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The exact Kohn-Sham iteration of generalized density-functional theory in finite dimensions with a
Moreau-Yosida regularized universal Lieb functional and an adaptive damping step is shown to converge to

the correct ground-state density.
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The Kohn-Sham (KS) scheme [ 1] of ground-state density-
functional theory (DFT) is the cornerstone of electronic
structure calculations in quantum chemistry and solid-state
physics [2]. It maps a complicated system of interacting
electrons onto an auxiliary, noninteracting KS system. This
yields a set of coupled one-particle equations that need to be
solved self-consistently. Since a direct solution is unfeasible,
practical approaches are variations of self-consistent field
methods taking the form of fixed-point iterations or energy
minimization algorithms [3-8]. To date, no method has been
rigorously shown to converge to the correct ground-state
density. Convergence results for approximate schemes are
available for auxiliary assumptions [9], and reliably achiev-
ing convergence in systems with small band gaps or for
transition metals remains a hard practical challenge [10].
Approximation techniques face the problem of an expo-
nential growth of local minima with increasing number of
particles [11]. Such local minima appear as “false” solutions
in the energy landscape and distract from the global,
absolute minimum [12]. Hence, a method with mathemati-
cally guaranteed convergence to the correct minimizer is of
central importance and has been listed as one of the twelve
outstanding problems in DFT [13].

An early insight is that iterations commonly fail unless
oscillations between trial states are damped [3]. Work by
Cances and Le Bris [14,15] led to the optimal damping
algorithm based on energy minimization by line search
along the descent direction. Wagner et al. [16,17] presented
a similar scheme and claimed to have proven convergence
in the setting of exact DFT, while only the strict descent
of energies was secured. In such efforts, functional differ-
entiability is almost always tacitly assumed or wrongly
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claimed, prominently in Ref. [18], Eq. (2.105), while the
underlying universal functionals are known to be non-
differentiable [19]. This means the usual presentations of
DFT already assume some form of regularization of the
functionals. Other special forms of DFT like with internal
magnetic fields [20] or finite temperatures [21,22] auto-
matically include regularization effects.

This issue was addressed in Laestadius et al. [23], where
a similar iterative scheme was proposed that proved a weak
type of convergence after Moreau-Yosida (MY) regulari-
zation to ensure differentiability of the universal Lieb
functional [24]. Weak-type convergence here means that
the energy converges to either the correct energy or an
upper bound. MY regularization has been introduced to
DFT by Kvaal et al. [25].

A rich study of possible strategies for self-consistent field
iteration was recently put forward by Lammert [26]. Yetin all
those works the question of a limit density and corresponding
KS potential was left open. On the other hand, the result in
Laestadius et al. [23] is applicable to not only standard DFT,
but to all DFT flavors that fit into the given framework
of reflexive Banach spaces. It has already been successfully
applied to paramagnetic current DFT (CDFT) [27]. This
general approach is also pursued in this Letter.

In what follows we give a fully rigorous proof of
convergence for the KS scheme in a finite-dimensional
state space. Because of the techniques involved, the new
iteration scheme was baptized the Moreau-Yosida Kohn-
Sham optimal damping algorithm (MYKSODA) by
Laestadius et al. [27]. The employed damping critically
depends on MY regularization that bounds the curvature of
the universal Lieb functional from above.

© 2019 American Physical Society
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We will now present the mathematical framework. For a
much more detailed discussion of generalized KS schemes
in Banach spaces that can also be infinite dimensional,
we refer to Laestadius ef al. [23]. The spaces for densities
and potentials are chosen to be the Hilbert space
X = X* =¢*(M), M €N, which corresponds to a finite
one-particle basis, a lattice system with M sites, or many
other possible settings. The reason for this dual choice of
spaces is how densities and potentials couple in the energy
expression. What is denoted fR3 vpdx in standard DFT is a
finite sum in the given setting and will further be written
(v, p) with p € X, v € X*. For the internal energy of the full
system, a universal functional F, like the one defined by
constrained search [24,28] over all N-particle density
matrices I” that yield a given density p € X, is introduced:

F(p) = lir'_li,{Tr[(Hkin + Hip )T} (1)

Here H,;, stands for the kinetic energy and H;, for
interactions. Consequently, the functional F is defined on
a set X C X of physical densities that come from an
N-particle density matrix (ensemble N-representability).
This set X will be assumed bounded in X. Since all physical
densities are normalized in the #' norm and all norms are
equivalent in finite dimensions, this follows naturally. It also
holds for CDFT on a finite lattice, since the current density is
bounded by the hopping parameter [Ref. [29], Eq. (25)], and
for one-body reduced density matrix functional theory in
finite basis sets, since the off-diagonal elements of the
reduced density matrix are bounded by the diagonal ones
that give the usual density [Ref. [22], Eq. (3.49)].

