UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

Aquesta és una copia de la versio author’s final draft de I'article Data Analytics for
Performance Evaluation Under Uncertainties Applied to an Industrial
Refrigeration Plant publicat a JEEE access.

URL d'aquest document a UPCommons E-prints:
http://hdl.handle.net/2117/165740

Article publicat / Published paper-

Cirera, J.; Carino, J. A., Zurita, D. and Ortega, J.A. "Data Analytics for
Performance Evaluation Under Uncertainties Applied to an Industrial
Refrigeration Plant," in/EEE Access, vol. 7, pp. 64127-64135, 2019.
doi: 10.1109/ACCESS.2019.2917079




IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 15, 2019, accepted May 10, 2019, date of publication May 15, 2019, date of current version May 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917079

Data Analytics for Performance Evaluation Under
Uncertainties Applied to an Industrial
Refrigeration Plant

JOSEP CIRERA ™, (Student Member, IEEE), JESUS A. CARINO ~, (Member, IEEE),
DANIEL ZURITA™, (Member, IEEE), AND JUAN A. ORTEGA *, (Member, IEEE)

MCIA Research Center, Technical University of Catalonia (UPC), 08034 Terrassa, Spain
Corresponding author: Josep Cirera (josep.cirera@upc.edu)

This work was supported in part by the Department of Enterprise and Knowledge of the Generalitat de Catalunya under Grant
2017DI007 and Grant n® SGR 2017.

ABSTRACT Artificial intelligence has bounced into industrial applications contributing several advantages
to the field and have led to the possibility to open new ways to solve many actual problems. In this
paper, a data-driven performance evaluation methodology is presented and applied to an industrial refrig-
eration system. The strategy takes advantage of the Multivariate Kernel Density Estimation technique and
Self-Organizing Maps to develop a robust method, which is able to determine a near-optimal performance
map, taking into account the system uncertainties and the multiple signals involved in the process. A nor-
mality model is used to detect and filter non-representative operating samples to subsequently develop a
reliable performance map. The performance map allows comparing the plant assessment under the same
operating conditions and permits to identify the potential system improvement capabilities. To ensure
that the resulting evaluation is trustworthy, a robustness strategy is developed to identify either possible
new operation conditions or abnormal situations in order to avoid uncertain assessments. Furthermore,

the proposed approach is tested with real industrial plant data to validate the suitability of the method.

INDEX TERMS Artificial intelligence, compression refrigeration, self-organizing maps, uncertainty.

I. INTRODUCTION

Artificial intelligence (Al) is an emerging topic due to its
capability of solving complex problems in various scien-
tific areas. The theoretical advances in this field have led
its benefits to be tested in real industrial systems, where
the implementation of Al in several manufacturing tasks is
enabling to tackle issues such as fault detection and diagnosis
(FDD) [1], process modelling [2], operation optimization [3]
or performance evaluation [4] with more success than ever
before. In fact, many currently complex problems in industry
can be addressed by taking advantage of Al techniques to
overcome the current methods limitations.

Particularly, the performance evaluation issue is a difficult
topic to approach [6] due to the vast quantity of variables
involved in the industrial environment, especially when the
process is composed by several and distributed machines.
An example of the aforementioned topic is the refrigeration
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process, in which a proper and accurate performance assess-
ment represents a real challenge due to the multiple operation
combinations of loads and weather conditions along with the
distributed control influences [7].

Industrial refrigeration processes are widely used in several
applications to maintain the assets under the optimal condi-
tions, although these systems consume a considerable amount
of electricity [8]. The performance assessment applied to
these processes is useful in order to compare different control
strategies or to quantify the system improvement capabil-
ities. Typically, taking into account the energy efficiency,
the refrigeration systems are evaluated using the coefficient of
performance (COP) [9]. Such coefficient, does not consider
various factors or variables that could also affect or com-
promise the plant performance and, therefore, it provides a
misleading result in order to assess the performance under
different operation conditions. An improvement or deteriora-
tion in COP index is not able to differentiate between external
factors such as wet bulb temperature and improper plant oper-
ation, making the coefficient inadequate to compare different
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operation strategies or detect possible improvement capa-
bilities or malfunctions. Hereby, various authors developed
different strategies to analyze refrigeration systems perfor-
mance, one of them is the exergy analysis. Some physical
based methodologies such as Fan et al. [10] in 2014, assess
each component separately analyzing the exergy efficiency
and the exergy loss ratio. Fang et al. [11] in 2016, take the
ideal exergy destruction as the ideal operation level and pro-
pose a new evaluation index-improvement potential. Belman-
Flores et al. [12] in 2018 proposed a new approach to analyze
the exergy performance using artificial neural networks, also
applied to each system component. Gill and Singh [13] in
2018, evaluate the exergy destruction and the COP of the
components to compare two different refrigerants.

