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Abstract

The Erdős-Szekeres theorem is a famous result in Discrete geometry that inspired a

lot of research and motivated new problems. The theorem states that for every integer

n ≥ 3 there is another integer N0 such that any set of N ≥ N0 points in general position

in the plane contains the vertex set of a convex n−gon. Related is the question on the

number of empty (without interior points) convex k−gons, Xk, in a set of n points, for

k = 3, 4, 5, . . .. A known result states that the alternating sum of the Xk’s only depends

on the number n of points, but not on the precise positions of the points. A proof was

given by Pinchasi, Radoičić, and Sharir in 2006. In this thesis we extend this result to

the numbers of convex k−gons with ` interior points, Xk,`, and provide several formulas

involving these numbers. All these formulas only depend on the number n of points of

the set. The proofs are based on a continuous motion argument. We further show that

with this proof technique at most n− 2 linearly independent equations for the Xk,`’s can

be obtained and we provide n− 2 such equations. We also obtain several other formulas,

building upon a work by Huemer, Oliveros, Pérez-Lantero, and Vogtenhuber.

The obtained formulas could further be useful to solve some open problems related to

the Erdős-Szekeres theorem. This thesis also surveys several known results and questions

related to this classical problem for point sets in the plane.

Resum

El teorema d’Erdős-Szekeres és un famós resultat en geometria discreta que ha inspirat

molts investigadors i ha motivat nous problemes. El teorema enuncia que per un enter

n ≥ 3 existeix un N0 tal que, per qualsevol conjunt de N ≥ N0 punts en posició general en

el pla, hi ha un conjunt de vèrtexs d’un n−gon convex. Relacionada amb aquest resultat

tenim la qüestió sobre el número de k−gons convexos buits (sense punts interiors), Xk,

en un conjunt de n punts, per k = 3, 4, 5, . . .. Un conegut resultat enuncia que la suma

alternada de Xk’s només depen del número n de punts, però no de la posició dels punts,

una demostració del qual va ser donada per Pinchasi, Radoičić, i Sharir el 2006. En

aquesta tesi estenem aquest resultat a números de k−gons convexos amb ` punts interiors,

Xk,`, i aportem diverses fórmules que involucren aquests números. Totes aquestes fórmules

només depenen del número n de punts del conjunt i les demostracions estan basades amb

l’argument del moviment continu. A més a més, mostrem que amb aquesta tècnica de

demostració com a molt podem obtenir n − 2 equacions linealment independents pels

Xk,`’s, i nosaltres n’aportem n− 2. També obtenim diverses altres fórmules, continuant el

treball de Huemer, Oliveros, Pérez-Lantero, i Vogtenhuber.

Les fórmules obtingudes podrien ser usades per resoldre alguns problemes oberts rela-

cionats amb el teorema d’Erdős-Szekeres. Aquesta tesi també resumeix diversos resultats

coneguts i qüestions relacionades amb aquest problema clàssic per conjunts de punts en el

pla.
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Chapter 1

Introduction

In 1935 Paul Erdős and George Szekeres formulated their classical problem on the

existence of convex polygons in a planar point set. The publication [8] was the first joint

paper of these mathematicians who also were part of a group of young Jewish Hungarian

mathematicians in Budapest.

For many years, many researchers worked in problems motivated by this first publi-

cation and there are still open questions to resolve, described in different surveys such as

[4, 17, 23]. The most notorious ones are to to solve the conjecture by Erdős and Szekeres

on the existence on convex polygons and to determine the smallest integer N such that

every set of N points contains an empty convex hexagon.

The aim of this thesis is to derive some relationships on the number of polygons on a

point set with a given number of points in their interior and to connect them to theorems

related with the Erdős-Szekeres Theorem and its generalizations.

More specifically, we focus on problems on the existence of empty convex polygons

and on the existence of convex polygons with at least a given number of points in their

interior, for which the developments have been started more recently.

In particular, during the work carried out in this thesis, we have analyzed the paper of

Pinchasi et al. [27] which provides several equalities and inequalities involving the number

of empty polygons, and several related quantities. In this work, the authors also present

some implication of these relations and discuss their connection to some open problems.

Furthermore, Huemer et al. [13] extended these results to polygons having a fixed

number of points in their interior. In consequence, they deduce formulas for sums of

numbers of polygons with a given number of points in their interior.

In this thesis, we continuous the work started in [13] and provide news formulas that

depend only on the size of the planar point set but not on the precise position of the points,

and we also show new inequalities derived from the previous work. These inequalities

extend previous results from [27] and related papers [1, 5, 6, 16].Moreover, these new

expressions might be used to prove some of the results related to the Erdős-Szekeres
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2 Introduction

Theorem using adequate algorithms and computer implementation.

Let us briefly describe the kind of formulas we obtained in this work.

Let S be a set of n points in the plane in general position (that is, no three points of

S are collinear) and let Xk,l(S) be the number of convex k−gons (a k−gon is a simple

polygon that is spanned by exactly k points) in S that have exactly ` points of S in their

interior. An example of a set of 6 points is shown in Fig. 1.1 and its values Xk,` are

described in Table 1.1.

Figure 1.1: Set of 6 points.

HH
HHHHk

`
0 1 2 3

3 17 3 0 0

4 9 3 0 0

5 2 1 0 0

6 0 0 0 0

Table 1.1: The values Xk,` for the set described in Fig. 1.1.

With this notation, one of the interesting expressions proved in [27] and also knwon

from other papers [1, 5, 6, 16] is

∑
k≥3

(−1)k+1Xk,0(S) =

(
n

2

)
− n+ 1. (1.1)
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This expression, the so-called zero-th alternating moment of S for the convex k−gons that

do not contain any point of S in the interior, was a starting point to derive more formulas

in this thesis. Specifically, we consider, in the same direction as [13], different weighted

functions f(k, `) and general weighted sums
∑

k≥3
∑

`≥0 f(k, `)Xk,` which only depend on

the number n of points. For instance we prove that for f(k, `) = xk(1 + x)`, where x is

any real number, the following equality holds:

n∑
k=3

n−k∑
`=0

xk (1 + x)`Xk,` = (1 + x)n − 1− x · n− x2
(
n

2

)
, for any x ∈ R. (1.2)

Therefore, in this thesis we obtain new expressions with the property that the value of the

sum is invariant over all point sets S of same cardinality.

This work is organized in three different parts.

First, in Section 1.1, we present the necessary notation. Then, in Section 1.2, the

introduction contains an overview of the results related to Erdős-Szekeres Theorem and

the progress to this interesting problem. In Section 1.3 of this introduction, we present

the proof technique of the continuous motion argument

In Chapter 2, we describe the results proved in [27] and [13], which are the starting

points of this thesis. In this chapter, we then extend some of these results and find new

formulas for the numbers of convex polygons using similar techniques as in [13, 27].

In Chapter 3, we show the results obtained for specific configurations, the so- called

double chain in Section 3.1, and the so-called double circle in Section 3.2.

1.1 Notation

In this work we consider a set S of n points in the plane in general position. A set S

is in general position if no three points of S lie on a line.

A k−gon is a simple polygon spanned by k points of S. Moreover, a k−gon is convex

if every segment connecting two points of the k−gon lies entirely inside the k−gon. A

k−gon is empty if it does not contain points of S in its interior.

The convex hull of a set S is the smallest convex set that contains S and we will

denote with h the number of points in the boundary of the convex hull, which are also

called extreme points of S. In consequence, the other points n−h points of S are denoted

as interior points.



4 Introduction

Figure 1.2: A planar point set S of n = 8 points in general position, with h = 5 points in

the boundary of the convex hull and with 3 interior points.

1.2 Previous results

Many results on this topic can be found in the surveys [23, 17]. In the following we

also give an overview.

The origin of the classical Erdős-Szekeres problem started around 1932 when the Hun-

garian Esther Klein observed that any set of 5 points in general position in the plane

contains a convex quadrilateral.

Proposition 1.2.1 (Klein). Any set of at least 5 points in general position in the plane

contains 4 points that are the vertices of a convex quadrilateral.

Proof. Consider the convex hull of the set of five points.

If it is a pentagon or a quadrilateral, then we are done.

Otherwise, it is a triangle and two points must lie in its interior. Therefore, the line

determined by these two points divides the triangle into two parts such that, by the

pigeonhole principle, two vertices of the triangle must lie on the same side of the line.

Thus, these two vertices of the triangle and the two points inside the triangle form a

convex quadrilateral.

Observation 1.2.2. A visual proof of Proposition 1.2.1 is shown in Fig. 1.3.

Moreover, she noticed that this result has a generalization.

Problem 1.2.3. Given an integer k ≥ 3, does there exist a positive integer N(k) such

that any set of at least N(k) points in general position in the plane, contains at least one

convex k−gon?
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Figure 1.3: Three different configurations of a set of 5 points according to the size of the

convex hull.

This problem was answered in 1935 by her friends Erdős and Szekeres, see [8]. Fur-

thermore, this problem was named The Happy End Problem by Erdős because it led to

the marriage of the mathematicians George Szekeres and Esther Klein. More details of

the history behind the problem can be found in [30].

Note that, this problem can be understood as a geometric version of Ramsey’s Theo-

rem.

Theorem 1.2.4 (Ramsey). Given integers k > 0 and `1, . . . , `r ≥ k, there is a positive

integer R(k, `1, . . . , `r) such that for all n ≥ R(k, `1, . . . , `r) the following holds. For

each r−coloring of the k−subsets of [n], there is i ∈ [r] and a li−subset such that all

its k−subsets are i−colored.

In fact, the first proof of the existence of N(k) was based on a rediscovering of Ramsey’s

theorem by the authors of [8], independent of Ramsey’s publication [28].

To solve the problem, they also used the following result.

Lemma 1.2.5. If every four points in a set of k points form a convex quadrilateral, then

the k points are in convex position.

Proof. Suppose that the boundary of the convex hull of these k points is not a k−gon.

Then there exists some point P in its interior.

Triangulate the convex hull such that P lies in the interior of one of these triangles,

which contradicts the convexity hypothesis.

Now we can prove the classical Erdős-Szekeres theorem.

Theorem 1.2.6 (Erdős-Szekeres). For every k ≥ 3, there is a positive integer N(k) such

that every set of n ≥ N(k) points in general position in the plane contains at least one

convex k−gon.
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Proof. Consider Ramsey’s Theorem with r = 2.

Let n ≥ R(4, k, 5) points in general position, and for every subset of 4 points consider

their convex hull. If it is a quadrilateral, color it with 1; if it is a triangle, color it with 2.

By Ramsey’s theorem, one of the following holds:

(i) there is a k−subset for which every subset of 4 points is colored with 1,

(ii) there is a 5−subset for which every subset of 4 points is colored with 2.

By Proposition 1.2.1, the case (ii) is not possible. Therefore, the case (i) must hold which,

by Lemma 1.2.5, gives the result.

In the same paper [8], they described another method based on consideration of convex

and concave sequences of points that produces a better upper bound N(k) ≤
(
2k−4
k−2

)
+ 1.

