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Abstract: 

The demographic and economic growth in Yucatan peninsula (YP) in recent years has 

caused changes on the hydrological response and flow of the water cycle. The growth 

effects and its impact on the society are poorly understood. Here we present an estimation 

of water consumption and its evolution based on the analysis of Yucatan Peninsula’s 

societal metabolism, using the interdisciplinary tool MuSIASEM. Societal metabolism 

together with metabolic patterns generate a new narrative on how the YP development is 

linked to the uses of water, considering social functions, as well as the biophysical limits 

established by the annual recharge of groundwater, being it the main source of water 

supply. Given the current trends in YP socio-economic growth and climate change 

scenarios, our results show superlinear scaling relations between water metabolic rate and 

water consumption which leads increase in water consumption and 23% decrease in 

groundwater recharge by year 2030.  The consequences of this scenario are particularly 

worrying for the near future, given the current socio-economic structure in YP, highly 

dependent both on the services (i.e., tourism) and agriculture sectors.  

Keywords: MuSIASEM; Groundwater recharge; Yucatan Peninsula; water consumption;  

societal metabolism 
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1. Introduction 

1.1. Interdisciplinary approach in water resources 

Water is a determining factor for the functioning of any society. It participates in productive 

activities such as irrigation, livestock, fisheries, hydropower generation and in households. At 

the same time, it fulfills the basic function of maintaining the integrity of the natural 

environment. However, the growth and development of societies have changed the hydrological 

response and flow of the water cycle through different means (Grobick, 2010; Savenije et al., 

2014). These include fundamentally the direct diversion of water flows to water supply, network 

transformation of the stream and changes in the characteristics of natural drainage, through 

deforestation and urbanization (Savenije et al., 2014). 

Huang, Vause, Ma, and Yu, (2013) describe the different socio-economic and natural 

factors which influence water consumption. Lifestyle changes increase the consumption of goods 

and services, with a consequent increment in water consumption rates. In the medium and long 

term, water supply tends to be fixed, rigid and constant by the biophysical limits of each region 

(Camdessus et al., 2006). In addition, changes in water quality reduces the volume available for 

consumption, converting a renewable resource to a limited one (Aguilar Ibarra and Durán 

Rivera, 2010). According to Leff (2008), water consumption doubles every 20 years, duplicating 

the population growth rate (i.e.,  while the world population grew nearly three times in the last 

50 years, water demand grew about six times). Water stocks are diminishing in many areas of the 

world because the rate of water pumping of aquifers (especially for crop irrigation) is higher than 

the natural recharge rate of rain and snow (Tyler Miller Jr. and Spoolman, 2008).  

Water is a complex system, not only from the environmental, scientific or technical 

points of view, but also by its political, social and economic implications for management. It is 

necessary to carry out a series of technical, administrative, financial and communication 

measures among all stakeholders simultaneously to devise common objectives in water use and 
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management (Camdessus et al., 2006). Water systems link to the ecosystem, as well as to the 

social system. Likewise, water systems show complex dynamics, feedback loops in their flows 

within the same cycle, and possess a considerable degree of uncertainty (Liu et al., 2007).  

Approaches such as eco-hydrology (McClain et al., 2012; Rodríguez-Iturbe, 2000; 

Zalewski et al., 1997) and  socio-hydrology (Savenije et al., 2014; Sivapalan et al., 2014, 2012) 

allows studying  this complex system at different scales. These eco-social approaches are 

relatively new and with rapid growth in hydrological studies. Both examine the interactions of 

the hydrological system within ecosystems and/or human factors, to understand the dynamics 

and characteristics of water systems as a whole. Similarly, Integrated Water Resources 

Management (IWRM) is an approach that promotes the coordinated development and 

management of water, soils, and other associated resources in order to maximize economic and 

social well-being in an equitable manner without compromising the sustainability of ecosystems 

(Morales N. and Rodríguez T., 2007; UNDP and GW-MATE, 2010).  These multiple conceptual 

frameworks coincide with an integral vision of water resources management, including social 

and environmental factors to the analysis. Here we use societal metabolism as a multi-

dimensional tool which can be applied to the study of water as a flow within societies. It aims to 

meet most of the characteristics of current conceptual frameworks and facilitates the 

understanding of a problem that is complex by its very definition. 

1.2. Societal water metabolism 

The concept of societal metabolism describes the manner in which human societies organize 

their growing exchanges of energy and materials with the (Ayres, 1997; Fischer-Kowalski, 1998; 

Giampietro and Mayumi, 2000a; Haberl et al., 2011; Martinez-Alier, 1987). Societal metabolism 

begins when societies appropriate the and energy (input), and it ends when are deposited as 

waste, fumes, or residues in natural areas (output). Between these two steps, occur other 

processes, where materials are circulated, transformed and consumed (Toledo, 2013).  



4 
 

Societal metabolism puts its emphasis on the relationship between flows and the agents 

that transform input flows into output flows, while maintaining and preserving their own 

identity. Hence, it connects funds (i.e., the agents and transformers of a process) and flows (i.e., 

the elements that are utilized and dissipated) to generate indicators characterizing specific 

features of the system. It contributes to explain the interrelationships among natural, social and 

economic processes, which are relevant for sustainable development (Fischer-Kowalski and 

Haberl, 2000; Sorman, 2014).  Analyzing a complex system using the methodology of societal 

metabolism can be an alternative to providing an overview of the multiple streams involved in 

the system, and understanding the interactions and their effects on society.  

If we analyze water consumption across the activities of a society, such as agriculture, 

industry, energy generation, services, and everyday life, we can understand the societal 

metabolism of water as the study that describes how society uses this resource to maintain its 

development through time (Madrid-López, 2014). Water metabolism is defined as the entire 

process of water flows, where changes in quantity and quality occur under the effects of nature 

and human society in the hydrological cycle (Lemos et al., 2013; Wu et al., 2016). Figure 1 

shows the various interactions between water uses and economic sectors. This structure will vary 

according to each territory of analysis. It is determined by the supply and demand of flows, the 

size of the productive sectors, and reuse systems (i.e., loops). These interactions can be altered 

by population growth, increased demand, as well as the ever-increasing needs of an economic 

system with a philosophy of perpetual growth (Leff, 2008). Through the societal metabolism 

analysis, it is possible to analyze in detail the intermediate processes with which water interacts 

with productive activities within society. 
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Figure 1. Main flows of between inland water resources system and economy. Source: Adapted 

from  (ONU, 2011; UNEP, 2012). Flows into the ocean are not considered. 