With the recent introduction of the industry 4.0 frame-
work, access to historical databases of refrigeration plants has
become more accessible, therefore, data-driven approaches
have recently emerged as an alternative for performance eval-
uation. Li and Ju [7] in 2017, apply a hierarchical cluster
method to analyze the operating performance and by the
analysis on the COPs of each chiller in each cluster identify
the potential energy savings. Wang et al. [14] in 2017, use
the operation data to approximate the best performance line
of the overall chillers and use it as evaluation benchmark.
Wang et al. [15] in 2018 use a dedicated set of coefficients
for each of the different cooling conditions to supplement
the load-power history data and include various temperature
variables.

As proven in the aforementioned works, the current state
of the art is mainly approaching this field using two different
techniques, the physical based methods which are not effec-
tive handling complex processes with massive datasets [16],
and data-driven techniques which cannot cope with uncer-
tainty issues [17].

In this work, a data-driven methodology to evaluate the
performance of a refrigeration plant is presented. Regarding
to the contributions, the aforementioned challenges of data-
driven approaches are addressed by proposing a method able
to deal with the process signals variability, thus obtaining an
assessment with similar conditions and avoiding misleading
comparisons with ideal operation or fixed conditions, and
applying an uncertainty detection stage to provide robustness
and the capability to detect new behaviors to the methodol-
ogy. To ensure that the performance evaluation is realistic
and to notify the operator, each evaluated measurement of
the plant must be sufficiently representative by the previously
obtained evaluation grid, otherwise, the proposed methodol-
ogy is able to inform about the novelty or abnormal plant
operation.

The paper is organized as follows: In Section II theoret-
ical considerations of the COP, Self-Organizing Maps and
Multivariate Kernel Density Estimation are presented. The
Section III presents the experimental plant description. The
Section IV contains the proposed methodology. In Section V
the experimental results are exhibited and finally, Section VI
describes the study conclusions.
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Il. THEORETICAL CONSIDERATIONS

A. COP EVALUATION

The COP metric is a classical tool to evaluate refrigeration
plants energy efficiency. This performance ratio is expressed
as the cooling capacity provided, over the electrical power
consumed. To calculate the electrical power, it has to be taken
into account the compressors and the condensers [18]. This
ratio is typically higher than 1 and greater values represent
better performance.

B. SELF-ORGANIZING MAPS

Kohonen [19], in 1990, proposed the Self-Organizing
Maps (SOM) neural network, also known as Kohonen map,
used to build a topology preserving mapping. The grid of
this kind of neural network tries to preserve and allocate
its neurons position preserving the topological properties of
the input space. The output space, also called mapped space
or latent space, is a parameter to be determined. The most
common output grid dimensionality is composed of two or
three dimensions, which are enough and suitable for most of
the applications [20].

The SOM grid is formed by various neurons also called
Matching Units (MU). Every MU has its own D-dimensional
weight vector w,_; where the v-th represent the data and j-th
the neuron. This weight vector is the neuron coordinates in the
input space. The assignation of each data point x,_; to one of
the grid neurons is the mapping action, the selected neuron
is the one whose weight vector is closest to the data point,
called the Best Matching Unit (BMU). In the output space,
the position vector y,_; is given by the weight vector of the
selected BMU. The error function (Espps) used is shown in

