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Abstract 

This paper presents an experimental study on the swelling response of compacted Maryland clay specimens 

subjected to hydration under a range of boundary conditions. The research is multi-scale with swelling tests 

complemented by comprehensive mercury intrusion porosimetry analyses. The objective of the experimental 

program is to establish the locus of final swollen states (in terms of void ratio and swelling pressure) and assess 

its robustness by testing a range of boundary conditions or combinations thereof. Five initial soil conditions 

were tested and swelling was generated by flooding or incremental suction reduction via the osmotic technique. 

The paper shows that, for a given soil condition, there is no influence of the stress-volume path on the final 

swollen state. This observation was corroborated at the microscopic level by the mercury intrusion porosimetry. 

It was concluded that the effect of different stiffness can actually be analysed in terms of the maximum stress 

applied to the specimen. In particular, a clear correlation was identified between the macroscopic strains and the 

confinement applied during the test, regardless of the boundary conditions. Also, the conceptual model relating 

the water ratio and micro void ratio proposed by Romero et al. (2011) was found to prevail, regardless of the 

boundary conditions. 

Keywords: expansive soils; swelling; microstructure; MIP; SEM; double-structure 
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1 Introduction 

Expansive soils are notoriously problematic for civil infrastructure because of the significant 

volume change experienced upon wetting and drying and because of the development of 

swelling pressure that accompanies swelling. The issue of expansive soil-structure interaction 

has received significant attention in the context of road pavements and retaining walls (e.g. 

Nelson and Miller, 1992; Lytton, 1994; Thomas, 2008; Brown, 2013) and scholars have 

devised methods to account for the expansiveness of the soil. Researchers have also explored 

the possibility chemically stabilize reactive soils (Nelson and Miller, 1992; Estabragh et al., 

2014) in order to suppress their expansiveness. Using reactive soils in road project is not only 

a matter of volume change and swelling pressure. Indeed, Widger and Fredlund (1979) have 

reported stability problems for road embankments made of swelling clays. In conclusion, all 

published studies clearly show that expansive soils are far from being ideal construction 

materials. However, recently in Australia, increasing financial and environmental constraints 

have incited designers and road authorities to consider incorporating marginal materials, such 

as expansive soils, in civil infrastructure. For example, a number of encapsulated or zoned 

embankments have been designed and built on the Hunter Expressway, New South Wales 

(Aryal et al., 2012; Buzzi et al., 2012; Walter et al., 2012). The rationale of encapsulation is 

to prevent moisture uptake and offer some overburden pressure to counteract the swelling 

pressure. Achieving a satisfactory design requires a good understanding of the swelling 

behaviour of soils and, in particular, an adequate characterization of the swelling response 

under different boundary conditions. Much research has been conducted on swelling soils, 

especially under free swell and constant volume conditions (e.g. Yevnin and Zaslavsky, 1970; 

Kassiff and Ben Shalom, 1971; Brackley, 1973; Escario and Saez, 1973; Lloret and Villar, 
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2007; Cui et al., 2008, to name a few). In contrast, there is not much data on swelling under 

constant stiffness or under a combination of boundary conditions. Yet, such data are relevant 

for engineering applications where several boundary conditions are possible (see Siemens 

and Blatz, 2009; Lim and Siemens, 2016), which will possibly influence the relative 

proportion of swelling strain and swelling pressure being developed. Such idea was recently 

captured by Siemens and Blatz (2009) and Lim and Siemens (2016) via the concept of the 

Swelling Equilibrium Limit, noted SEL, which represents the locus of final swollen states. 

Although they did establish the SEL, the authors did not test its robustness by combining 

boundary conditions, nor did they account for the influence of the initial void ratio and 

suction. Lim and Siemens concluded that the SEL is a state line and, as such, it is not stress-

volume path dependent. Although such results were corroborated by Liu et al. (2014), they 

are largely in contradiction with the general view that swelling is a stress path dependent 

phenomenon. For example, Nelson and Chao (2014) showed that a path where the soil swells 

under load followed by a recompression yields higher swelling pressures than if the soil 

swells under constant volume. Alonso et al. (2014) also provided experimental evidence of 

the stress path dependence of swelling pressure. Justo et al. (1984) reached the same 

conclusion for the magnitude of volume change. 

