistent referee assignment, and soft constraints, which indicate preferences. The assignment we
will be looking for will be such that fulfills all the hard constraints and violates as few soft constraints as
possible.

2.1.1 Problem description

Given a league with n teams, the season is divided into 2n-2 rounds and each team plays a total of 2n-2
matches of the shape ”team A against team B”, one per round, where ”team A” plays the role of the local
team and ”team B” exercises as the visiting team. At the end of the league every single team will have
played twice against every other team in the league, one in the role of the local team and the other one as
the visiting team.

We will part from a league in which the calendar of the matches is already decided, so we know who
plays against who in each round, and we will assign the referees to each match. Usually every football
match requires at least 3 referees: one main referee and two assistant referees or linesmen. As in some
leagues the refereeing trios are previously defined and always go together, in this problem we will only
assign the main refereeing role to the matches.

In order to assign the referees, we have to take into account the fact that referees must rest from time
to time to avoid overloads, yet not too often in order to keep them busy and avoid uneasiness due to being
assigned to too few matches. We must also try to avoid assigning a referee too often to the same team in
order to avoid favoritism or troubles with the supporters. Moreover, we must consider the fact that not all
matches have the same relevance nor are as easy to rule, so the referee assigned to the match has to be
qualified or have the skill level required to face the match without any troubles.

Finally, we should consider that not all referees can be assigned to any match due to several circum-
stances, for example, a referee may not be available during a round due to international commitments,
being on vacation, being ill, etc. Some referees are also banned from being assigned to certain teams due
to past conflicts among other things. This is usually applied to avoid a referee being assigned to exercise
on a match that is played nearby the place where he lives in order to avoid troublesome outcomes from a
conflicting match.

10

2.1.2 Hard constraints

Now that we have presented the problem, the hard constraints that we can extract from the previous
description and through using common sense and that must be fulfilled for the assignment to make sense
are the following:

1. Every match has to have a referee assigned.

2. A referee cannot be assigned to more than one match per round.

3. The referee assigned to a match must have the required skill level.

4. Given an interval of rounds, every referee must have assigned more than a given minimum of matches
and less than a given maximum.

5. Referees cannot have more than a given number of consecutive rounds with assigned matches.

6. A referee cannot be assigned twice to a same team before a certain number of rounds have passed.

7. A referee cannot be assigned twice to a match at the same stadium before a certain number of rounds
have passed.

8. Given an incompatibility between a referee and a team, the referee cannot be assigned to matches
with that team.

9. Given an incompatibility between a referee and a stadium, the referee cannot be assigned to matches
played in that stadium.

10. Given an incompatibility between a referee and a round, the referee cannot be assigned to any match
that takes place in that round.

2.1.3 Soft constraints

In order the get the assignment with the best quality we can get, making it as well balanced as possible,
we consider the following soft constraints or preferences:

1. All referees must have the same number of assigned matches.

2. All referees must be assigned the same number of times to matches starring one team for all teams.

2.1.4 Model

In this section we will expose the mathematical formulation of the problem described above, which is for-
mulated as an integer linear programming problem using boolean variables. Before starting, though, we
introduce some definitions and notations.

For starters, we need to define the parameters that will be used to model the problem:

• t1 ... tN : teams taking part in the league.

11

• a1 ... aM : referees to assign.

• r1 ... r2N−2 : rounds in the league.

• nRI : number of consecutive rounds in an interval of rounds.

• minM : minimum number of matches a referee must be assigned to given an interval of rounds.

• maxM : maximum number of matches a referee can be assigned to given an interval of rounds.

• maxCR : maximum number of consecutive rounds in which a referee can have a match assigned to.

• nRT : number of rounds that must pass before a referee can be assigned to a same team.

• nRS : number of rounds that must pass before a referee can be assigned to a match in the same
stadium.

• qa(ai) : given constant value between 1 and 10 indicating the skill level of a referee ai with i ∈ [1, M].

• qp(ti , tj) : given constant value between 1 and 10 indicating the difficulty of the match between the
teams ti and tj with i , j ∈ [1, N].

• p(ti , tj , rk) : given constant that equals 1 if the match between the teams ti and tj is played in the
round rk , with i , j ∈ [1, N] and k ∈ [1, 2N − 2]. Otherwise it equals 0.

• ie(ai , tj) : given constant that equals 1 if there is an incompatibility between the referee ai and the
team tj , with i ∈ [1, M] and j ∈ [1, N]. Otherwise it equals 0.

• is(ai , tj) : given constant that equals 1 if there is an incompatibility between the referee ai and the
stadium in with team tj plays, with i ∈ [1, M] and j ∈ [1, N]. Otherwise it equals 0.

• ir(ai , rk) : given constant that equals 1 if there is an incompatibility between referee ai and the round
rk , with i ∈ [1, M] and k ∈ [1, 2N − 2]. Otherwise it equals 0.

We also need to define the variables that we are going to use to formulate the problem:

• A(ti , tj , rk , al) : boolean variable that will equal 1 if referee al is assigned to the match between
teams ti and tj played in the round rk with ti as the local team, where i , j ∈ [1, N], k ∈ [1, 2N − 2]
and l ∈ [1, M], and will equal 0 otherwise.

• WR(ai , rk) : boolean variable that will equal 1 if referee ai has a match assigned to in the round rk ,
where i ∈ [1, M] and k ∈ [1, 2N − 2], and will be equal to 0 otherwise.

• DWR(ai , aj) : boolean variable that will equal 1 if referee ai if assigned to more matches than aj ,
with i , j ∈ [1, M], and will equal 0 otherwise.

• DT (ai , aj , tk) : boolean variable that will equal 1 if referee ai is assigned to matches in which team
tk plays than aj , with i , j ∈ [1, M] and k ∈ [1, N], and will equal 0 otherwise.

12

We can observe that, by defining variables DWR and DT this way, every time one of them equals 1 it
means there is a soft constraint that is not being fulfilled: for every DWR variable that equals 1, there
is a couple of referees for which the first one has more assignments than the second one, and for every
DT variable that equals 1, there is a trio of two referees and a team for which the first referee is assigned
to more matches starring the team than the second referee. As we want the assignment that minimizes
the number of unfulfilled soft constraints, we will define the objective function as the addition of all these
variables.

The integer linear programming model we propose in order to minimize the number of soft constraints
that are broken is shown below. It consists on finding a set of values for the variables minimizing the
objective function subjected to the constraints from (2) to (20). The objective function is described in (1),
and, as it has been said before, tries to minimize the number of unfulfilled soft constraints.

min
(M∑

i=1

M∑
j=1

DWR(ai , aj) +
M∑
i=1

M∑
j=1

N∑
k=1

DT (ai , aj , tk)
)

(1)

The constraints used to limit the solutions are expressed below. Constraint (2) imposes that all existing
matches have one and only one referee and that non-existing matches cannot have a referee assigned to
them. Constraint (3) imposes that no referee can be assigned to more than one match per round, while
constraint (4) ensures all referees assigned to a match have the skill level required to rule the match. With
these constraints we make sure to fulfill the first three hard constraints exposed in section 2.1.2.

M∑
l=1

A(ti , tj , rk , al) = p(ti , tj , rk) ∀i , j ∈ [1, N],∀k ∈ [1, 2N − 2] (2)

N∑
i=1

N∑
j=1

A(ti , tj , rk , al) ≤ 1 ∀k ∈ [1, 2N − 2],∀l ∈ [1, M] (3)

A(ti , tj , rk , al) · (qa(al)− qp(ti , tj)) ≥ 0 ∀i , j ∈ [1, N],∀k ∈ [1, 2N − 2],∀l ∈ [1, M] (4)

Constraints (5), (6) and (7) are used to ensure that the constraints about the number of matches that can
be assigned to a referee for each interval of rounds are fulfilled, guaranteeing this way the 4th and 5th hard
constraints described above. The first constraint asserts every referee has assigned at least minM matches
per interval of rounds, while the second one makes certain that every referee has at most maxM assignments
per interval of rounds, both of them considering intervals of rounds containing nRI consecutive rounds.
The last of the three constraints mentioned in this paragraph ensures no referee has more consecutive
matches assigned than is allowed.

nRI−1∑
k=0

WR(ai , rj+k) ≥ minM ∀i ∈ [1, M],∀j ∈ [1, 2N − 1− nRI] (5)

nRI−1∑
k=0

WR(ai , rj+k) ≤ maxM ∀i ∈ [1, M],∀j ∈ [1, 2N − 1− nRI] (6)

13

maxCR∑
k=0

WR(ai , rj+k) ≤ maxCR ∀i ∈ [1, M],∀j ∈ [1, 2N − 2−maxCR] (7)

Constraint (8) imposes that once a referee is assigned to a match, he or she cannot be assigned to a
match repeating one of the teams before nRT rounds have passed. This is checked by imposing that for
every (nRT + 1) rounds, every referee can be assigned at most once to all the matches featuring one same
team. Constraint (9), applying almost the same but only taking into account matches with the same local
team, ensures referees don’t have an assignment to the same stadium before nRS rounds have passed.
With these two constraints we guarantee the fulfillment of the 6th and 7th hard constraints mentioned in
2.1.2.

nRT∑
t=0

N∑
j=1

A(ti , tj , rk + t, al) + A(tj , ti , rk + t, al) ≤ 1

∀i ∈ [1, N],∀l ∈ [1, M],∀k ∈ [1, 2N − 1− nRT]

(8)

nRS∑
t=0

N∑
j=1

A(ti , tj , rk + t, al) ≤ 1 ∀i ∈ [1, N],∀l ∈ [1, M],∀k ∈ [1, 2N − 1− nRS] (9)

The remaining hard constraints that we have not mentioned yet are secured by the constraints between
(10) and (13). Constraints (10) and (11) ensure incompatibilities between referees and teams are respected
by first forbidding referees being assigned to home matches with a forbidden team in the role of the local
team and then applying the same to the games in which the forbidden team is the visitor. Constraint (12)
makes certain incompatibilities between referees and stadiums are respected by forbidding the assignment
of referees to games in which the local team is the one that plays in the forbidden stadium, and constraint
(13) ensures referees are not assigned to matches in rounds in which they are not available.

A(ti , tj , rk , al) ≤ 1− ie(al , ti) ∀i , j ∈ [1, N],∀k ∈ [1, 2N − 2],∀l ∈ [1, M] (10)

A(ti , tj , rk , al) ≤ 1− ie(al , tj) ∀i , j ∈ [1, N],∀k ∈ [1, 2N − 2],∀l ∈ [1, M] (11)

A(ti , tj , rk , al) ≤ 1− is(al , ti) ∀i , j ∈ [1, N],∀k ∈ [1, 2N − 2],∀l ∈ [1, M] (12)

A(ti , tj , rk , al) ≤ 1− ir(al , rk) ∀i , j ∈ [1, N],∀k ∈ [1, 2N − 2],∀l ∈ [1, M] (13)

14

Constraint (14) is used to define the variables WR which, for every referee and round, equal 1 if and
only if the referee has a match assigned that round, meaning the variable is the sum of all the A variables
for a given referee and round.

WR(al , rk) =
N∑
i=1

N∑
j=1

A(ti , tj , rk , al) ∀k ∈ [1, 2N − 2],∀l ∈ [1, M] (14)

Constraint (15) defines the variables DWR, which are to equal 1 if and only if, for a given pair of
referees and a team, the first referee has more games assigned than the second referee. To do this, we
calculate the difference between the number of working rounds for each referee and then impose that this
value minus a huge quantity multiplied by the DWR variable must be less than or equal to 0. This will
make the DWR variable 1 only if the difference value is positive. We have decided to use 1000 as this huge
quantity since a normal league has about 400 games, so 1000 is a safe amount. To define the variables
DT, which is done in constraint (16), we have used this same procedure but with the difference of matches
with a same team between the two referees.

2N−2∑
k=1

WR(ai , rk)−
2N−2∑
k=1

WR(aj , rk)− 1000 · DWR(ai , aj) ≤ 0 ∀i , j ∈ [1, M] (15)

N∑
l=1

M∑
m=1

(A(tk , tl , rm,ai) + A(tl , tk , rm, ai))−
N∑
l=1

M∑
m=1

(A(tk , tl , rm, aj) + A(tl , tk , rm, aj))−

− 1000 · DT (ai , aj , tk) ≤ 0 ∀i , j ∈ [1, N],∀k ∈ [1, N]

(16)

Finally, constraints (17), (18), (19) and (20) impose that the variables are boolean, meaning they can
only be equal to either 0 or 1.

A(ti , tj , rk , al) ∈ {0, 1} ∀i , j ∈ [1, N],∀k ∈ [1, 2N − 2],∀l ∈ [1, M] (17)

WR(ai , rk) ∈ {0, 1} ∀i ∈ [1, M],∀k ∈ [1, 2N − 2] (18)

DWR(ai , aj) ∈ {0, 1} ∀i , j ∈ [1, M] (19)

DT (ai , aj , tk) ∈ {0, 1} ∀i , j ∈ [1, M],∀k ∈ [1, N] (20)

2.2 KNVB problem

For this second version of the problem, we have focused on the needs of the Dutch Football Federation,
attending all of their demands and making the model completely adapted to their league. Having modeled
first the basic problem, we already had some work done, at the same time, though, many things are new

15

or different in some way, so some things have been adapted, others have been removed and others have
been incorporated and are new in relation to what we had before.

With this problem we will also find hard and soft constraints and we will treat them the same way we
have done with the basic version of the problem, making sure the resulting assignment fulfills all the hard
ones and as many of the soft ones as possible.

2.2.1 Problem description

The main goal of this second problem is, just like before, to assign referees to all refereeing positions that
are available and look for the assignment that fulfills the most soft constraints. In this case, however, we
are not dealing with just one league, but two, and we have more refereeing positions to assign.

The leagues to which we will have to assign the matches are the Eredivisie or first division league, which
is the highest echelon in professional football in the Netherlands and has 18 teams, and Eerste Divisie or
second division, which is the second highest and has 20 teams. Both leagues are intertwined, meaning they
share referees and many rounds of both leagues are played at the same time.

For each Eredivisie match we will have 6 refereeing slots to fulfill: the main referee, the two assistant
referees or linesmen, the forth referee, the video assistant referee or VAR, and the assistant video assistant
referee or AVAR. For the Eerste Divisie matches however, we will only have to fulfill 4 refereeing slots since
the VAR system is not applied to second division games, so we will only need the main referee, the two
linesmen and the forth referee.

For this problem referees are split into 2 categories, one for the referees that can be assigned to the
roles of main referee, forth referee and VAR, whom we will refer to simply as referees, and one for the
referees that can develop the role of linesmen or assistant referees or AVAR, whom we will refer to as
assistant referees. Moreover, referees and assistant referees are classified as senior, junior, masterclass or
talententraject according to their experience and skills.

First division games must have a ratio of 7 senior referees and 14 senior assistant referees in the main
roles and talententraject referees or assistant referees cannot be assigned to any game in any role. Also,
between 3 and 6 of the VAR positions must be assigned to senior referees, at least 8 AVAR positions must
be assigned to senior assistant referees and 7 of the referees in the role of the forth referee have to be a
masterclass or a junior referee.

For second division games, there must be 8 masterclass referees as main referees and none of the other
2 can be talententraject referees, all of the forth refereeing roles, however, must be assigned to talenten-
traject referees. For assistant refereeing roles, there have to be between 8 and 14 masterclass and at most
2 talententraject assignments.

Similarly to what we considered for the basic problem, referees can only have one assignment as main
referee per round, and so do assistant referees, however they can be assigned to two games in the same
round if the role they play in one of the games is one that doesn’t require them to move much, mean-
ing being the forth referee or the VAR in the case of a referee or the AVAR in the case of an assistant referee.

16

We also have to consider incompatibilities between referees and rounds since referees have international
assignments such as UEFA Championship games, can become ill or have injuries or can take a leave, and
incompatibilities with teams since, for example, the Dutch Football Federation forbids referees from being
assigned to games in their hometown. This also applies to assistant referees.

Just like in the previous problem, we have a minimum of rounds that must pass before a referee or
assistant referee can be assigned again to a match with the same team and we also have a maximum of
rounds in an interval of rounds in which the referee is playing a main role, such as main referee or assistant
referee. We will also want to try to avoid as much as possible a referee being assigned to 2 games in 4
days, assuring they get some rest between matches.

Matches and referees have a punctuation assigned to them, however they work differently than how
we used them before. Matches from Eredivisie are given a qualification between 2 and 4, and matches
from Eerste Divisie are between 0 and 1. Referees qualifications are also between 0 and 4. In this case
though, we have a maximum of rounds a referee can go without being assigned to a match of a certain
level. This qualifications also serve to reward referees who have better performances, meaning they have a
better qualification, by giving them more important matches and more matches in general.

Finally, some refereeing trios, meaning the main referee and the 2 linesmen, which are the refereeing roles
we refer to as main roles, must always go together in order to have practice for international appointments.

2.2.2 Hard constraints

From the previous definition of the problem we can extract the following hard constraints:

1. Every match has one referee, two assistant referees and a forth referee assigned.

2. Every Eredivisie match must have one VAR and one AVAR assigned.

3. Eerste Divisie matches do not have neither VAR nor AVAR assignments.

4. Referees and assistant referees cannot be assigned twice to the same match.

5. Every referee and assistant referee can have at most one main role per round.

6. Every referee and assistant referee can have at most two roles per round.

7. Given an incompatibility between a referee and a round, the referee cannot be assigned to any role
in any match in the given round. The same goes for assistant referees.

8. Given an incompatibility between a referee and a team, the referee cannot be assigned to any role in
any game in which the team is playing. The same is applied to assistant referees.

9. Designated refereeing trios must always go together when they are assigned to main refereeing roles.

10. For every interval of rounds, referees and assistant referees cannot be assigned to more main roles
than a given maximum.

17

11. After being assigned to a main role in a match, referees and assistant roles cannot be assigned to a
match with one of the teams playing the game before a given minimum of rounds have passed.

12. For every interval of rounds, senior referees and assistant referees must be assigned to at least one
match with qualification 0 or 1, one with qualification 2 and one with qualification 3 or 4 in a main
role.

13. Talententraject referees and assistant referees cannot be assigned to any roles in Eredivisie games.

14. For every Eredivisie round, there must be 7 senior referees assigned to the role of main referee.

15. For every Eredivisie round, there must be 14 senior assistant referees as linesmen.

16. For every Eredivisie round, there must be 2 senior referees assigned to the role of forth referee.

17. For every round, VAR positions must be filled by between 3 and 6 senior referees and AVAR positions
must be filled by at least 8 senior assistant referees.

18. For every Eerste Divisie round, there must be 8 masterclass referees assigned to the role of main
referee.

19. For every Eerste Divisie round, there must be between 8 and 14 masterclass assistant referees and
at most 2 talententraject assistant referees assigned to the linesmen roles.

20. For every Eerste Divisie round, all the forth referee positions must be filled by talententraject referees.

2.2.3 Soft constraints

1. For every couple of referees or assistant referees, if one has a better skill punctuation than the other,
he or she must be assigned to more main roles in games with higher punctuation than the other one.

2. For every couple of referees, if one has a better qualification than the other, he or she must have
more assignments in main roles than the other referee. This also applies to assistant referees.

3. Referees and assistant referees cannot be assigned to main roles in 2 games in 4 consecutive days.

2.2.4 Model

In this section we will expose the mathematical formulation of this version of the problem. This problem will
be formulated as an integer programming problem using boolean variables, and we will use the definitions
and notations presented up next.

The parameters that we will need for the formulation of the model are the following:

• t1 ... tnt : teams playing in any of the two leagues. Teams from t1 to tnt1 play in Eredivisie and teams
from tnt1+1 to tnt play in Eerste Divisie.

• r1 ... rnr : referees.

• a1 ... ana : assistant referees.

18

• w1 ... wnw : number of rounds played joining both leagues. As both calendars don’t match, some
rounds only have matches from one of the leagues.

• nRI : number of rounds in an interval of rounds.

• maxM : maximum number of main roles a referee or assistant referee can be assigned to in an interval
of rounds.

• nRT : maximum number of rounds before a referee or assistant referee can be assigned to a main
role in a match repeating one of the teams.

• maxRL : size of the interval of rounds in which a senior referee or assistant referee has to be assigned
to one game with 0 or 1 qualification, one with a qualification of 2, and one with a qualification of
3 or 4.

• rq(ri) : given constant between 0 and 4 indicating the skills of the referee ri , with i ∈ [1, nr].

• aq(ai) : given constant between 0 and 4 indicating the skills of the assistant referee ai , with i ∈ [1, na].

• mq(ti , tj) : given constant between 0 and 4 indicating the qualification of the match between teams
ti and tj , with i , j ∈ [1, nt]. If the teams belong to different divisions, meaning they will never face
each other in a league match, the constant equals 0.

• m(ti , tj , wk) : given constant that equals 1 if the match between ti and tj is played in round wk ,
with i , j ∈ [1, nt] and k ∈ [1, nw]. Otherwise it equals 0.

• irt(ri , tj) : given constant that equals 1 if there is an incompatibility between referee ri and team tj ,
with i ∈ [1, nr] and j ∈ [1, nt]. Otherwise it equals 0.

• iat(ai , tj) : given constant that equals 1 if there is an incompatibility between assistant referee ai
and team tj , with i ∈ [1, na] and j ∈ [1, nt]. Otherwise it equals 0.

• irw(ri , wj) : given constant that equals 1 if there is an incompatibility between referee ri and round
wj , with i ∈ [1, nr] and j ∈ [1, nw]. Otherwise it equals 0.

• iaw(ai , wj) : given constant that equals 1 if there is an incompatibility between assistant referee ai
and round wj , with i ∈ [1, na] and j ∈ [1, nw]. Otherwise it equals 0.

• 4d(ti1, tj1, ti2, tj2, wk) : given constant that equals 1 if the match between ti1 and tj1 disputed in
round wk is played less than 4 days before the match between ti2 and tj2 from the following round,
with i1, i2, j1, j2 ∈ [1, nt] and k ∈ [1, nw−1]. Otherwise it equals to 0.

• trio(ri , aj , ak) : given constant that equals 1 if ri , aj and ak form a refereeing trio that must always
go together, with i ∈ [1, nr] and j , k ∈ [1, na]. Otherwise it equals to 0.

• sr(ri) : given constant that equals 1 if ri is a senior referee, with i ∈ [1, nr]. Otherwise it equals 0.

• jr(ri) : given constant that equals 1 if ri is a junior referee, with i ∈ [1, nr]. Otherwise it equals 0.

• mr(ri) : given constant that equals 1 if ri is a masterclass referee, with i ∈ [1, nr]. Otherwise it
equals 0.

19

• tr(ri) : given constant that equals 1 if ri is a talententraject referee, with i ∈ [1, nr]. Otherwise it
equals 0.

• sa(ai) : given constant that equals 1 if ai is a senior assistant referee, with i ∈ [1, na]. Otherwise it
equals 0.

• ja(ai) : given constant that equals 1 if ai is a junior assistant referee, with i ∈ [1, na]. Otherwise it
equals 0.

• ma(ai) : given constant that equals 1 if ai is a masterclass assistant referee, with i ∈ [1, na].
Otherwise it equals 0.

• ta(ai) : given constant that equals 1 if ai is a talententraject assistant referee, with i ∈ [1, na].
Otherwise it equals 0.

Furthermore, we will need the following variables:

• AR(ti , tj , wk , rl) : boolean variable that will equal 1 if referee rl is assigned to the role of main referee
in the match between teams ti and tj played in the round wk , where i , j ∈ [1, nt], k ∈ [1, nw] and
l ∈ [1, nr], and will equal 0 otherwise.

• AL(ti , tj , wk , al) : boolean variable that will equal 1 if assistant referee al is assigned to the role of
linesman in the match between teams ti and tj played in the round wk , where i , j ∈ [1, nt], k ∈ [1, nw]
and l ∈ [1, na], and will equal 0 otherwise.

• A4(ti , tj , wk , rl) : boolean variable that will equal 1 if referee rl is assigned as the forth referee in the
match between teams ti and tj played in the round wk , where i , j ∈ [1, nt], k ∈ [1, nw] and l ∈ [1, nr],
and will equal 0 otherwise.

• AVAR(ti , tj , wk , rl) : boolean variable that will equal 1 if referee rl is assigned to the role of VAR
in the match between teams ti and tj played in the round wk , where i , j ∈ [1, nt], k ∈ [1, nw] and
l ∈ [1, nr], and will equal 0 otherwise.

• AAVAR(ti , tj , wk , al) : boolean variable that will equal 1 if assistant referee al is assigned to the role
of AVAR in the match between teams ti and tj played in the round wk , where i , j ∈ [1, nt], k ∈ [1, nw]
and l ∈ [1, na], and will equal 0 otherwise.

• RWR(ri , wj) : boolean variable that will equal 1 if referee ri is assigned to any role in a match in
round wj , where i ∈ [1, nr], j ∈ [1, nw]. Otherwise it will equal 0.

• AWR(ai , wj) : boolean variable that will equal 1 if assistant referee ai is assigned to any role in a
match in round wj , where i ∈ [1, na], j ∈ [1, nw]. Otherwise it will equal 0.

• MRWR(ri , wj) : boolean variable that will equal 1 if referee ri is assigned to a main role in a match
in round wk , where i ∈ [1, nr], j ∈ [1, nw]. Otherwise it will equal 0.

• MAWR(ai , wj) : boolean variable that will equal 1 if assistant referee ai is assigned to a main role
in a match in round wj , where i ∈ [1, na], j ∈ [1, nw]. Otherwise it will equal 0.

• DMR(ri , rj) : boolean variable that will equal 1 if referee ri is better qualified than referee rj yet ri
is assigned to fewer main roles, where i , j ∈ [1, nr]. Otherwise it will equal 0.

20

• DMA(ai , aj) : boolean variable that will equal 1 if assistant referee ai is better qualified than assistant
referee aj yet ai is assigned to fewer main roles, where i , j ∈ [1, na]. Otherwise it will equal 0.

• DPR(ri , rj) : boolean variable that will equal 1 if referee ri is better qualified than referee rj yet ri is
assigned to less main roles in matches with higher punctuation, where i , j ∈ [1, nr]. Otherwise it will
equal 0.

• DPA(ai , aj) : boolean variable that will equal 1 if assistant referee ai is better qualified than assistant
referee aj yet ai is assigned to less main roles in matches with higher punctuation, where i , j ∈ [1, na].
Otherwise it will equal 0.

• 2G 4DR(ri , wj) : boolean variable that will equal 1 if the match referee ri is assigned to a main role
in round wj is played less than 4 days before the next game he or she is assigned to, with i ∈ [1, nr]
and j ∈ [1, nw − 1]. Otherwise it will be equal to 0.

• 2G 4DA(ai , wj) : boolean variable that will equal 1 if the match assistant referee ai is assigned to a
main role in round wj is played less than 4 days before the next game he or she is assigned to, with
i ∈ [1, na] and j ∈ [1, nw − 1]. Otherwise it will be equal to 0.

The integer programming model we propose in order to minimize the number of soft constraints that are
unfulfilled is described below and consists on minimizing the objective function subject to the constraints
from (22) to (94). The objective function for this problem is described in (21) and, just like in the previous
problem, uses the variables that only equal 1 if a soft constraint is broken and adds them up. In this case
the variables that are taken into account are the last 6 described above, which are the variables DMR
and DMA, that equal 1 if given two referees or assistants the one with bigger punctuation is assigned to
fewer matches, the variables DPR and DPA, that equal 1 if for every pair of workers the one with better
punctuation is assigned to less important matches, and the variables 2G 4DR and 2G 4DA, that equal 1 if
a referee or assistant referee is assigned to 2 games in 4 days, leaving them no time to rest.

min
(nr∑

i=1

nr∑
j=1

(
DMR(ri , rj) + DPR(ri , rj)

)
+

nr∑
i=1

nw∑
j=1

2G 4DR(ri , wj)+

+
na∑
i=1

na∑
j=1

(
DMA(ai , aj) + DPA(ai , aj)

)
+

na∑
i=1

nw∑
j=1

2G 4DA(ai , wj)
) (21)

The following 6 constraints define the number of referees that are to be assigned to every match per
position. Constraints (22), (23) and (24) ensure each match has assigned exactly one main referee, two
linesmen and one forth referee, constraints (25) and (26) make sure Eredivisie games have one referee in the
role of VAR and one assistant referee in the role of AVAR, and constraint (27) asserts Eerste Divisie games
have neither VAR nor AVAR assignments. With these constraints we fulfill the first three hard constraints
described in 2.2.2.

nr∑
l=1

AR(ti , tj , wk , rl) = m(ti , tj , wk) ∀i , j ∈ [1, nt],∀k ∈ [1, nw] (22)

21

na∑
l=1

AL(ti , tj , wk , al) = 2 ∗m(ti , tj , wk) ∀i , j ∈ [1, nt],∀k ∈ [1, nw] (23)

nr∑
l=1

A4(ti , tj , wk , rl) = m(ti , tj , wk) ∀i , j ∈ [1, nt],∀k ∈ [1, nw] (24)

nr∑
l=1

AVAR(ti , tj , wk , rl) = m(ti , tj , wk) ∀i , j ∈ [1, nt1],∀k ∈ [1, nw] (25)

na∑
l=1

AAVAR(ti , tj , wk , al) = m(ti , tj , wk) ∀i , j ∈ [1, nt1],∀k ∈ [1, nw] (26)

nt∑
i=nt1+1

nt∑
j=nt1+1

nw∑
k=1

(nr∑
l=1

AVAR(ti , tj , wk , rl) +
na∑
l=1

AAVAR(ti , tj , wk , al)
)

= 0 (27)

With the next constraints we ensure the fulfillment of the forth, the fifth and the sixth hard constraints
described above. Constraints (28) and (29) ensure nobody is assigned to two different roles in the same
match and constraints (30) and (31) make sure no referee or assistant referee is assigned to two matches
in a main role in the same round. Constraints (32) and (33) assert no referees or assistant referees are
assigned to more than two games in the same round.

AR(ti , tj ,wk , rl) + A4(ti , tj , wk , rl) + AVAR(ti , tj , wk , rl) <= 1

∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr]
(28)

AL(ti , tj , wk , al) + AAVAR(ti , tj , wk , al) <= 1 ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, na] (29)

nt∑
i=1

nt∑
j=1

AR(ti , tj , wk , rl) <= 1 ∀k ∈ [1, nw],∀l ∈ [1, nr] (30)

nt∑
i=1

nt∑
j=1

AL(ti , tj , wk , al) <= 1 ∀k ∈ [1, nw],∀l ∈ [1, na] (31)

nt∑
i=1

nt∑
j=1

AR(ti , tj , wk , rl) + A4(ti , tj , wk , rl) + AVAR(ti , tj , wk , rl) <= 2

∀k ∈ [1, nw],∀l ∈ [1, nr]

(32)

nt∑
i=1

nt∑
j=1

AL(ti , tj , wk , al) + AAVAR(ti , tj , wk , al) <= 2 ∀k ∈ [1, nw],∀l ∈ [1, na] (33)

Constraints from (34) to (45) are used to impose the incompatibilities between referees or assistant
referees and teams or rounds, and the following 4 constraints, from (46) to (49), impose that defined

22

refereeing trios must always go together in the main roles. This means that if the referee is assigned to
the main refereeing role, the assistants have to be assigned as linesman, and if an assistant is assigned to
a main role, the referee and the other assistant referee have to be assigned to the other main roles in the
match.