().
Esom=Y_ Y (wuej _yv—i)2 ey
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where s,_; is the set of data points which have neuron i
as closest neuron. This error metric represents the average
squared distance from the data point to its representative
neuron. The objective of this technique is to minimize this
error function in order to distribute the neuron grid over
the input space preserving its topological properties. This
minimization is performed updating the weight vectors w,_;
of the neurons and it can be implemented using the classical
gradient descend approach:

WD =l —a® (VEGy), @

The learning rate is not useful in such algorithm as it
does not depend on the output space and does not take into
consideration the neighbor neurons. Hereby, the learning rate
is substituted with the neighborhood function NAf ,,, which
depends on the mapped space:
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where only the nearest neurons with a certain range of the
BMU in the output space are considered, Nv(vt,z. In this way,
while executing the training phase the «(¢) decrease mono-
tonically and the neighborhood among the neurons in the
input and output spaces is preserved.

The algorithm training performance is evaluated using the
average quantization error (Qerror) (4). This metric evaluates
the average distance between each input data vector with the
selected BMU, where N is the number of sample vectors in
the input data x;.

N
1
Qerror = N E 1 lx; — BMU || 4)
=

C. MULTIVARIATE KERNEL DENSITY ESTIMATION

The Multivariate Kernel Density Estimation (MVKDE), also
referred to as Parzen windows or Parzen-Rosenblatt win-
dows, is a flexible approach to estimate the densities of a
given multi-dimensional data distribution [21]. Given a d-
dimensional vector X = (X, ... ,Xd)T where X1, ..., Xy
are one-dimensional variables, the vector X; represents the
i-th observation of the d variables: X; = (Xj1,...,Xiq),
where i = 1,...,n, and n correspond to the total number
of observations. The variable X;; is the i-th observation of
the variable X;, where j = 1, ..., d. The Probability Density
Function (PDF) of X is, then, given by the joint PDF of the
random variables (X1, . .. ,Xd)T:

fFX)=fXy,.... X &)

Kernel functions are applied to scale distances. For example,
in a one-dimentional case where u = (x — X;) /h, the h is the
smoothing parameter called bandwidth, and x is the currently
analized observation. In the multivariate version, the band-
width can be set individually for each distance (x — X;),
obtaining a d-dimensional bandwidth h = (hy,..., hg).
There are different approaches to form a multi-dimensional
kernel, K (w) = K (u1,...,ug), is an example of a mul-
tiplicative kernel, K (w) = K (u1) - ...- K(uy). Using this
approach, the density estimator can be given as Eq. (6).

1 & d xj — Xij
f ==Y {]]r'k (Q) (6)
n — . hj
i=1 |j=1

The PDF highly depends on the selection of the bandwidth
parameter vector [21]. A performing approach is to set the
bandwidths through the least squares cross-validation. By this
approach, each bandwidth #; is selected so to minimize
the integrated mean square error between the estimated and
actual distributions as (7).

st () = [ 16y @) ~f ()@ @)

lll. PLANT DESCRIPTION

Industrial refrigeration plants are mainly composed by com-
pressors, condensers, expansion valves and evaporators in
order to perform the vapor-compression cycle. As previously
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FIGURE 1. Refrigeration plant scheme.

Compressors

presented in [22], the tested installation, from the company
Corporacién Alimentaria Guissona, S.A., contains all the
aforementioned characteristics to remove the heat from their
facilities. The refrigerant (R717), in the state of saturated
vapor, is compressed employing three compressors in paral-
lel, two of them are the same model and the third has less
capacity. The warmth absorbed by the refrigerant is rejected
using four condensers in parallel with its respective water
pump and variable speed fans. The used expansion valve
reduces the liquid refrigeration pressure, diminishing also the
temperature. Finally, the evaporators, where the cold refriger-
ant is applied to lower the temperature of a closed space, are
distributed along the whole facilities. The described plant is
shown schematically in Fig.1.

