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1 Aims and Objectives 

To evaluate the effects of whole body high-frequency low-magnitude vibration (HFLMV) on 

the volume of the midpalatal suture (MPS) in a hypofunction and orthodontic tooth 

movement sample. 
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2 Introduction 

Since its proposition by Julius Wolff in the 19th century, the concept ‘form follows function’ 

has clarified the importance of mechanical loading on skeletal morphology. Although 

Wolff’s law could not predict the exact reactions of bone to a mechanical load, it 

demonstrated that externally induced strains can modify bone remodeling and subsequently 

have an effect on skeletal architecture (1). This concept provided the foundation for treatment 

methodologies aimed at improving bone quality through induction of a mechanical strain on 

the skeleton. An example is the induction of HFLMV through a whole-body vibration 

platform in children with motor disabilities (2-6). HFLMV activates mechanotransduction in 

bone, resulting in stimulation of osteogenesis which counteracts the deficiency in skeletal 

development (3, 4, 6, 7).  

Several bony unisons of the cranium also experience bone turnover and remodeling during 

growth or as a result of orthodontic manipulation. Growth of the craniofacial sutures is 

heavily influenced by the external environment. In natural growth, sutures of the cranium rely 

on mechanical strains to modify and promote growth and lie dormant until an external signal 

such as the pressure of soft tissue growth is experienced. Accordingly, any additional external 

mechanical strains are likely to modify the rate of bone remodeling at the interface of the two 

maxillary bones and affect natural growth (8-12).  

Natural midpalatal suture (MPS) growth relies on bone deposition at the interface of the two 

maxillary bones (12). Although static forces have been used for centuries in the modification 

of these joints, the effects of HFLMV on bone remodeling and deposition on the MPS and 

CBS have not been investigated.  
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2 Bone 

2.1 Definitions 

Bone is a special connective tissue, which also acts as an organ within higher vertebrates 

(197). It functions as structural support, protection of organs and systems, acid-base balance, 

locomotion, haematopoiesis within marrow spaces, mineral storage, homeostasis, and as a 

reservoir for growth factors and cytokines (198). Bone marrow is responsible for the 

differentiation of osteoprogenitor cells from self-renewing pluripotent mesenchymal stem 

cells. These osteoprogenitor cells then become osteoblasts, osteocytes and bone lining cells. 

Mononuclear monocyte-macrophage precursor cells are also derived in the bone marrow and 

eventually give rise to osteoclasts (197, 198). 

2.2 Endochondral Ossification 

Endochondral ossification is responsible for bone formation in the extremities of the long 

bones, vertebrae, ribs and mandibular condyle. If mesenchymal cells proliferate and form 

condensations of cartilage templates there is a subsequent replacement by mineralised bone. 

Cartilage cells stratify into layers of proliferative and mature hypertrophic phenotypes that 

cause zones of initial mineralisation to appear. Following maturation, chondrocytes release 

non-collagenous proteins and X collagen and metalloproteinases concurrently break down 

cartilage ECM. These processes combine to create an environment that promotes 

mineralisation and replacement of cartilage by bone (199). 

2.3 Intramembranous Ossification 

At the sites of intramembranous bone formation there is an increase in vasculature and 

proliferation of mesenchymal cells. These cells condense and differentiate into osteoblasts 



13 
 

and directly secrete bone specific extracellular matrix onto an organic matrix membrane. 

During differentiation, mesenchymal cells display alkaline phosphatase activity that results in 

mineralisation and bone strengthening (199). 

2.4 Physical Properties of Bone 

Bone demonstrates properties of viscoelasticity and anisotrophy in order to facilitate its role 

of locomotion and support. Another way that bone provides optimal support and function is 

by macroscopic and microscopic adaptation to the mechanical stimulation of the external 

environment. Every day, there is an infinite number of stresses and strains on bone. As a 

response to these external signals, there is a cascade of chemical and cellular events that 

instigate turnover and remodelling.  

2.4.1 Stress 

Stress is defined as force per unit area equal in magnitude but opposite in direction to the 

applied load. Sheer stress occurs as a result of two forces acting parallel to each other but not 

along a different line, compressive stress occurs if two forces act on the same line in the same 

direction and tensile stress occur following the application of two forces along the same line 

but in opposite directions. 

2.4.2 Strain 

Strain refers to the mechanical deformation in bone caused by a mechanical stimulus and is a 

quantified measure of the change in length over the original length (200). 

2.4.3 Strength and Stiffness 

Strength and stiffness of a bone depends on the internal trabecular alignment and 
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arrangement. This internal arrangement varies between dissimilar bones, as well as between 

different sites within the same bone. This results in an increase in strength that is not 

accompanied by an increase in mass, referred to as Anisotrophy (94). 

2.4.4 Viscoelasticity 

Viscoelasticity is a property which allows bone to demonstrate different properties relative to 

the rate of force applied. Under high loads, bone demonstrates low viscoelasticity and 

behaves as a brittle object. However at low loads, bone demonstrates a lower modulus of 

elasticity and behaves as a more viscous material(94). 

2.4.5 Bone Remodelling 

Remodelling refers to morphological changes in bone as a response to physiological or 

mechanical stimuli. The primary goals of this process are mineral haemostasis, maintaining 

bone strength and prevention of micro-damage (90, 198). Osteoblasts and osteoclasts work 

independently to achieve this and their cumulative effect results in resorption of old bone and 

deposition of new bone through initial matrix deposition and subsequent mineralisation (90, 

198).  

2.4.6 Structural adaptation of bone on a cellular level 

Mechanotransduction occurs following an external stimulus that induces a biochemical and 

cellular response, acting to maintain the optimal strain environment. Burger and Klein-

Nulend conducted a review of several studies and concluded that osteocytes residing in 

lacunae are the predominant mechanosensitive cells in bone (201). In these cases, 

morphological cellular adaptations allow communication to other cells. The osteocytes 

penetrate through the bone’s canaliculi, resulting in communication between osteoblasts and 

bone lining cells via gap junctions and cell processes within the lacuno-canalicular system.  
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The amount a bone can deform is small (max 0.3%), however strains of between one and 

three percent are required to induce a cellular response and bone remodeling. Activation 

therefore occurs from the flow of interstitial fluid through the lacunocanalicular system. After 

load application, strain concentrations are produced at osteocytic lacunae and interstitial fluid 

is expressed out through thin layers of non-mineralised matrix surrounding cell bodies and 

cell processes (202, 203). Fluid flow is generated in the form of electric streaming potentials 

and fluid sheer stresses are created by annular porosities resulting from the canalicular and 

osteocyte diameter. These sheer forces primarily influence osteocyte cell membrane proteins 

called integrins, and function as adhesion receptors that transduce mechanical stimulation 

from the ECM to the cell’s cytoskeleton. As a result, there is integrin activation and down 

streaming of the intracellular biochemical cascade, causing a change in the bone cell 

metabolic activity. The cumulative result is a macroscopic bone reorganization and 

adaptation (201).  

Burger and Klein-Nulend found that basal fluid sheer stresses from normal physical activity 

provided sufficient mechanical stimulation to induce osteocyte haemostasis that increases 

above normal sheer stresses resulting in the recruitment of osteoblasts. If physical activity is 

decreased, a reduction in fluid stresses occurs, resulting in osteocyte apoptosis and 

recruitment of osteoclasts (201). 

2.5 HFLMV, Tooth Movement and Hypofunction 

Bone marrow is responsible for the differentiation of Osteoprogenitor cells from self-

renewing pluripotent mesenchymal stem cells which then become osteoblasts, osteocytes and 

bone lining cells and the mononuclear monocyte-macrophage precursor cells give rise to 

osteoclasts (197, 198). HFLMV, hypofunction and tooth movement modify the mechanisms 
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that influence the recruitment and production of these cells and may modulate bone 

remodeling and deposition in the MPS and CBS, however no studies have evaluated this. 
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3 Midpalatal suture 

3.1 Introduction and Definitions 

The MPS divides the palate into right and left halves in an anteroposterior direction and is 

continuous with the intermaxillary suture between the maxillary central incisor teeth. It 

extends from the incisive canal to the transverse maxillopalatine suture and runs across the 

palate between the maxillae and palatine bones (13).  

At birth, the suture forms the unison between the maxillary bones. Growth occurs through 

bone deposition at the margins of the sutures from the adjacent cell layers. This eventually 

leads to ossification and fusion of the sutures between the bony segments.  

3.2 Development 

The initial primary palate forms the roof of the oral cavity following formation of the nasal 

cavities. Caudally to the primary palate, the internal aspect of the maxilla produces the palatal 

processes that bulge into the oral cavity, eventually become the secondary palate. At 47 days 

in utero, the secondary palate is rudimentary, and contains the maxillary and palatine parts of 

the MPS. Between 56-57 days in utero, the related shelves elevate, acquiring a horizontal 

position above the concurrently descending tongue. The hard palate grows in height, breadth 

and length and becomes an arched roof in the mouth. This fetal palate increases faster in 

length than in width between 7-18 weeks in utero (13).  

At 10 weeks in utero, the superior uniting layer of fiber bundles develop across the midline 

close to the Vomer’s periosteum creating the first signs of the suture. By 12 weeks in utero, 

the MPS is definitively established (13, 14). At this stage, sutural cells and fibers run along 

the suture, parallel to the bone margins.  The vomer lies across the superior portion of the 
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MPS at the point where its periosteum and the upper transverse sutural fiber bundles blend 

together. At this point, the palate is relatively long, however after the 18th week in utero, its 

width increases faster than the length, resulting in growth at the MPS and appositional bone 

deposition at the lateral alveolar margins. Starting from the 20th week in utero, the vomer 

progressively grows into the midpalatal joint, reaching a maximum when the cross-section of 

the suture is Y-shaped. This results in greater articulation between the maxillary bones and 

vomer than between the two maxillary bones (15). 

3.3 Growth 

3.3.1 From Birth to the Age of three 

At birth, the vomer reaches its greatest relative size, and has a similar width and length to the 

MPS. After birth, the cancellous bone of the palate remodels, to form a cortex and medullary 

spaces. Further, the medial ends of the palatal processes become increasingly thickened (13). 

Increase in length is accomplished by appositional growth at the maxillary tuberosity region 

and the transverse maxillopalatine suture. The inferior cortical layer remains cancellous in 

nature for two years and the rapid deposition of bone results in a significant increase in height 

of the MPS. Between the ages of one and two, growth of the MPS ceases, leading to a loss of 

the synostosis which results in parallel margins of cortical bone (15). At three years and 

older, clear medullary spaces and compact cortical bone become confined to the thickened 

medial area. In order to facilitate a larger nasal cavity in the posterior portion, the anterior 

portion of the MPS is smaller (15). The intervening sutural tissue consists mainly of fiber 

bundles arranged parallel to the bone margins (13).  

3.3.2 After the Age of 3 

The maxilla develops entirely intramembranously through surface remodeling or apposition 
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that is proportional to the displacement of the maxillary bones. During this process, the MPS 

acts as a regional growth site, and bone deposits proportionally to the displacement of the 

maxillary bones. Growth of the soft tissues translates the maxillary complex downwards and 

forwards as bone fills the space in the frontomaxillary, zygomaticotemporal, 

zygomaticomaxillary and pterygopalatine sutures followed by surface resorption on the 

anterior portion of the maxilla (11). During the infantile period, the MPS takes on a broad Y-

shape and the vomer is situated in the center which is within a V-shaped groove between the 

two halves of the maxilla. The suture undergoes several changes, becoming a wavy pattern in 

the juvenile period then progressively becoming more interlocked, closed and interdigitated 

in adolescence. Obliteration begins in adolescence; however the rate of bone deposition 

varies greatly between individuals. By the third decade of adulthood, the suture is usually 

fused (16, 17). 

3.3.3 Remodeling 

At 16 weeks in utero, remodeling begins to contribute towards growth. Osteoclasts appear on 

the free nasal aspect of the maxillary palatal bone and osteoblasts proliferate on the oral 

aspect. This arrangement results in remodeling and inferior relocation of the entire palatal 

bone (13). During this time, sutural bone deposition continues simultaneously alongside 

vomer intrusion.  Growth at the maxillovomeral portion occurs slower than the intermaxillary 

portion. The resulting bone deposition tends to form trabeculae parallel to the slower growing 

surface. After this concludes, there is remodeling inferomedially by resorption on the nasal 

surface and deposition on the intermaxillary and vomer surface. After birth, remodeling 

results in inferior relocations of the palate, peaking in activity at six months. The cross-

sectional form of the suture is T-shaped and the maxillovomeral portion becomes more 

aligned to the nasal floor and transitions into a resorptive surface. Separational growth of the 
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suture slows down and the rate of remodeling and downward displacement increases 

significantly (15). Remodeling only occurs after the slowing and cessation of sutural growth, 

thinning of the vomer and increase in vertical height of the suture. This usually occurs 

between one and two years after birth and is indicated by a change in the growth pattern. The 

resulting pattern dictates active bone deposition on the sutural margin and corresponding 

resorption on the adjacent medullary surface. Following the creation of endosteal bone 

lamellae on the sutural plate, the medullary resorptive surface becomes depository. Endosteal 

bone is initially localized to small trabeculae or ridges protruding into medullary spaces at 

around 14 months. At 26 months, endosteal bone extends more evenly across the sutural area 

and the number of osteoblasts significantly decrease resulting in limited growth from this 

point onwards (13).  

3.4 Maxillary expansion 

A ‘narrow maxilla’ can be corrected through maxillary expansion. This process opens the 

MPS and indirectly influences the circummaxillary sutural system (18). It is used to facilitate 

correction of transverse maxillary hypoplasia, unilateral or bilateral crossbite,  or a narrow 

palatal vault, and as an adjunctive procedure in the treatment of patients with unilateral or 

bilateral dark buccal corridors. It is further utilized in some anteroposterior discrepancies and 

some crowding cases and patients with airway issues (18, 19). The two main methods for 

achieving skeletal expansion are rapid maxillary expansion (RME) and surgically assisted 

RME (SARME) which induce a process of bone remodeling and deposition into the bony 

defect created between the two maxillary bones. It is important to assess the patient’s age and 

degree of ossification between the maxillary bones when choosing between these two 

appliances (20). Current methods for maxillary expansion apply a static expansive force to 

the maxillary bones, however studies investigating the effects of mechanical oscillatory 
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forces on growth of craniofacial sutures have demonstrated that cyclic strains have a greater 

degree of bone remodeling response compared to static strains of equal magnitude. As a 

consequence, application of controlled exogenous oscillatory forces during orthodontic 

treatment may be considered in the future (21).  

3.5 History of Rapid Maxillary Expansion 

3.5.1 Early Use 

The idea of maxillary expansion involves the placement of force on alveolar ridges of teeth, 

placing opening pressure on the maxillary suture, leading to deposition of bone on the 

margins of the suture. RME has undergone many modifications and a variety of techniques 

have been tested. The first documented case was published in 1860 by Angell in the Dental 

Cosmos claiming to have demonstrated successful palatal expansion by creating space for 

crowded maxillary canines on a fourteen-year-old female patient. Expansion was achieved by 

turning a nut connecting two contra-rotating jackscrews placed against the necks of the 

posterior maxillary teeth every day for two weeks. In the same year, White attempted to force 

the first premolars back into the arch on a thirteen-year-old girl. An appliance was designed 

to fasten onto the premolars with a spiral spring joining the two sides behind the anterior 

teeth (22). Unfortunately, editors responsible for established dental journals at the time 

questioned the safety and validity of this method and considered it exceedingly adventurous 

with regard to accepted science of the time, discouraging further study. 

In 1893, Goddard revisited the idea and demonstrated an appliance attached to the maxillary 

first premolars and molars that improved dental irregularities by separating the maxillary 

halves (23). Similar criticism and resistance was experienced as its effects on neighbouring 

hard and soft tissues were not well understood. McQuillen noted in an editorial in the “Dent 
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Cosmos” that the decreased irregularity of teeth after such treatment would likely cause more 

problems (24). 

Fortunately, research into expansion of the nasal cavity in order to alleviate respiratory 

problems through midpalatal expansion was being conducted at a similar time. The first in 

depth study was conducted in by Schroeder-Benseler et al who used a non-spring-loaded 

jackscrew to separate the maxilla. His appliance was a modification of Angell’s, consisting of 

a jackscrew attached to stainless steel crowns on the maxillary first molars (25). 

Unfortunately, just as this method was gaining momentum, it was almost abandoned again in 

the late 1920s due to the increased popularity of the ‘functional concept of development’. 

This idea proposed that if teeth were moved into a desired position, bone would grow to 

support them, resulting in an increase in width of the nasal passage. Since it was thought that 

tooth movement was all that was necessary, orthopedic expansion of the maxilla was deemed 

unnecessary.  

3.5.2 Invention of Radiography 

3.5.2.a Cases in Europe 

The invention of radiographs proved to be vital, as it allowed for the safety of maxillary 

expansion to be examined by quantifying the secondary effects on other areas of the maxilla. 

This reignited interest in the field, attracting the attention of Derichsweiler who was a 

European orthodontist that became interested in maxillary expansion in 1953. He treated 

patients with maxillary transverse deficiency and posterior crossbite. An appliance was 

manufactured that had metal bands around the first premolars and first molars and an 

attached plate separating the appliance into two halves. A screw acted as the expander. 

Patients were instructed to turn the screw three times daily for 14 days and to keep the 
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appliance in place at all times to act as a retainer and stabilise the result (26).  

3.5.2.b Animal Experiments in the United States of America 

As maxillary expansion was gaining traction in Europe, the idea was brought to the United 

States by Korkhaus, who was visiting the Department of Orthodontics at the University of 

Illinois. He presented a series of radiographic images that demonstrated successful maxillary 

expansion cases.  At these meetings, A.J Haas saw great potential and popularised the fixed 

maxillary expander through a series of influential studies (27). His first study was conducted 

on eight experimental pigs in 1959, making slight adjustments to Derichsweiler’s appliance 

to optimise usability. He was able to increase the upper arch by up to 15mm, resulting in 

subsequent compensation from the mandibular teeth and an increased internasal width. Little 

or no indication of pain and discomfort was experienced by the specimens and minimal 

resistance towards expansion found. On top of this, the specimens seemed to demonstrate 

rapid bone resorption and apposition as well. In one case, this happened within five weeks. 

Haas also commented that a portion of the arch expansion may have been achieved by 

bending and tipping of the alveolar process, and compensatory lowering of the palatal vault 

and nasal floor (27).  

3.5.3 Haas Appliance 

After encouraging results from his animal study, a clinical study was conducted in 1961 on 

45 human patients with maxillary deficiency or nasal insufficiency (28). Ten cases were 

chosen in the situation that orthodontic correction was insufficient and maxillary expansion 

may have been more effective. The appliance was similar to the ones used in the animal 

studies, however had an acrylic plate instead of a metal wire appliance in an attempt to 

achieve a greater degree of orthodontic expansion. The appliance was anchored to the 

premolars and molars and the screw was activated a quarter turn twice per day until sufficient 
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over-expansion was achieved. After expansion, the appliance was secured for three months to 

act as a retainer and replaced with an acrylic plate during retention. The findings 

demonstrated changes in the transverse dimension which resulted in an increase in nasal 

width between 2.5-4mm and increase in the maxillary intermolar width by a maximum of 

5.5mm and minimum of 1.5mm. In the vertical dimension there was a downward sliding of 

the maxillary bones whilst resulted in an increased in the anteroposterior dimension through 

anterior sliding of the maxillary bones dimensions. Further, a significant MPS opening was 

found, creating a bony defect that initiated subsequent bone deposition in the area afterward. 

This resulted in a permanent increase in the maxillary apical base that caused spontaneous 

and permanent compensatory changes in the mandibular arch width. Whether a permanent 

change in alveolar bending and tooth tipping had occurred was difficult to determine, 

however this study provided substantial evidence for orthodontists at the time to consider 

maxillary expansion using the Haas appliance. This appliance remains one of the two main 

choices for maxillary expansion today. 

3.6 Age of Maxillary Suture Closure 

In two separate studies from 1964 and 1965, the ideal timing for maxillary expansion was 

proposed by Isaacson et al to be related to the age of maxillary suture closure (29, 30). 

Melsen studied the timing of suture closure using microradiology on deceased humans and 

determined that growth in length occurred until about 13-15 years old, followed by continued 

bone deposition and eventual closure at about 18 years old. This study provided some insight 

regarding optimal timing of maxillary expansion, however subsequent studies containing 

larger sample sizes demonstrated contradictory findings (7). Persson and Thilander also 

conducted research on deceased persons (16), finding a larger range of results using 

histological analysis. Some individuals exhibited evidence of bony unison in late adolescence 
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and others in their mid-twenties still had open sections, leading to the conclusion that the age 

of MPS closure was highly variable and based on each individual’s growth.  

