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Abstract 11 

A complex history of subduction, back-arc basin formation, terrane accretion and transpressional 12 

shearing characterizes the evolution of the Caribbean and northern South American margin since 13 

Jurassic times. Quantitative plate tectonic reconstructions of the area do not include Jurassic-14 

Cretaceous back-arc terranes of which there are both geological and geophysical observations. We 15 

developed a revised plate tectonic reconstruction based on geological observations and seismic 16 

tomography models to constrain the Jurassic-Cretaceous subduction history of eastern Panthalassa, 17 

along the western margin of the Caribbean region. This reconstruction considers the opening of a 18 

Northern Andean back-arc basin at 145 Ma, the Quebradagrande back-arc, closing at 120 Ma and 19 

followed by terrane accretion and northward translation along the South American margin starting 20 

at 100 Ma. This kinematic reconstruction is tested against two previously published tectonic 21 

reconstructions via coupling with global numerical mantle convection models using CitcomS. A 22 

comparison of modeled versus tomographically imaged mantle structure reveals that subduction 23 

outboard of the South American margin, lacking in previous tectonic models, is required to 24 

reproduce mid-mantle positive seismic anomalies imaged in P- and S-wave seismic tomography 25 

beneath South America, 500-2000 km in depth. Furthermore, we show that this subduction zone 26 

is likely produced by a back-arc basin that developed along the northern Andes during the 27 

Cretaceous via trench roll-back from 145 Ma and was closed at 100 Ma. The contemporaneous 28 

opening of the Quebradagrande back-arc basin with the Rocas Verdes back-arc basin in the 29 

southern Andes is consistent with a model that invokes return flow of mantle material behind a 30 

retreating slab and may explain why extension along the Peruvian and Chilean sections of the 31 

Andean margin did not experience full crustal break-up and back-arc opening during the late 32 

Jurassic-early Cretaceous Period.  33 
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 36 

1 Introduction 37 

Subduction is a process characterized by retreating trenches and the descending of oceanic 38 

lithosphere into the mantle. In some cases, where a mantle wedge is present above the subducted 39 

slab, back-arc extension between the active volcanic arc/fore-arc and the remnant arc may result 40 

(Hawkins, 1995). While back-arc basins are observed in many of the world’s ocean basins, the 41 

Western Pacific has particularly been dominated by intra-oceanic subduction and episodic back-42 

arc basin formation since as early as Cretaceous times (e.g. Karig, 1971; Matthews et al., 2015; 43 

Schellart et al., 2006; Sdrolias et al., 2003). In contrast, in the Eastern Pacific, specifically along 44 

the South American margin, back-arc extension leading to seafloor-spreading has not occurred 45 

since the end of the Mesozoic, when it transitioned into a largely compressional margin 46 

experiencing crustal shortening and mountain building (Mpodozis and Ramos, 1990).  47 

Back-arc basins appear to be relatively short-lived and episodic features of subduction 48 

zones, active for only ~10-30 Myr (Faccenna et al., 2001; Schellart et al., 2006). Why back-arc 49 

basin formation is spatially variable across subduction zones remains uncertain. Absolute motion 50 

of the overriding plate has been linked to the style of back-arc deformation, back-arc extension or 51 

compression occurring as the result of upper plate retreat and advance, respectively (Chase, 1978; 52 

Heuret and Lallemand, 2005). Recent numerical modelling has shown that back-arc extension 53 

occurs preferentially where slab widths are narrow, and close to lateral slab edges where rollback 54 

of the slab is greatest (Schellart et al., 2007; Schellart and Moresi, 2013; Stegman et al., 2006). 55 

These results agree with the large trench retreat velocities observed in association with present day 56 



 

back-arc extension (Heuret and Lallemand, 2005; Schellart et al., 2007; Sdrolias and Müller, 57 

2006).  58 

Schellart et al. (2007) also showed that wide subduction zones, as occurs along South 59 

America, are near stationary near their center, with trench retreat velocities increasing towards the 60 

slab edges, inducing back-arc extension. This is consistent with the distribution of Jurassic-61 

Cretaceous back-arc basins along the western South American margin (Fig. 1). These range from 62 

“aborted” marginal basins to oceanic-floored back-arcs revealing a pattern of decreased crustal 63 

attenuation towards the center of the margin (Mpodozis and Ramos, 1990). The back-arc origins 64 

of the late Jurassic-aged Rocas Verdes ophiolites in the southernmost Andes and mid-Cretaceous 65 

transition to compressive deformation of the margin has been well constrained (e.g. Calderón et 66 

al., 2007; Dalziel et al., 1974; Stern and De Wit, 2003). Uncovering the tectonic history of the 67 

Northern Andes however has proven more challenging, because it is obscured by successive 68 

phases of extension, terrane accretion, and large magnitude dextral shearing as the result of 69 

interaction with the Pacific-derived Caribbean plate during Cenozoic times (Kennan and Pindell, 70 

2009; Ramos, 2010; Sarmiento-Rojas et al., 2006). This includes the Alao and Quebradagrande 71 

Terranes of the Northern Andes, where limited reliable geochemical and radiometric data result in 72 

conflicting interpretations, which include mid-ocean ridge, back-arc, oceanic arc, continental arc, 73 

and ensiliac marginal basin origins for these units (Cochrane et al., 2014; González, 1980; Nivia 74 

et al., 2006; Spikings et al., 2015; Villagómez et al., 2011). Consequently, this possible Andean 75 

back-arc basin has been largely overlooked in tectonic reconstructions of the region. 76 



 

 77 

Figure 1. Basemap of seafloor bathymetry from ETOPO1 (Amante et al., 2009) with simplified 78 

boundaries of Cretaceous back-arc and extensional basins of the western South American margin 79 

(from Maloney et al., 2013). Present-day plate boundaries (Bird, 2003) are shown as thick black 80 



 

lines. ANT: Antarctic Plate, COC: Cocos Plate, NAZ: Nazca plate, SAM: South American Plate. 81 

Black box shows the region in Figure 2.   82 

 83 

Of the few studies that have considered a Cretaceous Andean back-arc basin (e.g. Kennan 84 

and Pindell, 2009; Pindell et al., 2012), none have ever been tested in a kinematic sense (i.e. in 85 

terms of Euler pole rotations and block outlines) or linked to the implied evolution of the 86 

surrounding plate margins, and in particular the evolution of the seafloor, in a self-consistent 87 

manner.  88 

Seismic tomography studies have recently been used to identify seismically fast volumes 89 

in the mantle associated with past subduction systems (Domeier et al., 2016; Shephard et al., 2017; 90 

van der Meer et al., 2010; van der Meer et al., 2017). This approach has been particularly applied 91 

to North America where an analysis of the onshore geology coupled with seismic tomography 92 

images have indicated several generations of marginal and back-arc basins along this margin 93 

throughout the Mesozoic and early Cenozoic (Shephard et al., 2013; Sigloch and Mihalynuk, 94 

2013). van Benthem et al. (2013) identified upper mantle slabs that indicate significant eastward 95 

motion of the Caribbean plate relative to the Americas since Eocene times. However, lower and 96 

mid-mantle anomalies evident in P- and S-wave tomography models beneath the northern South 97 

American margin, have yet to be extensively studied. Determining the origin of these anomalies 98 

can shed light on the subduction history of the Andean margin. 99 

In areas where the geological history is heavily fragmented, as is the case in the Northern 100 

Andes, combining limited geological observations with seismic tomography and mantle 101 

convection models is useful to discriminate between alternative tectonic scenarios from predicted 102 

present-day mantle structure.  103 



 

Here we combine onshore geological data, mantle tomography images and numerical 104 

models of past global mantle flow to investigate alternate geodynamic scenarios for the Cretaceous 105 

evolution of the northern Andes-Caribbean region. We develop a new plate kinematic and 106 

seafloor-spreading reconstruction of the northern Andean-Caribbean margin that considers the 107 

early-Cretaceous opening and mid-Cretaceous closure of a back-arc basin along the Andean 108 

margin. This reconstruction is used as time-dependent boundary condition in global numerical 109 

models of mantle flow. We compare the predicted regional thermal structure of the mantle to 110 

seismic tomography models for our tectonic model and two previous end-member scenarios (based 111 

on Ross and Scotese (1988) and Boschman et al. (2014)) and assess these results in the context of 112 

back-arc basin evolution. 113 

 114 

2 Geological background 115 

The northern Andes can be broadly divided into two geochemically distinct basement 116 

provinces, separated by a ~2,000 km tectonic suture that extends through the Ecuadorian and 117 