RWR(ri , wk) <= 1− irw(ri , wk) ∀i ∈ [1, nr],∀k ∈ [1, nw] (34)

AWR(ai , wk) <= 1− iaw(ai , wk) ∀i ∈ [1, na],∀k ∈ [1, nw] (35)

AR(ti , tj , wk , rl) <= 1− irt(rl , ti) ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr] (36)

AR(ti , tj , wk , rl) <= 1− irt(rl , tj) ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr] (37)

A4(ti , tj , wk , rl) <= 1− irt(rl , ti) ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr] (38)

A4(ti , tj , wk , rl) <= 1− irt(rl , tj) ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr] (39)

AVAR(ti , tj , wk , rl) <= 1− irt(rl , ti) ∀i , j ∈ [1, nt1],∀k ∈ [1, nw],∀l ∈ [1, nr] (40)

AVAR(ti , tj , wk , rl) <= 1− irt(rl , tj) ∀i , j ∈ [1, nt1],∀k ∈ [1, nw],∀l ∈ [1, nr] (41)

AL(ti , tj , wk , al) <= 1− iat(al , ti) ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, na] (42)

AL(ti , tj , wk , al) <= 1− iat(al , tj) ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, na] (43)

AAVAR(ti , tj , wk , al) <= 1− iat(al , ti) ∀i , j ∈ [1, nt1],∀k ∈ [1, nw],∀l ∈ [1, na] (44)

AAVAR(ti , tj , wk , al) <= 1− iat(al , tj) ∀i , j ∈ [1, nt1],∀k ∈ [1, nw],∀l ∈ [1, na] (45)

AR(ti , tj , wk , rl) + trio(rl , am, an)− AL(ti , tj , wk , am) <= 1

∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr],∀m, n ∈ [1, na]
(46)

AR(ti , tj , wk , rl) + trio(rl , am, an)− AL(ti , tj , wk , an) <= 1

∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr],∀m, n ∈ [1, na]
(47)

23

AL(ti , tj , wk , am) + trio(rl , am, an)− AR(ti , tj , wk , rl) <= 1

∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr],∀m, n ∈ [1, na]
(48)

AL(ti , tj , wk , an) + trio(rl , am, an)− AR(ti , tj , wk , rl) <= 1

∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr],∀m, n ∈ [1, na]
(49)

Constraints (50) and (51) ensure that for every interval of rounds referees and assistant referees are assigned
to less that the given maximum of matches per interval of rounds, which is maxM, and constraints (52) and
(53) impose that nRT rounds must pass before somebody repeats an assignment in a main role with a team.
The following 3 constraints, from (54) to (59), are used so that for every interval of maxRL consecutive
rounds all senior referees and assistant referees are assigned to at least one match with punctuation 0 or
1, one with punctuation 2 and another one with punctuation 3 or 4.

nRI−1∑
k=0

MRWR(ri , wj+k) ≤ maxM ∀i ∈ [1, nr],∀j ∈ [1, nw − nRI + 1] (50)

nRI−1∑
k=0

MAWR(ai , wj+k) ≤ maxM ∀i ∈ [1, na],∀j ∈ [1, nw − nRI + 1] (51)

nRT∑
t=0

nt∑
j=1

AR(ti , tj , wk+t , rl) + AR(tj , ti , wk+t , rl) ≤ 1

∀i ∈ [1, nt],∀l ∈ [1, nr],∀k ∈ [1, nw − nRT + 1]

(52)

nRT∑
t=0

nt∑
j=1

AL(ti , tj , wk+t , al) + AL(tj , ti , wk+t , al) ≤ 1

∀i ∈ [1, nt],∀l ∈ [1, na],∀k ∈ [1, nw − nRT + 1]

(53)

nt∑
i=1

nt∑
j=1

maxRL−1∑
k=0

AR(ti , tj , wm+k , rl) · (2−mq(ti , tj)) · (3−mq(ti , tj)) · (4−mq(ti , tj)) ≥ 1

∀l ∈ [1, nr],∀m ∈ [1, nw −maxRL + 1]

(54)

nt∑
i=1

nt∑
j=1

maxRL−1∑
k=0

AR(ti , tj , wm+k , rl) ·mq(ti , tj) · (1−mq(ti , tj)) · (3−mq(ti , tj))·

· (4−mq(ti , tj)) ≥ 1 ∀l ∈ [1, nr],∀m ∈ [1, nw −maxRL + 1]

(55)

24

nt∑
i=1

nt∑
j=1

maxRL−1∑
k=0

AR(ti , tj , wm+k , rl) ·mq(ti , tj) · (1−mq(ti , tj)) · (2−mq(ti , tj)) ≥ 1

∀l ∈ [1, nr],∀m ∈ [1, nw −maxRL + 1]

(56)

nt∑
i=1

nt∑
j=1

maxRL−1∑
k=0

AL(ti , tj , wm+k , al) · (2−mq(ti , tj)) · (3−mq(ti , tj)) · (4−mq(ti , tj)) ≥ 1

∀l ∈ [1, na],∀m ∈ [1, nw −maxRL + 1]

(57)

nt∑
i=1

nt∑
j=1

maxRL−1∑
k=0

AL(ti , tj , wm+k , al) ·mq(ti , tj) · (1−mq(ti , tj)) · (3−mq(ti , tj))·

· (4−mq(ti , tj)) ≥ 1 ∀l ∈ [1, na],∀m ∈ [1, nw −maxRL + 1]

(58)

nt∑
i=1

nt∑
j=1

maxRL−1∑
k=0

AL(ti , tj , wm+k , al) ·mq(ti , tj) · (1−mq(ti , tj)) · (2−mq(ti , tj)) ≥ 1

∀l ∈ [1, na],∀m ∈ [1, nw −maxRL + 1]

(59)

With all the constraints mentioned up until now, all hard constraints described in 2.2.2 up to the twelfth
are fulfilled. To impose the remaining ones, that are the ones that impose the ratio of referees and
assistant referees assigned to matches per role and classification, we use the constraints between (60) and
(72). Constraints (60) and (61) ensure talententraject referees and assistant referees are never assigned to
Eredivisie games and constraints from (62) to (67) make sure there will be 7 senior referees in the main
role, 2 as forth referee and between 3 and 6 as VAR and 14 senior assistant referees as linesmen and at
least 8 as AVAR per round in Eredivisie games. The following 5 constraints, from (68) to (72), impose the
presence of 8 masterclass referees as main referees, between 8 and 14 masterclass assistant referees and
at most 2 talententraject as linesmen, and ensures all forth referees are talententraject in Eerste Divisie
rounds.

tr(rl) ∗ AR(ti , tj , wk , rl) = 0 ∀i , j ∈ [1, nt1],∀k ∈ [1, nw],∀l ∈ [1, nr] (60)

ta(al) ∗ AL(ti , tj , wk , al) = 0 ∀i , j ∈ [1, nt1],∀k ∈ [1, nw],∀l ∈ [1, na] (61)

nt1∑
i=1

nt1∑
j=1

nr∑
l=1

AR(ti , tj , wk , rl) · sr(rl) = 7 ∀k ∈ [1, nw] (62)

nt1∑
i=1

nt1∑
j=1

na∑
l=1

AL(ti , tj , wk , al) · sa(al) = 14 ∀k ∈ [1, nw] (63)

25

nt1∑
i=1

nt1∑
j=1

nr∑
l=1

A4(ti , tj , wk , rl) · sr(rl) = 2 ∀k ∈ [1, nw] (64)

nt1∑
i=1

nt1∑
j=1

nr∑
l=1

AVAR(ti , tj , wk , rl) · sr(rl) ≥ 3 ∀k ∈ [1, nw] (65)

nt1∑
i=1

nt1∑
j=1

nr∑
l=1

AVAR(ti , tj , wk , rl) · sr(rl) ≤ 6 ∀k ∈ [1, nw] (66)

nt1∑
i=1

nt1∑
j=1

na∑
l=1

AAVAR(ti , tj , wk , al) · sa(al) ≥ 8 ∀k ∈ [1, nw] (67)

nt∑
i=nt1+1

nt∑
j=nt1+1

nr∑
l=1

AR(ti , tj , wk , rl) ·mr(rl) = 8 ∀k ∈ [1, nw] (68)

nt∑
i=nt1+1

nt∑
j=nt1+1

na∑
l=1

AL(ti , tj , wk , al) ·ma(al) ≥ 8 ∀k ∈ [1, nw] (69)

nt∑
i=nt1+1

nt∑
j=nt1+1

na∑
l=1

AL(ti , tj , wk , al) ·ma(al) ≤ 14 ∀k ∈ [1, nw] (70)

nt∑
i=nt1+1

nt∑
j=nt1+1

na∑
l=1

AL(ti , tj , wk , al) · ta(al) ≤ 2 ∀k ∈ [1, nw] (71)

nt∑
i=nt1+1

nt∑
j=nt1+1

nr∑
l=1

A4(ti , tj , wk , rl) · tr(rl) = 10 ∀k ∈ [1, nw] (72)

The remaining constraints define all the variables. Constraints (73) and (74) define the variables RWR
and AWR, constraints (75) and (76) define MRWR and MAWR, constraints (77) and (78) define the
variables DMR and DMA, constraints (79) and (80) define DPR and DPA, and lastly, constraints (81) and
(82) define the variables 2G4DR and 2G4DA.

nt∏
i=1

nt∏
j=1

(1− AR(ti , tj , wk , rl)) · (1− A4(ti , tj , wk , rl)) · (1− AVAR(ti , tj , wk , rl)) + RWR = 1

∀k ∈ [1, nw],∀l ∈ [1, nr]

(73)

nt∏
i=1

nt∏
j=1

(1− AL(ti , tj , wk ,al)) · (1− AAVAR(ti , tj , wk , al)) + AWR = 1

∀k ∈ [1, nw],∀l ∈ [1, na]

(74)

26

nt∑
i=1

nt∑
j=1

AR(ti , tj , wk , rl) = MRWR(rl , wk) ∀l ∈ [1, nr],∀k ∈ [1, nw] (75)

nt∑
i=1

nt∑
j=1

AL(ti , tj , wk , al) = MAWR(al , wk) ∀l ∈ [1, na],∀k ∈ [1, nw] (76)

(rq(ri)− rq(rj)) ·
(nw∑

k=1

MRWR(ri ,wk)−
nw∑
k=1

MRWR(rj , wk)
)
· (1− DMR(ri , rj)) >= 0

∀i , j ∈ [1, nr],∀k ∈ [1, nw]

(77)

(aq(ai)− aq(aj)) ·
(nw∑

k=1

MAWR(ai ,wk)−
nw∑
k=1

MAWR(aj , wk)
)
· (1− DMA(ai , aj)) >= 0

∀i , j ∈ [1, na],∀k ∈ [1, nw]

(78)

(rq(rm)− rq(rn)) ·
(nt∑

i=1

nt∑
j=1

nw∑
k=1

mq(ti , tj) ·
(

AR(ti , tj , wk , rm)− AR(ti , tj , wk , rn)
))
·

· (1− DPR(rm, rn)) >= 0 ∀m, n ∈ [1, nr],∀k ∈ [1, nw]

(79)

(aq(am)− aq(an)) ·
(nt∑

i=1

nt∑
j=1

nw∑
k=1

mq(ti , tj) ·
(

AL(ti , tj , wk , am)− AL(ti , tj , wk , an)
))
·

· (1− DPA(am, an)) >= 0 ∀m, n ∈ [1, na],∀k ∈ [1, nw]

(80)

AR(ti1 , tj1 , wk ,rl) · AR(ti2 , tj2 , wk+1, rl) · 4d(ti1 , tj1 , ti2 , tj2 , wk) = 2G 4DR(rl , wk)

∀i1, j1, i2, j2 ∈ [1, nt],∀k ∈ [1, nw − 1],∀l ∈ [1, nr]
(81)

AL(ti1 , tj1 , wk ,al) · AL(ti2 , tj2 , wk+1, al) · 4d(ti1 , tj1 , ti2 , tj2 , wk) = 2G 4DA(al , wk)

∀i1, j1, i2, j2 ∈ [1, nt],∀k ∈ [1, nw − 1],∀l ∈ [1, na]
(82)

Finally, to impose the fact that all the variables are boolean, meaning they can either be 0 or 1, constraints
from (83) to (97) are imposed.

AR(ti , tj , wk , rl) ∈ {0, 1} ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr] (83)

AL(ti , tj , wk , al) ∈ {0, 1} ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, na] (84)

27

A4(ti , tj , wk , rl) ∈ {0, 1} ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr] (85)

AVAR(ti , tj , wk , rl) ∈ {0, 1} ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, nr] (86)

AAVAR(ti , tj , wk , al) ∈ {0, 1} ∀i , j ∈ [1, nt],∀k ∈ [1, nw],∀l ∈ [1, na] (87)

RWR(ri , wk) ∈ {0, 1} ∀i ∈ [1, nr],∀k ∈ [1, nw] (88)

AWR(ai , wk) ∈ {0, 1} ∀i ∈ [1, na],∀k ∈ [1, nw] (89)

MRWR(ri , wk) ∈ {0, 1} ∀i ∈ [1, nr],∀k ∈ [1, nw] (90)

MAWR(ai , wk) ∈ {0, 1} ∀i ∈ [1, na],∀k ∈ [1, nw] (91)

DMR(ri , rj) ∈ {0, 1} ∀i , j ∈ [1, nr] (92)

DMA(ai , aj) ∈ {0, 1} ∀i , j ∈ [1, na] (93)

DPR(ri , rj) ∈ {0, 1} ∀i , j ∈ [1, nr] (94)

DPA(ai , aj) ∈ {0, 1} ∀i , j ∈ [1, na] (95)

2G 4DR(ri , wk) ∈ {0, 1} ∀i ∈ [1, nr],∀k ∈ [1, nw] (96)

2G 4DA(ai , wk) ∈ {0, 1} ∀i ∈ [1, na],∀k ∈ [1, nw] (97)

28

3. Complexity of the problem

In this section we are going to prove that the decision version of the Referee Assignment Problem, i.e.,
deciding whether the RAP has a solution or not, is NP-complete. To do so, we adapt a result published in
1987 by Esther M. Arkin and Ellen B. Silverberg [32] to a simplified version of the basic RAP we consider
here. We first introduce the following problem:

Problem 3.1. Job scheduling with fixed start and ending times
INPUT: A set J = {J1, ... , Jn} of n jobs of equal value, the start and ending times (si , ti) of each job Ji
and a job-machine mapping between J and the set of k machines stating which machines can develop each
job.
QUESTION: Is there an assignment of jobs to machines such that each machine is assigned to at most
one job at a time and all jobs are processed?

Theorem 3.2. The decision version of the Referee Assignment Problem is NP-complete.

Proof. To prove a problem is NP-complete, we have to see it is in NP, which is the set of decision problems
that given a candidate solution can tell in polynomial time if it is indeed a solution, and that it is NP-hard,
which means that it is at least as hard as the hardest problems in NP. To see a problem is NP-hard we have
to prove it can be reduced in polynomial time to a problem that is NP-hard. Since if given an assignment of
referees to matches, checking if this assignment is a feasible solution for the RAP can be done in polynomial
time due to it being formulated as an integer lineal programming problem, it is obvious that the decision
version of the RAP is in NP. To prove it is indeed NP-complete, we are going to use the article mentioned
above and the simplified version of the basic RAP described up next.

For this simplified version of the basic RAP we will consider a refereeing assignment problem in which
the minimum of matches per interval of rounds is 0 and the maximum is the number of rounds, refer-
ees can work in as many consecutive rounds as needed and can be assigned to two consecutive matches
with a same team or stadium. To prove this version of the problem is NP-complete we are going to trans-
form it into the job scheduling problem described in Problem 3.1, which is proved to be NP-complete in [32].

We will now see that, given a set J = {J1, ... , Jn} of n jobs, the start and end times (si , ti) of each
job Ji , k machines with a set of jobs each can develop and an assignment of machines to the jobs so that
each job is developed and each machine is assigned to at most one job at a time, we have a solution for
the simplified version of the RAP mentioned above. To do so, we will consider n to be the number of
matches that take place in the league, being Ji each of the matches, k will be considered the number of
referees we dispose of to do the assignments and ti and si will be considered the round the matches are
played and the next round respectively. Finally, we will consider the mapping between the jobs and the
machines, a mapping between the referees and the matches indicating which matches can each referee
officiate depending on the skills of the referee and the punctuation of the match and the incompatibilities.

Given the assignment of jobs to machines, as each machine can develop at most one job at a time, the
referees will never be assigned to two matches at the same time, and as all jobs have a machine assigned to
them, all matches will have a referee assigned. Moreover, since the machines are only assigned to the jobs
they are mapped to, the referees will not be assigned to matches they are not able to officiate, fulfilling this
way all the incompatibilities and the skill level requirements. Finally, as the minimum number of matches

29

per interval of rounds considered for this problem is 0 and the maximum is the number of rounds and
referees can be assigned to as many consecutive matches as needed and can repeat assignment to teams
and stadiums in consecutive rounds, we can see that all the hard constraints imposed for this simplified
version of the RAP are fulfilled and so we have a solution for the problem.

We will now see the opposite, that is that given an assignment of referees to the matches for this
version of the RAP, we have a solution for the job scheduling problem. To do so we will consider one job
for each of the matches with starting time the number of the round the match is played in and ending
time the number of the following round and we will consider one machine for each of the referees, being k
the total number of referees. Finally, we will consider that the jobs can be assigned to the machines such
that the match represented by the job can be assigned to the referee represented by the machine, which
can be done if the referee does not have any incompatibility with any of the teams disputing the match,
the stadium where the match is played in or the round it takes place in and the skill level of the referee is
enough to officiate the match.

Given an assignment of referees to the matches, as each match has one referee, all the jobs would be
assigned to one machine, and as each referee is assigned to one match per round and the jobs have starting
and ending times that are identified with the rounds, each machine would be developing at most one job
at a time. Finally, as the referees are never assigned to matches they cannot officiate, each job would be
assigned to a machine that can develop it, giving us a solution for the job scheduling problem.

30

4. Local Search solution for the basic problem

To solve the basic problem with local search methods we have proposed the use of two of the most famous
methods, Hill Climbing and Simulated Annealing, whose implementations are explained up next.

4.1 Local Search Algorithms

Local search algorithms are algorithms based on heuristic methods that are normally used to solve compu-
tationally hard optimization problems. To find the optimum solution for a problem, local search methods
move through a space of candidate solutions from one solution to a neighbor applying one movement at a
time until a local optimum is found or the time given to solve the problem is exhausted. The movements
considered are mostly based on applying local changes to the last candidate solution contemplated or the
best one found so far, and the method used to decide which movement to apply depends on the heuristic
function and the algorithm that is being used. To apply local search algorithms we need an initial candidate
solution or state from which the algorithm will start exploring the space of candidate solutions, a set of
movements to be applied to move from one state to another neighborly one, and an heuristic function that
will lead the algorithm towards the local optimum solution.

To solve the basic version of the RAP we have considered as a representation of the states a matrix
M with nReferees rows and nMatches columns, where nReferees is the number of referees available and
nMatches is the number of matches that take place in the league. Each element in the matrix is a boolean
value indicating the assignments, meaning a value equals 1 if and only if the referee represented by the
row is assigned to the match represented by the column. The initial state is generated assigning to each
match a random referee that has not been assigned to any other match played in the same round, this way
we make sure our initial solution has exactly one referee assigned to each match and referees are assigned
at most to one match per round. No further reasoning is applied behind the construction of the initial
solution in order to avoid wasting computation time to get local optimums from the start, which would
prevent most solvers from finding better solutions or moving to neighboring nodes to explore the space of
candidate solutions, which is the reason the local search methods are used, making the solver return the
initial solution no matter if it is a really bad one.

We have considered two different sets of movements: changing the referee assigned to a match and
swapping the referees between two matches. The moves are only applied if the resulting matrix does indeed
represent a correct state, meaning each match has exactly one referee assigned to them and each referee has
at most one match per round. With the first movement we generateO(nReferee·nMatches) neighbor states,
and with the second one we generate O(nMatches2), making a total of O(nReferee ·nMatches+nMatches2)
possible states the algorithm can go to from the current state. It is important to notice that with these
movements we are able to explore the whole space of candidate solutions, so no other movements are
needed.

Finally, as for the heuristic function, we have considered a function that adds up all the broken con-
straints by the candidate solution represented by the state, but weighting more the hard constraints and
less the soft constraints in order to make sure the algorithm prefers states fulfilling all the hard constraints,
since if not all hard constraints are fulfilled we cannot consider the result obtained a solution for our prob-
lem. The hard constraints that weight the most are the ones that ensure every match has one referee

31

and referees are only assigned to one match per round, which are constraints that should never be broken
taking into account the way we have defined the movements and how the initial state is generated: every
time one of these constraints is broken, an additional cost of 1000000 is added to the heuristic value.
For every incompatibility unfulfilled, every time a referee is assigned to more consecutive matches than
is allowed or to more or less matches per interval of rounds than he should, the function adds a penalty
of 30000 points, when a referee is assigned to a match demanding a bigger skill level than his, 20000
points are added to the function, and if a referee repeats assignment to a team or stadium sooner than
is allowed, a penalty of 10000 points is added. Finally, broken soft constraints have a weight of 1 so that
if a solution is found, the quality of the solution can be compared to the one obtained using complete solvers.

The reason why hard constraints have different weights in the heuristic function compared to each other
is that, in case no solution is found, we want the resulting state to fulfill the most important constraints
that give shape to the problem. An example explaining the reasoning applied to this would be that it is
better to have a referee being assigned twice to the same team sooner than he should, which would not
end up causing any troubles, than assigning him to a match he is not skilled enough to officiate, which can
result in making the parties involved angry if bad decisions are taken by him due to inexperience or lack
of good judgment, or assigning him to a match in a round in which he is not available, leaving the match
without referee.

4.2 Hill Climbing

For the first method we have considered Hill Climbing, a search heuristic that uses a greedy approach
and only moves to neighboring states that improve the value of the heuristic function with respect to the
previous state. There are three basic Hill Climbing variants depending on how the next state is chosen:
the first one selects the first neighboring state explored that has a better heuristic cost than the current
state, the second one chooses a random neighboring state and then decides whether to go there or look
for another state depending on the improvement gained with the value of the heuristic function, and the
third one explores all the neighboring states and chooses the best.

Taking into account the size of the problem, which can be quite big, we have chosen to implement
the first of the above-mentioned variants, which is usually referred to as Best First Hill Climbing. Another
reasoning we have applied to choose this variant is that since the movements to be applied are generated
randomly, with this variant we also dispose of the the random factor applied in the second method. More-
over, this first variant is faster than the third since it does not have to explore all the neighboring states
before choosing one, and we do not have any guarantee that by exploring all the neighboring states and
choosing the best the solution obtained at the end will be better.

The biggest problem with Hill Climbing algorithms is that, since they only go straight ahead towards
solutions improving the results and never explore states with worse heuristic values, they get stuck in local
optimums most of the time. To face this we have proposed a little variation in the algorithm so that once
the algorithm gets stuck it can jump to a random state in the space of candidate solutions in order to
explore a little bit more and see if a better solution can be found. Since we are not interested in exploring
the whole space, which is the characteristic of the local search methods, the number of times the algorithm
is able to jump to random states once it gets stuck is limited. The pseudo-code in Algorithm 1 shows the
general scheme followed by the algorithm.

32

Algorithm 1 Hill Climbing pseudo-code

1: state← generateInitialState()
2: bestState← state
3: for attempt ← 1 to maxAttempts do
4: for iteration← 1 to maxIterations do
5: foundNextState← false()
6: for move ← 1 to maxMoves do
7: nextState← applyRandomMove(state)
8: if heuristicValue(nextState) == 0 then return nextState
9: else if heuristicValue(nextState) < heuristicValue(state) then

10: state← nextState
11: foundNextState← true
12: break
13: end if
14: end for
15: if heuristicValue(state) < heuristicValue(bestState) then
16: bestState← state
17: else if not foundNextState then
18: break
19: end if
20: end for
21: state← generateRandomState()
22: end for
23: return bestState

4.3 Simulated Annealing

Simulated Annealing is a search metaheuristic that uses probability techniques to approximate global op-
timization. The inspiration for this method comes from annealing in metallurgy, a technique based on
heating and cooling materials in order to increase the crystals and reduce the defects of the materials.

To choose which state to move to, Simulated Annealing applies a random move to the current state
and checks if the heuristic value in the resulting state is better than in the current state. If it is better,
the new state is kept and the algorithm goes on from there, and if it is not, a random number between 0
and 1 and a number obtained from the acceptance probability function are compared and if the random
number is smaller than the other one, the state is kept and the algorithm goes on from there. Otherwise the
algorithm looks for another neighboring state. This acceptance probability function is what prevents the
method from becoming stuck on local optimums as much as other methods such as Hill Climbing and de-
pends on the heuristic values of both states and a time-varying parameter T referred to as the temperature.
This function is usually chosen so that the probability of accepting a move decreases as the temperature
decreases or the difference between the heuristic values from both states increases. As time goes by the
temperature is decreased, making the acceptance probability slowly decrease and the method settle with a
branch of the space of candidate solutions and stop jumping from state to state unless the solution is better.

33

Just like with the Hill Climbing method, we have implemented a variation that allows the algorithm to
jump a limited amount of times to a random state in the space of candidate solutions once it gets stuck.
In Simulated Annealing this can be considered a reheat since the temperate is increased again so that the
method can start from scratch in another zone of the space of candidate solutions. The pseudo-code in
Algorithm 2 shows the general scheme followed by the method implemented.

The results from applying both methods to solve the problem are explained and compared among them
in Section 7, and the codes implementing these algorithms in C++ and are included in Appendix A.

34

Algorithm 2 Simulated Annealing pseudo-code

1: state← generateInitialState()
2: bestState← state
3: cold← false
4: T← 0.5
5: beta← 0.99
6: for reheat ← 1 to maxReheats do
7: phase← 1
8: while not cold & phase < numPhasesPerReheat do
9: move← 1

10: while not cold & move < numMovesPerPhase do
11: nextState← applyRandomMove(state)
12: if heuristicValue(nextState) == 0 then return nextState
13: else if heuristicValue(nextState) < heuristicValue(state) then
14: state← nextState
15: if heuristicValue(state) < heuristicValue(bestState) then
16: bestState← state
17: end if
18: else
19: difCost← heuristicValue(nextState) - heuristicValue(bestState)
20: r← randomNumberBetween(0,1)
21: p← exp(-diffCost/T)
22: if r < p then
23: state← nextState
24: end if
25: end if
26: move← move + 1
27: end while
28: phase← phase + 1
29: T← T*beta
30: if exp(−1/T) < 10e − 10 then
31: cold← true
32: end if
33: end while
34: state← generateRandomState()
35: T← 0.5
36: cold← false
37: end for
38: return bestState

35

5. ILP solution for the basic problem

To solve the basic version of the RAP through the use of complete solvers we have used the formulation as
an integer linear programming mathematical problem. As mentioned before, complete solvers use methods
that search the whole space of solutions, ensuring they find the optimum solution if there is one and they are
given enough time. Moreover, some complete solvers can pinpoint the constraints that make the problem
unsolvable facilitating the task of relaxing the constraints in some degree to find the most approximate
solution.

In order to use the complete solvers we have developed a program in charge of generating the constraints
in a format readable for the solvers given the data from the problem. This program has been developed
using Prolog, a declarative programming language used in logic programming and mostly associated with
artificial intelligence and computational linguistics that expresses the program logic in terms of relations,
represented as facts and rules. In this section we will explain how the program works and will go over
the format of the resulting file that is given to the complete solvers in order the face the problem. The
complete code developed can be found in appendix B.

The basic idea of logic programming is to express data through relations, for example, team(T , P) can
express that team T has a punctuation P. When writing in Prolog, this is used to create the programs
and functions together with the fact that when a call fails or returns false, the program goes back to the
last call made where he had different options to chose from and chooses another one if there are more or
fails if there are no other options. To illustrate this we have the example in Listing 1, where we introduce
three teams and their punctuations and want to get pairs of teams to form matches such that the sum of
their punctuation is 8. When calling match(X , Y), the values of X and Y are going to be FCB and ATH,
since the first pair of teams to match all the conditions demanded is going to be this one. The first pair
of values (X , Y) explored whenever this call is made is (FCB, FCB), however this does not fulfill X \= Y ,
so the last decision made, which is choosing team Y , is taken back and rethought and so Y goes on to be
MAD. This combination does not fulfill the last demand, which is that the punctuations must add up 8,
so Y is changed again, this time to ATH, creating a combination of teams that fulfills all the conditions.
If the predicate from where match(X , Y) is called were to fail, the following pair of teams that would be
returned would be (MAD, ATH), (ATH, FCB) and (ATH, MAD). As these are the only pairs of teams
fulfilling the clause, if the call were to be made a fifth time, it would fail.

Listing 1: Prolog example

1 team (FCB , 5) .
2 team (MAD, 5) .
3 team (ATH, 3) .
4 match (X, Y) :− team (X, PX) , team (Y, PY) , X \= Y, P i s PX + PY, P = 8 .

The main reason we have chosen to work with Prolog is that these pattern matching qualities, together
with the fact that it works well with problems that involve objects and with rules or relations between
them, makes this programming language specially well suited for constraint programming. Moreover, it is
a language than can be easily read and understood and allows the user to declare the facts and rules that
apply to those facts with great ease.

36

The program we have written uses the syntax shown in the example and works as follows: once ex-
ecuted, it reads the data for the problem from two files, one containing the calendar of the league with
all the matches listed declaring the local team, the visitor and the round the match is played in, and the
other containing the parameters of the problem, the referees and the teams participating in the league.
Once this is done, the program writes the constraints and the objective function that define the problem
into a file and sends it to the solvers, and finally, if the solvers find a solution, the solution is printed. The
constraints are written through the use of 15 predicates that work similarly to the example above and are
commented up next.

All the information needed for the problem is introduced as instances of predicates such as match(teamA,
teamB, round) for the matches that take place in the league, referee(refereeId, skill) for the referees and
team(teamId, qualification) for the teams (each parameter mentioned in Section 2.1.4 has a way of being
introduced, which can be seen in Appendix B as mentioned before). Each of the above mentioned 15 pred-
icates in charge of writing the constraints obtains the variables needed through the use of these instances
and then writes the constraints for all the possible combinations of values using the syntax presented in
the last example. Notice that the names of the variables and parameters used with the implementation of
the constraints in Prolog do not match the names given in Section 2.1.4. This is because of the partic-
ularities of the language, that establish certain rules the names of the variables must follow, and because
the syntax that has been used in each part of the project has been chosen to facilitate the development of
the corresponding task.

In Listing 2 there is an example of how the predicates work with the predicate used to generate the
constraints indicating that every match must have exactly 1 referee. Once everyMatchHasAReferee is
called, for every match found, meaning each trio of values for the variables S , T and R that match with
the call match(S,T,R), the predicate calls the function findall(assign(Ref,S,T,R), referee(Ref,), Sum), that
looks for all the variables assign(Ref,S,T,R), that represent the assignment of the referee Ref to the match
between S and T played in round R, and puts them in the list Sum. Up next a constraint imposing that
the addition of all the variables in the list Sum must equal 1 is written and then the function fails and looks
for the next match that has not been used yet. Line 4 is used to ensure the program does not fail, since
after the last match is found the predicate fails. Whenever an underscore is used, it is expressing that we
are not interested in the parameter in that position, for example, referee(Ref,) gives us the identifier of
the referee but does not care about the skill level assigned to that referee, and match(, ,1) would match
all the matches that take place in the first round.

Listing 2: Predicate ensuring one referee per match

1 everyMatchHasAReferee :−
2 match (S , T, R) , f i n d a l l (a s s i g n (Ref , S , T, R) , r e f e r e e (Ref ,) , Sum) ,
3 w r i t e C o n s t r a i n t (Sum = 1) , f a i l .
4 everyMatchHasAReferee .

This predicate does exactly the same as equation 2 in the integer linear programming model proposed
in Section 2.1.4, but only using the combination of variables representing teams and rounds that do really
form a match, generating less constraints than have been needed for the model. The result from executing
this line with the Spanish La Liga league data, for the match facing Athletic and Alavés played in the first
round of the league would be the following constraint:

+ 1 assign(1,ath,leg,1) + 1 assign(2,ath,leg,1) + 1 assign(3,ath,leg,1)

37

+ 1 assign(4,ath,leg,1) + 1 assign(5,ath,leg,1) + 1 assign(6,ath,leg,1)

+ 1 assign(7,ath,leg,1) + 1 assign(8,ath,leg,1) + 1 assign(9,ath,leg,1)

+ 1 assign(10,ath,leg,1) + 1 assign(11,ath,leg,1) + 1 assign(12,ath,leg,1)

+ 1 assign(13,ath,leg,1) + 1 assign(14,ath,leg,1) + 1 assign(15,ath,leg,1)

+ 1 assign(16,ath,leg,1) + 1 assign(17,ath,leg,1) + 1 assign(18,ath,leg,1)

+ 1 assign(19,ath,leg,1) + 1 assign(20,ath,leg,1) = 1

The rest of the predicates work similarly to this one, so we will not explain them one by one. We
will comment however, that some of the resulting constraints obtained with this program differ from the
ones written for the model presented in Section 2.1.4, mostly due to them depending on other parameters,
since when using Prolog we can filter first the variables in order to write only those constraints that are
indispensable. For example, to impose referees cannot be assigned to games with greater difficulty that
their skill level, using the predicate in Listing 3 the resulting constraint is simply an equality equation
assigning 0 to the variable representing the assignment between the match and the referee, meanwhile in
the model presented in section 2.1.4, the corresponding constraint, that is represented by equation (4), is
more complex.

Listing 3: Predicate forbidding assignments of referees to matches with higher punctuation

1 r e f e r e e M i n i m u m S k i l l L e v e l P e r M a t c h :−
2 r e f e r e e (Ref , L) , match (S , T, R) , team (S , LS) , team (T, LT) , L < LS + LT ,
3 w r i t e C l a u s e ([− a s s i g n (Ref , S , T, R)] , []) , f a i l .
4 r e f e r e e M i n i m u m S k i l l L e v e l P e r M a t c h .

Given the match between F.C.Barcelona and R.Madrid, that each have a punctuation of 5, and a referee
with skill level 9 and id 7, the resulting constraint using the code shown above is the one that follows:

+ 1 assign(7,rma,bar,26) = 0

To solve this formulation of the problem with complete solvers we have used IBM ILOG CPLEX
Optimization Studio, an optimization software package from IBM informally referred to simply as CPLEX.
The results obtained are commented and compared altogether with the results from the local search methods
in Section 7.

38

6. ILP solution for the KNVB problem

As the KNVB version of the problem has more than 200000 variables and a lot more constraints than the
basic version of the problem, we have decided to just solve this version using complete solvers and not
implement the whole structure needed to use local search methods, since it would take too long.

Formulating this version of the problem as an integer linear programming problem we have faced some
challenges that have limited our options, the most important one being that, given the amount of data
taken into account for this problem, several of the models we had first proposed made the computer run
out of memory when trying to solve them. This is due to the fact that CPLEX needs an amount of memory
space directly proportional to the number of variables declared in the problem, so the more variables used
the less free space has the program to run. This has made it impossible for us to use those first models since
the solver was not even able to start the execution and we have had to look for alternative formulations
using less variables, which has meant using more complex constraints.

Similarly to how we have worked with the ILP solution for the basic problem, which is explained in
Section 5, we have used a Prolog program to act as a bridge between the data for the problem and the
solvers. Most of the program works just as before but facing a different problem: the data is read, the
constraints are written and passed to the solvers, and if a solution is found, it is printed. With this problem,
however, there are 32 predicates in charge of writing the constraints instead of 15 and there are intern
variables created to facilitate the generation of the constraints for the problem. The Prolog code used to
generate the constraints can be found in Appendix C.

The main difference in relation to the ILP solution for the basic problem, besides the differences
grammatically-wise and the new constraints that are to be imposed, is that with this problem we offer the
possibility of breaking the problem into smaller sub-problems to facilitate the task of finding solutions. The
problem can be divided into smaller leagues with less rounds but with the same constraints by indicating
the initial and ending rounds forming the interval of rounds taken into account for this smaller league. To
take into account the results from the sub-problems and build the results towards the solution of the main
problem we have written a code in C++ that takes the assignments from the previously solved sub-problems
and writes them so they can be inserted together with the calendar and the data of the league as new data
to Prolog execution of the next sub-problem that is faced. Doing it this way, we ensure that the global
constraints can be taken into account, respecting this way all the constraints even if they affect intervals
of rounds that are divided into different sub-problems.

The ideal usage of this feature would be solving the sub-problem for the first 10 rounds, for exam-
ple, keeping the results, solving the problem for the following 10 rounds using the data from the previous
assignments obtained before, and so on. When a solution is found using this method for a sub-problem
having used data from previous sub-problems, the cost of the solution is the cost of the league composed
by all the rounds included in any of the sub-problems previously solved and the newest sub-problem. This
means that when the sub-problem containing the last rounds of a league is solved inserting the data from
all the previous sub-problems, the cost obtained is the one corresponding to assignment of the referees to
the matches from the whole league.

39

As mentioned in the introduction of this project, using this procedure makes solving the problem eas-
ier, however, when facing optimization problems, using this usually implies giving up finding the optimum
solution since the solution of the whole problem is conditioned by the solutions of the sub-problems, which
may be optimum for the sub-problems but that does not guarantee that the solution obtained by adding
them up will be the optimum of the main problem. In fact, it does not even guarantee finding a feasible
solution at all when using constraint satisfaction problems. The main reason to use this procedure to look
for solutions is to reduce the computing time.

This feature can also be used whenever a referee is injured to recalculate the assignments taking into
account that the referee will have new incompatibilities with the following rounds. This can also be used
to change other parameters such as the skills of the referee if they are working better than expected or
worse or the importance of a match. The assisting C++ program can also be used to impose assignments
of referees to certain matches and positions beforehand, since this program reads data and transforms it
into instances of predicates that are later on read and imposed.

The results from solving the problem with this method can be found in section 7 and the codes developed
for this can be found in appendix C.

40

7. Experiments

In this section we present some results obtained applying the different resolution methods to different
instances of the problem. The results shown below are obtained with a Toshiba Satellite P50 portable
computer with an Intel CORE i7-4700MQ processor with 2.4GHz and 4 cores and 2 threads per core. The
computation time results obtained may vary if the program is executed on a computer with different specs.

7.1 Basic Problem

In order to evaluate the different methods we have implemented to solve the basic problem, we have pro-
posed different instances of the problem and compared the results obtained. The instances proposed have
different sizes and demands in order to compare the results under different conditions. Since the cost of
the solution increases as the number of soft constraints that are broken by the solution increases, the best
results will be those with lower solution cost. To develop the experiments we have limited the jumps the
local search methods are allowed to do to random states when they get stuck on a state to 5. In the
proposed instances of the problem we use similar quantities of referees and teams, since we have observed
this is a patron followed in several leagues, most likely to facilitate the assignments and the resting times
of the referees.