 

Water can be analyzed as a flow within the metabolism of a city or region, so that the 

entry and exit of the system can be linked to the amounts of water entering and leaving the 

society from the study of the water balance (Murat Özler, 2015). This 'basic metabolism' is based 

on the natural reproduction of resources: water, air, and plant or animal biomass (Fischer-

Kowalski and Haberl, 2000). In order to  perpetuate  the exchanges between environmental 

resources and social processes, processes must be within the limits established by the 

ecosystem's metabolism (Martinez-Alier, 1987).  The problem of societies with unsustainable 

growth, observed under the societal metabolism perspective, is that the magnitude of the 

resources flows and energy exceeds the production capacity of the natural systems in which they 

are found: either in the provision of resources, or in their capacity to absorb waste or emissions 

(Fischer-Kowalski and Haberl, 2000). 
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1.3. Interaction between water and society in Yucatan Peninsula 

Yucatan Peninsula (YP) is located in southeastern Mexico. It includes the States of Campeche, 

Quintana Roo and Yucatan. In terms of water administration, the National Water Commission 

(CONAGUA in Spanish) divided the territory in Hydrological-Administrative Regions. YP 

belongs to the Hydrological-Administrative Region XII (CONAGUA, 2016a), which is divided 

in four hydrographic basins: Grijalva-Usumacinta (RH30), West Yucatan (RH31), North 

Yucatan (RH32), and East Yucatan (RH33) (Figure 2). 

 

Figure 2. Hydrological-Administrative Region XII in the Yucatan Peninsula with hydrographic 

basins. 

 
With an average annual precipitation of 1100 mm (CONAGUA, 2016a; INEGI, 2015), a 

karstic relief and flat topography, the entire peninsula functions as a recharge zone, and has a 

great infiltration capacity (Bauer-Gottwein et al., 2011; Holliday et al., 2007).  

Nevertheless, changes in water balance are expected for the coming years due to 

precipitation reduction and temperatures increase (Alan et al., 2015; Rodríguez-Huerta et al., 

2019; Sánchez Aguilar and Rebollar Domínguez, 1999). Besides, risk of contamination and 
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saline intrusion near the coast limits the intensive use of groundwater (Aranda-Cirerol et al., 

2010; Pérez Ceballos and Pacheco Ávila, 2004). The main sources of groundwater 

contamination in the YP aquifer are lack of wastewater treatment in rural communities, poor 

technical quality of sanitary sewer systems and low efficiencies of existing treatment plants 

(DOF 2015). In addition, agro- and breeding industries (specially pig and poultry, with a fast 

development in the area), consume pesticides and fertilizers in large quantities (Batllori 

Sampedro, 2015; OCDE, 2008). Infectious diseases associated to water quality are one of the 

main public health problem, due to high levels of bacterial contamination (SEMARNAT, 2015). 

Different studies set Yucatan in an unenviable place, being one of the states with the highest 

rates of illness and mortality due to Acute Diarrheal Disease (EDA), especially in children under 

5 years old (Instituto Nacional de Salud Pública, 2013; SINAVE and Secretaría de Salud, 2012).  

The demographic and economic growth of YP has caused pressure on the different 

ecosystem services, and their impacts are still unknown and ignored in the development plans of 

the region. Together with metabolic pattern, societal metabolism, generates a new narrative on 

how the YP development is linked to water uses, considering not only economic indicators but 

also its social functions, as well as the biophysical limits established by the main source of 

supply, the aquifer. This paper aims at diagnosing water consumption and characterizing societal 

water metabolism in the existing socio-economic system of the YP. To do so, we identify 

regional (i.e., states) similarities and differences in water uses and groundwater recharge (the 

main source of water supply), to finally determine whether consumption is within the limits 

established by the biophysical recharge conditions of groundwater. Besides, this diagnosis aims 

to fulfill one of the main hydrological research challenges in the region defined by Bauer-

Gottwein et al. (2011) which includes the process of exchanging water for human use and water 

for ecosystems, and the consequences of incessant economic development and population 

growth. 
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2. Methodology 

2.1. MuSIASEM 

The analysis of societal metabolism presented here is based on the Multi-Scale Integrated 

Analysis of Societal and Ecosystem Metabolism (hereafter referred to as MuSIASEM) tool 

introduced by Giampietro and Mayumi (2000a, 2000b, 1997). It is an open framework that takes 

into account economic, environmental and social aspects, and distinguishes flows, such as water, 

energy, food, or monetary (IASTE, 2014). It is a decision support tool for different scenario 

analysis, including current trends and preferred scenarios to stay within the boundaries of the 

ecosystem. The MuSIASEM system of accounting is useful for the water metabolism study, as it 

allows us to deal with the multi-dimensionality of water and to connect non-equivalent 

definitions of performance across societal and ecological narratives (Giampietro et al., 2014).  

Based on water metabolic rates (WMR), the methodology focuses on the interlinkage and 

relationship between human activities (HA) and consumed water (water use per hour). 

MuSIASEM describes the time distribution (fund) and water consumption (flow) for different 

hierarchical levels, which are defined by productive sectors in society as (equation 1):  

𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑊𝑊𝑖𝑖 𝐻𝐻𝐻𝐻𝑖𝑖⁄  (1) 

 

where 𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 is the water metabolic rate for productive sector 𝑖𝑖. The allocation of human activity 

(HA), measured in hours, assesses the productive sectors size of the socioeconomic system. The 

distribution profile of HA connects demographic and social parameters (Giampietro and 

Mayumi, 2000b). MuSIASEM facilitates the interdisciplinary analysis at different operational 

and dimensional levels, which gives the study a global visibility to problems with a systemic 

complexity, such as sustainable management of the water. 
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In Figure 3, the hydrological region represents the first hierarchical level of the analysis 

(n), which determines the biophysical limits of groundwater. This level can be drilled-down from 

the political division of the peninsula (State - municipality), to finally classify the uses from the 

different productive sectors. The first sublevel (n - 1) defines the groups of off stream uses of 

water that integrate remunerative activities and domestic uses. The last level of analysis (n-2) is 

further segregated following the division established by the classification of water uses provided 

by CONAGUA and adjusted to the classification of the volumes counted by the Public Registry 

for Water Duties and Rights (REPDA)1. Multiple uses represent concession titles registered with 

two or more water uses. For YP this classification is mainly composed of agricultural and 

livestock uses. 

 

Figure 3. Structure of MuSIASEM in the hydrological region XII. 

                                                 

1  The Public Registry for Water Duties and Rights (REPDA for its Spanish translation, sp., Registro 

Público de Derechos de Agua) is an instrument of CONAGUA to regulate the exploitation or use of 

the national waters, their distribution and control, as well as the preservation of their quantity and 

quality, in order to achieve their integral sustainable development. 
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2.2. Demographic Data 

MuSIASEM considers demographic variables (i.e., populations size) and ratios (i.e., dependency 

ratio), and social variables (i.e., employment, level of education and workload) looking at the 

profile of distribution of human activity over a given set of categories (Giampietro et al., 2013). 

According to data from the Population National Council of Mexico (sp., Consejo Nacional de 

Población, CONAPO), in 2010, YP reached a population of 4 million, and it is expected to reach 

5.8 million by 2030. Yucatan represents 48% of the YP population, and it will remain the State 

with the largest population by 2030. With an average age of 25.7 years, its dependency ratio2 

was 54% in 2010, and is projected to remain around of 51% by 2030 (Figure 4).  