Colombian cordilleras (Villagómez et al., 2011). Allochthonous, ultramafic and mafic units define 118 

an oceanic province to the west of the Romeral Fault System, constituting the basement of the 119 

Western Cordillera and Cauca–Patía Valley in Colombia (Villagómez et al., 2011) (Fig. 2). This 120 

sequence is geochemically equivalent to the plateau basalts of the Caribbean Large Igneous 121 

Province (CLIP), having formed in an intra-oceanic hotspot setting during 99-87 Ma (Kerr et al., 122 

1997; Spikings et al., 2015; Vallejo et al., 2006; Villagómez et al., 2011). The accretion of CLIP 123 

material is thought to have added at minimum 5.6 x 106 to 9.4 x 106 km3 (Cochrane et al., 2014) 124 

of new crust to the South American margin at 75-73 Ma as a result of the collision of the eastward 125 

moving Caribbean plate with the northern Andean margin at this time (Vallejo et al., 2006; Vallejo 126 



 

et al., 2009). Within Ecuador, these rocks are represented by the Piñon, Palaltanga, and San Juan 127 

formations, whilst in Colombia they correspond to the Calima Terrane (Toussaint and Restrepo, 128 

1994).   129 

This accreted oceanic sequence is juxtaposed against the para-autochthonous and 130 

autochthonous units comprising an eastern continental province (Villagómez et al., 2011). The 131 

continental basement is interpreted to represent the southern passive paleo-continental margin of 132 

the Proto-Caribbean Sea, conjugate to the southeastern Chortis margin (Boschman et al., 2014; 133 

Villagómez et al., 2011). These units are comprised of Grenvillian-aged (~1.0 Ga) gneisses and 134 

schists, Paleozoic unmetamorphosed and metasedimentary rocks (Restrepo-Pace, 1992; Restrepo-135 

Pace et al., 1997), overlain by a thin Cretaceous sedimentary cover sequence, intruded by plutons 136 

ranging in age from ~235-160 Ma (Kennan and Pindell, 2009; Villagómez et al., 2011).   137 



 

 138 

Figure 2. Terranes indicating back-arc extension and major fault systems of the northern Andes. 139 

CAF: Cauca–Almaguer Fault, PLT: Peltetec Fault, SJF: San Jerónimo Fault, SPF: Silvia–Pijao 140 

Fault. Terrane boundaries from Spikings et al. (2015).  141 

 142 

In Colombia, the Romeral Fault System, interpreted as a tectonic suture zone, can be 143 

divided into three major branches: the San Jerónimo, Silvia–Pijao and Cauca–Almaguer Faults, 144 

that extend southwards merging with the Peltetec Fault zone in Ecuador (Villagómez et al., 2011). 145 



 

Entrained within this fault system are the Quebradagrande and Arquia complexes, of central 146 

importance to this study (Fig. 2). The origin of these units is debated, with interpretations including 147 

mid-ocean ridge (González, 1980), oceanic arc (Villagómez et al., 2011), continental arc 148 

(Cochrane et al., 2014) and ensiliac marginal basin (Nivia et al., 2006). 149 

Lithologies of the Quebradagrande Complex are dominated by low-grade metamorphosed 150 

gabbros, diorites, basalts, andesites, and pyroclastics (Nivia et al., 2006; Villagómez et al., 2011), 151 

covered by marine and terrestrial rocks of the Abejorral Formation which host Hauterivian to lower 152 

Albian fossils (González, 1980). These units are bound to the east by the San Jerónimo fault, 153 

juxtaposed against the Triassic-Paleozoic continental rocks of the Central Cordillera. The 154 

Quebradagrande Complex is considered to be coeval with the undated Alao Arc of Ecuador, 155 

displaying a similar structural position relative to the continental basement (Spikings et al., 2015; 156 

Villagómez et al., 2011). Moreno-Sanchez and Pardo-Trujillo (2003) collectively referred to these 157 

units as the Quebradagrande-Alao complex. Mora-Bohórquez et al. (2017) identified an oceanic 158 

terrane within the Lower Magdalena Valley, which they considered to be the northward 159 

continuation of the Quebradagrande terrane. 160 

Limited geochemical studies of the igneous units that comprise the Quebradagrande and 161 

Alao sequences suggest that these rocks formed in a variety of tectonic environments, spanning 162 

calk-alkaline to tholeiitic compositions (Nivia et al., 2006; Spikings et al., 2015; Villagómez et al., 163 

2011). Early radiometric dating of the suspect terranes of the Northern Andes region relied on 164 

K/Ar and Rb/Sr dating methods. However, partial resetting of the Rb/Sr and K/Ar isotopic systems 165 

and daughter isotope loss as a consequence of a sustained active margin through to the present 166 

day, led Spikings et al. (2015) to consider these studies unreliable. Villagómez et al. (2011) and 167 

Cochrane (2013) reported concordant zircon U-Pb dates of magmatic rocks of the Quebradagrande 168 



 

Complex of 114.3 ± 3.8 Ma (tuff) and 112.9 ± 0.8 Ma (diorite) which overlaps with the 169 

Hautevarian-early Albian fossil ages for this unit (González, 1980). 170 

To the west along the Silvia–Pijao fault, the Quebradagrande complex is in faulted contact 171 

with garnet-bearing amphibolites and lawsonite-glaucophane schists that constitute the Arquía and 172 

Barragán sequences (Spikings et al., 2015; Villagómez et al., 2011). Villagómez et al. (2011) and 173 

Spikings et al. (2015) suggested that the Arquía and Barragán complexes are the along-strike 174 

equivalent of the Raspas and Peltetec complexes in Ecuador, consisting of oceanic crust that 175 

mainly formed at a mid-ocean ridge, which was subsequently metamorphosed to high-to medium 176 

P-T conditions in an east-dipping subduction zone that gave rise to the Quebradagrande complex. 177 

Recent work conclude that variation in LREE enrichment, magmatic composition, and detrial 178 

zircon ages within the Quebradegrande complex can be explained by its formation over thin 179 

continental and newly formed oceanic back-arc related crust (Jaramillo et al., 2017). 180 

Spikings et al. (2015) suggested that trench roll back and extension of the continental crust 181 

during ~145-114 Ma would have been sufficient to generate mafic magmas of T-MORB affinity 182 

and marine environments, consistent with the geological characteristics of the Quebradagrande 183 

and Alao complexes. Kennan and Pindell (2009) referred to this extensional feature as the 184 

“Colombian Marginal Seaway”, a wide back-arc basin that formed a southward propagating arm 185 

of the Proto-Caribbean. This is consistent with the timing of a latest Jurassic–Hauterivian (144-186 

127 Ma) extensional event identified by (Sarmiento-Rojas et al., 2006) in the Eastern Cordillera 187 

of Columbia. Additionally, Early Cretaceous intrusions in the Eastern Cordillera are attributed to 188 

rifting by Vásquez and Altenberger (2005). The width of the Colombian marginal Seaway and 189 

total orthogonal displacement of the Quebradagrande arc relative to South America is unknown. 190 

Villagómez et al. (2011) suggested that the T-MORB crust of the Quebradagrande Arc formed the 191 



 

relict basement of the Colombian Marginal Seaway and was originally entrained between the arc 192 

rocks and the continental terranes but has since been displaced.  193 

Villagómez et al. (2011) proposed that 40Ar/39Ar ages of 117-107 Ma obtained in the 194 

Arquía complex (Villagómez Diaz, 2010) represent cooling ages during retrogression from peak 195 

metamorphic conditions. These ages are interpreted to correspond with the obduction, exhumation 196 

and accretion of the Arquía complex onto the Quebradagrande Arc and the continental margin in 197 

a compressive event that closed the Quebradagrande basin (Sarmiento-Rojas et al., 2006). This 198 

compression has been attributed to increased westward motion of the South American continent 199 

as a consequence of the opening of the South Atlantic during mid-Cretaceous times (Eagles, 2007; 200 

