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Abstract 
 
We propose to use the TOF technique to measure the neutron capture cross section of 205Tl(n,γ) 

over the full energy range of stellar interest. An accurate measurement of this cross section is 

needed for a complete and consistent understanding of the s-process nucleosynthesis of the 

heaviest nuclei which are produced in low-mass and low metallicity AGB-stars. 
The only previous TOF measurement has yield only a partial information, insufficient for a 

reliable analysis of the complex branching pattern around 205Pb and 205Tl. Furthermore, there is 

also a discrepancy of 40% between the two previous activation measurements made at kT=24 

keV.  

The cross section of 205Tl(n,γ) is particularly relevant because it affects the equilibrium that is 

established in some stellar conditions between the 205Tl → 205Pb bound-state β-decay and the 
205Pb → 205Tl E.C. decay. This effect induces a complex interplay which influences the final s-

process abundance of both nuclei. We propose to measure accurately and with high resolution the 
205Tl(n,γ) cross section by using a set of four C6D6 detectors in combination with the pulsed 

neutron-source of CERN n_TOF. 

 

Requested protons: 3x1018 protons on target 

Experimental Area: EAR1 
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1.    Introduction and motivations 

The nucleosynthesis of elements heavier than iron in the Universe is mainly produced by 

a series of neutron capture reactions and beta-decays in the so-called slow (s) and rapid 

(r) processes. The stellar sites and basic mechanisms of the s-process are well identified 

[KAP11]. The s-process mechanism operates during core He-burning and shell C-burning 

in massive stars (also called weak s-process), as well as in H-burning and He-burning 

layers of Thermally-Pulsing low-mass stars of the Asymptotic Giant Branch (TP-AGBs), 

in what is known as the main s-process. 

The main s-process is the dominant source for elements of A>90. During the quiescent 

phase between Thermal Pulses (TP) in low mass AGB stars, H-burning fusion takes place 

in a thin layer at the base of the convective envelope of the star. In the ashes of the H-

burning shell the conditions are such that a 13C pocket is formed, and neutrons are 

produced through the reaction 13C(α,n)16O. This reaction starts to become relevant at a 

temperature of about 0.9·108 K, and produces neutron densities of 106-108 cm-3. 95% of 

the total s-process neutron irradiation is reached during 13C pocket nucleosynthesis. 

A second stage of the s-process takes place during the convective TP, which is caused by 

the rapid burning of the He accumulated during the H-burning phase. During the TP, the 

temperature can exceed 2.5·108 K, which enables the release of neutrons through the 

reaction 22Ne(α,n)25Mg. This neutron irradiation is short, lasting for a few hundred years, 

but the neutron density achieved is considerably higher, up to 1010 neutrons/cm3. This 

intense neutron burst strongly activates the so-called branching points, unstable nuclei 

with long enough half-lives that the capture process can compete with the beta decay. 

Thus, even if the contribution to the overall neutron exposure is low (~5%), the TP s-

process has a strong influence to the final abundances of nuclei around the branching 

points.  

An area of special interest is the termination of the s-process reaction flow, i.e. the nuclei 

in the mass range A=203-210 (figure 1). Some nuclei of interest are the double magic 

nucleus 208Pb, whose local overabundance constitutes the third elemental abundance 

peak, and the s-only isotopes 204Pb and 205Pb. The importance of 205Pb is that on top of 

being an s-process only, it is radioactive, decaying by E.C. to 205Tl with a t1/2=15 million 

years. This would enable the use of the abundance ratio 205Pb/204Pb as a chronometer of 

the last s-process events that contributed to the solar system abundances [YOK85]. But 

this, of course, is only possible if the final 205Pb abundance at the end of the AGB phase 

is well known. Any accurate model of the s-process requires the knowledge of the capture 

and decay rates of the isotopes involved. Here it is worth mentioning that the authors have 

Figure 1. Left: Termination of the s-process chain. Right: Solar elemental abundances, with the third s-

process peak highlighted 



successfully measured in the past the cross section of the reaction 204Pb(n,γ) [DOM07], 

and more recently, that of the branching nucleus 204Tl [CAS18], which had not been 

measured previously (these results are to be published in 2018). These measurements 

have contributed (or will contribute) to reduce significantly the uncertainty in the 

evaluation of the 205Pb abundance, which is the purpose of this proposal as well. 