On the other hand, elements in X will in general not
constitute physical densities. In standard DFT this means
that an arbitrary x € X does not have to be normalized or
even positive. Such an x € X will thus be called a guasi-
density. We reserve the notation p for physical densities.

The total energy is the infimum of F(p) plus the potential
energy coming from a given external potential v € X*,
taken over all physical densities:

E(v) = /i)rel)f.({f”(p) +{(v.p)} (2)

It is linked to a functional F on X by the Legendre-Fenchel
transformation (convex conjugate). Then F can be trans-
formed back to the same E as

F(x) = sup {E(v) = (1.} ()
E(v) = inf (F() + (1.)}. )

The functional F is by construction convex and lower
semicontinuous (Ref. [24], Theorem 3.6) and has F(x) =
+oo whenever x is not in the domain X of F. Minimizers of

Eq. (2) are the ground-state densities, which establishes a
link to the Schrodinger equation. They stay the same if one
switches from F to F, and thus minimizers of Eq. (4) are
always in X. Finding such minimizers p of Eq. (4) is
equivalent to determining the superdifferential of E, i.e., the
set of functionals in X** = X that yield a graph completely
above E, written p € 0E(v) C X.

The MY regularization of the functional F on X is
defined as

Fo) = nf(FO) + o =yl (9)

The visual understanding of this is the following. As the
vertex of the regularization parabola (1/2¢)|/x||> moves
along the graph of F, the regularized F, is given by the
traced out lower envelope (the “Moreau envelope,”
Ref. [30], Definition 1.22). It also means the regularization
puts an upper bound of ¢! on the (positive) curvature of
F ... This will be an important ingredient in the convergence
proof: A bound on the curvature means the convex func-
tional F, cannot change from falling to rising too quickly,
yielding a secure bound on the possible step length for
descent.

The regularized F, is then differentiable and even has a
continuous gradient VF, (Fréchet differentiability)
(Ref. [23], Theorem 9), something that will also become
important in the convergence proof. We define the asso-
ciated energy functional

E(0) = inf (F,(x) + (0.2)}. (6

The functional in Eq. (6) is not the MY regularization of E
but the Legendre-Fenchel transformation of F,. If z € X is
a minimizer in Eq. (6), called the ground-state quasidensity,
then the gradient of F, + v at z must be zero:

VF.(z) +v=0. (7)

Since the regularized functional is differentiable every-
where, the usual problem of v-representability is avoided.
For E,, which is still not differentiable, we can resort to the
superdifferential. Since any such element z € OE,(v)
automatically solves Eq. (7), it is the ground-state quasi-
density of the regularized problem with potential ». Two
important properties of E, are (Ref. [23], Theorem 10 and
Corollary 11)

E(v) = E(v) +5 |lol%, ®)

OE(v) = 0E,(v) + ev C X, 9)

which relate the regularized problem back to the unregu-
larized one. Since E is already concave, the subtraction of a
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parabola in Eq. (8) makes E, strongly concave. Note
that the € in Eq. (9) takes a role comparable to that of
permittivity, linking potentials to densities.

To set up a KS scheme we define a reference system that
is noninteracting by

F(p) = Iigfp{Tr(Hkinr)} (10)

on the same X C X and define E°, F?, and E? analogously.
The analogue of Eq. (7) for FO at the same quasidensity
z€ X is VF(z) 4+ vis = 0 and defines the KS potential
vkg- Simply equating this equation and Eq. (7) gives

VFS(z)—I—v:VFg(z)—i—vf(S, (11)

where the ground-state quasidensity z and the auxiliary v
for the reference system are still unknown and neither F,
nor FY have a simple, explicit expression. The trick is to
determine z and vgg in an iterative algorithm by replacing
them with sequences x; — z, v; — vig. The indicated
convergence is our major concern in the following proof.
We get an update rule for the potential sequence (v;)
directly from Eq. (11),

i

Vis1 = v+ VF(x;) = VF(x;), (12)

and determine the next quasidensity by solving for the
ground state of the regularized reference system with v, .
This iteration has the stopping condition v, = —VF?(x;),
which means v = —VF,(x;) by Eq. (12). Then x; is already
the sought-after ground-state quasidensity z and thus also
Vi1 = Ugg is the respective KS potential that yields the
same quasidensity for the reference system.

The most important ingredient of practical KS calcu-
lations enters by giving suitable approximations for
the expression VF, — VFY (Hartree-exchange-correlation
potential including the correlated kinetic energy). For the
purpose of showing convergence it is not crucial that this
object comes from the exact functional or that it is the result
of an approximation, as long as F,, F? have the stated
properties.