When using CPLEX we have not let the program run indefinitely since we do not know how long it
could take the solver to end the execution, so we have set a time limit for each execution that has deemed
it possible to find a solution and lets the program explore the space of solutions. For the results obtained
from using CPLEX we have taken into account the best solution that has been found in the computing
time we have left the program run and the approximate time it has taken the solver to find this solution.
We have also taken note of the gap between the cost of the best solution found and the best bound found
so far, which is the cost of the best solution of the LP relaxation, ie., the problem without taking into
account that the variables are integers, or boolean values in our case. When this gap is of 100% this means
the best bound found so far is 0 and the solution found has a cost bigger than 0, and when the gap is of
0%, this means the best solution and the best bound have the same cost.

Problem 1:

For this instance of the problem, we consider a small league with 6 teams and 6 referees, meaning 30
matches will be disputed throughout the duration of the league separated into 10 rounds with 3 matches
each. We want to look for an assignment such that for every 3 consecutive rounds, all referees are assigned
to 1 or 2 matches, referees are never assigned to 3 consecutive matches and 2 rounds must pass before
a referee repeats assignment with a team and 3 must pass before being assigned twice to the same stadium.

When applying Hill Climbing to this problem we get a solution breaking 40 soft constraints in just over
9 seconds and applying Simulated Annealing we get a solution breaking 38 soft constraints, but with a
computation time much higher, of almost 125 seconds. When applying the complete solver to solve this
problem, we find that CPLEX finds a solution breaking 39 soft constraints just after 10 seconds, however
this solver is unable to find better solutions in under 1500 seconds.

41

Problem 2:

For this problem we consider a league with 10 teams, a few more than before, and 10 referees. This means
the league is divided into 18 rounds with 5 matches each. Given this situation, we want to look for an
assignment of referees to the matches such that for every 4 consecutive rounds, each referee is assigned
to between 1 and 3 matches, no referee is assigned to matches in more than 3 consecutive rounds, and
after being assigned to a game, referees must wait 2 rounds before repeating assignment with a team and
3 before being assigned to the same stadium.

Solving this problem with Hill Climbing we obtain a solution breaking 106 soft constraints with a com-
putational time of almost 38 seconds, and with Simulated Annealing we get a solution that breaks 96
soft constraints, 10 less than the solution obtained with Hill Climbing, in over 404 seconds. With the
complete solver, however, after letting CPLEX run for 1500 seconds, the best solution found breaks 164
soft constraints, which is a significant amount more than the broken by the solutions provided by the local
search algorithms. The solution provided, however, has been found in under 35 seconds, which is faster
than the computational time the local search solvers have needed.

Problem 3:

For this problem we use a real case: we consider the calendar of the Spanish La Liga league and their
referees, meaning we dispose of 20 teams, 380 matches and 20 referees with different qualifications and
incompatibilities. We want an assignment of referees such that referees are assigned to at most 5 consec-
utive matches and 3 and 5 rounds must go by before a referee repeats assignment with a same team or in
a same stadium respectively. For this problem we also want the assignment to be so that for every set of
5 consecutive rounds, each referee is assigned to more than 2 matches and less than 4.

We have let this problem run for 7000 seconds with CPLEX and the best solution obtained, which is
obtained in under 100 seconds, breaks 3079 soft constraints. Applying Hill Climbing we have gotten a
result after more than 6000 seconds with an heuristic cost of 152784, and with Simulated Annealing it
has taken a total computation time of almost 5250 seconds to get a result, and heuristic cost of the state
provided as an answer is of 13128.

Taking into account that for this problem we have 20 teams and 20 referees, a total of 8400 soft
constraints are considered, each with a cost of 1 in the heuristic function (see equation (1) in subsection
2.1.4). This means that if the total cost of the state is bigger than 8400, at least one hard constraint
is broken and the state considered does not represent a solution, so neither of the local search methods
that have been applied have been able to find a solution. This also means that the result provided by the
Simulated Annealing method breaks one hard constraint and 3128 soft ones, meanwhile the result provided
by Hill Climbing breaks between 5 and 15 hard constraints and 2784 soft ones.

Problem 4:

For this problem we also use the data from the La Liga league. In this problem, though, we want to see
what happens when the constraints are relaxed a little bit. To do so we look for an assignment fulfilling the
same demands as before except for the last one. For this problem we will consider intervals of 10 rounds
instead of 5 and give a minimum of assignments per interval of rounds of 2, and a maximum of 8, which
should be easier to fulfill.

42

Running this problem with CPLEX for 7000 seconds, we have found that, similarly to before, the solver
finds a solution quite fast, in this case breaking 3116 soft constraints, and after finding this solution in
unable to find better solutions. Using the local search methods we have found solutions with both methods.
Hill Climbing has provided a solution breaking 2310 constraints in 2050 seconds and Simulated Annealing
has taken over 4900 seconds to provide the solution, which has a cost of 2076.

Problem 5:

For this last problem we consider the same scenario as in Problem 3 but with referees being able to be
assigned to any match. To do so we set all referee’s skill levels to 10 and do not set any incompatibilities
between referees and rounds, teams or stadiums.

Applying the local search methods we have found, once again, a solution with each of the solvers.
With Hill Climbing the solver has taken 1085 seconds and has provided a solution with a cost of 588, using
Simulated Annealing the solution is obtained after almost 2640 seconds and has a cost of 416. Applying
the complete solver we have been met with a situation similar to the one found in the previous problems:
the best solution found has a cost of 2975 and it has been found rather quickly, in under 200 seconds in
this case, however the solver has not been able to find better solutions in the remaining time until the 4000
seconds the solver has as time limit have been spent.

The results obtained from applying the different solvers to these problems are documented in the tables
1 and 2 in the next page. The first table contains the results obtained with the local search methods
documenting whether the result provided is a solution or not, the heuristic cost of the state returned and
the computational time that has taken the solver to return an answer. The second table contains the in-
formation from the solutions provided by the complete solver. In this table we can find whether a solution
has been found, the time we have let the solver run for, the cost of the solution found and how long it has
taken the solver to find it and, finally, the best bound found by CPLEX once the time has run out and the
gap between the best solution and the best bound.

With the data obtained through solving the instances of the problem with local search methods we can
observe that the results obtained with Simulated Annealing are usually better than the ones obtained with
Hill Climbing. We can also observe, though, that the computational time of the second method is quite
higher in general, in fact Simulated Annealing normally takes at least twice as long to end and the only
situation we have been able to observe in which Hill Climbing takes longer that Simulated Annealing is
when no solution is found. We have not met any instance of the problem that has been solved with only
one of the two proposed methods, for every instance of the problem we have tried we’ve either found a
solution with both solvers or none at all. This brings us to the conclusion that if we are looking for better
results, Simulated Annealing is the best of the two methods, and if we are looking for good results obtained
quickly, we should go with Hill Climbing.

43

Hill Climbing Simulated Annealing

Problem
Has it found
a solution?

Solution
cost

Computation
time (s)

Has it found
a solution?

Solution
cost

Computation
time (s)

1 yes 40 9.02994 yes 38 124.984

2 yes 106 37.8191 yes 96 404.296

3 no 152784 6227.71 no 13128 5249.16

4 yes 2310 2050.17 yes 2076 4901.83

5 yes 588 1085.12 yes 416 2639.4

Table 1: Local Search methods results

Comparing these results to the ones obtained with the complete solver, we can see an example of the
main difference between local search methods and complete solvers, which is that complete solvers always
find the solution if there is one. This is exemplified with the third problem since the only solver that has
been able to find a solution is CPLEX. We can also observe that CPLEX obtains good results rather quickly,
but takes a lot longer to improve those. In fact, we have not been able to see improvements after the
results shown in the table and have been met several times with a situation in which Hill Climbing is able
to find better solutions in less time.

Problem
Has it found
a solution?

Solution
cost

Time to find the
solution (s)

Total computation
time (s)

Best
bound

Gap

1 yes 39 <13 1500 7.1791 81.59%

2 yes 164 <35 1500 6.8079 95.85%

3 yes 3079 <70 7000 254.7431 91.73%

4 yes 3116 <90 7000 255.9968 91.78%

5 yes 2975 <200 4000 0.0000 100%

Table 2: Complete solver results

7.2 KNVB Problem

Since we do not have an implementation of any local search methods for this problem, we have only applied
complete methods to solve it. We have, however, used the feature that allows us to divide the problem
into smaller sub-problems that are easier to solve in order to compare the results obtained using different
partitions to the result obtained without breaking the problem into sub-problems.

To compare the results obtained with the different partitions of the problem into sub-problems, since
the whole league has a total of 41 rounds, we have proposed facing the whole league at once and parti-
tioning the problem into 2, 4 and 8 sub-problems with similar distributions of rounds per instance of the
sub-problem. The 4 methodologies are explained in detail up next together with the results obtained.

For each of the methods proposed we have studied two solutions, one obtained in a limited amount of
time and the optimum one. For the first proposed solution we have considered the solutions that can be
obtained with each of the methods using 8000 seconds to solve the whole problem. This will let us see the
quality of the solutions that can be obtained through each method if the time we want to spend solving

44

the problem is limited and compare them.

The data used for this problem has been provided by the Dutch Football Federation (KNVB) and
corresponds to the season 2018 - 2019. A total of 47 referees and 71 assistant referees with different
classifications and skill levels are taken into account and 41 rounds between matches of the two leagues are
disputed. The assignment we have looked for is one such that referees are not assigned twice to matches
with a same team in less than 3 rounds, for every 6 rounds referees are assigned to leading roles to at
most 5 of them and they cannot develop main roles in matches for more than 4 consecutive rounds and
all officers have to be assigned to leading roles in a match of each importance for every interval of 20 rounds.

Method 1:

For this first method we have broken the problem into 8 sub-problems, the seven firsts taking into account
5 consecutive rounds of the league each one and the last one considering the last 6. The sub-problems are
faced in order and after solving each sub-problem the results obtained are included in the next sub-problem.
Since we have a total amount of 8000 seconds to solve the whole problem to see the solution that can be
obtained in this time we have let the solver run each sub-problem for 1000 seconds and taken note of the
results obtained.

Rounds
considered

Cost Time
Best

Bound
Gap

1 to 5 17 1000 0.0000 100%

6 to 10 26 1000 0.0000 100%

11 to 15 307 1000 0.0000 100%

16 to 20 251 1000 12.7483 94.92%

21 to 25 17 1000 7.8908 53.28%

26 to 30 128 1000 10.1625 92.06%

31 to 35 94 1000 52.6667 43.97%

36 to 41 89 26.48 89.0000 0.00%

Table 3: Results from breaking the KNVB problem into 8 sub-problems with limited time

The solution obtained for the whole problem after letting each sub-problem run for at most 1000 seconds
has a cost of 89 and has been obtained after 7026.48 seconds of computing time. This means that at the
end, once all the assignments have been made, the solution obtained for the whole problem breaks 89 soft
constraints, which is surprisingly small number of constraints taking into account the size of the problem.
With the results obtained from each sub-problem in the time limited version, which can be seen in Table
3, we can observe that with the first 3 sub-problems the solver is further away from finding the optimum
solution or deciding the best one found so far is the optimum one since the gap is of 100%, however after
the third sub-problem the gap starts to diminish, meaning the solver gets closer to finding the optimum
solution. This is mainly due to the fact that after each sub-problem, the number of constraints limiting
the space of solutions for the next sub-problem increases, and so the solver has less options to take into
account. The most obvious expression of this is the last sub-problem, which is heavily conditioned by the
results from the previous sub-problems and so the optimum is found in under 30 seconds, meanwhile the
optimum has not been found for any of the other problems in the 1000 seconds each one has been left.

45

When looking for the optimum solution for each of the sub-problems we have run the problem into
a situation that has no solution: after solving the first 6 sub-problems we have found that, taking into
account the assignments from the previous rounds, there is no feasible assignment for the rounds from the
31st to the 35th. The results from executing the other sub-problems can be found in Table 4.

Rounds
considered

Cost Time

1 to 5 0 1240.90

6 to 10 9 3576.24

11 to 15 68 2257.10

16 to 20 112 8435.81

21 to 25 33 7851.03

26 to 30 39 9158.26

31 to 35 - -

36 to 41 - -

Table 4: Results from breaking the KNVB problem into 8 sub-problems looking for the optimum

With the results obtained looking for the optimum solutions we exemplify the fact commented in the
introduction and once again in section 6, that is that breaking the problem into smaller sub-problems does
neither assure finding the optimum solution nor finding a solution at all.

Method 2:

In this second method we have done as in method 1, but breaking the league into 3 smaller leagues of 10
rounds each and one last league with the last 11 rounds since the league has 41 rounds and one would be
left alone otherwise. For the time limited solution we have let each sub-problem run for 2000 seconds and
taken note of the results obtained.

Rounds
considered

Cost Time
Best

Bound
Gap

1 to 10 3 2000 0.0000 100%

11 to 20 509 2000 0.7333 99.86%

21 to 30 893 2000 55.4036 93.80%

31 to 41 157 2000 153.3599 2.32 %

Table 5: Results from breaking the KNVB problem into 4 sub-problems with limited time

The results obtained after using CPLEX to solve the sub-problems can be seen in Table 5. In there we
can see that the time limited version of the problem has been obtained in 8000 seconds, unlike the solution
found using the first method that needed less time for the last sub-problem, and has a cost of 157, which
is worse than the cost obtained with the first method in 8000 seconds.

Looking for the optimum solution for each of the sub-problems however, we have run into the same
situation that we have met in the first method, that is that we have ended up with a sub-problem that

46

cannot be solved when using the data from the previous assignments. This time this has happened with
the third sub-problem, that looks for the assignment of referees to the matches from the 21st to the 30th
rounds. In the table 6 we can observe that the cost of the solutions belonging to the first 2 sub-problems
is better than the ones obtained limiting the computing time of the solver and that the number of seconds
needed to find the optimum solutions is much higher than the 2000 seconds we had left for each sub-
problem, meaning that we were quite far from finding the optimum solutions and that letting them run for
longer periods of time, other solutions may have been found.

Rounds
considered

Cost Time

1 to 10 1 10527.76

11 to 20 98 15436.21

21 to 30 - -

31 to 41 - -

Table 6: Results from breaking the KNVB problem into 4 sub-problems looking for the optimum

Method 3:

For this third method we have partitioned the league into 2 smaller leagues of 20 and 21 rounds each and
have let each of the sub-problems run for 4000 seconds in order to evaluate the solution obtained within
8000 seconds.

Rounds
considered

Cost Time
Best

Bound
Gap

1 to 20 1559 4000 0.0000 100%

21 to 41 1643 4000 122.1246 92.57%

Table 7: Results from breaking the KNVB problem into 2 sub-problems with limited time

As we can see in the tables 7 and 8, which contain the data from the resolution of the sub-problems
using CPLEX, limiting the solver so it works at most 4000 seconds per sub-problem we have obtained a
solution with a cost of 1643, however without limiting the time the solver can work on each sub-problem
we have obtained a solution with cost 57 after 41495.17 seconds, which is about 11 hours and a half. After
seeing these results, it is obvious that letting the solver run for at most 4000 seconds with problems of this
size is not enough since the solutions differ a lot, however, it is important to notice that we have gotten a
solution in more than 5 times less computation time.

Rounds
considered

Cost Time

1 to 20 21 32579.34

21 to 41 57 8915.83

Table 8: Results from breaking the KNVB problem into 2 sub-problems looking for the optimum

Method 4:

In this last method we have considered the whole problem and looked for the optimum solution for the

47

KNVB problem. For the time limited solution, since there are no partitions of this problem into sub-
problems, we have let the problem run for 8000 seconds.

Rounds
considered

Cost Time
Best

Bound
Gap

1 to 41 5977 8000 0.0000 100%

Table 9: Results from the KNVB problem with limited time

After letting the solver run for 8000 seconds, we have obtained a solution with a cost of 5977. However,
when trying to solve the problem without limiting the time, we have not been able to find the optimum
solution even after letting the solver run for 36 straight hours. After running CPLEX for 3 hours, the best
solution found has a cost of 655, and after running it for 5, the best bound of the problem is set to 57,
however the best cost and the best bound are not improved again. We can observe that the cost of the
best bound found is the same as the cost of the solution obtained looking for the optimum solutions with
method 3, which means that we have found the optimum solution of the problem with the 3rd method
finding the optimum solution for each sub-problem.

After experimenting with the different methodologies we can corroborate that breaking the problem
into smaller sub-problems and solving them individually does not guarantee finding the optimum solution
or finding a solution at all since we have been met twice with a sub-problem that has no solution due to
the solutions found for previous sub-problems.

We can also observe that, with this problem, the results obtained with a limited computing time and
each of the different methods are better as the problem is divided into more sub-problems. This means that
disposing of a limited time, the best of the 4 methods is the first one. In fact, the solution obtained with
the first method in 8000s, which breaks only 89 soft constraints, is really close to the optimum solution,
which breaks 57 soft constraints and we have only been able to find after running the solver for almost
41500 seconds, which is more than 5 times the time spent to find the first solution.

48

8. Conclusions and Further Work

In this project we have introduced the Referee Assignment Problem, a rather new problem in sports op-
timization that was presented in 2006, and done a short review of the most important problems in sport
optimization. We have described and modeled two different versions of the RAP, a general one that can
serve as a basis for an implementation with more detail for any football league, and another one with the
specific details used by the Dutch Football Federation (KNVB) to assign their referees to the two highest
professional football leagues in The Netherlands. We have also proved that the decision version of this
problem is NP-complete.

We have implemented two local search methods to solve the basic version of the RAP with C++, the
first one using Hill Climbing and the second one using Simulated Annealing, and seen with the results
obtained through executing different problems with them that Hill Climbing is faster then Simulated An-
nealing but obtains worse results. We have also formulated the problem using integer linear programming
with the help of a Prolog written program that automatically formulates the constraints given the problem’s
data and solved it with CPLEX, a complete solver created by IBM. Observing the results obtained solving
the problem with the complete solver we have been able to see that local search solvers are faster, meaning
they end the execution and find a local optimum solution faster, however complete solvers are always
able to find the optimum solution if given enough time meanwhile local search algorithms sometimes are
not even able to find a solution. We have also observed that with big problems with a huge amount of
constraints and variables such as problems based on professional football leagues, CPLEX finds solutions
with acceptable costs faster than the other solvers but then becomes stuck and takes a long time to find
the optimum, prove the best solution found so far is the optimum or even find better solutions.

To face the KNVB version of the problem we have formulated it using integer linear programming with
the help of another Prolog written program and solved it using CPLEX . We have compared the results
obtained from breaking the problem into different quantities of smaller sub-problems and without breaking
it and done so limiting the time given to the solver to find the optimum solution and without limiting
it. Through the results obtained we have been able to see that looking for the optimum solution for the
whole problem takes a really long time but breaking the problem into small sub-problems, if the problem is
not directed towards a situation that has no solution once joining the results from previous sub-problems,
can provide really good results in a short amount of time in comparison to what takes to solve the whole
problem. Moreover, we have been able to observe that, for this instance of the problem, as the quantity
of sub-problems the main problem is broken into increases, the results obtained in a given amount of time
improve. We have also noticed that breaking the problem into sub-problems and looking for the optimum
solution for each of them seems to elevate the chances of running the problem towards an unsolvable
situation.

After seeing the results obtained from the experiments developed with the KNVB problem and seeing
that solving the problem partitioning it into sub-problems may make the problem unsolvable, it is important
to notice the fact that, if a referee gets injured and the assignment of referees for the league has to be
recalculated for the following rounds during the medical leave, it is possible that no solution can be found.
Given this situation, the only way to proceed to find a new assignment is to change the parameters of the
problem that give shape to the hard constraints, altering the ones that make it impossible to find a feasible
assignment.

49

One thing that is really important from the results obtained is that breaking the problem into two
sub-problems we have been able to find the optimum solution for the whole problem in over 11 hours,
meanwhile it takes days to find the optimum solution for the whole problem without partitioning. It could
be interesting to see if this has been a coincidence or if changing the parameters of the problem the same
would happen. It could also be interesting to see if there is a relation between the number of sub-problems
the problem in broken into an the number of soft constraints broken by the solutions obtained from each
one with different time limits and different instances of the problem.

Seeing as the local search methods have obtained rather good results in short amounts of time in com-
parison to the time needed for complete solvers to find the optimum solution of a problem with the basic
version of the problem, it could be interesting to implement a local search solver for the KNVB version
of the problem to compare the results, since using this type of solvers could shorten the computing time,
although there is also the possibility that local search solvers would not be able to find a solution given the
size of the problem.

It could also be interesting to find a way to run at the same time a complete search method and a
local search algorithm coordinating them in order to let the local search algorithms know the best bound
found so far. This could help a lot since as local search algorithms do not know if they are dealing
with the global optimum, this could help them know if they have found it. Moreover, combining both
methods and coordinating them, we could get a method that gets the solutions quite fast, which is a
quality we have observed with the local search algorithms, and we would be able to know when we have
found the global optimum or how far we are from it cost-wise, which is a property from the complete solvers.

As a last remark, we want to comment the fact that with another computer the results obtained could
have been different in several ways. The first thing we want to pay notice to is that using a computer with
better computing performance, the running times would have been smaller and we could have found the
optimum solution for the whole KNVB problem in a reasonable amount of time. This would have let us get
more data which we could have used to make more and better comparisons and more experiments could
have been developed given the same amount of time. The second thing we want to comment is the fact that
using a computer with more available memory space we could have used some of the previously formulated
integer linear programming models for the KNVB version of the problem, which we have not been able to
run in this computer since CPLEX runs out of memory when formulating them. These previous versions of
the program used more internal variables in order to avoid recalculating things, which would have meant
using less constraints and reusing already calculated variables or parameters, reducing the computing time.

50

References

[1] A. Duarte, C. Ribeiro, S. Urrutia, and E. Haeusler, “Referee assignment in sports leagues,” vol. 3867,
pp. 158–173, 01 2006.

[2] J. R. Evans, “Play ball!–the scheduling of sports officials,” Perspectives in Computing: Applications
in the Academic and Scientific Community, 01 1984.

[3] J. R. Evans, “A microcomputer-based decision support system for scheduling umpires in the american
baseball league,” Interfaces, vol. 18, pp. 42–51, 12 1988.

[4] M. Wright, “Scheduling english cricket umpires,” Journal of The Operational Research Society - J
OPER RES SOC, vol. 42, pp. 447–452, 06 1991.

[5] M. B. Wright, Scheduling English Cricket Umpires, pp. 87–96. 01 2015.

[6] A. Duarte, C. Ribeiro, and S. Urrutia, “A hybrid ils heuristic to the referee assignment problem with
an embedded mip strategy,” vol. 4771, pp. 82–95, 10 2007.

[7] G. Durán and M. Guajardo, “Programación matemática aplicada al fixture de la primera división del
fútbol chileno,” Revista Ingeniera de Sistemas, vol. 19, p. 29 – 48, 2005.

[8] G. M. Durán, G. and R. Wolf-Yadlin, “Programación del fixture de la segunda división del fútbol de
chile mediante investigación de operaciones,” Revista Ingeniera de Sistemas, vol. 24, p. 27 – 46, 2010.

[9] T. Atan and O. Pelin Hüseyinoǧlu, “Simultaneous scheduling of football games and referees using
turkish league data,” International Transactions in Operational Research, vol. 24, 09 2015.

[10] M. Yavuz, U. Inan, and A. Fığlalı, “Fair referee assignments for professional football leagues,” Com-
puters OR, vol. 35, pp. 2937–2951, 09 2008.

[11] A. Lamghari and J. A. Ferland, “Structured neighborhood tabu search for assigning judges to com-
petitions,” pp. 238–245, 05 2007.

[12] A. Lamghari and J. A. Ferland, “Metaheuristic methods based on tabu search for assigning judges to
competitions,” Annals OR, vol. 180, pp. 33–61, 11 2010.

[13] F. Alarcon, G. Durán, and M. Guajardo, “Referee assignment in the chilean football league using
integer programming and patterns,” International Transactions in Operational Research, vol. 21, 10
2013.

[14] R. Linfati, G. Gatica, and J. Escobar, “A flexible mathematical model for the planning and designing
of a sporting fixture by considering the assignment of referees,” International Journal of Industrial
Engineering Computations, vol. 10, pp. 281–294, 04 2019.

[15] B. L. Schwartz, “Possible winners in partially completed tournaments,” Siam Review - SIAM REV,
vol. 8, pp. 302–308, 07 1966.

[16] A. Hoffman and J. Rivlin, “When is a team ”mathematically” eliminated?,” Proceedings of the Prince-
ton Symposium on Mathematical Programming, pp. 391–401, 01 1970.

51

[17] L. W. Robinson, “Baseball playoff eliminations: An application of linear programming,” Operations
Research Letters - ORL, vol. 10, pp. 67–74, 10 1991.

[18] D. de Werra, “Scheduling in sports,” Annals of Discrete Mathematics, vol. 11, 12 1981.

[19] D. de Werra, “Werra, d.: Some models of graphs for scheduling sports competitions. discrete appl.
math. 21, 47-65,” Discrete Applied Mathematics, vol. 21, pp. 47–65, 09 1988.

[20] D. de Werra, L. Jacot-Descombes, and P. Masson, “A constrained sports scheduling problem,” Discrete
Applied Mathematics, vol. 26, pp. 41–49, 01 1990.

[21] K. Mcaloon, C. Tretkoff, and G. Wetzel, “Sports league scheduling,” 11 1997.

[22] F. Biajoli, A. Chaves, M. Souza, and F. Souza, “Escala de jogos de torneios esportivos: Uma abor-
dagem via simulated annealing,” 11 2003.

[23] P. Van Hentenryck and Y. Vergados, “Minimizing breaks in sport scheduling with local search.,”
pp. 22–29, 01 2005.

[24] G. Nemhauser and M. Trick, “Scheduling a major college basketball conference,” Operations Research,
vol. 46, 10 2001.

[25] M. Henz, T. Müller, and S. Thiel, “Global constraints for round robin tournament scheduling,” Euro-
pean Journal of Operational Research, vol. 153, pp. 92–101, 02 2004.

[26] K. Easton, G. Nemhauser, and M. Trick, “Solving the travelling tournament problem: A combined
integer programming and constraint programming approach,” pp. 100–112, 08 2002.

[27] D. C. Uthus, P. Riddle, and H. Guesgen, “Dfs* and the traveling tournament problem,” vol. 5547,
pp. 279–293, 05 2009.

[28] G. Langford, “An improved neighbourhood for the traveling tournament problem,” 07 2010.

[29] R. Miyashiro, T. Matsui, and S. Imahori, “An approximation algorithm for the traveling tournament
problem,” Annals of Operations Research, vol. 194, pp. 317–324, 01 2012.

[30] T. Benoist, F. Laburthe, and B. Rottembourg, “Lagrange relaxation and constraint programming
collaborative schemes for travelling tournament problems,” 01 2001.

[31] M. Adriaen, N. Custers, and G. Vanden Berghe, “An agent based metaheuristic for the travelling
tournament problem,” 06 2019.

[32] E. M. Arkin and E. B. Silverberg, “Scheduling with fixed start and end times,” Discrete Applied
Mathematics, vol. 18, pp. 1–8, 09 1987.

52

A. Local Search Code

In this section of the appendix is found the code used for the implementations of local search methods,
which, as mentioned before, is written in C++. The code is structured in several files that work together
using object oriented programming and needs as input two files with the data from the problem. Up next
we will show each of the files and explain what they are used for.

The first files are the files containing the data of the problem we want to study. Two files are needed
to enter the data: one containing the parameters of the problem and another one with the matches. The
first has to include the number of referees and matches, the rounds contained in one interval of rounds, the
minimum and maximum of matches per interval of rounds, the maximum number of consecutive rounds
a referee can officiate a match in, the number of rounds before a referee is assigned twice to the same
team or stadium and the teams and the referees and their qualifications. The second file simply has to list
the matches identificating the teams playing against each other and in which round the game is played.
The files must follow the syntax of the files from Listing 4 and Listing 5, which can be used as examples.
Following the standards used by Barcelogic to create the calendars for the KNVB league, the code has
been implemented in a way such that the names of the teams must be 3 characters long, which makes the
job of extracting the data from the files easier.

The code is structured in 5 classes that are used by the main file to solve the problem. It is structured
this way so that parts of the code that independent from one another can be modified without affecting
other parts of the code. For example, one file contains the implementation of the state and another one
implements the heuristic function, this way, if we have to modify the definition of the states, we can do it
without having to touch the files containing the heuristic function and making sure this way that nothing
that should not be touched is touched by accident. Each of these classes is broken into 2 files, one ended
in .hh, which contains the definitions or calls of the functions and the class, and another one ended in .cc,
which contains the implementations of the functions declared in the other file, but both with the same
name besides the termination.

The first class that is used is the Reader class, which is used to read and process the data from the
previously mentioned files and uses the library fstream to open the files and read from them. This class
can be found in the Listings 6 and 7.

The most important things to define when using local search methods are the definition of the state
and how the data is kept, the heuristic function and the method or algorithm that is used and the moves
that can be generated. These things are all defined in the classes State, HeuristicFunction and Solver
respectively.

The class State can be found in Listings 8 and 9 and contains the structure of the state, which is the
above-mentioned matrix of size the number of referees times the number of matches, and is in charge
of modifying the assignments of referees and matches. This class has the method that generates random
initial states that ensures the state has one referee per match and referees have at most one match per round.

The heuristic function can be found implemented in the class HeuristicFunction. This class basically

53

implements a function that, given a state, calculates the number of constraints that are broken, gives them
a weight depending on the type of constraint and their importance for the integrity of the result, and
returns the addition of these numbers, which is interpreted as the heuristic value of the states. This class
is presented in the Listings 10 and 11.

The last important class left to present is the one that makes most of the work, which is the class
Solver. This class contains the implementation of the methods used for the Hill Climbing and the Simulated
Annealing and a procedure that generates random moves that can be applied to the current state. The
implementation of the methods basically follows the pseudo-codes in the Algorithms 1 and 2 in Section 4.
This class continually calls the classes State and HeuristicFunction in order to check which movements can
be made and to evaluate the value of the heuristic function, and its implementation is presented in Listings
12 and 13.

Finally, to write the solutions obtained after applying the algorithms we have the class Writer, imple-
mented in the Listings 14 and 15, that creates a file solutionHC .txt or solutionSA.txt depending on if it
is writing the solution obtained with Hill Climbing or Simulated Annealing, and writes there the results
in a format easily read. An example of how the results are written can be found in Listings 18 and 19,
which contain the results from applying Hill Climbing and Simulated Annealing respectively with the files
in Listings 4 and 5 as the data and calendar files.

All these clases are used from the main file, which can be found in Listing 16. Once the main file
is executed, the Reader class is called to read the data from the files, and the data obtained is kept in
variables for future uses. Then an instance of the class Solver, an instance of the class HeuristicFunction,
and an instance from the class Writer are created with the data from before, and, with these instances,
the solver is called in order to solve the problem with Hill Climbing and then with Simulated Anneal-
ing and the results are written in the corresponding files. The whole code can be compiled using the
Makefile in Listing 17 with the call ”make” in an Ubuntu terminal, and the program can be executed
with the call ”./main.exe < calendarFile >< dataFile > ”, where < calendarFile > is the file with the cal-
endar of matches, and < dataFile > is the file with the specifics of the problem, the teams and the referees.

54

Listing 4: Example of file with the data for the problem

1 n R e f e r e e s 6
2 nMatches 30
3 i n t e r v a l R o u n d s 2
4 m i n M a t c h e s P e r I n t e r v a l 0
5 m a x M a t c h e s P e r I n t e r v a l 4
6 minNumRoundsBeforeRepeatingTeam 0
7 minNumRoundsBeforeRepeatingStadium 1
8 maxConsecut iveRounds 3
9

10 r e f e r e e (1 , 7) .
11 r e f e r e e (2 , 8) .
12 r e f e r e e (3 , 8) .
13 r e f e r e e (4 , 9) .
14 r e f e r e e (5 , 7) .
15 r e f e r e e (6 , 8) .
16

17 team (te1 , 3) .
18 team (te2 , 2) .
19 team (te3 , 4) .
20 team (te4 , 3) .
21 team (te5 , 2) .
22 team (te6 , 1) .

Listing 5: Example of file with the matches of the league

1 match (te1 , te2 , 1) .
2 match (te3 , te4 , 1) .
3 match (te5 , te6 , 1) .
4

5 match (te3 , te1 , 2) .
6 match (te2 , te5 , 2) .
7 match (te4 , te6 , 2) .
8

9 match (te1 , te4 , 3) .
10 match (te5 , te3 , 3) .
11 match (te6 , te2 , 3) .
12

13 match (te5 , te1 , 4) .
14 match (te4 , te2 , 4) .
15 match (te3 , te6 , 4) .
16

17 match (te1 , te6 , 5) .
18 match (te2 , te3 , 5) .
19 match (te4 , te5 , 5) .
20

21 match (te2 , te1 , 6) .
22 match (te4 , te3 , 6) .
23 match (te6 , te5 , 6) .
24

25 match (te1 , te3 , 7) .
26 match (te5 , te2 , 7) .

55

27 match (te6 , te4 , 7) .
28

29 match (te1 , te4 , 8) .
30 match (te3 , te5 , 8) .
31 match (te2 , te6 , 8) .
32

33 match (te1 , te5 , 9) .
34 match (te2 , te4 , 9) .
35 match (te6 , te3 , 9) .
36

37 match (te6 , te1 , 1 0) .
38 match (te3 , te2 , 1 0) .
39 match (te5 , te4 , 1 0) .