3.7 Ideal Timing of Maxillary Expansion 

After careful consideration into the timing of MPS closure, Haas proposed that the ideal age 

for maxillary expansion was either before or during the peak pubertal growth spurt (31). 

Several studies have found if expansion is conducted after this time, there is alveolar 

bending, tooth displacement, extrusion, relapse, pain, and periodontal compression resulting 

in an increased proportion of orthodontic, rather than orthopaedic expansion (32-42). This 

was challenged by Timms and Vero (43) and Mossaz et al (44), suggesting that expansion is 

not possible after the age of 25 years old and by Mommaerts (45) who found limited 

orthodontic expansion in persons older than 12 years old, however little high quality 

literature can be found to support these findings.  

3.7 Orthodontic vs Orthopaedic Expansion 

The Hyrax expander is another commonly used device which does not have the acrylic plate 

from the Haas appliance, aiming to achieve a higher proportion of orthopaedic change by 

transferring the force entirely through the teeth onto the maxilla. In modern day treatment, 

either the Haas or Hyrax expander is generally used, with slight modifications on an 

individual basis as necessary (46). Expansion is achieved through a combination of dental 

and skeletal movement. If buccal tipping and movement of teeth occurs, it is usually 

considered an undesirable side effect. Use of skeletal anchorage devices, such as palatal 

distractors, implant-supported hyrax screws and bone anchors are proposed to result in a 

higher proportion of skeletal change. Despite differences in design, a limited amount of 

studies directly compares the efficacy and stability of these tooth born expansion device 



26 
 

techniques (50). Long term follow up has demonstrated that in all cases, a degree of relapse 

will occur. In order to minimise this, the degree of orthopaedic and orthodontic expansion in 

each patient must be assessed in order to create an individualised retention program. 

3.8 Anatomical Changes During Maxillary Expansion 

During maxillary expansion, the two palatal bones rotate laterally to form a triangular shaped 

opening (28, 31, 47, 48). The greatest degree of expansion occurs in the anterior region from 

the occlusal perspective, and in the apical region from the frontal perspective. The axis of 

expansion is within the frontonasal suture (47). Subsequent to maxillary expansion, there is a 

forward and downward rotation of the maxilla that causes a secondary downward and 

backward rotation of the mandible and a temporary opening of the mandibular plane angle 

(47, 49). RME also results in a significant gain in arch length, attributed to buccal movement 

of both the posterior teeth and the alveolar processes (49).  

3.9 Human Studies 

3.9.1 Proportions of skeletal or dental expansion 

Although true orthopaedic expansion is usually the goal of orthodontic treatment, a certain 

degree of orthodontic expansion occurs as well. The proportions of each which occur 

following different expansion techniques have been researched extensively. However there 

are difficulties in comparing studies due to the large variations in age, amount of expansion 

accomplished, size, and retention protocol. Chung and Font studied the Haas expander on 20 

children and found that crown tipping accounted for 4.3% of expansion in the first molars 

and 9.7% in the first premolars (50). Podessor et al analysed the effects of a Hyrax expander 

using CT scans and found that skeletal expansion varied from 25% - 53% of the total 

expansion (49). Following the invention of CBCTs, more accurate measurements of skeletal 
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and dental effects were possible. Garrett et al used this method and found the effects of a 

Hyrax expander on the maxilla are shown in table 1 (51): 

Kartalian et al also studied the Hyrax expander using similar methods, but found no 

statistically significant amount of dental tipping (52). In the RME group alveolar tipping 

increased by five degrees, however decreased in the control group by 2.84˚, resulting in a 

statistically significant difference of 2.16˚. In contrast to Kartalian’s study, a study conducted 

on the Hyrax expander by Ghoneima et al found that dental tipping was responsible for most 

of the expansion (53). Weissheimer et al compared Hyrax and Haas expander directly and 

found no statistically significant difference in amount and proportions of maxillary expansion 

(40). 

3.9.2 Amount of expansion 

Larger meta-analysis studies were conducted, however they often fail to consider the specific 

appliance used. Instead of studying the Hyrax and Haas appliances separately, these studies 

grouped them together as “rapid maxillary expanders’. This was the case when Schiffman 

and Tuncay conducted a meta-analysis of available literature in an attempt to determine the 

changes resulting from maxillary expansion (54). Their review included literature between 

1978-1999 and found an average immediate expansion of 6.0mm, that was then reduced to 

4.71mm after short term retainer wear. After the retention period, this was further reduced to 

3.88mm. Analysis of studies with long-term results, demonstrated that only 2.4mm of 

expansion was sustained. This amount of expansion was found to be no greater than normal 

physiological growth.  

Another meta-analysis of literature by Lagravere et al looked at the immediate changes after 

RME in both the dental and skeletal perspectives (55). Orthopaedically, the nasal cavity 

increased in width by 2.14mm, and the left and right jugale width increased by 2.73mm. 
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Further, maxillary inter-alveolar width measured between the buccal plates increased by 

between two and three mm.  Dentally, maxillary inter-molar width increased by 6.0-6.7mm 

and an increase in inter-canine width by 5.31mm and inter-molar angulation by 3.1˚ was also 

found. Further, 6.7mm of expansion occurred between the maxillary molar crowns, however 

only 4.5mm of expansion occurred at the root apices, resulting in an increase in angulation by 

approximately 3˚. 

It is difficult to accurately predict and measure the proportions of skeletal expansion, alveolar 

tipping and dental tipping resulting from RME. This is because each study differs in the 

methods, duration of treatment, patients’ age, compliance, activation protocol and 

quantification of outcomes. Further, accurately assessing the degree of maturation and timing 

of closure is difficult due to the high variance in timing of suture closure between individuals. 

Despite these difficulties, studies generally agree that RME is beneficial for transverse 

maxillary deficiencies if used compliantly and at the right time.  
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4 High-Frequency, Low-Magnitude Mechanical Stimulation 

4.1 Introduction and Definitions 

Since the 1980s, HFLMV vibration has been used to treat various bone diseases. It was 

initially researched in the treatment of osteoporosis and has more recently been applied in the 

orthodontic field. Bone is a living tissue and undergoes reactionary deposition and resorption 

as a means of homeostasis in response to stimuli. These stimuli may be static or dynamic, 

axial or torsional, and variable in duration, magnitude and frequency. The reactionary 

changes in bone can be in length, width, density and angulation depending on the initial 

stimuli. 

Research into bone remodeling has suggested that HFLMV activates mechanotransduction in 

bone, resulting in stimulation of osteogenesis and alteration of bone metabolism. An example 

is the induction of HFLMV through a whole body vibration platform in children with 

cerebral palsy (CP) (2). HFLMV activates mechanotransduction in bone, resulting in 

stimulation of osteogenesis which counteracts the deficiency in skeletal development present 

in most patients with CP (3, 4, 6, 7).  

In the field of orthodontics, intra-oral vibration devices have been proposed as a means of 

accelerating orthodontic treatment. Products such as AcceleDent™ are already on the market 

despite studies since 2013 demonstrating no statistically significant effect on the rate of 

orthodontic tooth movement (76-80). The effect of HFLMV on cartilage is poorly 

understood, and is thought to maintain chondrocyte activity despite an advancing age (81).  

HFLMV induced through a whole body vibration platform may be experienced in the MPS or 

CBS and may have an influence on the remodeling and growth of bone and cartilage in this 
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area, however this has not been investigated. 

4.2 The Daily Stress Stimulus Theory (DSST) 

The DSST was initially proposed to explain the physiologic response of bone to the external 

environment. Initial testing of bone during functional activities suggested that bone 

deposition was proportional to the degree of strain experienced. A synthesis of the peak 

stresses from each loading event determines the mechanical stimulus and cellular response 

(82). Natural factors that influenced this were gravitational forces, muscle forces, weight 

training, running, or high impact exercise and other environmental forces. However, if a large 

static strain was induced on bone, no cellular response and bone remodeling was found in 

areas where there was no benefit. From this information, the DSST was deemed invalid, as 

the degree of stress was not always proportional to the amount of bone remodeling (83, 84).  

4.3 Strains During Normal Function 

Rubin and Lanyon used Rosette gauges to investigate the physiologic strains produced on the 

radius and tibia of two horses and dogs when moving at different speeds on a treadmill. From 

their results, they proposed that high-frequency strains (20-30Hz) remain in a narrow range 

shared amongst all animals, regardless of species, animal size, speed of travel or gait. Lower 

frequencies (1-10Hz), have a much larger spectrum of distribution which changes 

significantly depending on the speed and gait of the animal. This demonstrates that high 

frequency strains are always present and likely to be responsible for the organisation of bone 

tissue and that lower range of frequencies and amplitudes may play a significant, but more 

individual role (85). 
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4.4 Avian Ulna Model of Testing 

Studies until this point were limited as they were unable to eliminate the superimposed load 

from functional movements. Further, trauma and vascular disturbances from the surgical 

procedures had a direct effect on bone. These factors provided an inherent mechanical strain 

on top of the experimental strain induced, complicating the origin of any remodeling that 

occurred. A major breakthrough in research methodology came in 1984 through the creation 

of the Avian Ulna model. Unlike previous methods, this model allowed complete control of 

the strain applied on bone by isolating the ulna shaft from function. This was achieved via an 

osteotomy at the epiphyseal-metaphyseal junction and placement of a stainless-steel cap on 

the ends. Strain and load were applied via Steinmann pins onto the caps at the ends of the 

bone shafts without impeding the bird’s movement. The pin emerged out of the skin on the 

ventral and dorsal surfaces of the wing and the untreated contralateral side served as control. 

In order to minimise surgical influences, the site of operation was distant from the area for 

assessment (86, 87). 

4.5 Parameters of Mechanical Loading 

After the DSST was proven inadequate to explain the process of bone remodeling, the avian 

ulna model was used to study several different mechanical environments and the resulting 

cellular response in bone. 

4.5.1 Static or Dynamic Loading 

Rubin and Lanyon used the avian ulna model to test whether a continuous (static) load 

regime would be more influential than an intermittent (dynamic) load in osteoregulation. 

Three male turkeys were included in an eight-week experiment that attached bone pins onto 

the ulna shaft and helical springs on either end. These pins were dynamically loaded using an 
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Instron machine at a magnitude of 525N and frequency of 1Hz and a strain rate of 0.01s or 

statically loaded at 528N. The dynamic and static loading generated the same peak strain of -

0.002 that was within physiological range and a third turkey was subjected to complete disuse 

of the bone. In the disuse group, no remodeling activity was found on the periosteal surface, 

however the endosteal surface showed evidence of resorption as there was an increase of 

11% in the endosteal enclosed area. Intracortical remodeling also increased, and the 

percentage porosity rose from a mean of 0.52 to 2.1%. These changes combined to induce a 

reduction in total bone area by 13%. The statically loaded group responded in a similar way 

to the disuse group, demonstrating a total mean decrease by 13%. However, in the 

dynamically loaded group, cross sectional area increased on average by 25% due to new bone 

formation with most of the increase occurring in the periosteal region (87). Results from this 

study suggest that static loads within the functional dynamic strain range have no effect on 

remodeling, however a similar load applied intermittently for a short time resulted in a 

substantially increased bone mass. 

5.5.2 Duration of Strain 

Whether the duration of mechanical stimuli has an effect on cellular response was studied by 

Lanyon and Rubin. Roosters were analysed in a 6-week study and the ulna was loaded daily 

using either 4, 36, 360, or 1800 consecutive load cycles at 0.5 Hz for two seconds and 

compared to a non-loaded group. The control group demonstrated no change for two weeks, 

followed by a gradual decrease of 11.8% in bone mineralization. Roosters experiencing four 

consecutive load cycles had no disuse osteoporosis. Loading 36, 360, and 1800 times 

exhibited rapid endosteal and periosteal bone apposition between two and three weeks that 

peaked at four weeks, however there was no difference in size or character of bone between 

groups (86).  
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4.5.3 Magnitude of Strain 

The effects of the strain magnitude on bone remodeling was examined by Rubin and Lanyon 

(1985). The avian ulna model was used, and different groups were subjected to peak strain 

magnitudes of 500, 1000, 1500, 2000, 3000, and 4000 micro-strains whilst the rate of strain 

(10000 ue/s), frequency (1Hz), and number of loading cycles (100) remained the same as 

previous experiments. All bones were subjected to external fixation to prevent natural 

loading. Strains of 1000 ue resulted in bone maintenance, however strains below 1000 ue 

resulted in bone loss. Strains above 1000ue demonstrated bone deposition on the periosteal 

and endosteal surface only. Bone formation did not necessarily occur in the areas that had the 

highest strain, thus there was a clear but non-proportional relationship between the strain 

magnitude and cellular response. As expected, strain distribution and character were found to 

have more effect than peak magnitude. (88).  

4.5.4 Axial or Torsial Loading 

Rubin et al tested whether axial or torsional loads generated different cellular responses (89). 

Twenty-one adult male turkeys were exposed to the same avian ulna model as previous 

experiments. Five ulnae exposed to 5000 cycles per day of axial loading equivalent to 1000 

microstrain normal to the long axis of bone. Additionally, five ulnae were exposed to 5000 

cycles per day of torsional loading sufficient to cause 1000 microstrain of shear strain, and 

six ulna experienced disuse. Torsional loading did not create area loss, changes in pore sizes, 

and intracortical porosis, however their findings indicated an overall inhibition of bone 

resorption. Axial loading also demonstrated no changes in pore size, however cell activity 

was promoted. This created an increase in intra-cortical turnover that was subsequently 

expressed as increases in area lost and intracortical porosis. From these results, this study 

demonstrated that axial and torsional loading influenced bone remodeling in dissimilar, but 
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positive ways. It also demonstrated that cells are able to discern between different types of 

loading, and the influence of cellular response on bone architecture depended on the 

mechanical environment present. 

4.5.5 Strain Frequency 

Mcleod and Rubin again used the avian ulna model to study whether frequency had an 

influence on strain and subsequent cellular response. Different frequencies between 1-60 Hz 

for 10 minutes per day were induced, and the degree of strain required at each frequency to 

maintain density measured. At 1 Hz (600 load cycles) a strain of greater than 700 microstrain 

(uE) was required, at 30 Hz (18000 load cycles) a strain of 400 uE was required, and at 60 Hz 

(36000 load cycles) a strain of 270 uE was required (78). The authors concluded that a higher 

frequency, required a dramatically reduced strain to maintain bone. This explains how very 

small strains occurring many times a day are able to maintain bone structure however greater 

strains that occur only a few times a day have a lesser effect.  

4.6 Disproving The DSST 

Fritton et al studied the strain history of different animals in an attempt to understand how 

bone strength was maintained. At that time, the mechanism of bone remodeling was unclear, 

as animals that had limited peak strains still managed to maintain bone morphology and 

strength, seemingly going against the DSST. Strain gauges were placed in vivo on one adult 

male turkey, one adult male dog, one adult female sheep and the ulna of three adult male 

turkeys. Strain signals were collected over 12-24 hours and subsequent digital analysis was 

conducted to measure the frequency and degree of each. This allowed for a calculation of the 

average of the spectral characteristics of bone strain signals. The results demonstrated that 

peak strains occurred relatively few times per day and small strains occurred much more 
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regularly (84). A strong relationship between frequency of strain and cellular response was 

found, demonstrating that bone does not respond greater to strains of higher cumulative 

magnitude. No proportional relationship was found between strain and resultant bony 

deposition and the linear mechanical formula proposed to explain the relationship between a 

mechanical stimulus and subsequent bony adaptation was proved to be non-existant. Fritton 

proposed a new idea stating that the characteristics of the applied load had the greatest 

determinant of bone adaptation and that dynamic loading had the greatest influence on 

mechanostimulation within bone structure.  

4.7 Change in Paradigm 

Qin et al further disproved the DSST by demonstrating that dramatic increases of peak daily 

cycles did not successfully predict the minimum threshold strain required to maintain bone 

mass. Accordingly, either the equation relating to the DSST must not be a linear function, or 

cellular activity must depend on frequency, strain rates or duration instead. Further 

investigation demonstrated that an increase in frequency resulted in a dramatically increased 

cellular activity, requiring smaller strains to maintain skeletal mass. This directed 

consideration of Wolff’s law in a different perspective, moving away from the idea that 

maximizing strain was the main determinant of bone remodeling. The new theory proposed 

that the goal of skeletal morphological adaptation to an external environment was to engineer 

a constant environment within each particular site of bone (90). Accordingly, smaller strains 

many thousands of times per day have a much greater significance on bone remodeling 

compared to impact loads that happen only a few times per day (91). 

4.7.1 Strains Induced by Muscular Activity 

With this changed paradigm, it was found that small strains felt continuously throughout the 

day have a greater influence than peak impact strains in maintaining bone mass, however the 



36 
 

origin of the strain remained unknown (84). Considering this, Rubin et al conducted a study 

and found that an increased age resulted in a reduced level of muscular activity that 

correlated closely to an overall decrease in bone mass. From this information, the authors 

proposed that these small strains are likely to come from the thousands of muscular 

contractions occuring in the body every day (92). 

Huang et al examined the firing rates of motor neurons in forty human subjects ranging from 

20-83 years of age by monitoring acoustic vibrations. Recordings were documented as 1-

50Hz, 1-25Hz or 25-50 Hz. With increasing age, high frequency band vibrations (25-50 Hz) 

decreased 1.2% per year, resulting in a reduction in the mechanical stimuli and strain inputs. 

As a result of this reduction in high frequency output, a decrease in bone mass is likely which 

cannot be counteracted by physical activity or any pharmalogical interventions (93). In order 

to prevent age associated bone loss, therapeutically induced high frequency strains through 

mechanical vibrations have been proposed. 

4.8 Therapeutic Use of High-Frequency, Low-Magnitude Vibration 

Robling et al (94) hypothesised that mechanical stimulation in the form of high-frequency, 

low-magnitude vibration can induce positive effects on bone remodeling. This is utilised in 

orthopaedic treatment of children with disabling conditions as it activates 

mechanotransduction in bone and stimulates osteogenesis (95). An applied application has 

been considered in the orthodontic field. Intra-oral vibration devices have been proposed to 

accelerate orthodontic tooth movement by increasing bone remodeling. Products such as 

AcceleDent™ are currently used by many orthodontists despite a Cochrane review in 2013 

finding little evidence to support the use of HFLMV. The review suggested that a greater 

amount of well-designed randomised clinical trials are required to determine if there is a 

clinically significant improvement in the rate of tooth movement (76-80, 96).  
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4.8.1 Definition 

HFLMV is a mechanical stimulus characterised by an oscillatory motion. The intensity is 

defined by the frequency (the rate the load is applied measured in Hz) and amplitude (extent 

of oscillatory motion, measured in mm). The magnitude can also expressed as a function of 

the earth’s gravitational pull (9.8 m.s^-2 = 1g) measured in grams.  

4.8.2 Transferring Whole Body Vibration to Sites of Osteogenesis 

An initial complication towards the therapeutic use of HFLMV was the feasibility of 

transferring whole body vibration to sites of osteogenesis. Rubin et al tested this by placing 

pins parallel to the floor and perpendicular to the spinal column under local anaesthesia into 

the spinous process of the fourth lumbar vertebra and the greater trochanter of the femur in 

six health human subjects.  Whole body vibration was induced onto these pins using a device 

developed by Fritton et al (97), transferring vibration between 15Hz and 35Hz at 2Hz 

intervals. Vibrations were measured at the hip and spine, patients were either relaxed and had 

their knees straight, knees flexed at 20˚, or knees locked and extended. If the patient was 

standing erect, vibrations below 20Hz were transferred completely to the hip and spine, 

however at 25Hz, only 80% was transferred. In a relaxed stance, transmission dropped to 

60%, and dropped further to 30% when knees were bent. Rubin’s study demonstrated that 

transmission of whole body HFLMV to the hip and spine does occur, however stance and 

posture has a large influence on the degree of transfer (98).  

4.9 Cerebral Palsy in Children 
4.9.1 Introduction 

Cerebral palsy (CP) refers to a group of neuromuscular disorders resulting from an injury to 

the motor cortex of the brain (99). The resulting disability is characterised by diminished 

motor control and limitations of movement, balance and posture. In Australia, it is one of the 
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most common causes of disability in children and has a prevalence rate of 2.1 per 1000 live 

births (100-102). In 94.4% of these cases, the injury that results in CP occurs within 28 days 

of birth during the prenatal and perinatal period of development.  

All children diagnosed with CP suffer from some decreased force generating capacity and 

control of muscles causing an overall limitation of physical activity (103, 104). The severity 

of this limitation is measured on a scale based on the five levels of the Gross Motor 

Classification System (GMCS). For a level I classification there is only a slight hindrance of 

speed, balance and co-ordination, however in a level V classification, the child must be 

transported in a manual wheelchair in all settings (101, 105).  