Moreover, Erdős and Szekeres posed the following conjecture.

Conjecture 1.2.7. For any k ≥ 3, N(k) = 2k−2 + 1.

This conjectured exact result is only solved for the values k = 3, 4, 5 and 6.

Clearly, the case k = 3 is trivial and the case k = 4 is due to Klein as shown in

Proposition 1.2.1. In addition, Erdős and Szekeres mentioned in their paper that their

friends Makai and Turan proved that N(5) = 9 but the first published proof of this result

is due to Kalbfleisch et al. [15].

Proposition 1.2.8. Any set of at least 9 points in general position in the plane contains

5 points that are the vertices of a convex pentagon, i.e., N(5) = 9.

More recently Szekeres and Peters established that N(6) = 17 with the assistance of

Brendan McKay and heavy computing (see [32]).

For the best known lower bound, Erdős [9] showed that N(k) ≥ 2k−2 + 1.

For the upper bound, after some other developments of many researchers, Suk [31]

showed recently that N(k) ≤ 2k+6k2/3 log k.

Furthermore, this problem was the origin that that led Erdős to define a new problem

on convex polygons in 1978 (see [7]).

Problem 1.2.9. Given an integer k ≥ 3, does there exist a positive integer H(k) such

that any set S of at least H(k) points in general position in the plane, contains at least one

empty convex k−gon, i.e., a polygon that does not contain any point of S in its interior?

If we analyze the first values of H(k), we observe trivially that H(3) = 3 and it is not

difficult to prove that H(4) = 5 based on the the argument of Proposition 1.2.1.
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Proposition 1.2.10. Any set of at least 5 points in general position in the plane contains

4 points that are the vertices of an empty convex quadrilateral, i.e., H(4) = 5.

Proof. Consider the convex hull of the subset of the first five points, when ordering all the

points of the set by x−coordinate. This subset is separated from the remaining points of

the set.

If it is a pentagon, then we are done.

If it is a triangle, we can apply the same argument as in Proposition 1.2.1 and we find

a convex empty quadrilateral.

If it is a quadrilateral and it is non-empty, consider a diagonal with two of the extreme

points a, c of the set, see Fig. 1.4. Let e be the interior point and d the extreme point

in the opposite side of e respect to the diagonal ac, then the convex quadrilateral aecd is

empty.

Figure 1.4: Configuration of a set of 5 points with 4 extreme points, the diagonal ac is

represented with a dashed line and the edges of the empty quadrilateral with straight lines.

The next value of the Problem 1.2.9 was determined by Harborth [12].

Theorem 1.2.11. Any set of at least 10 points in general position in the plane contain 5

points that are the vertices of an empty convex pentagon, i.e., H(5) = 10.

On the other hand, Horton [14] proved that H(k) does not exist for all k ≥ 7.

However, the existence of H(6) was a major open problem for many years.

In [26], Overmars established the lower bound H(6) ≥ 30 with a computer program

that produced a set of 29 points in the plane with no empty convex hexagons.

For the upper bound, simultaneously in 2005, Gerken [11] and Nicolás [24] proved that

H(6) ≤ N(9) and H(6) ≤ N(25) respectively. From these results, Valtr [35] simplified

Gerken’s proof based on a key lemma that describes point sets with no empty hexagons.
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This result, combined with the bound on N(8) in [33], establishes the bound

H(6) ≤ 463. Moreover, Koshelev [18] improved upon this result and gave the inequal-

ity H(6) ≤ max {N(8), 400}.
An interesting point regarding this result is that Koshelev [19] also followed the result

of Szekeres and Peters [32] to establish that N(6) = 17. More specifically, he showed that

every set S of 17 points contains an hexagon with at most 2 points of S in its interior

and provides an example of a set S of 17 points that does not have an hexagon with only

1 point of S in its interior. Moreover, he proves that every set S of 18 points contains a

convex hexagon with at most 1 point of S in its interior.

On this direction, it is possible to think about the following problem described in

[4, 17].

Problem 1.2.12. Given integers k ≥ 3 and ` ≥ 0, does there exist a positive integer

H(k, `) such that any set S of at least H(k, `) points in general position in the plane,

contains at least one convex k−gon with at most ` points of S in its interior?

For this problem, we clearly have the inequalities N(k) ≤ H(k, `) ≤ H(k) if the

expressions exist. In addition, we have the chain

H(k) = H(k, 0) ≥ H(k, 1) ≥ H(k, 2) ≥ . . . ≥ H(k, `′), (1.3)

for a value `′ such that H(k, `′) = N(k).

From the previous results on empty convex polygons, some small values are trivial:

H(3, 0) = 3, H(4, 0) = 5 and H(5, 0) = 10.

In order to show the case H(5, 1), we detail the following property.

Lemma 1.2.13. Any convex pentagon with two or more interior points always contains

a convex pentagon with a smaller number of interior points.

Proof. The line determined by two of the interior points divides the extreme points of

the convex pentagon into two parts such that, by the pigeonhole principle, at least three

vertices of the pentagon must lie on the same side of the line. Thus, these three vertices

of the convex pentagon and these other two selected points inside the pentagon form a

convex pentagon with fewer interior points.

Proposition 1.2.14. Any set of at least 9 points in general position in the plane contains

5 points that are the vertices of a convex pentagon with at most one point inside, i.e.,

H(5, 1) = 9.
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Proof. From Proposition 1.2.8, we have that there exits `′ ≥ 0 such that

9 = N(5) = H(5, `′).

If `′ ≤ 1 then we are done. Otherwise, applying Lemma 1.2.13, we can reduce the

number of interior points in the convex pentagon until we get `′ = 1.

Observation 1.2.15. Since we have obtained that N(5) = H(5, 1), it implies that

H(5, `) = 9 for all ` ≥ 1 so we denote it as H(5,≥ 1) = 9.

Other results related to this problem were obtained by Sendov [29] proving the non-

existence of H(k, `) for specific values of ` where k > 7 with the use of the Horton set

defined in [14] for the proof of the non-existence of H(7). More specifically, H(k, `) does

not exist for ` ≤ (r + 4)2m−1 − 4m− r − 1 where k + 2 = 4m+ r with m an integer and

r ∈ {0, 1, 2, 3}. Besides, Nyklova [25] showed that H(6,≥ 6) = N(6).

Note that, Sendov [29] provides an asymptotic estimate of the form ( 4
√

2 + o(1))k for

the maximal value of ` such that H(k, `) does not exist.

Also interesting are the results commented above of Koshelev [19] which give an upper

bound for H(6, 1).

Theorem 1.2.16. H(6, 1) ≤ N(7) ≤ 127.

Observation 1.2.17. If Conjecture 1.2.7 is true, then the upper bound of Theorem 1.2.16

can be written as H(6, 1) ≤ 33.

Koshelev in [20, 21] also derived a result on the existence of H(k, `).

Theorem 1.2.18. Given integers k ≥ 3 and ` ≥ 0,

• if ` = 2
(

k−8
(k−8)/2

)
− 1, the value H (k, `) does not exist,

• if ` =
(

k−7
(k−7)/2

)
− 1, the value H (k, `) does not exist.

This result improves the values given previously by Sendov and Nyklova. His estima-

tions for the maximal value of ` such that H(k, `) does not exist are asymptotically equal

to (2 + o(1))k.

Another point of interest about this problem is to find values of ` such that

H(k, `) = N(k) or H(k, `) > N(k). Since for the exact values of N(k) we only know Con-

jecture 1.2.7, Koshelev [20] estimated the maximum value of ` for which H(k, `) > 2k−2+1.

Theorem 1.2.19. Given an integer k ≥ 6, then it holds

H

(
k,

(
k − 3

d(k − 3)/2e

)
−
⌈
k

2

⌉)
> 2k−2 + 1. (1.4)

Some more related results, mainly from the work by Pinchasi et al. [27] are shown in

the next Chapter 2, and are used to derive new formulas.
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1.3 Continuous motion argument

An important argument that will be used in the proofs of this work is the continuous

motion argument. In this section, we explain the basic idea of continuous motion proofs

in the plane (but this continuous motion argument can also be done in Rd for d > 2).

Of course, this argument is not new for the analysis of configurations in combinatorial

geometry (see for example [3, 34]) because it is very useful to prove properties that hold

for any point set.

In many of the proofs of this work, the goal is to demonstrate a property for all point

sets in the plane which first is shown to hold for some particular point set (usually a set of

points in convex position). Then, we can just try to move the points from the point set for

which the property holds into any particular point configuration and check the property

throughout. The changes on the combinatorial structure of the point set often only appear

on few discrete and specific positions, so it is sufficient to analyze these changes.

More formally, let S(0) := S be a set of n points {p1, . . . , pn} and consider the changes

under a generic continuous motion S(t) = {p1(t), . . . , pn(t)}. That is, each pi(t) depends

continuously on time t, and S(t) is in a sufficiently generic position except for a finite

number of critical instants t1, t2, t3, . . . at which only one degeneracy appears.

In the plane, these degeneracies appear when one triple of points becomes collinear.

Therefore the idea of the argument is to prove that a property does not change when during

the movement one point crosses the segment defined by two other points, see Fig 1.5. In

that sense, we consider that a continuous motion of the points of the set is sufficiently

generic if the points of the set remain distinct and in general position during the motion,

except for a finite number of critical instants where exactly three points are collinear.

Figure 1.5: The point in the interior of the convex quadrilateral is moving towards the

exterior. A degeneracy appears when the point reaches a side of the quadrilateral.



Chapter 2

Sums of numbers of polygons

This chapter contains a variety of results concerning the number of convex polygons

with a given number of interior points in planar point sets.

In Section 2.1 we consider alternating sums of the numbers of convex polygons based

on the results of [27] and [13].

Then, in Section 2.2 we describe some inequalities derived from the previous alternating

sums.

Other interesting equations are the weighted sums that depend only on the size of the

point set which are shown in Section 2.3. We find new equations that allow to deduce

some of the theorems related to the Erdős-Szekeres Theorem.

Finally, in Section 2.4, we also introduce moment sums as a combination of the previous

sums that gives us some ideas on the possibility to extend the expressions of the alternating

sums.

2.1 Alternating sums

This section describes a set of results of equalities involving the numbers of convex

polygons based on alternating sums. The results related with empty convex polygons in

this section, was showed in [27], and an extension to convex polygons with one interior

point was first proved in [13].

In order to show the results, we first introduce the necessary definitions. Many of them

are already given in [13, 27].

Definition 2.1.1. For any point set S, the number of convex k−gons in S that have

exactly ` points of S in their interior is Xk,`(S).

Definition 2.1.2. The r−th alternating moment of {Xk,`(S)} is

Mr,`(S) =
∑
k≥3

(−1)k+1mr(k)Xk,`(S), (2.1)

11



12 Sums of numbers of polygons

where the multiplicative factor mr(k) is

mr(k) =


1 r = 0,

k
r

(
k−r−1
r−1

)
r ≥ 1 and k ≥ 2r,

0 otherwise.

