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1 Introduction

The relationship between dynamical properties of discrete group actions on
metric spaces and rigidity theorems has a rich history: a prototypical result
due to Bowen [Bow] states that the Hausdorff dimension of the limit set of
a quasi-Fuchsian surface group Γ acting on hyperbolic 3-space is equal to 1
if and only if Γ restricts to an isometric action on hyperbolic 2-space (Γ is
Fuchsian).

A generalization of this result to surface group actions on CAT(−1) metric
spaces was originally conjectured by Bourdon [Bou]. It was later verified by
Bonk and Kleiner [BK] where they prove a more general statement about
quasi-convex actions.

In the special case when the space is a smooth Riemannian manifold
with pinched negative sectional curvature, a different proof of this result was
found by Deroin and Tholozan [DT] and Sanders [San] utilizing equivariant
harmonic maps and an inequality which compared curvature quantities of
the harmonic map with the Hausdorff dimension of the limit set. Here, we
extend these techniques to the general CAT(−1) setting using the harmonic
map theory which has been developed by Koraveer-Schoen [KS1, KS2] and
by Mese [Mes] to give a new proof of the original conjecture of Bourdon.

The main theorem of this paper is the following:

Theorem 1 Given a convex cocompact action ρ : π1(S) → Isom(X) on a
CAT(−1) metric space X by the fundamental group of a closed, connected
oriented surface S with genus > 1 such that dimH(Λ) = 1, there exists a
hyperbolic metric h on the universal cover S̃ of S such that the unique ρ-
equivariant harmonic map ũ : H2 = (S̃, h) → X is a totally geodesic map
and an isometric embedding.

In the above theorem, Λ is the limit set of this action and the Hausdorff
dimension is computed with respect to the distance dp(ξ, η) = e−(ξ|η)p where
p ∈ X and ξ, η ∈ ∂∞X. Finally, the expression (ξ, η)p is the Gromov product.

In the course of proving Theorem 1, we also prove the following.

Theorem 2 Given a convex cocompact action ρ : π1(S) → Isom(X) on a
CAT(−1) metric space X by the fundamental group of a closed, connected
oriented surface S with genus > 1, there exists a hyperbolic metric h on the
universal cover S̃ of S and a contracting ρ-equivariant conformal harmonic
map ũ : H2 = (S̃, h) → X. It is strictly contracting unless ũ is totally
geodesic and an isometric embedding of H2.
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In particular, Theorem 2 asserts that every representation ρ of a closed sur-
face with genus > 1 is dominated by a Fuchsian representation. As noted by
Deroin and Tholozan, the existence of a contracting map has some interesting
consequences [DT].

In the Riemannian setting, Theorem 1 and Theorem 2 were proved by
Deroin and Tholozan. Sanders [San] used a slightly different approach to
prove Theorem 1. In the CAT(−1) setting, Mese [Mes] established the exis-
tence of a metric (of low regularity) on S for which the associated equivariant
harmonic map is conformal. Moreover, where it makes sense, this metric is
the pullback metric of the associated harmonic map. The main contribution
of this paper is a comparison result (see Lemma 16) which allows us to trade
this irregular metric for a smooth metric in the same conformal class. Using
this smooth metric, we apply the maximum principle to prove Theorem 2
from which Theorem 1 follows. Theorem 1 immediately yields a new proof
of the conjecture of Bourdon [Bou]:

Corollary 3 A convex cocompact isometric action ρ : π1(S) → Isom(X)
on a CAT(−1) space X by the fundamental group of a closed, connected
oriented surface S with genus > 1 fixes a convex copy of H2 if and only if
dimH(Λ) = 1.

More generally, Theorem 2 implies the following

Corollary 4 If ρ : π1(S)→ Isom(X) is a convex cocompact isometric action
on a CAT(−1) space X by the fundamental group of a closed, connected
oriented surface S with genus > 1, then dimH(Λ) ≥ 1.

