
3 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 9 . 0 0 © 2 0 0 3 I E E E

All the methodologies that have been
proposed recently for choosing software
packages compare user requirements with
the packages’ capabilities.3–5 There are
different types of requirements, such as
managerial, political, and, of course, quality
requirements.

Quality requirements are often difficult
to check. This is partly due to their nature,
but there is another reason that can be mit-
igated, namely the lack of structured and
widespread descriptions of package do-
mains (that is, categories of software pack-
ages such as ERP systems, graphical or data
structure libraries, and so on). This absence
hampers the accurate description of soft-
ware packages and the precise statement of
quality requirements, and consequently
overall package selection and confidence in
the result of the process.

Our methodology for building struc-
tured quality models helps solve this draw-
back. (See the “Related Work” sidebar for
information about other approaches.) A
structured quality model for a given pack-
age domain provides a taxonomy of soft-

ware quality features, and metrics for com-
puting their value. Our approach relies on
the International Organization for Stan-
dardization and International Electrotech-
nical Commission 9126-1 quality stan-
dard,6 which we selected for the following
reasons:

� Due to its generic nature, the standard
fixes some high-level quality concepts, and
therefore quality models can be tailored to
specific package domains. This is a crucial
point, because quality models can dramat-
ically differ from one domain to another.

� The standard lets us create hierarchies of
quality features, which are essential for
building structured quality models.

� The standard is widespread.

After we build the quality model, we can
state the domain requirements as well as
package features with respect to the model.
We can then use the framework to support
negotiation between user requirements and
product capabilities during software pack-
age selection (see Figure 1).

focus
Using Quality Models in
Software Package
Selection

Xavier Franch and Juan Pablo Carvallo, Universitat Politècnica de Catalunya

This methodology
drives the
construction of
domain-specific
quality models in
terms of the ISO/IEC
9126-1 quality
standard. These
models can be used
to describe the
quality factors of
software packages
uniformly and
comprehensively
and to state
requirements when
selecting a software
package in a
particular context.

T
he growing importance of commercial off-the-shelf software
packages1 requires adapting some software engineering prac-
tices, such as requirements elicitation and testing, to this emer-
gent framework. Also, some specific new activities arise, among

which selection of software packages plays a prominent role.2

requirements engineering

The ISO/IEC software quality
standards

Among the ISO and ISO/IEC standards re-
lated to software quality are the families of
9126 and 14598 for software product quality
and evaluation. These standards can be used
in conjunction with others concerning the
software life cycle (ISO/IEC 12207), process
assessment (ISO/IEC 15504), and quality as-
surance processes (ISO 9001).

ISO/IEC 9126-1 specifically addresses
quality model definition and its use as a frame-
work for software evaluation. A 9126-1 qual-
ity model is defined by means of general soft-
ware characteristics, which are further refined
into subcharacteristics, which in turn are de-
composed into attributes, yielding a multilevel
hierarchy. At the bottom of the hierarchy are
measurable software attributes, whose values
are computed using some metric. Throughout
this article, we refer to characteristics, sub-
characteristics, and attributes as quality enti-
ties, and we define quality requirements as re-
strictions over the quality model.

Table 1 shows the six quality characteristics
defined in the 9126-1 quality standard and
their decomposition into subcharacteristics.

Building ISO/IEC 9126-1 quality
models

Our methodology comprises six steps (see
Figure 2). Also, we consider a preliminary ac-
tivity (Step 0) for analyzing the package do-
main. Although we present these steps as se-
quential, they can be intertwined or repeated.

Step 0: Defining the domain
First, you must carefully examine and de-

scribe the domain of interest, with the help of
experts. To describe the domain, we recom-
mend using conceptual modeling to keep track
of relevant concepts.

One of the biggest problems is the lack of
standard terminology among a domain’s soft-
ware packages. Different vendors refer to the
same concept by different names, or even
worse, the same name might denote different
concepts in different packages. Discovering all
these conflicts during this preliminary step is
essential to avoid semantic mismatches
throughout the software selection process.