4.9.2 Consequences on bone 

Carlon et al conducted a review measuring the levels of physical activity in ambulatory 

children and adolescents who had CP. The results demonstrated that these patients conducted 

significantly lower levels of physical activity compared to matched controls to a level which 

was also below the recommended exercise guidelines (6, 106). Adequate physiologic 

mechanical loading during growth is critical towards developing healthy bone quality. As a 

consequence, these children demonstrate a lifelong decrease in bone mass and suffer from 

higher rates of fracture, especially in the lower extremities (107). In moderate to severe cases 

there is also a decreased trabecular bone micro-architecture (108). Interestingly, there is no 

statistically significant difference in areal bone mineral density (aBMD) in milder forms of 

CP compared to children who do not suffer from the disability (106). aBMD is considered the 

primary evaluation of fracture risk, however this measurement cannot be used in children as 

it is strongly influenced by bone size (109). During growth, a healthy level of mechanical 

loading is important in achieving optimal bone quality throughout life. As a consequence, 
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persons with cerebral palsy demonstrate poor bone quality and have higher rates of low-

energy fractures throughout life (6, 7). 

About 80% of children with CP are diagnosed with spasticity. Spasticity is a velocity 

dependent flexor and extensor excitation resulting from hyper-excitability of the stretch 

reflex (101). Spasticity leads to rigidity of the limb, leading to gait deviations and decreased 

selective motor control. For children who suffer from violent and repeated spasms, bone 

fractures and permanent deformities are common and can lead to a decreased quality of life 

(110).  

Currently, there is no cure for CP. However, HFLMV is proposed to counteract the 

deficiency in bone development by inducing a positive reflex response in muscles resulting in 

an anabolic effect on bone. 

4.9.3 Assessment of bone status 

An editorial by Bax in drew attention to the need for further research into the musculoskeletal 

consequences of CP. It also highlighted the lack of effective treatment options for those 

suffering from the disease (111). A year prior to Bax’s editorial (1995), Roberts et al 

conducted a study measuring the effects of hemiplegia on skeletal growth and maturation in 

the upper extremities. The main aim of their study was to determine whether the decreased 

skeletal maturation was a result of the underlying pathology or associated malnutrition. By 

using the less affected side as control, a skeletal index (SI) reflecting bone quality was 

calculated by dividing skeletal age with chronological age. The affected side demonstrated a 

significantly lower SI; however, the difference became smaller as age increased. As the bones 

of the upper extremities have limited weight bearing function, it is difficult to understand 

whether the decreased SI resulted directly from the CP or indirectly from the lack of physical 

activity (112). 
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Lin and Henderson conducted a study investigating the effect of spastic CP on bone 

mineralisation in the lower extremities (n=19, 3-15 years). Dual-energy X-ray absorptiometry 

(DEXA) was used to compare the affected and unaffected sides, and a 5.6% lower aBMD and 

21% lower bone mineral content (BMC) was found. The bones of the lower extremities have 

a greater weight bearing function compared to the upper extremities, allowing the influence 

of mechanical loading to be measured. From the findings, it was proposed that if weight 

bearing occurred in this area, it would partially negate the neurological involvement on bone. 

Neurotrophic factors were not examined in this study, however the authors postulated that 

these and the reduced mechanical factors worked in combination to decrease aBMD (113). 

A significantly larger sample size was used by Henderson et al in the investigation of bone 

density and its correlation to fracture rates at the distal femur of non-ambulant children. 

aBMD was significantly lower, resulting in a 15% increase in fractures for children under the 

age of 10 and a 28% increase in children over the age of 10. As the severity of CP increased 

in ambulant children, there was a significantly lower aBMD. This seems likely considering 

that a higher GMCS would mean greater physical disability and decreased load bearing. 

However, comparison between non-ambulant children that had a similar capacity of 

mechanical movements did not follow this rule. Although both level four and five GMCS 

scores require wheelchair assistance in all settings, a level five score demonstrated a 

significantly lower aBMD. Accordingly, although it is clear that mechanical loading and 

severity of CP have an influence on the poor mechanical properties in bone, the proportions 

of each are not fully understood (106). 

Tasdemir et al conducted a study using computed tomography (CT) to compare the 

volumetric BMD (vBMD) of L1-L3 lumbar vertebrae in ambulant and non-ambulant children 

who had CP to each other and also typically developing children. Their results found that the 



41 
 

non-ambulant group had a lower vBMD compared to the control group. On top of this, 

ambulant children who had CP did not have statistically significant differences to typically 

developing children. Investigations into the relationship between levels of physical activity 

and vBMD confirmed that mechanical loading is crucial for optimal bone deposition during 

childhood. As expected, ambulatory children demonstrated a lower vBMD compared to 

controls, and a higher vBMD than non-ambulatory children, however the differences were 

not statistically significant. Although the results from this study were promising, the sample 

size of 24 was too small to draw any strong conclusions. In the future, studies containing 

larger sample sizes across a range of ages are required in order to confirm this relationship 

(114). 

Wilmshurst et al compared the spinal bone mineral density of twenty-seven pre-pubertal 

children with CP between 5 and 14 years old to matched controls. Their results found no 

statistically significant difference between the children despite a range of mobilities and 

physical activity. Although this may seem contradictory to the proposed relationship between 

weight bearing and load, the authors suggested that the weight bearing properties of the spine 

during support of the upper body were relatively similar across all severities of CP and was 

sufficient to counteract the negative consequences of CP. On the other hand, a statistically 

significant difference was found in bone quality following Broadband Ultrasound 

Attenuation (BUA). BUA is a measurement of the structural properties of bone, and a higher 

score correlates to superior physical properties in bone. The lowest score was found in the 

group that had the highest level of physical disability.  

The score was inversely proportional to the level of disability and as expected, the control 

group demonstrated the highest BUA score. This is because the calcaneum is a bone of the 

lower limb and has little weight bearing function in patients suffering from CP (115). 
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A peripheral quantitative computer tomography (CT) was used by Binkley et al to investigate 

differences in bone morphology and strength of the distal femur. Thirteen Children between 

the ages of 2 and 20 were selected for the study, and all except one subject was non-

ambulatory. Compared to matched controls, the cortical thickness, cortical BMC, cortical 

area and periosteal and endosteal circumference were all significantly lower. On top of this, 

the matched controls demonstrated a greater cortical volumetric BMD and cortical thickness 

compared to the experimental group. From this information, we can conclude that children 

with CP have smaller and thinner bones. This study also investigated the effects of 

mechanical strain on the physical properties of bone. As most cases were non-ambulatory, the 

level of physical activity had no influences on bone quality. However, heavier children were 

found to have a higher vBMD, providing further evidence regarding the importance of 

mechanical loading in achieving optimal bone properties (116). 

An increasingly accurate measurement of the physical properties of bone is critical in order to 

gain an increased understanding regarding the effects of CP and improving treatment 

modalities. For this reason, magnetic resonance imaging (MRI) has gained popularity as it 

increases the validity and reliability of the measurements without exposing the child to 

ionizing radiation. Although the financial cost per scan is usually higher, MRI provides 

measurements of trabecular bone microarchitecture that were previously impossible, this 

generates a greater understanding of bone geometry and strength. (117).  

Modlesky et al conducted a series of studies using MRI, the first compared the bone quality 

of the distal femur to matched controls. The results demonstrated a significantly 

underdeveloped trabecular bone microarchitecture on the lateral half of the non-dominant 

distal femur. This was reflected in a lower bone volume/total volume (30%), apparent 
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trabecular number (21%), apparent trabecular thickness (12%) and significantly higher 

trabecular separation (48%).  

In children with CP, the distal femur is the most commonly fractured bone, and rates of 

fracture are significantly higher compared to controls. In cases of repeated low energy 

fractures in children, a permanent deformity can result, further compounding their physical 

disability. The authors of this study proposed that this decreased trabecular bone 

microarchitecture and bone quality was in part responsible for the high risks of fracture 

among these children (108).  

A second study was conducted in 2009 and compared the femoral midshaft of children who 

had quadriplegic cerebral palsy to a control group matched by gender, age and BMI. A lower 

total bone volume (54%), medullary volume (51%), antero-posterior bone width (29%), 

medial-lateral width (28%), cortical volume (55%), and a thinner cortical wall in the lateral 

(43%), posterior (32%) and anterior (28%) directions was found. On top of this, resistance to 

torsion and bending was estimated by measuring the polar moment of inertia, section 

modulus, and cross-sectional moment of inertia. All these measurements were significantly 

lower in children who had CP. The authors found that children who had quadriplegic CP 

demonstrated a significantly deteriorated bone strength and structure of the midfemur, and 

like previous studies he attributed this in part to the decreased levels of physical activity 

(118).  

Modlesky et al recently published an article that examined the pattern of underdevelopment 

in the distal femur of non-ambulatory children who had quadriplegic CP. Site specific 

investigations were conducted to determine the areas within the distal femur that had the 

highest risk of fracture. The information gathered was used as a diagnostic tool to evaluate 

the efficacy of a rehabilitation protocol. For children who had CP, bone quality was 
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significantly lower than the control group in all regions, however App BV/TV was 17% and 

24% lower in the region closer to the growth plate and gradually decreased in quality to 27% 

and 34% for regions further from the growth plate. These results demonstrated that the 

growth plate of bones in children with CP produced bone of decreased quality. On top of this, 

as the bone expands towards the periphery, the lack of physiological mechanical loading 

further decreases the quality of bone. From this information, the authors concluded that the 

risk of fracture in the distal femur has a proportional relationship to the distance from the 

growth site(119). 

4.9.4 Applications of whole body vibration 

HFLMV is proposed to have an anabolic effect on bone by generating a mechanical load on 

the skeleton. As a mechanism to counteract the acceleration created during vibration, the 

body induces a spinal reflex that is believed to cause muscle contractions, a muscle tuning 

response to counteract the vibration, and an excitatory response induced by muscle spindles 

detecting a change in length. Further, it is proposed to initiate storage and release of 

mechanical energy from neighbouring tendons (3, 4, 6, 7). As a direct consequence of these 

responses, a mechanical strain is generated that induces bone deposition in the surrounding 

bones and counteracts the negative effects of CP. Xie et al concluded that as little as 10 

minutes of floor based whole body vibration per day could inhibit trabecular bone resorption 

in children (2). 

Ward et al conducted a study that applied HFLMV on bone to 20 children who had disabling 

conditions. The children were randomised to stand on active (0.3g, 90Hz) or placebo devices 

for 10 minutes per day, five days per week, over six months. The tibial and spinal volumetric 

trabecular BMD was measured using 3-D quantitative CT, and there was a statistically 

significant benefit in the tibia despite poor compliance levels (44%) (4).  
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The first study on children with CP was conducted by Wren et al. Thirty-one children who 

had CP between the ages of 6-12 were allocated to stand on a floor-based vibrating platform 

(0.3g, 30Hz) for 10 minutes per day for five months and a floor-based placebo platform for 6 

months, in a randomly allocated order. Computer tomography measurements of proximal 

tibia cancellous bone density (CBD), geometric properties of the tibia, vertebral CBD, cross-

sectional area, and dynamometer measurements of plantarflex strength were taken at 0, 6 and 

12 months. No differences were found in cancellous bone or muscle, however there were 

significant increases in cortical bone properties during the vibration period(3).  

Katušić and Mejaški-Bošnjak measured the outcomes on the musculoskeletal system of 

vibration induced at 40Hz from a bed pad. Thirteen children who had spastic cerebral palsy 

between the ages of three and four were included in the study, and placed in a supine position 

for 20 minutes, once a week, for twelve weeks. A significant improvement in muscle activity 

was found, characterised by enhancements in motor performance, stability and selectivity of 

movements. These children developed improved head control, postural trunk stability and 

increased rotational movements, demonstrating the potential that HFLMV can have in aiding 

musculoskeletal health and quality of life (5).  

4.9.4.a Site specific high-frequency, low-magnitude vibration 

Different vibration frequencies applied directly to the bone were examined by Reyes et al. 

Instead of 30-40Hz as per previous studies, sixty-five children who had CP between the ages 

of 6-9 were randomised into either placebo, 60Hz, or 90Hz groups. The vibration was applied 

at 0.3g and was delivered to the radii and femurs for five minutes each day, for six months. 

Bone mineral density (BMD) and bone mineral content (BMC) was measured at the radii and 

femoral neck. The 60Hz group demonstrated a statistically significant increase in BMD at the 

upper distal radius by 31.88% +/- 28.3%, and the 90Hz group experienced a statistically 
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significant difference of 6.42% +/- 14.32%. On top of demonstrating that HFLMV can 

improve BMD and muscle strength, this study introduced a means of delivering mechanical 

vibration directly to an area as oppose to the whole body (6).  

Larger randomised control trials that considered the different severities of CP and presence of 

spasticity must be conducted in order to gain a better insight into the role of vibration, 

however these initial studies have been promising. 

4.10 Whole body HFLMV in Other Medical Treatments 

4.10.1 Low BMD in Young Women 

Based on the hypothesis that the incidence of osteoporosis can be reduced by increasing bone 

mineral density of young adolescents and children with CP, Gilsanz et al  investigated the 

effects of HFLMV on muscle and bone mass in young women who had low bone mineral 

density (BMD) (120). 48 subjects between 15-20 years old were chosen on the basis of 

having low BMD and at least one skeletal fracture in the past. Half of the subjects received 

vibration at 0.3g and a frequency of 30Hz for 10 minutes per day for six months. Quantitative 

CT demonstrated a positive influence on BMD in the vibration group, resulting in an 

increased muscle and bone mass of the weight bearing skeleton. As a consequence, the 

authors proposed that if this increase in bone mineral quality is maintained throughout life, 

there would likely be a reduction in the rates of osteoporosis. 

4.10.2 Simulated Postmenopausal Conditions in Rats 

Flieger et al (76) and Oxlund et al (121) studied the effects of whole body HFLMV on 

simulated p was conducted in 1961 postmenopausal conditions on rats. In order to induce 

post-menopausal conditions, the rats were ovariectomised and vibration was induced between 
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the parameters of 0.5-3.0g, and 17-50Hz. In both studies, the control group demonstrated an 

overall decrease in BMD and the vibration group either maintained or increased BMD for the 

duration of the experimental period. This showed the potentially beneficial effect that passive 

physical loading may have on ovariectomised rats. 

4.10.3 Postmenopausal Women 

Seventy women 3-8 years post-menopause were studied by Rubin et al (79). Half were 

subjected to HFLMV (30Hz, 0.2g) for 10-minute sessions, twice per day when standing. 

BMD was measured at the spine, hip and distal radius at the start of the experiment, at 6 

months, and at 12 months. The results demonstrated that HFLMV can effectively prevent a 

loss in BMD in the spine and femur. Interestingly, the therapeutic effect was greatest in 

patients who were compliant and had a lower bone mass.  

Verschueren et al also investigated the effects of HFLMV on the BMD of the hip in post-

menopausal women through a randomised control trial. Seventy subjects were randomly 

divided into three groups (122). One group carried out resistance training, the second 

received whole body vibration (30-40Hz, 2-5g) during dynamic knee extensor exercises, and 

the final group served as control. No changes were found in the control, and resistance 

training groups, however for the vibration group BMD of the hip and dynamic and isometric 

bone strength significantly improved. The authors proposed that vibration was an effective 

way to decrease risk factors associated with falls and fractures in post-menopausal women by 

improving balance, muscle strength and BMD, however further studies containing a greater 

sample size are required. 
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4.10.4 Bone Healing in Mice 

In a similar way that vibration improves bone quality in post-menopausal women, it is 

proposed to improve the healing capacity of bones following fractures or surgical wounds. 

Omar et al investigated the effects of vibration on the healing of surgical defects within 

cranial bones. Twenty 12-week-old rats underwent surgery to induce bony lesions in the 

parietal bone (123). Half of these rats had vibration induced at 30Hz for 20 minutes per day, 

5 days a week, for a 4-week experimental period. The rats were sacrificed at 0, 14, and 28 

days, and micro-CT analysis demonstrated that healing was significantly more pronounced in 

the vibration group.  

4.10.5 Bone Healing in Sheep 

Goodship et al investigated the influence of HFLMV on fracture healing in the bones of 

sheep. Osteotomies of 3mm were performed in the tibia of sheep, and vibration was applied 

at 30Hz for 17 mins per day for 10 weeks. At the end of the experimental period, the callus in 

the experimental group was 2.5x stronger, 3.6x stiffer, and 29% larger than controls (124). 

Bone mineral density was 52% greater, and there was a 2.6x increase in bone mineral content 

in the periosteum. Both Goodship and Omar’s studies demonstrated that the presence of 

HFLMV following a traumatic injury significantly improves the healing capacity of bones. 

4.10.6 Inhibition of Osteoclast Formation 

Within bone, there is a complex network of cells which work together to facilitate bone 

remodeling. Osteocytes form a crucial portion of this pathway as these cells send signals to 

stimulate generation and function of osteoblasts and osteoclasts. Lau et al tested the effect of 

HFLMV on osteocytes by applying vibration at 0.3g, and 30, 60, or 90 Hz for one hour to 

osteocyte like MLO-Y4 cells. Osteocytes were found to be sensitive to this stimulus, as 
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COX-2 increased by 344% at 90Hz and RANKL decreased by 55% at 60Hz. The formation 

of large osteoclasts was attenuated by 36%, resulting in a 20% decrease in the amount of 

osteoclastic bone resorption. RANKL decreased by 53% in the vibration group and PGE2 

release decreased by 61%. Lau concluded that HFLMV had an inhibitory effect on the 

signaling pathway between osteocytes and osteoclasts, leading to a decreased production of 

osteoclasts and a reduced amount of bone resorption (125). 

4.10.7 Therapeutic Effect of HFLMV 

From the literature, it is evident that vibration can play a significant role as an adjunct 

orthopaedic treatment methodology. Studies have demonstrated positive responses in BMD 

and bone quality in children with disabling conditions, young women diagnosed with a low 

BMD, fracture healing, repair of bone defects and prevention of pathological bone conditions 

such as osteoporosis.  

4.11 Mechanical Vibration and Cartilage 

Several studies have demonstrated a therapeutic effect of HFLMV on bone, prompting 

researchers to investigate whether there is an effect on cartilages within the body. It was 

initially proposed that if cartilage responded in a similar way to bone, treatment using 

HFLMV would prevent deterioration of articular cartilages in patients who had osteoarthritis 

(81).  

4.11.1 In Vitro Studies 

4.11.1.a Cultured Rabbit Articular Chondrocytes 

An in vitro study conducted by Liu et al studied the effects of mechanical vibration on 

proteoglycan and DNA synthesis in cultured rabbit articular chondrocytes (126). Vibrations 
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were induced at 200, 300, 400, 800 or 1600 Hz and 1.4g in a sinusoidal waveform. It was 

found that at 300Hz, the DNA and proteoglycan synthesis in chondrocytes was upregulated, 

reaching a maximum when vibration was applied for right hours per day. Peak proteoglycan 

synthesis occurred at 15 days, however peak DNA synthesis occurred at ukytt s days. Down 

regulation was noted at all other frequencies. Different frequencies either enhanced or 

depressed incorporation of 3H-thymidine into DNA and H235SO4 into proteoglycans. The 

authors proposed from their results that vibration had a positive effect on metabolism on the 

articular cartilage, especially during the regeneration process. 

4.11.1.b Cultured Chondrocytes of Pig Joints 

The effects of vibration (100Hz) and hyaluraonic acid on cultured chondrocytes from joints 

of six month old pigs were investigated by Takeuchi et al (127). Measurements were taken at 

3, 7, 10 and 14 days and production of chondroitin six sulfate and chondroitin four sulfate 

was recorded as indicators of proteoglycan synthesis. After histological, 

immunohistochemical and electron microscope analysis, it was found that chondrocytes 

subjected to vibration and hyaluraonic acid had thicker stratified structures of collagen, 

stronger chromatic features, and long, slender prominences that were associated with 

extracellular substance..  

The authors suggested that hyaluraonic acid and vibration activate the production of 

proteoglycan in 3D cultured chondrocytes, suggesting that mechanoreceptors on the surface 

of the chondrocytes respond to vibration positively by activating intracellular pathways. 

4.11.2 In Vivo Studies 

Sriram et al conducted an in vivo study that studies the mandibular condylar cartilage and its 

endochondral bone in 40, 12-week-old mice. Half of the animals were subjected to vibration 
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of 30Hz at 0.3g for 20 minutes per day, five days per week, for four weeks and the other half 

served as controls (128). Micro CT analysis of the experimental group showed that the 

condylar cartilage volume decreased and the trabecular bone demonstrated an associated 

increase. The decrease in condylar cartilage volume was concluded to be due to endochondral 

bone replacing hypertrophic cartilage faster than cartilage could be replaced. As a 

consequence of this observed response, vibration was proposed to have a potentially 

therapeutic effect on the adaptive orthopaedic growth of the mandibular condyle. 