Since the emergence of microstructural investigations in soil mechanics in the 1970s 

(Diamond, 1970; Sridharan et al., 1971), there is ample experimental evidence of the 

influence of the swelling condition on the evolution of the soil microstructure (Monroy et al., 

2010; Romero et al., 2011; Yuan et al., 2016). However, as far as we know, there was no 

attempt to assess whether different stress-volume paths leading to the same overall swelling 

response could generate different microstructural changes. This paper presents a 

comprehensive multi scale study of the swelling response of compacted Maryland clay 
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specimens under a constant stiffness, constant volume, free swell, constant vertical stress and 

combination thereof. The objective of the study is to establish the locus of final swollen state 

(noted LFS here) for five different initial soil conditions, to assess its robustness and to check 

whether the locus is stress-volume path dependent. The study is strengthened by micro 

structural investigations that aim at assessing the effect of the stress-volume path on the 

extent of micro structural modifications undergone during swelling. 

2 Experimental program and methods 

2.1 Material and specimen preparation 

The soil used in this study, Maryland clay, comes from the experimental field site of the 

University of Newcastle located in Maryland (NSW, Australia) established by Fityus et al. 

(2004). The mineralogical composition (provided in Table 1) shows that the soil contains 

about 10% of interlayered illite-smectite clay that confers to the soil a high reactivity. More 

details on Maryland clay can be found in Fityus and Smith (2004) and Liu et al. (2016). 

This study focuses on compacted soil and the specimen preparation is consistent with that 

used in Liu et al. (2016) and Yuan et al. (2016): crumbs of natural soil were first dried in an 

oven at 105 °C, crushed to particles passing the 1.18 mm sieve and large organic matter (e.g. 

roots) were removed. The soil powder was wetted to three different water contents (13.2% 

17.8% and 21.4%) using a water spray and the mixture was subsequently sealed in an air-

tight plastic bag for two weeks for moisture equilibration. 

Specimens of 45 mm diameter and 19 mm in height were prepared by static compaction in a 

loading frame. Void ratios of about 0.62 and 0.82 were targeted. Soil suction was also 

measured post compaction and after rebound using high capacity tensiometers (Mendes and 
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Buzzi, 2013) or a WP4 potentiameter (Decagon) in order to establish the wetting branch of 

the soil water retention curve (see Figure 1). 

 

Mercury intrusion porosimetry analyses conducted after compaction showed in a bi-modal 

distribution of pores for all initial conditions tested here (further details on the method are 

given in section 2.3). 

 

2.2 Apparatus for swelling under different boundary conditions 

All tests were conducted using the swelling cell presented by Liu et al. (2014), which was 

upgraded to incorporate the capability to control suction via the osmotic method (Figure 3). 

The cell allows the application of a range of boundary conditions during swelling, namely 

constant volume, constant stress and constant stiffness (via springs of different stiffness). A 

load cell and a LVDT were used to record the swelling pressure force and the vertical 

displacement. The suction control is achieved by the osmotic method where a solution of 

polyethylene glycol (PEG) is circulated, in closed loop and via a peristaltic pump, from a 

reservoir to the bottom of the cell. The specimen is separated from the PEG solution via a 

semi-permeable Polyethersulfon (PES) membrane and a stainless porous plate (thickness of 

3mm and dominant pore size of 10 microns). The whole setup was placed in a constant 

temperature room (control at ±0.5°C). The suction applied to the specimen is related to the 

PEG molecular weight, temperature and PEG concentration, as detailed in Yuan et al. (2017). 

The last stage of swelling, i.e. reducing suction to zero, was achieved by replacing the PEG 

solution by deionised water. Using deionised water from the beginning of the test is referred 

to as a “flooding” test since suction is reduced directly from its initial value to zero without 

any intermediate and controlled increments. 
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Note that conventional oedometers were used for swelling tests under constant vertical stress 

and flooding by deionized water. For all tests, evaporation was avoided by using a plastic 

membrane on the top part of the cell and, when applicable, some paraffin oil in the reservoir 

containing the PEG solution. 