The e-learning domain provides more than
one example. Consider the term virtual class-
room. Some packages use this term and course
as synonymous, referring to the contents of

particular subjects. Other packages use differ-
ent semantics for virtual classroom—meaning,
for instance, the interface (such as the base

J a n u a r y / F e b r u a r y 2 0 0 3 I E E E S O F T W A R E 3 5

Package

Package
description

Package

ISO/IEC-based
quality model

Knowledge of
the domain

Quality
requirement

Package
description

Formalized
requirement

Negotiation
during

software
package

procurement

Figure 1. Using a quality model in software procurement.

Table 1
ISO/IEC 9126-1 characteristics

and subcharacteristics
Characteristics Subcharacteristics

Functionality Suitability
Accuracy
Interoperability
Security
Functionality compliance

Reliability Maturity
Fault tolerance
Recoverability
Reliability compliance

Usability Understandability
Learnability
Operability
Attractiveness
Usability compliance

Efficiency Time behavior
Resource utilization
Efficiency compliance

Maintainability Analyzability
Changeability
Stability
Testability
Maintainability compliance

Portability Adaptability
Installability
Coexistence
Replaceability
Portability compliance

URL where the contents of a course are to be
placed) or the list of tasks to be performed
during the course.

Step 1: Determining quality subcharacteristics
The decomposition of characteristics into

subcharacteristics that appear in the standard
is quite reasonable and should be used unless
good reasons for not doing so come out dur-
ing domain analysis. In these cases, you might
add new subcharacteristics specific to the do-
main, refine the definition of existing ones, or
even eliminate some. For example,

� In the domain of ERP systems, you might
add Functionality subcharacteristics for
tracking the company areas covered (such
as finance or staff).

� In the domain of data structure libraries,
you might refine the Time Behavior sub-
characteristic as “execution time of the
methods provided by the classes inside
the library.”

� In domains that are purely pieces of soft-
ware to be integrated in a system, you
might omit the Attractiveness subcharac-
teristic as defined in the standard (which
keeps track of quality attributes such as
color use or graphical appearance) be-
cause it does not apply.

Step 2: Defining a hierarchy of
subcharacteristics

Typically, you can further decompose sub-

characteristics with respect to some factors,
yielding a hierarchy.

A frequent situation appears in the Suit-
ability subcharacteristic. Successful software
packages tend to include applications that
were not originally related to them. A usual
reason for this is that product suppliers often
try to include features to differentiate their
products from their competitors’. These added
applications are usually not shipped in the
original packages; they are offered separately,
as extensions. But, they often are referenced as
essential to the functions the package provides
(although additional software is often re-
quired). As a result, we can split the Suitabil-
ity characteristic into two subcharacteristics,
Basic Suitability and Added Suitability, keep-
ing track of each inside the model but in a
clearly separated way.

Step 3: Decomposing subcharacteristics into
attributes

Quality subcharacteristics provide a com-
prehensible abstract view of the quality model.
But next, we must decompose these abstract
concepts into more concrete ones, the quality
attributes. An attribute keeps track of a par-
ticular observable feature of the packages in
the domain. For example, attributes in the
Learnability subcharacteristic might include
the Quality of the Product’s Graphical Inter-
face, the Number of Languages Supported,
and the Quality of the Available Documenta-
tion. We must define attributes precisely to

3 6 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Step 1

Step 2

Step 3

Step 4

Step 6 ✘ ✘✔✔ ✔ ✔

Step 5

Characteristics

ISO/IEC quality model

Hierarchy of
subcharacteristics

Decomposition of
derived attributes

Relationships among
quality entities(+) (+)

1/2
1/2

(–)

Metrics

Subcharacteristics
ISO/IEC

Added

Modified

Deleted

Attributes

Basic Derived

f f ✘ f fa
ab a

cba
cb

Figure 2. Our six-step methodology.

clarify the underlying quality concepts that
they represent and to link them with the ap-
propriate subcharacteristics.

Because we focus on the framework of
COTS package selection and package suppli-
ers rarely give access to the package code, we
are interested in external rather than internal
attributes.

