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Abstract 26	

The paleogeography of New Guinea indicates fluctuating periods of flooding and 27	

emergence since the Jurassic, which are inconsistent with estimates of global sea level 28	

change since the Eocene. The role of deep Earth dynamics in explaining these 29	

discrepancies has not been explored, despite the strongly time-dependent geodynamic 30	

setting within which New Guinea has evolved. We aim to investigate the role of 31	

subduction-driven mantle flow in controlling long-wavelength dynamic topography 32	

and its manifestation in the regional sedimentary record, within a tectonically 33	

complex region leading to orogeny. We couple regionally refined global plate 34	

reconstructions with forward geodynamic models to compare trends of dynamic 35	

topography with estimates of eustasy and regional paleogeography. Qualitative 36	

corroboration of modelled mantle structure with equivalent tomographic profiles 37	

allows us to ground-truth the models. We show that predicted dynamic topography 38	

correlates with the paleogeographic record of New Guinea from the Jurassic to the 39	

present. We find that subduction at the East Gondwana margin locally enhanced the 40	

high eustatic sea levels from the Early Cretaceous (~145 Ma) to generate long-term 41	

regional flooding. During the Miocene, however, dynamic subsidence associated with 42	

subduction of the Maramuni Arc played a fundamental role in causing long-term 43	

inundation of New Guinea during a period of global sea level fall.  44	
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1. Introduction 51	

The New Guinea margin is arguably one of the most tectonically complex 52	

settings in the world, comprising a diverse assemblage of accreted arc terranes, 53	

continental fragments, and obducted ophiolite belts (Baldwin et al., 2012). The 54	

geodynamic evolution of New Guinea in the post-Pangea period has been dominated 55	

by the long-term convergence between the Australian Plate in the southwest and the 56	

Pacific Plate in the northeast (Baldwin et al., 2012; Dow, 1977; Hill and Hall, 2003). 57	

The rapid north-northeast motion of the Australian Plate relative to the Pacific Plate 58	

since the Eocene, and the interaction with the Sunda continental promontory has 59	

resulted in oblique, arc-continent collisions and the slow growth of the island through 60	

successive accretionary episodes (Baldwin et al., 2012; van Ufford and Cloos, 2005). 61	

Such episodes include the accretion of ribbon terranes, which can be continental or   62	

oceanic such as the Torricelli-Finisterre Arc accreted in the middle to late Miocene, or 63	

a composite continental-oceanic terrane such as the Sepik terrane accreted during the 64	

Eocene-Oligocene (Zahirovic et al., 2016b; Zahirovic et al., 2014). These accreted 65	

terranes are typically ~100 km across, and more than ~1000 km long. Northern New 66	

Guinea has also undergone periods of rifting and lithospheric rupture to form ocean 67	

basins including the Sepik back-arc ocean basin in the Late Mesozoic supported by 68	

syn-rift sedimentation in the Early-Mid Jurassic followed by a breakup unconformity 69	

(Davies, 2012; Zahirovic et al., 2016b; Zahirovic et al., 2014). The region has also 70	

experienced intra-oceanic subduction and proposed subduction polarity reversal 71	

episodes, including those associated with the consumption of the Sepik back-arc in 72	

the latest Cretaceous (Baldwin et al., 2012; Hill and Hall, 2003). This subduction 73	

history has resulted in a lack of preserved seafloor, compounded by poor outcrop due 74	

to weathering, vegetation cover and inaccessible terrain on the continent, which 75	



results in significantly uncertain tectonic reconstructions (Hill and Hall, 2003; van 76	

Ufford and Cloos, 2005; Zahirovic et al., 2014). Geologically, the northern half of the 77	

island overlies Mesozoic crystalline basement of ocean crust with arc affinities 78	

derived from the Pacific basin (Hill and Hall, 2003; van Ufford and Cloos, 2005), 79	

whilst the southern portion comprises Mesozoic and Tertiary passive margin strata 80	

underlain by Australian continental crust (Dow, 1977). The mountainous spine of the 81	

island comprising the highly deformed Mobile Belt delineates the north and south of 82	

New Guinea (Fig. 1).  83	

In addition to the changing tectonic framework of New Guinea, the island also 84	

experienced alternating periods of short-term (related to Milankovitch cycles) and 85	

long-term (related to eustasy and mantle processes) inundation and emergence that 86	

remain preserved in the sedimentary record (Fig. 2). Throughout Mesozoic times, the 87	

continent was almost entirely inundated by shallow to deep seas with shelf-type and 88	

deep-marine sediments dispersed across the island (Dow, 1977). In contrast, the late-89	

Eocene to early-Oligocene record is characterised by almost a total cessation in 90	

sedimentation, with a distinct lack of lower to middle Oligocene fossils throughout 91	

the oceanic crust and island arc terranes, particularly ordinarily pervasive foraminifera 92	

(Dow, 1977). This is likely attributable to the combined effects of global sea level fall 93	

(Haq, 2014; Haq et al., 1987) as well as the uplift and erosion corresponding to the 94	

late Eocene-early Oligocene orogeny (Dow, 1977; van Ufford and Cloos, 2005). The 95	

manifestation of this in the geological record is a pervasive, regional unconformity 96	

(Fig. 2) (Norvick, 2001) except for a belt of mixed-grade metamorphics, in south-97	

eastern Papua New Guinea including the Owen Stanley and Emo metamorphics 98	

which have been dated to between the Late Cretaceous and early Eocene (Worthing 99	

and Crawford, 1996). This tectonic uplift is further supported by the late Eocene 100	



intrusions in the north Sepik region along the marginal trough, and further south by 101	

the vertical displacement of the Papuan Ultramafic Belt, along the Owen Stanley 102	