4.12 High-frequency, Low-magnitude Vibration in Orthodontics 

The use of HFLMV in the orthodontic field is an adjunctive treatment methodology based on 

the concept that PDL and bone cells surrounding teeth should respond in the same way as 

bone cells in the medical treatment of osteoporosis. Vibration is proposed to activate 

mechanotransduction, leading to an increased rate of cell differentiation and maturation. This 

would alter bone metabolism and stimulate osteogenesis, resulting in an increased rate of 

bone remodeling and an accelerated rate of tooth movement. If successful, concomitant use 

HFLMV during orthodontic treatment would lead to a decrease in orthodontic treatment time. 

Unfortunately, whilst initial studies were positive, a 2015 Cochrane review found little 

evidence to support the use of HFLMV. The review suggested that a greater amount of well-

designed randomised clinical trials are required to determine if there is a clinically significant 

improvement in the rate of tooth movement (96, 129-131).  

In cases of decreased orthodontic treatment duration, incidence of caries, root resorption and 

periodontal disease declines, minimising the psychological and physical burden on the patient 

(129-131). Unfortunately, studies in this field remain controversial and a 2013 Cochrane 

review found little evidence to support the use of HFLMV. The review suggested that a 
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greater amount of well-designed randomised clinical trials are required to determine if there 

is a clinically significant improvement in the rate of tooth movement (96). 

4.12.1 Animal Studies 

Initial studies induced the mechanical stimulus using a pulsed electromagnetic field (PEMF). 

Stark and Sinclair conducted a study on Hartley guinea pigs and found that applying 25Hz of 

PEMF with simultaneous 12cN of orthodontic force increased the rate of tooth movement. 

Darendeliler conducted two separate studies however found similar improvements in the rate 

of tooth movement. The first was conducted in 1995 and studied guinea pigs at a frequency 

of 15Hz and 15cN, followed by another in 2007 that studied the effects of HFLMV on tooth 

movement at a frequency of 30Hz on 44 wistar rats. Nd-Fe-B magnets and coil springs were 

bonded onto the molar teeth to generate tooth movement, however an electromagnetic field 

(EMF) interacted with the magnets to generate a mesiodistal vibration stimulus. The rats 

were subjected to different stimuli on either side and divided into four groups that had either 

vibration alone, vibration compared with vibration and coil spring, PEMF alone compared 

with PEMF and coil spring, and vibration and coil spring compared with PEMF and coil 

spring and sacrifice of the specimens occurred after 14 days. The results demonstrated that 

coil springs with sham or active magnets moved the molar teeth more than magnets with or 

without vibration and no statistically significant difference was found between magnets and 

sham magnets without PEMF. The coil-magnet combination moved the teeth less than the 

coil spring under PEMF and the sham magnets under PEMF moved the teeth less than the 

magnets. As a consequence from these findings, the authors concluded that PEMF induced 

vibration may enhance coil and magnet induced orthodontic tooth movement (132). 

A second method to induce vibration tested more recently involved the intermittent 

stimulation through resonance vibration. Nishimura et al studied the effects of vibration on 
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the rate of tooth movement and root resorption and the underlying molecular and cellular 

mechanisms responsible in 11 Wistar male rats. Half of the rats were subjected to tooth 

movement and vibration at 1g and 60Hz +/- for eight minutes once per week, and the other 

half were only exposed to tooth movement. The tooth movement was induced by placing a 

buccal force on the molar for 21 days. Immunohistochemical analysis at the end of the 

experimental period demonstrated an increased activation of the RANK-RANKL signaling 

pathway in the vibration group. There was an enhanced RANKL expression from osteoclasts 

and fibroblasts of the PDL that resulted in an increase in orthodontic tooth movement. After 

analysis using haematoxylin and eosin, no significant difference in root resorption was found. 

The enhanced expression of RANKL in the PDL was concluded to be responsible for the 

increased rate of orthodontic tooth movement. On top of this, the authors determined that this 

enhanced bone turnover rate did not result in additional damage to the tissues (133). 

HFLMV may also influence tooth movement through inhibition of osteoclast generation. 

Kalajzic et al investigated this by measuring the rate of tooth movement, number of 

osteoclasts and the subsequent consequence on the bone volume fraction in the periodontium. 

Twenty-six seven-week-old rats were randomly assigned to either movement (Mvt), vibration 

(Vib) or movement + vibration (Mvt + Vib) groups. Vibration was induced onto the occlusal 

surface of the first maxillary molar using an electromechanical actuator that applied unilateral 

cyclic forces at 30Hz, between 0.1-0.4N for 10 minutes, twice per week. Tooth movement 

was conducted using a 9-mm NiTi closed-coil spring and delivered 25g of orthodontic force 

for 14 days. It was found that the Mvt group had a statistically significant increase in tooth 

movement compared to the Mvt + Vib group. Almost no osteoclasts were detected in the Vib 

and Mvt + Vib group, however there was an increase in the Mvt group. Bone volume fraction 

was significantly lower in the Mvt group andcollagen fibers on the tension area of the PDL 

were significantly thicker in the Vib group and Mvt group. Further, the Mvt + Vib group 
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demonstrated a disturbed morphology of bone volume fraction. The authors concluded that 

vibration induced at 30Hz may have a negative effect on the overall number of osteoclasts, 

resulting in a decreased rate of tooth movement and a greater bone volume fraction (134). 

Yadav et al conducted a similar study on sixty-four male CD1 mice, using a force of 10g on 

the maxillary first molars, and vibration applied for 15 minutes at five, ten or 20Hz in 3-day 

intervals for 14 days. At the end of the experimental period, the results demonstrated no 

statistically significant difference in rate of orthodontic tooth movement and quality of 

collagen fibers, however vibration had a positive effect on bone volume (135). 

4.12.2 Human Studies 

In 2012, the Tooth Masseuse device was tested on patients. This device was initially 

proposed to decrease the pain of orthodontic treatments. The tooth masseuse device induces 

vibration at a frequency of 111 Hz and magnitude of 6.1g for 20 minutes per day. 66 patients 

were randomly assigned to either a control or experiment group, with all patients fitted with a 

0.014 inch thermal NiTi wire for a 10 week experimental period. Impressions of the mandible 

were taken, and Little’s Irregularity index was used to assess the six anterior teeth at the start 

of treatment, five weeks, eight weeks, and 10 weeks into treatment. Patients were asked to 

complete a discomfort score chart at each time interval. No significant differences were 

found in arch irregularity or pain levels, suggesting no clinical advantage for this device 

(131). 

A 2016 study investigated whether interleukin-1 beta secretion was increased as a result of 

vibration produced from an electric toothbrush. This study was conducted on 15 patients that 

previously had bilateral maxillary first premolar extraction and required subsequent canine 

distalisation. Orthodontic tooth movement was induced using a power arm fabricated from a 
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0.021 x 0.025-inch stainless steel archwire. A split mouth model was used, and patients were 

randomly assigned to place the electric toothbrush on either the left or right maxillary canine 

at the mesio-labial surface. No definitive amount of time for vibration was set, as patients 

were instructed to place the toothbrush on the tooth for a minimum of five minutes, three 

times a day for 2 months. The results demonstrated that the canine on the non-vibration side 

had an average of 1.77mm of movement, compared to 2.85mm on the vibration side, 

equating to a statistically significant difference of 1.08mm.  A statistically significant 

increase in IL-1B secretion in the GCF was also found at the pressure sites in bone during 

tooth movement. Although these results seem promising, the validity of such a study design 

must be questioned due to the varying amount of vibration experienced, poor compliance 

levels and unpredictable transmission of vibration from an electric toothbrush to teeth and 

surrounding bone (136). 

4.12.3 AcceleDent™ 

As the case in Animal studies, the initial human study was promising, as Kau conducted a 

retrospective study which used an early activator device consisting of a mouthpiece that 

generated vibration at a frequency of 30Hz, and 20g for 20 minutes per day. The device was 

placed for a period of 6-month consecutive months and the rate of tooth movement was 

significantly improved for cases of Class I lower incisal crowding. However, research 

published more recently has been less promising. 

Bowman investigated the effects of AcceleDent™ on upper-molar distalisation in sixty-five 

adolescent Class II patients. Each patient underwent non-extraction treatment and a mini-

screw supported upper molar distalisation device was inserted. The mini-screw implants were 

inserted in between the upper first and second premolars in the palatal alveoli. 240g open-coil 

springs were then attached to this apparatus and recompressed every fpir weeks. Lateral 
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cephalometric analysis demonstrated no significant differences when comparing upper first 

molar tipping, intrusion, or crown distalisation, however for the molar root apex the vibration 

group demonstrated a statistically significant increase of 71% compared to control (137). 

In 2015, the effects of AcceleDent™ on the rate of movement of maxillary canines into the 

upper first premolar extraction space was investigated. 45 patients were included in the study 

who fit the inclusion criteria of having extracted maxillary first premolars, three mm of 

extraction space after initial alignment, and maximum maxillary anchorage. 23 of the patients 

were randomly assigned to the acceledent group and the other 22 were given placebo devices. 

Comparing the rate of movement, the average monthly rate of the vibration group was 

measured at 1.16mm, compared to 0.79mm in the control group. This difference of 0.37mm 

was statistically significant, and the authors concluded that simultaneous HFLMV during 

orthodontic treatment accelerates tooth movement (138). Unfortunately, this study was 

funded by “Orthoaccel”, and a clear conflict of interest was found. Further, a large range of 

ages (between 12-40 years of age) with a small sample size was used allowing for the 

influence of many co-variates. Little information was provided about the method of assessing 

tooth movement apart from it being conducted directly in the mouth with digital calipers. 

Accordingly, this study was not considered when determining the effectiveness of HFLMV 

on accelerating orthodontic tooth movement. 

In a randomised clinical trial conducted by Woodhouse et al on 81 orthodontic subjects 

requiring extraction of lower first premolars and treated with fixed appliances were 

randomised to three groups (139). The first were given a fully functional acceledent device, 

the second given a sham device and the third given no device. A standard protocol was used 

and analysis using Little’s irregularity index demonstrated no difference in the number of 

days required to achieve initial and final alignment per each arch wire. As was the case with 
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animal studies, earlier human studies showed greater promise, however more recent higher 

quality studies have failed to find a statistically significant difference in the rate of tooth 

movement. As emphasized by the 2015 Cochrane review, further higher quality studies 

testing a range of vibration stimuli and orthodontic tooth movements are required to 

determine conclusively if vibration may improve the rate of tooth movement (140). 

Katchooi (2017) investigated the effect of AcceleDent™ on Invisalign treatment. 26 adult 

patients were randomly allocated to equal groups of 13 and were either given an active or 

placebo AcceleDent™ device. They were instructed to change their aligners once a week and 

the aligner fit was reviewed every three weeks. If the aligners were not sitting, the patient 

was not included in the results. No statistically significant differences were found when 

comparing the regularity of anterior teeth at the end of treatment and the completion rate of 

the initial series of aligners (141). 

5.13 Influence on the Midpalatal Suture  

There have been no high quality studies to support the use of HFLMV in orthodontics (96). 

Despite this, HFLMV as an adjunct to orthodontic treatment is readily available on the 

market for orthodontic patients. Although appliances for orthodontic treatment aim to apply 

local vibration, anatomically close areas of the cranium may also be susceptible to this 

vibration. Further, the treatment of mechanical disabilities such as cerebral palsy using whole 

body HFLMV may be experienced by the MPS. As a result, there may be an effect on bone 

deposition during growth of the MPS or in the bone defect created following maxillary 

expansion. Currently, there are no studies investigating this. 

HFLMV is routinely used in the medical field to improve bone quality in children with motor 

disabilities such as cerebral palsy (CP). For this treatment, vibration is induced during a 
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period when growth of the craniofacial sutures is heavily influenced by the external 

environment. In natural growth, sutures of the head rely on mechanical strains to modify and 

promote growth and lie dormant until an external signal such as the pressure of soft tissue 

growth is experienced. An example is the MPS, which acts as a growth site responding to 

external signals stimulating deposition of bone on the sutural edges that facilitate expansive 

growth of the maxilla (10-12). Any additional mechanical strains such as whole body 

HFLMV are likely to modify the rate of bone remodeling at the interface of the two maxillary 

bones and affect natural growth (8-12). Other examples are the CBS, which rely on the 

external environment for growth. However, unlike the MPS, undergo endochondral 

ossification, where bone replaces cartilage.  



59 
 

5 Oscillating Mechanical Stimulation 

5.1 Introduction 

Growth of the craniofacial sutures is heavily influenced by the external environment. In 

natural growth, sutures of the cranium rely on mechanical strains to modify and promote 

growth and lie dormant until an external signal such as the pressure of soft tissue growth is 

experienced. Accordingly, any additional external mechanical strains are likely to modify the 

rate of bone remodeling at the interface of the two maxillary bones and affect natural growth 

(8-12).  

Sutures are unique to skull bones and are made up of several cell types such as osteogenic 

cells, fibroblast-like cells, and mesenchymal cells. There are two main mechanisms 

associated with active sutural growth (8, 10, 142). Firstly, sutural osteoblasts deposit bone 

matrix whilst sutural fibroblasts synthesise matrices that are non-mineralised and function to 

maintain the presence of sutures (8, 10, 142). Sutural growth is characterised by increases in 

differentiation, proliferation and matrix synthesis of mesenchymal, fibroblastic and 

osteoblastic cell lineages (9). 

5.2 Strain absorption in the Craniofacial Sutures 

Herring and Mucci were the first to investigate whether externally induced strains were 

experienced within cranial sutures and found that craniofacials sutures of miniature pigs 

experienced large strains during normal function. Specific investigation of the zygomatic 

sutures demonstrated that these regions experienced 1000-2000 microstrain, comparable in 

magnitude to those measured in the postcranial skeleton during vigorous locomotion (143). In 

a study on goat crania, Jaslow found through mechanical tests that areas of bone with sutures 

absorbed more energy under impact loading than without sutures, and the amount absorbed 
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was proportional to suture interdigitation (144). Herring and Teng studied the cranial sutures 

of miniature pigs during natural masticatory function, and stimulation of various cranial 

muscles in anaesthetized animals. It was found that upon jaw closing only the coronal suture 

experienced tension, while all other sutures experienced compression. Whether compression 

or tension was experienced depended on muscle usage. It was also found that maximum 

tensile strengths were greater than compressive strengths (145). 

Herring and Mucci’s study also suggested that adjacent sutures may experience strains of 

opposite polarity, and the morphology of the sutures dictated the direction and degree of 

energy absorbed (143). For example, well developed contacts of zygomatic and squamousal 

bone are connected with compression resisting fibers in a vertical direction, but in a 

horizontal direction have much simpler tension resisting fibers. This may be due to the 

anatomical interdigitating projections present, allowing for compression resisting fibers to 

attach. 

5.3 Importance of Mechanical Loading in the Growth of the Craniofacial Sutures 

Persson (1995) found that cranial sutures do form in the absence of muscle activity and a 

functional environment (146). However, finer sutural morphologies were modeled and 

formed as a response to secondary extrinsic forces. Further, Markens and Oudhof found that 

the coronal and sagittal suture can become transposed and inverted if anatomical morphology 

is changed (147). Kokich found that masticatory resection and mechanical immobilsation of 

sutures resulted in decreased sutural complexity, demonstrating the importance of the 

external environment in determining sutural morphology. 

It can therefore be concluded that in natural growth, sutures of the cranium rely on 

mechanical strains to modify and promote growth and lie dormant until an external signal 

such as the pressure of soft tissue growth is experienced. 
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According to a study investigating the mechanobiology of craniofacial sutures, sutural 

osteogenesis is likely modulated by microscale shear stresses induced by the tension or 

compression forces (8). This study demonstrated that fibroblastic cells in sutures increase 

proliferation and matrix synthesis following induction of mechanical stresses with cyclic 

strains having the greatest effect (8). It has been proposed that the fluid flow in bone which is 

modified and induced by the strain rate and oscillatory bone strain is responsible for 

triggering mechanotransductive responses, whereas constant forces have no ability to induce 

fluid movement (95, 148-150). As a consequence, amplitude of bone strain above a certain 

strain likely has no influence upon the rate of bone deposition compared to strain rate and 

energy (84, 151-153). 

5.4 Effect of Externally Induced Dynamic Loading on Craniofacial Sutures 

HFLMV and their effects on growth of the cranial sutures have not been studied. This is 

important as HFLMV is used routinely in the medical field during a period when growth of 

the craniofacial sutures is heavily influenced by the external environment, especially in 

children with CP. In natural growth, sutures of the head rely on mechanical strains to modify 

and promote growth. Any additional mechanical strains such as whole body HFLMV are 

likely to modify the rate of bone remodeling at the interface of the bones adjacent to the 

suture (8-12).  An example is the manipulation of the MPS where static forces have been 

used for over a century to modulate osteogenesis of craniofacial sutures in both laboratory 

research and clinical practice. They induce their effects through mechanical strain which is 

applied in a static waveform to craniofacial sutures through devices such as headgear, 

facemask and functional appliances.  

Until 2003, only static forces were used in the modification of sutural growth as the 

characteristics of dynamic force transmission between bone and sutural tissue were unknown. 
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HFLMV and their effects on growth of the cranial sutures have not been studied. This is 

important as HFLMV is used routinely in the medical field during a period when growth of 

the craniofacial sutures is heavily influenced by the external environment, especially in 

children with CP. In natural growth, sutures of the head rely on mechanical strains to modify 

and promote growth. Any additional mechanical strains such as whole body HFLMV are 

likely to modify the rate of bone remodeling at the interface of the bones adjacent to the 

suture (8-12).  An example is the manipulation of the MPS. Static forces have been used for 

over a century to modulate osteogenesis of craniofacial sutures in both laboratory research 

and clinical practice. They induce their effects through mechanical strain which is applied in 

a static waveform to craniofacial sutures through devices such as headgear, facemask and 

functional appliances.  

Previous studies have investigated the effects of mechanical oscillating strains on the growth 

and dimensions of the PMS and NFS (8, 21, 154-156). For these studies, vibration was 

induced at a frequency of less than 10Hz at a magnitude of between 0.3 – 5N for between 5 

and 12 days. In the first of these studies, Kopher demonstrated that static, sine or square wave 

forms between one N and five N at with one N increments were transferred and expressed as 

compressive strain in the PMS and tensile in the NFS. Further, PMS demonstrated 

compressive forces of 10-fold greater magnitude compared to the tensile force experienced in 

the NFS. Herring and Mucci explained this by suggesting that adjacent sutures may 

experience strains of opposite polarity, and the morphology of the sutures dictated the 

direction and degree of energy absorbed (143).  

Subsequent studies have demonstrated an escalation in cellular activity and bone remodeling, 

producing physical changes in the form of an increase in width within the suture. In Mao et 

al’s study, a tensile sinusoidal vibration stimulation at frequencies of between 0.2 Hz and 
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1Hz in 0.2Hz increments and magnitude of two N for ten minutes per day over 12 days were 

placed on the maxillary incisor. A significant increase in average sutural cell count was 

demonstrated for the vibration group (156). In addition, Kopher and Mao (2003) also 

observed an increase in sutural width when vibration was induced at a magnitude of 5N and 

all other parameters kept the same (142). This seems contradictory to the expected results 

considering osteoclasts, osteoblasts and fibroblasts increase in number and activity. However, 

the early stages of sutural response are predominated by osteoclastic and fibroblastic, rather 

than osteoblastic action (142, 155). 

Mao and Kopher utilised histologic staining and photomicrography and demonstrated that the 

dynamic group had a statistically significantly increase in the sutural cell count. The left side 

was dehydrated, trimmed and demineralised with 20% sodium citrate and 50% formic acid 

and embedded in paraffin. H&E staining was conducted following cutting of eight um 

sequential sections in the parasagittal plane. Construction of circles within the 

photomicrographs with diameters equal to the width of the suture demonstrated the average 

sutural width. Further, total sutural cells regardless of cell type were manually tagged in grids 

that were 110 x 110um^2 at 10x objective in six randomly selected grids per specimen (142). 