2.3 Mercury intrusion porosimetry 

Mercury intrusion porosimetry (MIP) was used to track the changes in pore size distribution 

of the specimens upon swelling. A Micromeritics AutoPore IV 9500 with a maximal pressure 

of 228 MPa (corresponding to an equivalent entrance pore diameter of about 6.5 nm) was 

used and all the specimens (maximum volume of 1 cm
3
) were subjected to a freeze drying 

process to remove the water with minimal effects on the soil structure. For the “freeze” phase, 

samples were immersed into the liquid nitrogen pre-cooled by vacuum (temperature of -

210 °C). Then the frozen samples were placed in a freeze-dryer (Christ ® ALPHA 1-2) for at 

least 48 hours to sublimate the amorphous ice. After this process, the samples were sealed in 

airtight plastic vials and stored in a desiccator. 

2.4 Experimental program 

In the first series of tests, swelling was achieved by flooding, i.e. no incremental reduction of 

suction was applied. As detailed in Table 2, different combinations of initial void ratio, initial 

suctions and boundary conditions were tested. Such tests were completed in about 7 days. 

The tests under constant volume (CV), free swell (FS) and constant stiffness (CK) were used 

to establish the locus of final swollen state (noted LFS in the void ratio – net stress plane), for 

each combination of initial void ratio and initial suction. For the free swell condition, a 

vertical stress of 6kPa was applied. Note that the LFS can be considered equivalent to the 

swelling equilibrium line, or SEL, defined by Siemens and Blatz (2009) in the “specific 
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volume – mean stress” space. However, for a matter of clarity and rigor, a different 

terminology is used because the LFS and SEL are not defined in the same plane. The first 

series of tests is noted E_LFS_F, for “establish LFS under flooding”. 

A second series of test was conducted to track the evolution of the LFS as suction is 

incrementally reduced using the osmotic technique (series noted E_LFS_I, I for incremental). 

As for the first test series, five different boundary conditions were considered: free swell, 

constant volume and three tests at constant stiffness (k=489 N/mm, 175 N/mm and 55 N/mm). 

Due to the relatively long time required for equilibration after each suction change (around 4 

weeks), only one initial soil condition was tested, namely wo = 13.2% (so = 6.29 MPa) and eo 

= 0.62. 

Then, swelling tests under constant net stress and mixed boundary conditions were used to 

ascertain whether the final swollen state under different boundary conditions would still fall 

on the LFS, despite different stress-volume paths (series noted T_LFS_F, T for testing, F for 

flooding). For the tests under free swell followed by constant volume, during the free swell 

condition, a nominal load of 6 kPa is applied to the specimen. When a target swelling 

deformation has been achieved, deformation is prevented and the load cell records the 

swelling pressure exerted by the specimen. Table 2 summarizes the experimental program. 

The evolution of soil microstructure, from initial state to the swollen state (either final or after 

a suction increment), was tracked using MIP. Although only a selection of results will be 

presented in this paper, microstructural investigations were conducted for all tests. Because 

MIP analyses are destructive, parallel specimens were used for the E_LFS_I series. In other 

words, one specimen was used for each boundary condition and each suction change. Only 

one specimen was subjected to an incremental reduction in suction, from 6290 kPa to zero in 

five steps with an MIP at the end of the test (test referred to as “k175_sev_inc” in Table 2). 
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3 Results and discussion 

3.1 General swelling response 

Figure 4 shows the evolution of swelling strain (defined as change of specimen height over 

initial height) and swelling pressure during a swelling test with two different values of 

stiffness (55 N/mm and 489 N/mm). The specimen was prepared at so=6.29 MPa and eo = 

0.62 and suction as reduced to zero in one step, by flooding. 

All tests were stopped after the stabilization of either swelling pressure or strain, which 

occurs after the end of primary swelling. Because of the constant stiffness condition, both 

swelling strain and pressure develop during the test and the higher the stiffness, the lower the 

swelling strain and the higher the pressure. Such result is consistent with other data of the 

literature showing a drop in swelling pressure as more swelling strain is permitted (e.g. Uppal 

and Palit, 1969; Wang et al., 2012). Note that a positive value of strain corresponds to overall 

swelling, measured at the end of the test while a negative strain reflects overall collapse or 

compression. Collapse can also be partial, still resulting in an overall positive strain. In such 

case, the overall positive strain, as measured at the end of the test is reported in the rest of this 

paper. 

3.2 Establishing the locus of final swollen states (LFS) 

3.2.1 Flooding swelling tests 

Figure 5 shows, for each set of initial condition, the locus of final swollen states (LFS), 

determined from the results of swelling tests by flooding under different boundary conditions. 