Fault System (Davies, 2012; Dow, 1977). This non-depositional environment is 103	

geologically short-lived with sedimentation resuming in the late Oligocene. Shallow-104	

water carbonates varying between 500 and 1500 m in thickness suggests flooding 105	

peaked during the early- to mid-Miocene, despite inconsistencies with global sea level 106	

estimates (Haq, 2014; Haq et al., 1987). From the Pliocene to the present, the flooding 107	

somewhat retreated due to the combined effects of medium to short term sea level 108	

change (Haq et al., 1987) as well as the shedding of debris from the accretion-related 109	

mountains into the surrounding shallow shelf. The result today is a topographically 110	

diverse and predominantly emergent island of New Guinea. Whilst the island likely 111	

experienced short- and medium-term inundation patterns following regional sea-level 112	

variations, the focus of this study is comparing long-term eustatic sea level (Haq, 113	

2014; Haq et al., 1987) and long-term inundation and flooding indicated by 114	

paleogeographic reconstructions. 115	

Despite the well-documented paleogeographic record within New Guinea 116	

(Dow, 1977; Norvick, 2003), there remain inconsistent correlations between the 117	

mapped inundation patterns and global sea level curves (Haq, 2014; Haq et al., 1987). 118	

Most previous work in the region has focused on unravelling the immense tectonic 119	

complexity of New Guinea (Baldwin et al., 2012; Davies, 2012; Hill and Hall, 2003; 120	

van Ufford and Cloos, 2005), with little focus on the role of deep Earth processes in 121	

shaping the tectonic and topographic evolution of the northern Australian continental 122	

margin. Such processes include subduction-driven mantle flow and its surface 123	

expression of dynamic topography (Flament et al., 2013). Unlike crustal deformation 124	

which occurs on spatial scales of 100 – 200 km resulting in elevations as large as 125	



8 km, mantle-driven topography occurs over wavelengths of hundreds or thousands of 126	

kilometres with amplitudes typically no greater than 1.5 km (Winterbourne et al., 127	

2014).	Recent studies of Southeast Asia including that by Zahirovic et al. (2016a) and 128	

Clements et al. (2011) have highlighted the importance of considering dynamic 129	

topography to better understand the vertical motion of continents and their interaction 130	

with eustatic sea level change. In Sundaland for example, Clements et al. (2011) and 131	

Zahirovic et al. (2016a) linked regional dynamic uplift to plate tectonic history, 132	

attributing its Late Cretaceous-Eocene emergence to the collision of Gondwana-133	

derived terranes and the associated subduction hiatus along the Sunda active margin. 134	

Similar to Southeast Asia, over the last 160 Myr, the New Guinea margin has been 135	

part of the complex convergence zone between Eurasian, Indo-Australian and Pacific 136	

plates, which today manifests as a slab burial ground underlying much of the northern 137	

half of Australia (Heine et al., 2010; Li et al., 2008; Ritsema et al., 2011; Sandiford, 138	

2007). Consequently, New Guinea represents an important case study with which to 139	

investigate the contribution of mantle flow to patterns of flooding and emergence. 140	

This study extends upon the work by Husson et al. (2014) and to an extent that of 141	

Flament et al. (2015) who explored the interplay of the plate-mantle system in 142	

tectonically complex orogenic settings. 143	

We use global plate reconstructions with regional refinements that are applied 144	

as boundary conditions to forward geodynamic models to extract mantle evolution 145	

and predicted dynamic topography. The dynamic topography trends are compared to 146	

those interpreted from regional paleogeography and global sea level estimates. The 147	

mantle flow models are qualitatively compared to the mantle structure inferred from 148	

P- and S-wave seismic tomography.  149	

 150	



2. Methods 151	

2.1 Estimating flooding from paleogeography 152	

Regional paleogeographic maps of Papua New Guinea from Dow (1977) 153	

allowed us to identify shifting paleo-environments and constraints on flooding history 154	

from the Jurassic to the present. Dow’s (1977) compilation includes eight maps of 155	

Papua New Guinea detailing patterns of sedimentation with a range of classifications 156	

including land, marine shelf sediments (probable and outcropping), marine trough 157	

(probable and outcropping), as well as basic delineations of outcropping volcanics 158	

and metamorphics. These maps were digitised, georeferenced and where necessary 159	

supplemented by the paleogeographic maps of Norvick (2003) to allow complete 160	

coverage of the New Guinea continental margin (Fig. 3). Norvick (2003) and Dow’s 161	

(1977) facies maps were simplified to two discrete groupings of land and marine to 162	

estimate flooding through time. To calculate the evolution of the extent of flooded 163	

areas, the paleogeographic polygons were reprojected into a cylindrical equal area 164	

coordinate system, with a central meridian of 145˚E and a standard parallel of 5˚S that 165	

are appropriate for New Guinea. From this, total and percentage values of inundation 166	

and emergence were calculated at the eight time intervals provided by Dow (1977), 167	

and subsequently used for comparison to eustatic sea level curves and predicted 168	

dynamic topography.   169	

 170	

2.2 Plate tectonic reconstructions 171	

Global plate motion models have evolved over many years of research with 172	

the latest reconstructions representing a synthesis of previous tectonic models refined 173	

and constrained through the accumulation of geological data. Due to the uncertainty 174	

associated with poorly constrained regions, we tested two alternate plate 175	



reconstructions for New Guinea presented in Zahirovic et al (2014) (Model A) and 176	

Zahirovic et al (2016b) (Model B). These reconstructions are differentiated by 177	

regional refinements that make it possible to test end-member tectonic scenarios (see 178	

Table 1). Importantly, these scenarios are used as surface boundary conditions for 179	

mantle flow models, providing the evolution of plate boundaries, plate velocities, 180	

thermal lithospheric thicknesses for oceans and continents and slab buoyancy flux 181	

(Bower et al., 2015). The vertical component of topography resulting from the 182	

modelled mantle convection is extracted to generate dynamic topography predictions 183	

(see Section 2.3).  184	

In the New Guinea region, the major differences between the two plate 185	

reconstructions primarily concern the timing of tectonic events. In the model of 186	

Zahirovic et al. (2014) (Model A) the rifting on northern New Guinea, which resulted 187	

in the separation of the Sepik terrane, occurs in Late Cretaceous times (Hill and Hall, 188	