The paper is organized as follows. A brief preliminary section settles
notation and states the fundamental existence result for equivariant har-
monic maps of surfaces to CAT(−1) metric spaces. Section 3 establishes
the primary technical result alluded to in the introduction which replaces a
conformal metric of low regularity with a comparable smooth Riemannian
metric. Finally, Section 4 completes the proof of Theorem 1 and Theorem 2
from which Collorary 3 and Corollary 4 immediately follow.

Acknowledgements. The use of the maximum principle to prove our main
results has its origin in [DT]. The original version of this manuscript followed
the approach used by Sanders [San] instead. We thank the referee for pointing
out [DT] and the resulting simpler argument now used in this paper.
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2 Preliminaries

Throughout this paper, S denotes a closed, connected oriented surface of
genus > 1, S̃ its universal cover, and T the Teichmüller space of S. Further-
more, X denotes a CAT(−1) space, Isom(X) the group of isometries of X
and ρ : π1(S) → Isom(X) a representation. We will identify an element of
π1(S) as a deck transformation of S̃ and an element h ∈ T as an equivariant
hyperbolic metric on S̃ (via uniformization).

Definition 5 Given a representation ρ : π1(S) → Isom(X), a map ũ : S̃ →
X is said to be ρ-equivariant if

ũ(γx) = ρ(γ)ũ(x), ∀x ∈ S̃, γ ∈ π1(S).

Definition 6 A discrete subgroup Γ of Isom(X) is said to be convex co-
compact if there exists a geodesically convex, Γ-invariant subset of X upon
which Γ acts cocompactly. A representation ρ : π1(S)→ Isom(X) is said to
be convex cocompact if Γ = ρ(π1(S)) is convex cocompact.

Definition 7 Given a hyperbolic metric h ∈ T , the energy of a ρ-equivariant
map ũ : (S̃, h) = H2 → X is

Eũ
h =

∫
F

|∇ũ|2dh,

where F ⊂ H2 is a fundamental domain for the action of π1(S), |∇ũ|2 is the
energy density function of ũ as defined in [KS1], and dh is the volume form
associated with the metric h. Furthermore, we will denote

Eũ
h [U ] =

∫
U

|∇ũ|2dh

for any measurable set U ⊂ H.

Definition 8 Given a hyperbolic metric h ∈ T , a finite energy map ũ :
(S̃, h) = H2 → X is said to be harmonic if Eũ

h [Ω] ≤ E ṽ
h[Ω] for any bounded

Lipschitz domain Ω ⊂ S̃ and any finite energy map ṽ : Ω → X with same
boundary values as ũ.

Theorem 9 (cf. [KS1], [KS2]) Given a convex cocompact representation
ρ : π1(S) → X and a hyperbolic metric h ∈ T , there exists a unique ρ-
equivariant harmonic map ũ : (S̃, h) = H2 → X. Furthermore, ũ is locally
Lipschitz continuous.
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3 Conformal Harmonic Maps

Definition 10 Given a finite energy map ũ : Σ → X from a Riemann sur-
face, let π be the pullback inner product structure defined in [KS1] Theorem
2.3.2. If z = x+ iy is a local conformal coordinate on Σ and { ∂

∂x
, ∂
∂y
} are the

coordinate vector fields, we obtain the locally integrable functions∣∣∣∣∂ũ∂x
∣∣∣∣2 := π(

∂

∂x
,
∂

∂x
),

∣∣∣∣∂ũ∂y
∣∣∣∣2 := π(

∂

∂y
,
∂

∂y
)

and

<
∂ũ

∂x
,
∂ũ

∂y
>:= π(

∂

∂x
,
∂

∂y
).

