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Abstract
Doctor of Philosophy

Gravitational Waves and Fundamental Physics

by Cyril Oscar LAGGER

This thesis investigates the theoretical implications of gravitational waves for
particle physics and cosmology. The main purpose is to show that studying grav-
itational waves does not only give us information about their own properties but
also provides us with knowledge towards a better understanding of the structure
and content of the Universe. Therefore we first give an overview of the current state
of fundamental physics whose two pillars are general relativity and quantum field
theory. We also emphasize the limitations of these theories and what are some of the
main unsolved problems in physics. We discuss in particular where gravitational
waves may come into play to shed new light on such mysteries.

After such general considerations, we move to specific research topics. More pre-
cisely, we make use of the gravitational wave signal GW150914, announced by LIGO
and Virgo collaborations in 2016, to constrain the scale of non-commutative space-
time. Assuming that space-time admits some quantum fuzziness, we explicitly com-
pute the equations of motion of a binary black hole system and the associated gener-
ation of gravitational waves in the post-Newtonian formalism. Compared to general
relativity, we show that leading non-commutative effects produce a correction of or-
der (v/c)4 to the motion of the system. For this correction to be consistent with the
GW150914 signal, we find that the scale of non-commutativity is bounded to be be-
low or at the order of the Planck scale. This represents an improvement of ∼ 15
orders of magnitude compared to previous constraints.

Our second research area focuses on the production of gravitational waves from
cosmological phase transitions. First, we show how the dynamics of the electroweak
and QCD phase transitions heavily relies on the particle content of the Universe as
well as their interactions. We consider two unrelated extensions of the standard
model: a model implementing a non-linear realization of the electroweak gauge
group and a model with hidden scale invariance involving a very light dilaton. In
the first case, the Higgs vacuum configuration is altered by a cubic coupling giving
the possibility to have a strong and prolonged electroweak first-order transition. In
our second model, we show that the electroweak transition cannot proceed until it
is triggered by a first-order QCD chiral symmetry breaking around 130 MeV. We
then compute the stochastic gravitational wave background produced during these
two first-order phase transitions. The non-linearly realized model predicts signals
that can be detected by pulsar timing arrays such as the future SKA. Although the
peak frequency of gravitational waves predicted by the scale invariant model is also
expected to be in the range of pulsar timing arrays, further work is required to pre-
cisely determine their amplitude.

Finally, we investigate the backreaction of particle production on false vacuum
decay. We present a formalism which makes use of the reduced density matrix of the
system to quantify the impact of these particles on the decay rate of a scalar field in
flat space-time. We then apply this method to a toy model potential and we exhibit
different scenarios with either significant or negligible backreaction.
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Chapter 1

Introduction

This thesis presents the physics of gravitational waves and how they can be used to
study fundamental aspects of the Universe. It synthesizes four years of research per-
formed at the interplay between particle physics and cosmology [1–5]. Such topics
are inherently complex, both conceptually and mathematically, but our introductory
Chapter tries to give an overview of the subject with as little technicality as possible.
We take the time to discuss the most important concepts of fundamental physics in
simple terms such that both non-physicists and physicists may have the opportu-
nity to appreciate the motivations and the results of our research. Then Chapters
2 and 3 focus on the technical formulation of general relativity and quantum field
theory, the two pillars of modern physics. This allows us to give a precise meaning
to specific concepts such as gravitational waves, quantum particles or cosmological
phase transitions. We can then move to the core of this thesis, namely Chapters 4 to
7 which contain a precise description of both our research methodology and results.
We show in particular how gravitational waves can provide new information about
the content and dynamics of the Universe. Finally, Chapter 8 concludes this report
and suggests future research directions.

The essence of this work relies on a fascination to understand the reality and a
desire to answer fundamental questions about its nature. What is the structure of the
Universe? What is it made of? How do we explain the phenomena occurring around
us? Throughout history, humankind managed to gather a considerable amount of
knowledge regarding such questions, leading to conceptual, technological and social
progress. In our context of interest, the discovery of the Higgs boson in 2012 [6, 7]
and the observation of gravitational waves in 2015 [8] are examples of such recent
milestones. On the other hand, it is clear that a lot of things related to the Universe
remain obscure to us today.

Among the various lines of research that can be imagined to push our knowl-
edge forward, we propose here that studying the properties of gravitational waves
is a promising way. This is because they are, from their very definition, related to
fundamental properties of the Universe. Gravitational waves are what physicists
describe as some "ripples" of space-time which propagate at the speed of light. This
concept originates from two very important, but far from obvious, statements. First,
it tells that space and time are neither independent from each other nor absolute.
Second, it says that space and time interact with the matter in the Universe. We start
our discussion by exploring these ideas in more details and by looking how space,
time and matter are conceived off by scientists.
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1.1 The nature of space, time and matter

1.1.1 Going beyond the intuition

According to human everyday life experience, the world seems to be made of dif-
ferent types of objects capable of moving in a 3-dimensional geometric substrate. This
naturally gives rise to the three distinct notions of matter, time and space. As such,
the origin of these concepts only relies on some intuitive and anthropocentric per-
ceptions. It is therefore important to objectively question what are their reality, prop-
erties and relationships. Historically, philosophy and physics have attached a lot of
importance to this task and a lot of progress has been achieved (see e.g. [9–12]).
However, this text will illustrate several times how various aspects of these concepts
are still poorly understood today. The quest towards a better understanding of the
fundamental properties of our Universe remains fully active and keeps motivating
numerous researchers.

To establish an objective understanding of concepts such as space, time and mat-
ter, we have to ask how to go beyond the aforementioned intuitive perception of
reality. This is usually achieved through the scientific method which is very briefly
reminded here.1 It starts by an in-depth and skeptical observation of selected phe-
nomena, followed by the formulation of a set of hypothesis induced from this obser-
vation. This set of laws, called a model, is usually formulated in terms of mathemat-
ical equations. To be considered scientific, a model should then allow the deduction
of predictions which can be compared to the results of a specifically designed exper-
iment. A model is thus said to be refutable as any disagreement between prediction
and experiment gives the opportunity to discard it.

Taken rigorously, no scientific model can ever be considered as fundamentally
correct or true. There should always be the possibility for an experiment to contra-
dict such model. It does not mean that science per se is unable to give any relevant
information about the Universe. It is rather an ever ongoing process by which new
theories emerge and, in case they are judged to provide a more accurate descrip-
tion, supersede previous ones. We can also think of a theory as being valid only for
a specific set of phenomena and accept that it fails to describe situations occurring
outside its scope. All in all, it is important to keep in mind that science is not a lin-
ear process and that at a given time in history there is often more than one theory
that is able to describe the same phenomena. It is the difficult task of scientists to
propose new experiments and theoretical arguments to decide which ones are the
more consistent with reality. This usually leads the scientific community to define as
consensus the models which provide the largest range of validity and have survived
the most experiments.

It is not the aim of this thesis to detail the various theories that have been pro-
posed through the history of physics to model space, time and matter. It is sufficient
for our purpose to focus on how ideas evolved from Newtonian mechanics to the mod-
ern consensus which includes general relativity and quantum field theory. As they
are the building blocks of modern physics, these models and their underlying prin-
ciples are presented in this introduction in non-technical terms.

1The scientific method is an active subject of discussion in science and philosophy of science. Dif-
ferent interpretations and methodology have been defined by different authors and we refer the reader
to the specialized literature (see e.g. [13, 14]) for more details.
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1.1.2 Classical mechanics

Absolute space and time

Classical mechanics provides a description of many physical phenomena, such as the
motion of macroscopic and astronomical objects. It has been rigorously formalized
by Newton (1642-1727) more than 300 years ago in his Philosophiæ Naturalis Principia
Mathematica [9]. In this text, he explicitly expresses what are his assumptions about
the nature of time and space:

Absolute, true and mathematical time, of itself, and from its own nature
flows equably without regard to anything external, and by another name
is called duration: relative, apparent and common time, is some sensible
and external (whether accurate or unequable) measure of duration by the
means of motion, which is commonly used instead of true time [...]