2003), whilst the latest model by Zahirovic et al. (2016b) (Model B) places this event 189	

in latest Jurassic times (~172 Ma) (Table 1) (Davies, 2012). Consequently, the 190	

opening of the Sepik ocean basin occurs significantly later in Model A compared to 191	

Model B, which uses the supra subduction zone (SSZ) ophiolites in the Central Irian 192	

Ophiolite Belt (likely of latest Jurassic age) to mark this opening at ~157 ± 16 Ma 193	

(Table 1) (Permana, 1998). Regional volcanism in the Early Cretaceous and the 194	

Kondaku Tuffs (Dow, 1977) support an active New Guinea margin by Early 195	

Cretaceous times, as well as latest Jurassic SSZ ophiolites, which are likely a remnant 196	

of the long-lived East Gondwana active margin (Zahirovic et al., 2016b).  197	

It remains difficult to determine the longevity of this ocean basin as minimal 198	

seafloor spreading history has been preserved. Model A uses a late Paleogene age of 199	

~35 – 31 Ma for the onset of north-dipping subduction along the Sepik as proposed by 200	



Pigram and Davies (1987), whilst Model B uses the presence of ~68 Ma high-201	

temperature metabasites in the West Papuan Ophiolite as suggested by Davies (2012) 202	

to support a significantly earlier age of subduction initiation at ~71 – 66 Ma (Table 1). 203	

The New Guinea margin subsequently experienced two collisional phases; one in the 204	

late Eocene to early Oligocene, the evidence for which remains preserved solely in 205	

eastern New Guinea (Crowhurst et al., 1996), and a second, island-wide collisional 206	

phase in Miocene times (Hill and Hall, 2003). In regards to the former, Zahirovic et al 207	

(2014) (Model A) interpreted cooling histories derived from K-Ar thermochronology 208	

in the New Guinea Mobile Belt to place the docking of the Sepik terrane between 27 209	

– 18 Ma (Crowhurst et al., 1996). This is compared to Zahirovic et al.’s (2016b) 210	

(Model B) slightly earlier interpretation of 35 – 31 Ma,  that was based on the Ar-Ar 211	

amphibolite age of Emo metamorphics, assuming the Sepik terrane docking was 212	

contemporaneous with compression in the Papuan Peninsula (Table 1) (Worthing and 213	

Crawford, 1996). It is likely that rather than representing alternate timing scenarios 214	

for collision, these different age interpretations reflect the diachronous collision east-215	

west along the New Guinea margin.  216	

Following this accretion, both reconstructions mark the presence of a south-217	

dipping subduction zone to the north of New Guinea that accounts for the ~18 – 8 Ma 218	

Maramuni arc volcanism (Hill and Hall, 2003). The models differ in timing however, 219	

with Model A placing the subduction between 15 – 5 Ma, compared to an earlier date 220	

of ~20 – 10 Ma used in Model B (Table 1). The final phase of collision involved the 221	

accretion of the Halmahera-Torricelli-Finisterre Arc. Model A uses apatite fission 222	

track geochronology to mark the collision at ~6 Ma as proposed by Hill and Raza 223	

(1999), whilst Model B uses an earlier collision age of ~14 Ma as evidenced through 224	

K-Ar thermochronology (Table 1) (Crowhurst et al., 1996). As apparent, the complex 225	



tectonic history of New Guinea has resulted in unresolved uncertainties in the plate 226	

reconstructions, and thus testing multiple kinematic reconstructions allows us to 227	

generate geodynamic scenarios that can be compared with the available surface 228	

geology and mantle seismic tomography.  229	

 230	

2.3 Geodynamic modelling 231	

 We apply methods developed by Bower et al (2015) that incorporate plate 232	

reconstructions into numerical models of mantle convection to predict past mantle 233	

flow. Viscous incompressible mantle flow was computed using the Boussinesq 234	

Approximation in the convection modelling code CitcomS (Zhong et al., 2008). To 235	

calculate mantle flow, surface boundary conditions were imposed including global 236	

plate velocities and lithospheric thicknesses derived from the plate reconstructions. 237	

The surface boundary conditions such as the thermal structure of the lithosphere and 238	

slabs above 350 km depth are progressively assimilated at 1 Myr time intervals 239	

following Bower et al (2015). The implications of assimilating slab and lithosphere 240	

structure is that the upper boundary layer is no longer dynamic (i.e., imposed), which 241	

modifies the slab flux entering the mantle. However, due to the complex tectonic 242	

history in this region and the deep-time nature of the evolution (i.e., since Jurassic 243	

times), backward advection models (Conrad and Gurnis, 2003) are not suitable. In 244	

addition, the focus of this study is on long-wavelength dynamic topography, which 245	

primarily results from whole-mantle convection. All numerical models were 246	

computed from 230 Ma to the present to capture post-Pangea break-up and allow the 247	

flow models to reach a dynamic equilibrium from the initial conditions (Flament et 248	

al., 2014). Initial conditions at 230 Ma include a slab insertion depth of 1400 km with 249	

a dip angle of 45˚ above a depth of 425 km, and a dip angle of 90˚ below 425 km. 250	



Further, to account for advective thickening (i.e., thickening due to an increase in 251	

viscosity), the slabs are initially twice as thick in the lower mantle as in the upper 252	

mantle in the initial condition at 230 Ma. The models are agnostic of mineral physics, 253	

and include an initial basal thermochemical layer that is 113 km thick above the core-254	

mantle boundary, representing 2% of the volume of the mantle, consistent with the 255	

seismically inferred value (Hernlund and Houser, 2008). The material in this layer is 256	