Ramos, 2010).  201 

 202 

2.1 Peruvian Andes 203 

South of the Huancacamba deflection, there is also evidence of back-arc extension recorded 204 

in the West Peruvian Trough (WPT), a major depositional structure that includes the north-south 205 

trending Casma-Huarmey and Canete Basins (Atherton and Aguirre, 1992; Cobbing, 1978). 206 

However, there have been few studies of the geochemistry and age of these basins. 207 

These basins are thought to have opened during Tithonian times, experiencing maximum 208 

subsidence during Albian times, during which up to 9,000 m of basinal fill accumulated (Atherton 209 

and Aguirre, 1992; Atherton and Webb, 1989). The thick marine volcanic fill of the Casma-210 

Huarmey Basin consists of pillow and sheet lavas, tuffs, hyaloclastites, and volcaniclastics 211 

associated with dyke swarms, sills and gabbros (Atherton, 1990; Petford and Atherton, 1994). A 212 

clear trend towards increasingly LIL and LREE depleted basalts towards the top of the basin is 213 



 

attributed to extensive crustal thinning, ultimately leading to the generation of new tholeiitic 214 

oceanic crust (Atherton and Webb, 1989; Petford and Atherton, 1994). A comparison of the 215 

Casma-Huarmey Basin facies with modern basin settings lead Atherton and Webb (1989) to 216 

suggest that the basin developed in a relatively isolated deep-sea environment with no continental 217 

input, characterised by a slow mid-ocean ridge (MOR) spreading system. The extent of crustal 218 

thinning is debated, with some researchers suggesting that extension did not occur on the scale 219 

required for the generation of new oceanic crust in this region, and are instead referred to as 220 

“aborted” marginal basins (Mpodozis and Allmendinger, 1993; Soler and Bonhomme, 1990). 221 

Crustal extension in the southern part of the WPT was not as extensive and did not result 222 

in the development of new oceanic crust. The southern Cañete Basin developed on the Precambrian 223 

Arequipa Massif, thinning along southward propagating faults (Atherton and Aguirre, 1992). The 224 

bimodal calc-alkaline rocks that characterize the volcanic fill of this basin are sourced from 225 

enriched mantle beneath the Arequipa Massif, contrasting tholeiitic basalts of equivalent age in 226 

the Huarmey Basin to the north (Atherton and Aguirre, 1992). The Cretaceous collapse and closure 227 

of these back-arc basins along the Andean margin are attributed to the opening of the South 228 

Atlantic and subsequent westward motion of the South American plate (Mpodozis and 229 

Allmendinger, 1993). However, in a recent study, the change from extension and back-arc  basin 230 

opening to shortening and back-arc basin closure has been ascribed to the change from upper 231 

mantle subduction to whole mantle subduction along the South American subduction zone 232 

(Schellart, 2017). 233 

 234 

3 Plate tectonic reconstructions 235 

 236 



 

3.1. Previous reconstructions 237 

The evolution of the Northern Andes has been strongly influenced by the interaction of the 238 

margin with the Caribbean plate during Cenozoic times (Kennan and Pindell, 2009).  239 

Ross and Scotese (1988) were amongst the first to use studies of the spreading history of 240 

the Cayman Trough derived from magnetic anomaly data (Rosencrantz et al., 1988; Ross et al., 241 

1986) to constrain the mid-Eocene to present day motion of the Caribbean plate. The Cayman 242 

Trough represents one of the few elements of the Caribbean that can be reconstructed with a 243 

reasonable level of certainty, due to its preserved magnetic lineations, and is therefore consistently 244 

reconstructed across multiple studies. Magnetic anomalies elsewhere in the Caribbean are sparse 245 

due to the eruption of mantle plume derived basalts at 91-88 Ma (Sinton et al., 1998), forming the 246 

Caribbean Large Igneous Province (CLIP) (Fig. 3). The thickened crust of the Caribbean Sea is 247 

attributed to this event, effectively covering the spreading history of much of the Caribbean Sea 248 

with these volcanic rocks.  249 

 250 



 

Figure 3. Present-day plate boundaries and major faults of the Caribbean region (Pindell and 251 

Kennan, 2009; Serrano et al., 2011; Villagómez et al., 2011). The extent of the Caribbean Large 252 

Igneous Province (CLIP) is shown in grey.  253 

 254 

This has led to the rise of a variety of competing tectonic interpretations that can largely 255 

be divided into two end-member scenarios for the origin of the Caribbean plate: an “Intra-Americas 256 

origin” (James, 2005, 2009; Meschede and Frisch, 1998) and the more widely supported “Pacific 257 

origin” (Bouysse, 1988; Duncan and Hargraves, 1984; Kennan and Pindell, 2009; Müller et al., 258 

1999; Nerlich et al., 2015; Pindell and Dewey, 1982; Pindell et al., 2012; Pindell and Barrett, 1990; 259 

Pindell and Kennan, 2009; Ross and Scotese, 1988; Whattam and Stern, 2015).  260 

The accretion of oceanic plateau basalt and island arc terranes along the northwestern 261 

Andes combined with large magnitude dextral shear is best explained by the interaction of the 262 

Andean margin with the Great Arc of the Caribbean that formed at the leading edge of the 263 

Caribbean plate (Kennan and Pindell, 2009), a central component of “Pacific origin” models. 264 

Volcanic arc material and high-pressure, low-temperature (HP-LT) metamorphic rocks found 265 

along the circum-Caribbean margin, from Central America to the Aves Ridge and Lesser Antilles, 266 

and the Greater Antilles, including Cuba, Jamaica, Hispaniola and Puerto Rico are interpreted as 267 

the remnants of this former volcanic arc, initially forming at the subduction boundary between the 268 

future Caribbean plate and Proto-Caribbean Ocean (Burke, 1988). Pindell et al. (2012) suggest this 269 

arc first formed above a southwest dipping subduction zone at ~135 Ma, along an existing sinistral 270 

‘inter-American’ transform, which previously connected the North and South American 271 

Cordilleras. The oldest magmatic arc rocks attributed to the Great Arc dated at ~132 Ma in the 272 

Devils Racecourse Formation, Jamaica (Hastie et al., 2009) and ~133 Ma in the Mabujina 273 



 

Amphibolite Complex, Cuba (Rojas-Agramonte et al., 2011). The oldest reported single cooling 274 

age of HP-LT rocks of the Caribbean dates back to 118 Ma in the northern ophiolite belt of Central 275 

Cuba, indicating the minimum age of eclogite facies metamorphism (García-Casco et al., 2006). 276 

Following the inferences of Gerya et al. (2002), Pindell et al. (2012) suggest that the time lag 277 

between the ages of arc magmas and HP-LT rocks of the Caribbean is indicative of return flow 278 

from great depths in a mature subduction system, and therefore represent formation at the same 279 

subduction zone. 280 

Alternative interpretations include those of Duncan and Hargraves (1984), Burke (1988) 281 

and Kerr et al. (2003) who suggested that the buoyant crust of the Caribbean Plateau blocked an 282 

earlier eastward dipping subduction zone inducing a subduction polarity reversal during 283 

Santonian-Campanian times (~85-80 Ma). This process would precipitate the eastward movement 284 

of Farallon lithosphere, which would eventually form the Caribbean plate, into the gap between 285 

the Americas. However, this model fails to explain evidence of Caribbean-northern Andean 286 

convergence already underway before 90 Ma (Kennan and Pindell, 2009). 287 

Only two tectonic studies provide the Euler rotations that make them directly comparable 288 

to other models, those of Ross and Scotese (1988) and Boschman et al. (2014). 289 

The model of Ross and Scotese (1988) was the first to approach Caribbean evolution in a 290 

quantitative sense, applying a hierarchical method to describe relative motion between pairs of 291 

tectonic components in terms of finite rotation poles. In this model, the Proto-Greater Antilles, 292 

analogous to the Great Arc of the Caribbean, originates at a subduction zone between the Farallon 293 

plate and the Proto-Caribbean between 143-100 Ma. The model includes a polarity reversal at the 294 

subduction zone beneath the Proto-Greater Antilles at ~100 Ma, allowing the advance of the 295 