Absolute space, in its own nature, without regard to anything external,
remains always similar and immovable. Relative space is some movable
dimension or measure of the absolute spaces; which our senses deter-
mine by its position to bodies: and which is vulgarly taken for immov-
able space [...] ([9, p. 77])

Two different and important concepts appear here. Newton assumes first the
existence of some absolute space and time where absolute means that they are not
affected by the motion and interactions of objects. However, Newton also realizes
that the perception of physical events taking place in this absolute backdrop is some-
how dependent on the observer. This is why he introduces some relative space and
time from where originates the idea of frame of reference. To speak about the motion
of an object, an observer has to choose some physical system (the frame) which he
considers as fixed (as a reference) and relative to which any displacement will be
measured.

Two observers in two different frames are therefore expected to give two differ-
ent description of the same phenomenon. Typically, an object perceived as static in a
first frame can be seen as moving in a second one. What sounds like some intrinsic
arbitrariness has actually been the source of one the most important concepts in the
history of physics, namely the principle of relativity. In Newtonian mechanics, this
principle postulates the existence of a set of reference frames, called inertial reference
frames, in which the laws of physics should be the same as the laws valid in abso-
lute space and time. If such frames exist, what would their nature be? Similarly to
some previous ideas [15] of Galilei (1564-1642), Newton proposes that they are all
the frames moving in straight lines and at constant velocity compared to absolute
space. As an example, the results of an experiment performed by an observer at the
surface of the earth should be the same as the results obtained by an observer doing
the same experiment in a train moving at constant velocity compared to the ground.

All these ideas can be summarized by the following set of principles underlying
classical mechanics:

(P1) There exists an absolute space.

(P2) An inertial frame is any frame of reference moving in straight line at constant
velocity compared to absolute space.

(P3) There exists an absolute time, which is the same in all inertial reference frames.

(P4) The laws of physics are the same in all inertial frames (Principle of relativity).
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FIGURE 1.1: Two events A and B as seen from two inertial frames F
and F′ moving at constant velocity v respective to each other.

Coordinate system, Euclidean space and Galilean transformation

The previous principles can be formalized more quantitatively by introducing the
concept of a coordinate system. As illustrated in Figure 1.1, an observer in a given
frame can specify an event by its time t and its position x = (x, y, z), relatively to
some origin O at (t = 0, x = 0). This four real numbers are called the coordinates
of the event.2 It is now possible to give a precise geometrical meaning to the no-
tion of straight line introduced by the principle (P2). A straight line corresponds
to the shortest path between two locations xA and xB. Their distance (in Cartesian
coordinates) is measured by the well-known formula

∆dAB =
√
(xA − xB)2 + (yA − yB)2 + (zA − zB)2. (1.1)

The geometry associated to space in Newtonian mechanics is therefore the general-
ization in three dimensions of the structure of a flat plane. In mathematical terms,
such a space is said to be flat and Euclidean. For comparison, a simple example of a
non-Euclidean geometry in two dimensions would be the surface of a sphere.

Let us now imagine that two observers in two different inertial frames, F and
F′, describe the same set of events in their respective coordinate systems, (t, x) and
(t′, x′). From the definition of inertial frames, we can consider three types of trans-
formations relating these two systems. The first and most obvious ones are transla-
tions, namely the case where the two frames are aligned and do not move compared
to each other. They only differ by their origin of space and time: t′ = t + t0 and
x′ = x + x0, with t0 and x0 some constant values. The second ones are spatial rota-
tions which relate frames which are fixed but whose coordinate axis are not aligned.
Finally, consider F and F′ originally at the same location and then moving away
from each other at a constant velocity v aligned with their x-axis, as in Figure 1.1.

2Note that there are generally different possible choices of coordinate systems to describe events in
a given frame (Cartesian, cylindrical and spherical systems are the most common ones) and that the
physics is independent of such a mathematical choice.
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Their coordinates are therefore related in the following simple way:
t′ = t
x′ = x− vt
y′ = y
z′ = z

(1.2)

These three types of transformations can be combined with each other3 and are
generically called Galilean transformations. They form a well-defined mathematical
structure known as a group of symmetry. This name comes from the fact that the
laws of classical mechanics stay invariant under such transformations (as requested
by the principle (P4)). In particular, the distance (1.1) between two events A and
B is measured to be the same in all inertial frames: ∆dAB = ∆d′AB. In the same
way and consistently with the principle (P3), time flows equally in such frames:
∆tAB = ∆t′AB. It is worth mentioning that all these notions which have appeared here
(transformation, group, symmetry) are not only the concern of classical mechanics
but are actually crucial to understand the foundations of modern physics.

The classical laws of motion and the properties of matter

Although the framework we just introduced gives a rigorous description of space,
time and the perception of motion, it does not say anything about the cause of such
motion. In other words, what are the laws of physics? In his Principia [9], Newton
formulates three laws that we can give as follows:

(N1) In an inertial frame, a body free of any interaction will remain at rest or move
in straight line at constant velocity.

(N2) Anything which changes the uniform motion of a body in an inertial frame is
called a force. The sum of all the forces acting on a object is equal to the inertial
mass of the object times its acceleration:

F = mIa. (1.3)

(N3) If a body exerts a force on an object, then the object exerts a force of equal
magnitude and opposite direction on the body.

At this stage, these laws are not yet concerned with the nature of the forces. They
state that whatever acts on an object modifies its velocity proportionally to some
intrinsic quantity, called the inertial mass mI . Inertial mass has to be understood
here as the capacity of an object to "resist" to a change in his motion, in the sense
that, acted upon by a same force, the velocity of a body with a bigger mI will change
less that the one of a body with a smaller mI . This notion will soon become important
in our discussion.

For classical mechanics to be complete, it finally remains to define what is the na-
ture of the objects and the forces between them. What are the properties of matter?
In standard mechanics, it is assumed first that objects or particles are well local-
ized quantities at any time in a given reference frame, such that a trajectory x(t) can
be associated to them. Then it is also assumed that objects can interact with each
other, leading to the notion of force. Determining the nature of these interactions

3For example, if the two frames are moving with a velocity not aligned along the x-axis, the trans-
formation can be given by a combination of a rotation and a relation of the form (1.2).
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has historically been obtained through empirical observations. Intuitively, the idea
is that particles have some intrinsic properties causing them to attract or repulse
each other. By the end of the 18th century, two main types of forces were recognized
as explaining most of the observed physical phenomena: the gravitational and elec-
tromagnetic interactions. Particles with gravitational mass would attract each other
whereas particles with electric charge would either attract or repulse each other in
function of the sign of the charges. The mathematical expressions of these forces
are known as respectively the Newton’s law of universal gravitation [9] and the law of
Coulomb (1736-1806) [16, 17]:

Fgrav = G
m1m2

r2 r̂ Felec = κe
q1q2

r2 r̂. (1.4)

In both equations, r is the distance and r̂ the direction between the two objects. Both
forces are therefore known as inverse-square laws. The other quantities are the gravi-
tational masses m1 and m2 (always positive) and the electric charges q1 and q2 (pos-
itive or negative). They vary from one object to another. Eventually, G and κe are
proportionality constants known as the gravitational constant and the Coulomb con-
stant. They do not depend on the objects but rather characterize the interaction they
are related to.

Predictions and limitations of classical mechanics

Predictions from classical mechanics can be obtained by combining the laws of mo-
tion (N1)-(N3) with Equations of the type (1.4) for the relevant forces. The com-
parison with various experimental tests performed during the last 300 years have
provided physicists with the opportunity to precisely define the range of validity
and the limitations of this theory. Among all of them, we briefly expose four of these
aspects which are relevant for our following discussion.