3.6% denser than the ambient mantle, corresponding to a buoyancy ratio of 0.5. This 257	

model set up supresses mantle plume formation thereby allowing for the subduction-258	

driven dynamic topography signal to be isolated (Flament et al., 2014). The 259	

implications of this, as well as applying a non-adiabatic radial temperature profile and 260	

disregarding internal heating, results in a lower mantle that is somewhat colder than 261	

expected, with an overestimation of slab volumes.  262	

 The Rayleigh number (𝑅𝑎) determines the vigour and style of convection, and 263	

is defined by: 264	

𝑅𝑎 =
𝛼%𝜌%𝑔%𝛥𝑇ℎ+,

𝜅%𝜂%
 265	

where α is the coefficient of thermal expansivity, ρ	 the density, 𝑔 the acceleration due 266	

to gravity, ΔT the temperature difference between the surface and the CMB, hM the 267	

thickness of the mantle, κ	 the thermal diffusivity, η	 the dynamic viscosity, with the 268	

subscript “0” indicating reference values (see Table 2). We varied the viscosity profile 269	

based on stress and temperature, following  270	

𝜂 = 𝜂% 𝑟 exp	
𝐸8

𝑅(𝑇 + 𝑇8)
−

𝐸8
𝑅(𝑇= + 𝑇8)

 271	

where η0(r) is a depth-dependent and pre-defined value with respect to a reference 272	

viscosity, 𝐸8 is the activation energy (𝐸>+ in the upper mantle and 𝐸?+ in the lower 273	

mantle), 𝑇 is the temperature, 𝑇8  is a temperature offset,  𝑇=  is the ambient mantle 274	



temperature, and R the universal gas constant. Whilst post-glacial rebound studies 275	

reasonably constrain the viscosity of the upper mantle (Fjeldskaar et al., 2000; 276	

Mitrovica and Forte, 2004), viscosity estimates of the lower mantle are less accurate 277	

and thus our models are designed to test a range of possible scenarios (see Fig. 4). 278	

Cases 1 to 3 are based on the plate reconstruction presented in Zahirovic et al (2014) 279	

(Model A) with varying viscosity profiles, whilst a fourth case utilises the 280	

reconstruction by Zahirovic et al. (2016b) (Model B). In each case, with respect to the 281	

reference viscosity (𝜂), the depth-dependent viscosity 𝜂% 𝑟 	is multiplied by a factor 282	

of; 1 above 160 km; either 0.1 or 1 between 160–310 km depth (with and without an 283	

asthenosphere respectively); 1 between 310–660 km depth; and either 100 or linearly 284	

increasing from 10 to 100 in the lower mantle between 660 km and the core–mantle 285	

boundary (CMB) (Fig. 4) (Steinberger and Calderwood, 2006). This radial viscosity 286	

pre-factor is also applied to the assimilated slab material in the lower viscosity 287	

asthenosphere. However, due to the temperature-dependent viscosity used in these 288	

models, the slabs retain a larger relative viscosity than the asthenosphere. The 289	

present-day volume-averaged viscosity for Case 4 is 41.6 x 1021 Pa s. Here, it is 290	

important to test a range of viscosity scenarios for the lower mantle as it plays a 291	

significant role in the observed dynamic topography trends, accounting for on average 292	

58% of the observed signal as derived from Case 4 (Supp. Fig. 1). The average model 293	

resolution, obtained with ~13 × 106 nodes and radial mesh refinement, is 294	

~50 × 50 × 15 km at the surface, ~28 × 28 × 27 km near the CMB, and ~40 × 40 × 295	

100 km in the mid-mantle. With this model setup, we hope to quantify some of the 296	

uncertainty in the region by capturing possible end-member scenarios for the New 297	

Guinea margin. 298	



 We computed time-dependent dynamic topography (h), at intervals of 10 Myr 299	

from 230 Ma to the present following:  300	

ℎ = @AA
BCDE

, 301	

where 𝜎GG 	and Δρ are the radial component of stress and the density difference 302	

between the shallow mantle (ρUM = 3340 kg m-3) and sea water (ρw = 1030 kg m-3) 303	

respectively (see Table 2 for other parameters). Water-loaded dynamic topography is 304	

calculated from the total normal stress resulting from mantle flow but excludes 305	

buoyancy and lateral viscosity variations above a depth of 350 km, which is the 306	

maximum depth to which slabs are inserted using time-dependent upper boundary 307	

conditions (Bower et al., 2015). This results in a relatively low amplitude of dynamic 308	

topography, as convection closer to the upper thermo-chemical boundary layer 309	

generates stronger dynamic topography signals. However, due to the synthetic 310	

insertion of slabs down to 350 km, the procedure to exclude these shallow depths is 311	

necessary. The output dynamic topography and mantle evolution is then coupled with 312	

the aforementioned plate reconstructions, to present a series of modelled snapshots 313	

and vertical profiles from the latest Jurassic to the present (~160 – 0 Ma) (Fig. 5). In 314	

addition, we extracted the predicted dynamic topography at specified points in New 315	

Guinea (Figs 5 and 6) to obtain the point-specific evolution of dynamic topography 316	

for all four cases from 160 Ma to the present (Fig. 7).  317	

 318	

3. Results 319	

3.1 Comparison of predicted present-day mantle structure to seismic 320	

tomography 321	

We qualitatively compare vertical profiles of predicted mantle temperature 322	

(Fig. 5) to seismic tomography models (Fig. 8). Model temperature anomalies are 323	



compared to seismic tomography velocity anomalies, assuming the latter result 324	

primarily from thermal perturbations (Becker and Boschi, 2002; Grand, 2002). We 325	

use a combination of P- and S-wave tomographic models, with the former providing 326	

high resolution mantle imaging beneath subduction zones and continents 327	

(Romanowicz, 2003), and the latter providing a more uniform global coverage of the 328	

mantle and more equal sampling of the lower mantle (Grand, 2002). Whilst the 329	

seismic tomography models share first-order similarities, they differ on scales smaller 330	

then several hundreds of kilometres (Fig. 8) and this is due to model resolution, data 331	

collection biases including the earthquake sources used and the earthquake relocations 332	

applied as well as crustal correction and model parameterisation (Grand, 2002; 333	

Romanowicz, 2008). Tomographic models have generally been shown to correlate 334	

poorly with geodynamic models for spherical harmonic degrees ≥ 5 (Becker and 335	

Boschi, 2002) and thus here we visually concentrate on long-wavelength correlations. 336	

The high resolution P-wave models MIT-P08 (Li et al., 2008) (Fig. 8b) and GAP-P4 337	