Other components of the plant are the separator tank and
the chilled refrigerant pumps. In the separator tank, the refrig-
erant is stored in both vapor and liquid states, the liquid part
is pumped to the distributed evaporators by means of the
chilled refrigerant pumps and the vapor part is absorbed by
the compressors. Among all these plant components, the ones
that consume the most of the energy are the compressors,
the condensers water pumps, the condensers fans and the
chilled refrigerant pumps [23]. The operation of the afore-
mentioned refrigerant pumps is not modifiable since they are
in charge of guaranteeing a minimum differential pressure
to go over all the distributed evaporators along the facilities.
On the other hand, the operation of the remaining elements
can be modulated to improve the whole system performance
by taking into account the components, which can be mod-
ified to increase the efficiency. Considering the data of the
aforementioned components observed during the analyzed
period, the condensers, which include the pumps and the fans,
consume about the 20% of the overall electrical energy, while
the compressors spend about the 80%.

The data employed in this study consists on samples
acquired every 5 minutes from 1 year of operation, starting in
March 2017 to February 2018, both included, which leads to a
total of 367994 samples. Data when the plant was stopped or
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FIGURE 2. Proposed methodology. The offline block is used to create a map containing a near-optimal COP in each zone. The online block maps the new
data into the discretized grid. Finally, a comparison can be made and therefore obtain the possible improvement.

out of range values was not taken into account. In comparison
with the previous works [22], a reduced set of three relevant
variables in order to analyze the plant performance is selected
according to the plant experts. The magnitudes studied from
the refrigeration plant are the compressors cooling capac-
ity (Qc) in kW, the suction pressure (Sp) in bar and the wet
bulb temperature (Twb) in °C, obtained according to [24].
Fig.3 shows these signals under a short period of time.

To satisfy the fluctuating cooling demand necessities,
the suction pressure is constantly changing, which is a par-
ticularity that also limit the plant performance.

IV. PROPOSED METHOD

The COP calculation in classical approaches does not con-
sider the influence of conditional variables to the refriger-
ation plant performance, such as the suction pressure and
the wet bulb temperature. Thus, in this work a data-driven
performance evaluation methodology is proposed to tackle
the aforementioned problem and evaluate the performance
of the plant in regard with its operating condition, achieving
a more reliable COP potential increment according to the
historical plant conditions.

An initial work addressing some of these problems was
previously presented [22], nevertheless many deficiencies
were detected that led to the development of this improved
proposed methodology, including a new reduced set of ana-
lyzed variables, a different preprocessing, the introduction
of an outlier detection filtering and an uncertainty detection
stage. Therefore, the potential savings can be more accu-
rately measured instead of expecting misleading maximum
COP gain values which would benefit any posterior control
modification by proposing a reliable target. Additionally,
an uncertain detection module is also included to increase
the robustness of the method as well as the reliability of the
evaluation.

The proposed methodology is shown in Fig. 2 and it is
composed by two main stages, an offline operation stage
where historical data is processed to obtain the maximum
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performance and an online part where the performance is
assessed. In the offline part, the method takes advantage of
recorded data to identify the maximum COP (COP Max)
performance in the different conditional operation modes of
the plant. The COP Max measure inform of which can be the
maximum performance achievable within the specific condi-
tions based on real operation data. This obtained measure is a
near optimal performance ratio as it is based in past operation
data and it is robust as avoids non representative samples
due to the uncertainty delimitation. Otherwise, in the online
stage, the current plant COP (COP Actual) and the COP
Max obtained from the previous stage are compared in order
to assess the plant performance under the same operation
conditions.

A. OFFLINE

First, the available historical data from the database (DB) is
analyzed with, at least, the operation measurements of one
year. The length of one year is preferred because the operation
modes of the refrigeration plant are normally cyclical each
year, which means that the performance is very dependent
on the outside temperature. As mentioned before, the three
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analyzed variables are the cooling power, the suction pressure
and the wet bulb temperature.

After the extraction, the DB is filtered to eliminate peri-
ods of time where the plant is not working and periods of
time where some measurements are incorrectly stored due
to registered sensor failures. Additionally, the measurements
are scaled from 0 to 1 for generalization purposes in order to
apply posterior processing algorithms.