(2.2)

Note that the condition k ≥ 2r of the factor mr(k) comes from the fact that the

binomial coefficient is indexed by a pair k − r − 1 ≥ r − 1 because the expression mr(k)

corresponds to the number of ways to choose r elements from a circular list of k elements,

which is known as Cayley’s problem (see [22]).

The previous definitions count all the convex polygons in S. A similar definition for

counting the convex polygons with specified fixed points in their interior is the following.

Definition 2.1.3. Let p1, . . . , pm ∈ S be fixed points, the number of convex k−gons in S

that have exactly p1, . . . , pm and `−m other points of S in their interior is Xp1,...,pm
k,` (S).

Definition 2.1.4. Let p1, . . . , pm ∈ S be fixed points, the r−th alternating moment of{
Xp1,...,pm
k,` (S)

}
is

Mp1,...,pm
r,` (S) =

∑
k≥3

(−1)k+1mr(k)Xp1,...,pm
k,` (S). (2.3)

Further, we can also consider this count taken into account only the convex polygons

that are incident to a directed edge.

Definition 2.1.5. Let e be a directed edge spanned by two points of S, the number of

convex k−gons in S with ` interior points, that are incident to e and lie to the left of e,

is Xk,`(S; e).

Definition 2.1.6. Let e be a directed edge spanned by two points of S, the r−th alternating

moment of {Xk,`(S; e)} is

Mr,`(S; e) =
∑
k≥3

(−1)k+1mr(k)Xk,`(S; e). (2.4)

Note that the previous definitions may be extended to an arbitrary number of edges

that are in convex position.

Definition 2.1.7. Let e1, . . . , er be r fixed edges spanned by distinct points of S such that

these r edges are in convex position, the number of convex k−gons (with k ≥ 2r) in S with

` interior points, with e1, . . . , er on their boundary, is Xk,`(S; e1, . . . , er).

Definition 2.1.8. Let e1, . . . , er be r fixed edges spanned by distinct points of S and are

in convex position, the r−th alternating moment of {Xk,`(S; e1 . . . , er)} is

Mr,`(S; e1, . . . , er) =
∑
k≥3

(−1)k+1mr(k)Xk,`(S; e1 . . . , er). (2.5)
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From now on, we will usually omit S from the previous expressions to simplify our

notation.

The first theorem shows that the alternating sum of the number of empty convex

polygons only depends on the size of the point set. We follow the proof of Pinchasi et al.

[27], but this theorem is already known from a survey on convex geometries by [5].

Theorem 2.1.9. For any point set S of n points in general position, it holds that

M0,0 =
(
n
2

)
− n+ 1.

Proof. We first prove that M0,0 only depends on n using a continuous motion argument.

Thereto, we consider a sufficiently generic movement of the points of S. Let r be a

point of S that is about to cross the edge e = pq spanned by two points p, q of S.

Note that, the only convex polygons spanned by S that may change are those that

have e as an edge or p, q and r as vertices. Thus, let Q be a convex polygon with e as an

edge (see Fig. 2.1). If r is about to enter Q, then the polygon Q stops being empty and

the k+1-gon Q′ (defined replacing e by the path prq) stops being convex. In consequence,

their combined contribution to M0,0 is zero because they differ by 1 in size, so they do not

change the value of M0,0.

An analogous argument applies if r is about to exit Q because then Q starts being

empty and Q′ starts being convex, and again it does not change the value of M0,0.

Note that, these events described above are the only possible events that may change

the value of M0,0.

Now, we can obtain the value of M0,0 with the assumption that the n points of S are

in convex position. In this case, we clearly have Xk,0 =
(
n
k

)
for all k ≥ 3 and we obtain

M0,0 =

(
n

3

)
−
(
n

4

)
+

(
n

5

)
− · · · =

(
n

2

)
− n+ 1. (2.6)

Figure 2.1: The empty convex k − gon Q of the proof of Theorem 2.1.9 with r in its

exterior (left) and with r in its interior (right).
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The situation is not as simple for the other r−th alternating moment of empty convex

polygons and depends on the shape of the point set. So we need some previous lemmas

to derive their relation with geometric parameters of the point set.

To prove the relation for M1,0, we need the following Lemma, proved in [27], that gives

a relation of the alternating sum of the empty convex polygons incident to a directed edge.

Lemma 2.1.10. For any point set S of n points in general position and a directed edge e

spanned by two points of S, it holds that

M0,0(e) =

{
1 if e has at least one point of S to its left,

0 otherwise.
(2.7)

Proof. We first prove that M0,0(e) only depends on n using a continuous motion argument,

similarly to the proof of Theorem 2.1.9.

Thereto, we consider a sufficiently generic movement of the points to the left of e

(without crossing the line supporting e) while the endpoints of e and the points on the

other side of e remain fixed. Let r be a point to the left of e that is about to cross an edge

f = pq spanned by two points p, q of S.

Note that, the only convex polygons that are incident to e that may change are those

that have f as an edge or p, q and r as vertices. Thus, let Q be a convex polygon with

f as an edge (see Fig. 2.1, because the argument is analogous to the proof of Theorem

2.1.9), if r is about to enter Q, then the polygon Q stops being empty and the k+1-gon Q′

(defined replacing f by the path prq) stops being convex. In consequence, their combined

contribution to M0,0(e) is zero because they differ by 1 in size, so they do not change the

value of M0,0.

An analogous argument applies if r is about to exit Q because then Q starts being

empty and Q′ starts being convex, and again it does not change the value of M0,0(e).

Note that, these events described above are the only possible events that may change

the value of M0,0(e).

Now, we can obtain the value of M0,0(e) with the assumption that the m points to the

left of e are in convex position. In this case, we clearly have Xk,0(e) =
(
m
k−2
)

for all k ≥ 3

and we obtain

M0,0(e) =

(
m

1

)
−
(
m

2

)
+

(
m

3

)
− · · · (2.8)

which is 1 if m > 0 and 0 if m = 0.

Therefore, using the previous lemma, it is not difficult to shown the result for M1,0,

proved in [27]. This equality was also obatined by Ahrens et al. [1] using tools from

matroid theory.
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Theorem 2.1.11. For any point set S of n points in general position, h of them in the

convex hull, it holds that

M1,0 = 2

(
n

2

)
− h. (2.9)

Proof. We first observe that
∑

eM0,0(e) = 3X3,0 − 4X4,0 + 5X5,0 − . . . = M1,0 because

each empty convex k−gon Q is counted exactly k times in
∑

eM1,0(e), once for each of

its edges.

Now, using Lemma 2.1.10 and since the total number of directed edges spanned by S

which are not in the convex hull is 2
(
n
2

)
− h, we obtain

M1,0 =
∑
e

M0,0(e) = 2

(
n

2

)
− h. (2.10)

In order to extend the previous expressions of M0,0 and M1,0, we need to introduce

two new geometric definitions given in [27].

Definition 2.1.12. Let e1, . . . , er be edges spanned by S that lie in convex position, the

region τ(e1, . . . , er) is formed by the intersection of the r halfplanes that are bounded by

the lines supporting e1, . . . , er and containing the other edges.

Definition 2.1.13. Tr(S), for r ≥ 2 is the number of r−tuples of vertex-disjoint edges

e1, . . . , er spanned by S that lie in convex position and τ(e1, . . . , er) has no point of S in

its interior. Moreover, we denote T0(S) = 0 and T1(S) = h.

Observation 2.1.14. A pair of edges p1p2, p3p4 that is counted in T2 has to lie in convex

position and the wedge bounded by their supporting lines is empty, as shown in Fig. 2.2.

Figure 2.2: A pair of edges p1p2 and p3p4 that is counted in T2.

Similar to the case of Theorem 2.1.11, we first show the expression for the alternating

sum of the empty convex polygons that contain r edges. This Lemma was proved in [27].
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Lemma 2.1.15. For any point set S of n points in general position and e1, . . . , er a set

of vertex-disjoint edges spanned by S that lie in convex position, let m be the number of

points of S inside the region τ(e1, . . . , er). It holds that

M0,0(e1, . . . er) =

{
0 if m 6= 0,

−1 if m = 0.
(2.11)

Proof. If m = 0 the only non-zero element of the set {Xk,0(e1, . . . er)}k≥3 is the value

X2r,0(e1, . . . er) = 1. Therefore, if m = 0,

M0,0(e1, . . . er) = (−1)2r+1 = −1. (2.12)

Now we claim that the value of M0,0(e1, . . . , er) depends only on the number of points of

S that lie in the region τ(e1, . . . , er).

Consider a continuous motion of the points of S inside the region τ(e1, . . . , er), which

is sufficiently generic, without crossing any of the lines bounding this region, and while

the endpoints of e1, . . . , er as well as the points of S outside this region remain fixed.

Similar to the proof of Theorem 2.1.9, let us consider one of the m points, s, and

two distinct points p, q inside τ(e1, . . . , er). Note that the only polygons spanned by S

(including the edges e1, . . . er) whose convexity may change are those that have the edge

pq or the vertex s. Thus, let Q be a convex polygon containing the edge pq (as well as the

edges e1, . . . er) and suppose that s is outside Q. Then there exists a convex (k + 1)−gon

Q′ obtained replacing the edge pq by the path psq (see Fig 2.1). If s is about to cross the

edge pq then Q and Q′ stop being convex and, since their sizes differ by 1, their combined

contribution to M0,0 is 0 and the movement does not affect its value. On the other hand,

a symmetric argument applies if s is inside Q.

Therefore, if m 6= 0, we can obtain M0,0(e1, . . . er) by placing the m points together

with the endpoints of e1, . . . er, in convex position. Hence,

M0,0(e1, . . . er) =

(
m

0

)
−
(
m

1

)
+

(
m

2

)
− · · · = 0. (2.13)

Now we can extend the previous results to Mr,0 for any r ≥ 2, as shown in [27].

Theorem 2.1.16. For any point set S of n points in general position and for any r ≥ 2,

it holds that

Mr,0 = −Tr. (2.14)

Proof. First, observe that each empty convex k−gon Q is counted exactly k
r

(
k−r−1
r−1

)
times

in
∑
{e1,...,er}M0,0(e1, . . . , er), once for each r−tuple of vertex-disjoint edges in convex
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position, because it is the number of ways of selecting r objects, no two consecutive, from

k objects arranged in a circle. Therefore, using an analogous argument to Theorem 2.1.11,

we obtain that
∑
{e1,...,er}M0,0(e1, . . . , er) = Mr,0 (where the sum is over all unordered

r−tuples of edges in convex position).

Now, using Lemma 2.1.15 and since the total number of r−tuples of edges which are

empty convex polygons is Tr, we obtain

Mr,0 =
∑

{e1,...,er}

M0,0(e1, . . . , er) = −Tr. (2.15)

A possible extension of these results is on alternating sums of numbers of polygons with

` > 0 interior points. An interesting result on this direction is given in [13] that relates

the moment M0,1 with the number of points in the boundary of the convex hull. To prove

the Theorem 2.1.18, they also show as a side result, an expression for the alternating sum

of the empty convex polygons with a fixed point in their interior.