(Obayashi et al., 2013) (Fig. 8c) are utilised in conjunction with the S-wave models 338	

S40rts (Ritsema et al., 2011) (Fig. 8d) and MontelliS (Montelli et al., 2006) (Fig. 8e).  339	

Our numerical models exhibit reasonable compatibility with the positive 340	

seismic velocity anomalies in P- and S-wave tomographic models (Fig. 8), with 341	

Case 4 arguably generating the best match to mantle structure. In the mid-mantle, 342	

notable discrepancies are observed between the four modelled cases, particularly 343	

regarding the position of the Sepik slab which in Case 4 (Fig. 8) is located between 344	

25˚S and 30˚S at a depth of approximately 1000 km. Though slightly underestimating 345	

its volume, Case 4 reproduces good estimates for the depth and lateral position of the 346	

subducted Sepik slab, compared to Cases 1–3 that display distinct lateral offsets. 347	

These differences are likely attributable to the placement and timing of the associated 348	



Sepik subduction zone, with the results supporting an earlier initiation of subduction 349	

at ~70 Ma as modified in Model B by Zahirovic et al. (2016b). Similarly, Case 4 350	

again produces better predictions of the Caroline slab in regard to both its depth and 351	

geometry with correlations observed in both the P- and S-wave seismic tomography. 352	

The Maramuni slab and northern New Guinea subduction do not fare as well, with all 353	

cases seeing lateral offsets and incorrect estimations of slab volumes. These offsets 354	

are likely a function of the model setup, particularly errors in the imposed subduction 355	

history (Table 1), as well as the choice of radial viscosity (Fig. 4). Comparatively, 356	

Model B (Zahirovic et al., 2016b) better predicts the depth of the Maramuni slab; 357	

however, the interpretations regarding the northern New Guinea slab suggest further 358	

plate reconstruction refinements are required. Overall, we note the better performance 359	

of Case 4 in its reproduction of the mantle structure, with these observations 360	

providing reasonable confidence in the associated dynamic topography predictions, 361	

but also direction for future modifications to Model B, the plate tectonic 362	

reconstruction by Zahirovic et al. (2016b) .  363	

 364	

3.2 Comparison of time-dependent dynamic topography to paleogeography 365	

The reasonable visual agreement between the mantle structure produced by 366	

the flow models and seismic tomography models encourage us to analyse the time-367	

varying prediction of dynamic topography trends, which are likely to provide insight 368	

into the dynamic uplift and subsidence of the region. The modelled evolution of 369	

dynamic topography is characterised by periods of subsidence and uplift that are 370	

similar to the alternating periods of flooding and emergence preserved in the regional 371	

sedimentary record (Fig. 6). The dynamic topography signals varied only minimally 372	

between the four tested scenarios, with the observed differences attributable primarily 373	



to relative plate motions as well as variations in radial viscosity. In the models, 374	

subduction history plays a key role in determining dynamic topography trends. The 375	

paleogeographic record (Figs 2, 3 and 6a) provides a constraint with which to 376	

compare our topography predictions. The mantle flow models present a period of 377	

dynamic subsidence from the latest Jurassic to Early Cretaceous times (Fig. 6b) likely 378	

associated with the descending slabs of the East Gondwana active margin. This 379	

subsidence is consistent with the regional paleogeography, which records the 380	

deposition of shallow and deep marine sediments (Fig. 2) and according to Dow 381	

(1977) and Norvick (2003) represents a long period of continental inundation 382	

(Fig. 6a). The gradual dynamic uplift that follows can be linked to slab roll-back of 383	

the same East Gondwana subduction zone whereby dynamic subsidence associated 384	

with the subducted slabs decreases, resulting in relative uplift of the surface (see 385	

Digital Supplement). Regional dynamic subsidence was subsequently re-established 386	

due to the onset of the north-dipping subduction of the Sepik oceanic basin. Here, 387	

Cases 1–3 show a timing lag relative to Case 4, attributable to the later onset of the 388	

Sepik subduction, initiating at ~ 35 Ma in the plate reconstruction of Zahirovic et al. 389	

(2014) (Model A) compared to ~ 71 Ma in the plate reconstruction of Zahirovic et al 390	

(2016b) (Model B). This timing offset is similarly observed in the final period of 391	

dynamic subsidence throughout Miocene times, which in all cases is linked to the 392	

south-dipping Maramuni Arc subduction zone on the northern margin of New Guinea. 393	

In the latest plate motion model the Maramuni subduction is initiated at 23 Ma 394	

compared to a later onset of 15 Ma in the earlier reconstruction, and this is manifest in 395	

dynamic subsidence from 18 Ma in Case 4 compared to 8 Ma in Cases 1–3. This 396	

period of dynamic subsidence is again validated using the paleogeographic record, 397	



which preserves a history of widespread continental inundation throughout Miocene 398	

times (Fig. 6).  399	

 We also compare modelled dynamic topography at specified points in New 400	

Guinea, namely Irian Jaya (P1), central New Guinea (P2) and Papua New Guinea (P3) 401	

(Fig. 1 and 5), to study the regional variation of subsidence and uplift trends (Fig. 7). 402	

Moreover, with eastern and western New Guinea experiencing greater amplitudes of 403	

dynamic change, these trends provide possible end-member scenarios on the signals 404	

derived from central New Guinea, which is influenced by the Southeast Asian Sunda 405	

slabs to the northwest and the New Guinea and Pacific slabs to the east (Figs 5 and 6). 406	

Figure 7 highlights that whilst the general trends and timing are the same across all 407	

point locations, eastern and western New Guinea experienced an opposite net 408	

dynamic movement over time, with the downward continental tilt reversing from 409	

eastward at 160 Ma, to westward at present. This long-term signal superimposed 410	

beneath the temporally shorter dynamic topography trends highlights the complexity 411	

and spatio-temporal variation of mantle dynamics influencing regional topography. 412	

Furthermore, it must be emphasised that in a global context, New Guinea is a 413	

relatively small continent located in a long-wavelength dynamic topography low (Fig. 414	