Farallon plate into the widening gap between North and South America. Collision of the Great Arc 296 



 

with the Bahamas platform during the latest Cretaceous-earliest Paleocene is thought to have 297 

prohibited further eastward movement of Farallon lithosphere prompting the inception of eastward 298 

dipping subduction at 70 Ma, thus isolating the Caribbean plate.  A recent tectonic model by 299 

Nerlich et al. (2015) presented an update of the Ross and Scotese (1988) model to include a 300 

younger age of collision between the Caribbean Plateau and the Proto-Greater Antilles Arc to 301 

84 Ma. 302 

Boschman et al. (2014) alternatively proposed an earlier age of initial westward-directed 303 

subduction below the Great Arc of the Caribbean at 135 Ma, given the oldest arc related units in 304 

the Caribbean date back to 133 Ma (Rojas-Agramonte et al., 2011) and HP-LT metamorphic 305 

blocks in the Cuban serpentinite mélange ranging from ~130 to 60 Ma (Somin et al., 1992).  306 

 307 

3.2 Reconstructions in this Study 308 

We create a self-consistent, dynamically evolving plate kinematic model of the Jurassic-309 

Cretaceous Caribbean-northern Andean margin, which we embed into the global model of Müller 310 

et al. (2016) (Fig. 4). Müller et al. (2016) included a relative plate motion model for the Caribbean 311 

based on Boschman et al. (2014) and a hybrid absolute reference frame, combining a moving 312 

hotspot model since 100 Ma and a true-polar wander corrected paleomagnetic model for 200 to 313 

100 Ma (see Müller et al. (2016)). The plates are modelled as dynamically closing polygons 314 

through time, defined by a series of intersecting plate boundaries, following the methodology 315 

outlined in Gurnis et al. (2012). For comparison, we have also developed continuously closing 316 

plate polygons for the regional reconstructions of Ross and Scotese (1988) and Boschman et al. 317 

(2014), which have been integrated into the global reconstructions by Seton et al. (2012) and by 318 

Müller et al. (2016), respectively. Companion paleo-seafloor age rasters (see Müller et al. (2008) 319 



 

for further explanation) have been computed for all three reconstructions. These global maps of 320 

past seafloor ages are an important boundary condition for our geodynamic models as they allow 321 

us to reconstruct the thickness of the thermal oceanic lithosphere assuming a half-space cooling 322 

model.  323 

Our reconstruction modifies the Early Cretaceous rotations of Boschman et al. (2014) by 324 

implementing the opening and closure of a Cretaceous back-arc basin system, the Quebradagrande 325 

back-arc basin, consistent with the geological record from the western Caribbean and northern 326 

South America. Corresponding Northern Andes arc material is modelled in Boschman et al. (2014) 327 

however its placement at a transform boundary is not consistent with its interpreted arc origin. We 328 

therefore modified the rotations of this block to a position along a retreating subduction zone 329 

outboard of South America, from 145 Ma (Fig. 4). We modelled this back-arc as a southern arm 330 

of the Proto-Caribbean spreading between North and South America, consistent with the 331 

Colombian Marginal Seaway of Kennan and Pindell (2009). Previous schematics of this back-arc 332 

basin (Kennan and Pindell, 2009; Pindell et al., 2012; Pindell and Kennan, 2009) show a back-arc 333 

basin of limited extent, ~200-300 km wide, and close to the margin. As little evidence is available 334 

to constrain the width of the basin, we used the boundary defined by Boschman et al. (2014) to 335 

constrain the western extent of paleo-location of back-arc subduction.  336 

Additionally, we considered areas further south than what was considered in Boschman et 337 

al. (2014) and Ross and Scotese (1988), incorporating further evidence of back-arc basin formation 338 

in the West Peruvian Trough as described by Atherton and Aguirre (1992), Petford and Atherton 339 

(1994), and Ramos (2010). Full breakup and oceanic crust production are only proposed to have 340 

occurred in the northern region of the West Peruvian Trough, contrasting the primarily continental 341 

extensional setting of the southern basins. We constrained the north-south extent of the back-arc 342 



 

basin to reflect these differing rates of extension, reaching a maximum extent in the northern region 343 

of the back-arc, bending inwards towards the continental margin towards the south. The connection 344 

between the northern boundaries of our back-arc and the western North American margin are 345 

uncertain and beyond the scope of this study. However, the back-arc basin may have extended 346 

further north, adjacent to western North America, considering both geologic and seismic 347 

tomography evidence for intra-oceanic subduction outboard of the western North American 348 

margin (Sigloch and Mihalynuk, 2013). 349 

As a consequence of westward-dipping subduction of the Proto-Caribbean initiating at 350 

135  Ma to accommodate the formation of the Great Arc of the Caribbean, spreading of the 351 

Quebradagrande back-arc reverts to a two-plate system (Fig. 4). The back-arc basin was modelled 352 

to close from 119 Ma in response to the opening of the South Atlantic and northwest movement 353 

of the South American continent at this time (Spikings et al., 2015), with a reversal in the polarity 354 

of the subduction zone. Closure of the back-arc was finalized at 100 Ma (Kennan and Pindell, 355 

2009), accompanied by the accretion of back-arc material to the South American margin 356 

(Villagómez et al., 2011) (Fig. 4). At this point, translation of the accreted terranes occurred along 357 

the Northern Andes, rotating to a position along the north-western Andean margin consistent with 358 

Boschman et al. (2014) by 85 Ma. From 85 Ma the new model retains the rotations of Boschman 359 

et al. (2014). 360 

The spontaneous appearance of the Caribbean plate in eastern Panthalassa at 135 Ma, 361 

isolated by an unknown western plate boundary in Boschman et al. (2014) (Fig. 4) presents a 362 

kinematic problem. The eastward motion of the Farallon plate relative to this boundary requires 363 

the presence of eastward dipping subduction below the newly formed Caribbean plate, for which 364 

there is no geological evidence. Santonian–Campanian boninites, closely related to subduction 365 



 

initiation, are found in the accreted Greater Panama terranes in the Northern Andes (Kennan and 366 

Pindell, 2009). Therefore, we only isolated the Caribbean plate at 85 Ma, trapping Farallon oceanic 367 

lithosphere with the inception of an eastward dipping subduction zone.  368 



 

 369 

Figure 4. Reconstructions of Ross and Scotese (1988) (left), Boschman et al. (2014) (middle) 370 

and this study (right) from 145 to 100 Ma. Plate boundaries are defined as thin magenta lines for 371 



 

subduction zones (with triangles on the overriding plate) and thin black lines defining either mid-372 

ocean ridges or transform faults. In the case of the Boschman et al. (2014) reconstruction, the 373 

thin black lines along the northwestern, western and southern boundaries of the Caribbean plate 374 

denote undefined plate boundaries. Computed paleo-seafloor ages and absolute plate velocities 375 

are also plotted. CAR: Caribbean plate, CH: Chortis, FAR: Farallon plate, GAC: Great Arc of 376 

the Caribbean, GoM: Gulf of Mexico, NAM: North America, PHX: Phoenix plate, P-C: Proto-377 

Caribbean, QB: Quebradagrande back-arc basin, SAM: South America, YU: Yucatan. 378 