Lemma 2.1.17. For any point set S of n points in general position and any point p ∈ S
it holds that

Mp
0,1 =

{
0 if p is a point of the convex hull of S,

1 otherwise.
(2.16)

Proof. On the one hand, if p is a point of the convex hull of S, clearly it cannot be in the

interior of any polygon spanned by points of S, thus Mp
1,0 = 0.

On the other hand, if p is an interior point of S then let us consider that p is very close

to an edge e of the convex hull of S. In this case, p is contained in exactly all polygons

that contain e as an edge, therefore Mp
0,1(S) = M0,0(S \ {p} ; e) = 1 by Lemma 2.1.10.

Otherwise, if p is located arbitrarily inside S (not close to the convex hull), we consider

a continuous motion of p which is sufficiently generic. It means that during the motion

Mp
0,1(S) can only change if a collinearity occurs.

Therefore, let qr be an edge spanned by two points of S and suppose that p is about

to cross the edge qr, from its left to its right side. Then, before the collinearity the

contribution of the polygons that contain p before the movement is M0,0(S \ {p} ; qr) =

1 and after the cross we have that the polygons that contain p after the movement is

M0,0(S \ {p} ; rq) = 1 applying Lemma 2.1.10 because qr is not a convex hull edge of S.

In conclusion, since the alternating sums of the polygons that change (before the

movement and afterwards) are the same, they do not affect the value of Mp
0,1(S) and the

value may be obtained for a point p that lies very close to a convex hull edge.
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Theorem 2.1.18. For any set S of n points in general position, h of them in the convex

hull, it holds that M0,1(S) = n− h.

Proof. Using Lemma 2.1.17 and, since the number of interior points of S is n− h we get

M0,1(S) =
∑
p∈S

Mp
0,1(S) = n− h. (2.17)

2.2 Inequalities

From the results presented in Section 2.1, in [27] the authors also derive inequalities

that involve the parameters Xk,0. To obtain these results, they first state theorems related

with the moments Mr,0 which will let us deduce the inequalities for the numbers of convex

polygons.

In this section, we first introduce the necessary notation to prove the inequalities for

the moments M0,0 and M1,0 from [27]. We then apply this proof technique to obtain a

new inequality for the moment M1,1. Using these results, we provide some inequalities

that involve the parameters Xk,` deduced from that.

Definition 2.2.1. Let e be an edge spanned by two points p, q ∈ S. S+
pq = {y1, . . . , ym} is

the set of all points yi ∈ S that lie to the left of e and are such that the triangle pqyi is

empty.

Observation 2.2.2. By definition, the number of points of S+
pq is

∣∣S+
pq

∣∣ = X3,0(e).

Observation 2.2.3. If Q is an empty convex k−gon that lies to the left of e and it is

incident to e, then the other vertices of Q must belong to the set S+
pq.

Moreover, to derive some results, we consider an order for the points of the set S+
pq

stated in [27].

Proposition 2.2.4. The set S+
pq is totally ordered with the following order: yi ≺ yj if yj

lies to the right of the directed lines ~pyi and ~qyi.

We will assume that the points of the set S+
pq are enumerated in the order of Proposi-

tion 2.2.4, and using the notation of the previous definitions, we introduce the following

properties and notation already given in [27].

Observation 2.2.5. For any i < m, pyiyi+1q is a convex empty quadrilateral. In conse-

quence, we also have X4,0(e) ≥ X3,0(e)− 1.
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Figure 2.3: The region Wij .

Definition 2.2.6. For each 1 ≤ i < j ≤ m, Wij is the open region formed by the

intersection of the three halfplanes lying to the right of ~pyi, to the left of ~yiyj and to

the left of ~qyj.

Definition 2.2.7. For each 1 ≤ i < j ≤ m, X
(i,j)
k,0 is the number of empty convex k−gons

whose vertices belong to S+
pq ∩Wij and that have yi, yj as vertices.

These definitions are interesting in order to find the following relation, given in [27],

between empty convex polygons.

Lemma 2.2.8. If we denote Fij = X
(i,j)
3,0 −X

(i,j)
4,0 + . . .+ (−1)t−1X

(i,j)
t−2,0, then

X5,0(e)−X6,0(e) + . . .+ (−1)t+1Xt,0(e) =
∑
i,j

Fij , (2.18)

where the sum extends over all i < j such that the quadrilateral pyiyjq is empty.

Proof. Let K be any empty convex k−gon which lies to the left of e and it is incident

to e. If K is no a triangle, let yi (resp. yj) be the vertex adjacent to p (resp. to q).

Then pyiyjq forms an empty convex quadrilateral and the other vertices of K belong to

S+
pq ∩Wij forming an empty convex (k − 2)−gon together with the vertices yi, yj .

The converse is also true and we obtain (if the quadrilateral pyiyjq is empty) a one-

to-one correspondence between empty convex k−gons with yipqyj consecutive vertices,

and empty convex (k − 2)−gons formed by points of S+
pq ∩Wij and with yiyj consecutive

vertices. Then, by the one-to-one correspondence, we have the sum of (2.18).

Using this notation, another result of [27] is the following inequality based on Lemma

2.1.10.
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Lemma 2.2.9. For any point set S of n points in general position and a directed edge e

spanned by two points of S, if there is at least one point of S to the left of e, then it holds

that

• for each t ≥ 3 odd,

X3,0(e)−X4,0(e) +X5,0(e)− . . .+Xt,0(e) ≥ 1, (2.19)

• for each t ≥ 4 even,

X3,0(e)−X4,0(e) +X5,0(e)− . . .+Xt,0(e) ≤ 1, (2.20)

and equalities hold if and only if Xt+1,0(e) = 0.

Proof. We observe that in Lemma 2.1.10 we have the result including all the terms,

X3,0(e) − X4,0(e) + X5,0 − . . . = 1. Therefore, if Xt+1,0(e) = 0, then Xu,0(e) = 0 for

all u > t and the equality in the lemma is satisfied.

Now we will prove the statement by induction on t.

For the base case t = 3, we have X3,0(e) ≥ 1 because we are assuming that there is

at least one point of S to the left of e. For the equality, if X3,0(e) = 1 then X4,0(e) = 0

because otherwise the two vertices of an empty convex quadrilateral incident to e would

give two empty triangles incident to e. On the other hand, if X4,0(e) = 0 from Observation

2.2.5 we have 0 ≥ X3,0(e)− 1. Using both, 0 ≥ X3,0(e)− 1 ≥ 1− 1 = 0 thus X3,0(e) = 0.

For the base case t = 4, again using Observation 2.2.5 we have X3,0(e)−X4,0(e) ≤ 1.

For the equality, if X4,0(e) = X3,0(e) − 1 then X5,0(e) = 0 due to the same observation.

For the converse, if X5,0(e) = 0 then X
(i,j)
3,0 = 0 for every i < j with pyiyjq empty, which

implies that the only empty quadrilaterals are those with j = i + 1 and, by Observation

2.2.5, X4,0(e) = X3,0(e)− 1.

For the inductive step, let t ≥ 4 be given and suppose that the statement holds for all

t′ < t.

We first consider the case that t is even.

By inductive hypothesis, if S+
pq ∩Wij is non-empty then Fij ≤ 1 and, by definition, if

S+
pq ∩Wij is empty then Fij = 0.

Note that there are X4,0(e) pairs yiyj such that the quadrilateral pyiyjq is empty

and convex, and among these, by Observation 2.2.5, exactly X4,0(e)− (X3,0(e)− 1) have

j > i+ 1.

Hence,
∑

i,j Fij ≤ X4,0(e)− (X3,0(e)− 1) and, by Lemma 2.2.8, we have

X3,0(e)−X4,0(e)+X5,0(e)− . . .+Xt,0(e) ≤ X3,0(e)−X4,0(e)+X4,0(e)− (X3,0(e)− 1) = 1.

(2.21)

If the equality holds, Fij = 1 if S+
pq∩Wij is non-empty. Then, by induction, X

(i,j)
t−1,0 = 0 for

every i, j with pyiyjq empty. Since the existence of an empty convex (t+ 1)−gon incident

to e would imply that exists some i, j such that X
(i,j)
t−1,0 > 0, it implies that Xt+1,0(e) = 0.
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The case with t odd, uses that, by inductive hypothesis if S+
pq ∩Wij is non-empty then

Fij ≥ 1 and we proceed in completely analogy the the case with t even,

X3,0(e)−X4,0(E)+X5,0(e)− . . .+Xt,0(e) ≥ X3,0(e)−X4,0(e)+X4,0(e)−(X3,0(e)− 1) = 1.

(2.22)

For the equality, it is also analogous to the case mentioned above with t even.

Definition 2.2.10. Let Q be an empty convex k−gon, let p be the lowest vertex of Q and

let a, b be the two vertices of Q adjecent to p,

• Wpab is the wedge delimited by the rays ~pa and ~pb,

• Xpab
k,0 is the number of empty convex k−gons contained in Wpab having the edge ab

as an edge and separated from p by that edge.

Figure 2.4: The region Wpab.

These definitions are interesting in order to find the following relation between empty

convex polygons, already given in [27].

Lemma 2.2.11. If we denote Fpab = Xpab
3,0 −X

pab
4,0 + . . .+ (−1)tXpab

t−1,0, then

−X4,0 +X5,0 + . . .+ (−1)t+1Xt,0 = −
∑
pab

Fpab, (2.23)
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Proof. Let K be any empty convex k−gon with p its lowest vertex, and a, b the adjacent

vertices to p. Then, the triangle pab is empty and the (k − 1)−gon formed by the other

vertices of K together with a and b, is contained in the region Wpab.

The converse is also true and we obtain (if the triangle pab is empty) a one-to-one

correspondence between empty convex k−gons whose lowest vertex is p, and empty convex

(k − 1)−gons formed by points of Wpab, with a, b consecutive vertices and the triangle

pab empty.

Then, by the one-to-one correspondence, we have the sum of (2.23).

Now, we can introduce the inequalities related to M0,0 and M1,0 and their proofs,

obtained in [27].

Theorem 2.2.12. For any point set S in general position in the plane, we have

• for each t ≥ 3 odd,

X3,0 −X4,0 +X5,0 − . . .+Xt,0 ≥
(
n

2

)
− n+ 1, (2.24)

• for each t ≥ 4 even,

X3,0 −X4,0 +X5,0 − . . .+Xt,0 ≤
(
n

2

)
− n+ 1, (2.25)

and the equalities hold if and only if Xt+1,0 = 0.

Proof. Observe that, by Theorem 2.1.9, if Xt+1,0 = 0 then clearly equality holds.

Now, we consider the case t odd.

Note that, by Lemma 2.2.9, Fpab ≤ 1 for any empty triangle pab with at least one

point of the set in the interior of Wpab.