56

Listing 6: Reader.hh

1 #i f n d e f READER HH
2 #def ine READER HH
3

4 #inc lude <i o s t r e a m>
5 #inc lude <f s t r e a m>
6 #inc lude <map>
7 #inc lude <s t r i n g >
8 #inc lude <v e c t o r>
9 #inc lude <cmath>

10 using namespace s t d ;
11

12 c l a s s Reader {
13

14 protected :
15

16 i f s t r e a m i n F i l e ; // v a l u e i n d i c a t i n g th e l a s t r e a d c h a r from a f i l e
17 s t r i n g d a t a F i l e ; // name o f t he f i l e t h a t has t he data f o r th e problem
18 s t r i n g c a l e n d a r F i l e ; // name o f t he f i l e t h a t has t he c a l e n d a r
19 i n t nTeams ; // number o f teams
20 i n t nRef ; // number o f r e f e r e e s
21 i n t n I n c ; // number o f i n c o m p a t i b i l i t i e s
22

23 /∗ Reads the data from th e c a l e n d a r F i l e and w r i t e s i t i n th e map ∗/
24 void r e a d C a l e n d a r (map<int , s t r i n g >& l i s t O f M a t c h e s) ;
25

26 /∗ Reads the data about h te r e f e r e e s and i n s e r t s i t i n t o t he map∗/
27 void r e a d R e f e r e e (s t r i n g i n p u t , i n t n R e f e r e e s , map<int , int>& l i s t O f R e f e r e e s) ;
28

29 /∗ Reads the data about t he teams and w r i t e s i n i n t o the map∗/
30 void readTeam (s t r i n g i n p u t , i n t nTeamsMax , map<s t r i n g , int>& l i s t O f T e a m s) ;
31

32 /∗ Read t he data about t he i n c o m p a t i b i l i t i e s and w r i t e s i t i n t he v e c t o r ∗/
33 void r e a d I n c o m p a t i b i l i t y (s t r i n g i n p u t ,
34 v e c t o r<v e c t o r<s t r i n g >>& l i s t O f I n c o m p a t i b i l i t i e s) ;
35

36 /∗ Reads the p a r a m e t e r s needed f o r th e problem and i n s e r t s i t i n t o a
37 v e c t o r t h a t i s r e t u r n e d ∗/
38 v e c t o r<int> r e a d P a r t i c u l a r s () ;
39

40 /∗ Reads the data from th e f i l e s and i n s e r t i t i n t o th e c o r r e s p o n d i n g
41 maps and v e c t o r s ∗/
42 v e c t o r<int> readData (map<s t r i n g , int>& l i s tO fT ea ms , map<int , int>&
43 l i s t O f R e f e r e e s , v e c t o r<v e c t o r<s t r i n g >>& l i s t O f I n c o m p a t i b i l i t i e s) ;
44

45 p u b l i c :
46

47 // D e f a u l t c o n s t r u c t o r
48 Reader () ;
49

50 // C o n s t r u c t o r w i t h t he names o f t he f i l e s
51 Reader (s t r i n g c a l e n d a r F i l e , s t r i n g d a t a F i l e) ;

57

52

53 // D e s t r u c t o r
54 ˜ Reader () ;
55

56 /∗ Given empty maps , r e a d s the data from th e c a l e n d a r F i l e and t he d a t a F i l e ,
57 i n s e r t s i t i n t o t he c o r r e s p o n d i n g maps and v e c t o r s , and r e t u r n s a v e c t o r
58 w i t h t he p a r a m e t e r s o f th e problem ∗/
59 v e c t o r<int> r e a d (map<int , s t r i n g >& l i s t O f M a t c h e s , map<s t r i n g , int>&

↪→ l i s t Of Te am s ,
60 map<int , int>& l i s t O f R e f e r e e s , v e c t o r<v e c t o r<s t r i n g >>&
61 l i s t O f I n c o m p a t i b i l i t i e s) ;
62

63 } ;
64

65 #e n d i f

Listing 7: Reader.cc

1

2 #inc lude "Reader.hh"

3

4 Reader : : Reader () {
5 th i s−>d a t a F i l e = "" ;
6 th i s−>c a l e n d a r F i l e = "" ;
7 }
8

9 Reader : : Reader (s t r i n g c a l e n d a r F i l e , s t r i n g d a t a F i l e) {
10 th i s−>d a t a F i l e = d a t a F i l e ;
11 th i s−>c a l e n d a r F i l e = c a l e n d a r F i l e ;
12 }
13

14 Reader : : ˜ Reader () {}
15

16

17 void e r r o r (s t r i n g message) {
18 cout << message << e n d l ;
19 e x i t (1) ;
20 }
21

22

23 void Reader : : r e a d C a l e n d a r (map<int , s t r i n g >& l i s t O f M a t c h e s) {
24 i f s t r e a m i n F i l e ;
25 i n F i l e . open (th i s−>c a l e n d a r F i l e) ;
26 i f (! i n F i l e) e r r o r ("Unable to open the file " + th i s−>c a l e n d a r F i l e) ;
27 s t r i n g i n p u t , l o c , v i s , round , d e f ;
28 i n t i = 0 ;
29 whi le (i n F i l e >> i n p u t) {
30 l o c = i n p u t . s u b s t r (6 , 3) ;
31 v i s = i n p u t . s u b s t r (1 0 , 3) ;
32 i f (i < 100) round = i n p u t . s u b s t r (1 4 , 1) ;
33 e l s e round = i n p u t . s u b s t r (1 4 , 2) ;
34 d e f = l o c + " " + v i s + " " + round ;
35 l i s t O f M a t c h e s . i n s e r t (p a i r <int , s t r i n g >(i , d e f)) ;

58

36 ++i ;
37 }
38 }
39

40 void Reader : : r e a d R e f e r e e (s t r i n g i n p u t , i n t n R e f e r e e s ,
41 map<int , int>& l i s t O f R e f e r e e s) {
42 i f (th i s−>nRef >= n R e f e r e e s)
43 e r r o r ("There are more referees than accounted for") ;
44 s t r i n g r e f ;
45 s t r i n g p o i n t s ;
46 i f (nRef < 9) {
47 r e f = i n p u t . s u b s t r (8 , 1) ;
48 i f (i n p u t . s u b s t r (1 1 , 1) == ")") p o i n t s = i n p u t . s u b s t r (1 0 , 1) ;
49 e l s e p o i n t s = i n p u t . s u b s t r (1 0 , 2) ;
50 }
51 e l s e {
52 r e f = i n p u t . s u b s t r (8 , 2) ;
53 i f (i n p u t . s u b s t r (1 2 , 1) == ")") p o i n t s = i n p u t . s u b s t r (1 1 , 1) ;
54 e l s e p o i n t s = i n p u t . s u b s t r (1 1 , 2) ;
55 }
56 l i s t O f R e f e r e e s . i n s e r t (p a i r <int , int >(s t o i (r e f) , s t o i (p o i n t s))) ;
57 ++th i s−>nRef ;
58 }
59

60 void Reader : : readTeam (s t r i n g i n p u t , i n t nTeamsMax ,
61 map<s t r i n g , int>& l i s t O f T e a m s) {
62 i f (th i s−>nTeams >= nTeamsMax)
63 e r r o r ("There are more teams than there should") ;
64 s t r i n g team = i n p u t . s u b s t r (5 , 3) ;
65 s t r i n g p o i n t s = i n p u t . s u b s t r (9 , 1) ;
66 l i s t O f T e a m s . i n s e r t (p a i r <s t r i n g , int >(team , s t o i (p o i n t s))) ;
67 ++th i s−>nTeams ;
68 }
69

70 void Reader : : r e a d I n c o m p a t i b i l i t y (s t r i n g i n p u t ,
71 v e c t o r<v e c t o r<s t r i n g >>& l i s t O f I n c o m p a t i b i l i t i e s) {
72 s t r i n g sub = i n p u t . s u b s t r (0 , 7) ;
73 i f (sub == "incRefT") {
74 s t r i n g r e f ;
75 s t r i n g team ;
76 i f (i n p u t . s u b s t r (1 2 , 1) == ",") {
77 r e f = i n p u t . s u b s t r (1 1 , 1) ;
78 team = i n p u t . s u b s t r (1 3 , 3) ;
79 }
80 e l s e {
81 r e f = i n p u t . s u b s t r (1 1 , 2) ;
82 team = i n p u t . s u b s t r (1 4 , 3) ;
83 }
84 l i s t O f I n c o m p a t i b i l i t i e s . push back ({"T" , r e f , team }) ;
85 }
86 e l s e i f (sub == "incRefS") {
87 s t r i n g r e f ;

59

88 s t r i n g team ;
89 i f (i n p u t . s u b s t r (1 2 , 1) == ",") {
90 r e f = i n p u t . s u b s t r (1 1 , 1) ;
91 team = i n p u t . s u b s t r (1 3 , 3) ;
92 }
93 e l s e {
94 r e f = i n p u t . s u b s t r (1 1 , 2) ;
95 team = i n p u t . s u b s t r (1 4 , 3) ;
96 }
97 l i s t O f I n c o m p a t i b i l i t i e s . push back ({"S" , r e f , team }) ;
98 }
99 e l s e i f (sub == "incRefR") {

100 s t r i n g r e f ;
101 s t r i n g round ;
102 i f (i n p u t . s u b s t r (1 3 , 1) == ",") {
103 r e f = i n p u t . s u b s t r (1 2 , 1) ;
104 i f (i n p u t . s u b s t r (1 5 , 1) == ")") round = i n p u t . s u b s t r (1 4 , 1) ;
105 e l s e round = i n p u t . s u b s t r (1 4 , 2) ;
106 }
107 e l s e {
108 r e f = i n p u t . s u b s t r (1 2 , 2) ;
109 i f (i n p u t . s u b s t r (1 6 , 1) == ")") round = i n p u t . s u b s t r (1 5 , 1) ;
110 e l s e round = i n p u t . s u b s t r (1 5 , 2) ;
111 }
112 l i s t O f I n c o m p a t i b i l i t i e s . push back ({"R" , r e f , round }) ;
113 }
114 e l s e e r r o r ("Incompatibility not contemplated") ;
115 }
116

117 v e c t o r<int> Reader : : r e a d P a r t i c u l a r s () {
118 v e c t o r<int> v = v e c t o r<int >(8) ;
119 s t r i n g i n p u t ;
120 i n t v a l u e ;
121 th i s−> i n F i l e >> i n p u t >> v a l u e ;
122 i f (i n p u t != "nReferees")
123 e r r o r ("nReferees missing from " + th i s−>d a t a F i l e) ;
124 v [0] = v a l u e ;
125 th i s−> i n F i l e >> i n p u t >> v a l u e ;
126 i f (i n p u t != "nMatches")
127 e r r o r ("nMatches missing from " + th i s−>d a t a F i l e) ;
128 v [1] = v a l u e ;
129 th i s−> i n F i l e >> i n p u t >> v a l u e ;
130 i f (i n p u t != "intervalRounds")
131 e r r o r ("intervalRounds missing from " + th i s−>d a t a F i l e) ;
132 v [2] = v a l u e ;
133 th i s−> i n F i l e >> i n p u t >> v a l u e ;
134 i f (i n p u t != "minMatchesPerInterval")
135 e r r o r ("minMatchesPerInterval missing from " + th i s−>d a t a F i l e) ;
136 v [3] = v a l u e ;
137 th i s−> i n F i l e >> i n p u t >> v a l u e ;
138 i f (i n p u t != "maxMatchesPerInterval")
139 e r r o r ("maxMatchesPerInterval missing from " + th i s−>d a t a F i l e) ;

60

140 v [4] = v a l u e ;
141 th i s−> i n F i l e >> i n p u t >> v a l u e ;
142 i f (i n p u t != "minNumRoundsBeforeRepeatingTeam")
143 e r r o r ("minNumRoundsBeforeRepeatingTeam missing from " + th i s−>d a t a F i l e) ;
144 v [5] = v a l u e ;
145 th i s−> i n F i l e >> i n p u t >> v a l u e ;
146 i f (i n p u t != "minNumRoundsBeforeRepeatingStadium")
147 e r r o r ("minNumRoundsBeforeRepeatingStadium missing from " +
148 th i s−>d a t a F i l e) ;
149 v [6] = v a l u e ;
150 th i s−> i n F i l e >> i n p u t >> v a l u e ;
151 i f (i n p u t != "maxConsecutiveRounds")
152 e r r o r ("maxConsecutiveRounds missing from " + th i s−>d a t a F i l e) ;
153 v [7] = v a l u e ;
154 return v ;
155 }
156

157 v e c t o r<int> Reader : : readData (map<s t r i n g , int>& l i s tO fT eam s ,
158 map<int , int>& l i s t O f R e f e r e e s , v e c t o r<v e c t o r<s t r i n g >>&
159 l i s t O f I n c o m p a t i b i l i t i e s) {
160 th i s−> i n F i l e ;
161 i n F i l e . open (th i s−>d a t a F i l e) ;
162 i f (! i n F i l e) e r r o r ("Unable to open the file " + th i s−>d a t a F i l e) ;
163

164 v e c t o r<int> v = r e a d P a r t i c u l a r s () ;
165

166 s t r i n g i n p u t ;
167 th i s−>nRef = 0 ;
168 th i s−>nTeams = 0 ;
169 i n t nTeamsMax = (1+ s q r t (1+4∗v [1])) / 2 ;
170 whi le (i n F i l e >> i n p u t) {
171 s t r i n g sub = i n p u t . s u b s t r (0 , 3) ;
172 i f (sub == "ref") r e a d R e f e r e e (i n p u t , v [0] , l i s t O f R e f e r e e s) ;
173 e l s e i f (sub == "tea") readTeam (i n p u t , nTeamsMax , l i s t O f T e a m s) ;
174 e l s e i f (sub == "inc") r e a d I n c o m p a t i b i l i t y (i n p u t ,
175 l i s t O f I n c o m p a t i b i l i t i e s) ;
176 e l s e e r r o r ("File " + th i s−>d a t a F i l e + " is not written in a readable" +
177 " format for this program") ;
178 }
179 return v ;
180 }
181

182

183 v e c t o r<int> Reader : : r e a d (map<int , s t r i n g >& l i s t O f M a t c h e s ,
184 map<s t r i n g , int>& l i s tO fT eam s , map<int , int>& l i s t O f R e f e r e e s ,
185 v e c t o r<v e c t o r<s t r i n g >>& l i s t O f I n c o m p a t i b i l i t i e s) {
186 th i s−>r e a d C a l e n d a r (l i s t O f M a t c h e s) ;
187 v e c t o r<int> v = th i s−>readData (l i s t OfT ea ms , l i s t O f R e f e r e e s ,
188 l i s t O f I n c o m p a t i b i l i t i e s) ;
189 return v ;
190 }

61

Listing 8: State.hh

1 #i f n d e f STATE HH
2 #def ine STATE HH
3

4 #inc lude <i o s t r e a m>
5 #inc lude <v e c t o r>
6 using namespace s t d ;
7

8 c l a s s S t a t e {
9

10 protected :
11

12 i n t n R e f e r e e s ; // number o f r e f e r e e s
13 i n t nMatches ; // number o f matches
14 v e c t o r<v e c t o r<bool>> M; // b o o l e a n m a t r i x c o n t a i n i n g t he a s s i g n m e n t s
15

16 p u b l i c :
17

18 // D e f a u l t c o n s t r u c t o r
19 S t a t e () ;
20

21 // C o n s t r u c o r w i t h t he number o f r e f e r e e s and matches
22 S t a t e (i n t n R e f e r e e s , i n t nMatches) ;
23

24 // D e s t r u c t o r
25 ˜ S t a t e () ;
26

27 // r e t u r n s t he number o f r e f e r e e s
28 i n t g e t N R e f e r e e s () ;
29

30 // r e t u r n s t he number o f matches
31 i n t getNMatches () ;
32

33 // s e t s th e number o f r e f e r e e s
34 void s e t N R e f e r e e s (i n t n R e f e r e e s) ;
35

36 // s e t s th e number o f matches
37 void setNMatches (i n t nMatches) ;
38

39 /∗ g i v e n a r e f e r e e and a match , r e t u r n s t r u e i f t he r e f e r e e i s a s s i g n e d
40 to t he match , and f a l s e o t h e r w i s e ∗/
41 bool i s A s s i g n e d (i n t r e f e r e e , i n t match) ;
42

43 /∗ g i v e n a r e f e r e e and a match , a s s i g n e s to t he c o r r e s p o n d i n g p l a c e i n
44 th e matr ix , t he b o o l e n i s A s s i g n e d ∗/
45 void s e t A s s i g n m e n t (i n t r e f e r e e , i n t match , bool i s A s s i g n e d) ;
46

47 /∗ g i v e n a r e f e r e e and a match , r e t u r n s t r u e i f t he r e f e r e e i s a l r e a d y
48 a s s i g n e d to one match i n t he same round th e match i s p l a y e d i n ∗/
49 bool re fe reeHasMatchThisRound (i n t r e f , i n t match) ;
50

51 /∗ g e n e r a t e s randomly an a s s i g n m e n t o f r e f e r e e s to the matches making

62

52 s u r e each match has e x a c t l y one r e f e r e e and r e f e r e e s a r e a ss ogn ed to
53 one match p e r round at most∗/
54 void g e n e r a t e I n i t i a l S t a t e () ;
55

56 /∗ g i v e n a match , r e t u r n s the r e f e r e e a s s i g n e d to i t ∗/
57 i n t getRefereeOfTheMatch (i n t match) ;
58

59 /∗ p r i n t s th e s t a t e ∗/
60 void p r i n t S t a t e () ;
61

62 } ;
63

64 #e n d i f

Listing 9: State.cc

1

2 #inc lude "State.hh"

3

4 S t a t e : : S t a t e () {
5 n R e f e r e e s = 0 ;
6 nMatches = 0 ;
7 M = v e c t o r<v e c t o r<bool> > (0 , v e c t o r<bool> (0)) ;
8 }
9

10 S t a t e : : S t a t e (i n t r , i n t m) {
11 n R e f e r e e s = r ;
12 nMatches = m;
13 M = v e c t o r<v e c t o r<bool> > (n R e f e r e e s , v e c t o r<bool> (nMatches)) ;
14 }
15

16 S t a t e : : ˜ S t a t e () {}
17

18 i n t S t a t e : : g e t N R e f e r e e s () {
19 return n R e f e r e e s ;
20 }
21

22 i n t S t a t e : : getNMatches () {
23 return nMatches ;
24 }
25

26 void S t a t e : : s e t N R e f e r e e s (i n t r) {
27 n R e f e r e e s = r ;
28 }
29

30 void S t a t e : : setNMatches (i n t m) {
31 nMatches = m;
32 }
33

34 bool S t a t e : : i s A s s i g n e d (i n t r e f e r e e , i n t match) {
35 return M[r e f e r e e] [match] ;
36 }
37

63

38 void S t a t e : : s e t A s s i g n m e n t (i n t r e f e r e e , i n t match , bool i s A s s i g n e d) {
39 M[r e f e r e e] [match] = i s A s s i g n e d ;
40 }
41

42 bool S t a t e : : re fe reeHasMatchThisRound (i n t r e f , i n t match) {
43 i n t nmr = th i s−>n R e f e r e e s / 2 ;
44 i n t round = (match − match % nmr) ;
45 f o r (i n t i = 0 ; i < nmr ; ++i) {
46 i f (getRefereeOfTheMatch (round + i) == r e f) return true ;
47 }
48 return f a l s e ;
49 }
50

51 void S t a t e : : g e n e r a t e I n i t i a l S t a t e () {
52 i n t r e f e r e e ;
53 f o r (i n t match = 0 ; match < nMatches ; ++match) {
54 r e f e r e e = rand () % n R e f e r e e s ;
55 whi le (re fe reeHasMatchThisRound (r e f e r e e , match))
56 r e f e r e e = rand () % n R e f e r e e s ;
57 f o r (i n t i = 0 ; i < n R e f e r e e s ; ++i) {
58 i f (i == r e f e r e e) s e t A s s i g n m e n t (i , match , true) ;
59 e l s e s e t A s s i g n m e n t (i , match , f a l s e) ;
60 }
61 }
62 }
63

64

65 i n t S t a t e : : getRefereeOfTheMatch (i n t match) {
66 f o r (i n t i = 0 ; i < n R e f e r e e s ; ++i) {
67 i f (M[i] [match]) return i ;
68 }
69 return −1;
70 }
71

72 void S t a t e : : p r i n t S t a t e () {
73 f o r (i n t i = 0 ; i < n R e f e r e e s ; ++i) {
74 f o r (i n t j = 0 ; j < nMatches ; ++j) {
75 i f (j % 10 == 0) cout << " " ;
76 cout << M[i] [j] ;
77 }
78 cout << e n d l ;
79 }
80 cout << e n d l ;
81 }

64

Listing 10: HeuristicFunction.hh

1 #i f n d e f HEURISTICFUNCTION HH
2 #def ine HEURISTICFUNCTION HH
3

4 #inc lude <i o s t r e a m>
5 #inc lude <map>
6 #inc lude <s t r i n g >
7 #inc lude <v e c t o r>
8 #inc lude "State.hh"

9 using namespace s t d ;
10

11 c l a s s H e u r i s t i c F u n c t i o n {
12

13 protected :
14

15 i n t i n t e r v a l R o u n d s ;
16 i n t m i n M a t c h e s P e r I n t e r v a l ;
17 i n t m a x M a t c h e s P e r I n t e r v a l ;
18 i n t minNumRoundsBeforeRepeatingTeam ;
19 i n t minNumRoundsBeforeRepeatingStadium ;
20 i n t maxConsecut iveRounds ;
21 map<int , s t r i n g > matches ;
22 map<int , int> r e f e r e e s ;
23 map<s t r i n g , int> teams ;
24 v e c t o r<v e c t o r<s t r i n g >> i n c o m p a t i b i l i t i e s ;
25

26 p u b l i c :
27

28 // D e f a u l t c o n s t r u c t o r
29 H e u r i s t i c F u n c t i o n () ;
30

31 // C o n s t r u c t o r w i t h t he data r e q u i r e d by t he h e u r i s t i c f u n c t i o n
32 H e u r i s t i c F u n c t i o n (i n t i n t e r v a l R o u n d s , i n t m i n M a t c h e s P e r I n t e r v a l ,
33 i n t m a x M a t c h e s P e r I n t e r v a l , i n t minNumRoundsBeforeRepeatingTeam ,
34 i n t minNumRoundsBeforeRepeatingStadium , i n t maxConsecut iveRounds ,
35 map<int , s t r i n g >& matches , map<int , int> r e f e r e e s , map<s t r i n g , int> teams ,
36 v e c t o r<v e c t o r<s t r i n g >> i n c o m p a t i b i l i t i e s) ;
37

38 // D e s t r u c t o r
39 ˜ H e u r i s t i c F u n c t i o n () ;
40

41 /∗ Given a s t a t e , r e t u r n s t he number o f matches t h a t don ' t have e x a c t l y one
42 r e f e r e e m u l t i p l i e d by 100000 ∗/
43 i n t everymatchHasARefe ree (S t a t e s) ;
44

45 /∗ Given a s t a t e , r e t u r n s t he number o f t i m e s a r e f e r e e i s a s s i g n e d to more
46 than one match p e r round m u l t i p l i e d by 100000 ∗/
47 i n t atMostOneMatchPerRefereePerRound (S t a t e s) ;
48

49 /∗ Given a s t a t e , r e t u r n the number o f t i m e s i n c o m p a t i b i l i t i e s a r e not
50 r e s p e c t e d o r r e f e r e e s a r e a s s i g n e d to matches w i t h a l e v e l h i g h e r than
51 t h e i r s k i l l s , m u l t i p l i e d by 1000 ∗/

65

52 i n t Ski l lAndWork ingRoundsChecks (S t a t e s) ;
53

54 /∗ Given a s t a t e , r e t u r n s t he number o f c o n s t r a i n t s broken r e g a r d i n g
55 th e a s s i g n m e n t o f r e f e r e e s to matches such as b e i n g a s s i g n e d too soon
56 to a same stad ium or team , b e i n g a s s i g n e d to more c o n s e c u t i v e matches
57 than i t i s a l l o w e d and b e i n g a s s i g n e d to more o r l e s s matches than
58 a l l o w e d p e r i n t e r v a l o f rounds , m u l t i p l i e d by 1000 ∗/
59 i n t r e f e r e e C h e c k s (S t a t e s) ;
60

61 /∗ Given a s t a t e , r e t u r n the number o f p a i r s o f r e f e r e e s t h a t can be
62 made such t h a t one r e f e r e e has more matches a s s i g n e d than th e o t h e r ∗/
63 i n t d i f f e r e n c e N u m b e r O f M a t c h e s P e r R e f e r e e (S t a t e s) ;
64

65 /∗ Given a s t a t e , r e t u r n s t he sum o f t he a b s o l u t e d i f f e r e n c e o f
66 a s s i g n m e n t s f o r e v e r y c o u p l e o f r e f e r e e s to t he same teams ∗/
67 i n t t e a m D i s t r i b u t i o n V a r s (S t a t e s) ;
68

69 /∗ Given a s t a t e , r e t u r n s t he v a l u e o f th e h e u r i s t i c f u n c t i o n a p p l i e d
70 to i t ∗/
71 i n t e v a l u a t e C o s t (S t a t e s) ;
72

73 } ;
74

75 #e n d i f

Listing 11: HeuristicFunction.cc

1

2 #inc lude "HeuristicFunction.hh"

3

4 H e u r i s t i c F u n c t i o n : : H e u r i s t i c F u n c t i o n () {
5 th i s−>i n t e r v a l R o u n d s = 0 ;
6 th i s−>m i n M a t c h e s P e r I n t e r v a l = 0 ;
7 th i s−>m a x M a t c h e s P e r I n t e r v a l = 0 ;
8 th i s−>minNumRoundsBeforeRepeatingTeam = 0 ;
9 th i s−>minNumRoundsBeforeRepeatingStadium = 0 ;

10 th i s−>maxConsecut iveRounds = 0 ;
11 }
12

13 H e u r i s t i c F u n c t i o n : : H e u r i s t i c F u n c t i o n (i n t i n t e r v a l R o u n d s ,
14 i n t m i n M a t c h e s P e r I n t e r v a l , i n t m a x M a t c h e s P e r I n t e r v a l ,
15 i n t minNumRoundsBeforeRepeatingTeam ,
16 i n t minNumRoundsBeforeRepeatingStadium , i n t maxConsecut iveRounds ,
17 map<int , s t r i n g >& matches , map<int , int> r e f e r e e s , map<s t r i n g , int> teams ,
18 v e c t o r<v e c t o r<s t r i n g >> i n c o m p a t i b i l i t i e s) {
19 th i s−>i n t e r v a l R o u n d s = i n t e r v a l R o u n d s ;
20 th i s−>m i n M a t c h e s P e r I n t e r v a l = m i n M a t c h e s P e r I n t e r v a l ;
21 th i s−>m a x M a t c h e s P e r I n t e r v a l = m a x M a t c h e s P e r I n t e r v a l ;
22 th i s−>minNumRoundsBeforeRepeatingTeam = minNumRoundsBeforeRepeatingTeam ;
23 th i s−>minNumRoundsBeforeRepeatingStadium =
24 minNumRoundsBeforeRepeatingStadium ;
25 th i s−>maxConsecut iveRounds = maxConsecut iveRounds ;
26 th i s−>matches = matches ;

66

27 th i s−>r e f e r e e s = r e f e r e e s ;
28 th i s−>teams = teams ;
29 th i s−> i n c o m p a t i b i l i t i e s = i n c o m p a t i b i l i t i e s ;
30 }
31

32 H e u r i s t i c F u n c t i o n : : ˜ H e u r i s t i c F u n c t i o n () {}
33

34 i n t H e u r i s t i c F u n c t i o n : : everymatchHasAReferee (S t a t e s) {
35 i n t sum = 0 ;
36 i n t nR = s . g e t N R e f e r e e s () ;
37 i n t nM = s . getNMatches () ;
38 f o r (i n t match = 0 ; match < nM; ++match) {
39 i n t aux = 0 ;
40 f o r (i n t r e f e r e e = 0 ; r e f e r e e < nR ; ++r e f e r e e) {
41 i f (s . i s A s s i g n e d (r e f e r e e , match)) ++aux ;
42 }
43 i f (aux != 1) sum += aux ;
44 }
45 return sum∗1000000;
46 }
47

48 i n t H e u r i s t i c F u n c t i o n : : atMostOneMatchPerRefereePerRound (S t a t e s) {
49 i n t sum = 0 ;
50 i n t nR = s . g e t N R e f e r e e s () ;
51 i n t nM = s . getNMatches () ;
52 f o r (i n t r e f e r e e = 0 ; r e f e r e e < nR ; ++r e f e r e e) {
53 f o r (i n t round = 0 ; round < nM; round = round +10) {
54 i n t aux = 0 ;
55 f o r (i n t match = 0 ; match < 1 0 ; ++match) {
56 i f (s . i s A s s i g n e d (r e f e r e e , round+match)) ++aux ;
57 }
58 i f (aux != 1) sum += aux ;
59 }
60 }
61 return sum∗1000000;
62 }
63

64 i n t H e u r i s t i c F u n c t i o n : : Sk i l lAndWork ingRoundsChecks (S t a t e s) {
65 i n t sum = 0 ;
66 i n t nR = s . g e t N R e f e r e e s () ;
67 i n t nM = s . getNMatches () ;
68 i n t n = i n c o m p a t i b i l i t i e s . s i z e () ;
69 v e c t o r<s t r i n g > v ;
70 f o r (i n t match = 0 ; match < nM; ++match) {
71 // c h e c k s i n c o m p a t i b i l i t i e s
72 f o r (i n t i = 0 ; i < n ; ++i) {
73 v = i n c o m p a t i b i l i t i e s [i] ;
74 i n t r e f e r e e = s . getRefereeOfTheMatch (match) ;
75 i f (v [0] == "S" and t o s t r i n g (r e f e r e e) == v [1] and
76 matches [match] . s u b s t r (0 , 3) == v [2]) sum = sum + 30000;
77 e l s e i f (v [0] == "T" and t o s t r i n g (r e f e r e e) == v [1]
78 and (matches [match] . s u b s t r (0 , 3) == v [2] or

67

79 matches [match] . s u b s t r (4 , 3) == v [2])) sum = sum + 30000 ;
80 e l s e i f (v [0] == "R" and t o s t r i n g (r e f e r e e) == v [1]
81 and matches [match] . s u b s t r (8) == v [2]) sum = sum + 30000;
82 }
83 // r e f e r e e s k i l l l e v e l i s g r e a t e r than th e demanded by t he match
84 i n t r e f e r e e = s . getRefereeOfTheMatch (match) ;
85 i n t v a l L = th i s−>teams [matches [match] . s u b s t r (0 , 3)] ;
86 i n t va lV = th i s−>teams [matches [match] . s u b s t r (4 , 3)] ;
87 i n t va lR = th i s−>r e f e r e e s [r e f e r e e +1] ;
88 i f (v a l L + valV > va lR) sum += (v a l L + valV − va lR) ∗20000;
89 }
90 return sum ;
91 }
92

93 i n t H e u r i s t i c F u n c t i o n : : r e f e r e e C h e c k s (S t a t e s) {
94 i n t sum = 0 ;
95 i n t nR = s . g e t N R e f e r e e s () ;
96 i n t nM = s . getNMatches () ;
97 i n t nMR = nR / 2 ;
98 f o r (i n t r e f e r e e = 0 ; r e f e r e e < nR ; ++r e f e r e e) {
99 i n t c o n s e c u t i v e R o u n d s = 0 ;

100 i n t l a s t R o u n d = −1;
101 f o r (i n t match = 0 ; match < nM; ++match) {
102 i f (s . i s A s s i g n e d (r e f e r e e , match)) {
103 s t r i n g s t r = th i s−>matches [match] ;
104 s t r i n g l o c = s t r . s u b s t r (0 , 3) ;
105 s t r i n g v i s = s t r . s u b s t r (4 , 3) ;
106 // at l e a s t x rounds b e f o r e r e p e a t i n g team a s s i g n m e n t
107 i n t m1 = th i s−>minNumRoundsBeforeRepeatingTeam∗nMR;
108 i n t m2 = th i s−>minNumRoundsBeforeRepeatingStadium ∗nMR;
109 i n t m3 = th i s−>i n t e r v a l R o u n d s ∗nMR;
110 i n t m = m1 ;
111 i f (m2 > m1) m = m2 ;
112 i f (m3 > m) m = m3 ;
113 i n t aux = 0 ;
114 bool complete = f a l s e ;
115 i n t f i r s t M a t c h = (match − match % nMR) + nMR;
116 f o r (i n t e x t r a M a t c h e s = 0 ; (e x t r a M a t c h e s < m and
117 f i r s t M a t c h + e x t r a M a t c h e s < nM) ; ++e x t r a M a t c h e s) {
118 i f (s . i s A s s i g n e d (r e f e r e e , f i r s t M a t c h + e x t r a M a t c h e s)) {
119 s t r i n g s t r 2 = th i s−>matches [f i r s t M a t c h + e x t r a M a t c h e s] ;
120 s t r i n g l o c 2 = s t r 2 . s u b s t r (0 , 3) ;
121 s t r i n g v i s 2 = s t r 2 . s u b s t r (4 , 3) ;
122 // c h e c k s r e f e r e e i s n ' t r e p e a t i n g team too soon
123 i f (e x t r a M a t c h e s < m1 and (l o c == l o c 2 or l o c == v i s 2
124 or v i s == l o c 2 or v i s == v i s 2)) sum = sum + 10000;
125 // c h e c k s r e f e r e e i s n ' t r e p e a t i n g stad ium too soon
126 i f (e x t r a M a t c h e s < m2 and l o c == l o c 2) sum = sum +

↪→ 10000 ;
127 // c h e c k s r e f e r e e p l a y s th e r i g h t amount o f matches
128 // g i v e n an i n t e r v a l o f rounds
129 i f (e x t r a M a t c h e s < m3) ++aux ;

68

130 }
131 i f (f i r s t M a t c h + e x t r a M a t c h e s ==
132 (match/nMR + th i s−>i n t e r v a l R o u n d s) ∗nMR − 1)
133 complete = true ;
134 }
135 i f (comple te and aux < th i s−>m i n M a t c h e s P e r I n t e r v a l)
136 sum = sum + 30000;
137 i f (aux > th i s−>m a x M a t c h e s P e r I n t e r v a l) sum = sum + 30000;
138

139 // c h e c k s r e f e r e e i s not a s s i g n e d more c o n s e c u t i v e
140 // rounds than p o s s i b l e
141 i n t round ;
142 s t r i n g s t r 2 = th i s−>matches [match] ;
143 i f (match < 100) round = s t o i (s t r 2 . s u b s t r (8 , 1)) ;
144 e l s e round = s t o i (s t r 2 . s u b s t r (8 , 2)) ;
145 // i f no matches had been a s s i g n e d y e t
146 i f (l a s t R o u n d == −1) {
147 l a s t R o u n d = round ;
148 ++c o n s e c u t i v e R o u n d s ;
149 }
150 // c o n s e c u t i v e match
151 e l s e i f (l a s t R o u n d == round−1) ++c o n s e c u t i v e R o u n d s ;
152 e l s e { // t h e r e has been at l e a s t a r e s t i n g day
153 l a s t R o u n d = round ;
154 c o n s e c u t i v e R o u n d s = 1 ;
155 }
156 i f (c o n s e c u t i v e R o u n d s > th i s−>maxConsecut iveRounds)
157 sum = sum + 30000;
158 }
159 }
160 }
161 return sum ;
162 }
163

164 i n t H e u r i s t i c F u n c t i o n : : d i f f e r e n c e N u m b e r O f M a t c h e s P e r R e f e r e e (S t a t e s) {
165 i n t sum = 0 ;
166 i n t nR = s . g e t N R e f e r e e s () ;
167 i n t nM = s . getNMatches () ;
168 v e c t o r<int> numMatchesPerReferee = v e c t o r<int >(20) ;
169 f o r (i n t r e f e r e e = 0 ; r e f e r e e < nR ; ++r e f e r e e) {
170 i n t count = 0 ;
171 f o r (i n t match = 0 ; match < nM; ++match)
172 i f (s . i s A s s i g n e d (r e f e r e e , match)) ++count ;
173 numMatchesPerReferee [r e f e r e e] = count ;
174 }
175 f o r (i n t r e f e r e e 1 = 0 ; r e f e r e e 1 < nR ; ++r e f e r e e 1) {
176 f o r (i n t r e f e r e e 2 = r e f e r e e 1 + 1 ; r e f e r e e 2 < nR ; ++r e f e r e e 2) {
177 i f (numMatchesPerReferee [r e f e r e e 1]>numMatchesPerReferee [r e f e r e e 2]) {
178 sum += numMatchesPerReferee [r e f e r e e 1] ;
179 sum −= numMatchesPerReferee [r e f e r e e 2] ;
180 }
181 e l s e {