As the standard itself mentions, it is not pos-
sible from a practical point of view to measure
all the subcharacteristics for all parts of a large
software product, but it is certainly feasible to
create a complete list with the most relevant
ones. Concepts are the key elements when se-
lecting quality attributes; the goal is to define a
general framework for many applications of
the same brand, not for a particular product.

When you decompose, some attributes are
suited for more than one subcharacteristic.
For instance, an attribute for the Fault Toler-
ance subcharacteristic in the domain of data
structure libraries might be the Type of Error
Recovery Mechanism. But in fact, this attrib-
ute might also be a constituent of the Testabil-
ity subcharacteristic (a powerful error recov-
ery mechanism makes testing the library
easier). Therefore, we do not force attributes
to appear in a single subcharacteristic; they
can be part of many of them. The ISO/IEC
standard allows this situation to occur.

Step 4: Decomposing derived attributes into
basic ones

Some of the attributes emerging in Step 3
(for example, the Number of Languages Sup-
ported) can be directly measurable given a
particular product, but others might still be
abstract enough to require further decompo-
sition. This is the case with the Quality of
Graphical Interface attribute mentioned ear-
lier; quality might depend on such factors as
user friendliness, depth of the longest path in
a browsing process, and types of interface
supported. Therefore, we distinguish between
derived and basic attributes. Derived attri-
butes should be decomposed until they are
completely expressed in terms of basic ones.

We can completely define derived attrib-
utes in terms of their components. However,
in some situations, giving a concrete defini-
tion of the quality interface attribute could be
considered harmful, because it would force
us always to use the same definition without
considering the requirements of a particular
context.7 Sometimes, requirements give more
importance to the user friendliness factor (for
example, for nonskilled users), sometimes to
its type (for interoperability purposes), and
so on. In this case, the definition of the de-
rived attribute is delayed until a particular se-
lection process takes place. The first case of

J a n u a r y / F e b r u a r y 2 0 0 3 I E E E S O F T W A R E 3 7

Other authors have proposed quality models as a basis for
software evaluation, but most of these proposals deal with
measuring custom software instead of selecting software pack-
ages. As a result, they focus mainly on internal attributes and
their implications instead of external attributes, as is our aim.

However, similarities exist. Geoff Dromey suggests the use of
ISO/IEC 9126 standards, although he does not require it.1 In
fact, he uses different models for parts of his proposal, making
model reusability more difficult. There are two other fundamen-
tal differences between our and Dromey’s work: he does not in-
clude metrics as part of the model, and his concept of quality is
context-free, whereas we introduce the idea of context-depend-
ent quality attributes as a means to measure quality, taking into
account the package’s context of use.

The Squid method focuses on quality for in-house software.2

The aim of Squid is wider than our approach; it covers quality
planning, control, and evaluation as well as modeling. Con-
cerning quality models, Squid is closer to our proposal than is
Dromey’s: it takes external attributes as a primary concern
(mapping external attributes onto internal ones to be observed
in the product), it considers quality models to be context-de-
pendent, and both methods search for reusability by identifying
robust attributes. On the other hand, Squid does not propose
any particular procedure for building the quality model, nor

does it require the ISO/IEC standards. Perhaps the most signifi-
cant difference is that Squid does not distinguish clearly be-
tween the quality model itself and its context of use (for exam-
ple, the model includes upper target values for attributes),
compromising model reuse in other contexts.

Our approach is also related to goal-oriented modeling.3

Typical goal-oriented analysis focuses on modeling a given, on-
going software system, making explicit the participating agents
and the goals and their decomposition. In contrast, our quality
model approach is not bound to any particular system. It is as
context-free as possible, without any assumptions about the
model’s context of use. Nevertheless, we are currently aiming at
using goal-oriented models for modeling the rationale behind the
construction process.4

References
1. R.G. Dromey, “Cornering the Chimera,” IEEE Software, vol. 20, no. 1,

Jan./Feb. 1996, pp. 33–43.
2. J. Bøegh et al., “A Method for Software Quality Planning, Control, and

Evaluation,” IEEE Software, vol. 23, no. 2, Mar./Apr. 1999, pp. 69–77.
3. E. Yu, “Towards Modeling and Reasoning Support for Early-Phase Require-

ments Engineering,” Proc. 3rd IEEE Int’l Symp. Requirements Eng. (ISRE),
IEEE CS Press, Los Alamitos, Calif., 1997, pp. 226–235.