Now, we claim that there are exactly
(
n
2

)
− n+ 1 empty triangles pab such that Wpab

does not contain any additional point of the set. Indeed, we sort the points of the set in

decreasing y−order: p1, . . . , pn. For a point pi we sort the points p1, . . . , pi−1 in angular

order about pi. Then, the empty triangles with pi as their lower vertex and with no

other points in the interior of the wedge are precisely those whose other two vertices are

consecutive points in this angular order, so the total is i− 2. Summing for all i = 3, . . . , n

we get 1 + 2 + . . .+ (n− 2) =
(
n
2

)
− n+ 1.

Then we have,

X3,0 −X4,0 +X5,0 − . . .+Xt,0 = X3,0 −
∑
pab

Fpab ≥

≥ X3,0 − |{pab| pab empty and Wpab non-empty}| =

=

(
n

2

)
− n+ 1. (2.26)
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For the equality, we have that Fpab = 1 for every empty triangle pab with Wpab non-

empty. Using Lemma 2.2.9, we observe that in this case Xpab
t,0 = 0 for any empty triangle

pab. Since every empty convex (t+1)−gon would imply that there exists an empty triangle

pab with Xpab
t,0 > 0, it implies that Xt+1,0 = 0.

The case with t even is analogous to the previous one with the observation that, by

Lemma 2.2.9, Fpab ≥ 1 for any empty triangle pab with at least one point of the set in the

interior of Wpab. Then,

X3,0 −X4,0 +X5,0 − . . .+Xt,0 = X3,0 −
∑
pab

Fpab ≤

≤ X3,0 − |{pab| pab empty and Wpab non-empty}| =

=

(
n

2

)
− n+ 1. (2.27)

The equality is proven with the same argument applied in the case with t odd.

Theorem 2.2.13. For any point set S in general position in the plane, we have

• for each t ≥ 3 odd,

3X3,0 − 4X4,0 +X5,0 − . . .+ tXt,0 ≥ 2

(
n

2

)
− h, (2.28)

• for each t ≥ 4 even,

3X3,0 − 4X4,0 +X5,0 − . . .+ tXt,0 ≤ 2

(
n

2

)
− h, (2.29)

and the equalities hold if and only if Xt+1,0 = 0.

Proof. We first observe that, by Theorem 2.1.11, if Xt+1,0 = 0 then the equality holds.

Note that, with the same argument as in Theorem 2.1.11, it is clear that

3X3,0−4X4,0+ . . .+(−1)t+1tXt,0 =
∑
e

(
X3,0(e)−X4,0(e) + . . . (−1)t+1tXt,0(e)

)
. (2.30)

If t is odd, by Lemma 2.2.9, X3,0(e) − X4,0(e) + . . . + (−1)t+1tXt,0(e) ≥ 1 if e is not an

edge of the convex hull of S. Therefore,

3X3,0 − 4X4,0 + . . .+ (−1)t+1tXt,0 =
∑
e

(
X3,0(e)−X4,0(e) + . . . (−1)t+1tXt,0(e)

)
≥

≥ 2

(
n

2

)
− h. (2.31)
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If equality holds, X3,0(e)−X4,0(e)+. . . (−1)t+1tXt,0(e) = 1 if e is not an edge of the convex

hull of S and, by Lemma 2.2.9, Xt+1,0(e) = 0 for these edges. Therefore, Xt+1,0(e) = 0

for all the edges and, in consequence, Xt+1,0 = 0.

If t is even, the proof is analogous with the unique difference that the inequality is

X3,0(e) − X4,0(e) + . . . (−1)t+1tXt,0(e) ≤ 1 if e is not an edge of the convex hull of S.

Therefore, the proof proceeds in the same manner but the direction of the inequalities is

reversed.

We next proceed to extend these results to the moment M0,1, which is a new result of

the thesis.

Lemma 2.2.14. For any point set S of n points in general position and a point p ∈ S in

the interior of the convex hull, it holds that

• for each t ≥ 3 odd,

Xp
3,1 −X

p
4,1 + . . .+Xp

t,1 ≥ 1, (2.32)

• for each t ≥ 4 even,

Xp
3,1 −X

p
4,1 + . . .+Xp

t,1 ≤ 1, (2.33)

and the equalities hold if and only if Xp
t+1,1 = 0.

Proof. First of all, by Lemma 2.1.17, we have that if Xp
t+1,1 = 0 then the equality holds.

Note that, with the same argument as in Lemma 2.1.17, let us consider that p is very

close to an edge e of the convex hull of S, and then

Xp
3,1−X

p
4,1 + . . .+Xp

t,1 = X3,0(S \{p} ; e)−X4,0(S \{p} ; e)+ . . .+Xt,0(S \{p} ; e). (2.34)

Then the results of Lemma 2.2.9 applies.

Moreover, if we consider a continuous motion of p which is sufficiently generic proceding

exaclty in the same manner as in the proof of Lemma 2.1.17 the value of (2.34) does not

change if p is located arbitrarily inside S.

Theorem 2.2.15. For any point set S in general position in the plane, we have

• for each t ≥ 3 odd,

X3,1 −X4,1 +X5,1 − . . .+Xt,1 ≥ n− h, (2.35)

• for each t ≥ 4 even,

X3,1 −X4,1 +X5,1 − . . .+Xt,1 ≤ n− h, (2.36)

and the equalities hold if and only if Xt+1,1 = 0.
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Proof. Observe that, by Theorem 2.1.18, if Xt+1,1 = 0 then the equality holds.

Note that, using the same argument as in Theorem 2.1.18, it is clear that

X3,1 −X4,1 +X5,1 − . . .+Xt,1 =
∑
p∈S

(
Xp

3,1 −X
p
4,1 +Xp

5,1 − . . .+Xp
t,1

)
. (2.37)

If t is odd, by Lemma 2.2.14, Xp
3,1 − X

p
4,1 + . . . + Xp

t,1 ≥ 1 if p is an interior point of S.

Therefore,

X3,1 −X4,1 +X5,1 − . . .+Xt,1 =
∑
p∈S

(
Xp

3,1 −X
p
4,1 + . . .+Xp

t,1

)
≥

≥ n− h. (2.38)

If equality holds, then Xp
3,1−X

p
4,1 +Xp

5,1− . . .+Xp
t,1 = 1 if p is an interior point of S and,

by Lemma 2.2.14, Xp
t+1,1 = 0 for these points. Therefore, Xp

t+1,1 = 0 for all the points

and, in consequence, Xt+1,1 = 0.

If t is even, the proof is analogous with the unique difference that the inequality is

Xp
3,1 − X

p
4,1 + Xp

5,1 − . . . + Xp
t,1 ≤ 1 if p is an interior point of S. Therefore, the proof

proceeds in the same manner but the direction of the inequalities is reversed.

Furthermore, Pinchasi et al. [27] extended these theorems to the sums Mr,0.

Theorem 2.2.16. For any point set S in general position in the plane and for any r ≥ 2,

we have

• for each t ≥ 2r + 1 odd,

t∑
k=2r

(−1)kmr(k)Xk,0 ≤ Tr, (2.39)

• for each t ≥ 2r even,
t∑

k=2r

(−1)k+tmr(k)Xk,0 ≥ Tr, (2.40)

and the equalities hold if and only if Xt+1,0 = 0.

As mentioned above, these results imply a new variety of inequalities related with the

numbers of convex polygons. A first important result is for the lower bound of the number

of empty convex quadrilaterals, already given in [27].

Corollary 2.2.17.

X4,0 ≥ max

{
X3,0 −

(
n

2

)
+ n− 1,

3

4
X3,0 −

n(n− 1)− h
4

}
. (2.41)
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Proof. It is enough to observe that from Theorems 2.2.12 and 2.2.13 for t = 4, we obtain

the following inequalities:

X3,0 −X4,0 ≤
(
n

2

)
− n+ 1, (2.42)

3X3,0 − 4X4,0 ≤ 2

(
n

2

)
− h. (2.43)

In the same way, another result of [27] is for the lower bound of the number of empty

convex pentagons.

Corollary 2.2.18. X5,0 ≥ 2
5X4,0 − 1

5T2.

Proof. The result is immediate from Theorem 2.2.16 for r = 2 and t = 5.

A similar new result may be deduced from Theorem 2.2.15 with t = 4.

Corollary 2.2.19. X4,1 ≥ X3,1 − n+ h.

2.3 Weighted sums

In this section, we analyze other sums of numbers of polygons with interior points.

Basically, we consider sums of the form F (S) =
∑

`≥0
∑

k≥3 f(k, `)Xk,` following the

results initiated by Huemer et al. [13].

In [13], a relation that gives the sum F (S) only dependent on n is proven.

Theorem 2.3.1. For any point set S of n points in general position and for any function

f(k, `) that fulfills the recurrence relation

f(k, `) = f(k + 1, `− 1) + f(k, `− 1), (2.44)

the sum F (S) =
∑

`≥0
∑

k≥3 f(k, `)Xk,`(S) is invariant over all point sets S of same

cardinality, that is, F (S) only depends on n.

Proof. We claim that any continuous motion of the points of S which is sufficiently generic

does not change the value of F (S).

Consider that p, q, r ∈ S become collinear, with r lying between p and q, thus the only

convex polygons spanned by S that may change are those that have pq as an edge (and r

in its interior) or p, q, r as vertices.
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Let Q be a convex k − gon with ` interior points that contains pq as an edge and

r in its interior, see Fig 2.5. If r moves outside of Q, then the polygon Q has ` − 1

points in its interior and the (k + 1)−gon Q′ obtained by replacing the edge pq of Q

by the polygonal path prq, starts being convex with ` − 1 points in its interior. Since

f(k, `) = f(k+ 1, `−1) +f(k, `−1), the movement of the point does not change the value

of F (S).

Symmetrically, if r moves inside Q (with ` points in its interior), then Q has ` + 1

points in its interior and the (k+ 1)−gon Q′, with also ` points in its interior, stops being

convex. Again, this does not change the value of F (S).

Figure 2.5: The convex k − gon with ` interior points Q of the proof of Theorem 2.3.1

with r in its interior (left) and with r outside (right).

Moreover, they show some functions that fulfill the recurrence relation (2.44).

Corollary 2.3.2. For any point set S of n points in general position, it holds that

n∑
k=3

n−3∑
`=0

2`Xk,`(S) = 2n − n2

2
− n

2
− 1. (2.45)

Corollary 2.3.3. For any point set S of n points in general position and every integer

3 ≤ m ≤ n, it holds that

m∑
k=3

n−k∑
`=m−k

(
`

m− k

)
Xk,`(S) =

(
n

m

)
. (2.46)
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Corollary 2.3.4. For any point set S of n points in general position, it holds that

n∑
k=3

n−3∑
`=0

2 cos

(
(2k + `)π

3

)
Xk,`(S) =

(
n

2

)
+ n− 2 + 2 cos

(nπ
3

)
, (2.47)

n∑
k=3

n−3∑
`=0

2√
3

sin

(
(2k + `)π

3

)
Xk,`(S) =

(
n

2

)
− n+

2√
3

sin
(nπ

3

)
. (2.48)

Corollary 2.3.5. Let {Fib(n)} be the sequence of Fibonacci numbers, satisfying Fib(n) =

Fib(n − 1) + Fib(n − 2) with Fib(1) = Fib(2) = 1. For any point set S of n points in

general position, it holds that

n∑
k=3

n−3∑
`=0

Fib(k + 2`)Xk,`(S) = Fib(2n)− n−
(
n

2

)
, (2.49)

n∑
k=3

n−3∑
`=0

(−1)k+l Fib(k − `)Xk,`(S) = −Fib(n) + n−
(
n

2

)
. (2.50)

Note that the Fibonacci numbers are also defined for negative integers.