In fact, the main relevance for s-process nucleosynthesis of 205Tl, the most abundant 

thallium isotope (70%) in Nature, is that it becomes unstable at stellar temperatures, 

decaying to 205Pb by bound-state beta decay. This decay rate increases dramatically as 

temperature rises, and becomes equivalent to the 205Pb decay rate at a temperature of 

approx. T~1.6·108 K, which is quickly reached and surpassed during the recurrent TP.  

Therefore, the 205Tl stellar decay could contribute decisively to the 205Pb produced; 

actually, as pointed by Yokoi et al., it may be crucial to its survival. But if 205Tl is an 

important source of 205Pb through its decay, it can be deduced that changes in the 

abundance of 205Tl during s-process nucleosynthesis must affect the abundance of 205Pb. 

It is in this context that the 205Tl(n,γ) reaction rate becomes relevant, since it is the reaction 

that affects more sensibly the abundance of 205Tl during s-process nucleosynthesis. A 

decrease (increase) in this rate will yield an over (under)-production of 205Tl, which in 

turn will lead to an increase (decrease) in the amount of 205Pb produced by the decay of 
205Tl. 

In order to illustrate the astrophysical relevance of the proposed measurement, a NuGrid 

[NUGRID] post-processing nucleosynthesis network calculation was carried out to 

simulate the 205Pb/204Pb production ratio in a 3 solar mass star, for two different 

metallicities: half solar metallicity (Z=0.006) and very low metallicity (Z=1e-

4)[RITT17]. The calculation has been performed for a whole 13C pocket (H-burning shell) 

and the follow-up TP (He-burning intershell) episode. The whole MACS for 205Tl(n,γ) 

has been varied ±33%, which is a conservative estimate of the present uncertainties in 

this cross section (see section 2). The 205Pb/204Pb abundance ratio for the Z=0.006 model 

is shown in Fig. 2. The impact of the MACS variation on the abundance of the stellar 

envelope is not negligible. Changes of roughly -6% (MACS +33%) and +11% (MACS -

33%) to the 205Pb/204Pb ratio are obtained from the calculation for both stellar models. 

Finally, it is relevant to say that 205Tl has no excited levels at low energy, which could be 

populated under stellar conditions [RAU00] and, therefore, the laboratory measurement 

will directly provide the relevant MACS for a straight-forward astrophysical 

Figure 2. Variation of the 205Pb/204Pb abundance ratio in the stellar envelope as a function of time (cycles), 

for a 3𝑀⊙, Z=6e-3 star, for three different rates of the 205Tl(n,γ) reaction: the Kadonis reference rate (in 

blue), the reference rate multiplied by a 1.33 factor (in orange), and multiplied by a 0.66 factor (in green). 

 



interpretation, this is to say, without any need of so-called Stellar Enhancement 

Corrections [RAU00]. In addition, the 205Tl capture cross section has not been measured 

yet in any modern facility. The only experimental data available dates from the seventies 

and show discrepancies between the different measurements (see section 2). 

 

2.    Status of the data         

The examination of the literature and databases shows that the cross section for the 
205Tl(n,γ)206Tl reaction in the regions of astrophysical interest remains still uncertain. 

TOF measurements of natural thallium isotopes have been carried out by Macklin et al at 