69

182 sum += numMatchesPerReferee [r e f e r e e 2] ;
183 sum −= numMatchesPerReferee [r e f e r e e 1] ;
184 }
185 }
186 }
187 return sum ;
188 }
189

190 i n t H e u r i s t i c F u n c t i o n : : t e a m D i s t r i b u t i o n V a r s (S t a t e s) {
191 i n t n = s . g e t N R e f e r e e s () ;
192 i n t sum = 0 ;
193 v e c t o r< v e c t o r<int> > v = v e c t o r< v e c t o r<int> > (n , v e c t o r<int> (n , 0)) ;
194 i n t r e f ;
195 f o r (i n t match = 0 ; match < s . getNMatches () ; ++match) {
196 r e f = s . getRefereeOfTheMatch (match) ;
197 s t r i n g s t r = th i s−>matches [match] ;
198 s t r i n g l o c = s t r . s u b s t r (0 , 3) ;
199 s t r i n g v i s = s t r . s u b s t r (4 , 3) ;
200 ++v [r e f] [teams [l o c]] ;
201 ++v [r e f] [teams [v i s]] ;
202 }
203 f o r (i n t r1 = 0 ; r1 < n ; ++r1) {
204 f o r (i n t r2 = r1 + 1 ; r 2 < n ; ++r2) {
205 f o r (i n t t = 0 ; t < n ; ++t) {
206 sum += abs (v [r1] [t] − v [r2] [t]) ;
207 }
208 }
209 }
210 return sum ;
211 }
212

213 i n t H e u r i s t i c F u n c t i o n : : e v a l u a t e C o s t (S t a t e s) {
214 i n t sum = 0 ;
215 //sum += everymatchHasARefe ree (s) + atMostOneMatchPerRefereePerRound (s) ;
216 sum += Ski l lAndWork ingRoundsChecks (s) ;
217 sum += r e f e r e e C h e c k s (s) ;
218 sum += d i f f e r e n c e N u m b e r O f M a t c h e s P e r R e f e r e e (s) ;
219 sum += t e a m D i s t r i b u t i o n V a r s (s) ;
220 return sum ;
221 }

70

Listing 12: Solver.hh

1 #i f n d e f SOLVER HH
2 #def ine SOLVER HH
3

4 #inc lude <i o s t r e a m>
5 #inc lude <a l g o r i t h m>
6 #inc lude <cmath>
7 #inc lude "HeuristicFunction.hh"

8 #inc lude "State.hh"

9 using namespace s t d ;
10

11 c l a s s S o l v e r {
12

13 p r i v a t e :
14

15 /∗ C o p i e s th e v a l u e s i n t he o r i g S t a t e to th e S t a t e d e s t ∗/
16 void c o p y S t a t e (S t a t e o r i g , S t a t e& d e s t) ;
17

18 /∗ A p p l i e s a random move to th e i n i t i a l S t a t e and s a v e s the s t a t e o b t a i n e d
19 i n th e n e x t S t a t e ∗/
20 void randomMove (S t a t e i n i t i a l S t a t e , S t a t e& n e x t S t a t e , i n t n R e f e r e e s ,
21 i n t nMatches) ;
22

23 p u b l i c :
24

25 // D e f a u l t c o n s t r u c t o r
26 S o l v e r () ;
27

28 // D e s t r u c t o r
29 ˜ S o l v e r () ;
30

31 /∗ Given the h e u r i s t i c f u n c t i o n , the number o f r e f e r e e s , th e number o f
32 matches and a maximum o f i t e r a t i o n s , g e n e r a t e s a random i n i t i a l s t a t e and
33 r e t u r n s p a i r c o n t a i n i n g t he r e s u l t i n g s t a t e from a p p l y i n g h i l l c l i m b i n g
34 and i t s c o s t ∗/
35 p a i r <State , int> h i l l C l i m b i n g (H e u r i s t i c F u n c t i o n ∗ hf , i n t n R e f e r e e s ,
36 i n t nMatches , i n t m a x I t e r a t i o n s) ;
37

38 /∗ Given the h e u r i s t i c f u n c t i o n , the number o f r e f e r e e s , th e number o f
39 matches and a maximum o f i t e r a t i o n s , g e n e r a t e s a random i n i t i a l s t a t e and
40 r e t u r n s p a i r c o n t a i n i n g t he r e s u l t i n g s t a t e from a p p l y i n g s i m u l a t e d
41 a n n e a l i n g and i t s c o s t ∗/
42 p a i r <State , int> s i m u l a t e d A n n e a l i n g (H e u r i s t i c F u n c t i o n ∗ hf , i n t n R e f e r e e s ,
43 i n t nMatches , i n t m a x I t e r a t i o n s) ;
44

45 } ;
46

47 #e n d i f

71

Listing 13: Solver.cc

1

2 #inc lude "Solver.hh"

3

4 S o l v e r : : S o l v e r () {}
5

6 S o l v e r : : ˜ S o l v e r () {}
7

8 void S o l v e r : : c o p y S t a t e (S t a t e o r i g , S t a t e& d e s t) {
9 f o r (i n t r e f e r e e = 0 ; r e f e r e e < d e s t . g e t N R e f e r e e s () ; ++r e f e r e e)

10 f o r (i n t match = 0 ; match < d e s t . getNMatches () ; ++match)
11 d e s t . s e t A s s i g n m e n t (r e f e r e e , match , o r i g . i s A s s i g n e d (r e f e r e e , match)) ;
12 }
13

14 void S o l v e r : : randomMove (S t a t e i n i t i a l S t a t e , S t a t e& n e x t S t a t e , i n t n R e f e r e e s ,
15 i n t nMatches) {
16 c o p y S t a t e (i n i t i a l S t a t e , n e x t S t a t e) ;
17 i n t randMove = rand () % 1 0 ;
18 i f (randMove < 6) { // c h a n g e R e f e r e e
19 // l o o k s f o r random match and random new r e f e r e e
20 i n t randMatch = rand () % nMatches ;
21 i n t o l d R e f e r e e = i n i t i a l S t a t e . getRefereeOfTheMatch (randMatch) ;
22 i n t newRefe ree = rand () % n R e f e r e e s ;
23 // c h e c k s th e r e f e r e e i s a v a i l a b l e t h i s round
24 i n t i = 1 ;
25 whi le (i < 1000 and (newRefe ree == o l d R e f e r e e or
26 i n i t i a l S t a t e . re fe reeHasMatchThisRound (newReferee , randMatch))) {
27 newRefe ree = rand () % n R e f e r e e s ;
28 ++i ;
29 }
30 n e x t S t a t e . s e t A s s i g n m e n t (o l d R e f e r e e , randMatch , f a l s e) ;
31 n e x t S t a t e . s e t A s s i g n m e n t (newReferee , randMatch , true) ;
32 }
33 e l s e { // swapMatches
34 // l o o k s f o r two random matches and t h e i r r e f e r e e s
35 i n t randMatch1 = rand () % nMatches ;
36 i n t r e f e r e e 1 = i n i t i a l S t a t e . getRefereeOfTheMatch (randMatch1) ;
37 i n t randMatch2 = rand () % nMatches ;
38 i n t r e f e r e e 2 = i n i t i a l S t a t e . getRefereeOfTheMatch (randMatch2) ;
39 // c h e c k s th e 2n match can be swaped w i t h t he f i r s t one
40 i n t j = 0 ;
41 whi le (j < 1000 and (randMatch1 == randMatch2 or r e f e r e e 1 == r e f e r e e 2
42 or i n i t i a l S t a t e . re fe reeHasMatchThisRound (r e f e r e e 1 , randMatch2)
43 or i n i t i a l S t a t e . re fe reeHasMatchThisRound (r e f e r e e 2 , randMatch1))) {
44 randMatch2 = rand () % nMatches ;
45 r e f e r e e 2 = i n i t i a l S t a t e . getRefereeOfTheMatch (randMatch2) ;
46 ++j ;
47 }
48 n e x t S t a t e . s e t A s s i g n m e n t (r e f e r e e 1 , randMatch1 , f a l s e) ;
49 n e x t S t a t e . s e t A s s i g n m e n t (r e f e r e e 2 , randMatch2 , f a l s e) ;
50 n e x t S t a t e . s e t A s s i g n m e n t (r e f e r e e 1 , randMatch2 , true) ;
51 n e x t S t a t e . s e t A s s i g n m e n t (r e f e r e e 2 , randMatch1 , true) ;

72

52 }
53 }
54

55 p a i r <State , int> S o l v e r : : h i l l C l i m b i n g (H e u r i s t i c F u n c t i o n ∗ hf , i n t n R e f e r e e s ,
56 i n t nMatches , i n t m a x I t e r a t i o n s) {
57

58 cout << e n d l << " ----- Applying Hill Climbing ----- " << e n d l << e n d l ;
59

60 // Best s t a t e so f a r p e r attempt
61 S t a t e s t a t e = S t a t e (n R e f e r e e s , nMatches) ;
62 s t a t e . g e n e r a t e I n i t i a l S t a t e () ;
63 // S t a t e g e n e r a t e d by t he movements
64 S t a t e n e x t S t a t e = S t a t e (n R e f e r e e s , nMatches) ;
65 // S t a t e k e e p i n g t he b e s t so f a r i n a l l t he a t t e m p t s
66 S t a t e b e s t S t a t e = S t a t e (n R e f e r e e s , nMatches) ;
67 c o p y S t a t e (s t a t e , b e s t S t a t e) ;
68 i n t c o s t = hf−>e v a l u a t e C o s t (s t a t e) ;
69 i n t b e s t C o s t = c o s t ;
70 cout << "Initial cost : " << c o s t << e n d l ;
71 f o r (i n t attempt = 0 ; attempt < 5 ; ++attempt) {
72 f o r (i n t i = 0 ; i < m a x I t e r a t i o n s ; ++i) {
73 bool found = f a l s e ;
74 i n t attemptedMoves = 0 ;
75 whi le (not found and attemptedMoves < 10000) {
76 randomMove (s t a t e , n e x t S t a t e , n R e f e r e e s , nMatches) ;
77 i n t n e x t C o s t = hf−>e v a l u a t e C o s t (n e x t S t a t e) ;
78 i f (n e x t C o s t < c o s t) {
79 c o p y S t a t e (n e x t S t a t e , s t a t e) ;
80 c o s t = n e x t C o s t ;
81 found = true ;
82 }
83 ++attemptedMoves ;
84 i f (c o s t == 0) return p a i r <State , int> (s t a t e , c o s t) ;
85 }
86 i f (c o s t < b e s t C o s t) {
87 b e s t C o s t = c o s t ;
88 c o p y S t a t e (s t a t e , b e s t S t a t e) ;
89 }
90 i f (not found) break ;
91 cout << "Iteration " << i << " => " << c o s t << e n d l ;
92 }
93 cout << e n d l << "----------- RANDOMIZING ----------" << e n d l << e n d l ;
94 f o r (i n t i = 0 ; i < 2 0 0 0 ; ++i)
95 randomMove (s t a t e , s t a t e , n R e f e r e e s , nMatches) ;
96 c o s t = hf−>e v a l u a t e C o s t (s t a t e) ;
97 }
98 return p a i r <State , int> (b e s t S t a t e , b e s t C o s t) ;
99 }

100

101

102

103 p a i r <State , int> S o l v e r : : s i m u l a t e d A n n e a l i n g (H e u r i s t i c F u n c t i o n ∗ hf ,

73

104 i n t n R e f e r e e s , i n t nMatches , i n t m a x I t e r a t i o n s) {
105

106 cout << e n d l << " ----- Applying Simulated Annealing -----" << e n d l ;
107 cout << e n d l ;
108

109 S t a t e s t a t e = S t a t e (n R e f e r e e s , nMatches) ;
110 s t a t e . g e n e r a t e I n i t i a l S t a t e () ;
111 S t a t e n e x t S t a t e = S t a t e (n R e f e r e e s , nMatches) ;
112 S t a t e b e s t S t a t e = S t a t e (n R e f e r e e s , nMatches) ;
113 c o p y S t a t e (s t a t e , b e s t S t a t e) ;
114 i n t c o s t = hf−>e v a l u a t e C o s t (s t a t e) ;
115 i n t b e s t C o s t = c o s t ;
116 cout << "Initial cost : " << b e s t C o s t << e n d l ;
117

118 bool c o l d = f a l s e ;
119 double T = 0 . 5 ;
120 double be ta = 0 . 9 9 ;
121

122 i n t maxNumReheats = 5 ;
123 i n t numReheats = 0 ;
124 whi le (numReheats < maxNumReheats) {
125 i n t numPhasesPerReheat = 1 5 0 ;
126 i n t numPhase = 0 ;
127 whi le (not c o l d and numPhase <= numPhasesPerReheat) {
128 i n t numMoveAttemptsPerPhase = 1 0 0 0 ;
129 i n t moveAttempts = 0 ;
130 i n t bestOfThePhase = 10 e8 ;
131 whi le (not c o l d and moveAttempts <= numMoveAttemptsPerPhase) {
132 ++moveAttempts ;
133 randomMove (s t a t e , n e x t S t a t e , n R e f e r e e s , nMatches) ;
134 i n t n e x t C o s t = hf−>e v a l u a t e C o s t (n e x t S t a t e) ;
135 i f (n e x t C o s t < c o s t) {
136 c o p y S t a t e (n e x t S t a t e , s t a t e) ;
137 c o s t = n e x t C o s t ;
138 i f (c o s t < b e s t C o s t) {
139 c o p y S t a t e (s t a t e , b e s t S t a t e) ;
140 b e s t C o s t = c o s t ;
141 cout << " Better cost found at the " ;
142 cout << moveAttempts << "th attempt with cost " ;
143 cout << b e s t C o s t << e n d l ;
144 i f (b e s t C o s t == 0)
145 return p a i r <State , int> (b e s t S t a t e , b e s t C o s t) ;
146 }
147 }
148 e l s e {
149 i n t d i f C o s t = n e x t C o s t − b e s t C o s t ;
150 double r = ((double) rand ()) / RAND MAX;
151 i n t aux = −((double) d i f C o s t) /T ;
152 i n t p = exp (aux) ;
153 i f (r < p) {
154 c o p y S t a t e (n e x t S t a t e , s t a t e) ;
155 c o s t = n e x t C o s t ;

74

156 }
157 }
158 i f (n e x t C o s t < bestOfThePhase)
159 bestOfThePhase = n e x t C o s t ;
160 i f (b e s t C o s t == 0)
161 return p a i r <State , int> (b e s t S t a t e , b e s t C o s t) ;
162 }
163 numPhase++;
164 T = T∗ be ta ;
165 cout << "Reheat " << numReheats << " and phase " << numPhase <<
166 " : " << b e s t C o s t << " - best of the phase : " <<
167 bestOfThePhase << e n d l ;
168 i f (exp (−1/T) < 10e−10) {
169 cout << "Ice cold, annealing terminated." << e n d l ;
170 cout << e n d l << e n d l ;
171 c o l d = true ;
172 }
173 }
174 cout << e n d l << "----------- REHEATING ----------" << e n d l << e n d l ;
175 f o r (i n t i = 0 ; i < 2 0 0 0 ; ++i)
176 randomMove (s t a t e , s t a t e , n R e f e r e e s , nMatches) ;
177 numReheats++;
178 c o s t = hf−>e v a l u a t e C o s t (s t a t e) ;
179 T = 0 . 5 ;
180 c o l d = f a l s e ;
181 }
182 return p a i r <State , int> (b e s t S t a t e , b e s t C o s t) ;
183 }

75

Listing 14: Writer.hh

1 #i f n d e f WRITER HH
2 #def ine WRITER HH
3

4 #inc lude <i o s t r e a m>
5 #inc lude <f s t r e a m>
6 #inc lude <map>
7 #inc lude <s t r i n g >
8 #inc lude <v e c t o r>
9 #inc lude <cmath>

10 #inc lude "State.hh"

11 using namespace s t d ;
12

13 c l a s s W r i t e r {
14

15 protected :
16

17 map<int , s t r i n g > l i s t O f M a t c h e s ; // map w i t h data from t he matches
18 map<s t r i n g , int> l i s t O f T e a m s ; // map w i t h data from th e teams
19 map<int , int> l i s t O f R e f e r e e s ; // map w i t h data from th e r e f e r e e s
20

21 p u b l i c :
22

23 // D e f a u l t c o n s t r u c t o r
24 W r i t e r () ;
25

26 // C o n s t r u c t o r w i t h t he data
27 W r i t e r (map<int , s t r i n g >& l i s t O f M a t c h e s ,
28 map<s t r i n g , int>& l i s tO fT eam s ,
29 map<int , int>& l i s t O f R e f e r e e s) ;
30

31 // D e s t r u c t o r
32 ˜ W r i t e r () ;
33

34 /∗ Given a s t a t e , i t s c o s t and a s t r i n g i d e n t i f y i n g th e a l g o r i t h m t h a t
35 has been used , w r i t e s t he a s s i g n m e n t o f r e f e r e e s r e p r e s e n t e d by t he s t a t e
36 i n a f i l e ∗/
37 void w r i t e S o l u t i o n (S t a t e s t a t e , i n t cos t , s t r i n g a l g) ;
38

39 } ;
40

41 #e n d i f

Listing 15: Writer.cc

1

2 #inc lude "Writer.hh"

3

4 W r i t e r : : W r i t e r () {}
5

6 W r i t e r : : W r i t e r (map<int , s t r i n g >& l i s t O f M a t c h e s , map<s t r i n g , int>& l i s tO fT eam s ,
7 map<int , int>& l i s t O f R e f e r e e s) {

76

8 th i s−>l i s t O f M a t c h e s = l i s t O f M a t c h e s ;
9 th i s−>l i s t O f T e a m s = l i s t O f T e a m s ;

10 th i s−> l i s t O f R e f e r e e s = l i s t O f R e f e r e e s ;
11 }
12

13 W r i t e r : : ˜ W r i t e r () {}
14

15 void W r i t e r : : w r i t e S o l u t i o n (S t a t e s t a t e , i n t cos t , s t r i n g a l g) {
16 o f s t r e a m o u t F i l e ;
17 i f (a l g == "HC") {
18 o u t F i l e . open ("solutionHC.txt") ;
19 o u t F i l e << e n d l ;
20 o u t F i l e << "Cost of the solution found with Hill Climbing: " ;
21 o u t F i l e << c o s t << e n d l << e n d l ;
22 }
23 e l s e {
24 o u t F i l e . open ("solutionSA.txt") ;
25 o u t F i l e << e n d l ;
26 o u t F i l e << "Cost of the solution found with Simulated Annealing: " ;
27 o u t F i l e << c o s t << e n d l << e n d l ;
28 }
29 i n t nR = s t a t e . g e t N R e f e r e e s () ;
30 i n t nM = s t a t e . getNMatches () ;
31 i n t nRounds = (nR − 1) ∗ 2 ;
32 s t r i n g s t r , l o c , v i s ;
33 f o r (i n t round = 0 ; round < nRounds ; ++round) {
34 o u t F i l e << "Round " << round << " : " << e n d l ;
35 f o r (i n t matchIndex = 0 ; matchIndex < (nR/2) ; ++matchIndex) {
36 i n t match = round ∗(nR/2) + matchIndex ;
37 i n t r e f = s t a t e . getRefereeOfTheMatch (match) ;
38 s t r = l i s t O f M a t c h e s [match] ;
39 l o c = s t r . s u b s t r (0 , 3) ;
40 v i s = s t r . s u b s t r (4 , 3) ;
41 o u t F i l e << " " << l o c << " - " << v i s << " => referee " ;
42 o u t F i l e << r e f +1 << e n d l ;
43 }
44 }
45 cout << e n d l << e n d l ;
46 }

77

Listing 16: main.cc

1 #inc lude <i o s t r e a m>
2 #inc lude <map>
3 #inc lude <s t r i n g >
4 #inc lude <v e c t o r>
5 #inc lude <f s t r e a m>
6 #inc lude <cmath>
7 #inc lude "State.hh"

8 #inc lude "HeuristicFunction.hh"

9 #inc lude "Reader.hh"

10 #inc lude "Writer.hh"

11 #inc lude "Solver.hh"

12 using namespace s t d ;
13

14

15 i n t main (i n t argc , char ∗ a r g v []) {
16

17 /∗ Checks t he c a l l i s made w i t h t he p a r a m e t e r s needed ∗/
18 i f (a r g c != 3) {
19 cout << "ERROR: The call should be \"./main.exe" ;
20 cout << " calendarFile dataFile\"" << e n d l ;
21 e x i t (1) ;
22 }
23

24 // i n i t a l i t a t e s t he s t r u c t u r e s needed to c o n t a i n t he data f o r th e problem
25 map<int , s t r i n g > l i s t O f M a t c h e s ;
26 map<s t r i n g , int> l i s t O f T e a m s ;
27 map<int , int> l i s t O f R e f e r e e s ;
28 v e c t o r<v e c t o r<s t r i n g >> l i s t O f I n c o m p a t i b i l i t i e s ;
29

30 // Reads th e data from t he f i l e s and i n s e r t s i t i n t o t he v a r i a b l e s
31 Reader r (a r g v [1] , a r g v [2]) ;
32 v e c t o r<int> v = r . r e a d (l i s t O f M a t c h e s , l i s tO fTe am s ,
33 l i s t O f R e f e r e e s , l i s t O f I n c o m p a t i b i l i t i e s) ;
34 i n t n R e f e r e e s = v [0] ;
35 i n t nMatches = v [1] ;
36 i n t i n t e r v a l R o u n d s = v [2] ;
37 i n t m i n M a t c h e s P e r I n t e r v a l = v [3] ;
38 i n t m a x M a t c h e s P e r I n t e r v a l = v [4] ;
39 i n t minNumRoundsBeforeRepeatingTeam = v [5] ;
40 i n t minNumRoundsBeforeRepeatingStadium = v [6] ;
41 i n t maxConsecut iveRounds = v [7] ;
42

43 // G e n e r a t e s an i n s t a n c e o f th e s o l v e r and t he h e u r i s t i c f u n c t i o n
44 S o l v e r s = S o l v e r () ;
45 i n t m a x I t e r a t i o n s = 10 e4 ;
46 H e u r i s t i c F u n c t i o n ∗ h f = new H e u r i s t i c F u n c t i o n (i n t e r v a l R o u n d s ,
47 m i n M a t c h e s P e r I n t e r v a l , m a x M a t c h e s P e r I n t e r v a l ,
48 minNumRoundsBeforeRepeatingTeam ,
49 minNumRoundsBeforeRepeatingStadium ,
50 maxConsecut iveRounds , l i s t O f M a t c h e s , l i s t O f R e f e r e e s ,
51 l i s t Of Te am s , l i s t O f I n c o m p a t i b i l i t i e s) ;

78

52

53 /∗ G e n e r a t e s a w r i t e r , a p p l i e s H i l l C l imbing , c a l c u l a t e s t he t ime needed
54 to f i n d the b e s t s o l u t i o n and w r i t e s th e s o l u t i o n to s o l u t i o n H C . t x t ∗/
55 W r i t e r w(l i s t O f M a t c h e s , l i s tO fTe am s , l i s t O f R e f e r e e s) ;
56 const c l o c k t beginTimeHC = c l o c k () ;
57 p a i r <State , int> pHC = s . h i l l C l i m b i n g (hf , n R e f e r e e s ,
58 nMatches , m a x I t e r a t i o n s) ;
59 f l o a t t imeDi f fHC = f l o a t (c l o c k () − beginTimeHC) ;
60 t imeDi f fHC /= CLOCKS PER SEC ;
61 w . w r i t e S o l u t i o n (pHC . f i r s t , pHC . second , "HC") ;
62

63 /∗ A p p l i e s S i m u l a t e d Annea l ing , c a l c u l a t e s th e t ime needed to f i n d th e
64 b e s t s o l u t i o n and w r i t e s th e s o l u t i o n to s o l u t i o n S A . t x t ∗/
65 const c l o c k t beginTimeSA = c l o c k () ;
66 p a i r <State , int> pSA = s . s i m u l a t e d A n n e a l i n g (hf , n R e f e r e e s ,
67 nMatches , m a x I t e r a t i o n s) ;
68 f l o a t t i m e D i f f S A = f l o a t (c l o c k () − beginTimeSA) ;
69 t i m e D i f f S A /= CLOCKS PER SEC ;
70 w . w r i t e S o l u t i o n (pSA . f i r s t , pSA . second , "SA") ;
71

72 // P r i n t s t he c o s t and t ime f o r t he H i l l C l i m b i n g
73 cout << e n d l ;
74 cout << "Hill Climbing results " << e n d l ;
75 cout << " * Best cost found : " << pHC . second << e n d l ;
76 cout << " * Time : " << t imeDi f fHC << " seconds" << e n d l ;
77 cout << e n d l ;
78

79 // P r i n t s t he c o s t and t ime f o r t he S i m u l a t e d A n n e a l i n g
80 cout << e n d l ;
81 cout << "Simulated Annealing results" << e n d l ;
82 cout << " * Best cost found : " << pSA . second << e n d l ;
83 cout << " * Time : " << t i m e D i f f S A << " seconds" << e n d l ;
84 cout << e n d l ;
85

86 }

79

Listing 17: Makefile

1

2 main . exe : main . o S t a t e . o S o l v e r . o W r i t e r . o Reader . o H e u r i s t i c F u n c t i o n . o
3 g++ −o main . exe main . o S t a t e . o S o l v e r . o W r i t e r . o Reader . o H e u r i s t i c F u n c t i o n .

↪→ o
4

5 H e u r i s t i c F u n c t i o n . o : H e u r i s t i c F u n c t i o n . cc H e u r i s t i c F u n c t i o n . hh
6 g++ −c H e u r i s t i c F u n c t i o n . cc
7

8 Reader . o : Reader . cc Reader . hh
9 g++ −c Reader . cc

10

11 W r i t e r . o : W r i t e r . cc W r i t e r . hh
12 g++ −c W r i t e r . cc
13

14 S o l v e r . o : S o l v e r . cc S o l v e r . hh
15 g++ −c S o l v e r . cc
16

17 S t a t e . o : S t a t e . cc S t a t e . hh
18 g++ −c S t a t e . cc
19

20 main . o : main . cc
21 g++ −c main . cc
22 c l e a n :
23 rm ∗ . o ∗ . exe

80

Listing 18: Solution obtained with Hill Climbing

1

2 Cost o f t he s o l u t i o n found w i t h H i l l C l i m b i n g : 32
3

4 Round 0 :
5 t e 1 − t e 2 => r e f e r e e 6
6 t e 3 − t e 4 => r e f e r e e 3
7 t e 5 − t e 6 => r e f e r e e 1
8 Round 1 :
9 t e 3 − t e 1 => r e f e r e e 2

10 t e 2 − t e 5 => r e f e r e e 4
11 t e 4 − t e 6 => r e f e r e e 6
12 Round 2 :
13 t e 1 − t e 4 => r e f e r e e 6
14 t e 5 − t e 3 => r e f e r e e 5
15 t e 6 − t e 2 => r e f e r e e 2
16 Round 3 :
17 t e 5 − t e 1 => r e f e r e e 3
18 t e 4 − t e 2 => r e f e r e e 5
19 t e 3 − t e 6 => r e f e r e e 1
20 Round 4 :
21 t e 1 − t e 6 => r e f e r e e 5
22 t e 2 − t e 3 => r e f e r e e 1
23 t e 4 − t e 5 => r e f e r e e 3
24 Round 5 :
25 t e 2 − t e 1 => r e f e r e e 5
26 t e 4 − t e 3 => r e f e r e e 4
27 t e 6 − t e 5 => r e f e r e e 2
28 Round 6 :
29 t e 1 − t e 3 => r e f e r e e 2
30 t e 5 − t e 2 => r e f e r e e 3
31 t e 6 − t e 4 => r e f e r e e 4
32 Round 7 :
33 t e 1 − t e 4 => r e f e r e e 1
34 t e 3 − t e 5 => r e f e r e e 6
35 t e 2 − t e 6 => r e f e r e e 5
36 Round 8 :
37 t e 1 − t e 5 => r e f e r e e 2
38 t e 2 − t e 4 => r e f e r e e 4
39 t e 6 − t e 3 => r e f e r e e 3
40 Round 9 :
41 t e 6 − t e 1 => r e f e r e e 4
42 t e 3 − t e 2 => r e f e r e e 6
43 t e 5 − t e 4 => r e f e r e e 1

81

Listing 19: Solution obtained with Simulated Annealing

1

2 Cost o f t he s o l u t i o n found w i t h S i m u l a t e d A n n e a l i n g : 32
3

4 Round 0 :
5 t e 1 − t e 2 => r e f e r e e 4
6 t e 3 − t e 4 => r e f e r e e 6
7 t e 5 − t e 6 => r e f e r e e 3
8 Round 1 :
9 t e 3 − t e 1 => r e f e r e e 5

10 t e 2 − t e 5 => r e f e r e e 1
11 t e 4 − t e 6 => r e f e r e e 3
12 Round 2 :
13 t e 1 − t e 4 => r e f e r e e 2
14 t e 5 − t e 3 => r e f e r e e 4
15 t e 6 − t e 2 => r e f e r e e 6
16 Round 3 :
17 t e 5 − t e 1 => r e f e r e e 1
18 t e 4 − t e 2 => r e f e r e e 5
19 t e 3 − t e 6 => r e f e r e e 2
20 Round 4 :
21 t e 1 − t e 6 => r e f e r e e 4
22 t e 2 − t e 3 => r e f e r e e 2
23 t e 4 − t e 5 => r e f e r e e 6
24 Round 5 :
25 t e 2 − t e 1 => r e f e r e e 4
26 t e 4 − t e 3 => r e f e r e e 1
27 t e 6 − t e 5 => r e f e r e e 5
28 Round 6 :
29 t e 1 − t e 3 => r e f e r e e 3
30 t e 5 − t e 2 => r e f e r e e 2
31 t e 6 − t e 4 => r e f e r e e 6
32 Round 7 :
33 t e 1 − t e 4 => r e f e r e e 1
34 t e 3 − t e 5 => r e f e r e e 5
35 t e 2 − t e 6 => r e f e r e e 4
36 Round 8 :
37 t e 1 − t e 5 => r e f e r e e 5
38 t e 2 − t e 4 => r e f e r e e 3
39 t e 6 − t e 3 => r e f e r e e 1
40 Round 9 :
41 t e 6 − t e 1 => r e f e r e e 2
42 t e 3 − t e 2 => r e f e r e e 3
43 t e 5 − t e 4 => r e f e r e e 6

82

B. ILP Code for the Basic Problem

In this section of the appendix is found the Prolog code used to generate the constraints needed to solve
the basic version of the problem. To execute properly this program other files are needed, so we also include
the file xml2simple.pl and the Makefile, that facilitate the use of the program.

The Prolog code is found in Listing 20. The lines up until the 10th are used to define the computation
time and read the data from the files, which in this case are the file data1819.pl and the file calendar1819.pl.
The predicate defined between the lines from the 23rd to the 39th calls the predicates that generates the
constraints that define the problem, which are defined in the lines below. The objective function is defined
in the lines between the 140th and the 146th, the variables are defined as boolean in the lines between
the 152 and the 160 and are imposed to have values between 0 and 1 in the lines from the 162nd to the
170th. The lines from the 181th to the 218th are used to display in a readable way the solution and the
lines from the 222nd until the end are the main code of the program, that makes all the needed calls and
calls the solver, which in this case is CPLEX.

While executing the program several files are created, the first one being c .lp, that is the file where
the constraints are written. Once all the constraints are written, the program writes the file fileForCplex ,
which contains the information that must be passed to the solver such the name of the file where the
constraints are written, the maximum computation time or time limit and the name of the file where to
write the solution. When the solver is called the file cplex .log keeps the prints made by the solver, sol .pl
contains the solution of the problem with the value given to each of the variables and sol .txt contains the
solution printed in more readable way.

The other files needed for the execution can be found in the Listings 21 and 22. With these files and
having installed Swipl and CPLEX, to execute the code from a Ubuntu terminal the only things that need
to be done is to call the Makefile and then execute the executable file that will be generated and will be
called rap.