In this work, we derive new functions f(k, `) in terms of the functions f(k, 0).

Theorem 2.3.6. The general solution of the recurrence relation (2.44) is given by the

equation

f(k, `) =
l∑

i=0

(
`

i

)
f(k + i, 0). (2.51)

Proof. We will prove the statement by induction on `.

Obviously, the case ` = 0 is immediate because the sum only includes one term,

f(k, 0) = f(k, 0).

For the base case, we have ` = 1, then the result is also clear because the equality

corresponds to (2.44) for ` = 1,

f(k, 1) = f(k + 1, 0) + f(k, 0). (2.52)
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For the inductive step, let λ ≥ 0 be given and suppose (2.51) holds for ` = λ. Then

f(k, λ+ 1) = f(k + 1, λ) + f(k, λ) =
λ∑
i=0

(
λ

i

)
f(k + 1 + i, 0) +

λ∑
i=0

(
λ

i

)
f(k + i, 0) =

=
λ+1∑
i=1

(
λ

i− 1

)
f(k + i, 0) +

λ∑
i=0

(
λ

i

)
f(k + i, 0) =

= f(k, 0) +

λ∑
i=1

[(
λ

i

)
+

(
λ

i− 1

)]
f(k + i, 0) + f(k + i, 0) =

=
λ+1∑
i=0

(
λ+ 1

i

)
f(k + i, 0). (2.53)

Note that, there may be many functions f(k, `) that fulfill (2.51), thus many different

sums F (S) that only depend on n. An interesting point of view is to analyze how many

of them are independent.

Proposition 2.3.7. The maximum number of linear independent equations

F (S) =
∑

`≥0
∑

k≥3 f(k, `)Xk,`, where f(k, `) satisfies (2.51), in terms of the variables

Xk,` is n− 2.

Proof. Let Fj(S) =
∑

`≥0
∑

k≥3 fj(k, `)Xk,` (for 1 ≤ j ≤ n− 1) be sums that only depend

on n and fj(k, `) satisfies (2.51) for all j. Let us consider the matrix



f1(3, 0) f1(3, 1) · · · f1(k, `) · · · f1(n− 1, 1) f1(n, 0)

f2(3, 0) f2(3, 1) · · · f2(k, `) · · · f2(n− 1, 1) f2(n, 0)
...

...
...

...
...

...
...

fj(3, 0) fj(3, 1) · · · fj(k, `) · · · fj(n− 1, 1) fj(n, 0)
...

...
...

...
...

...
...

fn−1(3, 0) fn−1(3, 1) · · · fn−1(k, `) · · · fn−1(n− 1, 1) fn−1(n, 0)


. (2.54)

It is sufficient to show that the matrix (2.54) has rank n− 2.

Note that, the first column contains the function with k = 3 and ` = 0, then the

following columns contain the value k = 3 and the values of ` in ascending order, then

there are the functions with k = 4 and so on. This order implies that the coefficient terms

of the pair (k, `) are in the column Ch such that h =
∑k−1

i=3 (n− i+ 1) + `+ 1.

Since fj(k, `) satisfies (2.51), we can express the matrix (2.54) as follows,
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

f1(3, 0) · · ·
∑`

i=0

(
`
i

)
f1(k + i, 0) · · · f1(n, 0)

f2(3, 0) · · ·
∑`

i=0

(
`
i

)
f2(k + i, 0) · · · f2(n, 0)

...
...

...
...

...

fj(3, 0) · · ·
∑`

i=0

(
`
i

)
fj(k + i, 0) · · · fj(n, 0)

...
...

...
...

...

fn−1(3, 0) · · ·
∑`

i=0

(
`
i

)
fn−1(k + i, 0) · · · fn−1(n, 0)


. (2.55)

We can observe that the columns corresponding to the functions with ` > 0 depend

on the n − 2 columns with ` = 0, so with the adequate operations these columns can be

transformed to columns of zeros. That is, if we change each column corresponding to the

functions with ` > 0 in the following manner:

C∑k−1
s=3 (n−s+1)+`+1 → C∑k−1

s=3 (n−s+1)+`+1 −
∑̀
i=0

(
`

i

)
C∑k+i−1

s=3 (n−s+1)+1,

we obtain 

f1(3, 0) 0 · · · f1(k, 0) · · · 0 f1(n, 0)

f2(3, 0) 0 · · · f2(k, 0) · · · 0 f2(n, 0)
...

...
...

...
...

...
...

fj(3, 0) 0 · · · fj(k, 0) · · · 0 fj(n, 0)
...

...
...

...
...

...
...

fn−1(3, 0) 0 · · · fn−1(k, 0) · · · 0 fn−1(n, 0)


. (2.56)

Clearly, there are only n− 2 non-zero columns corresponding to the functions fj(k, 0)

and the maximum possible rank is n− 2.

Using the general solution of Theorem 2.3.6, we derive other relations for sums over

all convex polygons.

Corollary 2.3.8. For any point set S of n points in general position and for any x ∈ R,

it holds that

Px(S) :=

n∑
k=3

n−k∑
`=0

xk (1 + x)`Xk,` = (1 + x)n − 1− x · n− x2
(
n

2

)
. (2.57)

Proof. Define f(k + i, 0) = xk+i, then

f(k, `) =
∑̀
i=0

(
`

i

)
f(k + i, 0) = xk

∑̀
i=0

(
`

i

)
xi = xk · (1 + x)` . (2.58)
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The result then follows by considering a set of n points in convex position and we have

n∑
k=3

xk
(
n

k

)
= (1 + x)n − 1− x · n− x2 ·

(
n

2

)
. (2.59)

Observation 2.3.9. The relation from Corollary 2.3.2 is a particular case of the relations

of Corollary 2.3.8 for x = 1.

As shown in Proposition 2.3.7, the maximum number of possible linear independent

equations is n − 2. From Corollary 2.3.8, we can obtain multiple equations of this form.

Therefore, we evaluate the independence of these equations.

Proposition 2.3.10. Let xj ∈ R 6=0 (distinct) for 1 ≤ j ≤ n − 2 and consider the n − 2

equations Pj =
∑n

k=3

∑n−k
`=0 x

k
j (1 + xj)

`Xk,`. Then, these equations are independent.

Proof. Using the argument of Proposition 2.3.7, it is sufficient to analyze the columns

corresponding to the variables Xk,0. Thus, we consider the matrix

x31 x41 · · · xk1 · · · xn1
x32 x42 · · · xk2 · · · xn2
...

...
...

...
...

x3j x4j · · · xkj · · · xnj
...

...
...

...
...

x3n−2 x4n−2 · · · xkn−2 · · · xnn−2


. (2.60)

Now, we can divide each row j by x3j and we obtain

1 x1 · · · xk−31 · · · xn−31

1 x2 · · · xk−32 · · · xn−32
...

...
...

...
...

1 xj · · · xk−3j · · · xn−3j
...

...
...

...
...

1 xn−2 · · · xk−3n−2 · · · xn−3n−2


. (2.61)

It is a (n − 2) × (n − 2) Vandermonde matrix and all xi are distinct, therefore the

matrix rank is n− 2 and there are n− 2 linear independent equations.

Clearly, from Corollary 2.3.8 we can derive an infinite number of equations and we can

reach the maximum possible rank as shown in Proposition 2.3.10. Therefore, the following

result is immediate.
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Corollary 2.3.11. Any sum F (S) where the functions f(k, `) fulfill (2.51), can be ex-

pressed in terms of n− 2 equations of the form (2.58) with distinct values x ∈ R.

This result gives a new way to prove theorems related with the Erdős-Szekeres theorem.

That is, we propose to create a system of equations with specific characteristic and analyze

if the system is compatible or not.

In particular, an immediate result is Proposition 1.2.8, i.e., N(4) = 5. In this case, let

n = 5 and we suppose, for the sake of a contradiction, that X4,0 = X4,1 = X5,0 = 0. Now,

we consider the system given by the functions

Pi =
n∑
k=3

n−k∑
`=0

ik (1 + i)`Xk,` = (1 + i)n − 1− i · n− i2
(
n

2

)
, for i = 1, 2, 3. (2.62)

It means that the coefficient terms are fi(k, `) = ik(1 + i)` and the constant terms are

(1 + i)n − 1− i · n− i2 ·
(
n
2

)
for the values i = 1, 2, 3.

Therefore, for the variables X3,0, X3,1 and X3,2 we obtain the following system. 1 2 4

8 24 72

27 108 432


 X3,0

X3,1

X3,2

 =

 16

192

918

 . (2.63)

It is not difficult to check that the solution of system (2.63) is X3,0 = 6, X3,1 = 3 and

X3,2 = 1.

However, by Theorem 2.1.18, in this case we have

X3,1 −X4,1 = n− h. (2.64)

Since clearly h = 3, the equality does not hold: 3− 0 6= 5− 3. Thus, the system does not

have a geometrical solution and the statement has been proved.

Note that, the number of variables increases much faster than the number of inde-

pendent equations according to Corollary 2.3.11. Therefore, for a greater value of n, this

argument needs the derivation of other types of equations and, probably, other geometrical

parameters as well. For example, if we consider a set of n = 9 points and we suppose that

Xk,` = 0 for every pair k ≥ 5, ` ≥ 0 (in order to check that N(5) = 9), the number of

variables with k ≤ 4 is 13 whereas the number of independent equations is 7.

2.4 Moment sums

In Section 2.1, we derived expressions for the moments Mr,0 and M0,1 but there are still

other r−th moments to describe geometric parameters of the point set. In this section,

we show that combinations of the moments described in Section 2.1 only depend on the
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size of the point set and we analyze the possible extensions of the expressions in Section

2.1 using the results of the combinations of moments.

We first observe that combining the expressions of Theorems 2.1.11 and 2.1.18, we

obtain that

M1,0 −M0,1 = 2

(
n

2

)
− h− (n− h) = 2

(
n

2

)
− n. (2.65)

This equation depends only on n and it was the base case for Huemer et al. [13] to extend

it to arbitrary moments.

Theorem 2.4.1. For any point set S of n points in general position and any r ≥ 0, it

holds that

Fr(S) :=

r∑
`=0

∑
k≥3

(−1)k−`+1mr−`(k − `)Xk,`(S) =


(
n
2

)
− n+ 1 r = 0,

2
(
n
2

)
− n r = 1,

−mr(n) r ≥ 2,

(2.66)

where mr(n) is defined as in Definition 2.1.2.