 

Figure 4. Population forecasts for Yucatan Peninsula. Data from (CONAPO, 2015)  

 

Data about employment and hours worked (Figure 5) has been fine-grained into gender, 

age range and productive activity with the information of the National Survey of Occupation and 

Employment from the National Institute of Statistics and Geography (sp., Instituto Nacional de 

Estadística y Geografía. INEGI) (INEGI, 2010). Socio-economic data at the municipal level 

were obtained from reports by INEGI and the National Institute for Federalism and Municipal 

                                                 

2 The dependency ratio is the proportion of dependents (people under 15 or over 64) over the working age 

population (between 15 and 64 years). 
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Development (sp., Instituto Nacional para el Federalismo y el Desarrollo Municipal) (INEGI 

and INAFED, 2014) , and by the participation rates for economic sectors presented by the 

Secretary for Economic Development (sp., Secretaría de Fomento Económico, SEFOE)  SEFOE 

(2016). 

 

 

Figure 5. Description of the labor structure in the Yucatan Peninsula. a)  Working population 

pyramid. b) Weekly average hours worked by sector and genre. c) Distribution of employment 

by sector and State (YP) 

 

The total hours for human activities by each productive sector 𝑖𝑖, is estimated by equation 2: 

𝐻𝐻𝐻𝐻𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎. ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∙ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (2) 

 

a) 

b) 

c) 
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2.3. Water balance in Yucatan Peninsula 

Table 1 shows the water balance of the hydrological region XII of YP (Campeche, Quintana Roo 

and Yucatan). According to this balance, the maximum volume of groundwater that can be 

extracted is 7926 hm3/year, corresponding to the annual average recharge received by the aquifer 

(25107 hm3/year) less the natural discharge compromised (17181 hm3/year) (CONAGUA, 

2018). From this balance, the allocated volume in 2018 (4469 hm3/year) meant 56% of the 

maximum available groundwater   

 

Table 1. Water balance for RHA-XIII Peninsula de Yucatan 2018. Cozumel aquifer was 

excluded (2035). Source: (SEMARNAT and CONAGUA, 2018) 

Input (hm3 / year)   Output (hm3 / year) (%) 
part. 

Groundwater recharge 25,107   Natural discharge 17,181 68% 
      Water availability 3,457 14% 
      Allocated volume (REPDA) 4,469 18% 
Total 25,107   Total 25,107   

 

 
Although soil’s characteristics contribute to groundwater recharge, there are local 

differences in the types and characteristics of the system (Steinich and Marín, 1997). Estimations 

coming from the application of monthly water balance models (Rodríguez-Huerta et al., 2019)3  

show (Table 2) a recharge between 118 mm ± 33 mm per year,  with maximum recharge of 

23,956 hm3,  within the range of other studies carried out with different methodologies which 

show a recharge of around 10% - 15% of the total annual precipitation (Bauer-Gottwein et al., 

2011; CONAGUA, 2015; Gondwe et al., 2010; INEGI, 2002; Lesser, 1976; SEMARNAT, 

                                                 

3 Data visualization: 

https://public.tableau.com/profile/edgar.rodriguez.huerta#!/vizhome/GroundwaterrechargeYucatanP

eninsula/VIZ 
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2015). However, it also shows that the recharge is not uniform throughout the YP. There are 

specific areas with a higher recharge:  southwest of Campeche, center of Yucatan (where the 

hydrogeological reserve is located), and northeast of Yucatan, between the municipalities of 

Cenotillo and Tizimín. The northern region of the YP, with less precipitation, does not receive 

vertical recharge (Figure 6), but it benefits from the underground flows that go from the center of 

the peninsula to the north, and discharge in the coastal regions (Null et al., 2014). 

Table 2. Estimation of water balance in the Yucatan Peninsula. Precipitation (P), Actual 

evapotranspiration (ETa) and recharge (R). 

State 
P 

(mm) 
ETa 

(mm) 
R 

(mm) 
P 

(hm3) 
ETa 

(hm3) 
R 

(hm3) 
Campeche 1235 947 254 68045 52178 13880 
Quintana Roo 1205 1,007 158 51302 42858 6643 
Yucatan 1054 926 88 41513 36436 3433 
RHA-XII-YP 1173 959 176 160860 131472 23956 

 

 

Figure 6. Estimation of water balance in YP.  

 

2.4. Water consumption 

As said before, the use of water for each productive sector in Mexico is allocated through the 

REPDA  (CONAGUA, 2017; CONAGUA and SEMARNAT, 2017). According to it, in less than 

15 years, water exploitation has increased more than three times, with the Yucatan State having 

the highest consumption, with 46.5% of the total (Figure 7). In 2017, the allocated volume in YP 
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was 4792 hm³, with public supply representing 640 hm³ (13 %), agricultural uses 3449 hm³ (72 

%) and industrial uses 691 hm³ (14 %). The public supply category takes into account water 

delivered through the drinking water pipeline distribution system that supply the households and 

services connected to the network distribution (CONAGUA, 2017, 2016a, 2009). Although 

industry and services (IN + SE) sectors represent only 3% of the volume allocated in YP, the 

consumption of small and medium-sized enterprises (SMEs) is included in the classification of 

public supply, being connected to the drinking water network and not having specific water use 

permits. The increase in consumption in Quintana Roo occurs in the service sector, and it is 

caused by the growth of the tourism economic subsector along the Cancun-Riviera Maya 

corridor. 

 

 

Figure 7. Trend of allocated volume in YP (2005 – 2016). Data from (CONAGUA, 2017) 

 
Even though these are the official data, the allocated volume does not represent the real 

consumption, though it does allow for inferences and comparisons among sectors and uses in the 
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country (Estrada Medina and Cobos Gasca, 2012; Pérez-Espejo and Constantino-Toto, 2016). To 

explain the behavior of consumption and its relation with the social structure, we calculate water 

uses for the domestic and the different productive sectors. This approach on water uses will serve 

as a new reference for water consumption, acknowledging the amounts allocated by REPDA that 

represents the planning of water exploitation.   

2.4.1. Primary sector 

Agricultural use was estimated from the following sources. 

• Crop Water Requirements (CWR). We applied equation 3, where 𝐸𝐸𝐸𝐸𝑜𝑜 is the potential 

evapotranspiration, and 𝐾𝐾𝑐𝑐 is the crop coefficient by each grow stage (Allen et al., 1998). 

CWR provides a view of water consumption, dividing water use into precipitation (green 

water) and irrigation requirements (blue water). We also consider losses in  irrigation 

processes, which are between 40% and 50% in the region (Cob and Romero, 2011; Tun 

Dzul et al., 2011). 

𝐸𝐸𝐸𝐸𝑐𝑐 = 𝐸𝐸𝐸𝐸𝑜𝑜𝐾𝐾𝑐𝑐         (3) 

 

• Climatological data.  We used monthly average precipitation and potential 

evapotranspiration for each municipality data from Fernández Eguiarte et al. (2015). 