(L1) Regarding gravitation, Newtonian mechanics predicts planetary motion around
the Sun up to a good accuracy. As an example, the Kepler’s laws of motion (see
[18] Chapter 1) which have originally been inferred from observations only,
are a mathematical consequence of Newton’s laws. On the other hand, refined
measurements obtained during the middle of the 19th century showed that
classical mechanics does not correctly predict some small effects in the motion
of planets, such as the perihelion precession of Mercury.4 This was a a strong
indication that Newtonian mechanics is not a complete theory of gravitation.

(L2) A second and more conceptual concern is that gravitation seems to play a spe-
cial role in classical mechanics compared to other forces. Inertial mass in Equa-
tion (1.3) and gravitational mass in Equation (1.4) are a priori two different
concepts, in the same way as inertial mass and electric charge are different
notions. However, measurements (as obtained from Eötvös-type experiments
[20]) show that these two types of masses have the same value up to at least
very high precision. This is simple to illustrate. Imagine two different objects
falling under the gravitational attraction of the earth. If they are in vacuum, no
friction acts on them and the only force is given by Fgrav. From Equations (1.3)
and (1.4), their acceleration is given as follows:

a =
mgrav

mI

Gmearth

r2 r̂. (1.5)

4This problem was first discovered by Le Verrier (1811-1877) in 1859 [19].
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If mgrav and mI were different in general, different objects would fall with dif-
ferent accelerations. However experience says that all objects in free-fall have
the same motion, suggesting that mgrav = mI . This equality sounds surprising
in Newtonian gravity as it cannot be explained from any of its principles.

(L3) Another conceptual problem is the idea of action at a distance. The formalism
we presented above suggests that distant objects affect each other instanta-
neously without the existence of any mediator between them. Newton himself
was actually concerned with this problem such that he wrote in his fourth let-
ter to Bentley (25 February 1692/3) [21]: “Gravity must be caused by an Agent
acting constantly according to certain laws; but whether this Agent be material
or immaterial, I have left to the Consideration of my readers”.

(L4) We finally mention how the study of electromagnetism has been important
to shed light on the limitations of classical mechanics. In classical electro-
dynamics, the interaction between charged particles is described in terms of
electric and magnetic force fields. This led Maxwell (1831-1879) to realize that
light can be described as a wave of such electromagnetic fields propagating
through space [22]. At this stage already, we note the particular nature of light
in the sense that its wave-like behaviour does not correspond to the idea that
matter is only made of well-localized particles. More importantly, it appears
that the laws governing the dynamics of charged particles and electromag-
netic fields, known as the Maxwell equations and Lorentz force law, are not
invariant under the Galilean transformations (1.2). In other words, the laws of
classical mechanics combined with Maxwell equations predict that the speed
of light should change when measured in different reference frames. How-
ever, Michelson and Morley [23] published in 1887 the results of an experiment
where they detected no difference for the speed of light measured in different
frames. This was the indication that either Newtonian mechanics or Maxwell’s
formulation had to be modified.

The limitations of classical mechanics we just mentioned, among others, have
been the source of a substantial reformulation of the description of space, time and
matter starting around the end of the 19th century. As we shall see now, this led to
the emergence of special and general relativity as well as quantum mechanics.

1.1.3 Special and general relativity

Space-time as a unified structure

A solution to reconcile Maxwell equations with the laws of motion relies on a strong
change of paradigm about the nature of space and time. The theory behind it, spe-
cial relativity (SR), has mainly been formalized by Einstein (1879-1955) around 1905
[24]. This theory considers the principle of relativity (P4) and the speed of light as
fundamental concepts, but refute the idea of absolute space and time (namely the
principles (P1) and (P3) of classical mechanics). The notion of inertial frame is still
present but modified such that it does not make any reference to absolute space. It
is simply defined as a frame in which a body with no force acting on it is not accel-
erating. In summary, special relativity relies on the two following axioms:

(SR1) The laws of physics are the same in all inertial frames (Principle of relativity).

(SR2) The speed of light in vacuum, c, is the same in all inertial frames.
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The postulate (SR2) looks consistent with the results of the Michelson-Morley exper-
iment. However it clearly breaks Galilean transformations and requires to abandon
the idea of an absolute time independent of space. Imagine two observers in two
different inertial frames. Special relativity tells that they will both measure a same
light ray to move at the same speed c in their own frame. This is only possible if
they measure different values for both length and time intervals and these values
compensate each other to keep c constant.

Along this line of thinking, Einstein showed in his paper [24] how space and
time coordinates have to transform between inertial frames to satisfy the two pos-
tulates (SR1)-(SR2). He actually realized that these transformations were already
known as those leaving the Maxwell equations of electromagnetism invariant and
previously discussed a few years earlier by several physicists including Lorentz,
Larmor, FitzGerald and Poincaré.5 Special relativity appeared therefore as a promis-
ing candidate towards a unified description of the laws of motion and electromag-
netism. The transformations in question include space-time translations and spatial
rotations, as in classical mechanics. However, the Galilean transformations (1.2) are
replaced by the so-called Lorentz boosts given by6

t′ = γ
(
t− vx

c2

)
x′ = γ(x− vt)
y′ = y
z′ = z

(1.6)

where γ = 1√
1− v2

c2

is known as the Lorentz factor. These transformations have again

well-defined mathematical properties and form either the Lorentz group (without
translations) or the Poincaré group (including translations). They are crucial in mod-
ern physics and will be discussed in more details in Section 3.1.1.

As expected, equation (1.6) shows that space and time coordinates are interre-
lated and cannot be seen as independent quantities anymore. We also notice that for
v � c, we can approximate γ ∼ 1 and the transformations reduce to the Galilean
equation (1.2). It basically means that special relativity reduces to Newtonian me-
chanics when velocities of the systems under investigation are small compared to
the speed of light. In other words, this has the advantage that experiments that were
already consistent with classical mechanics will straightforwardly stay valid in spe-
cial relativity. This is a process which occurs regularly in science. When looking
for new theories of nature, it is indeed more usual to consider the current models
as approximations that need to be extended rather than looking for completely new
frameworks.

Minkowski space-time and causality

Special relativity introduces a lot of new concepts compared to Newtonian mechan-
ics. There is no more absolute notion of space and time in the sense that no iner-
tial frame can be preferred to another one. Mathematically, space and time of spe-
cial relativity can be combined in a four-dimensional geometrical structure, called
Minkowski (1864-1909) space-time. It differs from the Euclidean space-time men-
tioned earlier in the following way. In Euclidean space-time, time was the same in
any frame and the spatial distance (1.1) between two events was invariant under

5For more details about the history of special relativity, see [25].
6We again assume that the two frames are moving along their x-axis.
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Galilean transformations. In Minkowski space-time, this spatial distance is not in-
variant under Lorentz boosts.7 The quantity which is actually conserved between
two events A and B is called the space-time interval ∆sAB given by the following
expression:8

(∆sAB)
2 = −c2(tA − tB)

2 + (xA − xB)
2 + (yA − yB)

2 + (zA − zB)
2. (1.7)

This formula is a direct consequence of the axioms of special relativity given above.
If the two events A and B correspond to a same light ray, then ∆sAB = 0 which is
nothing but saying that the speed of light satisfies the relation c = ∆d/∆t in any
inertial frame (axiom (SR2)).

Thanks to the previous formula, special relativity allows us to clearly introduce
the concept of causality. We speak of causality when an event has some effect on
some other event. As in special relativity nothing can move faster than light, it im-
plies that two such events cannot be separated by a time interval which is longer
than the time light would take to travel between them. In other words, ∆s < 0.
On the other hand if ∆s is positive, it means that the events never influenced each
other. As a direct consequence, the concept of "action at a distance" of Newtonian
mechanics is incompatible with special relativity. The idea that forces act between
objects has to be completely reformulated. It is important to keep in mind that spe-
cial relativity alone does not say anything about how to solve this problem and how
to describe forces. In electromagnetism for example, the solution comes from the
Maxwell equations which specify that electromagnetic fields play the role of the me-
diator of the forces between charged particles. But what about gravitation? We will
see shortly that this question led to the development of general relativity.