Proof. For r = 0, we get

F0(S) = M0,0(S) =

(
n

2

)
− n+ 1, (2.67)

as shown in Theorem 2.1.9

For r = 1, we get

F1(S) = M1,0(S)−M0,1(S) = 2

(
n

2

)
− h− (n− h) = 2

(
n

2

)
− n, (2.68)

as shown in Theorems 2.1.11 and 2.1.18.

For the general case r ≥ 2, we denote

fr(k, `) :=

{
(−1)k−`+1mr−`(k − `) 0 ≤ ` ≤ r,
0 r < `.

(2.69)

Now we prove that the terms fr(k, `) satisfy the recurrence relation from Theorem 2.3.1.

For ` > r + 1, the result is clear since fr(k, `) = fr(k + 1, ` − 1) + fr(k, ` − 1) = 0 by

definition.

For ` = r + 1, clearly fr(k, `) = 0 and we also have

fr(k + 1, `− 1) + fr(k, `− 1) = (−1)(k+1)−(`−1)+1mr−(`−1) ((k + 1)− (`− 1)) +

+ (−1)k−(`−1)+1mr−(`−1) (k − (`− 1)) =

= (−1)k−`+3m0 (k − `+ 2) + (−1)k−`+2m0 (k − `+ 1) =

= (−1)k−`+3 + (−1)k−`+2 = 0. (2.70)
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For ` = r, clearly fr(k, `) = (−1)k−`+1 and we also obtain

fr(k + 1, `− 1) + fr(k, `− 1) = (−1)(k+1)−(`−1)+1mr−(`−1) ((k + 1)− (`− 1)) +

+ (−1)k−(`−1)+1mr−(`−1) (k − (`− 1)) =

= (−1)k−`+3m1 (k − `+ 2) + (−1)k−`+2m1 (k − `+ 1) =

= (−1)k−`+1 [(k − `+ 2)− (k − `+ 1)] = (−1)k−`+1.(2.71)

For 0 < ` < r, we consider the equality in terms of the functions mr(k),

fr(k, `) = fr(k + 1, `− 1) + fr(k, `− 1)

(−1)k−`+1mr−`(k − `) = (−1)(k−`+3mr−`+1 (k − `+ 2) + (−1)k−`+2mr−`+1 (k − `+ 1)

mr−`(k − `) = mr−`+1 (k − `+ 2)−mr−`+1 (k − `+ 1) . (2.72)

From the previous equality, if we consider the change of variables r′ = r − ` + 1 and

k′ = k − `+ 1, we obtain

mr′−1(k
′ − 1) = mr′(k

′ + 1)−mr′(k
′) ⇐⇒

k′−1
r′−1

(
k′−r′−1
r′−2

)
= k′+1

r′

(
k′−r′
r′−1

)
− k′

r′

(
k′−r′−1
r′−1

)
⇐⇒

(k′−1)(k′−r′−1)!
(r′−1)(r′−2)!(k′−2r′+1)! = (k′+1)(k′−r′)!

r′(r′−1)!(k′−2r′+1)! −
k′(k′−r′−1)!

r′(r′−1)!(k′−2r′)! .

(2.73)

Now, we multiply both sides by r′! · (k′ − 2r′ + 1)!, divide over (k′ − r′ − 1)!, and we have

r′(k′ − 1) = (k′ + 1)(k′ − r′)− k′(k′ − 2r′ + 1) ⇐⇒

r′k′ − r′ = k′2 − r′k′ + k′ − r′ − k′2 + 2r′k′ − k′.
(2.74)

Therefore, the sums Fr(S) =
∑

k≥3
∑

`≥0 fr(k, `)Xk,`(S) only depend on n.

It remains to show that the value is −mr(n). Consider a set of n points SC in convex

position and let p1, . . . , pn be the points of SC as they appear in counterclockwise order.

Then Xk,`(SC) = 0 for all ` > 0 and we can rewrite the sum as

Fr(SC) =
∑
k≥3

(−1)k+1fr(k, 0)Xk,0(SC) =
∑
k≥3

(−1)k+1mr(k)Xk,0(SC) =

= Mr,0(SC) = −Tr(SC). (2.75)

Therefore, we have to show that Tr(SC) = mr(n).

To prove that, we first observe that any r−tuple {e1, . . . , er} of the convex set SC can

be seen as cyclically sorted. Moreover, if the r−tuple contributes to Tr(SC), the endpoint

of any edge in this sorting is a neighbor to the starting point of the next edge, i.e., if

ei = pxpy then ei+1 = py+1pz becuase, otherwise, the point in between has to be contained

in the region τ(e1, . . . , er).
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Let σr(n) be the number of r−tuples that contribute to Tr(SC) and for which e1 starts

at p1. Then, we will prove by induction on r that σr(n) =
(
n−r−1
r−1

)
.

For the base case, we have r = 2 and the sum is over all possibilities to choose the

endpoint of e1 (notice that the starting point of e2 is fixed by the endpoint of e1 and the

endpoint of e2 is fixed by the starting point of e1), thus

σ2(n) =

n−2∑
i=2

1 = n− 3 =

(
n− 2− 1

2− 1

)
. (2.76)

For the inductive step, suppose that the statement holds for r − 1. Then the sum is over

all possibilities to choose the endpoint of e1 and gives

σr(n) =

n−2(r−1)∑
i=2

σr−1(n− i) =

n−2r+2∑
i=2

(
n− i− (r − 1)− 1

(r − 1)− 1

)
=

n−2r+2∑
i=2

(
n− r − i
r − 2

)
.

(2.77)

If we consider the change i′ = n − r − i we obtain a finite telescoping series which gives

the following result,

σr(n) =
n−r−2∑
i′=r−2

(
i′

r − 2

)
=

n−r−2∑
i′=r−2

((
i′ + 1

r − 1

)
−
(

i′

r − 1

))
=

(
n− r − 1

r − 1

)
. (2.78)

To finish the proof, we observe that when starting e1 at an arbitrary point, every r−tuple

is counted exactly r times (once for the starting point of every edge).

Hence, we obtain Tr(SC) = n
r σr(n) = n

r

(
n−r−1
r−1

)
= mr(n).

An interesting case of these combinations is for r = 2 because we know two of the four

terms involved from Theorems 2.1.16 and 2.1.18,

F2(S) = M2,0(S)−M1,1(S) +M0,1(S) +M0,2(S) =

= −T2(S)−M1,1(S) + (n− h) +M0,2(S) = −n(n− 3)

2
. (2.79)

Therefore, from (2.79) we immediately get the following result.

Corollary 2.4.2. For any point set S in general position, it holds that

M0,2(S)−M1,1(S) = T2(S) + h− n(n− 1)

2
. (2.80)

From Corollary 2.4.2, we may think that M0,2(S) or M1,1(S) have also the dependence

of T2, h, n
2, n individually. However, we can select a counterexample with different point

sets in order to check that it is not true. Moreover, we use this counterexample to analyze

if other dependencies could be analyzed later on.
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Consider the sets of points described in Fig. 2.6, and their characteristic values detailed

in Table 2.1.

(a) Set of points S1 in blue. (b) Set of points S2 in red. (c) Set of points S3 in blue.

(d) Set of points S4 in red. (e) Set of points S5 in blue. (f) Set of points S6 in red.

(g) Set of points S7 in blue. (h) Set of points S8 in red. (i) Set of points S9 in blue.

Figure 2.6: 9 sets of points in the plane.

Let αi, βi for 1 ≤ i ≤ 7 be variables such that,

M0,2(S) = α1 + α2n+ α3n
2 + α4n

3 + α5h+ α6T2 + α7T3, (2.81)

M1,1(S) = β1 + β2n+ β3n
2 + β4n

3 + β5h+ β6T2 + β7T3. (2.82)
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Set n h T2 T3 M0,2(S) M1,1(S)

S1 6 3 6 0 0 6

S2 8 4 16 4 0 8

S3 10 5 30 25 0 10

S4 8 5 20 0 1 4

S5 6 4 7 0 0 4

S6 10 7 36 4 0 2

S7 7 5 12 2 1 5

S8 9 6 30 2 -2 -2

S9 11 7 45 21 0 3

Table 2.1: The values n, h, T2 and T3 for the sets described in Fig. 2.6.

Using the values of Table 2.1, from (2.81), we obtain the following system.

1 6 36 216 3 6 0

1 8 64 512 4 16 4

1 10 100 1000 5 30 25

1 8 64 512 5 20 0

1 6 36 216 4 7 0

1 10 100 1000 7 36 4

1 7 49 343 5 12 2

1 9 81 729 6 30 2

1 11 121 1331 7 45 21





α1

α2

α3

α4

α5

α6

α7


=



0

0

0

1

0

0

1

−2

0


. (2.83)

Similarly, from (2.82), we obtain the following system.

1 6 36 216 3 6 0

1 8 64 512 4 16 4

1 10 100 1000 5 30 25

1 8 64 512 5 20 0

1 6 36 216 4 7 0

1 10 100 1000 7 36 4

1 7 49 343 5 12 2

1 9 81 729 6 30 2

1 11 121 1331 7 45 21





β1
β2
β3
β4
β5
β6
β7


=



6

8

10

4

4

2

5

−2

3


. (2.84)

It is not difficult to check that the coefficient matrix1 of the systems (2.83) and (2.84)

has rank 7. However, the corresponding augmented matrices2 have rank 8 which implies

1The coefficient matrix is the matrix of the system that contains just the coefficient of the variables.
2The augmented matrix is the coefficient matrix augmented with an additional column consisting of

the vector of constant entries, i.e., the column on the right-side of the system.
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that, by the Rouché-Fröbenius Theorem, the systems of equations have no solutions in

both cases.

Since the systems (2.83) and (2.84) do not have solution, we obtain the following result.

Proposition 2.4.3. It is not possible to express M0,2(S) neither M1,1(S) in terms of

1, n, n2, n3, h, T2 and T3.

This result shows that is not possible to derive the moment sums Mr,`>0 in terms of

the values defined previously.

On the other hand, since the moments Mr,0 of Theorem 2.1.16 were derived from

results on M0,0(e1, . . . , er), one may think to apply the same strategy in order to obtain

similar expressions for M1,1 or M0,2, but in [13] the authors derive that there is no exact

value for M0,1(e).

Theorem 2.4.4. For any point set S of n points in general position in the plane and any

edge e of S, it holds that max {h, 4} − n ≤M0,1(e) ≤ 1.

To ensure that these bounds are tight, they also detail the following example.

Consider a quadrilateral with the points denoted as p1, . . . , p4 with a concave chain of

n− 4 interior points denoted as q1, . . . qn−4, as shown in Fig. 2.7.

Figure 2.7: Set of points that is an example for the bounds of Theorem 2.4.4.

For the lower bound, we observe that the convex polygons with one interior point that

contain the edge e, Xk,1(e), can only be quadrilaterals where the interior point is a point

of the concave chain. Since there are n− 4 interior points of the concave chains, we have

X4,1(e) = n− 4 and in consequence M0,1(S; e) = 4− n.
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For the upper bound, we observe that the convex polygons with one interior point that

contain the edge f , Xk,1(f) can only be the triangle p1q2p3, the triangle p1q2q4 and the

quadrilateral p1q2q4p2. Thus, M0,1(S; f) = 1 + 1− 1 = 1.