5) and that the dynamic topography trends presented here primarily reflect the motion 415	

of the continent over individual slabs associated with regional subduction systems.  416	

 417	

 418	

4. Discussion 419	

Our analysis suggests that inundation patterns through time in New Guinea 420	

could be controlled by an interplay of deep Earth and surface processes. Our results 421	

suggest a likely influence of dynamic topography on the long-term continental 422	



flooding patterns of New Guinea since the Jurassic. Due to the difficulty in 423	

constraining the amplitude of dynamic topography our analysis focuses on trends 424	

rather than absolute values (Fig. 6). Of significance is the correlation between the two 425	

periods of widespread flooding in New Guinea representing Cretaceous and Miocene 426	

times (Figs 2, 3 and 6), and the modelled periods of dynamic subsidence. The 427	

flooding of New Guinea from 145 – 90 Ma is influenced by high global sea levels 428	

(Haq, 2014; Haq et al., 1987) amplified by dynamic subsidence linked to the East 429	

Gondwana slab (Figs 5 and 6) (Zahirovic et al., 2016b). Gurnis et al. (1998) supported 430	

the origin of this subducted slab based on the existence of a converging margin 431	

between the Pacific plates and Gondwanaland since at least ~200 Ma.  Similarly, they 432	

explored the surface expression of this subducting slab focusing on the anomalous 433	

vertical motion of eastern Australia throughout the Cretaceous (Gurnis et al., 1998). 434	

Notably however, their modelled East Gondwana trench was a simplification of the 435	

much more extensive Gondwanaland-Pacific margin, which they noted may have 436	

extended further towards New Guinea. Here, we incorporate the northwestward 437	

extension of this converging margin (Fig. 5), and link the contribution of this slab to 438	

the continental subsidence of New Guinea.  439	

During the Miocene, mantle dynamics hold greater significance with dynamic 440	

subsidence trends alone correlating with the widespread inundation observed in New 441	

Guinea (Fig. 6). During this time, all four scenarios present dynamic subsidence 442	

corresponding to the subducted Maramuni slab, in contrast to global eustatic sea level 443	

trends which are falling from ~35 Ma (Haq, 2014; Haq et al., 1987). Our models 444	

suggest that sinking slabs are drawing the continent down faster than long-term sea 445	

level is falling, causing regional flooding of New Guinea, similar to Southeast Asia 446	

(Zahirovic et al., 2016). The models suggest this slab now resides in the lower mantle 447	



at depths of between ~850 – 1350 km beneath the Gulf of Carpentaria (Fig. 8). This is 448	

compatible with the work of Heine et al. (2010) and Sandiford (2007) who correlated 449	

Australia’s northward tilt since mid-Miocene times to a slab graveyard beneath 450	

northern Australia.  451	

In contrast, during the Paleogene, the predicted dynamic subsidence associated 452	

with the subduction of the Sepik back-arc basin exhibits notably weaker correlations 453	

with continental inundation as recorded by the paleogeography (Dow, 1977; Norvick, 454	

2003). At times contemporaneous to the Sepik subduction and in the millions of years 455	

following, New Guinea is characterised by regional uplift and a non-depositional 456	

environment (Figs 3 and 6), as opposed to continental flooding. We suggest that 457	

tectonic processes, including terrane collision and accretion associated with the 458	

docking of the Sepik terrane in the late Eocene to early Oligocene, are likely 459	

responsible for the observed margin-wide unconformity.  460	

Indeed, the highly active tectonic setting of the region also demands the 461	

consideration of tectonic processes in comprehensively isolating the mechanisms 462	

behind regional flooding. For example, lithospheric flexure resulting from orogenic 463	

loading is a plausible tectonic mechanism for continental subsidence (DeCelles and 464	

Giles, 1996). Since Jurassic times, New Guinea has experienced two main periods of 465	

orogenesis associated with the collision and accretion of Sepik terranes in early 466	

Oligocene times (~35 – 31 Ma) and the accretion of the Halmahera-Torricelli-467	

Finisterre-Arc in mid-Miocene times (~14 Ma) (Zahirovic et al., 2016b). However, in 468	

both cases the paleogeographic record provides clear evidence for the onset of 469	

flooding prior to orogenesis, with marine sediments present from as early as the 470	

~66 Ma preceding the first collision, and ~25 Ma preceding the second collision (Fig. 471	

2) (Dow, 1977; Norvick, 2003). This timeline suggests orogenic loading associated 472	



with New Guinea’s fold and thrust belts could not have initiated the observed 473	

flooding. Work by Abers and Lyon‐Caen (1990) on the limited extent of eastern 474	

New Guinea’s foreland basin further supports this hypothesis. Their investigation 475	

reveals that whilst the Australian plate underlying the foreland is relatively strong 476	

with flexural rigidities of 1024 to 1025 Newton metres (Nm), localised plate weakening 477	

beneath the eastern highlands results in a small and shallow foreland basin. Abers and 478	

Lyon‐Caen (1990) suggested this weakness could be related to a combination of 479	

thermal and mechanical processes resulting from Quaternary volcanism and thick-480	

skinned midcrustal faulting throughout the thrust belt. The overall result is that the 481	

Australian lithosphere saw little deflection under the loading of New Guinea’s eastern 482	

highlands, with the foreland basin extending no more than 20 – 60 km from the 483	

mountain front at present day (Abers and Lyon‐Caen, 1990). Others, including 484	

Pigram et al. (1989), have investigated the development of the foreland basin since 485	

the Oligocene and argue for a significantly larger flexural basin up to 600 -700 km 486	

wide, south of the Fold and Thrust Belt. However, their analysis failed to incorporate 487	

elastic thickness, which varied from 40 - 60 km in eastern Papua New Guinea to 70 - 488	

80 km in the west (Haddad and Watts, 1999), which is incompatible with such 489	

flexural basin widths.  In the India-Eurasia collision zone for example, the elastic 490	

thickness of the downgoing craton is estimated to be ~70-125 km, (ignoring the effect 491	

of dynamic topography), with a foreland basin width of ~300 - 400 km (Jordan and 492	