Fluorescent microscope labelling was conducted to identify new bone formation and the rate 

of osteogenesis. The right side of the PMS and NFS was dehydrated and trimmed in ethanol 

and acetone and prepared for uncalcified embedding with 15% dibutyl phthalate and 85% 

methyl methacrylate (MMA). 15-um sections were cut in the same plane using a microtome 

and used to calculate newly mineralised bone along the sutural edges with calcein labelling in 

undemineralised sections using a fluorescent microscope (142). These measurements also 

demonstrated an increase in the sutural width compared to the statically loaded and control 

groups (142).  
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Vij and Mao induced cyclic compressive forces at 300Mn and 5Hz onto the maxilla for five 

consecutive days on rats, starting at either 7, 23 or 32 days old over 20 minutes per day and 

discovered an increase in the average number of osteoblasts and osteoclasts. This study found 

that mesenchymal cells and fibro-blast like cells decrease apoptosis and increase the rates of 

proliferation following cyclic loading (155). This study also demonstrated an increase in 

multinucleated osteoclast cells demonstrating that net rapid growth is preceded by bone 

resorption. The method used was similar to Kopher and Mao, however measured the total 

number of nucleated cells excluding those lining blood vessels and sutural surface bone. On 

top of this, the average surface osteoblast was calculated by recording the percentage of the 

sutural surface resided by the cuboidal, mononuculated cells using computerised analysis. 

Further, osteoclast-like cells were quantified by recording all cells with three distinct nuclei 

(155). A similar result was found in Peptan et al when cyclic tensile and compressive forces 

of magnitude 1N and frequency eight Hz were placed on the maxilla for 20 minutes per day 

for 12 days using a computerised servohydraulic system. Distinct sutural bone formation and 

resorption surfaces were found. However, a decrease was found in the average osteoclast 

surface cells (154).  

These experiments demonstrate that by 12 days, osteoclasts had decreased in number whilst 

proliferation and activity of osteoblasts and fibroblasts continued to increase (154). If the 

experiments were conducted for a period greater than 12 days, the expected results would 

have been a decreased amount of bone resorption and increased bone deposition onto the 

newly deposited sutural matrix. As a result, the bone remodeling equilibrium would have 

shifted towards net bone deposition and decreased sutural width. 

Research has demonstrated that mechanical strains have an influence on cellular activity, 

bone remodeling, and matrix deposition within the suture. As a consequence, it seems likely 
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that present day treatment regimens for the improvement of bone quality in children with CP 

using HFLMV also have the ability to modify bone remodeling and bone deposition within 

the midpalatal suture. Although previous studies have investigated frequencies below 10Hz, 

there have been no studies investigating the influence of vibration at higher frequencies on 

the cranial sutures. If a statistically significant difference is found, there may be implications 

towards the growth and development of the maxillary complex. 



QUANTIFYING THE EFFECTS OF MECHANICAL VIBRATION ON THE VOLUME OF THE MIDPALATAL SUTURE 
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6 Hypofunction and Tooth movement 

6.1 Hypofunction 

Everyday activities result in physiologic forces that are transferred from teeth to the 

periodontium an infinite number of times each day. These strains act to maintain normal 

alveolar and dental morphology by influencing the action of osteocytes and modifying 

osteoclast and osteoblast action. Hypofunction refers to the situation following removal of 

teeth from ordinary occlusal function, usually resulting from an open bite occlusion or 

extraction of opposing teeth. This results in a poorly function periodontium, that causes a 

decreased bone density, enlarged marrow spaces and thinning of the outer shells of alveolar 

bone (94, 170). Hypofunctional teeth encounter less resistance to movement from the 

alveolar bone during orthodontic treatment. On top of this, the PDL of these teeth 

demonstrate atrophic changes such as disorientation of collagen fibers, vascular constriction, 

and narrowing of the periodontal space. This results in a physiological remodeling of teeth 

that causes pathologic resorption and abnormal root shapes (171-173).  

6.2 Surrounding Alveolar Bone 

6.2.1 Studies on Mice 

Previous studies have shown that RANKL is a crucial local molecule that acts to promote 

osteogenesis. On top of this, TRAP-positive cells are considered the hallmark of osteoclastic 

activity. To determine whether these mechanisms were responsible for changes in bone 

morphology in hypofunction, Enokida et al used histomorphometric analysis and 

immunohistochemical detection of RANKL and TRAP-positive cells. In this study, 40 seven-

week-old male Wistar rats were divided into two groups. Half were exposed to a device 
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composed of a stainless steel anterior bite plane and cap. Feeding was not a problem as all 

specimens gained weight during the experimental period. The specimens were either 

sacrifised at three or seve days. tnree 3 days, the hypofunction group demonstrated bone 

marrow space widening and elongation vertically parallel to the concurrent supraeruption. 

Measurement of osteoclastic activity demonstrated that TRAP-positive cells decreased at the 

mesial aspect of the interradicular alveolar bone surface and increased at the margin of the 

marrow spaces. There was also an increase in the number of RANKL-positive osteoblasts 

and RANKL-positive multinucleate cells in bone. At seven days, marrow spaces elongated 

further in the vertical direction to include the superior part of the interradicular alveolar bone. 

On top of this, periodontal spaces narrowed further, and blood vessels increased in number 

and volume as well. This increased amount of blood vessels and a further decrease in TRAP-

positive cells was also found on the mesial aspects. Finally, a significant decrease in bone to 

tissue volume ratio and an increase in RANKL-positive osteoblasts and multinucleate cells 

was found indicating an increase in osteoclast action. These results demonstrated that 

occlusal stimuli play an important role in the maintenance of alveolar bone and periodontal 

structures in rats (174).  

In a similar 2005 study also on Wistar rats, CT scans were used to determine bone mineral 

density of the mandible around hypofunctional teeth. Hypofunction was induced on the 

molars by inserting a metal cap between the maxillary and mandibular incisors on twenty 6-

week-old rats. Another 20 rats served as controls and had a metal band around the cervical 

area, ensuring molar occlusion. The rats were sacrifised at either two, four or six weeks. At 4 

weeks, cancellous bone mineral density of the mandible started declining in the 

hypofunctional group, and at 6 weeks, a decrease of 11.6% on the buccal side, 12.3% at the 

bifurcation of the root, 16.7% on the lingual side, and 39.1% at the root apex was found. 

There was a decrease in cortical bone density by 8-12% on the lingual side however no 
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difference was observed on the buccal side. From these results, the authors proposed that the 

different areas of the mandible have responses depending on the levels of function and 

mechanical strain(175).  

In 2006, the effects of hypofunction on the macroscopic dimensions of the maxilla were 

studied on rats. Hypofunction was induced through unilateral extraction of mandibular 

molars and the specimens were sacrificed after four weeks. Histological analysis of the 

extracted maxillary bones showed an increase in the bone marrow space surrounding the 

hypofunctional molar. On top of this, elongation by 1.92mm from the top of the alveolar 

bone to the bottom of the orbitale was found, that was 0.63mm greater than in controls. 

Trabecular-like structures were found, and the compact alveolar bone underneath 

demonstrated long, narrow tubular spaces. On the marrow surface, there was an increased 

number of osteoclasts that lead to a decrease in bone volume by 8.32%. Finally, the 

hypofunction group demonstrated a bone density of 68.86% compared to 77.18% for the 

teeth in occlusion (176).  

Diet as the main cause of hypofunction was investigated in 2009. Twelve 4-month-old female 

Wistar mice underwent trimming of the incisors to the gingiva. Half were fed a soft diet, and 

this group demonstrated a bone mineral density in the mandible of 0.1942 g/cm–3, compared 

to 0.2108 g/cm–3 in the control group. The authors concluded that mechanical loading during 

mastication had a significant effect in maintaining bone mineral density, and removal of this 

stimulus adversely affected bone quality (177). 

In 2011, previous studies on rats were increased in scale. A metal cap was inserted between 

the maxillary and mandibular incisors in sixty 6-week-old male Wistar rats. These rats were 

randomly divided into equal hypofunction or recovery groups and another 20 served as 

controls. Cancellous and cortical bone mineral density was measured in the first molar region 
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at 2, 4, 6, and 8 weeks after induction of hypofunction. In order to measure the potential for 

reestablishment of bone mineral density, the recovery group had the metal cap removed 

under anaesthesia at 4 weeks. BMD of the mandibular cancellous and cortical bone at the 

first molar region was measured using quantitative CT. At four weeks, the density of the 

cancellous bone around the root apex and bifurcation of molars had decreased and was 

unable to improve to the levels of the control in the recovery group. The density of the buccal 

and lingual sides also demonstrated a decrease by the fourth week although bone density in 

the recovery group was found to be the same as the control group by week six. In the cortical 

bone, a decrease in bone density was only found in the lingual central and basal area, this 

recovered to the levels of control by week six as well. These results demonstrated that 

occlusal hypofunction causes a decrease in BMD for both cancellous and cortical bone. 

Following restoration of occlusal function, this decreased density was able to recover to 

control levels except in root apex and root bifurcation in cancellous bone (178). 

6.3 Growth 

In a 2007 study, the effect of hypofunction on growing alveolar bone was investigated on 10 

five-week-old Wistar rats. Half had molar hypofunction induced using a similar bite plane 

and cap to previous experiments. After two weeks, histologic analysis demonstrated 

significant suppression of mandibular bone in the hypofunction group, especially in the 

alveolar bone surrounding the second mandibular molar. Interestingly, removal of the 

appliance allowed growth to recover to a level that was greater than controls (179). Wada et 

al used a similar study design and focused on the changes in elasticity of alveolar bone 

following hypofunction. Right maxillary first molars were extracted in five-week-old 

Sprague-Dawley rats and bone histomorphometric analysis was conducted after the two-week 

experimental period. In the bucco-lingual direction, the hypofunction group demonstrated a 



70 
 

decreased elasticity of alveolar bone. On top of this, there was an increased rate of bone 

deposition at the alveolar crest, however the opposite occurred at the root apex. This study 

confirmed that hypofunction in a growing rat altered regular bone formation, resulting in a 

change in physical and mechanical properties (180).  

6.3.1 Studies on Larger Animals 

Small scale rat studies demonstrated that hypofunction had a negative effect on alveolar bone 

morphology and density. However, in order to relate this information more accurately to 

humans, subsequent studies were based on larger animals. 

Koizumi et al used Japanese white rabbits to investigate the effects of hypofunction on bone 

quality. Hypofunction was induced through trimming of the left maxillary and mandibular 

molars every two weeks to the level of the gingiva in ten, five-week old Japanese white 

rabbits. At 17 weeks old, the rabbits were euthanized, and micro-CT measurements were 

taken of the extracted mandible. Comparison of the opposing sides demonstrated significant 

differences in total volume. Table 2 provides a summary of the results: 

No significant differences were found in trabecular separation, spacing, number or total 

volume. Accordingly, the authors concluded that masticatory dysfunction or parafunction 

during growth affects the morphology and internal structure of the mandible (181).  

6.4 The Macroscopic Dimensions of the Mandible 

6.4.1 Studies on rats 

A study to measure the macroscopic mandibular dimensional changes following 

hypofunction was conducted by Guerreiro et al. Twelve 21-day-old Wistar rats were fed a 

powder diet for 50 days. After the experimental period, extraction and histomorphometric 
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analysis demonstrated that the mandible of the hypofunction group was smaller in all 

dimensions (182). The results are summarised in the table 3  

A similar study conducted in the same year, demonstrated a 5.8% decrease in thickness of the 

alveolar process and a 28.2% decrease on the buccal side compared to controls. No 

statistically significant difference was found on the palatal aspect (183). This was 

investigated further by a study on rats in 2015 following induction of hypofunction through a 

bite plane. At two weeks, the hypofunction group demonstrated a lighter masseter, shorter 

mandibular incisor crown, and a higher mandibular alveolar process and first molar fossae 

compared to the control group (184). These three studies provided evidence that mandibular 

morphology and associated muscles are negatively affected if the optimal occlusal function is 

not present. In order to have a greater understanding of this process and how it relates to 

humans, further studies on larger animals containing a greater sample size are required. 

6.5 Biological Basis of Microscopic and Macroscopic Changes 

In order to understand the biological basis for these changes in bone morphology, the 

sympathetic nervous system was hypothesised to play a role in the decreased bone density 

around hypofunctional teeth. Similar to previous studies, rats were studied by attaching 

appliances onto the anterior teeth to create molar hypofunction. In order to study the 

proposed theory, an additional group was included that underwent both hypofunction and 

suppression of the sympathetic nervous system through ingestion of a non-selective B 

adrenergic receptor antagonist (propranolol) in drinking water. Marrow spaces increased in 

the hypofunction group, stayed the same in the occlusion group, however decreased in the 

group exposed to hypofunction and propranolol. On top of this, the interradicular bone of the 

hypofunction group demonstrated significantly lower bone volume/tissue ratio, trabecular 

thickness, and trabecular number compared to control; however, for the group subjected to 
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hypofunction and propranolol, these were significantly greater. Finally, TRAP-positive cells 

were significantly increased in the hypofunction group, stayed similar in the occlusion groups 

and decreased in the hypofunction and propranolol group. These results seemed to provide 

evidence that the sympathetic nervous system plays a role in decreasing bone quality in the 

bone surrounding hypofunctional teeth (185).  

Another proposed mechanism was the upregulation of sclerostin. This pathway acts to inhibit 

the activity of the Wnt/B-catenin signaling pathway. A study in China conducted by Xu et al 

investigated this pathway and hypofunction was induced through unilateral maxillary molar 

extraction on 14 male Sprague-Dawley rats. The opposing side served as controls and the rats 

were studied using a split mouth method. At eight weeks following the extraction, the rats 

were sacrifised and histological analysis of the mandibular alveolar bone was conducted. 

Protein expression levels of sclerostin and receptor activator of nuclear factor-xB ligand was 

increased and B-catenin was decreased at hypofunctional side.  

Although these studies indicated that the sympathetic nervous system, sclerostin and the 

Wnt/B-catenin signaling pathway are responsible for the changes in bone morphology 

following hypofunction, further research into these chemical pathways are required to make 

any conclusive statements (186). 

6.6 Midpalatal Suture  

Areas surrounding hypofunctional teeth have demonstrated accelerated bone resorption, 

reduced cancellous bone mass and density, reduced trabecular bone volume and thickness, 

and a decreased elasticity of bone (170, 171, 174-177, 179, 181). Macroscopically, 

elongation of the maxilla was found in rats from the alveolar crest to the orbitale around a 

hypofunctional maxillary molar (175). In growing rats, hypofunction was found to reduce 
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bone formation and limit the growth potential of the mandible (178, 182, 184). However, if 

hypofunction was removed, growth was found to rebound to the levels of matched controls in 

most cases. This was found to be due to a cascade of cellular processes that modified 

recruitment of osteoclasts and osteoblasts (178, 185).  

Due to the close proximity, hypofunctional teeth may have some effects on bone deposition 

during growth in the MPS and CBS, and remodeling in the defect created during maxillary 

expansion, however studies in this area have not been conducted.  

6.7 Tooth Movement 

If an orthodontic force is applied to a tooth, a cascade of cellular events is triggered resulting 

in the recruitment of leukocytes, osteoclasts and osteoblasts to the area. This results in bone 

deposition in the regions under tension and resorption in the regions of compression, 

combining to cause a decreased bone density surrounding the tooth (187). 

6.8 Animal Studies 

The first study measuring the effect of tooth movement on surrounding bone density was 

conducted in 1988 following induction of a tipping force on the maxillary molars in both 

young (21-28 days old) and adult (90-100 days old) rats. The bone volume to tissue volume 

ratio (BV/TV) was measured through frozen sample ash weight per cubic centimetre. 

Initially, a slight but insignificant increase in BV/TV was found, followed by a drastic 

decrease until day five in young rats, and day seven for adult rats. Gradual normalisation 

occurred afterwards, reaching levels similar to controls by day sevem in the young rat group 

and day 14 in the adult group (188). A similar study was conducted on 54 adult male Wistar 

rats in 1999, following induction of a mesial tipping of the left maxillary first molar. Analysis 
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using the Zeiss Videoplan device found a significant decrease in bone density between days 7 

and 14 compared to the control side (189).  

Zhuang et al conducted a study on twenty-two 11-week-old Sprague Dawley rats which were 

randomly assigned to receive either a 30g or 100g force on the right maxillary molar for two 

weeks whilst the left side served as control. Micro-CT analysis demonstrated that both groups 

had a statistically significant increase in bone volume fraction and root resorption volume. 

Trabecular separation increased significantly in the 100g group and volume of the upper 

mesial root surface in the 30g group increased compared to the 100g and control group. On 

top of this, the volume of the lower distal surface in the 100g group increased significantly 

compared to controls. The authors concluded that bone density increased after an orthodontic 

force was applied for 14 days, however the effects of 100g and 30g forces were different in 

the mesial and distal surfaces of the maxillary molars. Unfortunately this study did not 

provide information about the bone density between days 1-14 (190).  

Another Micro-CT study was conducted in 2013 on twenty 10-week-old rats, and a 10g 

mesial force was applied on the first maxillary molars for 2 weeks. Scans were taken at days 

0, 3, 7 and 14. Between days 3 and 7, the compression side demonstrated decreased structure 

model index, trabecular thickness, trabecular separation, and BV/TV that continued to 

decrease until day 14. The same parameters increased on the opposite side between 7 and 14 

days (191). 

These animal studies generally agreed that there was a decrease in bone density on the 

compression side that gradually recovered towards the levels of controls. Other areas 

demonstrated site specific changes in bone density dependent on the degree and location of 

the orthodontic force applied.  
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6.9 Human Studies 

Following the general consensus that orthodontic tooth movement resulted in modifications 

of bone densities in rats, researchers focused their attention on the potential effects on 

humans. 30 untreated individuals were compared to 15 orthodontically treated patients who 

had finished treatment at least one year prior. CBCT analysis of the periapical region of the 

maxillary incisors demonstrated lower bone mineral densities shown by a 630.28 Hounsfield 

Unit measurement, compared to 674.84 in the control group (192).  

A 2015 micro-CT study focused on an area encompassing the entire height to crest of the 

alveolar bone in the coronal, middle and apical area of interalveolar septum. 41 adult patients 

were observed for the duration of orthodontic treatment, and bone density decreased from 

148.93 to 135.97 Hounsfield Units and had no influence on the alveolar bone height (193). In 

2016, eight patients had CBCT analysis of six teeth (maxillary central and lateral incisors, 

and canines) and their surrounding bony structures (cervical, apical and intermediate) at the 

beginning of orthodontic treatment, and seven months into treatment (T1). The findings 

demonstrated a decreased bone density of between 20-29% adjacent to each tooth and a mean 

decrease of between 22-26%. At 20-22 months post-retention (T2), gradual normalisation of 

bone density had occurred. Compared to the scans at T1, an average increase of 31.81% in 

bone density was found, and compared to pre-treatment scans (T0), an overall increase of 

0.75% had occurred. Interestingly, 11% of sites were unable to recover to 80% of original 

density, demonstrating great variance in response between individuals (194). 

6.10 Midpalatal Suture 

In humans, hypofunction generally resulted in a decreased bone density surrounding teeth 

that does not recover to the original bone density in 11% of patients (188-195). Interestingly, 
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some cases demonstrated a recovery of bone density to a level greater than controls. Similar 

to hypofunction, this is due to a cascade of cellular processes, causing a modified recruitment 

of osteoclasts and osteoblasts to the surrounding areas of the tooth. The MPS and CBS 

potentially lie within the affected area, however, there have been no studies investigating this. 
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7 Simultaneous Tooth Movement and Hypofunction 

7.1 Introduction and Definitions 

By 2013, multiple studies had demonstrated that bone volume thickness, BMD, and BV/TV 

ratio decreased surrounding orthodontic tooth movement and hypofunctional teeth. 

Hypofunction was additionally found to cause macroscopic morphological changes 

encompassing the entire mandibular and maxillary bones. Although hypofunction and tooth 

movement resulted in similar consequences on bone, no studies examined whether the effects 

were amplified if both were present simultaneously. 

7.2 Human studies 

A micro-CT study was conducted by Shitano et al investigating the effects on bone if tooth 

movement and hypofunction were present simultaneously. 32 twelve-week-old male 

Sprague-Dawley rats were divided randomly into normal occlusion (C), normal occlusion 

with tooth movement (M), hypofunction (H), and hypofunction with tooth movement (HM). 

Hypofunction was applied by bonding composite resin to the incisors and the maxillary 

molars had a palatally directed force of 10g from a nickel titanium wire placed on the buccal 

surface. Tooth movement was the greatest in the HM group, however tissue volume increased 

in the H group and was the smallest in the HM group. Bone volume was much smaller in the 

H group compared to normal occlusion, these two groups were both similar to the M group 

and the smallest in the HM group. Bone mineral density of the M group was smaller 

compared to the C and H groups, however was the lowest in the HM group. Trabecular 

thickness was smaller in the HM group compared to H and was again smaller than the normal 

C groups. Finally, the trabecular number was reduced in the H group compared to the C 

group and was the smallest in the HM group. Their most significant finding was that 
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orthodontic tooth movement and occlusal hypofunction acted synergistically on bone volume, 

mineral density and trabecular thickness, resulting in severe bone loss in the surrounding 

alveolar bone (196).  