Therefore, Proposition 2.4.3 goes in the same direction as Theorem 2.4.4 in order to

obtain expressions for the moments Mr,`>0, other strategies and the definition of other

characteristic values of the point sets are necessary.





Chapter 3

Special configurations

In this chapter, we consider two well known configurations, namely the double circle

[2] and the double chain [10]. We will apply the results of Chapter 2 to these two special

configurations.

3.1 Double Chain

Definition 3.1.1. The double chain of 2n points consists of two sets of n points each, one

forming a convex chain and one forming a concave chain. We denote them by the upper

and the lower chain. The two chains are sufficiently far apart from each other.

Figure 3.1: Double chain of 16 points.

41
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Note that also Fig. 2.7 resembles the double chain

From this definition, it is easy to observe the following properties.

Observation 3.1.2. The number of points in the boundary of the convex hull is h = 4.

Observation 3.1.3. Any non-empty convex polygon must contain points of the two chains.

Observation 3.1.4. Any non-empty convex polygon has at most 4 points in the boundary.

In order to derive the r−th moments with ` ≥ 1 for the double chain, we first count

the number of polygons with interior points.

Proposition 3.1.5. The number of triangles with ` ≥ 0 interior points of the double chain

of 2n points is X3,` = 2n(n− 1− `).

Proof. Without loss of generality, consider that the boundary of the triangle contains two

points of the lower chain and one of the upper chain. Note that the interior points have

to be contained in the lower chain, and if the points of the lower chain are sorted from

left to right (enumerated as y1, . . . , yn) then they have to be consecutive. It means that a

triangle with ` interior points that contains yi as the left-extreme point, the interior points

have to be yi+1, . . . , yi+` and the other extreme point is yi+`+1.

Therefore, for the lower chain we have n − 1 − ` possibilities to take 2 points in the

boundary and ` in the interior whereas we have n possibilities to take 1 point for the upper

chain. Since we can argue in the same manner for triangles with two points on the upper

chain, we multiply the value by 2 and we obtain X3,` = 2n(n− 1− `), as claimed.

Proposition 3.1.6. The number of convex quadrilaterals with ` ≥ 1 interior points of the

double chain of 2n points is

X4,` =
∑̀
i=0

(n− 1− i) (n− 1− `+ i) . (3.1)

Proof. We first observe that the boundary of the quadrilateral has to contain two points

of the lower chain and two points of the upper chain.

Using the same argument as in the proof of Proposition 3.1.5, the interior points are i

consecutive points of the lower chain and `−i points of the upper chain for any i = 0, . . . , `.

Therefore, for every i there are n−1− i possibilities for the lower chain and n−1− (`− i)
possibilities for the upper chain. Hence,

X4,` =
∑̀
i=0

(n− 1− i) (n− 1− `+ i) . (3.2)
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Now, we can obtain an expression for the r−th moments with ` ≥ 1 interior points.

Theorem 3.1.7.

M0,` = 2n(n− 1− `)−
∑̀
i=0

(n− 1− i) (n− 1− `+ i) , (3.3)

M1,` = 6n(n− 1− `)− 4
∑̀
i=0

(n− 1− i) (n− 1− `+ i) , (3.4)

M2,` = −2
∑̀
i=0

(n− 1− i) (n− 1− `+ i) , (3.5)

Mr,` = 0 for all r ≥ 3. (3.6)

Proof. We first observe that mr(4) = mr(3) = 0 for all r ≥ 3. Then, by Observation 3.1.4,

clearly Mr,`≥1 = 0 for all r ≥ 3.

In addition m2(3) = 0 which implies that for any ` ≥ 1,

M2,` = −4

2
X4,` = −2

∑̀
i=0

(n− 1− i) (n− 1− `+ i) . (3.7)

For the case r = 0 and any ` ≥ 1,

M0,` = X3,` −X4,` = 2n(n− 1− `)−
∑̀
i=0

(n− 1− i) (n− 1− `+ i) . (3.8)

For the case r = 1 and any ` ≥ 1,

M1,` = 3X3,` − 4X4,` = 6n(n− 1− `)− 4
∑̀
i=0

(n− 1− i) (n− 1− `+ i) . (3.9)

3.2 Double circle

Definition 3.2.1. The double circle DC2n of 2n points contains n extreme points forming

a regular n−gon. The remaining n interior points are placed sufficiently close to the edges

of the n−gon, such that the set of interior edges, that are not crossed by any other edge,

forms a star shaped region.

To deduce some properties of the double circle, it is interesting to mention that in

Lemma 2.1.15 we have defined the r−th moment for a set of vertex-disjoint edges. Now,

we observe that the same argument of that proof is valid avoiding the condition that the

edges are vertex-disjoint, which gives the following result.
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Figure 3.2: Double circle of 20 points.

Lemma 3.2.2. Let e1, . . . , e` be a set of edges of the boundary of the convex hull of DC2n

and let κ be the number of endpoints of the edges. Let pi be the point of DC2n closest to

ei and let m be the number of points of DC2n \ {p1, . . . , p`} inside the region τ(e1, . . . , e`).

Then,

M0,0(DC2n \ {p1, . . . , p`}; e1, . . . e`) =

{
0 if m 6= 0,

(−1)κ if m = 0.
(3.10)

Proof. This proof is analogous to the proof of Lemma 2.1.15. The unique difference is for

the casem = 0 where the only non-zero element of the set {Xk,0(DC2n \ {p1, . . . , p`}; e1, . . . e`)}k≥3
is Xκ,0(DC2n \ {p1, . . . , p`}; e1, . . . e`) = 1. Therefore, if m = 0,

M0,0(DC2n \ {p1, . . . , p`}; e1, . . . e`) = (−1)κ+1 = −1. (3.11)

An example of the notation used in this lemma is shown in Fig. 3.3.

Lemma 3.2.2 is necessary for the proof of the following result.

Lemma 3.2.3. Let p1, . . . , p` ∈ DC2n be 2 ≤ ` ≤ n − 1 points of the double circle DC2n

of 2n points, then it holds that Mp1,...,p`
0,` = 0.

Proof. Obviously, if exists i such that pi is an extreme point of DC2n, then pi cannot be

in the interior of any polygon spanned by points of DC2n, thus Mp1,...,p`
0,` = 0.

Therefore, consider that all the points pi are interior points of DC2n and then every

convex polygon that contains exactly p1, . . . , p` in its interior is an empty convex polygon
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Figure 3.3: A region τ(e1, e2, e3, e4) of the double circle with m = 9 and κ = 7.

in DC2n \ {p1, . . . , p`}. Moreover, by definition, the interior points pi lie very close to

convex hull edges ei of DC2n, so the points pi are contained in exactly all polygons that

contains the edges ei. Thus, Mp1,...,p`
0,` = M0,0(DC2n\{p1, . . . , p`}; e1, . . . e`) = 0 by Lemma

3.2.2.

These lemmas allow to deduce expressions involving convex polygons of the double

circle with the same techniques used in the general case and we obtain the following

result.

Theorem 3.2.4. M0,`(DC2n) = 0 for 2 ≤ ` ≤ n− 1 and M0,n(DC2n) = 1.

Proof. Clearly, any k−gon counted in M0,`(DC2n) contains exactly ` points in its interior,

thus we can sum over the possible `−subsets of points and obtain that

M0,`(DC2n) =
∑

{p1,...,p`}⊂DC2n

Mp1,...,p`
0,` , (3.12)

which, by Lemma 3.2.3, is 0 for 2 ≤ ` ≤ n−1 and 1 for ` = n because the alternating sum

Mp1,...,p`
0,` is zero for all n−subsets except for the one which contains exactly the n interior

points.

This result together with Corollary 2.4.2 provides the immediate following result.

Corollary 3.2.5. M1,1(DC2n) = −T2(DC2n)− h+ 2n(2n−1)
2 = 2n(n− 1)− T2(DC2n).
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Observation 3.2.6. The argument used in the proof of Lemma 3.2.3 is based on the fact

that any interior point lies very close to a convex hull edge. Therefore, any planar point

set that fulfills this condition also satisfy the results of Theorem 3.2.4 and Corollary 3.2.5.



Conclusions

The famous paper [8] by Erdős and Szekeres influenced and motivated new proof

techniques and several new other problems, some of them still unsolved. In this thesis,

we presented an updated account of results immediately related to the Erdős-Szekeres

Theorem. We first introduced the context and outlined the main proof techniques, Based

on continous motion arguments, we then developed several new results.

In this project, we have analyzed alternating sums of numbers of convex polygons

with interior points connecting them to known geometrical properties of a planar point

set. These expressions allowed us to derive inequalities involving the quantities Xk,`, some

of them completely new. In this direction, we also have shown that similar techniques,

as the continuous motion argument, allow us to deduce weighted sums that only depend

on the cardinality of the point set. Specifically, we have obtained n− 2 new independent

formulas that only depend on the size n of the point set and we observe that it is the

maximum possible number of independent equations that can be obtained by continuous

motion arguments (that is, when Equation (2.44) is satisfied).

Finally, we have applied the expressions of the alternating sums to two families of

special point configurations, the double chain and the double circle. For these two families

we obtained closed expressions for the moment sums. In the general case of arbitrary

point sets, we have not been able to deduce equivalent formula for higher moment sums

(which possibly might not only depend on the number n of points).

Our obtained n − 2 (independent) formulas relating the numbers of convex polygons

may open a way to deduce further results related to the Erdős-Szekeres Theorem. For

example, we can form a system of equations with variables Xk,` by using the known

relations among the Xk,`. To determine whether any sufficiently large set of points contains

a convex k-gon, we can - by argument of contradiction - assume that there is a point set

without a convex k-gon; then many of the variables Xk,` can be set to 0. If the system

of equation then has no solution, we get a contradiction. However, we have seen that the

number of equations is still insufficient to have a determinate system. Therefore, other

possible options to analyze could be to find new types of equations or to evaluate all

the possible values for some of the variables Xk,`. For this last option, it is necessary to

47
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use adequate algorithms and computer implementation because it implies an exponential

number of systems of equations and possible solutions. Thus, it is also necessary to obtain

tight bounds for several values of Xk,` and more properties to check the geometry of the

solution. This approach has been undertaken in this thesis, but the program has not been

optimized and the computational result has not been sufficiently satisfactory to obtain a

conclusive result.

Note that, most of the results obtained during this thesis are also valid in higher

dimensions, although we did not state these formulas explicitly. Specifically, the results

over the weighted sums and the new formulas obtained that only depend on the size of

the point set also hold in higher dimension. The reason of that is the fact that most of

the results are deduced from the continuous motion argument which can also be applied

in Rd for d > 2.

In conclusion, we have derived several expressions involving the numbers of convex

polygons with interior points, that is, the quantities Xk,`, some of them new. These

relationships might have implications to long-standing open problems related to the Erdős-

Szekeres Theorem.
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