The dashed and continuous lines correspond to an initial void ratio of 0.82 and 0.62, 

respectively. Three different symbols are used to indicate the initial suction (empty circle: 

high suction (~6 MPa), full circle: low suction (0.8 MPa), half-full circle: mid suction (3 
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MPa). Consistent with other results of the literature (e.g. Uppal and Palit, 1969; Siemens and 

Blatz, 2009; Lim and Siemens, 2016), the swelling pressure reaches its maximum value under 

fully constrained condition and drops as less and less confinement is applied. The LFS shifts 

towards higher values of void ratio change and pressure as the initial void ratio decreases 

or/and the initial suction increases, which is not surprising considering that both these 

parameters are known to influence the magnitude of swelling. The locus of final swollen state 

(LFS) is established for a given set of initial conditions. 

3.2.2 Incremental swelling tests 

Figure 6 presents the development of swelling pressure and void ratio as suction is 

progressively reduced. Note that, the existence of a small void ratio change under constant 

volume condition is due to the deformability of the system. The progressive development of 

void ratio and pressure is consistent with the general knowledge of swelling behaviour: the 

higher the confinement exerted on the soil, the smaller void ratio change and the higher the 

swelling pressure. Figure 6a also shows that a large proportion of the total void ratio change 

develops at the low end of suction, as per experimental results of Escario and Saez (1973) 

and Kassiff et al. (1973). 

The last suction reduction under constant volume was accompanied by some collapse with a 

final swelling pressure of 292 kPa, against 318 kPa at the previous step. This is the only 

occurrence of collapse observed for this series of tests. 

Data of Figure 6 were transposed in the plane of the LFS in order to shows its progressive 

development (Figure 7). The LFS for suctions of ~4000kPa, ~2000kPa and ~1000kPa are 

non-monotonic but this is imputed to the experimental system (initial contact with the spring, 

stiffness of cell) rather than a soil response. Indeed, as shown in Figure 6, not much swelling 

takes place under such high suctions, which exacerbates the effect of experimental errors. For 
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values of suction lower than 1000kPa, the LFS is clearly defined and shifts upwards as the 

suction is reduced. The cross-over between LFS for suctions of 0 kPa and 100 kPa is due to 

the collapse observed in Figure 6. The void ratio-pressure path followed by the specimen that 

was subjected to several suction increments (k175_sev_inc, in Figure 7) is overall consistent 

with the other tests. 

The water ratio ew was calculated after each suction reduction increment and its evolution 

under different boundary conditions is showed in Figure 8. Note that, technically, these 

curves are not retention curves since the void ratio is not constant. 

For suctions higher than about 350 kPa, the five curves are merged suggesting no effect of 

boundary conditions while at the low end of suction values, the curves diverge and the higher 

the stiffness, the lower the final water ratio. Such evolution is very similar to the retention at 

different void ratio where the void ratio only has an influence where capillary retention 

mechanism prevails (Romero et al., 1999). Figure 8 also includes some estimate of the degree 

of saturation of the macro pores (SrM) using equation [1], which assumes that the micro pores 

are saturated: 

SrM=(ew-em)/eM       [1] 

where eM and em are the macro and micro void ratios, defined from the mercury intrusion 

curves using a micro-macro boundary of 1 micron (as per Yuan et al., 2016). Results suggest 

that the macro pores have reached a point of almost half saturation when the effect of 

boundary conditions becomes noticeable. In other words, although water is now located in 

the macro pores, where capillary retention mechanism is predominant, there is no noticeable 

effect of the boundary conditions and void ratio, which is surprising and not explained at this 

stage. 
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The evolution of microstructure for specimen along wetting path under different boundary 

condition is given in next section. 

3.2.3  Microstructural changes during swelling 

As discussed previously, several parallel specimens were used for the suction-control 

swelling tests in order to conduct microstructural analyses. Figure 9 show the pore size 

distribution for each boundary conditions and for three different values of suction (~1000kPa, 

~100 kPa and ~0 kPa). 

Reducing the suction from its initial value (6.29 MPa) to about 1 MPa is accompanied by 

microstructural changes that are largely unaffected by the nature of the boundary condition 

applied (Figure 9a). At this stage, the distribution is still bi-modal with dominant macro-pores 

of about 7 to 10 microns and dominant micro pores of about 0.05 microns. 