4. B. Kitchenham and S.L. Pfleeger, “Software Quality: The Elusive Target,”
IEEE Software, vol. 20, no. 1, Jan./Feb. 1996, pp. 12–21.

Related Work

derived attributes is context free, the second
is context dependent.

Step 5: Stating relationships between quality
entities

To obtain a really complete quality model,
you also must explicitly state the relation-
ships between quality entities. The model be-
comes more exhaustive, and, as an additional
benefit, the implications of quality user re-
quirements might become clearer.

Given two quality entities A and B, we
can identify various types of relationships:

� Collaboration. Growing A implies growing
B. For instance, the Security subcharacteris-
tic collaborates with the Maturity one.

� Damage. Growing A implies decreasing
B. For instance, the Type of Error Recov-
ery Mechanism attribute collides with the
Time Behavior subcharacteristic: the
more powerful the mechanism is, the
more slowly the program runs.

� Dependency. Some values of A require B
fulfilling some conditions. For instance,
having an exception-based error recovery
mechanism requires that the program-
ming language offer exception constructs.

In addition, you might build more elabo-
rated types of these relationships.8

Step 6: Determining metrics for attributes
You must not only identify the attributes

but also select metrics for all the basic attrib-
utes as well as metrics for those derived con-
text-free attributes. You can use the general
theory of metrics for this purpose. Also,
ISO/IEC is currently working on writing the
9126-2 external metrics standard.9

Metrics for basic attributes are quantita-
tive—for example, existence of some kind of
data encryption, depth of the longest path in a
browsing process, supported protocols for
data transmission, and so on. Derived context-
free attributes might be either quantitative or
qualitative, with explicit formulas computing
their value from their component attributes.

Some attributes require a more complex
representation, yielding to structured metrics.
Examples are sets (for example, a set of labels
for the languages supported by the interface)
and functions. Functions are especially useful
for attributes that depend on the underlying
platform. For instance, many attributes re-

lated to the Time Behavior subcharacteristic
might fall into this category.

Metrics for some quality attributes can be
difficult to define. However, as the standard
states, having rigorous metrics is the only way
to obtain a quality model useful for doing re-
liable comparisons.

A case study: Mail servers
As electronic mail services have grown in

importance, companies are increasingly using
them to improve inside and outside communi-
cation and coordination. An overwhelming
number of mail-related products are available,
and organizations face the problem of choos-
ing among them the ones that best fit their
needs. For some companies, an inappropriate
selection would compromise their success. Se-
lection relies on manufacturing documenta-
tion, public evaluation reports, others’ experi-
ence, and hands-on experimentation. These
information sources can be inaccurate, not
fully trustable, and costly. For all these rea-
sons, having a good quality model is especially
useful in the domain of mail server packages,
so we will use it to illustrate our general
methodology (we will skip the preliminary
step). The model is available at www.lsi.upc.
es/dept/techreps/html/R02-36.html.

Step 1: Determining quality subcharacteristics
The subcharacteristics suggested in the

9126-1 standard are complete enough to be
used as a starting point. We have adopted
them with some minor modifications in
their definition.

Step 2: Defining a hierarchy of
subcharacteristics

According to the criteria mentioned earlier,
we split the Suitability subcharacteristic into
Mail Server Suitability and Additional Suit-
ability subcharacteristics. Some examples of
applications included in mail servers are chat,
instant messaging, whiteboarding, videocon-
ference, and workflow project management
tools.

You might be tempted to apply this decom-
position principle as often as possible, but you
must do so carefully. Consider the following
situation. In some contexts, you could con-
sider the attributes categorized under the Op-
erability subcharacteristic of Usability from
two different viewpoints: the general user’s
and the administrator’s. Because this is the

To obtain a
really complete
quality model,
you also must

explicitly
state the

relationships
between quality

entities.