7.3 Midpalatal Suture 

Bone surrounding teeth in hypofunction or undergoing orthodontic movement experience a 

process of remodeling that results in an altered morphology and decreased bone density (170, 

171). This is due to a cascade of similar cellular processes, causing a modified recruitment of 

osteoclasts and osteoblasts to the surrounding areas of the tooth (178, 185). If both 

hypofunction and orthodontic tooth movement are present together, there is a synergistic 

amplification of these effects on the surrounding bone. The MPS and CBS potentially lie 

within the affected region and bone turnover during natural growth or midpalatal expansion 

may be modified. Neither the effects of hypofunction and orthodontic tooth movement nor 

any combinations of these two with high-frequency, low-magnitude vibration on the MPS 

and CBS have been studied. 
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8 Micro-CT 

8.1 History 

To date, there have been no studies measuring the 3D volume of the MPS and CBS. 

However, studies which measured the volume of root resorption craters resulting from 

orthodontic tooth movement have been considered as a starting point. Methods previously 

used in measuring root resorption craters include radiography, serial sectioning, light 

microscopy, transmission electron microscopy and micro-computered tomography (micro-

CT) analysis. 

8.2 Radiography 

Radiographs are inaccurate due to magnification, angulation and repositioning errors. This is 

especially true regarding interspecimen reliability. Further, radiographs are a 2D 

representation of a 3D area and are therefore unable to provide an accurate representation of 

volume. Dudic et al discovered that root resorption was underestimated if using radiographic 

analysis compared to micro-CT analysis (204). 

8.3 Serial Sectioning and Light Microscopy 

This method has been used to study resorption and the subsequent repair that occurs 

following orthodontic tooth movement. An extracted tooth is sectioned parallel to the long 

axis of a tooth and embedded using haematoxylin and eosin histological staining. A light 

microscope is used to quantify resorption craters using a micrometer that is fitted within the 

eyepiece (205). Due to the technical sensitivity and nature of the technique, complete areas 

can be destroyed or left out following sectioning, and as such this method was deemed 

inaccurate for root craters (206). 
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8.4 Scanning Electron Microscopy (SEM) 

Reitan proposed that SEM may provide an enhanced visual assessment of root resorption 

surfaces compared to previously available methods (207). By having stereo pairs of 

recordings, it provided resolution and detail that cannot be obtained from histological 

staining. Kvam used this method to measure root resorption craters produced from tooth 

movement (208), however if the area to be measured was curved, parallax errors would 

occur. Further, sections must be pieced together to allow for a volumetric measurement 

digitally, increasing the possibility for human errors and problems regarding inter-researcher 

reliability (206). 

8.5 SEM Stereo Imaging and 3D Measurements 

Chan et al used 3D scans to measure the area of root resorption, as using 2D imaging did not 

provide an accurate description of the volume to be examined (209). To combat previous 

problems, they converted the paired stereo images into an 8-bit greyscale depth map and 

volumetric analysis was conducted using a specially written software. The planar area was 

multiplied by the average depth of the nominated crater to give the volume. This technique 

was found to be highly accurate and easily reproducible (210). 

8.6 Micro-Computed Tomography 

This is a method that is useful for measuring and assessing hard tissues. It utilises 

computerised axial tomography and has a high spacial resolution in the order of a few 

micrometers. The method is based on a theory by Hounsfield (1973) that a 3D view can be 

generated by taking a series of X-ray projections from various angulations at an axis 

perpendicular to the slice. It has the ability to map, measure and quantify structures in three 

dimensions on a microscopic scale. A 3D map is created by computing the number of slices 
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together through an understanding of attenuation coefficients. With the development of 

micro-tomography, conventional medical scanners were scaled down and image resolution 

was enhanced. Current micro-scanners are able to produce an image resolution between five 

and ten μm, down to a minimum of oneμm in certain situations (211). In order to achieve 

this, the specimen moves instead of the x-ray source (212).  

To date, no published studies have attempted to measure the 3D volume of the MPS. 

However, a study conducted by Korbmacher successfully used micro-CT scanning to 

quantify the degree of obliteration of the 3D MPS in the frontal and axial planes (213). In this 

study, the hard palate of 29 deceased humans between 14-71 years of age were resected and 

fixed in formalin solution, followed by scanning using a Scanco Micro-CT machine. 

Scanning was conducted at 114uA and 70kV, with Isotropic voxel size at 37um. Each 

specimen was scanned for approximately 200 minutes and 3D reconstruction of the datasets 

was done using AMIRA 3.00 software. The osseous architecture was determined in the 

sagittal dimension by aligning the raw dataset with the suture’s midline and subsequent 

analysis was conducted with the Image Tool 3.00 software was used to compute bone volume 

and quantify morphology of the suture (213). The ability of Korbmacher’s study to accurately 

differentiate between hard and soft tissue of the midpalatal suture using micro-CT imaging 

provided the basis for our method which used the SkyScan machine to quantify the 3D 

volume of the midpalatal suture. 

Micro-CT analysis uses computerized axial tomography and has a high spatial resolution in 

the order of a few micrometers. It is highly accurate in determining hard tissue boundaries 

and has the ability to map, measure and quantify structures in three dimensions on a 

microscopic scale. Unfortunately, micro-CT analysis can only be used in deceased 
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specimens, as the technology requires the specimens to be completely still and exposes the 

specimen to excessive doses of radiation. 

8.7 SkyScan Micro-CT 

This study uses the Skyscan 1172 micro-tomograph (Skyscan, Aartselaar, Belgium) to 

examine the MPS and CBS due to the high spacial resolution and ease of use. This is the 

fourth generation of the compact desktop machine and has been used in multiple studies at 

the University of Sydney. It consists of an x-ray microscope machine and a paired 

tomographic reconstruction software. The recommended image field is 70mm high and 

68mm wide and the cone beam X-ray source has a spatial resolution between 2 and 5μm. The 

magnification of the sample depends on the distance from the x-ray detector and consists of a 

high resolution 1024 x 1024 pixel charged couple device using output images that are 16-bit 

Tagged Image File (TIFF) file format.  
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9 Conclusion 

9.1 Relevance of Research 

Whole body HFLMV activates mechanotransduction in bone, resulting in stimulation of 

osteogenesis. As a result, this idea was formulated into a treatment methodology which is 

currently used to counteract the deficiency in skeletal development in patients with cerebral 

palsy (3, 4, 6, 7). On a different front, bone surrounding teeth in hypofunction or undergoing 

orthodontic movement experience a process of remodeling, resulting in altered morphology 

and decreased bone density (170, 171). This is due to a cascade of cellular processes, causing 

a modified recruitment of osteoclasts and osteoblasts to the surrounding areas of the tooth 

(178, 185). The MPS and CBS potentially lie within the affected areas, and bone deposition 

during natural growth or orthodontic treatment may be modified. 
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13.2 Need for further investigation 

The MPS and CBS potentially lie within the area affected by HFLMV, tooth movement, and 

hypofunction and bone turnover during natural growth or MPS may be modified. This 

literature review identifies that neither the effects of hypofunction and orthodontic tooth 

movement nor any combinations of these two with high-frequency, low-magnitude vibration 

on the MPS and CBS have been studied.  
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List of Tables 
 

Table 1: (Chung and Font) Proportions of Skeletal Expansion, Alveolar Tipping and Dental 

Tipping 

 Skeletal expansion Alveolar tipping Dental tipping 

First premolar 55% 6% 39% 

Second premolar 45% 9% 46% 

First molar 38% 13% 49% 

 

Table 2 (Koizumi et al): Proportions of Skeletal Expansion, Alveolar Tipping and Dental 

Tipping 

 Hypofunctional side Control side 

Total volume 696.1mm3 890.8mm3 

Cancellous bone volume 83.3mm3 165.1mm3 

Cancellous bone volume 

density 

12% 20.9% 

Trabecular thickness 153.2μm 202.7μm 

Trabecular number 0.8mm 1.0mm 

Trabecular separation 1136.8μm 773.2μm 

Spacing 975.8μm 1290μm 

Table 3 (Guerreiro et al): Macroscopic changes in the mandible 
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 Hypofunctional group Control group 

Mandibular ramus 10.77mm 11.11mm 

Mandibular body length 21.67mm 22.36mm 

Mandibular height 4.24mm 4.54mm 

Mandibular base depth 1.24mm 1.47mm 
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11 Manuscript 

11.1 Abstract 
Introduction 

Whole body high-frequency low-magnitude vibration (HFLMV) is routinely used in the 

medical field to improve bone quality in children. For this treatment, vibration is induced 

during a period when growth of the midpalatal suture is heavily influenced by the external 

environment. The midpalatal suture acts as a growth site responding to external signals 

stimulating deposition of bone on the sutural edges, facilitating transverse maxillary growth. 

Any additional mechanical strain such as HFLMV could modify the rate of bone remodelling 

at the interface of the two maxillary bones and affect natural growth. 

Objectives 

To evaluate the effects of HFLMV on the volume of the midpalatal suture (MPS) of rats. 

Materials and methods 

This study consisted of forty-two, five-week-old Fisher Strain male rats which were 

previously used in a study investigating the effects of vibration on hypofunctional teeth. The 

rats were randomly allocated into Vibration and Non-vibration groups. 

In the vibration groups, HFLMV was induced through whole body vibration platforms. The 

rats were kept in their cages and placed two at a time on the vibrating platform set at a 

magnitude of 0.3g and frequency of 30Hz. This stimulus was applied for 20 minutes per day, 

five days per week for a total of 30 days. 

The MPS was analysed as two separate volumes of interest in order to avoid the regions 

complicated by the pre-maxillomaxillary and palatomaxillary sutures. Three-dimensional 
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micro-computed tomography (micro-CT) was used to quantify the volumes of the MPS. The 

measured volumes of the mid-palatal suture were adjusted by the length of the rat heads and 

statistical analysis was conducted. 

Results 

There was no statistically significant difference in the volumes of the MPS in any region 

between the Vibration and Non-vibration groups. 

Conclusion 

The findings of this 30-day animal study indicate that HFLMV applied through whole body 

vibration platform does not affect the volume of the MPS of rats.  

11.2 Introduction 

The concept ‘form follows function’ was proposed by Julius Wolff in the 19th century, to 

explain the relationship between mechanical loading and skeletal morphology (1). Although 

Wolff’s law could not predict the exact reactions of bone to a mechanical load, it 

demonstrated that daily activities and their interactions with gravity or ground reaction forces 

created mechanical strains that maintain or improve bone quality (1-3). This is achieved 

through a process of bone remodeling, defined as the ratio of bone formation to bone 

resorption (1).  

The use of High-frequency, low-magnitude vibration (HFLMV) as a medical intervention 

emerged from a series of studies investigating the relationship between strain and osteogenic 

activity. Initially, it was thought that the magnitude of the externally induced strain was 

proportional to the amount of bone deposition (4). However, Fritton disproved this and 

proposed a new idea that frequency of the applied load has greater importance in determining 

bone remodeling (5). Further investigations demonstrated that as the frequency of the load 
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increases, the strain required to induce bone formation decreases dramatically (3). Extremely 

small magnitude strains at a frequency of 20-40Hz applied continuously on the skeleton were 

responsible for bone tissue organization (5, 6). Whole-body vibration devices capable of 

transferring HFLMV stimuli onto the skeleton are currently used effectively in the treatment 

of many medical conditions including women suffering from postmenopausal osteoporosis 

(7-12), children with disabilities (13-16), and in individuals with prolonged bed rest (17-20).  

Sutures are unique to skull bones and are made up of several cell types such as osteogenic 

cells, fibroblast-like cells, and mesenchymal cells. There are two main mechanisms 

associated with active sutural growth (21-23). Firstly, sutural osteoblasts deposit bone matrix 

whilst sutural fibroblasts synthesise matrices that are non-mineralised and function to 

maintain the presence of sutures (21-23). Sutural growth is characterised by increases in 

differentiation, proliferation and matrix synthesis of mesenchymal, fibroblastic and 

osteoblastic cell lineages (24). 

Cyclic forces with a sine wave characteristic have induced endocortical and periosteal 

appositions in long bones and postcranial skeletons of vertebrate species (3, 25, 26). More 

recently, exogenously applied oscillatory mechanical stresses have demonstrated bone 

apposition in the cranial sutures as well (23, 27-30). According to a study investigating the 

mechanobiology of craniofacial sutures, sutural osteogenesis is likely modulated by 

microscale shear stresses induced by the tension or compression forces (22). This study 

demonstrated that fibroblastic cells in sutures increase proliferation and matrix synthesis 

following induction of mechanical stresses with cyclic strains having the greatest effect (22). 

It has been proposed that the fluid flow in bone which is modified and induced by the strain 

rate and oscillatory bone strain is responsible for triggering mechanotransductive responses, 

whereas constant forces have no ability to induce fluid movement (31-34). As a consequence, 
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amplitude of bone strain has no influence upon the rate of bone deposition compared to strain 

rate and energy (5, 35-37).  

The introduction of HFLMV to the orthodontic field as an adjunctive treatment methodology 

was based on the concept that increased bone remodeling could subsequently increase the 

rate of bone healing and orthodontic tooth movement.  

Products inducing HFLMV marketed to improve the rate of tooth movement are readily 

available and used by orthodontists around the world despite contradictory results (29, 44, 

45). Later, two higher quality prospective randomised clinical control trials found no 

improvement in the rate of tooth movement with mechanical vibration  (46), (47). HFLMV 

has also been proposed to reduce pain and decrease root resorption, however, no high-quality 

studies have demonstrated any significant positive results in either (7, 47-50). 

Although no high-quality evidence supports the use of HFLMV in orthodontics, it is 

routinely used in the medical field to improve bone quality in children with motor disabilities 

such as cerebral palsy (CP). For this treatment, vibration is induced during a period when 

growth of the craniofacial sutures is heavily influenced by the external environment. In 

natural growth, sutures of the cranium rely on mechanical strains to modify and promote 

growth and lie dormant until an external signal such as the pressure of soft tissue growth is 

experienced. An example is the midpalatal suture (MPS), which acts as a growth site 

responding to external signals stimulating deposition of bone on the sutural edges that 

facilitate expansive growth of the maxilla (21, 51, 52). Any additional mechanical strain such 

as whole body HFLMV could modify the rate of bone remodeling at the interface of the two 

maxillary bones and affect natural growth (21, 22, 24, 51, 52).  
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Prior to a study by Kopher and Mao, only static forces were used in the modification of 

sutural growth as the characteristics of dynamic force transmission between bone and sutural 

tissue were unknown. Their study was the first to demonstrate that cyclic forces placed on the 

maxillary bone create tissue-borne mechanical strains of corresponding wave forms that are 

experienced by premaxillomaxillary (PMS) and nasofrontal (NFS) sutural cells. In the second 

part of their study, Kopher and Mao investigated the relationship on 19 male six-week old 

rabbits that were randomly allocated to either static, dynamic or control groups. Both loading 

groups were exposed to the same peak strain, whilst the dynamically loaded group received 

vibration at a magnitude of five N and frequency of one Hz for 10 minutes per day over a 12-

day experimental period. The PMS experienced compressive strains and the NFS tensile 

strains. Bone strain recordings demonstrated that waveforms of dynamic and static loading 

were communicated as corresponding wave forms in the sutural tissue, however, the mean 

peak strains experienced in the PMS were 10-fold higher than in the NFS. In the dynamic 

group, there was a statistically significantly increase in the sutural cell count and rate of 

osteogenesis. On top of this, there was also an increase in the sutural width compared to the 

statically loaded and control groups (23).  

Subsequent studies conducted by Mao et al (2003), Peptan et al (2008) and Vij and Mao 

(2006) investigated the effects of mechanical oscillating strains at a frequency less than 10Hz 

and magnitude of 0.3 – 5N for between 5 to 12 days on the dimensions of the PMS and NFS 

(22, 27-30). On top of the unanimous increase in sutural width, an increase in the number of 

fibroblasts, osteoblasts and osteoclasts by day five was found. This overall increase in cell 

number combined with the increased production of sutural matrix and minimal initial bone 

resorption was proposed to have resulted in an increased sutural width (29, 30, 53). By 12 

days, osteoclasts had decreased in number whilst proliferation and activity of osteoblasts and 
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fibroblasts continued to increase, likely to result in deposition into the suture and decreased 

sutural width if the experimental time was increased (30).  

Although no previous studies have investigated the effect of HFLMV on the midpalatal 

suture, craniofacial sutures that have experienced mechanical stimuli with parameters similar 

to this experiment have demonstrated increased cellular number and activity resulting in 

increased bone remodeling. These were quantified by comparing the sutural width, with the 

groups experiencing vibration having a greater sutural width when compared to control 

groups (21, 22, 24, 51, 52). The volume of the midpalatal suture represents a three-

dimensional area as oppose to the linear measurement of sutural width, however alterations to 

the volume of the midpalatal suture found during the induction of HFLMV also represent 

changes in the physical proportions of the midpalatal suture occurring as a consequence of 

modified bone remodeling. 

Present day treatment regimens for the improvement of bone quality in children with CP 

usually use HFLMV between 12-30 Hz (15, 54-58). Although previous studies have 

investigated frequencies below 10Hz, there have been no studies investigating the influence 

of vibration at higher frequencies on the cranial sutures, specifically the MPS. Furthermore 

despite no evidence, devices such as AcceleDent™ are widely available and used by 

orthodontists in an effort to improve the rate of tooth movement.  

Therefore the aim of this study was to evaluate the effects of high-frequency low-magnitude 

vibration on the volume of the MPS in a rat model. Based on previous experiments, it can be 

hypothesized that the volume of the midpalatal suture would decrease as a result of continued 

osteoblast activity and bone deposition following the initial periods of osteoclastic action and 

extracellular matrix deposition. 
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11.3 Materials and Methods 

All experimental procedures followed the ethics approval (A-15—116) provided by the 

Committee for animal research of Hiroshima University. 

This study consisted of forty-two, Fisher Strain male rats. The rats were previously used in a 

study investigating the effects of vibration on hypofunctional teeth by Kohan et al (59). The 

rats were obtained at five weeks old and were held in approved housing at Hiroshima 

University comprising of a 12 hour day and 12 hour night cycle maintained at a constant 

temperature of 230 C. Water was made available at all times and the animals were fed a 

powder diet (Rodent Diet CE-2; Japan CLEA Inc, Tokyo, Japan) (59).  

For this study the animals were randomly allocated into seven groups of six rats: Control (C), 

Tooth movement (M), Vibration (V), Vibration and tooth movement (VM), Hypofunction 

and tooth movement (HM), Hypofunction and vibration (HV), Hypofunction, vibration and 

tooth movement (HVM) groups. 

11.3.1 Experimental protocol 

In the hypofunctional group, an anterior bite-raising appliance was placed for a period of 

seven weeks before the experimental period to induce occlusal hypofunction at the molar 

region (60). It consisted of an anterior bite plate on the mandibular incisors made of NEW ST 

LOCK base (Dentsply-Sankin, Tokyo, Japan) and a metal cap made of band material on the 

maxillary incisors (3M Unitek Co, Tokyo, Japan) bonded with composite resin (Clearfil 

Majesty LV; Kuraray Co Ltd, Okyamam Japan) (Figure 1) (59). 

In the tooth movement groups, orthodontic tooth movement was induced on the maxillary 

first molars via closed coils extending between incisors and first molars, applying 50g of 

force (Figure 2) (61).  
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In the vibration groups, HFLMV was induced through whole body vibration platforms 

(Solofex, Soloflex Inc. Hillsboro, OR). The rats were kept in their cages and placed two at a 

time on the vibrating platform set at a magnitude of 0.3g and frequency of 30Hz. At the 

Earth’s surface where g=9.8m.s-1, the peak strains experienced were approximately 5ue (62). 

This stimulus was applied for 20 minutes per day, five days per week for a total of 30 days 

based off previous studies (25, 62-68).  

11.3.2 Animal weight  

All rats included in the study remained healthy and gained weight significantly before and 

during the entire experimental period. However, rats in the occlusal hypofunction group 

gained less weight due to difficulties in eating. At the beginning of the experimental period, 

the rats experiencing hypofunction had an average weight of 84.6 g, whilst before sacrifice 

weighed 231.67g. This equated to an average weight gain of 147.1g. In comparison, the 

average weight of all rats at the beginning of the experimental period was 85.26g and weight 

before sacrifice was 268.89g. This equated to an average weight gain of 183.63g. 

11.3.3 Specimen imaging  

After the 30-day experimental period, the rats were euthanised through carbon dioxide 

inhalation. The heads were decapitated, degloved and superfluous tissue was removed and 

perfused with 10% buffered formalin solution for storage.  