The MYKSODA algorithm is then the following. In step
(a) get the new potential by Eq. (12) above. In step (b) solve
the (simpler) ground-state problem for the reference system
by choosing the next quasidensity from 3Eg(v,~+1). From
Eq. (9) it follows that the set of quasidensities OE? (v, ;)
can be determined from the set of ground-state densities of
the reference system, which means solving the noninter-
acting Schrodinger equation. Finally, to ensure a strictly
descending energy and to show convergence of (x;);, (v;);,
we include a damping step (c) with an adaptively chosen
step length.

MYKSODA iteration scheme.—Assume X bounded and
EY finite everywhere. For v € X* fixed, set v; = v and
select x; € 5EQ(1}). Iterate i = 1,2, ... according to

(@)set v;; = v+ VF,.(x;) = VF(x;) and stop if v;, | =
_VFg(xi) = Uks»

(b) select x;, | € OE2(v;,,) and get the step direction
yi = (¥ —xi)/ Xy — x;

(c) choose the step length 7; = —¢(VF,.(x;) + v,y;) >0
and set x;,| = x; + 1,y;.

We prove below that this algorithm guarantees conver-
gence to the correct KS potential, v; — vgg, and to the
ground-state quasidensity, x; — z, of both the full system
with v and the reference system with v . The corresponding
energy is then determined by E,(v)=F,(z)+ (v,z) > —oco.
These are still solutions of the regularized problem, but with
Egs. (8) and (9) a transformation back to the unregularized
setting is easily achieved. This, unlike the usually assumed
unregularized KS scheme, gives different ground-state den-
sities for the noninteracting and the interacting system, while
circumventing all problems of differentiability and thus of v-
representability. The assumption that E? is finite everywhere
is trivially fulfilled in a finite-dimensional setting because E°
is a finite sum. It is still kept here to connect more closely to
standard DFT and CDFT, where E° is finite even in the
infinite-dimensional setting; see Lieb [24] [Theorem 3.1(iii)]
and Laestadius et al. [27] (Lemma 20), respectively.

Convergence proof.—We refer to the first part of the
proof of Theorem 12 in Laestadius et al. [23] to show that
the superdifferential OE?(v;,,) is everywhere nonempty
because of E° finite, guaranteeing that the (regularized)
ground-state problem in (b) always has at least one
solution. The directional derivative of F,+ v at x; in
direction x, | — x; can be rewritten by (a)

>

<VFs(xi) + ”735;41 _xi> = <”i+1 + VFg(xi)vx:'+l _xi>'
(13)

Realizing that x|, , € OE2(v;,,) from (b) and x; €
OEX(VFY(x;)) from invertibility (Ref. [23], Lemma 4),
we rewrite the right-hand side of Eq. (13) with the help of
Eq. (9), substituting

X =X +evig € 0E (vi4), (14)
% = x; + eVF(x;) € 0E°(VF(x;)). (15)

which gives
(vigr + VF(x). Xy = i) = ellvi + V()2 (16)

Now, since fci 41, X; are selected from the superdifferential
of E? for the respective potentials v;, |, VF?(x;), the inner
product is always smaller or equal to zero (Ref. [23],
Lemma 5). This property is called monotonicity of OE° and
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FIG. 1. Illustration of one iteration step.

directly follows from concavity of E°. What follows is

strong monotonicity of OEY, i.e.,

(VF.(x;) + v,x§+1 —X;) = (viy1 + VF?(X:')’X;'H - X;)

—el|viy1 + VF(x))]]?
= —¢||[VF,.(x;) + v|]*. (17)

IA

The last line follows from (a) and is strictly smaller than zero
if not [|[VF,.(x;) + v|| = 0, which would mean that we have
already converged to the ground-state quasidensity. We thus
infer that, unless converged, we always have a negative
directional derivative of F, 4 v at x; in the step direction y;
which is parallel to x| — x;, i.e., (VF,.(x;) +v,y;) <O.
Such a negative directional derivative means the left leg of
the regularization parabola is aligned tangentially to the
(differentiable) energy functional F, + v, like depicted in
Fig. 1. The next quasidensity x;, | = x; + 7;y; is then chosen
at the vertex of this regularization parabola. This corre-
sponds to a choice of step length z; where the directional
derivatives at x; in direction y; of the regularization parabola
(1/2¢€)|| - —x;11]|* and of F, + v are equal:

1
(VF.(x;) +v,y;) = _;<xi+l — X5 Vi)
1 Ti
= —g||xi+1 - x|l = T (18)

This construction yields a x; | # x;, where the energy e; =
F.(x;) + (v, x;) is always larger than the energy value m; at
the vertex; see Fig. 1. Since the regularization parabola lies
fully above the energy functional F, + v by construction,
the energy e;,; at x;,; must obey e; | <m; <e; The
strictly decreasing e; is now by definition bounded below by
E.(v) from Eq. (6) and thus converges. By determining
e; — m; from the regularization parabola and then combining
it with Eq. (18),