 379 

4. Geodynamic models 380 

We ran a series of global forward numerical models of mantle flow that use plate kinematic 381 

data as surface boundary conditions to predict the present day thermal structure of the mantle. We 382 

used the finite element code CitcomS (Zhong et al., 2008), modified by Bower et al. (2015) to 383 

assimilate the time-dependent structure of the thermal lithosphere and of the shallow part of 384 

subducting slabs.  385 

The mantle was considered to be an incompressible viscous fluid within a spherical shell, 386 

divided into 12 ‘caps’, each extending from the surface to the core mantle boundary. We used ~ 13 387 

million nodes to achieve a lateral average resolution of ~ 50 km at the surface and ~ 28 km at the 388 

core-mantle boundary, and a radial resolution of ~ 15 km near the surface, ~ 100 km at mid-mantle 389 

depths and ~ 27 km near the core-mantle boundary.  390 

Convective vigor is determined by the Rayleigh number  391 

𝑅𝑎 =
𝛼%𝜌%𝑔%𝛥𝑇ℎ+,

𝜅%𝜂%
 392 



 

where α0 is the coefficient of thermal expansivity, ρ0 the density, g0 the acceleration of 393 

gravity, ΔT the temperature change across the mantle, hM is the depth of the mantle, κ the thermal 394 

diffusivity, η the viscosity. 395 

Viscosity depends on temperature and depth following: 396 

𝜂 = 𝜂%(𝑟) exp2
𝐸4

𝑅(𝑇 + 𝑇4)
−

𝐸4
𝑅(𝑇7 + 𝑇4)

8 397 

where η is the viscosity, 	η% = 1 × 10>? Pa s  is the reference viscosity, 𝐸4	 ≈ 100 kJ mol-398 

1 (upper mantle) or 𝐸4	 ≈ 33 kJ mol-1 (lower mantle) is the activation energy, 𝑅	 = 8.31	 J mol-1 399 

K-1 is the universal gas constant, T is the dimensional temperature between 273 K and 3098 K, 400 

𝑇7 = 1685 K is the background temperature of the mantle, 𝑇4 = 452 K is a temperature offset 401 

(Flament et al., 2014). The spherical mantle shell is radially divided into four layers: lithosphere 402 

(0-160 km), asthenosphere (160-310 km), upper mantle (310-660 km), and lower mantle (660-403 

2867 km). A viscosity contrast of 100 between the upper and lower mantle was implemented in 404 

our model runs, consistent with the findings of Alpert et al. (2010), and the asthenosphere was 405 

assumed to be 10 times less viscous than the upper mantle (Fig. 5). Note that the thermal thickness 406 

of the oceanic lithosphere depends on its age according to the half-space cooling model (Bower et 407 

al., 2015). In the continents, the thermal thickness of the lithosphere depends on tectonothermal 408 

age (Archean lithosphere is 250 km thick, Proterozoic lithosphere 165 km thick, and Phanerozoic 409 

lithosphere 135 km thick; (Flament et al., 2014)). In addition, the reference viscosity is assumed 410 

to be 100 times larger between 0-160 km depth than between 310-660 km depth (upper mantle). 411 



 

 412 

Figure 5. Horizontally-averaged present-day temperature and resulting viscosity profile.  413 

 414 

In the initial condition at 230 Ma, subducted slabs derived from the tectonic reconstructions 415 

for each case are inserted down to 1,400 km depth, with a dip of 45º down to 425 km and a dip of 416 

90º below this. Subduction zones thought to have initiated with insufficient time prior to 230 Ma 417 

to produce slabs at this depth (~85 Myr) were inserted to a depth based on subduction duration and 418 

a descent rate of 3 cm yr-1 in the upper mantle, and 1.2 cm yr-1 in the lower mantle (van der Meer 419 

et al., 2010). The main uncertainty in the location of subduction zones during the time period of 420 

our reconstructions is the absolute reference frame. The model of Müller et al. (2016) upon which 421 

our model is built, uses a global moving hotspot model (Steinberger et al., 2004) that is the most 422 

reasonable based on an evaluation of its global consistency with both hotspot trails and other 423 

geodynamic criteria (Williams et al., 2015) and produces similar results to the subduction reference 424 

frame of van der Meer et al. (2010). In addition, recent results have demonstrated that the lower 425 

mantle structure predicted by geodynamic models using the same base model as in our study is 426 



 

broadly consistent with seismic tomography images of the lower mantle (Flament et al., 2017), 427 

and thus provide us with a level of confidence in the plate models that are used in this study. 428 

The initial mantle structure also includes a basal thermochemical layer 113 km thick (2% 429 

of the volume of the mantle following Hernlund and Houser (2008)) just above the core-mantle 430 

boundary that consists of material 3.6 % denser than ambient mantle (Flament et al., 2015).  431 

 432 

4.1 Modelled mantle evolution 433 

4.1.1 Ross and Scotese (1988) 434 

In the absence of subduction outboard of the South American margin during Cretaceous 435 

times, the thermal structure of the mantle based on the reconstructions of Ross and Scotese (1988) 436 

is largely controlled by prolonged east-dipping subduction of Farallon (FAR) lithosphere beneath 437 

South America at 55°W. A vertical cross section at 4°S shows that this occurs continuously from 438 

150 Ma to the present day, subducting as part of the Nazca plate from 23 Ma onwards (Fig. 6). As 439 

subduction remained uninterrupted along the South American margin, the subducted lithosphere 440 

remained attached to the base lithosphere through time. Increased westward motion of the South 441 

American continent associated with the opening of the Atlantic at ~120 Ma (Eagles, 2007), resulted 442 

in a ~30° westward relocation of the subduction zone from 120 Ma to the present day. As the 443 

subduction zone moved westward, subducted lithosphere in the upper and mid mantle was dragged 444 

with it, resulting in the diagonal smearing apparent in the predicted present-day mantle temperature 445 

cross-section. A gap opened in the subduction zone between 9 Ma and the present day. We see this 446 

mantle structure replicated at latitudes up to ~5°N. However, beneath the present-day Caribbean 447 



 

Sea, subduction influx from both the Atlantic/Proto-Caribbean and Pacific realms is evident and 448 

is broadly similar between the considered geodynamic models. 449 

 450 



 

Figure 6. Vertical cross sections of time-dependent predicted mantle temperature based on the 451 

reconstruction Ross and Scotese (1988) at 4°S. Black contours correspond to material that is 4% 452 

cooler than ambient mantle temperature. FAR: Farallon oceanic lithosphere subducted beneath the 453 

South American continental margin.  454 

 455 

4.1.2 Boschman et al. (2014) 456 

The predicted thermal structure of the mantle is markedly different if a subduction zone is 457 

considered outboard of South America. The earlier onset of westward dipping subduction of Proto-458 

Caribbean (PC) lithosphere beneath the Great Arc modelled by Boschman et al. (2014) resulted in 459 

the detachment of the Farallon slab (FARa) from the surface at 130 Ma (Fig. 7). By 120 Ma, 460 

subduction of the Farallon plate (FARb) began beneath the western trailing edge of the Caribbean 461 

plate at ~80°W. This subduction was not a feature of the reconstruction by Boschman et al. (2014) 462 

but was required because of the relative motion of the Farallon plate and Caribbean plate at this 463 

time.  464 

With the eastward advance of the Caribbean plate, FARb was initially smeared laterally 465 

across the mantle transition zone from ~85-75°W. This volume only began to sink vertically into 466 

the lower mantle when it became detached by 59 Ma, eventually sinking to ~1500-2300 km depth 467 

at the present day. The additional slab material present at 150 Ma in the upper mantle at ~70°W 468 

was not associated with western Caribbean or Andean margin. It was instead related to the Jurassic 469 

Talkeetna-Bonanza subduction zone, associated with the closure of the Cache Creek (CC) Ocean 470 

and accretion of the Cache Creek terrane to the North American continent at ~180-150 Ma 471 

(Johnston and Borel, 2007).  The southward extent of the Cache Creek Ocean was changed 472 



 

between the reconstruction of Seton et al. (2012) and that of Müller et al. (2016), hence why it was 473 

observed in the models that use the Müller et al. (2016) reconstructions.  474 

 475 



 

 476 

Figure 7. Vertical cross sections of time-dependent predicted mantle temperature based on the 477 

reconstruction Boschman et al. (2014) at 4°S. Black contours correspond to material that is 4% 478 



 

cooler than ambient mantle temperature. FARa; Farallon lithosphere subducted below South 479 

America; CC; Cache Creek plate, PC; Proto-Caribbean lithosphere subducted below Caribbean 480 

plate, FARb; Farallon lithosphere subducted below Caribbean, FARc and NAZ; subduction of 481 