Listing 20: rap.pl - Prolog code to solve the basic problem

1

2 % ============================== INPUT DATA ==================================
3

4 i d e n t i f i e r ('Referee Assignment Problem: basic version') .
5

6 maxComputationTime (1 0 0) .
7

8 :− i n c l u d e (data1819) .
9

10 :− i n c l u d e (c a l e n d a r 1 8 1 9) .
11

12 % =========================== NO MORE INPUT DATA =============================
13

14 s y m b o l i c O u t p u t (0) .
15

16 %% V a r i a b l e s :
17 % a s s i g n (Ref , S , T, R) to a s s i g n to a match (s , t , r) t he r e f e r e e r e f e r e e

83

18 % workingRound (Ref , R) i f th e r e f e r e e Ref has a match a s s i g n e d i n round r
19 %% D e f i n i t i o n s :
20 round (R) :− numRounds (N) , between (1 ,N, R) .
21 r e f (R) :− r e f e r e e (R ,) .
22

23 w r i t e C o n s t r a i n t s :−
24 everyMatchHasAReferee ,
25 atMostOneMatchPerRefereePerRound ,
26 r e f e r e e M i n i m u m S k i l l L e v e l P e r M a t c h ,
27 def ineWorkingRound ,
28 a t L e a s t M i n M a t c h e s P e r I n t e r v a l O f R o u n d s ,
29 atMostMaxMatchesPer Interva lOfRounds ,
30 atLeastMinRoundsRepeat ingTeam ,
31 atLeastMinRoundsRepeat ingStad ium ,
32 i n c o m p a t i b i l i t y R e f e r e e R o u n d ,
33 i n c o m p a t i b i l i t y R e f e r e e T e a m ,
34 i n c o m p a t i b i l i t y R e f e r e e S t a d i u m ,
35 maxConsecut iveRoundsPerRefe ree ,
36 maxDif ferenceWorkedRounds ,
37 d i f f e r e n c e V a r s ,
38 t e a m D i s t r i b u t i o n V a r s ,
39 ! .
40

41

42 everyMatchHasAReferee :−
43 match (S , T, R) , f i n d a l l (a s s i g n (Ref , S , T, R) , r e f e r e e (Ref ,) , Sum) ,
44 w r i t e C o n s t r a i n t (Sum = 1) , f a i l .
45 everyMatchHasAReferee .
46

47 atMostOneMatchPerRefereePerRound :−
48 r e f (Ref) , round (R) , f i n d a l l (a s s i g n (Ref , S , T, R) , match (S , T, R) ,Sum) ,
49 w r i t e C o n s t r a i n t (Sum =< 1) , f a i l .
50 atMostOneMatchPerRefereePerRound .
51

52 r e f e r e e M i n i m u m S k i l l L e v e l P e r M a t c h :−
53 r e f e r e e (Ref , L) , match (S , T, R) , team (S , LS) , team (T, LT) , L < LS + LT ,
54 w r i t e C l a u s e ([− a s s i g n (Ref , S , T, R)] , []) , f a i l .
55 r e f e r e e M i n i m u m S k i l l L e v e l P e r M a t c h .
56

57 def ineWork ingRound :−
58 r e f (Ref) , round (R) , f i n d a l l (a s s i g n (Ref , S , T, R) , match (S , T, R) , L i t s) ,
59 e x p r e s s O r (workingRound (Ref , R) , L i t s) , f a i l .
60 def ineWork ingRound .
61

62 a t L e a s t M i n M a t c h e s P e r I n t e r v a l O f R o u n d s :−
63 i n t e r v a l R o u n d s (N) , m i n M a t c h e s P e r I n t e r v a l (Min) ,
64 r e f (Ref) , round (R1) , R2 i s R1+N−1, round (R2) ,
65 f i n d a l l (workingRound (Ref , R) , between (R1 , R2 , R) , Sum) ,
66 w r i t e C o n s t r a i n t (Sum >= Min) , f a i l .
67 a t L e a s t M i n M a t c h e s P e r I n t e r v a l O f R o u n d s .
68

69

84

70 atMostMaxMatchesPer Interva lOfRounds :−
71 i n t e r v a l R o u n d s (N) , m a x M a t c h e s P e r I n t e r v a l (Max) ,
72 r e f (Ref) , round (R1) , R2 i s R1+N−1, round (R2) ,
73 f i n d a l l (workingRound (Ref , R) , between (R1 , R2 , R) , Sum) ,
74 w r i t e C o n s t r a i n t (Sum =< Max) , f a i l .
75 atMostMaxMatchesPer Interva lOfRounds .
76

77

78 atLeastMinRoundsRepeat ingTeam :−
79 minNumRoundsBeforeRepeatingTeam (MinR) ,
80 r e f (Ref) , match (S1 , T1 , R1) , match (S2 , T2 , R2) , R2 > R1 ,
81 MinR >= R2−R1 , s o r t ([S1 , T1 , S2 , T2] , L) , L\=[, , ,] ,
82 w r i t e C l a u s e ([− a s s i g n (Ref , S1 , T1 , R1) ,− a s s i g n (Ref , S2 , T2 , R2)] , []) , f a i l .
83 atLeastMinRoundsRepeat ingTeam .
84

85

86 atLeastMinRoundsRepeat ingStad ium :−
87 minNumRoundsBeforeRepeatingStadium (MinR) ,
88 r e f (Ref) , match (S , T1 , R1) , match (S , T2 , R2) , R2 > R1 , MinR >= R2−R1 ,
89 w r i t e C l a u s e ([− a s s i g n (Ref , S , T1 , R1) ,− a s s i g n (Ref , S , T2 , R2)] , []) , f a i l .
90 atLeastMinRoundsRepeat ingStad ium .
91

92

93 i n c o m p a t i b i l i t y R e f e r e e R o u n d :−
94 r e f (Ref) , incRefRound (Ref , R) , w r i t e C l a u s e ([−workingRound (Ref , R)] , []) , f a i l .
95 i n c o m p a t i b i l i t y R e f e r e e R o u n d .
96

97 i n c o m p a t i b i l i t y R e f e r e e T e a m :−
98 r e f (Ref) , incRefTeam (Ref , T) , match (T, S , R) ,
99 w r i t e C l a u s e ([− a s s i g n (Ref , T, S , R)] , []) , f a i l .

100 i n c o m p a t i b i l i t y R e f e r e e T e a m :−
101 r e f (Ref) , incRefTeam (Ref , T) , match (S , T, R) ,
102 w r i t e C l a u s e ([− a s s i g n (Ref , S , T, R)] , []) , f a i l .
103 i n c o m p a t i b i l i t y R e f e r e e T e a m .
104

105 i n c o m p a t i b i l i t y R e f e r e e S t a d i u m :−
106 r e f (Ref) , i n c R e f S t a d (Ref , S) , match (S , T, R) ,
107 w r i t e C l a u s e ([− a s s i g n (Ref , S , T, R)] , []) , f a i l .
108 i n c o m p a t i b i l i t y R e f e r e e S t a d i u m .
109

110 m a x C o n s e c u t i v e R o u n d s P e r R e f e r e e :−
111 maxConsecut iveRounds (MaxR) , r e f (Ref) , round (R1) , R2 i s R1+MaxR ,
112 round (R2) , f i n d a l l (−workingRound (Ref , R) , between (R1 , R2 , R) , L i t s) ,
113 w r i t e C l a u s e (L i t s , []) , f a i l .
114 m a x C o n s e c u t i v e R o u n d s P e r R e f e r e e .
115

116 maxDif ferenceWorkedRounds :−
117 r e f (Ref1) , r e f (Ref2) , Ref1 \= Ref2 ,
118 f i n d a l l (workingRound (Ref1 , R) , round (R) , Sum1) ,
119 f i n d a l l (−1∗workingRound (Ref2 , R) , round (R) , Sum2) ,
120 append (Sum1 , Sum2 , Sum) , w r i t e C o n s t r a i n t (Sum =< 2) , f a i l .
121 maxDif ferenceWorkedRounds .

85

122

123 d i f f e r e n c e V a r s :−
124 r e f (Ref1) , r e f (Ref2) , Ref1 \= Ref2 ,
125 f i n d a l l (workingRound (Ref1 , R) , round (R) , Sum1) ,
126 f i n d a l l (−1∗workingRound (Ref2 , R) , round (R) , Sum2) , append (Sum1 , Sum2 , Sum) ,
127 w r i t e C o n s t r a i n t ([−1000 ∗ dVar (Ref1 , Ref2) |Sum] =< 0) , f a i l .
128 d i f f e r e n c e V a r s .
129

130 t e a m D i s t r i b u t i o n V a r s :−
131 r e f (Ref1) , r e f (Ref2) , Ref1 \= Ref2 , team (S ,) ,
132 f i n d a l l (a s s i g n (Ref1 , S , T, R) , match (S , T, R) , Sum11) ,
133 f i n d a l l (a s s i g n (Ref1 , T, S , R) , match (T, S , R) , Sum12) ,
134 f i n d a l l (−1∗ a s s i g n (Ref2 , S , T, R) , match (S , T, R) , Sum21) ,
135 f i n d a l l (−1∗ a s s i g n (Ref2 , T, S , R) , match (T, S , R) , Sum22) ,
136 append (Sum11 , Sum12 , Sum1) , append (Sum21 , Sum22 , Sum2) , append (Sum1 , Sum2 , Sum) ,
137 w r i t e C o n s t r a i n t ([−1000 ∗ tVar (Ref1 , Ref2 , S) |Sum] =< 0) , f a i l .
138 t e a m D i s t r i b u t i o n V a r s .
139

140 w r i t e O b j e c t i v e F u n c t i o n :−
141 write ('obj: ') , r e f (Ref1) , r e f (Ref2) , Ref1 \= Ref2 , write (' + ') ,
142 write (dVar (Ref1 , Ref2)) , f a i l .
143 w r i t e O b j e c t i v e F u n c t i o n :−
144 r e f (Ref1) , r e f (Ref2) , team (S ,) , Ref1 \= Ref2 , write (' + ') ,
145 write (tVar (Ref1 , Ref2 , S)) , f a i l .
146 w r i t e O b j e c t i v e F u n c t i o n :− n l .
147

148 w r i t e C o s t (M) :− a s s e r t z (c o s t (M)) , writeMon (M) , nl , ! .
149

150 w r i t e I n t e g e r V a r s .
151

152 w r i t e B o o l e a n V a r s :− r e f (Ref) , match (S , T, R) ,
153 write (a s s i g n (Ref , S , T, R)) , nl , f a i l .
154 w r i t e B o o l e a n V a r s :− r e f (Ref) , round (R) ,
155 write (workingRound (Ref , R)) , nl , f a i l .
156 w r i t e B o o l e a n V a r s :− r e f (Ref1) , r e f (Ref2) , Ref1 \= Ref2 ,
157 write (dVar (Ref1 , Ref2)) , nl , f a i l .
158 w r i t e B o o l e a n V a r s :− r e f (Ref1) , r e f (Ref2) , Ref1 \= Ref2 , team (S ,) ,
159 write (tVar (Ref1 , Ref2 , S)) , nl , f a i l .
160 w r i t e B o o l e a n V a r s .
161

162 wr i teBo unds :− r e f (Ref) , match (S , T, R) ,
163 write ('0 <= ') , write (a s s i g n (Ref , S , T, R)) , write (' <= 1') , nl , f a i l .
164 wr i teBo unds :− r e f (Ref) , round (R) , write ('0 <= ') ,
165 write (workingRound (Ref , R)) , write (' <= 1') , nl , f a i l .
166 wr i teBo unds :− r e f (Ref1) , r e f (Ref2) , Ref1 \= Ref2 ,
167 write ('0 <= ') , write (dVar (Ref1 , Ref2)) , write (' <= 1') , nl , f a i l .
168 wr i teBo unds :− r e f (Ref1) , r e f (Ref2) , Ref1 \= Ref2 , team (S ,) ,
169 write ('0 <= ') , write (tVar (Ref1 , Ref2 , S)) , write (' <= 1') , nl , f a i l .
170 wr i teBo unds .
171

172 wl ([]) .
173 wl ([X | L]) :− write (X) , write (' ') , wl (L) , ! .

86

174

175

176 e x p r e s s O r (Var , L i t s) :− member (L i t , L i t s) , w r i t e C l a u s e ([−L i t] , [Var]) , f a i l .
177 e x p r e s s O r (Var , L i t s) :− w r i t e C l a u s e ([−Var] , L i t s) , ! .
178

179 % ============ D i s p l a y S o l =============
180

181 d i s p l a y S o l () :− r e t r a c t a l l (s o l (,)) , f a i l .
182 d i s p l a y S o l (M) :− member (X=V,M) , a s s e r t z (s o l (X, V)) , f a i l .
183

184 d i s p l a y S o l () :−
185 round (R) , nl , write ('Round ') , write (R) , write (': ') , team (S ,) ,
186 team (T,) , match (S , T, R) , s o l (a s s i g n (Ref , S , T, R) , 1) , write (' ') ,
187 w r i t e A s s i g n m e n t (Ref , S , T) , f a i l .
188 d i s p l a y S o l () :− nl , nl , write ('====================================') , nl , f a i l .
189

190 d i s p l a y S o l () :− nl , nl , write ('Referees : 1 2 3 4 5 6 7 8 9 10 11 ') ,
191 write ('12 13 14 15 16 17 18 19 20') , nl , f a i l .
192 d i s p l a y S o l () :− round (R) , nl , write ('Round ') , w r i t e A S p a c e I f L e s s 1 0 (R) ,
193 write (R) , write (': ') , r e f (Ref) , write (' ') , s o l (workingRound (Ref , R) , S) ,
194 write (S) , f a i l .
195 d i s p l a y S o l () :− nl , write ('Total: ') , r e f (Ref) ,
196 f i n d a l l (R , s o l (workingRound (Ref , R) , 1) , L) , length (L ,N) , write (N) ,
197 write (' ') , f a i l .
198 d i s p l a y S o l () :− nl , nl , write ('====================================') , nl , f a i l .
199

200 d i s p l a y S o l () :− nl , nl , write ('Referees : 1 2 3 4 5 6 7 8 9 10 11 ') ,
201 write ('12 13 14 15 16 17 18 19 20') , nl , f a i l .
202 d i s p l a y S o l () :−
203 team (S ,) , nl , write ('Team ') , write (S) , write (' : ') , r e f (Ref) ,
204 f i n d a l l (R , (match (S , T, R) , s o l (a s s i g n (Ref , S , T, R) , 1)) ,Sum1) ,
205 f i n d a l l (R , (match (T, S , R) , s o l (a s s i g n (Ref , T, S , R) , 1)) ,Sum2) ,
206 length (Sum1 , N1) , length (Sum2 , N2) , N i s N1 + N2 , write (' ') , write (N) , f a i l .
207

208 d i s p l a y S o l () :− nl , nl , write ('====================================') , nl , f a i l .
209 d i s p l a y S o l () .
210

211 w r i t e A S p a c e I f L e s s 1 0 (R) :− R<10, write (' ') , ! .
212 w r i t e A S p a c e I f L e s s 1 0 () .
213 w r i t e A s s i g n m e n t (Ref , S , T) :−
214 nl , write (' ') , write (S) , write (' - ') , write (T) ,
215 write (' is officiated by referee ') , write (Ref) ,
216 write ('. Skill level comparison game vs referee: ') , r e f e r e e (Ref , RS) ,
217 team (S , SS) , team (T, ST) , S k i l l i s SS+ST , write (S k i l l) , write (' - ') ,
218 write (RS) , write ('.') .
219

220 % ================================= MAIN ==================================
221

222 main:− s y m b o l i c O u t p u t (1) , ! , w r i t e C o n s t r a i n t s , nl , h a l t .
223 main:−
224 % c u r r e n t p r o l o g f l a g (argv , [, Mes |]) ,
225 u n i x ('rm -f solCplex.sol fileForCplex salCplex c.lp cplex.log') ,

87

226 write ('generating constraints...') , nl ,
227

228 t e l l ('c.lp') ,
229 write ('Minimize') , nl , w r i t e O b j e c t i v e F u n c t i o n ,
230 write ('Subject To') , nl , w r i t e C o n s t r a i n t s ,
231 write ('Bounds') , nl , wr i teBounds ,
232 write ('Generals') , nl , w r i t e I n t e g e r V a r s ,
233 write ('Binary') , nl , w r i t e B o o l e a n V a r s ,
234 write ('End') , nl , told ,
235 write ('constraints generated') , nl , nl , nl , nl ,
236

237

238 t e l l (f i l e F o r C p l e x) , maxComputationTime (T) ,
239 write ('read c.lp') , nl ,
240 write ('set timelimit ') , write (T) , write (' s') , nl ,
241 write ('set mip tolerance mipgap 0.03. ') , nl ,
242 write ('opt') , nl , write ('write solCplex.sol') , nl , write ('quit') , nl , told ,
243 u n i x (' cplex < fileForCplex > salCplex') ,
244 % u n i x (' c p l e x < f i l e F o r C p l e x ; ') ,
245 % u n i x (' c a t f i l e F o r C p l e x ') ,
246 c h e c k I f S o l u t i o n , nl , nl ,
247 h a l t .
248 main:− write ('constraints generation failed') , nl , h a l t .
249

250

251

252 c h e c k I f S o l u t i o n :−
253 e x i s t s f i l e ('solCplex.sol') , ! ,
254 u n i x ('xml2simple.pl solCplex.sol > sol.pl') ,
255 see ('sol.pl') , readModel ([] ,M) , seen ,
256 nl , nl , nl , write ('Solution found. Press <enter> to see it') , nl , nl , nl ,
257 g e t c h a r () , i d e n t i f i e r (I d) , t e l l ('sol.txt') , write (I d) , nl , nl ,
258 d i s p l a y S o l (M) , told , d i s p l a y S o l (M) , ! .
259 c h e c k I f S o l u t i o n :−
260 s h e l l ('grep "Integer infeasible" cplex.log > salgrep' , 0) , nl , nl ,
261 % gr ep r e t u r n s 0
262 write ('Solver: No solution exists') , ! .
263 c h e c k I f S o l u t i o n :− maxComputationTime (T) , nl , nl ,
264 write ('Solver: No solution found under the given time limit of ') ,
265 write (T) , write (' s.') , ! .
266

267 u n i x (Command) :− s h e l l (Command) , ! .
268 u n i x () .
269

270 w r i t e C o n s t r a i n t (C) :− C =. . [Op , Sum ,K] , writeSum (Sum) , write (' ') , wr i teOp (Op) ,
271 write (' ') , write (K) , n l .
272 writeSum ([]) :− ! .
273 writeSum ([M| L]) :− writeMon (M) , nl , writeSum (L) , ! .
274 writeMon (A∗X) :− A>=0, ! , write (' + ') , write (A) , write (' ') ,
275 write (X) , ! .
276 writeMon (A∗X) :− A<0, ! , AB i s −A, write (' - ') , write (AB) , write (' ') ,
277 write (X) , ! .

88

278 writeMon (X) :− ! , write (' + ') , write (1) , write (' ') , write (X) , ! .
279

280 w r i t e C l a u s e (Neg ,) :− member (L i t , Neg) , L i t \= − ,
281 write (e r r o r ('negative lit')) , nl , h a l t .
282 w r i t e C l a u s e (, Pos) :− member (L i t , Pos) , L i t = − ,
283 write (e r r o r ('positive lit')) , nl , h a l t .
284 w r i t e C l a u s e (Neg , Pos) :− length (Neg ,N) , K i s 1−N,
285 f i n d a l l (−1∗L i t , member(−L i t , Neg) , N e g L i t s) ,
286 append (NegLi t s , Pos , Sum) , w r i t e C o n s t r a i n t (Sum >= K) , ! .
287

288 readModel (L1 , L2) :− read (XV) , add I fNeeded (XV, L1 , L2) , ! .
289 add I fNeeded (e n d o f f i l e , L , L) : − ! .
290 add I fNeeded (XV, L1 , L2) :− readModel ([XV | L1] , L2) , ! .
291

292 writeOp (=<):−write ('<=') , ! .
293 writeOp (Op) :−write (Op) , ! .

Listing 21: xml2simple.pl

1 #!/ u s r / b i n / p e r l
2 i f (! open (LIST ,$ARGV [0])) {
3 open (LIST , "cplex.log") ;
4 w h i l e (<LIST>){
5 i f (/Time l i m i t e x c e e d e d /) {
6 p r i n t ("Result: UNKNOWN\n") ;
7 e x i t ;
8 }
9 i f (/ C u r r e n t MIP b e s t bound i s i n f i n i t e . /) {

10 p r i n t ("Result: UNSAT\n") ;
11 e x i t ;
12 }
13 }
14 p r i n t ("Result: ERROR\n") ;
15 e x i t ;
16 }
17

18 #p r i n t ("Result: SAT\n\n") ;
19

20 $ c o s t ;
21 $ i s O p t i m a l = 0 ;
22

23 w h i l e (<LIST>) {
24 i f (/ o b j e c t i v e V a l u e="(\d*)"/) {
25 $ c o s t = $1 ;
26 }
27 i f (/ s o l u t i o n S t a t u s V a l u e="101"/) {
28 $ i s O p t i m a l =1;
29 }
30 i f (/ s o l u t i o n S t a t u s V a l u e="102"/) {
31 $ i s O p t i m a l =1;
32 }
33 # i f (/ v a r i a b l e name="(w\d+s\d+)" i n d e x .∗ v a l u e="(\d*)\.*(\d*)"/) {
34 # p r i n t ("$1 = $2.$3.\n") ;

89

35 # }
36 i f (/ v a r i a b l e name="(.*)" i n d e x .∗ v a l u e="-0"/) {
37 p r i n t ("$1 = 0.\n") ;
38 }
39 i f (/ v a r i a b l e name="(.*)" i n d e x .∗ v a l u e="(\d*)"/) {
40 p r i n t ("$1 = $2.\n") ;
41 }
42 }
43 #p r i n t ("\n") ;
44 #p r i n t ("Cost: $cost\n") ;
45 #p r i n t ("Optimal: $isOptimal\n") ;

Listing 22: Makefile

1 f i l e = rap
2

3 $ (f i l e) : $ (f i l e) . p l
4 s w i p l −−q u i e t −O −g main −−s t a n d a l o n e=true −o $ (f i l e) −c $ (f i l e) . p l
5

6

7 c l e a n :
8 rm −f rap c l o n e ∗ c . l p c p l e x . l o g f i l e F o r C p l e x s o l C p l e x . s o l s o l . p l s o l . t x t

90

C. ILP Code for the KNVB Problem

In this section of the appendix is found the Prolog code used to generate the constraints needed for the
KNVB version of the problem, the C++ program that prepares the data obtained from previous rounds
to be incorporated in the following sub-problem and the file that is used if no data is incorporated from
previous rounds. To execute this program the same xml2simple.pl and Makefile files presented in Listings
21 and 22 in Appendix B can be used.

The Prolog code can be found in Listing 23 and works exactly like the Prolog code from the basic
problem but with more constraints and variables. In Listing 25 can be found the file that is to be used
if no data from previous sub-problems wants to be used and the file to adapt the data from previous
sub-problems can be found in Listing 24. The file containing the data from previous rounds (or the file in
Listing 25 if no data is to be imported) needs to be named previousRounds.pl . If after solving a problem
the data wants to be reused, the only thing that needs to be done is execute the compile code from the
C++ program and this file will be automatically generated, otherwise the file in Listing 25 needs to be
saved with this name, and always in the same folder as the Prolog code is executed.

Listing 23: rap.pl - Prolog code to solve the KNVB problem

1

2 % ============================== INPUT DATA ==================================
3 % INPUT DATA
4

5 i d e n t i f i e r ('Referee Assignment Problem: Eeredivisie and Eerste Divisie') .
6

7 maxComputationTime (3600) .
8

9 :− i n c l u d e (c a l e n d a r 1 8 1 9) .
10 :− i n c l u d e (r e f e r e e s D a t a) .
11 :− i n c l u d e (p r e v i o u s R o u n d s) .
12

13 i n t e r v a l R o u n d s (5) .
14 m i n M a t c h e s P e r I n t e r v a l (2) .
15 m a x M a t c h e s P e r I n t e r v a l (4) .
16 minNumRoundsBeforeRepeatingTeam (3) .
17 minNumRoundsBeforeRepeatingStadium (3) .
18 maxConsecut iveRounds (4) .
19 maxRoundsWithoutACerta inLeve lMatch (2 0) .
20 i n i t i a l R o u n d (1) .
21 endingRound (4 1) .
22

23 % =========================== NO MORE INPUT DATA =============================
24

25 s y m b o l i c O u t p u t (0) .
26

27 %% D e f i n i t i o n s :
28 round (R) :− i n i t i a l R o u n d (I) , endingRound (E) , between (I , E , R) .
29 r e f (R) :− r e f e r e e (R , , ,) .
30 as (A) :− a s s i s t a n t (A, , ,) .
31

91

32 r e f P (R , P) :− r e f e r e e (R , , , P) .
33 asP (A, P) :− a s s i s t a n t (A, , , P) .
34

35 max (A, B, A) :− A>B , ! .
36 max (, B, B) .
37

38 match (S , T,W) :− erematch (W, , S , T, ,) .
39 match2 (S , T,W) :− e e r s t e m a t c h (W, , S , T, ,) .
40

41 p a r t i t (W, S , T,D) :− erematch (W, , S , T, D,) .
42 p a r t i t (W, S , T,D) :− e e r s t e m a t c h (W, , S , T, D,) .
43

44 e q u i p (T) :− team (T,) .
45

46 game (S , T, R) :− match (S , T, R) .
47 game (S , T, R) :− match2 (S , T, R) .
48

49 w r i t e C o n s t r a i n t s :−
50 prev iousRoundsData ,
51 everyMatchHas1Refe ree ,
52 e v e r y M a t c h H a s 2 A s s i s t a n t s ,
53 everyMatchHas1Var ,
54 matches2DontHaveVar ,
55 everyMatchHas1AVar ,
56 matches2DontHaveAVar ,
57 everyMatchHasA4thRef ,
58 atMostOneMainRefereeRolePerRound ,
59 atMostOneMainAss i s t ingRolePerRound ,
60 atMostTwoRefereeRolePerRound ,
61 atMostTwoAss istantRolePerRound ,
62 oneRefereeRo lePerMatch ,
63 o n e A s s i s t a n t R o l e P e r M a t c h ,
64 def ineMainRefereeWR ,
65 def ineMainAss i s tantWR ,
66 def ineRefereeWR ,
67 d e f i n e A s s i s t a n t W R ,
68 i n c o m p a t i b i l i t y R e f e r e e R o u n d ,
69 i n c o m p a t i b i l i t y A s s i s t a n t R o u n d ,
70 i n c o m p a t i b i l i t y R e f e r e e T e a m ,
71 i n c o m p a t i b i l i t y A s s i s t a n t T e a m ,
72 t r ioMustWorkTogether ,
73 atLeastMinRoundsRepeat ingTeam ,
74 atMostMaxMatchesPer Interva lOfRounds ,
75 r e f e r e e s L e v e l R a t i o P e r R o u n d ,
76 a s s i s t a n t s L e v e l R a t i o P e r R o u n d ,
77 d e f i n e I m p o r t a n c e O f M a t c h e s ,
78 maxRoundsWithoutCerta inLeve lMatches ,
79 d i f f e r e n t L e v e l V a r s ,
80 numberOfGamesVars ,
81 min imize2games In4days ,
82 ! .
83

92

84

85

86 p re v io u sR o un d sD a ta :− n o t a s s i g n R (Ref , S , T, R) , r e f (Ref) , game (S , T, R) ,
87 w r i t e C l a u s e ([− a s s i g n R (Ref , S , T, R)] , []) , f a i l .
88 p re v io u sR o un d sD a ta :− n o t a s s i g n 4 (Ref , S , T, R) , r e f (Ref) , game (S , T, R) ,
89 w r i t e C l a u s e ([− a s s i g n 4 (Ref , S , T, R)] , []) , f a i l .
90 p re v io u sR o un d sD a ta :− notass ignVAR (Ref , S , T, R) , r e f (Ref) , game (S , T, R) ,
91 w r i t e C l a u s e ([− assignVAR (Ref , S , T, R)] , []) , f a i l .
92 p re v io u sR o un d sD a ta :− notass ignAR (A, S , T, R) , as (A) , game (S , T, R) ,
93 w r i t e C l a u s e ([− ass ignAR (A, S , T, R)] , []) , f a i l .
94 p re v io u sR o un d sD a ta :− notassignAVAR (A, S , T, R) , as (A) , game (S , T, R) ,
95 w r i t e C l a u s e ([− assignAVAR (A, S , T, R)] , []) , f a i l .
96 p re v io u sR o un d sD a ta :− notmainRefereeWR (Ref , R) , r e f (Ref) , numRounds (N) ,
97 between (1 ,N, R) , w r i t e C l a u s e ([−mainRefereeWR (Ref , R)] , []) , f a i l .
98 p re v io u sR o un d sD a ta :− notmainAss istantWR (A, R) , as (A) , numRounds (N) ,
99 between (1 ,N, R) , w r i t e C l a u s e ([−mainAssistantWR (A, R)] , []) , f a i l .

100 p re v io u sR o un d sD a ta :− notre fe reeWR (Ref , R) , r e f (Ref) , numRounds (N) ,
101 between (1 ,N, R) , w r i t e C l a u s e ([− re fereeWR (Ref , R)] , []) , f a i l .
102 p re v io u sR o un d sD a ta :− n o t a s s i s t a n t W R (A, R) , as (A) , numRounds (N) ,
103 between (1 ,N, R) , w r i t e C l a u s e ([− ass i s tantWR (A, R)] , []) , f a i l .
104

105 p re v io u sR o un d sD a ta :− y e s a s s i g n R (Ref , S , T, R) , r e f (Ref) , game (S , T, R) ,
106 w r i t e C l a u s e ([] , [a s s i g n R (Ref , S , T, R)]) , f a i l .
107 p re v io u sR o un d sD a ta :− y e s a s s i g n 4 (Ref , S , T, R) , r e f (Ref) , game (S , T, R) ,
108 w r i t e C l a u s e ([] , [a s s i g n 4 (Ref , S , T, R)]) , f a i l .
109 p re v io u sR o un d sD a ta :− yesass ignVAR (Ref , S , T, R) , r e f (Ref) , game (S , T, R) ,
110 w r i t e C l a u s e ([] , [assignVAR (Ref , S , T, R)]) , f a i l .
111 p re v io u sR o un d sD a ta :− y e s a s s i g n A R (A, S , T, R) , as (A) , game (S , T, R) ,
112 w r i t e C l a u s e ([] , [ass ignAR (A, S , T, R)]) , f a i l .
113 p re v io u sR o un d sD a ta :− yesass ignAVAR (A, S , T, R) , as (A) , game (S , T, R) ,
114 w r i t e C l a u s e ([] , [assignAVAR (A, S , T, R)]) , f a i l .
115 p re v io u sR o un d sD a ta :− yesmainRefereeWR (Ref , R) , r e f (Ref) , numRounds (N) ,
116 between (1 ,N, R) , w r i t e C l a u s e ([] , [mainRefereeWR (Ref , R)]) , f a i l .
117 p re v io u sR o un d sD a ta :− yesmainAss i s tantWR (A, R) , as (A) , numRounds (N) ,
118 between (1 ,N, R) , w r i t e C l a u s e ([] , [mainAss istantWR (A, R)]) , f a i l .
119 p re v io u sR o un d sD a ta :− y es re fe re e WR (Ref , R) , r e f (Ref) , numRounds (N) ,
120 between (1 ,N, R) , w r i t e C l a u s e ([] , [re fereeWR (Ref , R)]) , f a i l .
121 p re v io u sR o un d sD a ta :− y e s a s s i s t a n t W R (A, R) , as (A) , numRounds (N) ,
122 between (1 ,N, R) , w r i t e C l a u s e ([] , [a s s i s tantWR (A, R)]) , f a i l .
123

124 p re v io u sR o un d sD a ta .
125

126 % −−
127

128 ev e r yMa tc hHa s1 Ref e r ee :−
129 round (R) , match (S , T, R) , e q u i p (T) , e q u i p (S) ,
130 f i n d a l l (a s s i g n R (Ref , S , T, R) , r e f (Ref) , Sum) , w r i t e C o n s t r a i n t (Sum = 1) , f a i l .
131 ev e r yMa tc hHa s1 Ref e r ee :−
132 round (R) , match2 (S , T, R) , e q u i p (T) , e q u i p (S) ,
133 f i n d a l l (a s s i g n R (Ref , S , T, R) , r e f (Ref) , Sum) , w r i t e C o n s t r a i n t (Sum = 1) , f a i l .
134 ev e r yMa tc hHa s1 Ref e r ee .
135

93

136 e v e r y M a t c h H a s 2 A s s i s t a n t s :−
137 round (R) , match (S , T, R) , e q u i p (T) , e q u i p (S) ,
138 f i n d a l l (ass ignAR (A, S , T, R) , as (A) , Sum) , w r i t e C o n s t r a i n t (Sum = 2) , f a i l .
139 e v e r y M a t c h H a s 2 A s s i s t a n t s :−
140 round (R) , match2 (S , T, R) , e q u i p (T) , e q u i p (S) ,
141 f i n d a l l (ass ignAR (A, S , T, R) , as (A) , Sum) , w r i t e C o n s t r a i n t (Sum = 2) , f a i l .
142 e v e r y M a t c h H a s 2 A s s i s t a n t s .
143

144 everyMatchHas1Var :−
145 round (R) , match (S , T, R) , e q u i p (T) , e q u i p (S) ,
146 f i n d a l l (assignVAR (Ref , S , T, R) , r e f (Ref) , Sum) ,
147 w r i t e C o n s t r a i n t (Sum = 1) , f a i l .
148 everyMatchHas1Var .
149

150 matches2DontHaveVar :−
151 f i n d a l l (assignVAR (Ref , S , T, R) , (r e f (Ref) , match2 (S , T, R) , e q u i p (T) , e q u i p (S)) ,

↪→ Sum) , w r i t e C o n s t r a i n t (Sum = 0) .
152

153 everyMatchHas1AVar :−
154 round (R) , match (S , T, R) , e q u i p (T) , e q u i p (S) ,
155 f i n d a l l (assignAVAR (A, S , T, R) , as (A) ,Sum) , w r i t e C o n s t r a i n t (Sum = 1) , f a i l .
156 everyMatchHas1AVar .
157

158 matches2DontHaveAVar :−
159 f i n d a l l (assignAVAR (Ref , S , T, R) , (r e f (Ref) , match2 (S , T, R) , e q u i p (T) , e q u i p (S)) ,

↪→ Sum) , w r i t e C o n s t r a i n t (Sum = 0) .
160

161 everyMatchHasA4thRef :−
162 round (R) , match (S , T, R) , e q u i p (T) , e q u i p (S) ,
163 f i n d a l l (a s s i g n 4 (Ref , S , T, R) , r e f (Ref) , Sum) , w r i t e C o n s t r a i n t (Sum = 1) , f a i l .
164 everyMatchHasA4thRef :−
165 round (R) , match2 (S , T, R) , e q u i p (T) , e q u i p (S) ,
166 f i n d a l l (a s s i g n 4 (Ref , S , T, R) , r e f (Ref) , Sum) , w r i t e C o n s t r a i n t (Sum = 1) , f a i l .
167 everyMatchHasA4thRef .
168

169 % −−−
170

171 atMostOneMainRefereeRolePerRound :−
172 r e f (Ref) , round (R) ,
173 f i n d a l l (a s s i g n R (Ref , S , T, R) , (game (S , T, R) , e q u i p (T) , e q u i p (S)) , Sum) ,
174 w r i t e C o n s t r a i n t (Sum =< 1) , f a i l .
175 atMostOneMainRefereeRolePerRound .
176

177 atMostOneMainAss i s t ingRo lePerRound :−
178 as (A) , round (R) ,
179 f i n d a l l (ass ignAR (A, S , T, R) , (game (S , T, R) , e q u i p (T) , e q u i p (S)) , Sum) ,
180 w r i t e C o n s t r a i n t (Sum =< 1) , f a i l .
181 atMostOneMainAss i s t ingRo lePerRound .
182

183 atMostTwoRefereeRolePerRound :−
184 r e f (Ref) , round (R) ,
185 f i n d a l l (a s s i g n R (Ref , S , T, R) , (e q u i p (T) , e q u i p (S) , game (S , T, R)) , Sum1) ,

94

186 f i n d a l l (a s s i g n 4 (Ref , S , T, R) , (e q u i p (T) , e q u i p (S) , game (S , T, R)) , Sum2) ,
187 f i n d a l l (assignVAR (Ref , S , T, R) , (e q u i p (T) , e q u i p (S) , game (S , T, R)) , Sum3) ,
188 append (Sum1 , Sum2 , Sum12) , append (Sum12 , Sum3 , Sum) ,
189 w r i t e C o n s t r a i n t (Sum =< 2) , f a i l .
190 atMostTwoRefereeRolePerRound .
191

192 atMostTwoAss i s tantRolePerRound :−
193 as (A) , round (R) ,
194 f i n d a l l (ass ignAR (A, S , T, R) , (e q u i p (T) , e q u i p (S) , game (S , T, R)) , Sum1) ,
195 f i n d a l l (assignAVAR (A, S , T, R) , (e q u i p (T) , e q u i p (S) , game (S , T, R)) , Sum2) ,
196 append (Sum1 , Sum2 , Sum) , w r i t e C o n s t r a i n t (Sum =< 1) , f a i l .
197 atMostTwoAss i s tantRolePerRound .
198