Definition 11 A finite energy map ũ : Σ → X from a Riemann surface is
said to be conformal if∣∣∣∣∂ũ∂x

∣∣∣∣2 =

∣∣∣∣∂ũ∂y
∣∣∣∣2 and <

∂ũ

∂x
,
∂ũ

∂y
>= 0

where (x, y) are local conformal coordinates of Σ. The local conformal factor
of ũ is the locally integrable function

λ =

∣∣∣∣∂ũ∂x
∣∣∣∣2 .

The next result is well-known. When the target space is a Riemannian man-
ifold, it is due to Schoen and Yau (cf. [SY]). For the singular targets con-
sidered here, their argument goes through almost verbatim. See for exam-
ple [GW].

Proposition 12 Given a convex cocompact representation ρ : π1(S) →
Isom(X), there exists h ∈ T and a ρ-equivariant conformal harmonic map
ũ : H2 = (S̃, h)→ X.

The following theorem is a summary of the results contained in [Mes].

Theorem 13 ( [Mes]) Given a conformal harmonic map ũ : Σ → X from
a Riemann surface, the local conformal factor λ satisfies the following prop-
erties:
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(i) λ ∈ H1
loc(U),

(ii) log λ ∈ W 1,1
loc (U),

(iii) λ satisfies the weak differential inequality,∫
U

(4ϕ) log λ dxdy ≥ 2

∫
U

ϕλ dxdy, ∀ϕ ∈ C∞c (U), ϕ ≥ 0 (1)

where 4 is the Euclidean Laplacian in coordinates (x, y) and

(iv) The zero set of λ is of Hausdorff dimension zero; i.e.

dimH(D) = 0 where D = {z = (x, y) ∈ U : λ(z) = 0}.

In (iv), we let λ be the representative function in the L1-class defined every-
where by

λ(z0) = lim
r→0

1

πr2

∫
Dr(z0)

λ(z)dxdy.

Definition 14 Given a conformal harmonic map ũ : Σ→ X from a Riemann
surface, the pullback metric of ũ is the equivariant (possibly degenerate) two-
form G defined locally by

G = λ(dx2 + dy2) (2)

where λ is the local conformal factor of ũ.

The weak differential inequality (1) allows us to use mollification (i.e. con-
volution) to construct smooth approximating metrics of (2). Furthermore,
by mollifying with respect to a smooth radial function with compact support,
we preserve the property of having curvature ≥ 1 (which is true for (2) in
the weak sense by (1)). More precisely, the following statement is proven
is [Mes] Section 6:

Theorem 15 ( [Mes]) Let u : Σ → X be a conformal harmonic map from
a Riemann surface and λ be the local conformal factor in a coordinate neigh-
borhood U ⊂ Σ. If λσ = e(log λ)σ where (log λ)σ is a symmetric mollification
(i.e. convolution by a radially symmetric function with compact support in a
local coordinate) of log λ in a local coordinate neighborhood U , then

4 log λσ ≥ 2λσ

and
λσ ≥ λ.
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For the purposes of this paper, we need the following global analogue of
Theorem 15.

Lemma 16 Given a convex cocompact representation ρ : π1(S)→ Isom(X),
h ∈ T a hyperbolic metric, a ρ-equivariant conformal harmonic map ũ :
H2 = (S̃, h) → X and G defined by (2), there exists a smooth equivariant
conformally equivalent metric Gσ on S̃ satisfying the following properties:

(i) The Gaussian curvature Kσ of Gσ satisfies Kσ ≤ −1.

(ii) If Kσ = −1 at one point, then G = Gσ = h.

(iii) The metrics satisfy the inequality

G(V, V ) ≤ Gσ(V, V ), a.e. q ∈ S̃, ∀V ∈ TqS̃.

Proof. For κ > 0 to be chosen later (cf. (15) below), let g = κ−1h;
thus g is a metric on S̃ with constant Gaussian curvature −κ. Define the
ρ-invariant locally integrable function

f =
G

g
: S̃ → [0,∞). (3)

In order to construct a smooth metricGσ, we will use a convolution of log f by
a smooth radial function with compact support to define a smooth function
on S̃.