The next step consists on learning the distribution of the
data to characterize the plant operation, nevertheless to avoid
including outliers that would lead to a misleading charac-
terization of the plant, an outlier filter is first used, in this
case the MVKDE. In this particular problem, a multivariate
hyperparamter tuning is beneficial for the proper selection of
the anomaly boundary, therefore, the MKDE is chosen as it
can be optimized for each variable analyzed in comparison
with other classical techniques such as One-Class Support
Vector Machine (O-C SVM) [25], which hyperparameters
are unique regarding the number of the variables analyzed.
The selected statistical non parametric anomaly detection
technique divides the database in two parts according to the
data distribution, the first one which consists on the majority
of the data considered normal and a second minority one that
consists on novelties or outliers. The distribution of number
of samples between both sets is defined by the probability
density function and the outlier threshold proposed, which
in standard situations lead to around 90% of the data to the
normal set and 10% to the novelty set. Nevertheless, these
proportions are limited to many circumstances, included the
integrity of the database, length of the analyzed period, dis-
tribution of the data, etc.

Regarding to the normal set, a SOM is used to characterize
the plant operation into the 2D neuron grid of the output
layer. A training procedure is employed to adapt the neurons
positions to the input space, in order to preserve as much as
possible, the original topology with its variance, information
and distribution. Once the SOM is trained, all the output
grid neurons include information about each process signal
considered in the study. Indeed, after the training with the
normal set, each MU, represented by each unit of the grid,
describes a specific operating area of the plant. In this regard,
the plant operating point codification is assessed by associat-
ing each sample to its corresponding BMU, which represents
the sample operation conditions.

It is important to notice that, since this is an historical-
based data-driven approach, the characterization of the plant
operation is limited to the scenarios encountered in the ana-
lyzed period. Therefore, to provide awareness to the operator
a module of uncertainty detection is also included, which
would detect if the plant is working under new operating
conditions not present in the normal set. For this uncertainty
measure, SOM’s Qerror is used to label new scenarios accord-
ing to their value, a high Qerror would imply that the analyzed
measurement corresponds to new conditions not previously
considered in the training set, and a low Qerror would imply
that the data correspond to the known operation conditions.

VOLUME 7, 2019

For this reason, to easily interpret and label the uncertainty of
evaluated measurements two thresholds are defined accord-
ing to the Qerror to obtain three labels: known, uncertain and
new.

The first threshold, Th1, is obtained by analyzing the Qer-
rors obtained on the normal set. This threshold represents
the first boundary that separates data considered known and
data considered uncertain, therefore the uncertain concept is
limited to data used in what its considered normal.

Th; = max (Qerror (Normal Set)) ®)

For the second threshold, 742, the novelty set is evaluated
by the trained SOM with the normal set, therefore higher
Qerrors are obtained which reflect values corresponding to
data that have already been considered an outlier or new. Con-
sequently, this threshold (9), where o represents the standard
deviation, with a higher value than Thl, explains the limit
between uncertain and new. Therefore, data between Thl and
Th2 is considered uncertain and data with higher Qerror than
Th?2 is considered new. For this second threshold, the standard
deviation measure is used since it is commonly used to detect
deviations in datasets [26].

Thy = 30 (Qerror (Novelty Set)) )

Once the thresholds are selected, the trained SOM grid is
now associated with a performance metric. Since each MU of
the grid delimits a plant operational area, the grid provides the
capability to identify a range of COP values for the specific
operating condition fixed by the historical registers associated
to a certain MU. Therefore, the COP values are calculated for
the measurements corresponding to each MU and from this
set of COP values the optimal performance is selected to be
the representative COP Max value in the historical data under
the conditions described by the MU. A graphical description
of the selection of the COP Max value in a MU is shown
in Fig. 4.

As a result, each MU of the grid is now associated with
a COP Max, which can lead to a realistic comparison of the
COP Actual of the plant and the maximum observed in the
historical with similar operation conditions. It is important to
emphasize that the previous outlier model by the MVKDE is
used to improve the operation characterization of the plant by
the SOM and therefore reduce the Qerror of the training set.

B. ONLINE

Once the SOM is properly trained and each MU of the grid is
associated with the COP Max, new samples can be evaluated
to assess the actual performance and the comparison with the
COP Max under the same operation conditions.