Watts, 2005; Tesauro et al., 2012). It is therefore unlikely that the large foreland basin 493	

width on Papua New Guinea suggested by Pigram et al. (1989) is solely flexural, and 494	

can rather be explained spatially and temporally with the addition of a dynamic 495	

topography component from the south-dipping subduction related to the Maramuni 496	

Arc, much like the manifestation of the Cretaceous-age epicontinental Western 497	



Interior Seaway (USA) and the Eromanga Sea (Australia). The study by Husson et al. 498	

(2014) provides a precedent for this argument with their results suggesting the uplift 499	

history of the Himalayas and the subsidence of its foreland basin cannot be explained 500	

without considering the effects of dynamic topography. In light of this, Husson et al 501	

(2014) emphasises the need for revising estimates of elastic thickness to incorporate 502	

the effects of dynamic topography in regions particularly effected by subduction-503	

driven mantle flow. In this regard, whilst lithospheric flexure likely played a minor 504	

role in generating continental inundation, the regional flooding observed during the 505	

Miocene (Figs 2, 3 and 6) cannot be explained without considering the effect of 506	

mantle-driven dynamic topography during a time of global sea level fall.  Through the 507	

development of models that incorporate elastic thickness and foreland basin flexure, 508	

the comparative contribution of these processes can be me more realistically 509	

ascertained.  510	

Despite the promising results presented here, these models, like all numerical 511	

experiments, are inherently limited by their input parameters and simplifying 512	

assumptions of complex Earth processes. For example, our current methods use rigid 513	

plate motion models that do not incorporate continental deformation including the key 514	

periods of orogenesis that characterise the tectonic history of our study area. Future 515	

work should incorporate deforming plate reconstructions for the New Guinea margin 516	

into forward geodynamic models. This would allow for the consideration of the 517	

effects of crustal thickening associated with such collisions as that of the Sepik 518	

terrane and the Halmahera-Finisterre-Torricelli Arc (Baldwin et al., 2012) on mantle 519	

flow and dynamic topography. Moreover, future tectonic models should see 520	

refinements to both the absolute plate motions in deep time and regional plate motions 521	



towards present day that aim to correct for the lateral offsets and incorrect estimation 522	

of slab volumes (Fig. 8).  523	

 524	

5. Conclusions 525	

Here we investigate the interplay of the plate-mantle system and its impact on 526	

the vertical motion of continents in complex areas of orogeny. Using a case study of 527	

the northern Australian continental margin we couple global plate reconstructions 528	

with forward geodynamic models to predict the influence of the mantle flow on 529	

ancient patterns of flooding and emergence. Our results provide support for 530	

subduction driven dynamic uplift and subsidence from the Jurassic to the present, 531	

with our model predictions being in agreement with the paleogeographic record. We 532	

predict subduction at the East Gondwana margin prior to the Cretaceous provided a 533	

positive feedback with higher eustatic sea levels to generate long-term regional 534	

flooding. During the Miocene, however, subduction that produced the Maramuni arc 535	

played a fundamental role in causing the widespread inundation, with evidence 536	

suggesting contemporaneous long-term sea-level fall. As for the subduction of the 537	

Jurassic-Cretaceous age Sepik back-arc basin, local collision and terrane accretion 538	

masks its subsidence effect on New Guinea. Further research could explore the 539	

potential surface expression of this slab in the tectonically quiescent region of 540	

Australia.                                                                                                                                                                                                                                                                                  541	

To more confidently evaluate the role of tectonic processes in generating the 542	

observed subsidence, further research may include the development of models that 543	

consider orogenesis, elastic thickness and foreland flexure. Our analysis demonstrates 544	

that deep Earth dynamics can be coupled to paleogeographic reconstructions of New 545	



Guinea, providing new insights into the contribution of long-wavelength mantle flow 546	