Let D = {(x, y) ∈ R2 : r =
√
x2 + y2 < 1} and consider the scaled

Poincaré disk
(D,ω(r)(dx2 + dy2))

where

ω(r) = κ−1 4

(1− r2)2
.

In particular,
4 logω = 2κω. (4)

Fix q ∈ S̃ and identify (S̃, g) to the scaled Poincaré disk with q corre-
sponding to the origin. For clarity, we will refer to the coordinates (x, y) as
the Poincaré coordinates centered at q. Fix σ > 0 and consider a smooth
radially symmetric function ϕσ with support contained in Dσ(0) := {(x, y) :
r < σ} ⊂ D and the measure dνq = ϕσ(r)dxdy on D supported in Dσ(0).
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Via the identification of S̃ to D, we can consider dνq as a measure defined on
S̃. Furthermore, by multiplying ϕσ by an appropriate constant if necessary,
we can assume that ∫

S̃

dνq(p) =

∫
Dσ(0)

ϕσ(r)dxdy = 1. (5)

If dg is the volume measure associated to the metric g, then we can write dg
in the Poincaré coordinates (x, y) centered at q as

dg = ω(r)dxdy.

Since
dνq
dg

=
ϕσ(r)

ω(r)

and the hyperbolic distance (i.e. the distance with respect to metric h) of
a point (x, y) from (0, 0) is dependent only on r, the above quotient is a
function dependent only on the distance from q with respect to the metric
g = κ−1h. In other words,

dνq(p) = ησ(dg(q, p))dg(p). (6)

Furthermore, since g is a scalar multiple of the hyperbolic metric, the function
ησ(dg(q, p)) has the following property: if we denote the Laplacian in g with
respect to variables q and p by4q

g and4p
g respectively, then for any (p0, q0) ∈

S̃ × S̃,
4q
gησ(dg(q, p))|(p,q)=(p0,q0) = 4p

gησ(dg(q, p))|(p,q)=(p0,q0). (7)

Indeed, if I is an isometry of the hyperbolic plane switching the points p0

and q0, then

4q
gησ(dg(q, p))|(p,q)=(p0,q0) = 4q

gησ(dg(Iq, Ip))|(p,q)=(p0,q0)

= 4q
gησ(dg(q, p))|(p,q)=(Ip0,Iq0)

= 4q
gησ(dg(q, p))|(p,q)=(q0,p0)

= 4p
gησ(dg(p, q))|(p,q)=(p0,q0)

= 4p
gησ(dg(q, p))|(p,q)=(p0,q0).

We define a smooth function fσ : S̃ → [0,∞) by setting

fσ(q) = exp

(∫
S̃

log f dνq

)
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and a smooth metric Gσ by setting

Gσ := fσg.

Since the metric g, the function f and the measure dνq are all ρ-invariant,
so is Gσ. Jensen’s inequality implies

fσ(q) = exp

(∫
S̃

log f(p) dνq(p)

)
≤
∫
S̃

f(p) dνq(p). (8)

In the Poincaré coordinates (x, y) centered at q ∈ S̃, we will write

G = λ(dx2 + dy2), λ = fω, (9)

Gσ = λσ(dx2 + dy2), λσ = fσω (10)

and the function p 7→ ησ(dg(p, q)) as η(r). With the above notation, we
compute in the Poincaré coordinates (x, y) centered at q to obtain∫

S̃

log f(x, y) 4η(r)dxdy + 2κ

=

∫
S̃

log λ(x, y) 4η(r)dxdy −
∫
S̃

logω(r) 4η(r)dxdy + 2κ (by (9))

=

∫
S̃

log λ(x, y) 4η(r)dxdy − 2κ

∫
S̃

η(r)ω(r)dxdy + 2κ (by (4))

=

∫
S̃

log λ(x, y) 4η(r)dxdy (by (5) and (6))

≥ 2

∫
S̃

λ(x, y)η(r)dxdy (by Theorem 13)

= 2

∫
S̃

f(x, y)η(r)ω(r)dxdy (by (9)).