Each new sample in the online test is preprocessed with the
same measures as the offline test and normalized according
to the maximum and minimum values obtained during the
training. After the preprocessing, the sample is evaluated by
the SOM to identify the BMU on which the COP Max and
the COP Actual can be compared as shown in Fig 5. Thus,

64131



IEEE Access

J. Cirera et al.: Data Analytics for Performance Evaluation Under Uncertainties Applied to an Industrial Refrigeration Plant

SOM grid Performance Label

a - Max
Historical
cop

Min.
" Historical
b cop

Max
Historical
cop
Selection

FIGURE 4. COP performance map. (a) MU historical COPs range. (b) COP
Max value selection.

BMU after SOM evaluation

. Max.
Online Historical
sample cop

FIGURE 5. Evaluation of a new sample, the best historical performance is
selected in each BMU as reference.

the performance evaluation can be made by applying (10):
Performance Improvement = COPMax — COPActual (10)

Furthermore, to give an index about the uncertainty of the
evaluated measurement, the quantization error is compared
with the previously defined thresholds and subsequently
labeled as known, uncertain and new according to the result.

V. EXPERIMENTAL RESULTS

The proposed methodology is evaluated using data from the
described plant in section III. First, the whole dataset is
preprocessed as it is explained in section IV, subsequently the
data is divided between training and test sets using 3 weeks
per month and 1 week per month respectively. Thus, a bal-
anced distribution among both sets is accomplished.

First of all, the data from the training set is selected, after
the preprocessing, the MVKDE is employed as an outlier
or anomaly filter to divide the training set in the normal set
and the novelty set. For the training procedure, the MVKDE
with multiplicative function and Gaussian kernel function is
used. The MVKDE bandwidths are set through least squares
cross-validation. With such configuration, 90% of the data
is labeled as normal and 10% as novelty. To ensure the
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capability detecting anomalies of the MVKDE, a validation
set previously labeled by a plant expert is used. The method
is able to identify the 100% of samples labeled as abnormal,
affirming the uncertainty detection effectiveness.

Once the normal set and novelty set are obtained, the SOM
training is performed with only the normal set. For the SOM
configuration, a rectangular grid type connection is selected
with a planar map type, a Gaussian neighborhood function
and a 70x70 output grid was used, which means a total
of 4900 neurons. Different configurations were tested, never-
theless the aforementioned configuration presented the mini-
mum number of neurons with no-hits without compromising
the characterization resolution. Furthermore, a low mean
Qerror without overfitting the network to the distribution is
achieved, specifically a value of 0.013 is obtained.

The normal set used to train the SOM and the resulting
grid distribution is shown in Fig. 6, the neurons’ distribution
covers the whole input data space allocating more neurons on
denser areas to obtain more resolution.

After the SOM training with the normal set, the first thresh-
old, Thi, for the uncertainty analysis is obtained according to
(8). Then, the novelty set is evaluated by the trained SOM and
the second threshold, Th2, is obtained according to (9). The
values are 0.06 and 0.13 respectively.

In Fig. 7 the Qerror of the normal set and the novelty set
are shown as well as the uncertainty thresholds Tkl and Th2:

After the uncertainty thresholds are selected, the COP per-
formance analysis is performed in which each neuron of the
trained SOM is assigned to a COP Max among the samples
in the training set that correspond to each neuron or MU.

VOLUME 7, 2019
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FIGURE 8. Trained SOM grid distribution with the associated COP Max for
each BMU.

The anomaly detection in the training phase is used to avoid
unrealistic COP Max values in each MU due to the presence
of outliers. Once each neuron is assigned to a COP Max,
shown in Fig 8, the offline training stage is finished and new
samples can be analyzed to obtain a comparison between
the COP Actual and the COP Max under similar operation
conditions.

Regarding to the test set, a preprocessing is first performed
and the normalization considers the maximum and minimum
values obtained from the variables on the training set.

Then, to provide a reliable and qualitative value of the
performance, each sample of the test set is first labeled,
according to the SOM Qerror thresholds previously obtained
with the anomaly detection methodology, into known, uncer-
tain and new. The resulting labels are shown in Fig. 9.