Reducing the suction further (to about 0.1 MPa), lead to significant microstructural changes 

with a pore family appearing in between the two peaks that were present under 1MPa of 

suction (see Figure 9b). This corresponds to the onset of pore merging: the aggregates swell 

upon hydration, which leads to an increase in micro pore size and density. Concomitantly, the 

swelling aggregates can invade the inter-aggregate porosity (depending on the boundary 

condition applied), which translates into a reduction in macro pores size. Such observations 

are consistent with previous studies of the literature (Monroy et al., 2010; Romero et al., 

2011; Yuan et al., 2016). Although the pore size distributions all largely remain bi-modal, an 

effect of the boundary condition now appears. 

The most significant microstructural changes take place when suction is reduced from about 

0.1 MPa to about 0 MPa (Figure 9c), which coincides with the large void ratio change visible 

in Figure 6a at the low end of suction. The pore size distributions now include only one 

dominant peak and the effect of the boundary condition is well pronounced: the free swell 
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condition leads to more of the larger pores while imposing a constant volume creates the 

opposite: smaller pores and lower density. The pore size distributions resulting from swelling 

under constant stiffness are very close, despite one order of magnitude between minimum and 

maximum stiffness, and are located in between the distributions associated with constant 

volume condition and free swell condition (see Figure 9c). 

3.3 Influence of different stress-volume paths on final swollen state 

One of the objectives of this study is to ascertain whether the final swollen state (i.e. final 

void ratio and final swelling pressure) depends on the stress-volume path followed during 

swelling for a given initial state of sample. The LFS was established with the first test series 

for each set of initial conditions (see Figure 5), and the swelling tests under constant vertical 

stress and mixed boundary conditions, represented by blue crosses and black lines in Figure 

10, are here used to test the robustness of each LFS. 

Clearly, for the five conditions tested, the stress-volume path followed does not significantly 

influence the final position on the LFS for a given set of initial conditions. Indeed, the 

majority of tests at constant vertical stress and mixed boundary conditions yield a 

combination of void ratio and swelling pressure in line for the LFS determined for each initial 

condition. Note that some collapse has occurred for the highest levels of stress applied. In 

conclusion, this series of tests suggest that, for the conditions tested, the LFS are not stress-

volume path dependent. This finding complements the study by Siemens and Blatz (2009) 

and Lim and Siemens (2016) who tested different boundary conditions to establish the LFS 

but did not attempt to reach the same point of the LFS via different stress-volume paths. 

Although the present results corroborate some previous studies (e.g. Siemens and Blatz, 2009; 

Lim and Siemens, 2016) they also contradict findings from other studies (e.g. Justo et al., 
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1984; Alonso et al., 2013; Nelson and Chao, 2014; Alonso et al., 2014) that have concluded 

that both volume change and swelling pressure are stress path dependent. 

7 points (A to G, details given in Table 3) were identified in Figure 10, for which two 

different stress-volume paths lead to very close final swollen states (i.e. pressure and void 

ratio). These points were chosen to assess whether soil specimens that fall close on the LFS 

share similar microstructural features. 

The pore size distributions pertaining to points A, D, E and G are showed in Figure 11. 

Although the figure suggests that, for each point, following two different stress-volume paths 

may result in similar microstructure, this impression largely comes from the fact that there is 

little variability in the final pore size distributions. 

For example, let us compare the pore size distribution of k55 in Figure 11a (point A) and that 

of CV in Figure 11b (point G): both are essentially mono-modal with a peak at about 1 

micron and a density of about 0.5. Yet, the final swollen states of points A and G are very 

different (see Figure 10). Most importantly, points A and G correspond to specimens with 

different initial microstructure and the final microstructure on its own cannot reflect the 

extent of microstructural changes that take place during hydration. 

It is here proposed to compare the initial and final mercury intrusion curves, and more 

precisely, to quantify the area located in between these intrusion curves. Such area can be 

considered a meaningful indicator of the magnitude of microstructural changes having taken 

place as a result of swelling. Figure 12a illustrates this concept for the initial condition 

eo=0.82 and so=6.6 MPa. 