• Crop production.  Data obtained from the Agri-food and Fisheries Information Service 

(sp., Servicio de Información Agroalimentaria y Pesquera, SIACON)  database 

(SAGARPA, 2017), disaggregated by: 

o  Crop  

o Cycle (Fall-Winter, Spring-Summer, Perennials)  

o Municipality 
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For crop information, like growth stages and coefficients (𝐾𝐾𝑐𝑐), we used pre-loaded data 

from CROPWAT software (FAO, 2014), as well as FAO studies (Allen et al., 1998; Chapagain 

and Hoekstra, 2004). Additionally, several coefficients were adjusted from regional and crop-

specific studies (Dávila Lara and Guevara Granda, 2014; Kelso-Bucio, Henry A.; Bâ, Khalidou 

M.; Sánchez-Morales, Saúl; Reyes-López, 2012; López Avendaño, 2009; Ruiz Corral et al., 

2013; SAGARPA et al., 2015). Crop data coefficients are included in the supplementary 

information (Supplementary information 1) as well as CWR results by crop group and 

municipality (see also section 4). To calculate the effective rain, we chose the method of the Soil 

Conservation Services of United States Department of Agriculture (USDA SCS) (Chapagain and 

Hoekstra, 2004).  

Water use in livestock sector was calculated by mean values of consumption (drinking 

and services) for each species given by  Mekonnen and Hoekstra (2010), using water footprint 

methodology. For specific cases, like turkey and bees, the values considered were 1.07 liters per 

day  (V&S Asociados, 2014) and 3 liters per day (SAGARPA, 2000) respectively. These 

consumption factors are multiplied by the number of heads (inventoried and slaughtered) of each 

species4 according to the SIACON database  (SAGARPA, 2017). 

Considering these data, the water use in the primary sector reaches 1,770 hm3, which 

compared to the 3,183 hm3 reported by REPDA, represents 56% of the total volume allocated 

(Figure 8).  This estimation for the agricultural sector allows us to disaggregate the consumption 

beyond the official data of REPDA, and use the consumption at a level of crop group, to apply 

them in performance indicators (section 4). 

                                                 

4 For the case of bees, number of hives is considered. 
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Figure 8.Comparison between allocated and used volume for YP in 2016. Losses consider 60% 

efficiency.  

2.4.2. Industry and services 

There are eight industrial subsectors that concentrate approximately 83.5% of water consumption 

in Mexico (CONAGUA, 1991): sugar, paper and cellulose, beverages, food, textiles, chemicals, 

petroleum, and iron and steel industries. Although differences in water use between industrial 

and service sectors are significant, essentially due to differences in area and volume of 

productive activity, due to the lack of information on the uses for each of the different economic 

activities, we have assumed the following criteria: 

• Intensity by industry. Here we consider consumption factors established in the study 

‘Compendium of indicators on the use of water in industry’  (CONAGUA and IMTA, 

2001) in units m3/Mg. Data are estimated from the information of the 2009 and 2014 

economic censuses (INEGI, 2014a), dividing the value of production by the average price 

of each type of activity (INEGI, 2017). For the generation of electrical energy, 

consumption is estimated based on the gross generation of electrical energy (SENER, 

2018), and  the specific rates of water use for generation plants expressed in liters per 

kilowatt-hour for each type and cooling system (CONAGUA and IMTA, 2001). In the 

case of the tourism sector, consumption was obtained from the base usage per night 
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according to room’s category, given by CONAGUA (2016a), multiplied by the number 

of nights sold by State and category, according to the tourist economic census (INEGI, 

2014b). For other industries and commercial activities, we have assumed an average  

consumption of 250.2 m3/month and 27.42 m3/month respectively, as indicated in the 

drinking water and sewerage manual (CONAGUA, 2016b). 

• REPDA. The allocated volume of REPDA permits, as already mentioned, is not the 

consumption data, but the theoretical limits for industrial end services sectors. Therefore, 

it is important to consider them. In the case of YP, the uses for the generation of electric 

power are included in the industrial group. 

Our results for year 2016 (Figure 9) indicate an average use of 22.7 hm3 and 52.7 hm3 for 

secondary and tertiary sectors in Campeche and Yucatan, respectively. However, if we compare 

both estimations for Quintana Roo, the consumption increases to 514.6 hm3, which indicates the 

atypical consumption for tourism sector in this state. This value is approximately 10 times more 

than the average consumption in the sector for YP. This is mainly due to the style of 

accommodation offered and to the annual number of visitors, which approaches 17 million 

tourists, with an average stay of 2 nights (SEDETUR (Secretaría de Turismo), 2018). 
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Figure 9. Water use for industry and services sectors by State in YP (2016). 

 

 

  

 

 

2.4.3. Households 

Due to the lack of information at the municipal level, calculation is based on the number 

of habitants in each locality (CONAPO, 2015), multiplied by the daily consumption according to 

regional socioeconomic levels and climatological characteristics (Table 3). Data on daily 

consumptions by socioeconomic level were obtained from the Manual of Drinking Water, 

Sewage and Sanitation (CONAGUA, 2016b), which categorizes urban and rural localities as 
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well as climatic conditions for daily consumption in urban regions. The socioeconomic 

distribution for each municipality is estimated according to  López Romo (2011). 

Table 3.Estimation of water consumption for domestic use in YP (2016) 

Type of locality Socio-economic 
level Population 

Consumption per 
capita  

(litters per day) 

Net water uses in 
household sector  

(m3) 

Rural 
High 957 100 34,949 
Medium 45,078 100 1,645,361 
Low 104,176 100 3,802,432 

Urban 
High 126,085 243 11,183,087 
Medium 2,878,439 206 216,429,835 
Low 1,532,421 198 110,748,079 

Total   4,687,157  343,843,742 
 

Water losses in municipal networks present during the distribution process are also 

considered. The experience in Mexico indicates that in the medium and long term it is possible to 

reach efficiency values between 25 and 30% (CONAGUA, 2016b). In the case of Mérida, 

Yucatan’s capital, the losses are around 50% (JAPAY (Unidad de Transparencia), 2016). For our 

case study, a network efficiency of 60% was defined as an intermediate value between the 

current efficiency and the established 70% objectives (CONAGUA, 2016b). The domestic 

consumption in YP during 2016 between 481 hm3 and 624 hm3 (Figure 10). 

 

 

Figure 10. Allocated volume and estimated use (hm3) in YP (2016). Water distribution network 

efficiency of 60%  
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2.5. Geographical levels 

Our analysis granulates regions or municipalities, in order to distinguish socio-economic 

differences among specific areas. For this case study, we chose two areas both located in 

Yucatan with totally different characteristics: an urban area with mainly domestic and industrial 

uses, and an agricultural one with important irrigation districts (Figure 11): 

• The city of Merida concentrates 50% of the population in 2% of the area of the state. 

Most industries are also located on the outskirts of the city. Its populations are expected 

to increase 24% by 2030. Its main problem is urban growth without clear water 

management policies, as well as the lack of efficient drainage and sewage infrastructures. 