3 8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

case for mail server products, we considered
whether it was convenient to divide this sub-
characteristic into two. But we observed that
general user operability on mail servers de-
pends on the mail client and the privileges
given by the administrator. We did not find at-
tributes related to clients that were independ-
ent of those related to administrators, so we
decided to keep only one subcharacteristic.

Step 3: Decomposing subcharacteristics into
attributes

We had to research the domain exten-
sively to identify the attributes; then, we had
to assign them to subcharacteristics. Con-
trary to what you might expect, this process
is neither simple nor mechanical.10 Here are
some of the problems you can run into:

� The number of elements can get very
high, making handling them difficult.

� In some cases, the values of attributes can
be confused with the attributes themselves.

� Sometimes attributes represent more than
one concept and must be split. For exam-
ple, we finally split the former Average
Response Time attribute into two, the
Average Response Time itself and Mes-
sage Throughput.

� As mentioned earlier, some attributes are
suited for more than one characteristic.
For instance, Message Tracking and Mon-
itoring might be seen as a functional at-
tribute that grants Accuracy, or as an ana-
lyzability attribute of the Maintenance
characteristic.

Hands-on experimentation is necessary to
obtain really independent information. For in-

stance, the documentation of almost every
product mentioned attributes such as adminis-
trative or expert analysis tools but gave very
vague descriptions of them. We had some spe-
cific hands-on experience to better understand
these concepts. These experiences turned out
to be valuable to validate some results ob-
tained in this step.

Step 4: Decomposing derived attributes into
basic ones

We have identified several decomposable
attributes. For instance, we decomposed the
Resource Administration attribute (character-
istic Usability, subcharacteristic Operability)
into the following basic attributes: Maximum
Storage Time of Mail Messages, Maximum
Time of Life for Inactive Accounts, Mailbox
Quotes, Mail File Sizes, and Management of
Groups of Servers.

Step 5: Stating relationships between quality
entities

With about 160 attributes, it is quite
natural that there are a lot of relationships
between them. Table 2 presents some de-
pendencies, collaborations, and damages—
the attributes in the rows depend on, col-
laborate with, or collide with attributes in
the columns. For instance,

� If you select a certification system, you
must also use an encryption algorithm, be-
cause it is needed to grant confidentiality.

� The SMTP (Simple Mail Transfer Proto-
col) requires the MIME (Multipurpose
Internet Mail Extensions) Support attrib-
ute to be true when sending multimedia
attachments.

J a n u a r y / F e b r u a r y 2 0 0 3 I E E E S O F T W A R E 3 9

Table 2
Some relationships among quality attributes

Characteristics Functionality Efficiency

Subcharacteristics Security Time behavior

Attributes Secure email protocols Average
response time

Functionality Security Certification system Depend on Collide with
Encryption algorithm Depend on Collide with

Reliability Recoverability Online incremental backup Collide with
Single-mailbox backup and recovery Collaborate with
Online restore Collide with
Dynamic log rotation Collide with
Event logging Collide with

Efficiency Resource behavior Concurrent mail users per server Collide with
Number of active Web mail clients Collide with
Management of quotas on message and mail file size Collaborate with
Single copy store Collaborate with

Step 6: Determining metrics for attributes

We determined metrics for all the basic and
context-free attributes in the model, following
the guidelines given earlier. We can evaluate
some attributes by simple observation, such as
Maximum Account Size and Default Folders
Provided. Others are difficult to define. For
example, Thwarting Spammers and Handling
Bulk Junk Mail depend on the support of fil-
ters for incoming messages. Average Response
Time and Message Throughput depend on
hardware platform as well as other attributes
such as Number of Concurrent Users or Mes-
sage Sizes. In these cases, we must define the
metrics as functions.

Package and requirement descriptions
Once we build the quality model for a

package domain, we can describe packages in
this domain and express the quality require-
ments for modeling a company’s package
procurement needs.