As it can be seen, the labeled as known correspond to
samples that are similar to the operation distribution of the
training set, while the labeled uncertain correspond to sam-
ples that started drifting from the known operation distri-
bution. Finally, the new labels correspond to samples that
have a considerate distance from the operation conditions.
In this case in particular, the lower concentration of uncertain
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and new samples corresponds to periods of time where the
Twb reached the lowest point, such temperatures were not
observed in the training set since the meteorological con-
ditions did not coincide explicitly with the test ones. The
validation set composed by plant uncertainties and novel
operations used to ensure the effectiveness of the MVKDE
is also used to test the Qerror thresholds being able to detect
all the labeled anomalies.

Afterwards, each sample is evaluated by the SOM to obtain
the corresponding BMU and therefore the COP Max with
the corresponding operation conditions. The comparison of
the classical COP improvement method; the COP Actual and
the COP Max is shown in Fig. 10.

An application of a COP Max approach from the literature
consists on calculating the COP Max value in regard to spe-
cific operation conditions [27]. In this regard, Classical COP
curve, only takes into account cooling power and electrical
power as it considers that the other variables remain static.
With the output map provided by the SOM, it is able to
appreciate that more features affect the chiller performance
as plant conditions are constantly fluctuating. As it can be
seen in Fig. 10, where classical COP is compared with the
one achieved by the method and the current COP of the plant,
the classical approach presents a lack of adaptation to the
real working conditions of the refrigeration plants. Hence,
it presents an overoptimistic estimation of the optimal COP
since it is only calculated in regard with the current electrical
and cooling powers, losing with it the global vision of the
process. As it can be seen in the first subplot of the Fig 10 a),
the potential improvements are constant independently of the
seasonality.

Other evaluation techniques using data-driven methodolo-
gies such as the proliferation strategies [14] do not con-
template the impact of external signals variability on the
plant or compressors performance. Also, the deterioration of
components, such as compressors, is not considered which
leads to an unrealistic performance evaluation if the COP is
proliferated. Such data-driven approaches present a higher
COP expectation than the classical COP curve due to the
nature of oversampling without taking into account plant
operation conditions.
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FIGURE 10. First subplot: classical COP, COP Max and COP actual. second
subplot: Possible COP optimization in each time step. (a) Whole period.
(b) Week detail.

The proposed methodology is able to quantify the possi-
ble COP improvement more accurately as the evaluation is
performed using various operation conditions and also being
robust to uncertainties. Furthermore, the demonstration that
the Classical COP curve is overoptimistic since it is not pos-
sible to achieve the same performance with the same cooling
load due to the affectation of other factors, is not dependent
of the parametrization of the technique.

VI. CONCLUSIONS
The proposed performance evaluation methodology takes
advantage of the data acquired from the refrigeration process
to avoid the physical based approaches deficiencies. The
strategy obtains a near-optimal performance map taking into
account the process variability and the multiple variables
that limit the operation efficiency. Thus, a realistic potential
energy savings can be estimated since the map is developed
using real plant data in comparison to classical approaches.
This COP Max map can be used as a benchmark to assess
new data acquired in real time from the refrigeration plant.
Furthermore, the methodology is able to discriminate uncer-
tainties from the online analysis in order to provide a robust
evaluation. This tool can be used to compare different con-
trol strategies, identify abnormal behaviors and quantify the
potential operation improvement.

In order to validate the study, data from a real refriger-
ation plant, during a period of one year, is evaluated. The
results demonstrate that the normality model, uncertainty
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thresholds, and the development of the discretization charac-
terization technique, fit the plant operation multidimensional
space to provide an accurate assessment of the performance.
Therefore, the output performance map benchmark obtained
from the offline phase contains reliable historical information
according to the operation conditions. With the test dataset is
observed that the plant has room for improvement varying
the control strategy and the non-well represented samples are
identified as abnormal situations. Also, if the control strategy
is constant, a low performance could indicate machine fail-
ures, since not optimal COPs are being obtained in similar
conditions.

The abnormal situations match with the conditions less
represented in the offline training stage, in the test dataset are
principally identified with low wet bulb temperatures since
the training set did not contain such similar values.

Further work can be approached incorporating these new
behaviors detected to the performance map, thus the knowl-
edge of the benchmark map will be increasing automatically
whenever new operation conditions appear. Also, furtherly
testing this methodology to provide it of a fault tolerant or
fault detection strategies.
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