The areas between intrusion curves, calculated for points A to G and for each boundary 

condition, are reported in Table 4. Figure 12b is a plot of points A to G, where their 

coordinates are the values reported Table 4. A point falling on the 1:1 line means that two 
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specimens having swollen to the same final state but under different boundary conditions 

have undergone the same magnitude of microstructural changes. For specimens having the 

same initial conditions, and hence, same initial microstructure, this further means that the 

specimens do have the same final microstructure. With points A to G falling very close to the 

1:1 line, one can conclude that the almost-matching final swollen states appearing in Figure 

10 is accompanied by almost-matching microstructural changes. 

3.4 Influence of boundary conditions on microstructural changes 

The change of micro void ratio (em) and macro void ratio (eM) has been calculated from 

the evolution of pore size distribution. A boundary of 1 micron (consistent with Yuan et al., 

2016) was used to identify the volumes of mercury intruded in micro pores and macro pores. 

These micro and macro volumes were then multiplied by the specific of the soil, which yields 

the micro and macro void ratios (as per Monroy et al., 2010; Romero et al., 2011). Figures 

13a and 13b show that, for the two initial void ratios tested, the magnitude of confinement 

(applied stress or swelling pressure) clearly affects the expansion (positive eM value) or 

collapse (negative eM value) of the macro pores. This is in line with the conclusions drawn 

by Lloret and Villar (2007). There is no discernable influence of suction on the change of 

macro void ratio, except at the lowest end of stress, where significant swelling occurs. 

Interestingly, the nature of the boundary condition is not as significant as the magnitude of 

stress it will generate. 

The micro void ratio was found to increase, for all boundary conditions applied, reflecting an 

expansion of the aggregates upon hydration. At a given suction, no clear correlation can be 

established between confinement applied (applied stress or swelling pressure) and change in 

micro void ratio. Again, this is in agreement with the observation by Lloret and Villar (2007), 

Monroy et al. (2010), Romero et al. (2011), Alonso et al. (2013), mechanical loading 
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generally affects the macro pores but only marginally impacts the micro pores. When it 

comes to suction, the trend seems inconsistent: although the highest initial suction results in 

the most swelling, the lowest one is not necessarily associated with the least swelling (see 

Figure 13c). 

The incremental swelling tests offer the possibility to track the evolution of em during 

hydration (as a function of the water ratio, ew). Results are presented in Figure 14 and 

interpreted in the light of the model proposed by Romero et al. (2011). The data is divided in 

two domains defined by a line of gradient equal to 1. Data on the left of the 1:1 line are 

considered to belong to the shrinkage limit domain where they are fitted using a horizontal 

line. In other words, no microscopic shrinkage occurs as the water ratio is reduced. Data on 

the right of the 1:1 line are fitted using the following equation: 

)( **

mwmm eeee    for  *

mw ee                                                        [4] 

where   quantifies the swelling tendency of aggregates and *

me  is the boundary between the 

two domains. For ew >
*

me , the aggregates are considered fully saturated. The present data 

suggest that, for Maryland clay,  is equal to 0.3 and *

me  is equal to 0.42, which is very close 

to the shrinkage limit of compacted Maryland clay reported in Buzzi et al. (2017). 

Interestingly, the evolution of em with ew seems to be independent of the boundary conditions 

applied. Indeed, Figure 14 includes results of all five types of incremental swelling tests. 

4 Concluding remarks 

This paper presents a multi scale study of the swelling response of compacted Maryland clay 

specimens under a range of boundary conditions, including constant stiffness. The locus of 

final swollen (LFS) states, expressed in terms of void ratio and swelling pressure, was 
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established for five different initial conditions. Swelling tests with suction control by the 

osmotic technique were also conducted, in order to show the progressive development of the 

LFS, for one initial condition. The second series of tests showed that the final position of 

points on the LFS for a given set of initial conditions is not affected by the stress-volume path 

followed, which tends to confirm that the LFS can be considered as a state line, a concept 

proposed by Siemens and Blatz (2009) and Lim and Siemens (2016). 

Microstructural investigations have complemented the swelling tests and brought some new 

insight into the swelling phenomenon. A number of publications have reported that an 

initially bi-modal pore size distribution can become mono-modal upon swelling. This study 

has now showed that such change occurs within the last stages of swelling (suction reduced 

from 100kPa to 0 kPa), where most of the volume change takes place. 