When we try to describe package quality
characteristics, it turns out to be very difficult
to find complete and reliable information on
them. Manufacturers tend to give a partial
view of their products. Either they put so
much emphasis on their product’s benefits,
without mentioning weaknesses, or they give
only part of the truth, making the product
seem capable of more than it can really do.
Some third-party reports look independent,
but they have been refuted for the parties in-
volved. Other noncommercial articles com-
pare features but are often based on the eval-
uators’ limited knowledge of the tools and
their particular tastes, more than on serious
technical tests.

The quality model can be used for describ-
ing quality requirements in a structured man-
ner. In the mail server domain, we have intro-
duced complete sets of quality requirements
that have appeared in real mail server selec-

tion processes with very different characteris-
tics (ranging from a public institution serving
50,000 people to a small software consultant
and Internet service provider company).

Table 3 presents some requirements that il-
lustrate typical situations we found when ex-
pressing requirements in terms of the quality
model. Requirements such as 1 or 2 can be
directly mapped into a single attribute of the
model. The only difference is that Require-
ment 2 demands expert assessment to do the
mapping from the expression “most com-
monly used certification standard” to a con-
crete value of the corresponding attribute,
namely “X.509.”

Requirements 3 and 4 are too general
(what do “other applications” and “other
risks” mean?). A more detailed specification
is necessary to better classify them.

Requirement 5 either requires or implies a
mixture of functionalities, which involve sev-
eral attributes. Although we might need fur-
ther feedback to better classify this kind of re-
quirement, we succeeded in classifying this
particular one.

Some requirements were originally ex-
pressed incorrectly but somehow were under-
standable. This was the case with Require-
ment 6, which was not accurate because the
one-minute limit for messages without attach-
ments could be unfeasible when they include
a lot of data inline (for example, annual com-
pany reports). So, we reformulated it using
the attributes’ average response time and
throughput, resulting in a requirement that
could be satisfied.

Once you have incorporated all the re-
quirements for a particular company into the
model (after completing, discarding, and re-
formulating them), you can compare them
extensively with respect to available package
descriptions. This lets you detect differences
between products as well as determine to
what extent they cover the expressed needs,
thereby facilitating the package procurement
process. Once you have expressed all the re-
quirements using the model, we recommend
gathering feedback to refine and extend
them.

Reliable processing of quality require-
ments demands a proper quality
model to be used as a reference, espe-

cially in the context of software package se-

4 0 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

Table 3
Example quality requirements

1 Spanish language support
2 Support for the most commonly used certification standard
3 Support for accessing the server from other applications
4 Protection against viruses and any other risks
5 Mail delivery notifications, possibility of configuring

parameters such as maximum number of delivery retries
and time between them

6 Transmission time less than 1 minute for messages without attachments, and no
more than 5 minutes per Mbyte for those with attachments

lection. Although building a quality model is
complex,10,11 our methodology shows many
advantages over ad hoc package evaluation:

� Confidence. Uniform, vendor-independ-
ent descriptions of numerous software
packages facilitate package comparison.
Also, rewriting quality requirements in
terms of a model’s concepts helps us dis-
cover ambiguities and incompleteness
that, once solved, let us more easily com-
pare requirements with package descrip-
tions. Lastly, quality models obtained
with our methodology can be expressed
in a component description language,12

making tool support for package selec-
tion feasible.

� Productivity. Consider the amount of re-
peated work that takes place in the mail
server domain. Many organizations have
faced exactly the same problems and have
repeated the same processes, wasting hu-
man resources and money. The existence
of a quality model of reference for this do-
main simplifies mail server procurement,
once an organization’s quality require-
ments have been expressed in terms of the
reference model.

� Experience and reusability. Repeatedly
using the same methodology and quality
standard increases our model-building
skills. Also, reusing parts of existing
models in new domains becomes feasible,
both for high-level subcharacteristics and
for low-level attributes. We have con-
firmed this during the different experi-
ences we have had in the domains of mail
servers, ERP systems, e-learning tools,
some component libraries, and so on.