• JIOBIOPUUJ reserve is a biocultural conservation reserve covering part of five 

municipalities (Muna, Oxkutzcab, Santa Elena, Tekax and Ticul)5 with 130,000 

habitants, 20% as rural population, and an expected growth of 29% by 2030. It 

concentrates archaeological sites and important Mayan settlements, as well as areas of 

jungle. Within the region there is an irrigation district (Ticul) with an area of 9,000 ha., 

the largest in Yucatan. Irrigation districts are a compact cultivation area with one or more 

common sources of water supply. CONAGUA directly supervises, and grants 

concessions to civil associations to manage their use, and conserve the irrigation 

infrastructure (Pedroza González and Hinojosa Cuéllar, 2014).  

 

                                                 

5 Due to the availability of data, the 5 complete municipalities are considered as the reserve area 

JIOBIOPUUJ 
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Figure 11. YP map, with Mérida and JIOBIOPUUJ sub-regions included in this MuSIASEM 

analysis. 

3. Results 

3.1. Water balance and renewable water 

In YP the renewable water per capita exceeds 5,000 m3 / per capita per year (CONAGUA, 

2016a; UNEP-DHI et al., 2016). This value is more than three times the defined water stress 

limit of 1,700 m3 / per capita per year (WWAP (World Water Assessment Programme), 2012). 

However, recharge is not always concentrated in the most populated regions or with the highest 

consumption. If we drill down and split, water availability varies at different geographical scales 

(i.e., hydrographic basins) and we can identify that the average data does not apply equally to 

each region (Table 4).  

Table 4. Renewable water by state and hydrological basin. Data from: (Rodríguez-Huerta et al., 

2019) 
Renewable water  

(m3/y/hab) Campeche Quintana Roo Yucatan RHA-XII-YP 

Grijalva-Usumacinta (RH30) 22,345   22,345 
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West Yucatan (RH31) 10,925  3,909 10,916 
North Yucatan (RH32) 4,354 1,355 1,518 1,571 
East Yucatan (RH33) 39,248 12,253 5,888 13,024 
RHA-XII-YP 15,062 4,101 1,600 5,111 

 
The hydrological basin analysis let us compare consumptions and an estimated amount of 

vertical recharge corresponding to the area of each basin, assuming no runoff in the region and 

disregarding underground flows that occur within the groundwater, and relevant for coastal areas 

mainly –  (Albornoz-Euán and González-Herrera, 2017; Carballo Parra, 2016; Cervantes 

Martínez, 2007; Gondwe et al., 2010). 

3.2. Water metabolic rates in YP, States and municipalities 

Water metabolic rate (WMR) describes how societies consume water according to their 

socio-economic structure, with the objective of observing the behavior and evolution of the 

consumption for each productive sector. WMR characterizes the typology of consumption to 

compare it with other regions. For water consumption data, we use consumption results (section 

2.4) as well as REPDA data. As shown in Table 5, rates vary depending on how the consumption 

is considered: through allocated volume (max), or estimated use (min). For example, metabolic 

rate in YP varies between 58 l/h to 110 l/h, a pattern describing how productive sectors consume 

water at the State level in the peninsula. Considering only those volumes mentioned by REPDA, 

WMR has increased in YP from 58 l/h in 2005, to 110 l/h in 2016, an increase of 8.96% liters per 

available hour per year. 

 

Table 5. Water metabolic rate (WMR) in l/h in Yucatan Peninsula (YP) for 2016 (HH: 

Households, PW: Paid work, AG: Agriculture; IN: Industry; SE: services). 

 

Level Yucatan Campeche Quintana Roo YP 
N WMR  78 - 110   58 - 164   32 - 78   58 - 110  

N-1 WMR (HH)  13 - 15   13 - 22   14 - 17   13 - 17  
N-1 WMR (PW)  580 - 844   425 - 1339   159 - 511   397 - 812  
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N-2 WMR (AG)  5447 - 7979   2355 - 7606   2746 - 3839   3926 - 7099  
N-2 WMR (IN)  37 - 84   34 - 113   22 - 46   33 - 80  
N-2 WMR (SE)  22 - 10   21 - 13   34 - 402   27 - 179  

 

 
Figure 12 shows WMR time evolution from year 2005 to year 2016. Each productive 

sector presents a characteristic growth pattern in its metabolic pattern (WMR, in l/h) as a 

function of its water consumption (REPDA, in hm3).   

 

 

 

Figure 12. Evolution of water metabolic rate (WMR) and allocated volume (REPDA) in YP 

(2005 – 2016). Data shown in double logarithmic scale. 

 
Campeche and Yucatan have patterns with similar behavior, however we clearly 

appreciate that Quintana Roo has a relevant weight in the service sector – merely focused on 

tourism—, with consumption patterns 10 times higher than the rest of the peninsula.  
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Figure 13. Scaling behavior (see Table 6 for corresponding power law fittings) between WMR 

(l/h) and REPDA (hm3), and for the aggregate YP region and economic sectors. Data shown in 

double logarithmic scale. 
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Table 6. Scaling exponents for power law fittings (see Figure 13) with adjusted 𝑅𝑅2 and 95 

percent confidence interval, for the aggregate YP region and economic sectors. Values in bold 

indicate significant results (i.e., considering both tails of the confidence interval). 

 

 
Metabolic patterns values (WMR) and their relation to water allocated (REPDA) can be 

used as a reference or benchmark to define expected values of water consumption per available 

hour of the different productive sectors. Table 6 shows the scaling exponent 𝑏𝑏 for each sector, 

obtained from a best fit to a power law scaling relation, shown in Figure 13, of the form  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅~𝑊𝑊𝑊𝑊𝑊𝑊𝑏𝑏, including adjusted 𝑅𝑅2 and 95% confidence interval. With the exception of 

public supply in Yucatan, and self-supply industry in Quintana Roo, all values indicate super 

linear scaling relations with 𝑏𝑏 > 1.00, implying a remarkable level of unsustainability in the 

water use evolution for the different States and productive sectors.  

A geographical drill-down describes the relationship between flows and funds according 

to each socio-economic structure. It facilitates the understanding of the relationships within the 

system and helps for the implementation of appropriate local policies for sustainable 

development. For example, mainly urban areas (like the previously mentioned Merida city) have 

higher rates than State consumption pattern for the domestic (HH) and services (SE) sectors, 

 Campeche Quintana Roo Yucatan 

Sector 𝒃𝒃 𝑹𝑹𝟐𝟐 𝟗𝟗𝟗𝟗%𝑪𝑪𝑪𝑪 𝒃𝒃 𝑹𝑹𝟐𝟐 𝟗𝟗𝟗𝟗%𝑪𝑪𝑪𝑪 𝒃𝒃 𝑹𝑹𝟐𝟐 𝟗𝟗𝟗𝟗%𝑪𝑪𝑪𝑪 
Yucatan 
Peninsula (n) 1.23 0.99 [1.18, 1.27] 1.36 0.98 [1.23, 1.49] 1.23 0.99 [1.19, 1.27] 

Agriculture 
(AG) | (n-1) 1.12 0.97 [0.99, 1.26] 1.35 0.81 [0.89, 1.81] 1.15 0.97 [1.00, 1.30] 

Self-supply 
industry (IN) | 
(n-1) 

1.28 0.74 [0.75, 1.81] 0.55 0.47 [0.14, 0.97] 1.34 0.76 [0.80, 1.89] 

Services (SE) | 
(n-1) 1.10 0.99 [1.07, 1.12] 1.36 0.97 [1.07, 1.12] 1.32 0.98 [1.22, 1.42] 

Public supply 
(PS) | (n-1) 1.53 0.38 [0.14, 2.92] 1.30 0.96 [1.11, 1.49] -0.59* 0.81 [-0.79, -0.39] 
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while agricultural areas as BIOPUUC show an emphasis on the consumption pattern of the 

primary sector (AG) (Table 7). 