Acceleration, general covariance and the equivalence principle

We have seen that inertial frames own a special status in both Newtonian mechan-
ics and special relativity. We can go further and wonder what would happen if an
observer O′ measures some events from a non-inertial frame, namely a frame under-
going acceleration with respect to an inertial observer O. In such a case, the laws
of motion are not constrained by the principle of relativity to be the same for O
and O′. We should expect O′ to witness some non-inertial effects in the behaviour
of any objects. In classical mechanics, it is actually straightforward to see that if
the equations of motion of an object of inertial mass m are given by F = ma in O,
then the corresponding equations in O′ are F′ = ma′ with F′ = F + Ffict. It means
that the non-inertial observer sees the object moving as if it was under the influence
of the regular force F plus some fictitious force Ffict which is only an artifact of her
non-inertial motion.9 Typical examples of fictitious forces include the Coriolis or
centrifugal forces.

Such reasoning about non-inertial frames and acceleration has been important
for the development of the general theory of relativity. General relativity is the the-
ory of gravitational interaction developed mostly by Einstein between 1907 and 1915
(see e.g. [26–28]10), subsequently to his formulation of special relativity. This theory
is based on two interrelated concepts: general covariance and the equivalence principle.

7This means that lengths measured by two different observers are generally different.
8The reader familiar with special relativity will recognize our choice of signature (−,+,+,+) for

the metric.
9We emphasize that fictitious forces are not the result of any physical interactions between objects.

10A comprehensive collection of Einstein papers are available on https://einsteinpapers.press.
princeton.edu/.

https://einsteinpapers.press.princeton.edu/
https://einsteinpapers.press.princeton.edu/
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(A) Acceleration in free space (B) Gravitational field on Earth

FIGURE 1.2: Physicist observing the motion of two test masses inside a box, either
moving with acceleration a in free space or feeling the Earth gravitational field
g. For ||a|| = ||g||, all single motions are the same locally. However, looking at
relative motion of the two bodies would show the non-local nature of gravitational
fields. In (B), the objects fall towards the center of the Earth rather than parallel (the
effect is highly exaggerated for illustration).

General covariance, also called diffeomorphism invariance, is the idea that the laws
of motion should stay the same for arbitrary observers, whether inertial or not. This
extends the principle of relativity to a higher conceptual level but seems at first sight
to be difficult to reconcile with the appearance of the fictitious forces we encountered
above. We shall see how this difficulty is overcome in Section 2.1.

On the other hand, the equivalence principle is the way Einstein expressed his
idea that the gravitational interaction is universal. There are actually different forms
of this principle. The weak equivalence principle (WEP) states as a postulate that
the two notions of inertial and gravitational masses we presented in the paragraph
(L2) are equal. Universal therefore means that different objects placed in the same
gravitational field will react and move in the same way. The other usual thought
experiment illustrating the equivalence principle is the one of a physicist inside a
box who is unable to see the outside world. As shown in Figure 1.2, she would
not be able to detect any difference if the box were either sitting on Earth or instead
accelerating at constant rate in free space. Uniform acceleration and gravitation seem
therefore impossible to disentangle. It is however important to notice that this claim
can only be valid locally, namely in a small enough region of space-time. Figure 1.2
also suggests that distant objects at the surface of the Earth would indeed not fall in
parallel directions but towards the center of the Earth.

Since the nature of the experiment performed in the box can be arbitrary (and
does not need to necessarily involve massive objects), the WEP can be rephrased in
a more general form, called the Einstein equivalence principle (EEP). Following [29]
page 50, the EEP says:

In small enough regions of space-time, the laws of physics reduce to those of
special relativity. It is impossible to detect the existence of a gravitational field
by means of local experiments.

A very important implication of this principle is that every physical system feels
gravity (including light rays). It is indeed not possible to single out a frame which
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would be gravitationally free and with respect to which we could measure the accel-
eration of other objects due to gravity. In a way, gravitation is not a force anymore
but a backdrop in which particles move. This profound change of paradigm is also
well summarized by Carroll [29] page 51:

[It] makes more sense to define "unaccelerated" as "free-falling", and that
is what we shall do. From here we are led to the idea that gravity is not
a "force" - a force is something that leads to acceleration, and our defi-
nition of zero acceleration is "moving freely in the presence of whatever
gravitational field happens to be around".

From flat to curved space-time

The equivalence principle naturally leads to the idea that gravity is an unavoidable
background influencing the motion of test particles. The next strong postulate of
general relativity is to say that this is nothing but the fact that gravitational fields
curve space-time. One of the simplest ways to depict what curved means is to say
that the motion of free-falling particles is not given by straight lines anymore. There
are now curved paths, called geodesics, which minimize the distance between events
in space-time.11

In contrast to Newtonian mechanics and special relativity, the concept of inertial
frames moving in straight lines has therefore to be abandoned. To strengthen this
difference, we remind that inertial frames can be defined globally over all space-
time in special relativity. This is not the case in general relativity anymore. Even
if we decide to attach a frame to a free-falling particle, other free-falling particles
situated at a long distance would be seen as accelerating in the original frame. This
is due to the non-local effects of gravity we mentioned above and in Figure 1.2b. The
best that can be done is to restrict this frame to a small region of space-time around
the particle of reference. Such frames are said to be locally inertial. But then, how do
we compare the behaviour of distant objects? This is achieved in general relativity
thanks to various technical tools related to the mathematics of curved space-time.
These notions are presented in detail in Section 2.1. The key notion is to be able to
define unambiguously what a "distance" means in curved space-time. This will be a
generalization of the space-time interval (1.7) which appeared in special relativity.

This discussion leads us to another important change of paradigm compared to
classical physics. Saying that the curvature of space-time and gravitational fields are
related means that matter and space-time interact with each other. In general rela-
tivity, the energy and mass content of the Universe is therefore responsible for the
geometry of space-time. The mathematical equations giving this relation are known
as the Einstein Field Equations presented in 1915 in [28]. There are solutions of these
equations that allow physicists to predict gravitational phenomena in general rela-
tivity and therefore to asses its validity.

Since 1915, numerous phenomena have been tested with excellent accuracy. The
precession of Mercury [30] (mentioned as a limitation of Newtonian mechanics (L1))
and the deflection of light by the Sun [31] are such early examples. The detection
of gravitational waves [8] is on the other hand much more recent. On top of exper-
imental tests, general relativity is also quite remarkable conceptually. The problem
(L3) of action at a distance is now solved by the fact that test particles react to lo-
cal changes in the geometry of space-time and not directly to distant objects. The

11The usual (but probably oversimplified) example is to imagine what is the shortest path between
two points on a sphere. This is well-known to be given by a circular arc.
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"Agent" discussed by Newton is space-time itself. As of today, no theory has been
able to explain the gravitational interaction in a better way, although we shall see
in Section 1.2.1 that there are still various aspects of the Universe which escape our
understanding.

1.1.4 Quantum mechanics and particle physics

Our previous discussion has been rather vague regarding the nature of matter. We
talked in a generic way of particles, bodies or objects without describing their prop-
erties. It is now time to look in more details at what physicists and chemists learned
about the structure of matter and how this led them to the development of quantum
mechanics and particle physics.