The fact that the stress-volume path does not seem to affect the final position on the LFS was 

corroborated at the micro-scale, where similar microstructural changes upon swelling were 

recorded for specimens having swollen under different boundary conditions. Such conclusion 

could not be drawn from the analysis of only pore size distributions post swelling. The extent 

of microstructural changes was quantified by estimating the area between the intrusion curve 

before swelling and that after swelling. Finally, it was found that the type of boundary 

condition does not matter as much as the amount of confinement generated on the soil 

specimens. The confinement plays a key role on the evolution of macro void ratio upon 

swelling. In contrast, no clear trend could be highlighted between the change in micro void 

ratio, from initial to final states, and suction or confinement. Looking at the microstructural 

evolution during incremental swelling, the data (i.e. em and ew) were found to follow a bi-

linear trend, consistent with the conceptual model proposed by Romero et al. (2011), 

regardless of the boundary condition applied. 
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List of notations 

 

SrM degree of saturation of the macro pores 

ew water ratio 

em micro void ratio 

eM macro void ratio 

em  change of micro void ratio 

eM  change of macro void ratio 

em* critical water ratio that define the boundary of saturated and unsaturated micro void ratio 

β  swelling tendency of aggregates 
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Table 1 Physico-chemical properties of Maryland clay (modified from Liu et al., 2016) 

Mineralogy composition by 

Quantitative XRD analysis 

(% in mass) 

Interlayered illite-smectite clay (10 %) 

Kaolinite (26 %), Quartz (36.9 %), Mica (17.4 %) 

K-feldspar (3.3 %), Plagioclase (5.8 %) 

Organic matter content (% in mass) 1.5 

Specific gravity (Gs) 2.65 

Atterberg limits (%) Liquid limit (WL): 69.8, Plastic limit (WP): 24.1 

Linear shrinkage potential (%) 14 

Total surface area (m
2
/g) 95.2 

Total C.E.C (meq/100g) 14.0 
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Table 2: Summary of the experimental testing program.  

Series 

Name 

Boundary conditions (and test names) Combination of initial 

conditions tested 

eo wo [%] (so [MPa]) 

E_LFS_F Free Swell (noted FS) 

Constant volume (noted CV) 

Constant Stiffness (noted k# where # is the 

stiffness equal to 55, 175 or 489 N/mm 

0.62  13.2 (6.29) 

17.8 (3.04) 

21.4 (0.80) 

0.82 13.2 (6.66) 

17.8 (3.00) 

E_LFS_I CV, final suction [kPa]: 4165, 2076, 965, 635, 

115, 0 

0.62 13.2 (6.29) 

k489, final suction [kPa]: 4812, 2005, 1045, 122, 

0 

k175, final suction [kPa]: 4677, 2029, 991, 532, 

206, 0 

k175_sev_inc, suction increments [kPa]: 4588, 

2350, 1087, 501, 206, 0 

k55, final suction [kPa]: 4415, 2076, 494, 210, 0 

FS, final suction [kPa]: 1960, 1045, 486, 224, 88, 

0 

T_LFS_F Constant vertical stress (noted CS# where # is the 

vertical stress equal to 

50, 100, 200, 300 or 400 kPa 

0.62  13.2 (6.29) 

17.8 (3.04) 

21.4 (0.80) 

0.82 13.2 (6.66) 

17.8 (3.00) 

Free swell followed by Constant volume 

(FS+CV) 

0.62 17.8 (3.04) 

21.4 (0.80) 

0.82 13.2 (6.66) 

Swelling with 175 N/mm followed by Constant 

volume – (k55+CV) 

0.62 17.8 (3.04) 

0.82 13.2 (6.66) 
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Table 3: Initial states and boundary conditions (BC) pertaining to points A and G of Figure 

10. 

Point A B C D E F G 

eo 0.62 0.62 0.62 0.62 0.62 0.82 0.82 

so [MPa] 6.29 3.00 3.00 0.80 0.80 6.66 3.00 

BC 1 CS50 k175+CV CS400 CS100 CS300 CS50 CS100 

BC 2 k55 k489 CV FS+CV CV k175 CV 

 

 

 

Table 4 Magnitude of microstructural changes undergone during swelling and expressed as 

the area located between the intrusion curve of the as-compacted state and that of the final 

swollen state. For each point A – G (refer to Figure 10), two different boundary conditions 

are considered. 