Table 7. WMR (l/h) related to water allocated (REPDA) broken down by case study, 

MuSIASEM level (n) and economic sector. Data from 2016. 

 

Level WMR Merida JIOBIOPUUC 
N Total 27.3 223.9 

N-1 Households 21.6 11.6 
N-1 Paid work 73.5 2,593.3 
N-2   Agriculture 3,453.3 11,388.5 
N-2   Industry 133.5 8.2 
N-2   Services 17.0 3.5 

 

3.3. Estimation of water uses by 2030 

We estimate here future consumption rates based on population growth for 2030, economic 

growth scenarios and historical patterns on WMR described in the previous section. For the 

estimation of water uses in the YP, the following scenarios were defined: 

(1) Uses as 2016 (U2016): WMR calculated with the uses in section 2.4 for each productive 

sector. The estimation of water uses defines the lower limit of consumption. This 

scenario keeps constant the consumption pattern in each sector, but with the demographic 

change expected for 2030. 

(2) Uses with continuous growth (UCG): WMR is estimated from 2% annual growth until 

2030, which is equivalent to an accumulated increase of 30% in the metabolic pattern. 

(3) Moderate-growth (MG): a smoothed growth of the metabolic rate is expected, reaching 

the limit of a sigmoid function. It is calculated from the historical data adjusted with a 

logarithmic regression of each metabolic pattern and productive sector. In this scenario 

we assume measures and policies to maintain stable patterns have been considered. 



28 
 

(4) Business as usual (BAU): This scenario assumes current growth rates. We use REPDA 

values and consider the metabolic patterns according to a lineal regression of the last 12 

years (2005 – 2017). 

For each scenario, we assume:  

• The same percentage of the active population as at present-day.  

• The employment in each sector according to the current proportion, taking into account 

gender and age range (STPS, 2016).  

According to the WMR and population growth trend in YP, water consumption will be 

between 2811 hm3 and 3635 hm3 (scenarios 1 - 2). Using REPDA values (scenario 3 - 4) the 

consumption will vary from 5227 to 7955 hm3 for 2030, which represent an increase 34% and 

106% respectively compared to allocation in 2017.    

Any policy on consumption should consider the biophysical limits of the environment, in 

this case, the conditions of the water cycle and how this can be modified in the coming years 

from the effects of climate change. We define these biophysical limits based on the possible 

effects that climate change will have on the recharge of groundwater in the near future. Here the 

effects of climate change on the RHA-XII-YP are based on the results of Rodríguez-Huerta et al. 

(2019), which considers 5 different models of general circulation (GCM). In general, GCMs 

estimate a reduction of 20 mm in annual precipitation together with a temperature increase of 

1.15 °C. This decrease in rainfall could lead by one hand, to an increase in intense periods of 

drought, a decrease in the productivity of agricultural activities with a consequent reduction in 

food production (Galindo and Caballero, 2010); on the other hand, the increase in temperature 

will cause an increase in domestic consumption ratios, so the recharge will be lower, and the 

consumption rates will be higher with a population that continues to grow. 
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Figure 14 compares water uses estimated by each scenario presented in section 3.3 with 

the current recharge (CONAGUA data and calculated data), and with the range given by the new 

limits for the recharge of groundwater established by the effects of climate change (i.e., a 

reduction of 23% of groundwater recharge). Considering that the proportion of the natural 

discharge is kept at 60% (Table 1) of the total recharge6 (SEMARNAT and CONAGUA, 2018),  

we observe that the consumption reaches or exceeds the recharge of groundwater in scenarios 3 

and 4, exceeding by 2,850 hm3 the limit of the average annual recharge in the last scenario, 

which compromises the natural discharge and makes the consumption of water untenable. 

 
 

 
 
Figure 14. Comparison of estimated recharge for 2030 with water consumption for each 
scenario. 
 
 

                                                 

6 Although data from CONAGUA establish a natural discharge of 60%, more studies are needed on a 

smaller scale to determine natural discharge through YP, which include the natural inhomogeneity 

in geological and topological variables in the peninsula. 
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4. Discussion and Conclusions 

Our purpose with this analysis has been to identify patterns of consumption beyond 

general averages, ‘per capita’ indicators and for one particular geographical scale in the case of 

the YP. The increase in water consumption is not only linked to population growth but to the 

structure of the different productive sectors. This structure is not organized under a top-down 

hierarchical relationship but related to the particular demographic and economic dynamics found 

in the different regions. Our results identify the main metabolic links that affect water 

consumption, considering the social and economic factors that simultaneously drive the 

evolution of the metabolic pattern.  

Metabolic and consumption values associated to each productive sector depend on the 

relative characteristics of the sector and its weight within the society. In general, similar societies 

will have similar patterns across sectors, either productive or domestic, with sublinear, linear or 

superlinear scaling exponents which suggest different levels of efficiency in the use of resources 

and growth (Bettencourt et al., 2007; Horta-Bernús and Rosas-Casals, 2015; West, 2017; West 

and Brown, 2005). In the same way that a modern society requires more exosomatic energy, it 

also occurs with water uses. The growth of WMR explains how each productive sector has 

evolved in the last ten years in YP, and how this development is related to an increasing water 

demand. For example, in 2016, the agricultural sector required 118% more water per working 

hour than it was needed in 2005, while industry and services sectors required more than 30% and 

180% respectively. Although differences in the scaling exponent 𝑏𝑏 suggest different evolutionary 

trends linked to different hierarchical and organizational levels (as shown in Figure 3) operating 

in different ways and according to multiple scales, aggregated results for the YP (Table 6, first 

row) suggest an increasingly demanding evolutionary trend in terms of water consumption. In 

the case Public supply of Yucatan, we cannot be sure that the negative trend represents less 

consumption in the future, because it is related to the fact that the assigned permit (REPDA) for 
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public and domestic use has increased by 5% in the last 10 years, while the population has 

increased by 18% in the same period. For this case, it would be appropriate to investigate why 

this concession has increased at this rate. 

At different geographical scales, our study describes different consumption patterns 

across YP, and compares the social and economic characteristics of each state, allowing the 

personalization of development plans, protection policies, or concrete actions that contribute to 

groundwater conservation. In this case, it is fundamental to review other relationships among 

flows and funds according to each one of the specific case studies. MuSIASEM methodology 

allows this process as a result of its multilevel accounting capacity, analyzing the information in 

a nested and hierarchical way while there is available information. For example, we can analyze 

the flows together with intensive indicators in the JIOBIOPUUC region mentioned in section 2.5 

(Figure 15). If we can recognize patterns by type of crop, and compare them with the percentage 

of share of the harvest area, we can establish new mix of crops in each region that better adapt to 

climatic conditions and contribute a greater benefit to the region.  