to the vertical motion of continents in areas of orogeny. 547	

 548	

 549	

 550	

 551	
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702	

Figure 1. Regional tectonic setting of New Guinea and the northern Australian continental margin. Plate 
boundaries are modified from Bird (2003), ophiolites derived from Hill and Hall (2003) and Baldwin et 
al. (2012), and fracture zones from Matthews et al. (2011). Black stars with labels P1, P2 and P3 indicate 
locations from which dynamic topography values were extracted throughout time. Locations represent 
Irian Jaya, central New Guinea and Papua New Guinea respectively (see Fig. 7). AUm – April 
Ultramafics, BiS – Bismarck Sea, CIOB – Central (Irian) Ophiolite Belt, CO – Cyclops Ophiolite, CS – 
Celebes Sea, EauR – Eauripik Ridge, FIN – Finisterre Terrane, HAL – Halmahera, KB – Ketungau 
Basin, KT – Kiilsgaard Trough, ManTr – Manus Trench, MG – Mangkalihat, MTr – Mariana Trench, 
MO – Marum Ophiolites, MoS – Molucca Sea, MS – Makassar Straits, NGTr – New Guinea Trench, OJP 
– Ontong Java Plateau, OSF – Owen Stanley Fault, PT – Paternoster Platform, PUB – Papuan Ultramafic 
Belt, RMF – Ramu-Markham Fault, Sol. Sea – Solomon Sea, SP – Scott Plateau – SEP – Sepik, Sul – 
Sulawesi, TPAA – Torricelli-Prince Alexander Arc, WCT – W Caroline Trench, WO – Weyland 
Overthrust, WP – Wombat Plateau. 
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Figure 2. a) Simplified chronostratigraphic cross-section for New Guinea from the Middle Jurassic to the present, 
synthesised from Norvick (2001) and van Ufford and Cloos (2005). The stratigraphic sequence extends laterally from 
the north to the south of New Guinea (A-D) and is sub-divided based on the geographic boundaries Bird’s Head, Irian 
Jaya and Papua New Guinea. This schematic highlights the Late Eocene to Oligocene regional unconformity, attributed 
to eustatic sea level fall and tectonic uplift resulting from the collision of the Australian and Pacific plates. Regional 
inundation throughout the Miocene is also apparent, with the geologic record preserving shallow marine carbonates, 
indicative of widespread shallow seas. b) Simplified map of New Guinea showing the A-D locations from which the 
stratigraphic sequence is delineated.  
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Figure 3. Paleo-environments of New Guinea from 160 – 0 Ma. The paleogeographies were 
digitised from Dow’s (1977) and Norvick’s (2003) patterns of sedimentation and attached to 
the plate reconstruction by Zahirovic et al (2016b). This paleogeographic reconstruction 
highlights the widespread inundation and sedimentary deposition throughout Miocene times, 
as well as the uplift and erosion environment that dominated during Oligocene times.  
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Figure 4: Horizontally averaged present-day a) mantle temperature and b) viscosity 
for Cases 1 – 4.  
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Figure 5. Dynamic topography and mantle temperature as predicted by Case 4. The evolution of modelled dynamic 
topography is presented within the tectonic framework of the region displaying subduction zones (red) and plate 
boundaries (brown). White stars indicate locations from which dynamic topography values were extracted throughout 
time (see Fig. 7). A great circle (thick black line, with white markers every 5 degrees) intersecting central New Guinea 
and eastern Australia has been reconstructed with the plate reconstruction of Zahirovic et al. (2016b). The evolution of 
mantle temperature is presented along this vertical profile from the surface to the core mantle boundary.  In the Late 
Jurassic, tectonics in the northern Australian continental margin are dominated by the East Gondwana (EaG) active 
margin, with the first appearance of the EaG slab evident at ~150 Ma (a). This temperature anomaly dominates the 
mantle structure between New Guinea and Australia until the onset of north-dipping subduction of the Sepik (SEP) at 
~70 Ma followed by south-dipping subduction of the Maramuni arc from ~23 – 15 Ma. MS – Maramuni Slab. CS – 
Caroline Slab. 
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Figure 6. a) Continental inundation of New Guinea (blue) and long-term sea level derived 
from Haq et al (1987) and Haq et al (2005) (respectively lightpink and green). The 
comparative trends between sea level and flooding history highlight the discrepancies in 
correlating eustasy to inundation patterns. This is particularly evident during Early Miocene 
times when despite long-term falling sea levels, the continent is approximately 90% flooded. 
Such observations suggest the presence of another process influencing the continental 
inundation of New Guinea. b) Modelled dynamic topography signal of Cases 1–4 from central 
location in New Guinea (P2 in Fig.1). The trends of dynamic subsidence and uplift indicate a 
link to flooding and emergence patterns where eustasy explanations are lacking. The light blue 
shading that denotes regional flooding is generally correlated with dynamic subsidence 
(decreasing dynamic topography). 
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Figure 7. Modelled dynamic topography from three locations across New Guinea as 
depicted in Figures 1 and 5 for Case 4 (Zahirovic et al 2016b). The dynamic 
topography signals at Irian Jaya (west), central New Guinea and Papua New Guinea 
(east) display the same peaks and troughs over time, yet showcase an opposite net 
dynamic movement, with the downward continental tilt reversing from eastward at 
160 Ma to westward at present.  
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Figure 8. Comparison of geodynamic model predictions with seismic tomography models. The seismic tomography profiles 
are taken along the present-day transect depicted in a) encompassing central New Guinea and eastern Australia. We use P- 
wave tomographic models provided by Li et al. (2008) (b) and Obayashi et al. (2013) (c), and S-wave tomographic models 
provided by Ritsema et al. (2011) (d) and Montelli et al. (2006) (e). The overlying slab contours represent temperature 
anomalies from Cases 1–4, with the contours demarcating mantle 10% colder than ambient mantle temperature. Case 4 
generates an overall better reproduction of the mantle structure, notably matching the Sepik slab (SEP) and the Caroline slab 
(CS) in both the P- and S- wave models. MS – Maramuni slab, NNG – Northern New Guinea slab.  
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Table 1. Comparison of Plate Tectonic Reconstructions 

Feature Zahirovic et al (2014) 
(Model A) 

Zahirovic et al (2016) 
(Model B)	

Rifting of the northern New 

Guinea margin 

Late Cretaceous times 

 

Late Jurassic times 

(~172 Ma) 

Opening of the Sepik ocean 

basin 

~80 Ma ~157 ± 16 Ma 

Subduction polarity reversal 

and onset of north-dipping 

Sepik ocean basin subduction 

~35 to 31 Ma Maastrichtian times 

(~71 to 66 Ma) 

Sepik terrane accretion to New 

Guinea 

27 to 18 Ma  ~35 to 31 Ma 

South dipping subduction to 

the north of New Guinea 

15 to 5 Ma 23 to 15 Ma 

Halmahera-Torricelli-Finisterre 

Arc collision  

~6 Ma ~14 Ma 
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Table 2. Parameters common to all model cases. Subscript “0” denotes reference values. 

Parameter Symbol Value Units 

Rayleigh number Ra 7.8  × 107 – 

Thermal expansion coefficient α0 3 × 10−5 K−1 

Density ρ0 4000 kg m−3 

Gravity acceleration g0 9.81 m s−2 

Temperature change ΔT 2825 K 

Temperature offset Tη 452 K 

Background mantle temperature Tb 1685 K 

Mantle thickness hM 2867 km 

Earth radius R0 6371 km 

Universal gas constant R 8.31  J mol-1 K-1 

Thermal diffusivity κ0 1 × 10−6 m2 s−1 

Reference Viscosity  η0 1 × 1021 Pa s 

Activation energy (upper mantle) EηUM 100 kJ mol−1 

Activation energy (lower mantle) EηLM 33 kJ mol−1 
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Supplementary Figure 1: Modelled dynamic topography from three locations across New 
Guinea for Case 4 (Zahirovic et al 2016b). The solid lines show the original dynamic 
topography signal as depicted in Fig. 7, whilst the dashed lines represent the dynamic 
topography signal from the lower mantle only, that is, from beneath the 660 km threshold. The 
figure shows that whilst the lower mantle controls much of the dynamic topography trends 
observed, it has a lower amplitude than that of the shallower signal. 
 