Point A B C D E F G 

Area 1 for BC1 [kPa] 36069 13146 7131 13621 5360 38804 15164 

Area 2 for BC2 [kPa] 40554 14386 9687 11540 3131 31570 9577 
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Figure captions 

Figure 1: Relationship between initial water content wo and initial suction so, for compacted 

Maryland clay. Suction was measured post compaction using a high capacity 

tensiometer (for suctions below 1.5 MPa) and a WP4 potentiameter by Decagon (for 

suctions higher than 1.5 MPa). 

Figure 2: Pore size distributions, obtained by mercury intrusion porosimetry, of specimens 

post compaction for three different initial suctions and two initial void ratios. (a): 

eo=0.62, (b): eo=0.82. 

Figure 3: Sketch of the osmotic oedometer for swelling under different boundary condition. 

Figure 4: Response of a specimen of Maryland clay compacted at eo=0.62 and so=6.29 MPa 

and swelling by flooding under constant stiffness: (a) evolution of swelling pressure 

in time. (b) evolution of swelling strain in time. (c): relationship between swelling 

pressure (computed from recorded swelling force) and swelling strain (computed from 

measured vertical displacement) showing the constant stiffness. Suction was reduced 

from 6.29 MPa to 0 MPa. 

Figure 5: Results of test series E_LFS_F: locus of final swollen states (LFS) in the “void ratio 

–swelling pressure” plan established for the five different initial conditions and using 

swelling tests under constant volume, free swell and constant stiffness. 

Figure 6: Evolution of void ratio (a) and swelling pressure (b) as suction is progressively 

reduced to zero. Specimen was compacted at eo =0.62, so=6.29MPa. Swelling tests 

were performed under five boundary conditions. Final suction is shown as 1kPa to 

avoid incompatibility with the logarithmic scale. 
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Figure 7: Results of test series E_LFS_I: combination of void ratio and swelling pressure for 

different values of imposed suction. Initial suction so =6.29 MPa, initial void ratio eo = 

0.62. The specimen undergoing several suction increments is represented in blue and 

labelled “k175_sev_inc”. 

Figure 8: Evolution of water ratio (ew) as a function of suction (s) during incremental 

swelling under different boundary conditions. 

Figure 9: Evolution of microstructure with different boundary conditions at constant applied 

suction: (a) sapplied= 1MPa; (b) sapplied= 0.1MPa; and (c) sapplied=0MPa. 

Figure 10: Results of all swelling by flooding tests expressed in the “void ratio -swelling 

pressure” plane. (a), (b), (c) initial void ratio 0.62; (d), (e) initial void ratio 0.82. Test 

series E_LFS_F (empty circles) was used to establish the LFS while test series 

T_LFS_F (blue crosses and black line with diamond) was used to assess the 

robustness of the LFS. 

Figure 11: Pore size distribution of soil specimens post swelling. (a): point A; (b): point G; 

(c): point E, (d): Point D. Test conditions are reported in Table 4. 

Figure 12: (a) Mercury intrusion curves for specimen compacted at eo=0.82 with so=6.6 MPa 

and after swelling under a stiffness of 489N/mm. The total area between the two 

intrusion curves is computed. (a) Plot of points A to G using coordinates (Area 1, 

Area 2) equal to the values reported in Table 4. 
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Figure 13: Change of macro and micro void ratios, from initial state to final swollen state, as 

a function of the swelling pressure developed by the sample for test series E_LFS_F 

and T_LFS_F. (a) Macro void ratio change (eM) for eo=0.62 and 3 different initial 

suctions; (b): Macro void ratio change (eM) for eo=0.82 and 2 different initial 

suctions; (c): Micro void ratio change (em) for eo=0.62 and 3 different initial suctions; 

(d): Micro void ratio change (em) for eo=0.82 and 2 different initial suctions. 

 

Figure 14: Evolution of micro void ratio (em) with water ratio (ew) for different boundary 

conditions for sample compacted at eo=0.62 and so =6.29 MPa. The dashed line is a 

line of gradient 1. The red curve is a bi-linear best fit of the data of equation 

em=0.42+0.3×(ew-0.42). 
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