199 oneRefe reeRo lePerMatch :−
200 r e f (Ref) , round (R) , match (S , T, R) , e q u i p (T) , e q u i p (S) ,
201 w r i t e C o n s t r a i n t ([a s s i g n R (Ref , S , T, R) , a s s i g n 4 (Ref , S , T, R) ,
202 assignVAR (Ref , S , T, R)] =< 1) , f a i l .
203 oneRefe reeRo lePerMatch :−
204 r e f (Ref) , round (R) , match2 (S , T, R) , e q u i p (T) , e q u i p (S) ,
205 w r i t e C o n s t r a i n t ([a s s i g n R (Ref , S , T, R) , a s s i g n 4 (Ref , S , T, R) ,
206 assignVAR (Ref , S , T, R)] =< 1) , f a i l .
207 oneRefe reeRo lePerMatch .
208

209 o n e A s s i s t a n t R o l e P e r M a t c h :−
210 as (A) , round (R) , match (S , T, R) , e q u i p (T) , e q u i p (S) ,
211 w r i t e C l a u s e ([− ass ignAR (A, S , T, R) ,−assignAVAR (A, S , T, R)] , []) , f a i l .
212 o n e A s s i s t a n t R o l e P e r M a t c h :−
213 as (A) , round (R) , match2 (S , T, R) , e q u i p (T) , e q u i p (S) ,
214 w r i t e C l a u s e ([− ass ignAR (A, S , T, R) ,−assignAVAR (A, S , T, R)] , []) , f a i l .
215 o n e A s s i s t a n t R o l e P e r M a t c h .
216

217 % −−
218

219 def ineMainRefereeWR :−
220 r e f (Ref) , round (R) , f i n d a l l (a s s i g n R (Ref , S , T, R) , (e q u i p (T) , e q u i p (S) ,
221 game (S , T, R)) , L i t s) , e x p r e s s O r (mainRefereeWR (Ref , R) , L i t s) , f a i l .
222 def ineMainRefereeWR .
223

224 d e f i n e M a i n A s s i s t a n t W R :−
225 as (A) , round (R) , f i n d a l l (ass ignAR (A, S , T, R) , (e q u i p (T) , e q u i p (S) ,
226 game (S , T, R)) , L i t s) , e x p r e s s O r (mainAss istantWR (A, R) , L i t s) , f a i l .
227 d e f i n e M a i n A s s i s t a n t W R .
228

229 def ineRefe reeWR :− r e f (Ref) , round (R) ,
230 f i n d a l l (a s s i g n R (Ref , S , T, R) , (e q u i p (T) , e q u i p (S) , game (S , T, R)) , L i t s 1) ,
231 f i n d a l l (a s s i g n 4 (Ref , S , T, R) , (e q u i p (T) , e q u i p (S) , game (S , T, R)) , L i t s 2) ,
232 f i n d a l l (assignVAR (Ref , S , T, R) , (e q u i p (T) , e q u i p (S) , game (S , T, R)) , L i t s 3) ,
233 append (L i t s 1 , L i t s 2 , L i t s 1 2) , append (L i t s 1 2 , L i t s 3 , L i t s) ,
234 e x p r e s s O r (refereeWR (Ref , R) , L i t s) , f a i l .
235 def ineRefe reeWR .
236

237 d e f i n e A s s i s t a n t W R :− as (A) , round (R) ,

95

238 f i n d a l l (ass ignAR (A, S , T, R) , (e q u i p (T) , e q u i p (S) , game (S , T, R)) , L i t s 1) ,
239 f i n d a l l (assignAVAR (A, S , T, R) , (e q u i p (T) , e q u i p (S) , game (S , T, R)) , L i t s 2) ,
240 append (L i t s 1 , L i t s 2 , L i t s) , e x p r e s s O r (ass i s tantWR (A, R) , L i t s) , f a i l .
241 d e f i n e A s s i s t a n t W R .
242

243 % −−−
244

245 i n c o m p a t i b i l i t y R e f e r e e R o u n d :−
246 incRefRound (Ref , R) , r e f (Ref) , round (R) ,
247 w r i t e C l a u s e ([− re fereeWR (Ref , R)] , []) , f a i l .
248 i n c o m p a t i b i l i t y R e f e r e e R o u n d .
249

250 i n c o m p a t i b i l i t y A s s i s t a n t R o u n d :−
251 as (A) , incAsRound (A, R) , round (R) , w r i t e C l a u s e ([− ass i s tantWR (A, R)] , []) , f a i l .
252 i n c o m p a t i b i l i t y A s s i s t a n t R o u n d .
253

254 i n c o m p a t i b i l i t y R e f e r e e T e a m :−
255 r e f (Ref) , incRefTeam (Ref , T) , game (T, S , R) , round (R) ,
256 w r i t e C l a u s e ([− a s s i g n R (Ref , T, S , R)] , []) ,
257 w r i t e C l a u s e ([− assignVAR (Ref , T, S , R)] , []) ,
258 w r i t e C l a u s e ([− a s s i g n 4 (Ref , T, S , R)] , []) , f a i l .
259 i n c o m p a t i b i l i t y R e f e r e e T e a m :−
260 r e f (Ref) , incRefTeam (Ref , T) , game (S , T, R) , round (R) ,
261 w r i t e C l a u s e ([− a s s i g n R (Ref , S , T, R)] , []) ,
262 w r i t e C l a u s e ([− assignVAR (Ref , S , T, R)] , []) ,
263 w r i t e C l a u s e ([− a s s i g n 4 (Ref , S , T, R)] , []) , f a i l .
264 i n c o m p a t i b i l i t y R e f e r e e T e a m .
265

266 i n c o m p a t i b i l i t y A s s i s t a n t T e a m :−
267 as (A) , incAsTeam (A, T) , game (T, S , R) , round (R) ,
268 w r i t e C l a u s e ([− ass ignAR (A, T, S , R)] , []) ,
269 w r i t e C l a u s e ([− assignAVAR (A, T, S , R)] , []) , f a i l .
270 i n c o m p a t i b i l i t y A s s i s t a n t T e a m :−
271 as (A) , incAsTeam (A, T) , game (S , T, R) , round (R) ,
272 w r i t e C l a u s e ([− ass ignAR (A, S , T, R)] , []) ,
273 w r i t e C l a u s e ([− assignAVAR (A, S , T, R)] , []) , f a i l .
274 i n c o m p a t i b i l i t y A s s i s t a n t T e a m .
275

276 t r ioMustWorkTogether :−
277 t r i o (Ref , A1 , A2) , round (R) , game (S , T, R) ,
278 w r i t e C l a u s e ([− a s s i g n R (Ref , S , T, R)] , [ass ignAR (A1 , S , T, R)]) ,
279 w r i t e C l a u s e ([− a s s i g n R (Ref , S , T, R)] , [ass ignAR (A2 , S , T, R)]) ,
280 w r i t e C l a u s e ([− ass ignAR (A1 , S , T, R)] , [a s s i g n R (Ref , S , T, R)]) ,
281 w r i t e C l a u s e ([− ass ignAR (A2 , S , T, R)] , [a s s i g n R (Ref , S , T, R)]) , f a i l .
282 t r ioMustWorkTogether .
283

284 %
↪→ −−−
↪→

285

286 atLeastMinRoundsRepeat ingTeam :−
287 minNumRoundsBeforeRepeatingTeam (MinR) ,

96

288 i n i t i a l R o u n d (I) , endingRound (E) ,
289 A i s I−MinR+1, max (1 ,A,M) , r e f (Ref) ,
290 match (S1 , T1 , R1) , e q u i p (T1) , e q u i p (S1) , between (M, E , R1) ,
291 match (S2 , T2 , R2) , e q u i p (T2) , e q u i p (S2) , round (R2) ,
292 R2 > R1 , MinR >= R2−R1 , s o r t ([S1 , T1 , S2 , T2] , L) , L\=[, , ,] ,
293 w r i t e C l a u s e ([− a s s i g n R (Ref , S1 , T1 , R1) ,− a s s i g n R (Ref , S2 , T2 , R2)] , []) , f a i l .
294 atLeastMinRoundsRepeat ingTeam :−
295 minNumRoundsBeforeRepeatingTeam (MinR) ,
296 i n i t i a l R o u n d (I) , endingRound (E) ,
297 A i s I−MinR+1, max (1 ,A,M) , r e f (Ref) ,
298 match2 (S1 , T1 , R1) , e q u i p (T1) , e q u i p (S1) , between (M, E , R1) ,
299 match2 (S2 , T2 , R2) , e q u i p (T2) , e q u i p (S2) , round (R2) ,
300 R2 > R1 , MinR >= R2−R1 , s o r t ([S1 , T1 , S2 , T2] , L) , L\=[, , ,] ,
301 w r i t e C l a u s e ([− a s s i g n R (Ref , S1 , T1 , R1) ,− a s s i g n R (Ref , S2 , T2 , R2)] , []) , f a i l .
302 atLeastMinRoundsRepeat ingTeam :−
303 minNumRoundsBeforeRepeatingTeam (MinR) ,
304 i n i t i a l R o u n d (I) , endingRound (E) ,
305 A i s I−MinR+1, max (1 ,A,M) , as (AR) ,
306 match (S1 , T1 , R1) , e q u i p (T1) , e q u i p (S1) , between (M, E , R1) ,
307 match (S2 , T2 , R2) , e q u i p (T2) , e q u i p (S2) , round (R2) ,
308 R2 > R1 , MinR >= R2−R1 , s o r t ([S1 , T1 , S2 , T2] , L) , L\=[, , ,] ,
309 w r i t e C l a u s e ([− ass ignAR (AR, S1 , T1 , R1) ,−ass ignAR (AR, S2 , T2 , R2)] , []) , f a i l .
310 atLeastMinRoundsRepeat ingTeam :−
311 minNumRoundsBeforeRepeatingTeam (MinR) ,
312 i n i t i a l R o u n d (I) , endingRound (E) ,
313 A i s I−MinR+1, max (1 ,A,M) , as (AR) ,
314 match2 (S1 , T1 , R1) , e q u i p (T1) , e q u i p (S1) , between (M, E , R1) ,
315 match2 (S2 , T2 , R2) , e q u i p (T2) , e q u i p (S2) , round (R2) ,
316 R2 > R1 , MinR >= R2−R1 , s o r t ([S1 , T1 , S2 , T2] , L) , L\=[, , ,] ,
317 w r i t e C l a u s e ([− ass ignAR (AR, S1 , T1 , R1) ,−ass ignAR (AR, S2 , T2 , R2)] , []) , f a i l .
318 atLeastMinRoundsRepeat ingTeam .
319

320 atMostMaxMatchesPer Interva lOfRounds :−
321 i n t e r v a l R o u n d s (N) , m a x M a t c h e s P e r I n t e r v a l (Max) , i n i t i a l R o u n d (I) ,
322 endingRound (E) , A i s I−N+1, max (1 ,A,M) , r e f (Ref) , between (M, E , R1) ,
323 R2 i s R1+N−1, round (R2) ,
324 f i n d a l l (mainRefereeWR (Ref , R) , between (R1 , R2 , R) , Sum) ,
325 w r i t e C o n s t r a i n t (Sum =< Max) , f a i l .
326 atMostMaxMatchesPer Interva lOfRounds :−
327 i n t e r v a l R o u n d s (N) , m a x M a t c h e s P e r I n t e r v a l (Max) , i n i t i a l R o u n d (I) ,
328 endingRound (E) , A i s I−N+1, max (1 ,A,M) , as (AR) , between (M, E , R1) ,
329 R2 i s R1+N−1, round (R2) ,
330 f i n d a l l (mainAss istantWR (AR, R) , between (R1 , R2 , R) , Sum) ,
331 w r i t e C o n s t r a i n t (Sum =< Max) , f a i l .
332 atMostMaxMatchesPer Interva lOfRounds .
333

334 % −−−
335

336 v a l i d R o u n d 1 (R) :− round (R) , match (S , T, R) , e q u i p (T) , e q u i p (S) .
337

338 v a l i d R o u n d 2 (R) :− round (R) , match2 (S , T, R) , e q u i p (T) , e q u i p (S) .
339

97

340

341 r e f e r e e s L e v e l R a t i o P e r R o u n d :−
342 % P r o p o r c i d e s i t j a d a d ' rbitres de 1a : 7 de c l a s s e S i 2 de c l a s s e J o M
343 v a l i d R o u n d 1 (R) , f i n d a l l (a s s i g n R (Ref , S , T, R) , (match (S , T, R) , e q u i p (T) ,
344 e q u i p (S) , r e f e r e e (Ref , , s ,)) , Sum) , w r i t e C o n s t r a i n t (Sum = 7) , f a i l .
345 r e f e r e e s L e v e l R a t i o P e r R o u n d :−
346 % E l s a r b i t r e s de 1a no poden s e r de c l a s s e T
347 v a l i d R o u n d 1 (R) , match (S , T, R) , e q u i p (T) , e q u i p (S) , r e f e r e e (Ref , , t ,) ,
348 w r i t e C l a u s e ([− a s s i g n R (Ref , S , T, R)] , []) ,
349 w r i t e C l a u s e ([− assignVAR (Ref , S , T, R)] , []) ,
350 w r i t e C l a u s e ([− a s s i g n 4 (Ref , S , T, R)] , []) , f a i l .
351 r e f e r e e s L e v e l R a t i o P e r R o u n d :−
352 % P r o p o r c i d e s i t j a d a d ' rbitres de 2a : 8 de c l a s s e M i 2 de c l a s s e J o S
353 v a l i d R o u n d 2 (R) , f i n d a l l (a s s i g n R (Ref , S , T, R) , (match2 (S , T, R) , e q u i p (T) , e q u i p (S

↪→) , r e f e r e e (Ref , ,m,)) , Sum) , w r i t e C o n s t r a i n t (Sum = 8) , f a i l .
354 r e f e r e e s L e v e l R a t i o P e r R o u n d :−
355 % E l s a r b i t r e s p r i n c i p a l s de 2a no poden s e r de c l a s s e T
356 v a l i d R o u n d 2 (R) , match2 (S , T, R) , e q u i p (T) , e q u i p (S) , r e f e r e e (Ref , , t ,) ,
357 w r i t e C l a u s e ([− a s s i g n R (Ref , S , T, R)] , []) , f a i l .
358 r e f e r e e s L e v e l R a t i o P e r R o u n d :−
359 % P r o p o r c i d e s i t j a d a d e l 4 t rbitre de 1a : 7 han de s e r de c l a s s e J o M
360 v a l i d R o u n d 1 (R) , f i n d a l l (a s s i g n 4 (Ref , S , T, R) , (match (S , T, R) , e q u i p (T) , e q u i p (S

↪→) , r e f e r e e (Ref , , s ,)) , Sum) , w r i t e C o n s t r a i n t (Sum = 2) , f a i l .
361 r e f e r e e s L e v e l R a t i o P e r R o u n d :−
362 % P r o p o r c i d e s i t j a d a d e l 4 t rbitre de 2a : e l s 10 han de s e r de c l a s s e T
363 v a l i d R o u n d 2 (R) , f i n d a l l (a s s i g n 4 (Ref , S , T, R) , (match2 (S , T, R) , r e f e r e e (Ref , , t ,

↪→)) , Sum) , w r i t e C o n s t r a i n t (Sum = 10) , f a i l .
364 r e f e r e e s L e v e l R a t i o P e r R o u n d :−
365 % P r o p o r c i d e s i t j a d a d e l VAR : 4 de c l a s s e S i l a r e s t a de c l a s s e M o J
366 v a l i d R o u n d 1 (R) , f i n d a l l (assignVAR (Ref , S , T, R) , (match (S , T, R) , e q u i p (T) , e q u i p

↪→ (S) , r e f e r e e (Ref , , s ,)) , Sum) , w r i t e C o n s t r a i n t (Sum >= 3) ,
367 w r i t e C o n s t r a i n t (Sum =< 6) , f a i l .
368 r e f e r e e s L e v e l R a t i o P e r R o u n d .
369

370

371 a s s i s t a n t s L e v e l R a t i o P e r R o u n d :−
372 % e l s a s s i s t e n t s de 1a no poden s e r de c l a s s e T
373 v a l i d R o u n d 1 (R) , match (S , T, R) , e q u i p (T) , e q u i p (S) , a s s i s t a n t (A, , t ,) ,
374 w r i t e C l a u s e ([− ass ignAR (A, S , T, R)] , []) , f a i l .
375 a s s i s t a n t s L e v e l R a t i o P e r R o u n d :−
376 % P r o p o r c i d e s i t j a d a d ' a s s i s t e n t s de 1a : 14 de c l a s s e S i 4 de c l a s s e M o J
377 v a l i d R o u n d 1 (R) , f i n d a l l (ass ignAR (A, S , T, R) , (match (S , T, R) , e q u i p (T) , e q u i p (S)

↪→ , a s s i s t a n t (A, , s ,)) , Sum) , w r i t e C o n s t r a i n t (Sum = 14) , f a i l .
378 a s s i s t a n t s L e v e l R a t i o P e r R o u n d :−
379 % P r o p o r c i d e s i t j a d a d ' a s s i s t e n t s de 2a : 10 de c l a s s e M i 8 de c l a s s e J , S o

↪→ T
380 v a l i d R o u n d 2 (R) , f i n d a l l (ass ignAR (A, S , T, R) , (match2 (S , T, R) , a s s i s t a n t (A, ,m,

↪→)) , Sum) , w r i t e C o n s t r a i n t (Sum >= 8) ,
381 w r i t e C o n s t r a i n t (Sum =< 14) , f a i l .
382 a s s i s t a n t s L e v e l R a t i o P e r R o u n d :−
383 % P r o p o r c i d e s i t j a d a d ' a s s i s t e n t s de 2a : 10 de c l a s s e M i 8 de c l a s s e J , S o

↪→ T

98

384 v a l i d R o u n d 2 (R) , f i n d a l l (ass ignAR (A, S , T, R) , (match2 (S , T, R) , a s s i s t a n t (A, , t ,
↪→)) , Sum) , w r i t e C o n s t r a i n t (Sum =< 2) , f a i l .

385 a s s i s t a n t s L e v e l R a t i o P e r R o u n d :−
386 % P r o p o r c i d e s i t j a d a d e l AVAR : m n i m 8 de c l a s s e S
387 v a l i d R o u n d 1 (R) , f i n d a l l (assignAVAR (A, S , T, R) , (match (S , T, R) , e q u i p (T) , e q u i p (S

↪→) , a s s i s t a n t (A, , s ,)) , Sum) , w r i t e C o n s t r a i n t (Sum >= 8) , f a i l .
388 a s s i s t a n t s L e v e l R a t i o P e r R o u n d .
389

390 % −−−
391

392

393 d e f i n e I m p o r t a n c e O f M a t c h e s :−
394 r e f (Ref) , endingRound (E) , between (1 , E , R) ,
395 f i n d a l l (a s s i g n R (Ref , S , T, R) , e e r s t e m a t c h (R , , S , T, , 0) , L i t s) ,
396 e x p r e s s O r (punctuation0MR (Ref , R) , L i t s) , f a i l .
397 d e f i n e I m p o r t a n c e O f M a t c h e s :−
398 r e f (Ref) , endingRound (E) , between (1 , E , R) ,
399 f i n d a l l (a s s i g n R (Ref , S , T, R) , e e r s t e m a t c h (R , , S , T, , 1) , L i t s) ,
400 e x p r e s s O r (punctuation1MR (Ref , R) , L i t s) , f a i l .
401 d e f i n e I m p o r t a n c e O f M a t c h e s :−
402 r e f (Ref) , endingRound (E) , between (1 , E , R) ,
403 f i n d a l l (a s s i g n R (Ref , S , T, R) , erematch (R , , S , T, , 2) , L i t s) ,
404 e x p r e s s O r (punctuation2MR (Ref , R) , L i t s) , f a i l .
405 d e f i n e I m p o r t a n c e O f M a t c h e s :−
406 r e f (Ref) , endingRound (E) , between (1 , E , R) ,
407 f i n d a l l (a s s i g n R (Ref , S , T, R) , erematch (R , , S , T, , 3) , L i t s) ,
408 e x p r e s s O r (punctuation3MR (Ref , R) , L i t s) , f a i l .
409 d e f i n e I m p o r t a n c e O f M a t c h e s :−
410 r e f (Ref) , endingRound (E) , between (1 , E , R) ,
411 f i n d a l l (a s s i g n R (Ref , S , T, R) , erematch (R , , S , T, , 4) , L i t s) ,
412 e x p r e s s O r (punctuation4MR (Ref , R) , L i t s) , f a i l .
413 d e f i n e I m p o r t a n c e O f M a t c h e s :−
414 as (A) , endingRound (E) , between (1 , E , R) ,
415 f i n d a l l (ass ignAR (A, S , T, R) , e e r s t e m a t c h (R , , S , T, , 0) , L i t s) ,
416 e x p r e s s O r (punctuation0MA (A, R) , L i t s) , f a i l .
417 d e f i n e I m p o r t a n c e O f M a t c h e s :−
418 as (A) , endingRound (E) , between (1 , E , R) ,
419 f i n d a l l (ass ignAR (A, S , T, R) , e e r s t e m a t c h (R , , S , T, , 1) , L i t s) ,
420 e x p r e s s O r (punctuation1MA (A, R) , L i t s) , f a i l .
421 d e f i n e I m p o r t a n c e O f M a t c h e s :−
422 as (A) , endingRound (E) , between (1 , E , R) ,
423 f i n d a l l (ass ignAR (A, S , T, R) , erematch (R , , S , T, , 2) , L i t s) ,
424 e x p r e s s O r (punctuation2MA (A, R) , L i t s) , f a i l .
425 d e f i n e I m p o r t a n c e O f M a t c h e s :−
426 as (A) , endingRound (E) , between (1 , E , R) ,
427 f i n d a l l (ass ignAR (A, S , T, R) , erematch (R , , S , T, , 3) , L i t s) ,
428 e x p r e s s O r (punctuation3MA (A, R) , L i t s) , f a i l .
429 d e f i n e I m p o r t a n c e O f M a t c h e s :−
430 as (A) , endingRound (E) , between (1 , E , R) ,
431 f i n d a l l (ass ignAR (A, S , T, R) , erematch (R , , S , T, , 4) , L i t s) ,
432 e x p r e s s O r (punctuation4MA (A, R) , L i t s) , f a i l .
433 d e f i n e I m p o r t a n c e O f M a t c h e s .

99

434

435 % I t o n l y a p p l i e s to s l e v e l r e f e r e e s and a s s i s t a n t s
436 maxRoundsWithoutCerta inLeve lMatches :−
437 maxRoundsWithoutACerta inLeve lMatch (Max) , i n i t i a l R o u n d (I) , endingRound (E) ,
438 RM i s I−Max+1, max (1 ,RM,M) , N i s E−Max+1, r e f e r e e (Ref , , s ,) ,
439 between (M, N, R) , R2 i s R+Max−1,
440 f i n d a l l (punctuation0MR (Ref , R1) , between (R , R2 , R1) , L i t s 0) ,
441 f i n d a l l (punctuation1MR (Ref , R1) , between (R , R2 , R1) , L i t s 1) ,
442 append (L i t s 0 , L i t s 1 , L i t s) , w r i t e C o n s t r a i n t (L i t s >= 1) , f a i l .
443 maxRoundsWithoutCerta inLeve lMatches :−
444 maxRoundsWithoutACerta inLeve lMatch (Max) , i n i t i a l R o u n d (I) , endingRound (E) ,
445 RM i s I−Max+1, max (1 ,RM,M) , N i s E−Max+1, r e f e r e e (Ref , , s ,) ,
446 between (M, N, R) , R2 i s R+Max−1,
447 f i n d a l l (punctuation2MR (Ref , R1) , between (R , R2 , R1) , L i t s) ,
448 w r i t e C o n s t r a i n t (L i t s >= 1) , f a i l .
449 maxRoundsWithoutCerta inLeve lMatches :−
450 maxRoundsWithoutACerta inLeve lMatch (Max) , i n i t i a l R o u n d (I) , endingRound (E) ,
451 RM i s I−Max+1, max (1 ,RM,M) , N i s E−Max+1, r e f e r e e (Ref , , s ,) ,
452 between (M, N, R) , R2 i s R+Max−1,
453 f i n d a l l (punctuation3MR (Ref , R1) , between (R , R2 , R1) , L i t s 3) ,
454 f i n d a l l (punctuation4MR (Ref , R1) , between (R , R2 , R1) , L i t s 4) ,
455 append (L i t s 3 , L i t s 4 , L i t s) ,
456 w r i t e C o n s t r a i n t (L i t s >= 1) , f a i l .
457 maxRoundsWithoutCerta inLeve lMatches :−
458 maxRoundsWithoutACerta inLeve lMatch (Max) , i n i t i a l R o u n d (I) , endingRound (E) ,
459 RM i s I−Max+1, max (1 ,RM,M) , N i s E−Max+1, a s s i s t a n t (A, , s ,) ,
460 between (M, N, R) , R2 i s R+Max−1,
461 f i n d a l l (punctuation0MA (A, R1) , between (R , R2 , R1) , L i t s 0) ,
462 f i n d a l l (punctuation1MA (A, R1) , between (R , R2 , R1) , L i t s 1) ,
463 append (L i t s 0 , L i t s 1 , L i t s) ,
464 w r i t e C o n s t r a i n t (L i t s >= 1) , f a i l .
465 maxRoundsWithoutCerta inLeve lMatches :−
466 maxRoundsWithoutACerta inLeve lMatch (Max) , i n i t i a l R o u n d (I) , endingRound (E) ,
467 RM i s I−Max+1, max (1 ,RM,M) , N i s E−Max+1, a s s i s t a n t (A, , s ,) ,
468 between (M, N, R) , R2 i s R+Max−1,
469 f i n d a l l (punctuation2MA (A, R1) , between (R , R2 , R1) , L i t s) ,
470 w r i t e C o n s t r a i n t (L i t s >= 1) , f a i l .
471 maxRoundsWithoutCerta inLeve lMatches :−
472 maxRoundsWithoutACerta inLeve lMatch (Max) , i n i t i a l R o u n d (I) , endingRound (E) ,
473 RM i s I−Max+1, max (1 ,RM,M) , N i s E−Max+1, a s s i s t a n t (A, , s ,) ,
474 between (M, N, R) , R2 i s R+Max−1,
475 f i n d a l l (punctuation3MA (A, R1) , between (R , R2 , R1) , L i t s 3) ,
476 f i n d a l l (punctuation4MA (A, R1) , between (R , R2 , R1) , L i t s 4) ,
477 append (L i t s 3 , L i t s 4 , L i t s) ,
478 w r i t e C o n s t r a i n t (L i t s >= 1) , f a i l .
479 maxRoundsWithoutCerta inLeve lMatches .
480

481 % −−
482

483 d i f f e r e n t L e v e l V a r s :−
484 r e f P (Ref1 , P1) , r e f P (Ref2 , P2) , Ref1 > Ref2 ,
485 d e f i n e P o i n t s V a r s R (Ref1 , P1 , Ref2 , P2) , f a i l .

100

486 d i f f e r e n t L e v e l V a r s :−
487 asP (A1 , P1) , asP (A2 , P2) , A1 > A2 , d e f i n e P o i n t s V a r s A (A1 , P1 , A2 , P2) , f a i l .
488 d i f f e r e n t L e v e l V a r s .
489

490 d e f i n e P o i n t s V a r s R (Ref1 , P1 , Ref2 , P2) :−
491 P1 > P2 , ! , endingRound (E) ,
492 f i n d a l l (1∗ punctuation0MR (Ref1 , R) , between (1 , E , R) , R1S0) ,
493 f i n d a l l (2∗ punctuation1MR (Ref1 , R) , between (1 , E , R) , R1S1) ,
494 f i n d a l l (3∗ punctuation2MR (Ref1 , R) , between (1 , E , R) , R1S2) ,
495 f i n d a l l (4∗ punctuation3MR (Ref1 , R) , between (1 , E , R) , R1S3) ,
496 f i n d a l l (5∗ punctuation4MR (Ref1 , R) , between (1 , E , R) , R1S4) ,
497 f i n d a l l (−1∗punctuation0MR (Ref2 , R) , between (1 , E , R) , R2S0) ,
498 f i n d a l l (−2∗punctuation1MR (Ref2 , R) , between (1 , E , R) , R2S1) ,
499 f i n d a l l (−3∗punctuation2MR (Ref2 , R) , between (1 , E , R) , R2S2) ,
500 f i n d a l l (−4∗punctuation3MR (Ref2 , R) , between (1 , E , R) , R2S3) ,
501 f i n d a l l (−5∗punctuation4MR (Ref2 , R) , between (1 , E , R) , R2S4) ,
502 append (R1S0 , R2S0 , S0) , append (R1S1 , R2S1 , S1) , append (R1S2 , R2S2 , S2) ,
503 append (R1S3 , R2S3 , S3) , append (R1S4 , R2S4 , S4) , append (S0 , S1 , S01) ,
504 append (S2 , S3 , S23) , append (S01 , S23 , S0123) , append (S0123 , S4 , Sum) ,
505 w r i t e C o n s t r a i n t ([+1000 ∗ dpVarR (Ref1 , Ref2) | Sum] >= 0) .
506

507 d e f i n e P o i n t s V a r s R (Ref1 , , Ref2 ,) :−
508 endingRound (E) ,
509 f i n d a l l (−1∗punctuation0MR (Ref1 , R) , between (1 , E , R) , R1S0) ,
510 f i n d a l l (−2∗punctuation1MR (Ref1 , R) , between (1 , E , R) , R1S1) ,
511 f i n d a l l (−3∗punctuation2MR (Ref1 , R) , between (1 , E , R) , R1S2) ,
512 f i n d a l l (−3∗punctuation3MR (Ref1 , R) , between (1 , E , R) , R1S3) ,
513 f i n d a l l (−4∗punctuation4MR (Ref1 , R) , between (1 , E , R) , R1S4) ,
514 f i n d a l l (1∗ punctuation0MR (Ref2 , R) , between (1 , E , R) , R2S0) ,
515 f i n d a l l (2∗ punctuation1MR (Ref2 , R) , between (1 , E , R) , R2S1) ,
516 f i n d a l l (3∗ punctuation2MR (Ref2 , R) , between (1 , E , R) , R2S2) ,
517 f i n d a l l (4∗ punctuation3MR (Ref2 , R) , between (1 , E , R) , R2S3) ,
518 f i n d a l l (5∗ punctuation4MR (Ref2 , R) , between (1 , E , R) , R2S4) ,
519 append (R1S0 , R2S0 , S0) , append (R1S1 , R2S1 , S1) , append (R1S2 , R2S2 , S2) ,
520 append (R1S3 , R2S3 , S3) , append (R1S4 , R2S4 , S4) , append (S0 , S1 , S01) ,
521 append (S2 , S3 , S23) , append (S01 , S23 , S0123) , append (S0123 , S4 , Sum) ,
522 w r i t e C o n s t r a i n t ([+1000 ∗ dpVarR (Ref1 , Ref2) | Sum] >= 0) .
523

524 d e f i n e P o i n t s V a r s A (A1 , P1 , A2 , P2) :−
525 P1 > P2 , ! , endingRound (E) ,
526 f i n d a l l (1∗ punctuation0MA (A1 , R) , between (1 , E , R) , A1S0) ,
527 f i n d a l l (2∗ punctuation1MA (A1 , R) , between (1 , E , R) , A1S1) ,
528 f i n d a l l (3∗ punctuation2MA (A1 , R) , between (1 , E , R) , A1S2) ,
529 f i n d a l l (4∗ punctuation3MA (A1 , R) , between (1 , E , R) , A1S3) ,
530 f i n d a l l (5∗ punctuation4MA (A1 , R) , between (1 , E , R) , A1S4) ,
531 f i n d a l l (−1∗punctuation0MA (A2 , R) , between (1 , E , R) , A2S0) ,
532 f i n d a l l (−2∗punctuation1MA (A2 , R) , between (1 , E , R) , A2S1) ,
533 f i n d a l l (−3∗punctuation2MA (A2 , R) , between (1 , E , R) , A2S2) ,
534 f i n d a l l (−4∗punctuation3MA (A2 , R) , between (1 , E , R) , A2S3) ,
535 f i n d a l l (−5∗punctuation4MA (A2 , R) , between (1 , E , R) , A2S4) ,
536 append (A1S0 , A2S0 , S0) , append (A1S1 , A2S1 , S1) , append (A1S2 , A2S2 , S2) ,
537 append (A1S3 , A2S3 , S3) , append (A1S4 , A2S4 , S4) , append (S0 , S1 , S01) ,

101

538 append (S2 , S3 , S23) , append (S01 , S23 , S0123) , append (S0123 , S4 , Sum) ,
539 w r i t e C o n s t r a i n t ([+1000 ∗ dpVarA (A1 , A2) | Sum] >= 0) .
540

541

542 d e f i n e P o i n t s V a r s A (A1 , , A2 ,) :−
543 endingRound (E) ,
544 f i n d a l l (−1∗punctuation0MA (A1 , R) , between (1 , E , R) , A1S0) ,
545 f i n d a l l (−2∗punctuation1MA (A1 , R) , between (1 , E , R) , A1S1) ,
546 f i n d a l l (−3∗punctuation2MA (A1 , R) , between (1 , E , R) , A1S2) ,
547 f i n d a l l (−4∗punctuation3MA (A1 , R) , between (1 , E , R) , A1S3) ,
548 f i n d a l l (−5∗punctuation4MA (A1 , R) , between (1 , E , R) , A1S4) ,
549 f i n d a l l (1∗ punctuation0MA (A2 , R) , between (1 , E , R) , A2S0) ,
550 f i n d a l l (2∗ punctuation1MA (A2 , R) , between (1 , E , R) , A2S1) ,
551 f i n d a l l (3∗ punctuation2MA (A2 , R) , between (1 , E , R) , A2S2) ,
552 f i n d a l l (4∗ punctuation3MA (A2 , R) , between (1 , E , R) , A2S3) ,
553 f i n d a l l (5∗ punctuation4MA (A2 , R) , between (1 , E , R) , A2S4) ,
554 append (A1S0 , A2S0 , S0) , append (A1S1 , A2S1 , S1) , append (A1S2 , A2S2 , S2) ,
555 append (A1S3 , A2S3 , S3) , append (A1S4 , A2S4 , S4) , append (S0 , S1 , S01) ,
556 append (S2 , S3 , S23) , append (S01 , S23 , S0123) , append (S0123 , S4 , Sum) ,
557 w r i t e C o n s t r a i n t ([+1000 ∗ dpVarA (A1 , A2) | Sum] >= 0) .
558

559 numberOfGamesVars :−
560 r e f P (Ref1 , P1) , r e f P (Ref2 , P2) , Ref1>Ref2 , d e f i n e V a r s R (Ref1 , P1 , Ref2 , P2) , f a i l .
561 numberOfGamesVars :−
562 asP (A1 , P1) , asP (A2 , P2) , A1 > A2 , d e f i n e V a r s A (A1 , P1 , A2 , P2) , f a i l .
563 numberOfGamesVars .
564