Probably the most important approach towards understanding matter has been
reductionism: the idea that a phenomenon can be decomposed into smaller entities
and explained from them. This led some ancient Greek philosophers to assume that
the process should eventually stop and that all matter is made of "uncuttable" units
they called atoms [32]. Whether or not really indivisible quantities exist is still un-
clear today. However, what is certain is that matter admits a hierarchical organiza-
tion in terms of well-defined patterns at different length scales. Macroscopic objects
are all made from a set of less than one hundred chemical elements, historically
classified by chemists such as Lavoisier (1743-1794) and Mendeleev (1834-1907) [33].
These elements then share a similar atomic structure in terms of electrons "orbiting"
around a nucleus made of protons and neutrons. These last two entities are made of
even smaller units called quarks, belonging to a larger class of so-called elementary
particles.12

We will give more details below and in Section 3.1 about elementary particles.
The important thing to notice at this stage is that such a reductionist description
is a priori not in contradiction with classical mechanics. Some complications may
appear to describe the collective behaviour of a large number of such particles (like
in a gas) but again classical theories such as thermodynamics and statistical physics
can in theory overcome such problems. In practice however, several experiments
around the end of the 19th century were in contradiction with classical predictions.
Also, as we mentioned earlier in (L4), the wave-like nature of light was asking for
more understanding.

The birth of quantum mechanics

A wrong prediction of classical mechanics concerns the electromagnetic radiation
of macroscopic bodies. It is indeed known that any object at a given temperature
emits a spectrum of electromagnetic waves, called a black-body spectrum. One of the
main problems was the discrepancy between the observed and predicted amount
of energy that is radiated. To resolve this problem, Planck (1858-1947) proposed in
1900 that electromagnetic radiation is only emitted with discrete amounts of energy
rather than with a continuous spectrum of energy [34]. He was able to reproduce the
black body experiments by furthermore assuming that these packets or "quanta" of
energy E were proportional to the frequency ν of the corresponding electromagnetic
wave:

E = hν. (1.8)

12The term elementary means that are no experimental evidences (yet) that these particles are made
of smaller substructures.
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The proportionality constant h is called the Planck constant as Planck managed to
derive its value from the available observations. Interestingly, the idea that electro-
magnetic energy is carried as quanta was further supported by Einstein in 1905 [35]
in order to explain the photoelectric effect, namely the fact that free electrons are
emitted when light hits a material.

These considerations on electromagnetic radiation marked the birth of quantum
mechanics. During its early stage, it was unclear how to conciliate the two differ-
ent nature of light (corpuscular and wave-like) together. First investigations have
been rather heuristic, as for example the derivation of the structure of the atom by
Bohr (1885-1962). Based on a previous model from Rutherford (1871-1937) [36], he
proposed in 1913 that electrons could only travel around the nucleus on specific or-
bits and could transition between them by emitting or absorbing discrete quanta of
energy [37]. Although these empirical ideas were more and more in line with the
experimental observations of that time, they were still lacking some more complete
formulation. A major breakthrough came in 1923 form the matter-wave hypothesis
of de Broglie (1892-1987) [38]. He postulated that not only light but all matter in
general exhibits both wave-like and corpuscular properties. To each massive parti-
cle, such as an electron, it would then be possible to associate a wavelength λ given
by:

λ =
h
p

, (1.9)

where we find the Planck constant again and p = mv is the momentum of the par-
ticle. From there originates modern quantum mechanics and the concept of wave
function.

Wave function, quantum state and the uncertainty principle

Modern quantum mechanics assumes that the state of any physical system can be
fully described by its wave function ψ(t, x). Following the original idea [39] from
Born (1882-1970), it can be interpreted as a probability distribution. For a single elec-
tron, the function |ψ(t, x)|2 would then represent the probability to find this electron
at a given location and time. As in Newtonian mechanics, the state of a particle is
determined from its interactions with other objects. However, the equations of mo-
tion F = ma should be modified to satisfy the wave nature of quantum particles.
This was achieved in part by Schrödinger (1887-1961) who developed the concept of
wave mechanics and proposed a specific equation that the wave function of a single
particle of mass m should satisfy [40]:

i
h

2π

∂

∂t
ψ(t, x) =

(
− h̄2

4πm
∇2 + V(t, x)

)
ψ(t, x), (1.10)

where the potential V(t, x) encompasses the information about the interactions. There
is now a clear change of paradigm compared to Newtonian mechanics. The notion
of a well-localized particle has been replaced by the less-intuitive concept of prob-
ability distribution. The question of how to interpret this concept, and quantum
mechanics in general, has driven many passionate debates, such as between Ein-
stein and Bohr [41], and remains not totally understood today. Putting this problem
aside, quantum mechanics rapidly became popular among physicists as it was able
to explain many physical phenomena (e.g. the detailed structure of the hydrogen
atom) and to predict unexpected properties of matter.
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In parallel to the development of wave mechanics, several physicists including
Heisenberg (1901-1976) and Born realized that quantum mechanics could be for-
mulated in a more abstract way through the notion of states and operators [42, 43].
Put simply, the wave function ψ(t, x) is interpreted as the spatial representation of
a more fundamental quantity called the state of the system and written |ψ〉. Any
physical quantity that could be experimentally measured from this system is then
obtained from the action of an operator on the state of the system. For example,
measuring the energy of a particle would correspond to acting with a properly de-
fined "energy operator Ê" on the state of this particle. This formulation, called matrix
mechanics, has actually been proved to be mathematically equivalent to wave me-
chanics. Both approaches are still used today, and depending on the context, one
formulation may appear easier to use than the other.

Among the various predictions of quantum mechanics which differ from clas-
sical theories, we would like to emphasize two important concepts: the uncertainty
principle and the spin of a particle. Introduced by Heisenberg in 1927 [44], the uncer-
tainty principle states that there is an unavoidable limit to the precision with which
the position and velocity of a particle can be measured. This is a direct result of ma-
trix mechanics which actually does not only apply to position and velocity but to any
pair of operators which do not commute. It means that if we act with two operators,
say Â and B̂, on a state |ψ〉, we may see that ÂB̂ |ψ〉 6= B̂Â |ψ〉. In such a case, the
uncertainties related to the observation of the quantities A and B are fundamentally
restricted to satisfy

∆A ∆B ≥ h
4π

, (1.11)

independently of the sensitivity of the experimental device which is used. This prin-
ciple is of prime importance for this thesis, as it is the source of our investigations
about the quantum nature of space-time which we shall discuss in Section 1.2.3 and
Chapter 4.

The second concept to emphasize, the spin, was introduced by Pauli (1900-1958)
in 1924 as a non-classical degree of freedom of the electron to correctly account for
the observed emission spectrum of some atoms [45]. It took some years to interpret
the physical meaning of this new property of the electron, namely as an intrinsic
form of angular momentum. It is thanks to wave and matrix mechanics that Pauli
subsequently managed to formulate this notion more adequately and to introduce
spin operators. In particular, this allowed physicists to correctly interpret the results
of the Stern-Gerlach experiment performed a few years earlier [46]. This experiment
is now recognized as giving the experimental evidence for the existence of spin of an
electron. As we shall see below, the concept of spin actually appears to be associated
not only to the electron but to any particle.