Farallon/Nazca lithosphere below South America following northward movement of Caribbean 482 

plate. 483 

 484 

4.1.3 This study 485 

In this study, east-dipping subduction beneath the South American margin was interrupted 486 

by the opening of the Quebradagrande back-arc at 145 Ma, inducing the detachment of the Farallon 487 

(FARa) slab earlier than Boschman et al. (2014). As the back-arc opened, subducting Farallon 488 

lithosphere (FARb) initially became smeared along the mantle transition zone as the subduction 489 

hinge rolled back (Fig. 8). A polarity reversal associated with the closure of the Quebradagrande 490 

back-arc (QB) shows a similar pattern of lateral deflection at the limit between the upper and lower 491 

mantle (660 km depth). Subducted oceanic lithosphere associated with the inception of east-492 

dipping subduction at 85 Ma responsible for the isolation of the Caribbean plate sank vertically 493 

through the mantle transition zone (FARc; Fig 8). As this material sank it coalesced with the older 494 

back-arc sinking slab, continuing to sink as a single thermal anomaly to ~1500-2300 km depth at 495 

present between ~85-75°W (Fig. 8).  496 

Because a low convergence rate was assigned between the Proto-Caribbean and the leading 497 

edge of the Caribbean plate, based on a kinematic analysis (Fig. 9), there was no significant volume 498 

of material prior to ~110 Ma in the model based on our reconstruction. Resumed subduction along 499 

the South American margin (FARd and NAZ) that continued to the present day is responsible for 500 

mid- to upper-mantle slab material (1500-500 km) predicted at 80-60°W.  501 



 

 502 



 

Figure 8. Vertical cross sections at 4°S of time-dependent predicted mantle temperature based 503 

on our reconstruction. Black contours correspond to material that is 4% cooler than ambient 504 

mantle temperature. CAR = eastward dipping subduction of Caribbean lithosphere below South 505 

America; CC = Cache Creek plate; FARa = Jurassic-Cretaceous eastward dipping subduction of 506 

Farallon lithosphere below South America; FARb = eastward and southward dipping subduction 507 

of Farallon lithosphere below the opening Quebradagrande backarc; FARc = eastward dipping 508 

subduction of Farallon lithosphere below Caribbean; FARd and NAZ = eastward dipping 509 

subduction of Farallon/Nazca lithosphere below South America following northward movement 510 

of Caribbean plate; QB = westward dipping subduction of the Quebradagrande backarc basin 511 

beneath the Farallon plate (i.e. back-arc basin closure). 512 

 513 

 514 

Figure 9. Convergence velocities of the Proto-Caribbean (solid lines) and Farallon plate (dashed 515 

lines), relative to the Caribbean plate for Boschman et al. (2014) (assuming that their outboard 516 
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plate boundary is a subduction zone) and our model (black) and Ross and Scotese (1988) (red). 517 

The onset of westward-dipping subduction of the proto-Caribbean did not occur until 95 Ma (solid 518 

blue) in Ross and Scotese (1988), with eastward dipping subduction of Farallon lithosphere below 519 

the newly formed Caribbean plate not occurring until 70 Ma (dashed blue).  520 

 521 

5. Seismic tomography 522 

Anomalously fast seismic velocities are generally inferred to be representative of cold 523 

subducted material based on a first order interpretation of the relationship between seismic wave 524 

velocity and temperature. In this section we compare tectonic reconstructions and geodynamic 525 

models to horizontal and vertical slices of P- and S-wave tomography models. We selected two P-526 

wave (Li et al., 2008; Montelli et al., 2004) and two S-wave (Grand, 2002; Ritsema et al., 2011) 527 

models to visualize the mantle structure in the area. P-wave models allow for high-resolution 528 

imaging of subduction zones due to the high concentration of receiver stations in proximity to 529 

seismic wave sources, whereas S-wave models provide better coverage of large wavelength 530 

features due to the sampling of broadband data (Romanowicz, 2003). 531 

Assuming subducted material sinks largely vertical through the mantle (van der Meer et 532 

al., 2010), we can interpret laterally continuous positive seismic anomalies to represent the paleo-533 

location of subduction zones in eastern Panthalassa. We used two alternative sinking rates for the 534 

mantle, one with the whole mantle rate of 1.3 cm yr-1 (Butterworth et al., 2014) (Fig. 10 and S2-535 

4) (preferred rate) and another that assumes an upper mantle sinking rate of 4.8 cm yr-1 derived 536 

from Lithgow-Bertelloni and Richards (1998) and a lower-mantle average sinking rate of 1.2 cm 537 

yr-1 as determined by van der Meer et al. (2010) (Figs. S1). Using these parameters, we converted 538 

horizontal depth slices into age to give an approximate age-depth relationship to subducted 539 



 

material. The larger sinking rate adopted for the less viscous upper mantle predicts slabs to be at a 540 

greater depth than estimated in van der Meer et al. (2010) and that predicted by our mantle 541 

convection models (Fig. 8). 542 

The long-lived continuous subduction zone extending along the western margin of North 543 

and South America until 87 Ma proposed by Ross and Scotese (1988) shows a poor correlation 544 

with the observed lateral distribution of subducted slab material (Fig. 10). The presence of a 545 

subduction zone outboard of the Americas included in Boschman et al. (2014) and our model 546 

provide a better fit at depths between 1000-1500 km (Fig. 10). In our reconstructions, we explain 547 

the presence of this material as a consequence of the rolling back of the subduction slab associated 548 

with both the opening and closing of the Quebradagrande backarc (e.g. at 1,333 km depth; Fig. 10). 549 

This is in contrast to the Boschman et al. (2014) reconstruction, which does not propose a 550 

subduction zone to explain the presence of the broad region of seismically fast material in the 551 

lower mantle.   552 

After 90 Ma, at depths shallower than ~1,100 km, a large volume of subducted slab material 553 

close to the equator is present in all the seismic tomography models, marking a northward shift in 554 

subduction (Fig. 10). This corresponds well with the location of subduction from 85 Ma in 555 

Boschman et al. (2014) and consequently our model, as the Caribbean plate moves into the 556 

widening gap between the North and South American continents. The Ross and Scotese (1988) 557 

model cannot account for the presence of this material due to a 25 million year delay in the 558 

inception of a new western subduction zone isolating the Caribbean plate, relative to the other two 559 

models.  560 

In the northern Pacific Ocean basin, which is outside of the scope of this study, seismic 561 

anomalies are not well matched by subduction systems. However, the incorporation of intra-562 



 

oceanic subduction systems outboard of the western North American margin, as in Sigloch and 563 

Mihalynuk (2013), may improve correlations in this area as well as the continuity with the 564 

subduction systems further south. There may also be scope to improve the shape of the subduction 565 

zone at ~80 Ma as it transitioned from an intra-oceanic subduction zone to a subduction zone 566 

associated with the Caribbean and the Andean margin (Fig. 10). 567 

 568 



 

 569 

Figure 10. Three alternative plate reconstructions tested in this paper with age-coded seismic 570 

tomography depth slices (positive values only) based on MIT-P (Li et al., 2008). Sinking rate used 571 



 

for the age-coding is a constant rate of 1.3 cm yr-1. Red lines with teeth denote subduction zones, 572 

thick black lines denote mid-ocean ridges and transform faults and thin black lines denote 573 

coastlines. Dashed orange polygons highlight areas where the plate model and seismic tomography 574 

are inconsistent (see text for discussion). 575 

 576 

  The predicted mantle structure derived from our geodynamic models is also compared to 577 

the distribution of seismically fast material in vertical tomography slices.   578 

At mid-mantle depths, the geodynamic models match both P- and S-wave tomography at 579 

latitudes between ~5°N and ~10°S (Fig. 11 and Fig. S1-2), in the models where a subduction zone 580 

outboard of South America is introduced during the Early Cretaceous. Geodynamic models based 581 

on the reconstruction of Boschman et al. (2014) and our new reconstruction account for seismically 582 

fast material at depths of ~1,000-2,000 km at ~70-85°W (Fig. 11 and Fig. S1-2). Based on an 583 

analysis of the time-dependent mantle temperature, we attribute this material to the subduction of 584 