Since

4p
gησ(dg(q, p))dg(p) =

1

ω(r)
4ησ(r)ω(r)dxdy = 4ησ(r)dxdy,

we conclude∫
S̃

log f(p) 4p
gησ(dg(q, p)) dg(p) + 2κ ≥ 2

∫
S̃

fησ(dg(q, p)) dg(p). (11)
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To obtain the Gaussian curvature of Gσ, we compute

1

ω(0, 0)
4 log λσ

∣∣∣
(0,0)

=
1

ω
4 log fσ

∣∣∣
(0,0)

+
1

ω
4 logω

∣∣∣
(0,0)

= 4q
g

(∫
S̃

log f(p) dνq(p)

)
+ 2κ

=

∫
S̃

log f(p) 4q
gησ(dg(q, p))dg(p) + 2κ

=

∫
S̃

log f(p) 4p
gησ(dg(q, p))dg(p) + 2κ (by (7))

≥ 2

∫
S̃

f(p)ησ(dg(q, p)) dg(p) (by (11))

= 2

∫
S̃

f(p) dνq(p) (by (6))

≥ 2fσ(0, 0). (by (8)). (12)

In other words,

Kσ(q) = − 1

2λσ(0, 0)
4 log λσ

∣∣∣
(0,0)
≤ −1

which proves (i).
The set E = {q ∈ S̃ : Kσ(q) = −1} is closed by the continuity of Kσ. We

now also prove E is open. Assume E is non-empty and let q ∈ E and identify
it with (0, 0) via the Poincaré coordinates centered at q. Since Kσ(q) = −1,
we must have equalities in the string of inequalities (12). In particular, we
have an equality in Jensen’s inequality (8) which implies that log f must be
a constant, say c in the support of ησ. Thus, λ = ecω in the support of ησ.
Furthermore,∫

S̃

log λ(x, y) 4η(r)dxdy = 2

∫
S̃

λ(x, y)η(x, y)dxdy

which then implies ec = κ. Plugging in f = κ in the definition (8) of fσ, we
obtain fσ = κ. In other words, G = Gσ = κω(dx2 + dy2) = h in the support
of ησ. Thus, the support of ησ is contained in E which proves E is open.
Since E is open and closed and non-empty by assumption, E = S̃. Since we
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have shown that G = Gσ = h in a neighborhood of every point in E, this
proves (ii).

We are left to prove (iii). For a non-negative ϕ ∈ C∞c (R2),

−
∫
S̃

∇ϕ · ∇ log f dxdy =

∫
S̃

(4ϕ) log f dxdy

=

∫
S̃

(4ϕ) log λ dxdy −
∫
S̃

(4ϕ) logω dxdy

≥ 2

∫
S̃

ϕ (λ− κω) dxdy,

where the last inequality follows from Theorem 13 and equation (4) after
integrating by parts.

For τ ∈ (0, σ], we apply the above inequality with a test function ϕ
which approximates the characteristic function of Bτ (0). More precisely, let
ϕ = ϕ(r) be a radially symmetric smooth function on Bτ (0), non-increasing
in r such that ϕ = 1 on Bτ−2ε(0) and ϕ = 0 on Bτ (0)\Bτ−ε(0). Letting ε→ 0,
we obtain∫

∂Bτ (0)

∂

∂r
log fds ≥ 2

∫
Bτ (0)

λ− κω dxdy for a.e. τ ∈ (0, σ]

where ds is the line element of ∂Br(0). Using polar coordinates (r, θ),

∂

∂r

(∫ 2π

0

log f(r, θ) dθ

)∣∣∣∣
r=τ

=

∫ 2π

0

∂

∂r
log f(r, θ)

∣∣∣∣
r=τ

dθ

=
1

τ

∫ 2π

0

∂

∂r
log f(r, θ)

∣∣∣∣
r=τ

τdθ

≥ 2

τ

∫ 2π

0

∫ τ

0

λ− κω rdrdθ.