Quantum field theory and particle physics

There are many other predictions of quantum mechanics that we will not address
in this thesis. From now on, we will mostly focus on how it provides the relevant
framework to describe elementary particles, namely quantum field theory (QFT).
We can say for simplicity that QFT originally emerged from two distinct efforts: the
combination of quantum mechanics with classical fields (such as electromagnetic
fields) and the combination of quantum mechanics with special relativity. Major
steps in these two directions have been originally made by Dirac (1902-1984). On
one hand, he proposed in 1927 a theory of quantum electrodynamics [47] where
electromagnetic fields are considered as a set of quantum harmonic oscillators. In
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this quantum version of Maxwell electromagnetism, the photon could then be seen
as an "excitation" of the underlying fields. On the other hand, he proposed in 1928
a generalization of the Schrödinger equation13 which was compatible with special
relativity [48, 49]. Interestingly, this Dirac equation predicted the possible existence
of anti-electrons, namely electrons with positive electric charge.14

The next breakthrough was to consider that these two approaches could be merged
together to give a single framework describing at once all types of matter. This is the
modern view of QFT where every particle (not only the photon) is seen as the exci-
tation of a corresponding quantum field which permeates all space-time. This has
been formalized by physicists including Jordan, Wigner, Fermi, Feynman and many
others.15 The key observation was that only specific types of fields would allow
physicists to build laws of physics which are invariant under Lorentz transforma-
tions. It turns out that the mathematical properties of the Lorentz group require that
fields be categorized in terms of a parameter which corresponds to nothing but the
notion of spin previously discovered. Fields with different spin would correspond to
different types of particles and transform in their own way when seen from different
inertial frames. There is an even deeper consequence of this description of matter
in terms of fields with different spins. It allows us to reinterpret the notion of force
without the problem of action at a distance. Consider for example two electrons.
QFT predicts that the repulsive force that we can observe between them is due to
an exchange of photons, namely excitations that propagate through the photon field
between the electrons. At the risk of slightly oversimplifying, QFT says that parti-
cles with integer spin (such as the photon) are those mediating interactions between
"matter" particles with half-integer spin (such as the electron).

We can already realize from this short discussion that QFT is powerful to ac-
commodate multiple concepts at once. An interesting question to ask at this stage
is: how many different types of fields do we need to accurately describe the nature
around us? In other words, how many interactions and particles exist? As of today,
the best answer is given by the so-called standard model of particle physics. It de-
scribes three fundamental interactions (electromagnetic, weak and strong) which are
able to accommodate almost all experimental observations in particle physics with
excellent accuracy. An important milestone for this model was the discovery in 2012
of the Higgs boson by the Large Hadron Collider at CERN [6, 7]. We shall give much
more details about the standard model and elementary particles in Section 3.1.

1.1.5 Cosmology

The other major research area we will consider in this thesis is cosmology which asks
questions about the origin, evolution and fate of the Universe as a whole. It should
not be surprising that this subject involves all the knowledge we have previously
described regarding the nature of space, time and matter. The current paradigm of
cosmology is actually strongly tied to general relativity and particle physics. More-
over, this is one of the research fields which provides the most compelling evidences
that our current theories are far from complete.

13It is clear that the Schrödinger equation (1.10) is not invariant under the Lorentz boosts (1.6).
14The positron was discovered a few years later, in 1932, by Anderson [50].
15See e.g. [51] for an historical and conceptual presentation of field theories.
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FIGURE 1.3: Map of the galaxies in the Universe based on observations from the
Sloan Digital Sky Survey (SDSS). Each point is a galaxy and the Eearth is at the
center. Image Credit: M. Blanton and SDSS (https://www.sdss.org/).

The cosmological principle and the expanding Universe

Talking about the chronology of the Universe requires some preliminary precautions
as we remind that the notion of time depends on the observer. A rigorous approach
therefore requires to find models which satisfy the laws of general relativity. Rela-
tively soon after Einstein proposed his field equations for gravity, several physicists
including Friedmann, Lemaître, Robertson and Walker (FLRW) independently de-
rived an exact solution of these equations that can account for the structure of the
Universe at very large scales [52–55]. We will present the mathematical details of
this model in Section 3.2 and highlight some key features here.

The FLRW model is based on the so-called cosmological principle which assumes
that the spatial distribution of matter is homogeneous and isotropic over large enough
distances in the Universe. As illustrated in Figure 1.3, this is an assumption which
seems rather justified from current experimental observations as long as we consider
scales much bigger than the typical size of galaxies. This hypothesis is obviously
not valid at smaller distances where inhomogeneities cannot be neglected anymore.
Such considerations are very important for several astrophysical phenomena but we
will not consider them in detail here.

Probably the most fascinating prediction of the FLRW model is that physical dis-
tances may expand or contract with time at a rate which depends on the density
of matter in the Universe. In other words, space stretches itself in response to the
energy and matter distribution. This fact has been confirmed by several astrophys-
ical observations. Most notably, Slipher [56] and Hubble [57] both measured in the
1910s-1920s that distant galaxies are moving away from the Earth, suggesting that

https://www.sdss.org/
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FIGURE 1.4: Artistic view of the history of the Universe. Image Credit: Parti-
cle Data Group at Lawrence Berkeley National Lab (http://particleadventure.
org/history-universe.html).

our Universe is expanding.16 From there originated the intuitive idea that our Uni-
verse was smaller and denser in the past. This led physicists to build the so-called
Big Bang model of cosmology.

Big Bang cosmology

If we imagine that the Universe is more and more contracted as we go backwards in
time, it is tempting to say that it originated from some singular event or some kind of
primordial "explosion" that we can call the Big Bang. However, we emphasize that it
is difficult, if not impossible, to speak about any hypothetical origin of the Universe.
We have to stay pragmatic and keep in mind that the only way we can reconstruct
the past of the Universe is by collecting observations which can be proved to be
older and older. In short, current Big Bang cosmology does not say anything about
some "first event", but it provides relevant historical information. An overview of
the current state of knowledge is summarized in Figure 1.4.17 Several of the notions
shown in this picture will be described throughout this thesis.

16Recent results obtained from supernovae by two groups in 1998 [58, 59] actually support that the
Universe is in an accelerating expansion. We shall see in Section 1.2.1 that this observation is at the
origin of one of the biggest mysteries of physics. But we emphasize that an expanding Universe is in
itself in total agreement with the current laws of physics (only the acceleration is problematic).

17Note that some concepts in Figure 1.4 are still theoretical and not confirmed experimentally.

http://particleadventure.org/history-universe.html
http://particleadventure.org/history-universe.html
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The main tool to probe the past of the Universe is the light we detect today on
Earth but that has been emitted earlier somewhere else (for example from a distant
star). Interestingly, Big Bang cosmology predicts that light can only bring us so far
back in time. To understand this fact, we need to have some knowledge about the
state of matter when the Universe was denser and hotter. Physicists think that all
matter at that stage was in the form of an interacting plasma of elementary particles.
Atoms or composite particles such as protons and neutrons were not formed yet.
Most importantly, photons were not able to freely propagate in the plasma, they
were constantly interacting with other particles. It means that there is no way for
us to detect photons of this early epoch. It was only from a particular time, when
the Universe was finally diluted and cold enough, that photons could freely stream
across space. So the expanding model of the Universe predicts that photons from
this period constitute the earliest light we can have access to.

This prediction has actually been confirmed by the experimental detection of the
cosmic microwave background (CMB) almost 60 years ago [60–62]. This observa-
tion has been very important for cosmology as it is one of the strongest evidences
supporting the Big Bang scenario of an expanding Universe. Moreover, the details
encoded in the CMB are of primordial importance. Although we have no direct
access to earlier photons, it is still possible to use those from the CMB to help us de-
cipher what happened before in the Universe [62]. This is why obtaining more and
more precise measurements of the CMB has been very important and has motivated
the construction of several detectors and telescopes such as COBE, WMAP, BICEP
or PLANCK. The slice at t = 3× 105 years in Figure 1.4 show what the CMB looks
like from recent observations.

Despite much progress in cosmology, it still remains difficult to get a precise
understanding of the early Universe and its description stays somewhat speculative.
It would be very helpful for physicists if there existed some type of information
which was produced before the CMB and, contrarily to light, had freely propagated
towards us until today. We shall see in the next Section that such a candidate does
exist and that it corresponds to a particular type of gravitational waves which may
be detected during the next decades. An essential part of this thesis will be dedicated
to the study of this interesting phenomenon.

1.2 Gravitational waves as a probe of the Universe

The previous Section gave a broad overview of modern physics and the theories on
which it is built. We now want to present how gravitational waves may be useful to
improve our knowledge of the Universe. We think it is therefore important to give
first a summary of what are the main problems to solve in fundamental physics.
Then we take the time to explain what gravitational waves are in simple terms. In
this way, the non-expert reader might have the opportunity to appreciate the rele-
vance of gravitational waves and to understand the results of our work [1–5] which
will be summarized at the end of this Section.