2 1
2_:5‘ T 2 i1 = x> = e; —m; < e; =iy >0, (19)

we can infer convergence of (x;);. Step (a) then defines an
associated potential,

limv,, | = v+ VF,}-(X) - VFS(X)’ (20)

since the gradients are both continuous. After having proved
that the densities and potentials converge, it shall be
demonstrated that they converge to the expected ground-
state quasidensity z and KS potential vi 4. We come back to

Eq. (17), where substituting x;, | — x; = y;||x}, | — x;|| gives

671 = xi|[{(VFe(x:) + v, y;) < =€l VF(x;) + o] (21)
which together with Eq. (18) results in
Ti
ey = xill 2 = el VEe(x:) + ol (22)

We already know from the convergence of densities that
(x;); is bounded, further

X§+l S 8EQ(U,’+1) = éEO(’UH,l) — E&Viqq, (23)

by (b) and Eq. (9). But OE°(v;.,) C X, which is
bounded, and (v;); converges as well. Thus, [|x},; — x;|| is
bounded, and since 7; — 0, it follows ||VF.(x;) + v = 0
and ||VFY(x;) +v,,|| = 0. This in turn means v =
—VF, (limx;), solim x; = z is the ground-state quasidensity
for the potential v in the full, regularized problem. Finally,
limv;,, = —1imVF2(x;) = =VF2(z) = v§g is the KS
potential. [

As noted above, the reference system reproduces the
quasidensity z of the full system and they link back to the
real densities by Eq. (9),

p=ztev,  pks =2+ ks, (24)
where typically p§g # p. Then vig — v = e (phg — p) is
precisely the Hartree-exchange-correlation potential that
depends on the regularization parameter ¢ here. This means
every choice of ¢ defines a different reference system. A
limit € — 0 in the algorithm is unfeasible because of its
relation to the step length.

A simulation of two electrons on a ring lattice [31]
allows us to illustrate the above method. Compared to a
previous implementation in a CDFT setting [27], the
version given here uses the more conservative damping
step that helped to prove convergence. To distinguish the
two versions, we denote them “MYKSODA-S” for shorter,
conservative steps, and “-L” for the original longer steps
[23,27]. Both versions have been adapted to a pure DFT
setting, H,;,, taking the form of a standard second-order
finite difference. A radius of R =1 bohr, a uniform

grid with 30 points, and the interaction energy Hj, =
34/1 + cos(6; — 0,) were used. As expected, larger ¢ leads
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FIG. 2. Convergence of AE; =e¢; —E.(v) for a ring-lattice
system with external potential v = cos(26) + 0.2cos(d) and
different ¢. The algorithm developed here is labeled “S” while
the method “L” chooses the step length maximally [23,27].

to faster convergence. Also, the more conservative
steps taken by MYKSODA-S often lead to slower con-
vergence in practice. Surprisingly, however, in some
cases MYKSODA-S overtakes the less conservative
MYKSODA-L. An example is shown in Fig. 2. Such a
crossover is possible as the two algorithms follow different
paths through the space of densities and potentials. Yet,
when the starting point is the same, the first step by
MYKSODA-L always lowers the energy more than the first
step by MYKSODA-S. Although it is a plausible con-
jecture that also MYKSODA-L, taking maximal steps, is
guaranteed to converge, the present proof does not establish
this. “Maximal steps” here means taking 7; maximally such
that (VF,(x;) + v, X}, — x;) <0, which yields maximal
decrease in energy in the direction chosen by step (b).

In this Letter we proved convergence of the regularized
KS scheme with special adaptive damping. In short, this
means that KS DFT is a veritable method to calculate the
correct ground-state density. This strong statement holds
for all flavors of DFT that are defined on a finite-dimen-
sional density space X = #?(M) and have a linear coupling
to external potentials of type (v, p). This includes CDFT,
where the potential v is a combination of scalar and vector
potential, and the density p includes the paramagnetic
current density. To allow for a combination of these
different entities into one Banach space setting, the
respective function spaces for one-particle densities and
current densities have to fulfill a condition termed “com-
patibility” in Laestadius et al. [27]. A proof of MYKSODA
convergence for infinite-dimensional Banach spaces X is
feasible but much more technical and will be presented
elsewhere. The choice of step length in (c) is an essential
part of the proof and similar choices could be of value in
showing convergence of related iteration schemes and for
other settings such as Hartree-Fock theory [14]. Next to this
damping step the MY regularization is a vital part of the
proof at hand, not only to have functional differentiability,
but also for the strong monotonicity estimate needed to
show convergence. How those findings can be transferred
to realistic KS implementations will be the content of future

research, but it is expected that they serve as useful
guidelines for better convergence results.
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