Thus, for ρ, t ∈ (0, σ) and t < ρ,∫ 2π

0

log f(ρ, θ) dθ −
∫ 2π

0

log f(t, θ) dθ

=

∫ ρ

t

∂

∂r

(∫ 2π

0

log f(r, θ) dθ

)∣∣∣∣
r=τ

dτ

≥
∫ ρ

t

2

τ

∫
Bτ (0)

(λ− κω) dxdydτ.
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Multiply the above inequality by t and integrate with respect to t over interval
[0, s] where s < ρ to obtain

s2

2

∫ 2π

0

log f(ρ, θ) dθ −
∫
Bs(0)

log f(t, θ) dxdy

=

∫ s

0

t

∫ 2π

0

log f(r, θ) dθdt−
∫ s

0

∫ 2π

0

log f(t, θ) tdθdt

≥
∫ s

0

t

∫ ρ

t

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt.

Since we only need to prove the inequality of (iii) for a.e. q ∈ S̃, we can
assume without the loss of generality that q is a Lebesgue point for the
integrable function log λ. Thus dividing the above inequality by πs2 and
letting s→ 0, we obtain

1

2π

∫ 2π

0

log f(r, θ) dθ − log f(q)

≥ lim
s→0

1

πs2

∫ s

0

t

∫ ρ

t

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt

= lim
s→0

1

πs2

∫ s

0

t

∫ ρ

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt

− lim
s→0

1

πs2

∫ s

0

t

∫ t

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt

=
1

2π

∫ ρ

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτ

− lim
s→0

1

πs2

∫ s

0

t

∫ t

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt. (13)

Since |λ− κω| is a bounded function in Bσ(0), we conclude that given ε > 0,
there exists t0 > 0 sufficiently small such that

t ∈ (0, t0) ⇒
∫ t

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτ < ε.

Thus

s ∈ (0, t0) ⇒ 1

πs2

∫ s

0

t

∫ t

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt ≤ ε

2π
.
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We can now conclude that the limit that appears in (13) is equal to 0, and
therefore∫ 2π

0

log f(r, θ) dθ ≥ 2π log f(q) +

∫ ρ

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτ

By the definition of fσ, we have

fσ(q) = exp

∫ σ

0

(∫ 2π

0

log f(r, θ)dθ

)
η(r)ω(r)rdr.

Combining the above,

fσ(q) ≥ f(q) exp

∫ σ

0

(∫ ρ

0

1

τ

∫
Bτ (0)

(λ− κω) dxdydτ

)
η(r)ω(r) rdr. (14)

The function

ψ : S̃ → [0,∞), ψ(q) :=

∫ σ

0

(∫ ρ

0

1

τ

∫
Bτ (0)

λ dxdydτ

)
η(r)ω(r) rdr

is continuous by Theorem 13 (i). Furthermore, ψ(q) > 0 for all q ∈ S̃ since
Theorem 13 (iv) implies∫

Bτ (0)

λ dxdy > 0, ∀τ > 0.

Since ψ is also equivariant, this implies a positive lower bound for ψ; i.e.
minq∈S̃ ψ(q) > 0. Moreover, the function

q 7→
∫ σ

0

(∫ ρ

0

1

τ

∫
Bτ (0)

ω dxdydτ

)
η(r)ω(r) rdr

is constant. Thus, we can choose κ > 0 sufficiently small such that∫ σ

0

(∫ ρ

0

∫
Bτ (0)

(λ− κω) dxdydτ

)
η(r)ω(r) rdr ≥ 0. (15)

Thus, (14) implies (iii). q.e.d.
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4 Proof of Theorem 1 and Theorem 2

Given a convex cocompact representation ρ : π1(S) → Isom(X), let h ∈ T
be the hyperbolic metric and ũ : H2 = (S̃, h) → X be the ρ-equivariant
conformal harmonic map of Proposition 12. Let G be as in Definition 14 and
Gσ be the smooth metric of Lemma 16. In local coordinates, we write

G = λ(dx2 + dy2), Gσ = λσ(dx2 + dy2) and h = ω(dx2 + dy2).