Farallon lithosphere at the western Caribbean margin from 135 Ma in the Boschman et al. (2014) 585 

model. Alternatively, in the model based on our new reconstruction, a similar volume of material 586 

is sourced from the subduction of Farallon lithosphere at the retreating subduction zone associated 587 

with the opening of the Quebradagrande back-arc at 145 Ma, and subsequent subduction of its 588 

oceanic crust during basin closure from 120-100 Ma. The model based on the reconstruction by 589 

Ross and Scotese (1988) does not replicate this mid-mantle material beneath South America, 590 

instead producing a continuous slab extending from ~500 km at ~75°W to the core mantle 591 

boundary at ~50°W, that does not correspond to any strong positive anomalies below ~1,500 km 592 

depth.  593 



 

The geodynamic models based on both the reconstruction of Boschman et al. (2014) and 594 

our new reconstruction also predict a diagonal slab volume from ~80-60°W at shallower depths of 595 

~500-1,500 km that matches observed positive seismic anomalies imaged in tomography at these 596 

latitudes (Fig. 11 and Fig. S1-2). This material was sourced from the Late Cretaceous resumption 597 

of subduction of Farallon lithosphere beneath the South American margin. At more southern 598 

latitudes (18°S), beneath Peru, all three models predict the near vertical region of high velocity 599 

material centred at ~60°W observed in tomography. However, this material is poorly resolved in 600 

MIT-P, particularly at depths below ~1,500 km. Faccenna et al. (2017) proposed that a thick slab 601 

associated with the subduction of old oceanic lithosphere only penetrated and anchored into the 602 

lower mantle ~ 50 ±10 Myr ago at ~20ºS, leading to Andean mountain building. Nevertheless, 603 

there is geological evidence from Peru and northern Chile of a continuous record of arc magmatism 604 

since the Mesozoic (Scheuber et al., 1994) and geological evidence for orogenesis by the mid-Late 605 

Cretaceous (Cobbold et al., 2007; McQuarrie et al., 2005). In addition, the seismic tomography 606 

models presented in van der Meer (2017) show a continuous slab from the trench to 2,400-2,800 607 

km depth in southern Peru. 608 

The greatest mismatch between modelled present-day mantle temperature structure and 609 

seismic tomography arises in the lower-most mantle > ~2,000 km depth (Fig. 11 and Fig. S1-2). 610 

A linear zone of high velocity material in the lower mantle, extending ~30°N and S of the equator 611 

(Fig. 10), is present in both P- and S-wave models that is not captured well by the numerical 612 

models. This high-velocity volume has previously been identified (Hutko et al., 2006; Kito et al., 613 

2008; Thomas et al., 2004) and interpreted as the result of folding and westward spreading of the 614 

Farallon slab at the core mantle boundary (Hutko et al., 2006).  van der Meer et al. (2010) identified 615 

the same anomaly at depths of 2815-2300 km in the P-wave tomography model of Amaru (2007), 616 



 

instead suggesting that it may be derived from a north-south trending intra-oceanic subduction 617 

zone active in eastern Panthalassa during the early Mesozoic (max: 219±11 Ma, min: 178±15 Ma).  618 

 619 

Figure 11. Vertical cross sections of MIT-P seismic tomography model and temperature contours 620 

showing mantle 4% cooler than ambient for each model. See Fig. S1-2 for comparison with 621 

alternative seismic tomography models. 622 

 623 



 

Folding of the slab, however, is consistent with the behavior observed in the geodynamic 624 

models. In the mantle convection models, subduction is modelled for 70 Myr prior to our study 625 

period to capture pre-existing mantle heterogeneity. Pre-existing subducted material at ~55°W 626 

corresponds to Farallon subduction prior to 150 Ma (slab FARa). In lieu of trench roll-back and 627 

slab break-off, continued subduction at ~55°W, albeit with a reversed polarity in the reconstruction 628 

of Boschman et al. (2014), supplied additional material to the remnant Farallon slab. The greater 629 

volume of subducted material ultimately sank to greater depths, extending laterally along the core-630 

mantle boundary (Fig. 11 and Fig. S1-2). In all model scenarios, this spreading of the Farallon slab 631 

in the lower mantle produces a ~500-800 km thick lateral ‘blanket’ of slab material at the core 632 

mantle boundary extending to ~40°W that is largely absent in seismic tomography. This could 633 

reflect that too much subducted material is initially present in the convection models, and/or that 634 

lower mantle subducted volumes are over-predicted in incompressible flow models. This lower 635 

mantle volume is somewhat better resolved in long-wavelength S-wave models. The thermal 636 

assimilation over time was proposed by van der Meer et al. (2012) to account for the tomographic 637 

indivisibility of slabs in the lower mantle.  638 

 639 

6. Discussion 640 

Assuming a first-order relationship between thermal heterogeneities in the mantle and 641 

seismic wave velocity, the position of subducted slab material in the mid mantle is replicated by 642 

the numerical models when a subduction zone is included outboard of the South American margin 643 

during the Early Cretaceous. Additionally, the numerical models show that a long-lived Andean 644 

style subduction zone persisting throughout the Mesozoic until ~90 Ma produces the poorest fit to 645 

the observed distribution of seismically fast material at the present day beneath western South 646 



 

America. It therefore seems likely that a subduction zone active during the Early Cretaceous to the 647 

west of South America existed and such a subduction zone is necessary to account for the present-648 

day mantle structure. As the model based on the reconstruction of Ross and Scotese (1988) does 649 

not reproduce any of the mid-mantle material at ~75-85°W, we consider this model to be the least 650 

representative model for this particular aspect of the eastern Panthalassa margin during the early 651 

Cretaceous. Focusing on mid-mantle depths, where the geodynamic models best fit seismic 652 

tomography, we attempt to distinguish between the possible mechanisms responsible for the types 653 

of subduction described by our models and assess their feasibility. 654 

 655 

6.1. Subduction initiation in the proto-Pacific  656 

Boschman et al. (2014) constrained the western margin of the Caribbean plate at 135 Ma 657 

by the appearance of an unknown plate boundary. A kinematic analysis of convergence rates at 658 

this boundary when incorporated into the global model of Müller et al. (2016) (Fig. 9) suggests 659 

that this plate boundary was a subduction zone. Models based on our reconstruction produce mid-660 

mantle slab volumes that match seismic tomography. Additionally, for west-dipping subduction 661 

of the Proto-Caribbean to have occured from 135 Ma, for which there is evidence (Rojas-662 

Agramonte et al., 2011), the rapid eastward motion of the Farallon plate at this time necessitates 663 

the presence of an additional eastward dipping subduction zone consuming Farallon lithosphere. 664 

This implies a spontaneous intra-oceanic subduction zone initiation at 135 Ma.  665 

Subduction initiation is a key tectonic process that remains poorly understood (Stern, 666 

2004). Spontaneous subduction initiation is thought to result from gravitational instability of the 667 

oceanic lithosphere, whereas for induced subduction initiation, existing plate motions cause 668 

compression and lithospheric rupture (Stern, 2004). Transform faults and fracture zones have 669 



 

traditionally been thought to be favorable sites for intra-oceanic subduction initiation (Mueller and 670 

Phillips, 1991). Previous numerical models (e.g. Hall et al. (2003)) showed that plate convergence 671 

is typically required for inducing subduction initiation at transform faults. Leng and Gurnis (2015), 672 

however, showed that spontaneous subduction initiation is possible at transform faults where a 673 

greater thermal and compositional density contrast exists, such as where relic arcs are adjacent to 674 

old oceanic lithosphere. Thermal rejuvenation of the relic arc causes a reduction in the overriding 675 

plate strength leading to the spontaneous initiation of subduction at such sites (Leng and Gurnis, 676 

2015). Recent work has investigated plume-induced subduction in the Caribbean region (Gerya et 677 

al., 2015; Whattam and Stern, 2015) whereby subduction is induced along the weak plume head-678 

cold lithosphere interface (Whattam and Stern, 2015). 679 

Despite the theoretical potential of a western Caribbean subduction zone that may have 680 

initiated in this spontaneous manner to replicate mid-mantle thermal anomalies, geological 681 

evidence for intraoceanic subduction initiation at 135 Ma is lacking. The earliest evidence of arc 682 

magmatism preserved in the Panama–Chocó block, located at the inferred subduction boundary, 683 

is of Campanian (~83.5-70.6 Ma) age (Denyer et al., 2006; Buchs et al., 2010). Radiolarites 684 

intercalated with arc-derived material on the Nicoya peninsula are middle Turonian–Santonian and 685 