Our work is compliant with the 9126-1
standard; we will aim at 9126-2 when that
version is final. Also, our proposal can be
used to support the evaluation and acquisi-
tion process defined in the 14598 standard,
namely in the steps “Establish evaluation re-
quirements” and “Specify the evaluation.”

Acknowledgments
This work is partially supported by the Spanish

Ministry of Science and Technology under contract
TIC2001-2165. Juan P. Carvallo’s work has been sup-
ported by an Agencia Española de Cooperación Inter-
nacional (AECI) grant.

References
1. Proc. 1st Int’l Conf. COTS-Based Software Systems

(ICCBSS), Lecture Notes in Computer Science, no.
2255, Springer-Verlag, Berlin, 2002.

2. A. Finkelstein, G. Spanoudakis, and M. Ryan, “Soft-
ware Package Requirements and Procurement,” Proc.
8th IEEE Int’l Workshop Software Specification & De-
sign (IWSSD), IEEE CS Press, Los Alamitos, Calif.,
1996, pp. 141–145.

3. J. Kontyo. “A Case Study in Applying a Systematic
Method for COTS Selection,” Proc. 18th IEEE Int’l
Conf. Software Eng., IEEE Computer Soc. Press, Los
Alamitos, Calif., 1996, pp. 201–209.

4. N. Maiden and C. Ncube, “Acquiring Requirements for
COTS Selection,” IEEE Software, vol. 15, no. 2,
Mar./Apr. 1998, pp. 46–56.

5. X. Burgués et al., “Combined Selection of COTS Com-
ponents,” Proc. 1st Int’l Conf. COTS-Based Software
Systems (ICCBSS), Lecture Notes in Computer Science
no. 2255, Springer-Verlag, Berlin, 2002, pp. 54–64.

6. ISO/IEC Standard 9126-1 Software Engineering—
Product Quality—Part 1: Quality Model, ISO Copy-
right Office, Geneva, June 2001.

7. J. Bøegh et al., “A Method for Software Quality Plan-
ning, Control, and Evaluation,” IEEE Software, vol.
23, no. 2, Mar./Apr. 1999, pp. 69–77.

8. L. Chung et al., Non-functional Requirements in Soft-
ware Engineering, Kluwer Academic Publishers, Dor-
drecht, Netherlands, 2000.

9. N.E. Fenton and S.L. Pfleeger, Software Metrics: A Rig-
orous and Practical Approach, 2nd ed., Int’l Thomson
Computer Press, London, 1998.

10. R.G. Dromey, “Cornering the Chimera,” IEEE Soft-
ware, vol. 20, no. 1, Jan./Feb. 1996, pp. 33–43.

11. B. Kitchenham and S.L. Pfleeger. “Software Quality:
The Elusive Target,” IEEE Software, vol. 20, no. 1,
Jan./Feb. 1996, pp. 12–21.

12. X. Franch. “Systematic Formulation of Non-functional
Characteristics of Software,” Proc. 3rd IEEE Int’l
Conf. Requirements Eng. (ICRE), IEEE CS Press, Los
Alamitos, Calif., 1998, pp. 174–181.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

J a n u a r y / F e b r u a r y 2 0 0 3 I E E E S O F T W A R E 4 1

About the Authors

Xavier Franch is an associate professor in the Software Department at the Universitat
Politècnica de Catalunya in Barcelona, Spain. His interests are COTS component selection and
evaluation, software quality, software process modeling and OO component libraries. He received
his BSc and PhD in Informatics from the UPC. Contact him at Universitat Politècnica de Catalunya,
c/ Jordi Girona 1-3 (Campus Nord, C6), E-08034 Barcelona, Spain; franch@lsi.upc.es; www.lsi.
upc.es/~gessi.

Juan Pablo Carvallo is a doctoral candidate at the Universitat Politècnica de
Catalunya. His interests are COTS-based systems development and COTS selection, evaluation,
and certification. He received his degree in computer science from the Universidad de Cuenca,
Ecuador. Contact him at Universitat Politècnica de Catalunya, c/ Jordi Girona 1-3 (Campus
Nord, C6), E-08034 Barcelona, Spain; carvallo@lsi.upc.es.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