1.2.1 The Unknown

Our preceding discussion could give the impression that general relativity and quan-
tum field theory provide a comprehensive description of time, space and matter.
This thesis would probably not exist if that were true. We also remind that problems
are needed (and welcome) for science to progress.
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Fortunately, physics is currently facing a lot of interesting questions. For clarity,
we propose to classify them in three categories:

(Q1) Theory and observation disagree on the results of an experiment,

(Q2) Theoretical inconsistencies exist inside a model,

(Q3) The complexity or inaccessibility of a phenomenon hinders its description.

This classification is probably not complete and rather arbitrary but it gives an over-
all feeling of the situation. Problems of type (Q1) are the most compelling ones:
either the theory or the observation is wrong. Without hesitation, something else is
needed. The second type is more difficult to apprehend as physicists may sometimes
disagree on the meaning of theoretical inconsistencies. In some cases, evident math-
ematical problems occur in a model and it is clear that a reformulation or a better
theory is required. In other cases, people would argue that what is considered as a
problem by others may not be relevant or goes outside the scope of science (see e.g.
[63, 64] for a recent discussion). The category (Q3) differs from the previous two in
the sense that no new model is needed, but our knowledge is restricted because of
our limitations to have access to all the information of a system. Such problems can
typically be overcome by the development of better experiments and better com-
putational tools. The following examples will illustrate these three groups but it is
important to keep in mind that the reality is usually more complicated and that some
problems may belong to various categories at the same time.

Dark matter

One of the main concerns of modern physics is related to the hypothetical existence
of dark matter. It relies on several evidences of type (Q1) obtained during the last
one hundred years. The study of galaxy clusters by Zwicky in the 1930s [65, 66]
and then of spiral galaxies by Rubin and Ford around 1970 [67] showed some clear
inconsistencies in the dynamics of such objects. For instance, the radial velocity of
distant stars in a galaxy is observed to be much larger than what is predicted by
the laws of gravitation (either from Newtonian mechanics or general relativity). The
two main solutions proposed by physicists to explain this phenomena are either to
modify gravitation or to postulate the existence of a new type of massive particles
which are invisible to us (and therefore called dark matter) but would contribute to
the gravitational potential of the system.

There are other observational evidences supporting the existence of dark matter
or the need for a new theory of gravity [68]. The most compelling one is provided
by the CMB temperature anisotropy. The patterns in the temperature spectrum of
the CMB photons cannot be explained from the combination of general relativity
with the standard model of particle physics. The simplest solution would be to in-
voke again the existence of unknown particles whose density in the Universe should
roughly be five times bigger than the density of usual matter [69]. Although prob-
ably not impossible, it seems more difficult to explain the CMB anisotropy by only
changing the laws of gravity and keeping the standard model as we know it [70].
But neither of these two main hypothesis has been confirmed or refuted yet. Various
apparatus such as particle accelerators and telescopes are currently trying to create
or detect dark matter particles. The absence of any detection at least allows physi-
cists to put constraints on (and sometimes discard) the various theoretical models
which have been proposed to solve this mystery.
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Dark energy, the cosmological constant and vacuum energy

A second conundrum is known as the dark energy problem. As mentioned earlier,
there are experimental evidences that the Universe is currently in an accelerating
expansion [58, 59]. The only way to explain this observation with general relativity
is to add a constant term to the Einstein equations. It is important to note that there
is no mathematical problem per se to introduce this cosmological constant. Concerns
arise when we try to interpret the physical nature of this term because it should cor-
respond to a form of energy which fills space homogeneously, has a constant density
and negative pressure. Compared to the usual kind of matter and energy encoun-
tered on Earth, this "fluid" seems to have rather intriguing properties. In addition,
the aforementioned observations support that dark energy is currently dominant in
the Universe and constitutes roughly 70% of its total energy density.

The situation becomes even more interesting when we realize that quantum field
theory could a priori provide a natural interpretation of dark energy but fails to do
so in practice. Indeed, the Heisenberg uncertainty principle tells that the lowest
energy state of a quantum system is never zero. Therefore quantum fields which
permeate all space-time should always have a non-zero vacuum energy which could
in principle play the role of the cosmological constant. The problem is that it is not
clear how to correctly calculate the vacuum energy from quantum field theory and
that the proposed computations give results which are orders of magnitude away
from the observed value (see [71] for a comprehensive review). Little is known about
how to solve this problem, but as we will explain below it might be related to the
existence of divergences in QFT and the fact that we are missing a quantum theory
of gravity.

Quantum gravity

An intrinsic problem of quantum field theory is the appearance of infinities when
trying to compute observables [72, 73]. As we shall explain in Section 3.1, there exists
a technique called renormalization which allows us to regulate these divergences and
to obtain finite predictions. This prescription stays well under control as long as
the model under consideration satisfies some specific conditions. Such a theory is
said to be renormalizable. For example, the standard model of particle physics is
one such model and it predicts results in impressive agreement with high precision
measurements. Note that renormalization fails to give a value of the vacuum energy
which is consistent with the cosmological constant described above. It is usual to
claim that this is not a problem in particle physics when gravitational effects are
negligible because such measurements are only sensitive to differences in energies.

If we have insisted on the appearance of divergences in QFT in the previous
paragraph, this is also because it can help us to understand a part of another prob-
lem known as quantum gravity. Indeed, it is well known that various difficulties
arise if we try to quantize the gravitational field [74]. In particular, general relativity
is a non-renormalizable theory. This means that it will not be valid to describe phe-
nomena occurring at very small distances (typically around 10−35 m).18 Intuitively,
physicists would expect that space-time itself should be quantized at sufficiently
small distances. Although some ideas have been proposed, such as string theory
[75] or loop quantum gravity [76], there is no consensus on what reality could be

18We note however that general relativity, seen as an effective theory, remains a consistent low-
energy quantum field theory (see [73] Chapter 22).
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at such scales. As explained in Section 1.2.3, a part of this thesis is dedicated to
studying this problem in more detail.

The early Universe

As explained in Section 1.1.5, it is difficult to get experimental information regarding
the state of the Universe long before the CMB was formed. As long as we do not go
too far back in time, it is however possible to theoretically predict various phenom-
ena that could have happened by combining our knowledge of particle physics and
general relativity. This includes cosmological phase transitions, that we shall discuss
at great length in this thesis, and various interaction processes between elementary
particles. The main difficulty at this stage is to find signatures that could help us to
confirm the validity of such predictions. On the other hand, if we extrapolate fur-
ther back in time, we will eventually reach a state of matter which is so dense that
quantum gravitational effects become important. We then face the type of problems
we mentioned above when discussing quantum gravity.

The positive side of having only little information regarding the early Universe is
that it can be used as a playground by theoretical physicists to develop new ideas or
to propose solutions to existing problems. Inflation and baryogenesis are such exam-
ples. The former process describes a hypothetical period of accelerating expansion
in the very early Universe that could explain at the same time why all the photons in
the CMB have a similar temperature and why some parts of the Universe are denser
than others [77]. The latter process uses the idea that the Universe might have un-
dergone out of thermal equilibrium periods to explain why there is currently more
matter than antimatter in the Universe [78, 79]. We might come back to these two
concepts from time to time in this thesis although we shall not focus our attention
on them.

More problems

We finish our discussion about the unknown part of the Universe by mentioning
that there are various other problems that we have not introduced and not detailed
in this Chapter. The hierarchy problem, related to the mass of the Higgs boson, is
one of them that we will consider in Section 5.1.2. Another example is related to
the origin of the neutrino masses which is still not well understood [80]. It is worth
mentioning at this stage that a common approach to try to solve such problems is to
extend the standard model by introducing new particles or new interactions. In that
case, physicists usually talk of beyond the standard model (BSM) physics.