565 d e f i n e V a r s R (Ref1 , P1 , Ref2 , P2) :−
566 P1 > P2 , ! , endingRound (E) ,
567 f i n d a l l (mainRefereeWR (Ref1 , R) , between (1 , E , R) , Sum1) ,
568 f i n d a l l (−1∗mainRefereeWR (Ref2 , R) , between (1 , E , R) , Sum2) ,
569 append (Sum1 , Sum2 , Sum) ,
570 w r i t e C o n s t r a i n t ([+1000 ∗ dgVarR (Ref1 , Ref2) | Sum] >= 0) .
571 d e f i n e V a r s R (Ref1 , , Ref2 ,) :−
572 endingRound (E) ,
573 f i n d a l l (−1∗mainRefereeWR (Ref1 , R) , between (1 , E , R) , Sum1) ,
574 f i n d a l l (mainRefereeWR (Ref2 , R) , between (1 , E , R) , Sum2) ,
575 append (Sum1 , Sum2 , Sum) ,
576 w r i t e C o n s t r a i n t ([+1000 ∗ dgVarR (Ref1 , Ref2) | Sum] >= 0) .
577 d e f i n e V a r s A (A1 , P1 , A2 , P2) :−
578 P1 > P2 , ! , endingRound (E) ,
579 f i n d a l l (mainAss istantWR (A1 , R) , between (1 , E , R) , Sum1) ,
580 f i n d a l l (−1∗mainAssistantWR (A2 , R) , between (1 , E , R) , Sum2) ,
581 append (Sum1 , Sum2 , Sum) ,
582 w r i t e C o n s t r a i n t ([+1000 ∗ dgVarA (A1 , A2) | Sum] >= 0) .
583 d e f i n e V a r s A (A1 , , A2 ,) :−
584 endingRound (E) ,
585 f i n d a l l (−1∗mainAssistantWR (A1 , R) , between (1 , E , R) , Sum1) ,
586 f i n d a l l (mainAss istantWR (A2 , R) , between (1 , E , R) , Sum2) ,
587 append (Sum1 , Sum2 , Sum) ,
588 w r i t e C o n s t r a i n t ([+1000 ∗ dgVarA (A1 , A2) | Sum] >= 0) .
589

102

590

591 m e n y s D e 4 d i e s D e D i f e r e n c i a (mon , t ue) .
592 m e n y s D e 4 d i e s D e D i f e r e n c i a (mon , wed) .
593 m e n y s D e 4 d i e s D e D i f e r e n c i a (mon , thu) .
594 m e n y s D e 4 d i e s D e D i f e r e n c i a (sun , tu e) .
595 m e n y s D e 4 d i e s D e D i f e r e n c i a (sun , wed) .
596 m e n y s D e 4 d i e s D e D i f e r e n c i a (sat , tue) .
597 m e n y s D e 4 d i e s D e D i f e r e n c i a (tue , f r i) .
598 m e n y s D e 4 d i e s D e D i f e r e n c i a (wed , s a t) .
599 m e n y s D e 4 d i e s D e D i f e r e n c i a (wed , f r i) .
600 m e n y s D e 4 d i e s D e D i f e r e n c i a (thu , f r i) .
601 m e n y s D e 4 d i e s D e D i f e r e n c i a (thu , s a t) .
602 m e n y s D e 4 d i e s D e D i f e r e n c i a (thu , sun) .
603

604

605 m i n i m i z e 2 g a m e s I n 4 d a y s :−
606 endingRound (E) , r e f (Ref) , between (1 , E , R1) , R1 < E , R2 i s R1+1,
607 p a r t i t (R1 , S1 , T1 , D1) , p a r t i t (R1 , S2 , T2 , D2) ,
608 m e n y s D e 4 d i e s D e D i f e r e n c i a (D1 , D2) ,
609 w r i t e C l a u s e ([− a s s i g n R (Ref , S1 , T1 , R1)] , [pen2gi4dR (Ref , R1)]) ,
610 w r i t e C l a u s e ([− a s s i g n R (Ref , S2 , T2 , R2)] , [pen2gi4dR (Ref , R1)]) , f a i l .
611 m i n i m i z e 2 g a m e s I n 4 d a y s :−
612 endingRound (E) , as (A) , between (1 , E , R1) , R1 < E , R2 i s R1+1,
613 p a r t i t (R1 , S1 , T1 , D1) , p a r t i t (R1 , S2 , T2 , D2) ,
614 m e n y s D e 4 d i e s D e D i f e r e n c i a (D1 , D2) ,
615 w r i t e C l a u s e ([− ass ignAR (A, S1 , T1 , R1)] , [pen2gi4dA (A, R1)]) ,
616 w r i t e C l a u s e ([− ass ignAR (A, S2 , T2 , R2)] , [pen2gi4dA (A, R1)]) , f a i l .
617 m i n i m i z e 2 g a m e s I n 4 d a y s .
618

619

620 % ================================ W r i t t i n g ==================================
621

622 %w r i t e O b j e c t i v e F u n c t i o n :− w r i t e (' o b j : 0 x ') , n l , ! .
623 w r i t e O b j e c t i v e F u n c t i o n :− write ('obj: ') , r e f (Ref1) , r e f (Ref2) , Ref1 > Ref2 ,
624 write (' + ') , write (dgVarR (Ref1 , Ref2)) , f a i l .
625 w r i t e O b j e c t i v e F u n c t i o n :− r e f (Ref1) , r e f (Ref2) , Ref1 > Ref2 , write (' + ') ,
626 write (dpVarR (Ref1 , Ref2)) , f a i l .
627 w r i t e O b j e c t i v e F u n c t i o n :− as (A1) , as (A2) , A1 > A2 , write (' + ') ,
628 write (dgVarA (A1 , A2)) , f a i l .
629 w r i t e O b j e c t i v e F u n c t i o n :− as (A1) , as (A2) , A1 > A2 , write (' + ') ,
630 write (dpVarA (A1 , A2)) , f a i l .
631 w r i t e O b j e c t i v e F u n c t i o n :− endingRound (E) , r e f (Ref) , between (1 , E , R) , R < E ,
632 write (' + ') , write (pen2gi4dR (Ref , R)) , f a i l .
633 w r i t e O b j e c t i v e F u n c t i o n :− endingRound (E) , as (A) , between (1 , E , R) , R < E ,
634 write (' + ') , write (pen2gi4dA (A, R)) , f a i l .
635 w r i t e O b j e c t i v e F u n c t i o n :− n l .
636

637 w r i t e C o s t (M) :− a s s e r t z (c o s t (M)) , writeMon (M) , nl , ! .
638

639 w r i t e I n t e g e r V a r s .
640

641 w r i t e B o o l e a n V a r s :− r e f (Ref) , endingRound (E) , between (1 , E , R) , game (S , T, R) ,

103

642 e q u i p (T) , e q u i p (S) , write (a s s i g n R (Ref , S , T, R)) , nl , f a i l .
643 w r i t e B o o l e a n V a r s :− as (A) , endingRound (E) , between (1 , E , R) , game (S , T, R) ,
644 e q u i p (T) , e q u i p (S) , write (ass ignAR (A, S , T, R)) , nl , f a i l .
645 w r i t e B o o l e a n V a r s :− r e f (Ref) , endingRound (E) , between (1 , E , R) , game (S , T, R) ,
646 e q u i p (T) , e q u i p (S) , write (a s s i g n 4 (Ref , S , T, R)) , nl , f a i l .
647 w r i t e B o o l e a n V a r s :− r e f (Ref) , endingRound (E) , between (1 , E , R) ,
648 game (S , T, R) , e q u i p (T) , e q u i p (S) , write (assignVAR (Ref , S , T, R)) , nl , f a i l .
649 w r i t e B o o l e a n V a r s :− as (A) , endingRound (E) , between (1 , E , R) ,
650 game (S , T, R) , e q u i p (T) , e q u i p (S) , write (assignAVAR (A, S , T, R)) , nl , f a i l .
651 w r i t e B o o l e a n V a r s :− r e f (Ref) , endingRound (E) , between (1 , E , R) ,
652 write (mainRefereeWR (Ref , R)) , nl , f a i l .
653 w r i t e B o o l e a n V a r s :− as (A) , endingRound (E) , between (1 , E , R) ,
654 write (mainAss istantWR (A, R)) , nl , f a i l .
655 w r i t e B o o l e a n V a r s :− r e f (Ref) , endingRound (E) , between (1 , E , R) ,
656 write (refereeWR (Ref , R)) , nl , f a i l .
657 w r i t e B o o l e a n V a r s :− as (A) , endingRound (E) , between (1 , E , R) ,
658 write (as s i s tantWR (A, R)) , nl , f a i l .
659 w r i t e B o o l e a n V a r s :− r e f (Ref) , endingRound (E) , between (1 , E , R) ,
660 write (punctuation4MR (Ref , R)) , nl , f a i l .
661 w r i t e B o o l e a n V a r s :− r e f (Ref) , endingRound (E) , between (1 , E , R) ,
662 write (punctuation3MR (Ref , R)) , nl , f a i l .
663 w r i t e B o o l e a n V a r s :− r e f (Ref) , endingRound (E) , between (1 , E , R) ,
664 write (punctuation2MR (Ref , R)) , nl , f a i l .
665 w r i t e B o o l e a n V a r s :− r e f (Ref) , endingRound (E) , between (1 , E , R) ,
666 write (punctuation1MR (Ref , R)) , nl , f a i l .
667 w r i t e B o o l e a n V a r s :− r e f (Ref) , endingRound (E) , between (1 , E , R) ,
668 write (punctuation0MR (Ref , R)) , nl , f a i l .
669 w r i t e B o o l e a n V a r s :− as (A) , endingRound (E) , between (1 , E , R) ,
670 write (punctuation4MA (A, R)) , nl , f a i l .
671 w r i t e B o o l e a n V a r s :− as (A) , endingRound (E) , between (1 , E , R) ,
672 write (punctuation3MA (A, R)) , nl , f a i l .
673 w r i t e B o o l e a n V a r s :− as (A) , endingRound (E) , between (1 , E , R) ,
674 write (punctuation2MA (A, R)) , nl , f a i l .
675 w r i t e B o o l e a n V a r s :− as (A) , endingRound (E) , between (1 , E , R) ,
676 write (punctuation1MA (A, R)) , nl , f a i l .
677 w r i t e B o o l e a n V a r s :− as (A) , endingRound (E) , between (1 , E , R) ,
678 write (punctuation0MA (A, R)) , nl , f a i l .
679 w r i t e B o o l e a n V a r s :− r e f (Ref1) , r e f (Ref2) , Ref1 > Ref2 ,
680 write (dgVarR (Ref1 , Ref2)) , nl , f a i l .
681 w r i t e B o o l e a n V a r s :− r e f (Ref1) , r e f (Ref2) , Ref1 > Ref2 ,
682 write (dpVarR (Ref1 , Ref2)) , nl , f a i l .
683 w r i t e B o o l e a n V a r s :− as (A1) , as (A2) , A1 > A2 , write (dgVarA (A1 , A2)) , nl , f a i l .
684 w r i t e B o o l e a n V a r s :− as (A1) , as (A2) , A1 > A2 , write (dpVarA (A1 , A2)) , nl , f a i l .
685 w r i t e B o o l e a n V a r s :− r e f (Ref) , endingRound (E1) , E i s E1−1, between (1 , E , R) ,
686 write (pen2gi4dR (Ref , R)) , nl , f a i l .
687 w r i t e B o o l e a n V a r s :− as (A) , endingRound (E1) , E i s E1−1, between (1 , E , R) ,
688 write (pen2gi4dA (A, R)) , nl , f a i l .
689 w r i t e B o o l e a n V a r s .
690

691 wr i teBo unds :− r e f (Ref) , endingRound (E) , between (1 , E , R) , game (S , T, R) , e q u i p (T) ,
692 e q u i p (S) , write ('0 <= ') , write (a s s i g n R (Ref , S , T, R)) , write (' <= 1') ,
693 nl , f a i l .

104

694 wr i teBo unds :− as (A) , endingRound (E) , between (1 , E , R) , game (S , T, R) , e q u i p (T) ,
695 e q u i p (S) , write ('0 <= ') , write (ass ignAR (A, S , T, R)) , write (' <= 1') ,
696 nl , f a i l .
697 wr i teBo unds :− r e f (Ref) , endingRound (E) , between (1 , E , R) , game (S , T, R) , e q u i p (T) ,
698 e q u i p (S) , write ('0 <= ') , write (a s s i g n 4 (Ref , S , T, R)) , write (' <= 1') ,
699 nl , f a i l .
700 wr i teBo unds :− r e f (Ref) , endingRound (E) , between (1 , E , R) , game (S , T, R) , e q u i p (T) ,
701 e q u i p (S) , write ('0 <= ') , write (assignVAR (Ref , S , T, R)) , write (' <= 1') ,
702 nl , f a i l .
703 wr i teBo unds :− as (A) , endingRound (E) , between (1 , E , R) , game (S , T, R) , e q u i p (T) ,
704 e q u i p (S) , write ('0 <= ') , write (assignAVAR (A, S , T, R)) , write (' <= 1') ,
705 nl , f a i l .
706 wr i teBo unds :− r e f (Ref) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
707 write (mainRefereeWR (Ref , R)) , write (' <= 1') , nl , f a i l .
708 wr i teBo unds :− as (A) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
709 write (mainAss istantWR (A, R)) , write (' <= 1') , nl , f a i l .
710 wr i teBo unds :− r e f (Ref) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
711 write (refereeWR (Ref , R)) , write (' <= 1') , nl , f a i l .
712 wr i teBo unds :− as (A) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
713 write (as s i s tantWR (A, R)) , write (' <= 1') , nl , f a i l .
714 wr i teBo unds :− r e f (Ref) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
715 write (punctuation4MR (Ref , R)) , write (' <= 1') , nl , f a i l .
716 wr i teBo unds :− r e f (Ref) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
717 write (punctuation3MR (Ref , R)) , write (' <= 1') , nl , f a i l .
718 wr i teBo unds :− r e f (Ref) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
719 write (punctuation2MR (Ref , R)) , write (' <= 1') , nl , f a i l .
720 wr i teBo unds :− r e f (Ref) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
721 write (punctuation1MR (Ref , R)) , write (' <= 1') , nl , f a i l .
722 wr i teBo unds :− r e f (Ref) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
723 write (punctuation0MR (Ref , R)) , write (' <= 1') , nl , f a i l .
724 wr i teBo unds :− as (A) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
725 write (punctuation4MA (A, R)) , write (' <= 1') , nl , f a i l .
726 wr i teBo unds :− as (A) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
727 write (punctuation3MA (A, R)) , write (' <= 1') , nl , f a i l .
728 wr i teBo unds :− as (A) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
729 write (punctuation2MA (A, R)) , write (' <= 1') , nl , f a i l .
730 wr i teBo unds :− as (A) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
731 write (punctuation1MA (A, R)) , write (' <= 1') , nl , f a i l .
732 wr i teBo unds :− as (A) , endingRound (E) , between (1 , E , R) , write ('0 <= ') ,
733 write (punctuation0MA (A, R)) , write (' <= 1') , nl , f a i l .
734 wr i teBo unds :− r e f (Ref1) , r e f (Ref2) , Ref1 > Ref2 , write ('0 <= ') ,
735 write (dgVarR (Ref1 , Ref2)) , write (' <= 1') , nl , f a i l .
736 wr i teBo unds :− r e f (Ref1) , r e f (Ref2) , Ref1 > Ref2 , write ('0 <= ') ,
737 write (dpVarR (Ref1 , Ref2)) , write (' <= 1') , nl , f a i l .
738 wr i teBo unds :− as (A1) , as (A2) , A1 > A2 , write ('0 <= ') , write (dgVarA (A1 , A2)) ,
739 write (' <= 1') , nl , f a i l .
740 wr i teBo unds :− as (A1) , as (A2) , A1 > A2 , write ('0 <= ') , write (dpVarA (A1 , A2)) ,
741 write (' <= 1') , nl , f a i l .
742 wr i teBo unds :− r e f (Ref) , endingRound (E1) , E i s E1−1, between (1 , E , R) ,
743 write ('0 <= ') , write (pen2gi4dR (Ref , R)) , write (' <= 1') , nl , f a i l .
744 wr i teBo unds :− as (A) , endingRound (E1) , E i s E1−1, between (1 , E , R) ,
745 write ('0 <= ') , write (pen2gi4dA (A, R)) , write (' <= 1') , nl , f a i l .

105

746 wr i teBo unds .
747

748 wl ([]) .
749 wl ([X | L]) :− write (X) , write (' ') , wl (L) , ! .
750

751

752 e x p r e s s O r (Var , L i t s) :− member (L i t , L i t s) , w r i t e C l a u s e ([−L i t] , [Var]) , f a i l .
753 e x p r e s s O r (Var , L i t s) :− w r i t e C l a u s e ([−Var] , L i t s) , ! .
754

755 % ================================ D i s p l a y S o l ==================================
756

757 d i s p l a y S o l () :− r e t r a c t a l l (s o l (,)) , f a i l .
758 d i s p l a y S o l (M) :− member (X=V,M) , a s s e r t z (s o l (X, V)) , f a i l .
759

760 %% D i s p l a y s f o r each round a l l t he matches i n both d i v i s i o n s w i t h a l l t he
↪→ a s s i g n m e n t s

761 d i s p l a y S o l () :−
762 endingRound (E) , between (1 , E ,W) , nl , write ('Week ') , write (W) , write (': ') ,
763 nl , d i s p l a y S o l E r e M a t c h e s (W) , d i s p l a y S o l E e r s t e M a t c h e s (W) , f a i l .
764

765 d i s p l a y S o l () :− nl , nl , write ('======================================') , nl ,
↪→ f a i l .

766

767 %% D i s p a y s t he rounds each r e f e r e e has a match i n and th e i m p o r t a n c e o f t he
↪→ match

768 d i s p l a y S o l () :− write (' ') , r e f e r e e (Ref , , s ,) , w r i t e S p a c e 3 (Ref) ,
769 f a i l .
770 d i s p l a y S o l () :− endingRound (E) , between (1 , E , R) , nl , write ('Week ') , w r i t e S p a c e 3 (

↪→ R) , r e f e r e e (Ref , , s ,) , w r i t e M a t c h L e v e l (Ref , R) , f a i l .
771

772 d i s p l a y S o l () :− nl , nl , write ('======================================') , nl ,
773 f a i l .
774

775 %% D i s p l a y s the p u n c t u a t i o n o f t he r e f e r e e and th e number o f matches he has
↪→ a s s i g n e d (f o r each match p u n c t u a t i o n)

776 d i s p l a y S o l () :−
777 r e f e r e e (Ref , , s , P) , nl , write ('Referee ') , write (Ref) ,
778 write (' with punctuation ') , write (P) , write (' - ') , endingRound (E) ,
779 f i n d a l l (punctuation0MR (Ref , R) , (s o l (punctuation0MR (Ref , R) , 1) , between

↪→ (1 , E , R)) , L i t s 0) , length (L i t s 0 , L0) , write (' P0 : ') , write (L0) ,
780 f i n d a l l (punctuation1MR (Ref , R) , (s o l (punctuation1MR (Ref , R) , 1) , between (1 , E ,

↪→ R)) , L i t s 1) , length (L i t s 1 , L1) , write (' P1 : ') , write (L1) ,
781 f i n d a l l (punctuation2MR (Ref , R) , (s o l (punctuation2MR (Ref , R) , 1) , between (1 , E ,

↪→ R)) , L i t s 2) , length (L i t s 2 , L2) , write (' P2 : ') , write (L2) ,
782 f i n d a l l (punctuation3MR (Ref , R) , (s o l (punctuation3MR (Ref , R) , 1) , between (1 , E ,

↪→ R)) , L i t s 3) , length (L i t s 3 , L3) , write (' P3 : ') , write (L3) ,
783 f i n d a l l (punctuation4MR (Ref , R) , (s o l (punctuation4MR (Ref , R) , 1) , between (1 , E ,

↪→ R)) , L i t s 4) , length (L i t s 4 , L4) , write (' P4 : ') , write (L4) ,
784 f i n d a l l (mainRefereeWR (Ref , R) , (s o l (mainRefereeWR (Ref , R) , 1) , between (1 , E , R))

↪→ , L i t s 5) , length (L i t s 5 , L5) , write (' => total : ') , write (L5) , f a i l .
785

786 d i s p l a y S o l () :− nl , nl , write ('======================================') , nl ,

106

↪→ f a i l .
787

788 d i s p l a y S o l () .
789

790 d i s p l a y S o l E r e M a t c h e s (W) :−
791 e r e d i v i s i e R o u n d W e e k E q u i v a l e n c e (W, R1) , ! ,
792 nl , write (' Eredivisie (Round ') , write (R1) , write (') :') , nl ,
793 d i s p l a y G a m e s (W) .
794 d i s p l a y S o l E r e M a t c h e s () :− nl , write (' There are no Eredivisie matches this week

↪→ .') , n l .
795

796 d i s p l a y S o l E e r s t e M a t c h e s (W) :−
797 e e r s t e D i v i s i e R o u n d W e e k E q u i v a l e n c e (W, R2) , ! ,
798 nl , write (' Eerste divisie (Round ') , write (R2) , write (') :') , nl ,
799 d i s p l a y G a m e s 2 (W) .
800 d i s p l a y S o l E e r s t e M a t c h e s () :− nl , write (' There are no Eerste Divisie matches

↪→ this week.') , n l .
801

802 e r e d i v i s i e R o u n d W e e k E q u i v a l e n c e (W, R1) :− erematch (W, R1 , , , ,) , ! .
803 e e r s t e D i v i s i e R o u n d W e e k E q u i v a l e n c e (W, R2) :− e e r s t e m a t c h (W, R2 , , , ,) , ! .
804

805 d i s p l a y G a m e s (W) :−
806 erematch (W, , S , T, D,) ,
807 e q u i p (S) , e q u i p (T) ,
808 s o l (a s s i g n R (Ref , S , T,W) , 1) ,
809 s o l (ass ignAR (A1 , S , T,W) , 1) ,
810 s o l (ass ignAR (A2 , S , T,W) , 1) , A1 < A2 ,
811 s o l (a s s i g n 4 (Ref4 , S , T,W) , 1) ,
812 s o l (assignVAR (VAR, S , T,W) , 1) ,
813 s o l (assignAVAR (AVAR, S , T,W) , 1) ,
814 write (' ') , w r i t e A s s i g n m e n t (Ref , A1 , A2 , Ref4 ,VAR, AVAR, S , T,D) , f a i l .
815 d i s p l a y G a m e s () .
816

817 d i s p l a y G a m e s 2 (W) :−
818 e e r s t e m a t c h (W, , S , T, D,) ,
819 e q u i p (S) , e q u i p (T) ,
820 s o l (a s s i g n R (Ref , S , T,W) , 1) ,
821 s o l (ass ignAR (A1 , S , T,W) , 1) ,
822 s o l (ass ignAR (A2 , S , T,W) , 1) , A1 < A2 ,
823 s o l (a s s i g n 4 (Ref4 , S , T,W) , 1) ,
824 write (' ') , w r i t e A s s i g n m e n t 2 (Ref , A1 , A2 , Ref4 , S , T,D) , f a i l .
825 d i s p l a y G a m e s 2 () .
826

827 w r i t e A s s i g n m e n t (Ref , A1 , A2 , Ref4 ,VAR, AVAR, S , T,D) :−
828 write (S) , write (' - ') , write (T) ,
829 %w r i t e (' : ') ,
830 write (' (') , write (D) , write (') : ') ,
831 write (' R: ') , r e f e r e e (Ref , , X ,) , w r i t e S p a c e (Ref , X) ,
832 write ('A1: ') , a s s i s t a n t (A1 , , Y1 ,) , w r i t e S p a c e (A1 , Y1) ,
833 write ('A2: ') , a s s i s t a n t (A2 , , Y2 ,) , w r i t e S p a c e (A2 , Y2) ,
834 write ('R4: ') , r e f e r e e (Ref4 , , X4 ,) , w r i t e S p a c e (Ref4 , X4) ,
835 write ('VAR: ') , r e f e r e e (VAR, , XV,) , w r i t e S p a c e (VAR,XV) ,

107

836 write ('AVAR: ') , a s s i s t a n t (AVAR, , YV,) , w r i t e S p a c e (AVAR,YV) , n l .
837

838 w r i t e A s s i g n m e n t 2 (Ref , A1 , A2 , Ref4 , S , T,D) :−
839 write (S) , write (' - ') , write (T) ,
840 %w r i t e (' : ') ,
841 write (' (') , write (D) , write (') : ') ,
842 write (' R: ') , r e f e r e e (Ref , , X ,) , w r i t e S p a c e (Ref , X) ,
843 write ('A1: ') , a s s i s t a n t (A1 , , Y1 ,) , w r i t e S p a c e (A1 , Y1) ,
844 write ('A2: ') , a s s i s t a n t (A2 , , Y2 ,) , w r i t e S p a c e (A2 , Y2) ,
845 write ('R4: ') , r e f e r e e (Ref4 , , X4 ,) , w r i t e S p a c e (Ref4 , X4) , n l .
846

847 w r i t e M a t c h L e v e l (Ref , R) :− s o l (punctuation0MR (Ref , R) , 1) , ! , write (' 0 ') .
848 w r i t e M a t c h L e v e l (Ref , R) :− s o l (punctuation1MR (Ref , R) , 1) , ! , write (' 1 ') .
849 w r i t e M a t c h L e v e l (Ref , R) :− s o l (punctuation2MR (Ref , R) , 1) , ! , write (' 2 ') .
850 w r i t e M a t c h L e v e l (Ref , R) :− s o l (punctuation3MR (Ref , R) , 1) , ! , write (' 3 ') .
851 w r i t e M a t c h L e v e l (Ref , R) :− s o l (punctuation4MR (Ref , R) , 1) , ! , write (' 4 ') .
852 w r i t e M a t c h L e v e l (,) :− write (' ') .
853

854 w r i t e S p a c e (N, X) :− N > 9 , ! , write (N) , write ('(') , write (X) , write (')') ,
855 write (' ') .
856 w r i t e S p a c e (N, X) :− write (N) , write ('(') , write (X) , write (')') , write (' ') .
857

858 w r i t e S p a c e 2 (N) :− N > 9 , ! , write (' ') , write (N) .
859 w r i t e S p a c e 2 (N) :− write (' ') , write (N) .
860

861 w r i t e S p a c e 3 (N) :− N > 9 , ! , write (' ') , write (N) , write (' ') .
862 w r i t e S p a c e 3 (N) :− write (' ') , write (N) , write (' ') .
863

864 % =========================== No need to change t he f o l l o w i n g :
↪→ ==============================

865

866

867 main:− s y m b o l i c O u t p u t (1) , ! ,
868 /∗ planningMonth (Mes) ,
869 % c u r r e n t p r o l o g f l a g (argv , [, Mes |]) ,
870 w r i t e (planningMonth−Mes) , n l ,
871 r e t r a c t a l l (month ()) , a s s e r t z (month (Mes)) , ∗/
872 w r i t e C o n s t r a i n t s , nl , h a l t .
873 main:−
874 % c u r r e n t p r o l o g f l a g (argv , [, Mes |]) ,
875 /∗ planningMonth (Mes) ,
876 w r i t e (planningMonth−Mes) , n l ,
877 r e t r a c t a l l (month ()) ,
878 a s s e r t z (month (Mes)) , ∗/
879 u n i x ('rm -f solCplex.sol fileForCplex salCplex c.lp cplex.log') ,
880 write ('generating constraints...') , nl ,
881

882 t e l l ('c.lp') ,
883 write ('Minimize') , nl , w r i t e O b j e c t i v e F u n c t i o n ,
884 write ('Subject To') , nl , w r i t e C o n s t r a i n t s ,
885 write ('Bounds') , nl , wr i teBounds ,
886 write ('Generals') , nl , w r i t e I n t e g e r V a r s ,

108

887 write ('Binary') , nl , w r i t e B o o l e a n V a r s ,
888 write ('End') , nl , told ,
889 write ('constraints generated') , nl , nl , nl , nl ,
890

891

892 t e l l (f i l e F o r C p l e x) , maxComputationTime (T) ,
893 write ('read c.lp') , nl ,
894 write ('set timelimit ') , write (T) , write (' s') , nl ,
895 write ('set mip tolerance mipgap 0.03. ') , nl ,
896 write ('opt') , nl , write ('write solCplex.sol') , nl , write ('quit') , nl , told ,
897 % u n i x (' c p l e x < f i l e F o r C p l e x > s a l C p l e x ') ,
898 u n i x ('cplex < fileForCplex ;')
899 c h e c k I f S o l u t i o n , nl , nl ,
900 h a l t .
901 main:− write ('constraints generation failed') , nl , h a l t .
902

903

904

905 c h e c k I f S o l u t i o n :−
906 e x i s t s f i l e ('solCplex.sol') , ! ,
907 u n i x ('xml2simple.pl solCplex.sol > sol.pl') ,
908 see ('sol.pl') , readModel ([] ,M) , seen ,
909 nl , nl , nl , write ('Solution found. Press <enter> to see it') , nl , nl , nl ,
910 g e t c h a r () ,
911 i d e n t i f i e r (I d) ,
912 t e l l ('sol.txt') , write (I d) , nl , nl , d i s p l a y S o l (M) , told ,
913 d i s p l a y S o l (M) , ! .
914 c h e c k I f S o l u t i o n :− s h e l l ('grep "Integer infeasible" cplex.log > salgrep' , 0) , nl ,

↪→ nl , %g re p r e t u r n s 0
915 write ('Solver: No solution exists') , ! .
916 c h e c k I f S o l u t i o n :− maxComputationTime (T) , nl , nl ,
917 write ('Solver: No solution found under the given time limit of ') , write (T) ,
918 write (' s.') , ! .
919

920 u n i x (Command) :− s h e l l (Command) , ! .
921 u n i x () .
922

923 w r i t e C o n s t r a i n t (C) :− C =. . [Op , Sum ,K] , writeSum (Sum) , write (' ') , wr i teOp (Op) ,
↪→ write (' ') , write (K) , n l .

924 writeSum ([]) :− ! .
925 writeSum ([M| L]) :− writeMon (M) , nl , writeSum (L) , ! .
926 writeMon (A∗X) :− A>=0, ! , write (' + ') , write (A) , write (' ') , write (X

↪→) , ! .
927 writeMon (A∗X) :− A<0, ! , AB i s −A, write (' - ') , write (AB) , write (' ') , write (X

↪→) , ! .
928 writeMon (X) :− ! , write (' + ') , write (1) , write (' ') , write (X

↪→) , ! .
929

930 w r i t e C l a u s e (Neg ,) :− member (L i t , Neg) , L i t \= − ,
931 write (e r r o r ('negative lit')) , nl , h a l t .
932 w r i t e C l a u s e (, Pos) :− member (L i t , Pos) , L i t = − ,
933 write (e r r o r ('positive lit')) , nl , h a l t .

109

934 w r i t e C l a u s e (Neg , Pos) :− length (Neg ,N) , K i s 1−N,
935 f i n d a l l (−1∗L i t , member(−L i t , Neg) , N e g L i t s) , append (NegLi t s , Pos , Sum) ,
936 w r i t e C o n s t r a i n t (Sum >= K) , ! .
937

938 readModel (L1 , L2) :− read (XV) , add I fNeeded (XV, L1 , L2) , ! .
939 add I fNeeded (e n d o f f i l e , L , L) : − ! .
940 add I fNeeded (XV, L1 , L2) :− readModel ([XV | L1] , L2) , ! .
941

942 writeOp (=<):−write ('<=') , ! .
943 writeOp (Op) :−write (Op) , ! .

Listing 24: C++ program to prepare the data from previous sub-problems

1 #inc lude <i o s t r e a m>
2 #inc lude <f s t r e a m>
3 #inc lude <s t r i n g >
4 using namespace s t d ;
5

6 i n t main () {
7 i f s t r e a m i n F i l e ;
8 i n F i l e . open ("sol.pl") ;
9 o f s t r e a m o u t F i l e ;

10 o u t F i l e . open ("previousRounds.pl") ;
11 s t r i n g i n p u t ;
12 s t r i n g s i g n ;
13 s t r i n g v a l u e ;
14 i n F i l e >> i n p u t >> s i g n >> v a l u e ; // x = 0 .
15 whi le (i n F i l e >> i n p u t) {
16 i n F i l e >> s i g n >> v a l u e ;
17 i f (v a l u e == "0.") o u t F i l e << "not" << i n p u t << "." << e n d l ;
18 e l s e o u t F i l e << "yes" << i n p u t << "." << e n d l ;
19 }
20 }

110

Listing 25: File for if no data from previous rounds is needed

1 n o t a s s i g n R (0 , 0 , 0 , 0) .
2 n o t a s s i g n 4 (0 , 0 , 0 , 0) .
3 notass ignVAR (0 , 0 , 0 , 0) .
4 notass ignAR (0 , 0 , 0 , 0) .
5 notassignAVAR (0 , 0 , 0 , 0) .
6 notmainRefereeWR (0 , 0) .
7 notmainAss istantWR (0 , 0) .
8 notre fe reeWR (0 , 0) .
9 n o t a s s i s t a n t W R (0 , 0) .

10 notpunctuat ion4MR (0 , 0) .
11 notpunctuat ion3MR (0 , 0) .
12 notpunctuat ion2MR (0 , 0) .
13 notpunctuat ion1MR (0 , 0) .
14 notpunctuat ion0MR (0 , 0) .
15 notpunctuat ion4MA (0 , 0) .
16 notpunctuat ion3MA (0 , 0) .
17 notpunctuat ion2MA (0 , 0) .
18 notpunctuat ion1MA (0 , 0) .
19 notpunctuat ion0MA (0 , 0) .
20 y e s a s s i g n R (0 , 0 , 0 , 0) .
21 y e s a s s i g n 4 (0 , 0 , 0 , 0) .
22 yesass ignVAR (0 , 0 , 0 , 0) .
23 y e s a s s i g n A R (0 , 0 , 0 , 0) .
24 yesass ignAVAR (0 , 0 , 0 , 0) .
25 yesmainRefereeWR (0 , 0) .
26 yesmainAss i s tantWR (0 , 0) .
27 y es re fe r ee WR (0 , 0) .
28 y e s a s s i s t a n t W R (0 , 0) .
29 yespunctuat ion4MR (0 , 0) .
30 yespunctuat ion3MR (0 , 0) .
31 yespunctuat ion2MR (0 , 0) .
32 yespunctuat ion1MR (0 , 0) .
33 yespunctuat ion0MR (0 , 0) .
34 yespunctuat ion4MA (0 , 0) .
35 yespunctuat ion3MA (0 , 0) .
36 yespunctuat ion2MA (0 , 0) .
37 yespunctuat ion1MA (0 , 0) .
38 yespunctuat ion0MA (0 , 0) .

111

	Introduction
	Referee Assignment Problem
	Related work on the RAP
	Other problems related to the RAP

	Definitions
	Basic problem
	Problem description
	Hard constraints
	Soft constraints
	Model

	KNVB problem
	Problem description
	Hard constraints
	Soft constraints
	Model

	Complexity of the problem
	Local Search solution for the basic problem
	Local Search Algorithms
	Hill Climbing
	Simulated Annealing

	ILP solution for the basic problem
	ILP solution for the KNVB problem
	Experiments
	Basic Problem
	KNVB Problem

	Conclusions and Further Work
	References
	Local Search Code
	ILP Code for the Basic Problem
	ILP Code for the KNVB Problem