Let dh and dGσ be the distance function induced from the metrics h and Gσ

respectively on S̃. We can also define the distance function dG induced from
G. Indeed, since λ is locally a H1 function (cf. Theorem 16 (i)), we can
define a length of a smooth curve c : [0, 1]→ S̃ by letting

length(c) =

∫ 1

0

√
λ|c′(t)|dt.

Then
dG(x, y) = inf

c∈C
length(c)

where C consists of all smooth curves c : [0, 1] → S̃ with c(0) = x and
c(1) = y.

Proof of Theorem 2. We define an equivariant smooth function

fσ : S̃ → (0,∞), fσ =
Gσ

h
.

In local coordinates, we have fσ = λσ

ω
. Let p0 be the point at which fσ

achieves a maximum. Thus, 4 log fσ(p0) ≤ 0. If fσ(p0) = λσ(p0)
ω(p0)

> 1, then

Lemma 16 (i) says

4 log fσ(p0) = 4 log λσ(p0)−4 logω(p0) ≥ 2λσ(p0)− 2ω(p0) > 0,

a contradiction. Thus, combined with Lemma 16 (iii), we conclude

λ ≤ λσ ≤ ω. (16)

in every coordinate neighborhood. Combining this inequality with the fact
that G is the pullback of ũ, we obtain

d(ũ(p), ũ(q)) ≤ dG(p, q) ≤ dGσ(p, q) ≤ dh(p, q), ∀p, q ∈ S̃ (17)
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which proves ũ is a contracting map.
We next prove that ũ is strictly contracting unless ũ is a totally geodesic

map and an isometric embedding of H2. Indeed, if there exists p, q such that
d(ũ(p), ũ(q)) = dh(p, q), then there exists p0 ∈ S̃ such that fσ(p0) = λσ(p0)

ω(p0)
=

1. Since we have already shown fσ ≤ 1, this implies that the function fσ

achieves a maximum at p0. Thus,

0 ≥ 4 log fσ(p0) = 4 log λσ(p0)−4 logω(p0) ≥ 2λσ(p0)− 2ω(p0) = 0.

This in turn implies

Kσ(p0) = − 1

2λσ(p0)
4 log λσ(p0) = − 1

2ω(p0)
4 logω(p0) = −1.

By Lemma 16 (ii), we conclude that G = h.
We now show that the equality G = h implies that ũ is a totally geodesic

map and an isometric embedding of H2. For any p ∈ S̃, identify p = 0 via
normal coordinates and let (r, θ) be polar coordinates. For R > 0, define
φ : BR(p)→ X by setting

φ(r, θ) = (1− r) ũ(p) + rũ(1, θ)

where, using a common notation in NPC geometry, the sum on the right hand
side denotes the geodesic interpolation. In other words, φ maps geodesics
emanating from p to geodesics emanating from ũ(p). Therefore,∣∣∣∣∂φ∂r

∣∣∣∣2 = d2(ũ(1, θ), ũ(p)) ≤ d2
G((1, θ), p). (18)

We next claim that∣∣∣∣∂ũ∂r
∣∣∣∣2 (r, θ) = lim

ε→0

d2
G((r, θ), (r + ε, θ))

ε2
(19)

Indeed, since G is equal to the hyperbolic metric h and (r, θ) are polar coor-
dinates for h

lim
ε→0

d2
G((r, θ), (r + ε, θ))