 

 

Figure 15. a) Intensive indicators for crop group in BIOPUUC region (2017). b) Share (%) of 

harvested area by crop group. 
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Another, and complementary, approach would be to drill-down at a crop level. In this 

case, we break down the information for a specific crop (i.e., maize-grain) to differentiate water 

requirements, yield, or profitability according different cultivation conditions (cycle-irrigation 

mode) (Table 8). We observe that the yield in the rain-fed areas is lower than irrigation areas, 

which causes water footprint in rain-fed areas to be higher than the national average, between 

1,700 and 1,900 l (Hoekstra and Chapagain, 2006; Mekonnen and Hoekstra, 2011). Another 

relevant aspect is the relationship between economic value and blue water, since there is a 

difference of one order of magnitude between cycles, due to the increase of blue water during the 

autumn-winter season. Considering only the indicators in table 8, continue sowing maize in the 

autumn-winter cycle with rain-fed should be evaluated, since its performance indicators are 

below than the regional average. The sustainable use of water in agriculture is not only the 

efficient use of irrigation water (blue), but also relies on a better use of rainfall (green). 

Table 8. Summary of agriculture indicators for maize-grain broken down by cycle and modality 

(2017).  
 

  Spring-Summer Autumn-Winter 
  Irrigation Rain-fed Irrigation Rain-fed 
Harvested (ha) 5,918 339,234 7,656 14,397 

Production (Mg) 23,976 614,047 30,319 15,947 

Yield (Mg/ha) 4.05 1.81 3.96 1.11 

Unit value (MXN/Mg) 3,920 4,223 3,757 3,603 

Water footprint [blue] (l/kg) 62 184 437 1,268 

Water footprint [green] (l/kg) 1,167 2,575 508 2,119 

Value / BW (MXN/m3) 63 23 9 3 
 

 

In summary, MuSIASEM facilitates this complex and interdisciplinary analysis of 

sustainable water management, at different operational scales. Hierarchical structure and multi-
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level breakdown provided by this methodology give the possibility of continuing with the 

breakdown of information (provided sufficient data is available), either geographically or within 

the same sector. The division of the RHA-XII-YP at the municipal level, although it is a simple 

approach, serves to understand a complex problem. Water consumption varies according to the 

geographic level in which it is studied, but data management of a region can hide specific details 

of smaller local areas, where water consumption may have completely different characteristics. 

Our results suggest the overall necessity to change the strategies of consumption and water 

allocated in YP, which should give priority to resources conservation instead of economic 

growth. 
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Supplementary information 1. Crop data 