ORNL in 1976 [MAC76] and by Couture et al at LANSCE in 2007 [COU07]. For the 

particular case of 205Tl(n,γ) reaction, just partial or preliminary results were reported, but 

the final results of both experiments were never published. Indeed, for the ORNL 

experiment, the accessible data is an EXFOR entry (13734.003) with only resonance 

energies and resonance kernels. Resonance parameters are not provided and the 

uncertainties are not quoted or evaluated in EXFOR. The available experimental 

information makes difficult the proper assessment of the astrophysical aspects concerning 

the 205Tl(n,γ)206Tl reaction. The examination of the ENDF/B-VII.1 evaluated data for this 

reaction suggest that the evaluation in the region of astrophysical interest (~1 – 100 keV) 

is based on the ORNL data from 1976 [MAC76]. It is worth mentioning that the CS 

measurements carried out at ORNL in the seventies were later corrected for a common 

systematic error (~5-10%) found in the data processing routines. An effective correction 

factor (0.9507) was only provided for the 203Tl(n,γ) measurement [MAC81], and thus the 

case of 205Tl(n,γ) CS remains unclear. The inspection of the JEFF3.2 evaluation shows 

notable differences with respect to ENDF/B-VII.1 (see Fig. 3). In fact, for neutron 

energies up to 30 keV, there are more than ten resonances in ENDF/B-VII.1 which are 

not present in the JEFF3.2 evaluation (which is based on the TENDL evaluation), thus 

affecting the calculation of the relevant input for nucleosynthesis calculations (MACS) in 

this region. 

In the KADONIS database (v1.0) the recommended total MACS value at 30 keV is 

52.6±3.9 mb. This value is based on the ENDF/B-VII.1 evaluation and assuming a 7.4% 

uncertainty as in [MAC76]. Two additional MACS values at 24 keV from activation 

measurements are also listed in KADONIS. Both measurements present notable 

differences: 30±8 mb by Hasan et al [HAS68] and 50±4 mb by Kononov et al [KST58]. 

Finally, the recommended uncertainties for the MACS values increase as the temperature 

departs from 25 keV, being as much as 30% at 5 keV. The lack of experimental data for 

reliable MACS calculation below 10 keV is important since the 13C pocket mechanism of 

s-process nucleosynthesis starts operating at approximately T~108 K (kT=8.6 keV). 

Figure 3. Comparison between ENDF/B-VII.1 and JEFF 3.2 evaluations for the 205Tl(n,γ) cross section, 

which illustrates the present mismatch between evaluations owing to the scarcity of experimental data. 



3.     Experimental set-up and target 

For this measurement we plan to use the current capture setup at the EAR1, based on 4 

C6D6 detectors, which are made of carbon fiber for achieving a very low neutron 

sensibility [PM13]. EAR1 offers the best neutron energy resolution, and a high neutron 

flux. Concerning the sample, our aim it is to produce a cylindrical sample of 4 g of 205Tl 

(99% pure) oxide, with a diameter of 30 mm. Such dimensions would maximize the 

sample mass while keeping the thickness in reasonable terms. At the same time it will 

ensure that the fraction of the neutron beam intercepting the sample is the largest, thus 

making the best possible use of the allocated beam time. 

 

4.    General remarks and beam time request 

It is expected that the new measurement of the 205Tl(n,γ) cross section proposed here, 

which relies on the well-known value of the 197Au(n,γ) cross section, will solve the 

present ambiguity of the 205Tl(n,γ) MACS from 5 to 30 keV.  This will be achieved 

measuring accurately the cross section in the region of astrophysical interest from 1 to 

100 keV, which, in the case of 205Tl, coincides with the range of the Resolved Resonance 

Region (RRR). 

The expected counting rate for the whole experiment, with 3000 bins per decade, is shown 

in figure 3 for the whole energy range and for the 20 to 80 keV region in detail. The 

background corresponds to a recent August 2017 measurement (“empty frame”). The 

total efficiency of the 4 detectors is estimated to be 15%. 

 

 

Figure 4. Expected counts in the 4 C6D6 detectors for the 205Tl(n,γ) measurement with,, with zooms in 

the 20 to 80 keV range and in the 29-30 keV range, respectively 



Summary of requested protons 

The overall beam time request is summarized in Table 1. The usual gold, for 

normalization purposes, and background measurements are all included. 

 

Table 1. Summary of beam time request 

The 2·1018 protons allocated to the 205Tl sample should allow to reduce the statistical 

uncertainty in the 30 keV resonances to around 2.5% (figure 4, detail), which we assume 

will be already below the sum of systematic uncertainties. 
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