ε2
= lim

ε→0

(
1

ε

∫ r+ε

r

√
λ(s, θ)ds

)2

= λ(r, θ) =

∣∣∣∣∂ũ∂r
∣∣∣∣2 (r, θ)
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the last equality being because ũ is conformal. On the other hand, again
since (r, θ) are polar coordinates for h = G

lim
ε→0

d2
G((r, θ), (r + ε, θ))

ε2
= d2

G((1, θ), p). (20)

Combining equalities (18), (19) and (20) we obtain∣∣∣∣∂φ∂r
∣∣∣∣2 (r, θ) ≤

∣∣∣∣∂ũ∂r
∣∣∣∣2 (r, θ). (21)

Furthermore,

d(φ(1, θ1), φ(1, θ2)) = d(u(1, θ1), u(1, θ2)) ≤ dG((1, θ1), (1, θ2)).

Since we have shown that G is the hyperbolic metic, the CAT(-1) condition
implies that

d(φ(r, θ1), φ(r, θ2)) ≤ dG((r, θ1), (r, θ2)).

Thus, ∣∣∣∣∂φ∂θ
∣∣∣∣2 (r, θ) = lim

ε→0

d2(φ(r, θ), φ(r, θ + ε))

ε2

≤ lim
ε→0

d2
G((r, θ), (r, θ + ε))

ε2
=

∣∣∣∣∂ũ∂θ
∣∣∣∣2 (r, θ). (22)

Notice that the derivation of the last equality is similar to that of (19). Thus
(21) and (22) imply that Eφ ≤ Eũ, but since ũ is energy minimizing φ = ũ.
Therefore, ũ maps radial lines emanating from p to geodesics. Since p is an
arbitrary point in S̃, this proves ũ is a totally geodesic map and an isometric
embedding of H2. q.e.d.

Proof of Theorem 1. For a discrete subgroup Γ of Isom(X), the
critical exponent for the Poincaré series

P s(p, q) =
∑
γ∈Γ

e−sd(p,γq)

for s > 0 and p, q ∈ X is (cf. [Co] Proposition 5.3)

δd(Γ) = lim
R→∞

logNd
Γ(R, p)

R
, Nd

Γ(R, p) = #{γ ∈ Γ : d(γp, p) ≤ R}.
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Letting Γ = ρ(π1(S)) and noting (17), we have

Ndh
π1(S)(R, x) ≤ NdGσ

π1(S)(R, x) ≤ NdG
π1(S)(R, x) ≤ Nd

Γ(R, ũ(x)).

Take logarithm, divide by R and let R → ∞ for both sides of the above
inequality. On the left hand side, we obtain δdh(π1(S)) = 1. On the right
hand side, we obtain dimH(Λ); indeed, the critical exponent of any convex
cocompact action on a CAT(−1) space coincides with the Hausdorff dimen-
sion of the limit set computed with respect to the Gromov metric(cf. [Co]).
In summary, we have shown

1 = δh(π1(S)) ≤ δGσ(π1(S)) ≤ δG(π1(S)) ≤ δd(Γ) = dimH(Λ).

(Note that this implies the assertion of Corollary 4). Thus, the assumption
that dimH(Λ) = 1 implies δGσ(π1(S)) = 1.

By Lemma 16 (i), Gσ is negatively curved, therefore [Man1] implies that
δGσ(π1(S)) is equal to the topological entropy of the geodesic flow, which
dominates the measure theoretic entropy by the variational principle. There-
fore, [Man2] implies that

1 = δGσ(π1(S)) ≥ 1

VolGσ(S)

∫
S

√
−KσdVolGσ

where Kσ is the Gauss curvature and VolGσ is the volume form with respect
to the smooth metric Gσ. Lemma 16 (i) establishes that −Kσ ≥ 1, therefore
the above inequality implies that Kσ ≡ −1. Thus, G = h by Lemma 16 (ii).
As in the proof of Theorem 2, we conclude that ũ is a totally geodesic map
and an isometric embedding of H2. q.e.d.
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