Coniacian–Santonian in age (Bandini et al., 2008), consistent with Central American subduction 686 

initiation at ~85 Ma predicted in both models. However, as previously discussed, there is evidence 687 

for the formation of an Early Cretaceous back-arc basin, of unknown extent, along the Northern 688 

Andean margin. This scenario involves back-arc basin extension and trench roll back, which is a 689 

geodynamically common process, rather than requiring intra-oceanic subduction initiation.  690 

 691 

6.2. Cretaceous back-arc basin opening offshore South America and the Caribbean 692 



 

A key driver in the development of mafic-floored back-arc basins is the rollback of the 693 

subduction hinge, expressed through the velocity of trench migration at a subduction zone 694 

(Schellart, 2008). A number of studies have also shown that the absolute motion of the overriding 695 

plate has an effect on the tectonic regime that arises at the subduction margin (Maloney et al., 696 

2013; Oncken et al., 2006; Ramos, 2010; Sdrolias and Müller, 2006). In these models, seismic 697 

decoupling occurs at the trench when the overriding plate is moving away from the subduction 698 

hinge inducing an extensional state of stress and leading to the development of back-arc spreading 699 

(Sdrolias and Müller, 2006). While some geodynamic modelling studies conclude that the 700 

overriding plate motion is a minor contributor to back-arc extension (Chen et al., 2016; Schellart, 701 

2008), others propose that the forces driving the overriding plate away from the trench are 702 

necessary to generate back-arc extension, even within the framework of slab rollback (Nakakuki 703 

and Mura, 2013). Uyeda and Kanamori (1979) proposed that strong mechanical coupling at 704 

subduction zone interfaces is linked to the formation of Cordilleran mountain belts, while weak 705 

coupling is associated with back-arc basin formation.  706 

Maloney et al. (2013) calculated negative trench normal convergence rates in the northern 707 

Andean region during the Late Jurassic through Early Cretaceous, indicative of motion away from 708 

the subduction hinge. This suggests that the conditions necessary for back-arc basin formation 709 

existed in this region, and is consistent with evidence of back-arc basin formation preserved in the 710 

Colombian and Ecuadorian Andes (Nivia et al., 2006; Villagómez et al., 2011). This provides 711 

additional support for the presence of a back-arc basin as implemented in our model.  The age of 712 

oceanic lithosphere being subducted, and the angle at which it is dipping into the upper mantle, 713 

are secondary parameters contributing to trench rollback. It has been shown that back-arc basins 714 

may only develop where lithosphere is older than 50-55 Myr, with a minimum slab dip of 30°, 715 



 

(Maloney et al., 2013; Sdrolias and Müller, 2006). Our reconstructed seafloor age-grids show 716 

Farallon oceanic lithosphere older than 50 Myr was subducting at the northern Andean margin 717 

145 Myr ago, thus satisfying this condition. Rollback of the subduction hinge dominates the 718 

continued creation of accommodation space required for back-arc spreading during the 719 

development of the Andean back-arc basins. The closure of these basins in our new reconstruction 720 

is associated with increased spreading rates in the South Atlantic Ocean.  721 

Another geodynamic consideration is the along-strike subduction evolution along the 722 

Andean margin.  Trench rollback resulting in full crustal breakup and subsequent back-arc 723 

spreading is restricted to the northernmost part of the proposed Andean back-arc basin in our 724 

reconstruction. Crustal extension in the Peruvian and Chilean Andes was insufficient to generate 725 

new oceanic crust (Mpodozis and Allmendinger, 1993; Petford and Atherton, 1994; Ramos, 2010). 726 

Whilst beyond the geographical scope of this study, the Rocas Verdes back-arc basin of the 727 

southernmost Andes is proposed to have been active at approximately the same time as our 728 

modelled Northern Andean back-arc. The Rocas Verdes Basin was floored by tholeiitic to 729 

transitional type-basalts typical of a back-arc environment (Stern et al., 1976). It opened at 152-730 

142 Ma (Calderón et al., 2007) with rifting propagating northward (Malkowski et al., 2016). The 731 

change to a compressional regime and closure of the back arc is similarly attributed to the 732 

beginning of westward absolute motion of South America circa 100 Ma (Maloney et al., 2013; 733 

Ramos, 2010; Somoza and Zaffarana, 2008).  734 

The development of back-arc basins at only the northern and southernmost regions of the 735 

Andean subduction zone, as presented in this study, is consistent with a recent dynamic, buoyancy-736 

driven, whole-mantle subduction model (Schellart, 2017) and the study of Schellart et al. (2007), 737 

which explained this phenomenon as a function of lateral slab width. Return flow of mantle 738 



 

material around the edges of retreating subducting slabs facilitates further rapid slab rollback and 739 

thus increased lithospheric extension at the edges of long subduction zones > 4,000 km. Away 740 

from the edges of such a subduction zone, a central stagnation zone forms where there is a limited 741 

opportunity for the upper mantle to flow horizontally around the retreating slab. Ultimately this 742 

produces a subduction zone with an overall convex-shaped trench with concave shaped edges, 743 

folding around the upper mantle stagnation zone. The shape of our retreating back-arc subduction 744 

zone in our model aligns with the inferences made by both Schellart (2017) and (Schellart et al., 745 

2007). Additionally, this effect may explain why extension along the Peruvian and Chilean 746 

sections of the Andean margin did not experience full crustal break-up and development of back-747 

arc basins floored by oceanic crust. As well as explaining the opening of the Rocas Verdes and 748 

Quebradagrande back-arc basins over several million years, the model of Schellart (2017) also 749 

explains our modelled progressive closure of the Andean back-arc basins, which would have led 750 

to subsequent shortening and orogenesis along the South American active margin. We therefore 751 

consider subduction outboard of South America as the retreating subduction margin of a back-arc 752 

basin to provide a better fit for observed mid-mantle high velocity material, better reflect the 753 

observed geology and can be explained by previously published models on subduction and back-754 

arc basin behavior. 755 

 756 

7. Conclusion  757 

We used geodynamic models driven by surface plate reconstructions to compare alternative 758 

subduction histories to present-day tomographic images of the mantle structure. We constrained 759 

the location and evolution of subduction in eastern Panthalassa adjacent to South America during 760 

the Cretaceous. Our kinematic and numerical modelling results show that subduction located 761 



 

outboard of the South American margin during the Early Cretaceous matches the observed lateral 762 

and vertical distribution of slab material in seismic tomography at mid-mantle depths (500-763 

2,000 km). When no such subduction zone is included, geodynamic models cannot account for the 764 

westernmost seismic anomalies beneath South America. We therefore constrain the location of 765 

Early Cretaceous subduction to be 15-20° west of the South American continental margin.  766 

We show that this subduction zone was likely associated with the formation of a back-arc 767 

basin in response to trench roll back at 145 Ma rather than spontaneous intra-oceanic subduction 768 

formation. This interpretation is consistent with geological evidence of Cretaceous back-arc basin 769 

formation and terrane accretion preserved on the present-day Northern Andean margin. We 770 

consider the opening of this basin to be the northern expression of a major phase of extension along 771 

the Andean margin, coeval with extensive crustal thinning in the Peruvian Andes. Our model of 772 

two Jurassic-Cretaceous wedge-shaped back-arc basins forming along the Andes and their 773 

subsequent closure is consistent with the subduction dynamics of the Andean margin based on an 774 

independently-derived geodynamic model (Schellart, 2017). Further work on extending the 775 

continuity of this subduction zone to the north (adjacent to the western margin of North America) 776 

and to the south (along the entire South American margin) will help resolve the subduction history 777 

of eastern Panthalassa, with implications for mantle dynamics and the location of LLSVPs, 778 

geochemical cycles that are influenced by the amount of material subducted into the mantle and 779 

long-term sea-level change related to the volume of the ocean basins. 780 
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