Crop Kc ini Kc 
med Kc fin Stage 

ini 
Stage 

dev 
Stage 

mid 
Stage 

late 

Planting / 
Green up 

day 
Cycle 

Aloe 0.35 0.5 0.3 160 90 90 20 01-May Perennes 
Annona 0.6 0.85 0.75 20 70 120 70 01-May Perennes 
Anthuriums 0.95 1 0.75 30 30 15 15 01-May Spring-Summer 
Avocado 0.6 0.85 0.75 60 90 120 95 15-Jan Perennes 
Banana 1 1.2 1 120 60 180 5 01-Feb Perennes 
Basil 0.6 1.15 1.1 20 30 30 15 01-May Spring-Summer 
Bean 0.4 1.15 0.35 20 30 40 20 01-May Spring-Summer 
Bean 0.4 1.15 0.35 20 30 40 20 01-Nov Autumn-Winter 
Bean (green) 0.5 1.05 0.9 20 30 30 10 01-Oct Autumn-Winter 
Bean (green) 0.5 1.05 0.9 20 30 30 10 01-May Spring-Summer 
Breadnut 1 0.95 0.7 140 30 150 45 01-May Perennes 
Cabbage 0.7 1.05 0.95 40 60 50 15 01-May Spring-Summer 
Cabbage 0.7 1.05 0.95 40 60 50 15 01-Oct Autumn-Winter 
Caimito 0.6 0.85 0.75 20 70 120 70 01-May Perennes 
Carambolo 0.6 0.85 0.75 20 70 120 70 01-Apr Perennes 
Cashew apple 0.6 0.95 0.75 60 90 120 95 01-May Perennes 
Cassava 0.3 1.1 0.5 20 40 90 60 01-Apr Spring-Summer 
Castor oil plant 0.6 1.12 0.6 180 60 90 35 01-May Perennes 
Chayote 0.6 0.8 0.65 30 45 35 10 01-May Spring-Summer 
Chayote 0.6 0.8 0.65 30 45 35 10 01-Oct Autumn-Winter 
Chilies (green) 0.7 1.05 0.95 35 45 40 15 01-May Spring-Summer 
Chilies (green) 0.7 1.05 0.95 35 45 40 15 15-Oct Autumn-Winter 
Chrysanthemum 0.95 1 0.75 30 30 15 15 01-May Spring-Summer 
Chrysanthemum 0.95 1 0.75 30 30 15 15 01-Oct Autumn-Winter 
Cilantro 0.7 1.05 0.95 20 30 30 15 01-May Spring-Summer 
Cilantro 0.7 1.05 0.95 20 30 30 15 01-Oct Autumn-Winter 
Coconut 0.95 1 1 120 60 180 5 15-Feb Perennes 
Cotton 0.35 1.2 0.6 30 50 60 55 01-May Spring-Summer 
Cucumber 0.6 1 0.75 25 35 50 20 01-Jul Spring-Summer 
Cucumber 0.6 1 0.75 25 35 50 20 01-Nov Autumn-Winter 
Daisies 0.95 1 0.75 30 30 15 15 01-Oct Autumn-Winter 
Dragon fruit 0.35 0.5 0.3 160 90 90 20 01-May Perennes 
Dry Pepper 0.6 1.05 0.9 30 35 40 25 01-May Spring-Summer 
Eggplant 0.6 1.05 0.9 20 30 30 15 01-May Spring-Summer 
Eggplant 0.6 1.05 0.9 30 40 40 20 15-Oct Autumn-Winter 
Flowers 0.95 1 0.75 30 30 15 15 01-May Perennes 
Gerbera 0.95 1 0.75 30 30 15 15 01-May Perennes 
Gladiolus 0.95 1 0.75 30 30 15 15 01-May Spring-Summer 
Gladiolus 0.95 1 0.75 30 30 15 15 01-Oct Autumn-Winter 
Grape 0.55 0.9 0.6 20 70 120 60 01-May Perennes 
Grapefruit 0.7 0.65 0.7 60 90 120 95 15-Jan Perennes 
Groundnut 0.4 1.15 0.6 25 35 45 25 01-Jul Spring-Summer 
Groundnut 0.4 1.15 0.6 25 35 45 25 01-Oct Autumn-Winter 
Ground cherry 0.6 1.15 0.8 30 40 40 25 01-May Spring-Summer 
Ground cherry 0.6 1.15 0.8 30 40 40 25 15-Oct Autumn-Winter 
Guava 0.55 0.9 0.65 20 70 120 60 01-May Perennes 
Jackfruit 0.6 0.85 0.75 20 70 120 70 01-May Perennes 
Jamaica flower 0.65 1 0.6 30 30 15 15 01-May Spring-Summer 
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Jamaica flower 0.65 1 0.6 30 30 15 15 01-Oct Autumn-Winter 
Jatropha 1 0.95 0.7 140 30 150 45 01-May Perennes 
Lemon 0.7 0.65 0.7 60 90 120 95 15-Jan Perennes 
Lettuce 0.7 1 0.95 20 30 15 10 01-May Spring-Summer 
Lettuce 0.7 1 0.95 20 30 15 10 01-Oct Autumn-Winter 
Lilies 0.95 1 0.75 30 40 40 20 01-May Spring-Summer 
Lilies 0.95 1 0.75 30 30 15 15 01-Oct Autumn-Winter 
Lilium 0.95 1 0.75 30 30 15 15 01-Oct Autumn-Winter 
Lime 0.7 0.65 0.7 60 90 120 95 01-May Perennes 
Lipstick tree 0.35 1.05 1.05 60 70 180 55 01-Jun Perennes 
Litchi 0.55 0.9 0.65 20 70 120 60 01-May Perennes 
Maize-grain 0.3 1.2 0.5 20 35 40 30 15-Jun Spring-Summer 
Maize-grain 0.3 1.2 0.5 20 35 40 30 01-Oct Autumn-Winter 
Mamey 0.9 1.1 0.9 90 90 90 95 15-May Perennes 
Mango 0.9 1.1 0.9 90 90 90 95 15-May Perennes 
Moringa 0.35 0.5 0.3 160 90 90 20 01-May Perennes 
Nanche 0.55 0.9 0.65 20 70 120 60 01-May Perennes 
Nard 0.95 1 0.75 30 30 15 15 01-May Spring-Summer 
Naseberry 0.9 1.1 0.9 90 90 90 95 01-May Perennes 
Neem 0.6 0.85 0.75 20 70 120 70 01-May Perennes 
Noni 0.6 0.85 0.75 20 70 120 70 01-May Perennes 
Nopalitos 0.35 0.5 0.3 160 90 90 20 01-May Perennes 
Oil palm 0.9 0.95 0.95 120 60 180 5 15-Feb Perennes 
Onion 0.7 0.9 0.85 25 30 10 5 01-May Spring-Summer 
Onion 0.7 0.9 0.85 25 30 10 5 01-Oct Autumn-Winter 
Orange 0.7 0.65 0.7 60 90 120 95 15-Jan Perennes 
Papaya 0.6 0.85 0.6 60 90 120 95 15-Jan Perennes 
Passion fruit 0.55 0.9 0.65 20 70 120 60 01-May Perennes 
Pastures 0.4 0.95 0.4 10 15 75 35 15-Apr Perennes 
Peas 0.4 1.15 0.35 20 30 40 20 01-Oct Autumn-Winter 
Pepper 0.6 1.12 0.6 180 60 90 35 01-May Perennes 
Pineapple 0.5 0.3 0.3 60 120 175 10 15-Jan Perennes 
Plum 0.55 0.9 0.65 20 70 120 60 01-May Perennes 
Pumpkin 0.5 1 0.8 20 30 30 20 01-May Spring-Summer 
Pumpkin 0.5 1 0.8 20 30 30 20 01-Oct Autumn-Winter 
Radish 0.7 0.9 0.85 10 20 30 10 01-May Spring-Summer 
Radish 0.7 0.9 0.85 10 20 30 10 01-Oct Autumn-Winter 
Rice 1.05 1.2 0.6 30 30 60 30 15-Jun Spring-Summer 
Rice 1.05 1.2 0.6 30 30 60 30 01-Oct Autumn-Winter 
Rose 0.95 1 0.75 30 30 15 15 01-May Spring-Summer 
Saramuyo 0.9 1.1 0.9 90 90 90 95 01-May Perennes 
Sisal 0.3 0.7 0.4 120 60 180 5 15-Feb Perennes 
Small vegetables 0.7 1.05 0.95 20 30 30 15 01-May Spring-Summer 
Small vegetables 0.7 1.05 0.95 20 30 30 15 01-Oct Autumn-Winter 
Sorghum 0.3 1 0.55 20 35 40 30 01-Jun Spring-Summer 
Sorghum 0.3 1 0.55 20 35 40 30 01-Oct Autumn-Winter 
Soursop 1 0.95 0.7 140 30 150 45 01-May Perennes 
Soy 0.4 1.15 0.5 20 30 60 25 01-Jun Spring-Summer 
Soy 0.4 1.15 0.5 20 30 60 25 01-Oct Autumn-Winter 
Stevia 0.6 1.15 1.1 20 30 30 15 01-May Perennes 
Sugar cane 0.4 1.25 0.75 35 60 170 100 15-Mar Perennes 
Sunflower 0.35 1.15 0.35 25 35 45 25 01-May Spring-Summer 
Sunflower 0.35 1.15 0.35 25 35 45 25 01-Oct Autumn-Winter 
Swede 1 1.4 1.2 20 30 20 10 01-May Spring-Summer 
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Swede 1 1.4 1.2 20 30 20 10 01-Oct Autumn-Winter 
Sweet corn 0.3 1.2 0.5 20 35 40 30 01-May Spring-Summer 
Sweet corn 0.3 1.2 0.5 20 35 40 30 01-Oct Autumn-Winter 
Sweet melon 0.5 1.05 0.75 25 35 40 20 01-May Spring-Summer 
Sweet melon 0.5 1.05 0.75 25 35 40 20 01-Oct Autumn-Winter 
Sweet potato 0.5 1.15 0.65 15 30 50 30 01-Jun Spring-Summer 
Sweet potato 0.5 1.15 0.65 25 65 50 35 01-Oct Autumn-Winter 
Tamarind 0.35 0.5 0.45 200 50 60 55 01-May Perennes 
Tangerine 0.7 0.65 0.7 60 90 120 95 15-Jan Perennes 
Tomatoes 0.6 1.15 0.8 30 40 40 25 01-May Spring-Summer 
Tomatoes 0.6 1.15 0.8 30 40 40 25 15-Oct Autumn-Winter 
Vanilla 0.35 0.5 0.45 200 50 60 55 01-May Perennes 
Various fruit trees 0.9 1.1 0.9 90 90 90 95 01-May Perennes 
Watermelon 0.4 1.05 0.75 30 45 65 20 01-May Spring-Summer 
Watermelon 0.4 1 0.75 20 30 30 30 01-Oct Autumn-Winter 
Yam bean 0.5 1.1 0.95 25 30 25 10 01-May Spring-Summer 
Yam bean 0.5 1.1 0.95 25 30 25 10 01-Oct Autumn-Winter 
Zucchini 0.5 0.95 0.75 20 30 30 20 01-May Spring-Summer 
Zucchini 0.5 0.95 0.75 20 30 30 20 01-Oct Autumn-Winter 
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