Specimen scanning was performed using the SkyScan 1172 desktop X-ray microtomography 

(SkyScan, Aartselaar, Belgium). A purpose built radiolucent positioning jig was made, and 

specimens were secured with parafilm. In order to ensure consistency, the midpalatal suture 

of each specimen was aligned to a marking on the jig which was also perpendicular to the 

straight edge of the jig. The rats were scanned individually with each scan lasting 

approximately six hours. 
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The vertical dimensions of the region of interest was larger than the maximum field of view 

of the SkyScan. As a result, the oversize function was used and several scans in the vertical 

dimension were taken and interpolated. Preliminary viewing of each scan was conducted at 

rotation steps of 45, 90, 135, 180, 270 and 360 degrees to ensure the region of interest was 

contained in the field of view. 

The specimen was rotated 360 degrees around the vertical axis, and 3D microstructural 

information was captured. The following parameters were used. 

• Pixel Size (µm) = 7.41823 

• Camera Pixel Size (µm) = 11.75 

• Filter = Al 0.5 mm 

• Exposure (ms) = 590 

• Rotation Step (°) = 0.110 

• Frame Averaging = OFF 

• Random Movement = OFF  

Preliminary scans at a range of resolutions were conducted, and subsequent reconstructions 

demonstrated that 7.41µm was sufficient for the analysis of the midpalatal suture. Digital 

recordings were taken at angular increments of 0.11 degrees, creating 1855 projections for 

each specimen.  

Skyscan’s volumetric reconstruction software “NRecon” (SkyScan, Aartselaar, Belgium) was 

used to reconstruct 3D data sets from the raw data of acquired 3D projections through 

application of a modified Feldkamp algorithm. Interactive thresholding was conducted to 

differentiate between bone and sutural tissue. The reconstructed data sets were saved in a 
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bitemap data format. Angular projections were used to orientate the reconstructions and cross 

sections of the midpalatal suture were created in the frontal section. 

The “CT analyser” (CTan) software was used to calculate the volume of the midpalatal 

suture. As CTan performs binarised analyses, a threshold was interactively selected by one 

operator to define between sutural tissue and bone. The sutural tissue was defined as the 

radiolucent areas between the maxillary bones. Each frontal slice was individually analysed 

and the area representing the midpalatal suture was quantified. Addition of the areas of each 

individual slice produced the volume of the midpalatal suture.  

This particular method of quantifying the boundaries between bone and sutural tissue is based 

on a method used by Korbmacher. In this study, the hard palate of 29 deceased humans 

between 14-71 years of age were resected and fixed in formalin solution, followed by 

scanning using a Scanco Micro-CT machine. Scanning was conducted at 114µA and 70kV, 

with Isotropic voxel size at 37µm. Each specimen was scanned for approximately 200 

minutes and 3D reconstruction of the datasets was done using AMIRA 3.00 software. The 

osseous architecture was determined in the sagittal dimension by aligning the raw dataset 

with the suture’s midline and subsequent analysis was conducted with the Image Tool 3.00 

software was used to compute bone volume and quantify morphology of the suture. 

11.3.4 Sample analysis 
 
11.3.4.a Quantitative analysis of the volume of the midpalatal suture 

Anatomically, the premaxillary bone is proportionally longer than the equivalent incisive 

bone in humans. Further, the anatomy of the premaxillary and palatomaxillary sutures are 

complex and interferes with the borders of the midpalatal suture, making identification of the 

midpalatal suture in this region difficult (69-71). Accordingly, the areas between the palatine 
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and maxillary bones and the entire pre-maxilla were not included in the volume of interest in 

this study and reconstructions were utilized to measure the volume of the midpalatal suture in 

two separate volumes of interest in the frontal plane.  

The anterior volume of interest was measured from a line perpendicular to the coronal plane 

joining the first appearances of the palatine fossae to a line parallel to that joining the first 

appearance of the interpalatine suture within the maxillary bones (Figure 3). 

The posterior volume of interest was measured from a line perpendicular to the frontal plane 

joining the first appearance of the interpalatine suture within the palatine bones to a line 

parallel to that joining the termination of the midpalatal suture (Figure 4). 

To increase accuracy, each measurement was taken twice and the mean of the two 

measurements were taken as the final measurement. The data for the volumetric analysis of 

the midpalatal suture was collected by a single operator (AL).  

Previous studies have demonstrated food deficiencies greater than 25% of normal intake 

cause growth deficiencies that lead to macroscopic changes in the dimensions of the 

craniofacial skeleton (72, 73). In our sample, since the animals in the Hypofunction groups 

had less weight gain, digital calipers were used to measure the length of the head from the 

bony tip of the nose to the posterior cranial synchondrosis and all volumetric measurements 

of the midpalatal suture were adjusted to reflect the relationship with this baseline covariate. 

This adjustment was performed by dividing the measured volume of midpalatal suture with 

the length of the head. 

11.3.4.b Statistical analysis 

Statistical analysis was processed using IBM SPSS Statistics program. The first analysis was 

conducted to compare the influence of vibration only. Therefore the groups were combined 
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such that all rats that experienced vibration were in one group, whilst all rats that did not in 

another. 

One-way analyses of variance were conducted to determine if vibration had an impact on the 

volume of the midpalatal suture when groups were analyzed all together or seperately. 

For all of these analyses, three separate analyses were conducted, comparing the anterior, 

posterior and total volume of the midpalatal suture separately. A p-value of less than 0.05 

was considered to be statistically significant.  

11.4 Results 
 
11.4.1 Analysis 1: Comparing Vibration and Non-Vibration groups 

For Analysis 1 all the sub-groups were re-grouped into two main groups in regards to their 

vibration status: 

All the groups that had vibration were named Vibration and all the groups that did not have 

any vibration were re-grouped under Non-vibr. 

As the volumes were adjusted by the length of the rat head, the adjusted volume used in 

statistical analyses were no longer an exact measurement of the volume of the midpalatal 

suture. As a consequence, Z-scores were used in the figures as they provide an accurate value 

for comparison. Each figure demonstrates the mean, as well as standard deviations. 

Vibration (n=24): 

• Vibration (V) 

• Vibration and tooth movement (VM) 

• Hypofunction and vibration (HV) 
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• Hypofunction, vibration and tooth movement (HVM) 

Non-vibr (n=18): 

• Control (C) 

• Tooth movement (M) 

• Hypofunction and tooth movement (HM) 

There was no statistically significant difference in the volumes of the midpalatal suture in any 

region between the Vibration and Non-vibr groups. The results are represented graphically for 

the anterior portion in Figure 5, the posterior portion in Figure 6, and the combined volume in 

Figure 7. 

11.4.2 Analysis 2: Comparison of sub-groups 

• Control (C) 

• Tooth movement (M) 

• Vibration (V) 

• Vibration and tooth movement (VM) 

• Hypofunction and tooth movement (HM) 

• Hypofunction and vibration (HV) 

• Hypofunction, vibration and tooth movement (HVM) 

There was no statistically significant difference in the volume of the midpalatal suture in any 

region between any of the groups, when all seven groups (Vibration (V), Vibration and tooth 

movement (VM), Hypofunction and vibration (HV), Hypofunction, vibration and tooth 

movement (HVM), Control (C), Tooth movement (M) and Hypofunction and tooth movement 
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(HM)) are compared individually. The results are represented graphically for the anterior 

portion in Figure 8, the posterior portion in Figure 9, and the combined volume in Figure 10. 
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11.5 Discussion 

This was the first study to investigate whether mechanical strains at a frequency of 30Hz has 

an effect on the volume of the midpalatal suture in rats. It was also the first to evaluate the 

effects of oscillatory mechanical strains on maxillary sutures using micro-CT imaging.  

The results demonstrate that HFLMV has no statistically significant effect on the volume and 

growth of the midpalatal suture in developing rats when induced over a 30-day experimental 

period.  

In vivo studies have demonstrated that a chamber in the center of craniofacial sutures 

contains cells that respond to external mechanical stimuli (24, 53, 74-77). Any additional 

oscillatory stimulus outside of daily activities stimulates proliferation and decreased 

apoptosis of mesenchymal, fibroblast, osteoclast and osteoblast cells, resulting in increased 

matrix deposition and bone remodeling within cranial sutures (23, 24, 28-30, 53). 

Previous studies have investigated the effects of mechanical oscillating strains at a frequency 

less than 10Hz and magnitude of 0.3 – 5N for between 5 to 12 days on the dimensions of the 

PMS and NFS (22, 27-30, 78). In these experiments a unanimous increase in bone 

demineralization and resorption was found, resulting in an increased sutural width. This 

seems contradictory to the expected results considering osteoclasts, osteoblasts and 

fibroblasts increase in number and activity. However, early stages of sutural response to 

mechanical vibration are predominated by osteoclastic and fibroblastic action (22, 23, 28, 

29). At five days following induction of vibration, the production of sutural matrix by 

fibroblasts, bone resorption from osteoclasts and overall proliferation in cell number resulted 

in an increased sutural width whilst limited osteoblastic bone deposition occurred (29, 30, 

53). By 12 days, osteoclasts had decreased in number whilst proliferation and activity of 

osteoblasts and fibroblasts continued to increase (30). For the experimental period of 30 days 
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used in this experiment, it is likely that sutural response has transitioned through the initial 

stages of bone resorption and matrix deposition to being predominated with bone deposition 

into the suture (29, 30, 53). Logically, this should equate to a decreased sutural volume as 

bone is deposited into the sutural tissue, however this was not found.  

A possible explanation of the lack of result compared to previous experiments examining the 

effects of vibration and craniofacial sutures relates to the difference in parameters of 

vibration induced and experimental duration. Previous experiments have focused on lower 

frequency vibration of higher magnitude, for a maximum of 12 days. Despite this, several 

studies have shown that mechanical stimulation at or around the parameters of 30Hz and 0.3g 

resulted in a decreased amount of bone resorption and increased bone deposition in affected 

regions capable of bone remodeling (64, 66, 79-81). Rubin et al conducted an experiment on 

sheep in which vibration was induced at the same parameters (30Hz, 0.3g, 20 min/day, five 

days per week) as this experiment for an experimental period of one year. It was found that 

bone deposition on the regions which experienced vibration was significantly greater (68). 

Lau discovered that HFLMV at 0.3g and 30Hz had an inhibitory effect on the signaling 

pathway between osteocytes and osteoclasts, leading to a decreased production of 

osteoclasts and a reduced amount of bone resorption with effects occurring in as little as 30 

minutes after induction of vibration (81). Further studies using either a frequency of 30Hz or 

magnitude of 0.3g have also found that vibration enhances bone deposition resulting in 

replacement of hypertrophic cartilage in experimental durations as short as 10 weeks (64, 66, 

79, 80).  

These studies demonstrate the potential that vibration at 30Hz and 0.3g has the ability to alter 

bone remodeling in affected regions. Combining this with the previous studies on vibration 

and craniofacial sutures, it can be hypothesized the experimental protocol used in this 
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experiment should result in bone deposition that subsequently modifies the volume of the 

midpalatal suture of rats. However, it is clear that between 12 days and 10 weeks there is a 

transition from net bone resorption to bone deposition. As no studies have been conducted 

between these time frames it is difficult to know exactly when this transition is expected to 

occur. It is likely that this experimental period of 30 days was in the transitional period 

between net bone resorption and bone deposition, and no statistically significant difference in 

bone volume was visible when measuring sutural volume. If the experiment was conducted 

for over 10 weeks, the bone remodeling equilibrium in this experiment may have already 

shifted towards net bone deposition into the craniofacial suture, leading to a decreased 

volume of the midpalatal suture. 

Another consideration regarding the result relates to the lack of transverse growth available 

during the experimental period. Transverse growth occurs between 4 and 30 days of age as a 

result of cartilage and connective tissue proliferation. It is likely that our experimental period 

was conducted at a time when most of the ossification of the midpalatal suture had already 

occurred, limiting the amount of bone deposition into the suture and any volumetric changes 

within the measured area (82). 

Although no statistically significant change was found in the volume of the midpalatal suture, 

additional examination of cellular activity, sutural width, degree of bone mineralization and 

matrix deposition would have provided supplementary information regarding the status of 

bone remodeling in the midpalatal suture. 

Previous studies have used histological staining and photomicrography to measure cellular 

activity and morphological changes. In these studies, the PMS and NFS were dissected with 

five mm of surrounding bone and analysed following H&E staining, allowing the average 

sutural width and total sutural cells to be quantified (23). The average surface osteoblast was 
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calculated through quantifying the cuboidal, mononuculated cells whilst the osteoclast-like 

cells were distinguished through counting the cells with three distinct nuclei (29, 30). If 

histological examination was conducted in this experiment, there would have been 

information provided regarding the activity and number of mesenchymal cells, fibroblasts, 

osteoclasts and osteoblasts.. The results may have provided information regarding presence 

or absence of sutural growth and bone remodeling following induction of vibration (83-85).  

Calcein labelling of undermineralised sections was also utilized in previous studies which 

allowed determination of new bone formation following investigation with a fluorescent 

microscope (23). This method in particular if conducted in the current experiment would 

have provided a significantly greater understanding of morphological changes and new bone 

formations that were not detected by measuring the volume of the midpalatal suture alone.  

No measurements were taken to evaluate the properties of the mechanical strain experienced 

by midpalatal sutural cells. Previous studies have demonstrated that the degree of vibration 

experienced within a suture is related to the distance from the source of vibration. Adjacent 

sutures may experience strains of opposite polarity, with the morphology of the sutures 

dictating the direction and degree of energy absorbed (86). Kopher and Mao placed strain 

gauges and rosettes across the PMS and NFS and stimulation was placed onto the maxillary 

incisor and expressed as compressive strain in the PMS at 10-fold greater magnitude 

compared to the tensile force experienced in the NFS and tensile in the NFS. This 

demonstrates a loss of strain amplitude following transmission between maxilla to adjacent 

calvarial bones as well as reversing of polarity. The authors stated that the PMS, which is 

close to the source of the strain is directly being influenced whilst the NFS has some distant 

effects of bending and tensing. As this study relied on whole body vibration, quantification of 

the mechanical strain within the midpalatal suture would have provided important 
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information regarding the type and degree of strain experienced and subsequent effect on the 

sutural cells. 

In the present study, apart from vibration, some of the rats were subjected to hypofunction 

and/or orthodontic tooth movement. Although this is unlikely to have an effect on the volume 

of the midpalatal suture, several studies on rats have demonstrated that occlusal hypofunction 

results in decreased bone density, enlarged marrow spaces and thinning of the outer shells of 

alveolar bone (87, 88). Macroscopically, molar hypofunction in rats resulted in elongation of 

the maxilla from the alveolar crest to the orbitale around a hypofunctional maxillary molar 

(89). Katsaros et al found that the reduced masticatory function resulting from an 

experimentally induced soft diet resulted in less bone deposition in the internasal, naso-

premaxillary and inter-premaxillary sutures of growing rats when compared to a group fed 

with a hard diet. It was proposed in this study that the reduced rates of bone apposition were 

related to the decreased width of sutural space following decreased functional demands (90).  

Studies investigating the effects of OTM on bone deposition in rats have demonstrated that a 

tipping force results in a drastic decrease in the bone volume to tissue volume ratio until day 

five for young rats, and day seven for adult rats. Gradual normalisation occurred afterwards, 

reaching levels similar to controls by day seven in the young rat group and day 14 in the adult 

group (91). Shitano et al demonstrated that simultaneous OTM and occlusal hypofunction 

resulted in a synergistic effect on bone volume, mineral density and trabecular thickness, 

causing severe bone loss in the surrounding alveolar bone (92). The groups were also 

individually analysed to investigate whether hypofunction and/or tooth movement affected 

the sutural volume. There were no significant differences between the groups when compared 

individually. OTM and occlusal hypofunction have demonstrated an effect on surrounding 

alveolar bone, with limited effects on the macroscopic dimensions of the maxilla or 
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mandible. These factors may have had an influence on the volume of the midpalatal suture, as 

bone deposition occurs into the suture in normal growth; possibly contributing to the lack of 

statistically significant result. 

11.5.1 Future directions 

The sample size used in this experiment was small, which may have contributed to the lack of 

any statistically significant difference between various examination groups. Variations in 

anatomy and growth have a greater impact on the overall results when the sample size is 

small (93-95). In the future, a larger sample size could provide results with greater reliability 

in results. Compared to other studies, this study demonstrated no significant differences in the 

rate of deposition of bone growth, which may have been also attributed to the insufficient 

duration of the project, previous studies have found that bone deposition occurs if vibration is 

induced for more than 10 weeks. Furthermore, histological analysis of bone deposition, 

cellular activity and number, as well as quantification of the strain experienced in the 

midpalatal suture would have provided significant information about bone remodeling and 

cellular level activity despite the lack of significant difference in the volume of the midpalatal 

suture. Also bone density or the degree of bone mineralization could be assessed in future 

studies. It can also be considered to conduct the experiment between the age of 4 and 30 

days, as most of the growth, bone deposition and remodeling of the midpalatal suture occurs 

during this period of time. Although unlikely to influence the midpalatal suture, hypofunction 

and OTM should ideally be removed from future experiments in the field to prevent 

supplementary factors from influencing the result. 

Rat studies are a preliminary basis for further studies on larger animals and humans. This is 

because they cannot be directly associated as there are significant anatomical differences 

between rats and humans. Rats have denser bone compared to humans, the bones lack 
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osteons and have less abundant osteoid tissue (96-98). Despite this, rats provide a good 

starting point for pilot studies considering cost and time effectiveness of this model.   
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11.6 Conclusion 

The findings of this 30 day animal study indicate that high frequency low magnitude 

mechanical vibration applied through whole body vibration platform does not affect the 

volume of the midpalatal suture of rats.  

  



QUANTIFYING THE EFFECTS OF MECHANICAL VIBRATION ON THE VOLUME OF THE MIDPALATAL SUTURE OF RATS 

 121 

11.7 References 
 
1. Wolff J. The Law of Bone Remodelling. Berlin, Germany: Springer-Verlag; 1892. 
2. Sievänen H. Immobilization and bone structure in humans. Archives of biochemistry 
and biophysics. 2010;503(1):146-52. 
3. Rubin CT, Lanyon L. Regulation of bone formation by applied dynamic loads. Journal 
of Bone and Joint Surgery. 1984;66(3):397-402. 
4. Adams DJ, Spirt AA, Brown TD, Fritton SP, Rubin CT, Brand RA. Testing the daily 
stress stimulus theory of bone adaptation with natural and experimentally controlled strain 
histories. Journal of Biomechanics. 1997;30(7):671-8. 
5. Fritton SP, McLeod KJ, Rubin CT. Quantifying the strain history of bone: spatial 
uniformity and self-similarity of low-magnitude strains. Journal of biomechanics. 
2000;33(3):317-25. 
6. Rubin CT, Lanyon LE. Limb mechanics as a function of speed and gait: a study of 
functional strains in the radius and tibia of horse and dog. Journal of Experimental Biology. 
1982;101(1):187-211. 
7. Yeoh PP, Cheng LL, Papadopoulou AK, Darendeliler M. Effects of mechanical 
vibration on root resorption in the rat molar induced by a heavy orthodontic force. 
Australasian Orthodontic Journal. 2017;33(2):179. 
8. Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S. 
Effect of 6-month whole body vibration training on hip density, muscle strength, and 
postural control in postmenopausal women: A randomized controlled pilot study. Journal of 
Bone and Mineral Research. 2004;19(3):352-9. 
9. Von Stengel S, Kemmler W, Engelke K, Kalender W. Effects of whole body vibration 
on bone mineral density and falls: results of the randomized controlled ELVIS study with 
postmenopausal women. Osteoporosis international. 2011;22(1):317-25. 
10. Von SS, Kemmler W, Bebenek M, Engelke K, Kalender WA. Effects of whole-body 
vibration training on different devices on bone mineral density. Medicine and science in 
sports and exercise. 2011;43(6):1071-9. 
11. Zha D-S, Zhu Q-A, Pei W-W, Zheng J-C, Wu S-H, Xu Z-X, et al. Does whole-body 
vibration with alternative tilting increase bone mineral density and change bone metabolism 
in senior people? Aging clinical and experimental research. 2012;24(1):28-36. 
12. Lai C-L, Tseng S-Y, Chen C-N, Liao W-C, Wang C-H, Lee M-C, et al. Effect of 6 months 
of whole body vibration on lumbar spine bone density in postmenopausal women: a 
randomized controlled trial. Clinical interventions in aging. 2013;8:1603. 
13. Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, et al. Low-level 
mechanical vibrations can influence bone resorption and bone formation in the growing 
skeleton. Bone. 2006;39(5):1059-66. 
14. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical 
loading is osteogenic in children with disabling conditions. Journal of Bone and Mineral 
Research. 2004;19(3):360-9. 
15. Wren TA, Lee DC, Hara R, Rethlefsen SA, Kay RM, Dorey FJ, et al. Effect of high 
frequency, low magnitude vibration on bone and muscle in children with cerebral palsy. 
Journal of pediatric orthopedics. 2010;30(7):732. 
16. Katušić A, Mejaški-Bošnjak V. Effects of vibrotactile stimulation on the control of 
muscle tone and movement facilitation in children with cerebral injury. Collegium 
antropologicum. 2011;35(1):57-63. 



QUANTIFYING THE EFFECTS OF MECHANICAL VIBRATION ON THE VOLUME OF THE MIDPALATAL SUTURE OF RATS 

 122 

17. Rittweger J, Belavy D, Hunek P, Gast U, Boerst H, Feilcke B, et al. Highly demanding 
resistive vibration exercise program is tolerated during 56 days of strict bed-rest. 2006. 
18. Rittweger J, Beller G, Armbrecht G, Mulder E, Buehring B, Gast U, et al. Prevention of 
bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. 
Bone. 2010;46(1):137-47. 
19. Belavý DL, Armbrecht G, Gast U, Richardson CA, Hides JA, Felsenberg D. 
Countermeasures against lumbar spine deconditioning in prolonged bed rest: resistive 
exercise with and without whole body vibration. Journal of applied physiology. 
2010;109(6):1801-11. 
20. Armbrecht G, Belavý DL, Gast U, Bongrazio M, Touby F, Beller G, et al. Resistive 
vibration exercise attenuates bone and muscle atrophy in 56 days of bed rest: biochemical 
markers of bone metabolism. Osteoporosis international. 2010;21(4):597-607. 
21. Opperman LA. Cranial sutures as intramembranous bone growth sites. 
Developmental dynamics. 2000;219(4):472-85. 
22. Mao JJ, Wang X, Kopher RA. Biomechanics of craniofacial sutures: orthopedic 
implications. The Angle Orthodontist. 2003;73(2):128-35. 
23. Kopher RA, Mao JJ. Suture growth modulated by the oscillatory component of 
micromechanical strain. Journal of Bone and Mineral Research. 2003;18(3):521-8. 
24. Mao J. Mechanobiology of craniofacial sutures. Journal of dental research. 
2002;81(12):810-6. 
25. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism: Low mechanical 
signals strengthen long bones. Nature. 2001;412(6847):603. 
26. Turner C, Forwood M, Otter M. Mechanotransduction in bone: do bone cells act as 
sensors of fluid flow? The FASEB Journal. 1994;8(11):875-8. 
27. Kopher RA, Nudera JA, Wang X, O'grady K, Mao JJ. Expression of in vivo mechanical 
strain upon different wave forms of exogenous forces in rabbit craniofacial sutures. Annals 
of biomedical engineering. 2003;31(9):1125-31. 
28. Mao JJ, Wang X, Mooney MP, Kopher RA, Nudera JA. Strain induced osteogenesis of 
the craniofacial suture upon controlled delivery of low-frequency cyclic forces. Front Biosci. 
2003;8(1):a10-7. 
29. Vij K, Mao JJ. Geometry and cell density of rat craniofacial sutures during early 
postnatal development and upon in vivo cyclic loading. Bone. 2006;38(5):722-30. 
30. Peptan AI, Lopez A, Kopher RA, Mao JJ. Responses of intramembranous bone and 
sutures upon in vivo cyclic tensile and compressive loading. Bone. 2008;42(2):432-8. 
31. Ajubi N, Klein-Nulend J, Alblas M, Burger E, Nijweide P. Signal transduction pathways 
involved in fluid flow-induced PGE2 production by cultured osteocytes. American Journal of 
Physiology-Endocrinology And Metabolism. 1999;276(1):E171-E8. 
32. Duncan R, Turner C. Mechanotransduction and the functional response of bone to 
mechanical strain. Calcified Tissue International. 1995;57(5):344-58. 
33. Mcleod KJ, Rubin CT, Otter MW, Qin Y-x. Skeletal cell stresses and bone adaptation. 
The American journal of the medical sciences. 1998;316(3):176-83. 
34. Rawlinson SC, Mosley JR, Suswillo RF, Pitsillides AA, Lanyon LE. Calvarial and limb 
bone cells in organ and monolayer culture do not show the same early responses to 
dynamic mechanical strain. Journal of Bone and Mineral Research. 1995;10(8):1225-32. 
35. Carter D, Fyhrie D, Whalen R. Trabecular bone density and loading history: regulation 
of connective tissue biology by mechanical energy. Journal of biomechanics. 
1987;20(8):785-7. 



QUANTIFYING THE EFFECTS OF MECHANICAL VIBRATION ON THE VOLUME OF THE MIDPALATAL SUTURE OF RATS 

 123 

36. Luo X, Zhang J, Zhang C, He C, Wang P. The effect of whole-body vibration therapy 
on bone metabolism, motor function, and anthropometric parameters in women with 
postmenopausal osteoporosis. Disability and rehabilitation. 2017;39(22):2315-23. 
37. Turner CH, Forwood M, Rho JY, Yoshikawa T. Mechanical loading thresholds for 
lamellar and woven bone formation. Journal of bone and mineral research. 1994;9(1):87-97. 
38. Stark TM, Sinclair PM. Effect of pulsed electromagnetic fields on orthodontic tooth 
movement. American Journal of Orthodontics and Dentofacial Orthopedics. 1987;91(2):91-
104. 
39. Darendeliler MA, Sinclair PM, Kusy RP. The effects of samarium-cobalt magnets and 
pulsed electromagnetic fields on tooth movement. American Journal of Orthodontics and 
Dentofacial Orthopedics. 1995;107(6):578-88. 
40. Darendeliler MA, Zea A, Shen G, Zoellner H. Effects of pulsed electromagnetic field 
vibration on tooth movement induced by magnetic and mechanical forces: a preliminary 
study. Australian Dental Journal. 2007;52(4):282-7. 
41. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K, et al. Periodontal 
tissue activation by vibration: intermittent stimulation by resonance vibration accelerates 
experimental tooth movement in rats. American Journal of Orthodontics and Dentofacial 
Orthopedics. 2008;133(4):572-83. 
42. Kalajzic Z, Peluso EB, Utreja A, Dyment N, Nihara J, Xu M, et al. Effect of cyclical 
forces on the periodontal ligament and alveolar bone remodeling during orthodontic tooth 
movement. The Angle Orthodontist. 2013;84(2):297-303. 
43. Yadav S, Dobie T, Assefnia A, Gupta H, Kalajzic Z, Nanda R. Effect of low-frequency 
mechanical vibration on orthodontic tooth movement. American Journal of Orthodontics 
and Dentofacial Orthopedics. 2015;148(3):440-9. 
44. Kau CH, Nguyen JT, English J. The clinical evaluation of a novel cyclical force 
generating device in orthodontics. Orthodontic Practice US. 2010;1(1):10-5. 
45. Pavlin D, Anthony R, Raj V, Gakunga PT, editors. Cyclic loading (vibration) accelerates 
tooth movement in orthodontic patients: a double-blind, randomized controlled trial. 
Seminars in Orthodontics; 2015: Elsevier. 
46. Woodhouse N, DiBiase A, Johnson N, Slipper C, Grant J, Alsaleh M, et al. 
Supplemental vibrational force during orthodontic alignment: a randomized trial. Journal of 
dental research. 2015;94(5):682-9. 
47. Miles P, Smith H, Weyant R, Rinchuse DJ. The effects of a vibrational appliance on 
tooth movement and patient discomfort: a prospective randomised clinical trial. Australian 
Orthodontic Journal. 2012;28(2):213. 
48. Woodhouse NR, DiBiase AT, Papageorgiou SN, Johnson N, Slipper C, Grant J, et al. 
Supplemental vibrational force does not reduce pain experience during initial alignment 
with fixed orthodontic appliances: a multicenter randomized clinical trial. Scientific reports. 
2015;5:17224. 
49. Yadav S, Dobie T, Assefnia A, Kalajzic Z, Nanda R. The effect of mechanical vibration 
on orthodontically induced root resorption. The Angle Orthodontist. 2016;86(5):740-5. 
50. DiBiase AT, Woodhouse NR, Papageorgiou SN, Johnson N, Slipper C, Grant J, et al. 
Effect of supplemental vibrational force on orthodontically induced inflammatory root 
resorption: A multicenter randomized clinical trial. American Journal of Orthodontics and 
Dentofacial Orthopedics. 2016;150(6):918-27. 
51. Proffit WR, Fields Jr HW, Sarver DM. Contemporary orthodontics: Elsevier Health 
Sciences; 2014. 



QUANTIFYING THE EFFECTS OF MECHANICAL VIBRATION ON THE VOLUME OF THE MIDPALATAL SUTURE OF RATS 

 124 

52. Dixon AD, Hoyte DA, Ronning O. Fundamentals of Craniofacial Growth: Crc Press; 
1997. 
53. Mao JJ. Calvarial development: cells and mechanics. Current Opinion in 
Orthopaedics. 2005;16(5):331-7. 
54. Ibrahim MM, Eid MA, Moawd SA. Effect of whole-body vibration on muscle strength, 
spasticity, and motor performance in spastic diplegic cerebral palsy children. Egyptian 
Journal of Medical Human Genetics. 2014;15(2):173-9. 
55. El-Shamy SM. Effect of whole-body vibration on muscle strength and balance in 
diplegic cerebral palsy: a randomized controlled trial. American journal of physical medicine 
& rehabilitation. 2014;93(2):114-21. 
56. Lee B-K, Chon S-C. Effect of whole body vibration training on mobility in children 
with cerebral palsy: a randomized controlled experimenter-blinded study. Clinical 
rehabilitation. 2013;27(7):599-607. 
57. El-Shamy SM, Mohamed MSE. Effect of whole body vibration training on bone 
mineral density in cerebral palsy children. Indian Journal of Physiotherapy and Occupational 
Therapy. 2012;6(1). 
58. Ruck J, Chabot G, Rauch F. Vibration treatment in cerebral palsy: A randomized 
controlled pilot study. J Musculoskelet Neuronal Interact. 2010;10(1):77-83. 
59. Kohan N. The effects of Vibration on Root Resorption related to a Hypofunctional 
Periodontium - A Micro-CT study: University of Orthodontics; 2016. 
60. Motokawa M, Terao A, Karadeniz EI, Kaku M, Kawata T, Matsuda Y, et al. Effects of 
long-term occlusal hypofunction and its recovery on the morphogenesis of molar roots and 
the periodontium in rats. The Angle Orthodontist. 2012;83(4):597-604. 
61. Heller IJ, Nanda R. Effect of metabolic alteration of periodontal fibers on orthodontic 
tooth movement: an experimental study. American journal of orthodontics. 1979;75(3):239-
58. 
62. Rubin C, Turner AS, Müller R, Mittra E, McLeod K, Lin W, et al. Quantity and quality 
of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive 
mechanical intervention. Journal of bone and mineral research. 2002;17(2):349-57. 
63. Omar H, Shen G, Jones AS, Zoellner H, Petocz P, Darendeliler MA. Effect of low 
magnitude and high frequency mechanical stimuli on defects healing in cranial bones. 
Journal of Oral and Maxillofacial Surgery. 2008;66(6):1104-11. 
64. Sriram D, Jones A, Alatli-Burt I, Darendeliler M. Effects of mechanical stimuli on 
adaptive remodeling of condylar cartilage. Journal of Dental Research. 2009;88(5):466-70. 
65. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency 
mechanical signals enhance musculoskeletal development of young women with low BMD. 
Journal of Bone and Mineral Research. 2006;21(9):1464-74. 
66. Oxlund B, Ørtoft G, Andreassen TT, Oxlund H. Low-intensity, high-frequency 
vibration appears to prevent the decrease in strength of the femur and tibia associated with 
ovariectomy of adult rats. Bone. 2003;32(1):69-77. 
67. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of 
postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical 
trial assessing compliance, efficacy, and safety. Journal of Bone and Mineral Research. 
2004;19(3):343-51. 
68. Rubin C, Turner A, Mallinckrodt C, Jerome C, McLeod K, Bain S. Mechanical strain, 
induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not 
cortical bone. Bone. 2002;30(3):445-52. 



QUANTIFYING THE EFFECTS OF MECHANICAL VIBRATION ON THE VOLUME OF THE MIDPALATAL SUTURE OF RATS 

 125 

69. Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone 
composition, density, and quality: potential implications for in vivo bone research. 
Endocrinology. 1998;139(2):663-70. 
70. Tuukkanen J, Koivukangas A, Jämsä T, Sundquist K, Mackay C, Marks S. Mineral 
density and bone strength are dissociated in long bones of rat osteopetrotic mutations. 
Journal of Bone and Mineral Research. 2000;15(10):1905-11. 
71. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. The laboratory rat as an 
animal model for osteoporosis research. Comparative medicine. 2008;58(5):424-30. 
72. Miller JP, German RZ. Protein malnutrition affects the growth trajectories of the 
craniofacial skeleton in rats. The Journal of nutrition. 1999;129(11):2061-9. 
73. Pucciarelli HM. The effects of race, sex, and nutrition on craniofacial differentiation 
in rats. A multivariate analysis. American journal of physical anthropology. 1980;53(3):359-
68. 
74. Zhuang H, Wang W, Tahernia AD, Levitz CL, Luchetti WT, Brighton CT. Mechanical 
strain-induced proliferation of osteoblastic cells parallels increased TGF-β1 mRNA. 
Biochemical and biophysical research communications. 1996;229(2):449-53. 
75. Westbroek I, Ajubi N, Alblas M, Semeins C, Klein-Nulend J, Burger E, et al. Differential 
stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by 
pulsating fluid flow. Biochemical and biophysical research communications. 
2000;268(2):414-9. 
76. Ikegame M, Ishibashi O, Yoshizawa T, Shimomura J, Komori T, Ozawa H, et al. Tensile 
stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which 
later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ 
culture. Journal of Bone and Mineral Research. 2001;16(1):24-32. 
77. Simmons CA, Matlis S, Thornton AJ, Chen S, Wang C-Y, Mooney DJ. Cyclic strain 
enhances matrix mineralization by adult human mesenchymal stem cells via the 
extracellular signal-regulated kinase (ERK1/2) signaling pathway. Journal of biomechanics. 
2003;36(8):1087-96. 
78. Soh SH, Rafferty K, Herring S. Cyclic loading effects on craniofacial strain and sutural 
growth in pigs. American Journal of Orthodontics and Dentofacial Orthopedics. 
2018;154(2):270-82. 
79. Goodship AE, Lawes TJ, Rubin CT. Low-magnitude high-frequency mechanical signals 
accelerate and augment endochondral bone repair: Preliminary evidence of efficacy. Journal 
of Orthopaedic Research. 2009;27(7):922-30. 
80. Flieger J, Karachalios T, Khaldi L, Raptou P, Lyritis G. Mechanical stimulation in the 
form of vibration prevents postmenopausal bone loss in ovariectomized rats. Calcified 
Tissue International. 1998;63(6):510-4. 
81. Lau E, Al-Dujaili S, Guenther A, Liu D, Wang L, You L. Effect of low-magnitude, high-
frequency vibration on osteocytes in the regulation of osteoclasts. Bone. 2010;46(6):1508-
15. 
82. Mohammed CI. Growth pattern of the rat maxilla from 16 days insemination age to 
30 days after birth. American Journal of Anatomy. 1957;100(1):115-65. 
83. Müller R, Hahn M, Vogel M, Delling G, Rüegsegger P. Morphometric analysis of 
noninvasively assessed bone biopsies: comparison of high-resolution computed tomography 
and histologic sections. Bone. 1996;18(3):215-20. 
84. Müller R, Van Campenhout H, Van Damme B, Van der Perre G, Dequeker J, 
Hildebrand T, et al. Morphometric analysis of human bone biopsies: a quantitative 



QUANTIFYING THE EFFECTS OF MECHANICAL VIBRATION ON THE VOLUME OF THE MIDPALATAL SUTURE OF RATS 

 126 

structural comparison of histological sections and micro-computed tomography. Bone. 
1998;23(1):59-66. 
85. Uchiyama T, Tanizawa T, Muramatsu H, Endo N, Takahashi H, Hara T. A 
morphometric comparison of trabecular structure of human ilium between microcomputed 
tomography and conventional histomorphometry. Calcified tissue international. 
1997;61(6):493-8. 
86. Herring SW, Mucci RJ. In vivo strain in cranial sutures: the zygomatic arch. Journal of 
Morphology. 1991;207(3):225-39. 
87. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone 
remodeling. Annual Review of Biomedical Engineering. 2006;8:455-98. 
88. Ohshima S, Komatsu K, Yamane A, Chiba M. Prolonged effects of hypofunction on 
the mechanical strength of the periodontal ligament in rat mandibular molars. Archives of 
Oral Biology. 1991;36(12):905-11. 
89. Sato H, Kawamura A, Yamaguchi M, Kasai K. Relationship between masticatory 
function and internal structure of the mandible based on computed tomography findings. 
American Journal of Orthodontics and Dentofacial Orthopedics. 2005;128(6):766-73. 
90. Katsaros C, Zissis A, Bresin A, Kiliaridis S. Functional influence on sutural bone 
apposition in the growing rat. American journal of orthodontics and dentofacial 
orthopedics. 2006;129(3):352-7. 
91. Bridges T, King G, Mohammed A. The effect of age on tooth movement and 
mineraldensity in the alveolar tissues of the rat. American Journal of Orthodontics and 
Dentofacial Orthopedics. 1988;93(3):245-50. 
92. Shitano C, Baba O, Kaneko S, Hosomichi J, Shimizu Y, Shibutani N, et al. Alveolar 
bone loss induced by the orthodontic tooth movement under hypofunctional conditions in 
rats. Orthodontic Waves. 2013;72(4):148-55. 
93. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, et al. Power 
failure: why small sample size undermines the reliability of neuroscience. Nature Reviews 
Neuroscience. 2013;14(5):365. 
94. MacCallum RC, Widaman KF, Zhang S, Hong S. Sample size in factor analysis. 
Psychological methods. 1999;4(1):84. 
95. Fritz MS, MacKinnon DP. Required sample size to detect the mediated effect. 
Psychological science. 2007;18(3):233-9. 
96. Bagi CM, Berryman E, Moalli MR. Comparative bone anatomy of commonly used 
laboratory animals: implications for drug discovery. Comparative medicine. 2011;61(1):76-
85. 
97. Verna C, Zaffe D, Siciliani G. Histomorphometric study of bone reactions during 
orthodontic tooth movement in rats. Bone. 1999;24(4):371-9. 
98. Verna C, Dalstra M, Melsen B. The rate and the type of orthodontic tooth movement 
is influenced by bone turnover in a rat model. The European Journal of Orthodontics. 
2000;22(4):343-52. 

 

  



QUANTIFYING THE EFFECTS OF MECHANICAL VIBRATION ON THE VOLUME OF THE MIDPALATAL SUTURE OF RATS 

 127 

 List of Figures 

Figure 1: Anterior bite block appliance 

 

 

 

 

 

 

 



QUANTIFYING THE EFFECTS OF MECHANICAL VIBRATION ON THE VOLUME OF THE MIDPALATAL SUTURE OF RATS 

 128 

 

Figure 2: Tooth movement appliance 
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Figure 3: Boundaries of the anterior volume of interest 

 

Figure 4: Boundaries of the posterior volume of interest 
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Figure 5: Anterior portion of the midpalatal suture comparing vibration and non-vibration 
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Figure 6: Posterior portion of the midpalatal suture comparing vibration and non-vibration 

groups  
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Figure 7: Total volume of the anterior and posterior portions of the midpalatal suture 

comparing vibration and non-vibration groups 
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Figure 8: Anterior portion of the midpalatal suture comparing different experimental groups  
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Figure 9: Posterior portion of the midpalatal suture comparing different experimental groups 
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Figure 10: Total volume of the anterior and posterior portions of the midpalatal suture 

comparing experimental groups  
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Table 1: One-way ANOVA analysis of the anterior portion of the mid-palatal suture 

 

Sum of 

Squares df 

Mean 

Square F Sig. 

Volume of the 

anterior portion of 

the midpalatal 

suture 

Between 

Groups 
.030 1 .030 .140 .796 

Within Groups 8.520 40 .213   

Total 8.550 41    

 

Table 2: One-way ANOVA analysis of the posterior portion of the mid-palatal suture 

 

Sum of 

Squares df 

Mean 

Square F Sig. 

Volume of the 

posterior portion 

of the midpalatal 

suture 

Between 

Groups 
.002 1 .002 .068 

.710 

Within Groups .957 40 .024   

Total .958 41    
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