1.2.2 Gravitational waves in a nutshell

It is now time to describe what gravitational waves (GWs) are. GWs are ripples of
space-time that are predicted by general relativity. We remember from Section 1.1.3
that energy and matter in the Universe have the effect to curve space-time. So it is
not too difficult to imagine that if an object is moving in the frame of an observer,
she may detect changes in the curvature of space around her as a function of her
time. Fortunately, the mathematical formulation of general relativity gives a very
clear description of this phenomenon. It is possible to compute the properties of
these waves as a function of the source which produces them and also to determine
under which conditions they may be detected.
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FIGURE 1.5: The gravitational wave signal GW150914 as observed by the two LIGO
detectors in Hanford and Livingston. Image Credit: [8].

Historically, the concept of GWs had already been suggested a few years before
general relativity was established. But it is only after the Einstein field equations
appeared that serious predictions started to be made [81]. Because of the complexity
of these equations, it took many years for physicists to carefully compute accurate
properties of GWs and to design detectors. The first (indirect) evidence of their
existence is associated to the first observation of a binary pulsar by Hulse and Tay-
lor in 1974 [82]. A binary pulsar is a system made of two neutron stars orbiting
around each other and with one body emitting some electromagnetic radiation pe-
riodically. The observation, during several years, of the radiation coming from the
Hulse-Taylor pulsar showed that the orbit of the system was shrinking. This is in-
terpreted as the fact that the system gradually loses energy from its interaction with
space-time and that this energy is radiated away as GWs. The rate of decrease of the
orbit of the pulsar was in excellent agreement with the predictions of general relativ-
ity [83], giving a strong evidence for the existence of GWs although they could not
be detected directly.

It was only recently, in 2015, that the first direct detection of GWs was made
on Earth by the LIGO/Virgo collaborations [8]. The shape of this signal, called
GW150914, is given in Figure 1.5. At the time of writing this thesis, a total of eleven
such signals have been confirmed by LIGO/Virgo and more observations are ex-
pected in the future. We now give a brief overview of the main characteristics of
GWs. We also remind that the mathematical aspects will be treated in detail in Chap-
ter 2.
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Production mechanisms

In theory, most matter perturbations produce GWs. In practice however, the interac-
tion between matter and space-time as given by the Einstein equations is very small
such that extremely energetic processes are required to produce GWs that would
have a chance to be detected. We mention here two phenomena of interest.

The first type of production has already been mentioned above and consists of
the inspiralling of two very compact objects such as neutron stars or black holes. As
the system evolves, it radiates more and more energy and the bodies rotate faster
and faster until they collide. It is nearby the time of collision that the emitted GWs
have their maximal amplitude. Seen from Earth, these waves have a typical shape
which is exactly the one shown in Figure 1.5. The signal is said to be transient and
directional as it comes from a particular location in the sky and only lasts for a short
period of time. We will study this particular type of GWs in detail in Chapters 2 and
4.

A second production mechanism is related to the dynamics of the early Uni-
verse. As we mentioned in our cosmology Section 1.1.5, the matter at this epoch
was in the form of a hot and dense plasma of elementary particles. Quantum field
theory predicts that, around that time, elementary fields may undergo some phase
transitions accompanied, under certain conditions, by perturbations in the energy
and density of matter. This disturbance could have been strong enough to produce
a stochastic background of GWs. This last expression means that contrary to the previ-
ous case, such GWs are not produced at a specific location in space, but everywhere
at roughly the same time and with different amplitudes and frequencies. It is still not
clear today if such GWs exist as we have not been able to detect them yet. Planned
experiments are expected to give us more information in the next few decades. The
relationship between the physics of the early Universe and these GWs will be dis-
cussed in Chapters 5 and 6.

We also mention that there are other ways to produce potentially detectable GWs,
but we will not cover them in this thesis. Particularly interesting scenarios are those
related to inflation [84] and cosmic strings [85, 86].

Propagation

Once produced, GWs propagate through space at the speed of light. As their inter-
action with matter is tiny, it can be assumed that they travel freely. This property
renders GWs very interesting as it means that any information gathered from their
detection gives direct information about the source which produced them. From our
discussion above, this can either be the properties of a binary system, such as their
masses, or some information regarding the state of matter in the early Universe. We
now understand why we said earlier that GWs may provide a direct access to the
state of the Universe even before the CMB.

What we just said about propagation is actually not entirely correct. The fact
that the Universe is expanding will affect the properties of GWs while they travel.
Typically, their wavelength will be stretched by the fact that space is itself stretching
everywhere. This effect, known as redshift, is stronger the longer the wave travels.
Similarly, the amplitude of GWs will be diluted as the Universe grows. These two
effects are generally not difficult to take into account as long as we have a good
understanding of the rate of expansion of the Universe.
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FIGURE 1.6: Generic effect of GWs on a ring of test masses. We assume here that
GWs propagate in a direction perpendicular to the plane formed by the ring. Gen-
eral relativity predicts that the movement of the ring is given by the superposition
of two effects: a "+" (plus) motion as in the upper panel and a "×" (cross) motion
as in the lower panel. See Section 2.1.4 for a mathematical justification.

Detection principle

As space is stretched or contracted at the passage of GWs, the general idea to observe
them is to detect changes in the distance between test masses. The typical effect
that we can expect to observe is explained in Figure 1.6. To be able to measure a
change of distance between the bodies, we need to be sure to use a ruler which
is not itself stretched by GWs. Light is the perfect candidate as we know that its
speed stays constant in any frame. A change of distance can then be noticed by
measuring a change in the time taken by light to travel between the test objects. Such
variations remain very difficult to detect in general and this requires to design high-
precision experiments. We briefly discuss three experimental setups which differ by
their geometry or choice of test masses.

We begin with earth-based laser interferometers. They are composed of two
arms, a few kilometers long, into which light can propagate in vacuum. The test
objects are mirrors of a few tens of kilograms placed at each extremity of the arms
and in suspension such that they are isolated from Earth vibrations. By measuring
the time taken by light to travel between the mirrors, physicists can notice small vari-
ations of their position that could be induced by the passage of a GW. Such detectors
are typically sensitive to frequencies between 10 Hz to 10 kHz and are particularly
adapted to the detection of GWs produced from black hole or neutron star binaries
of a few solar masses [87]. Three such instruments are currently operational: the two
LIGO detectors in the USA and the Virgo interferometer in Italy.19 As said above,
they have already confirmed the detection of eleven binary mergers similar to the
one in Figure 1.5.

The second type of apparatus consists of space-based laser interferometers. Test
masses of a few kilograms are placed in free-fall inside at least three spacecrafts sep-
arated from each other by a few million kilometers. Light rays are emitted between
each spacecraft in order to constantly measure their relative distance and detect any
potential variations. Taking into account their configuration and the length of their
arms, such instruments are expected to be sensitive to much larger wavelengths
than LIGO/Virgo. They could typically detect signals with frequencies around 10−3

19A fourth (underground) interferometer, KAGRA, is currently under construction in Japan and
expected to give results in a few years [88].
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Hertz. Such experiments have not been built yet but several proposals are currently
under investigation. The most promising project is the Laser Interferometer Space
Antenna (LISA) which is planned to be operational around 2034 [89]. Among vari-
ous objectives, two of its goals are to study the merger of very massive black holes
and to try to detect stochastic gravitational waves produced during the early Uni-
verse. We also mention that other space-based ideas have been proposed such as the
Big Bang Observer (BBO) [90] and the Deci-Hertz Interferometer Gravitational wave
Observatory (DECIGO) [91].

The last detectors we present are pulsar timing arrays (PTA). We already men-
tioned that pulsars are neutron stars emitting periodic electromagnetic radiation.
The idea is therefore to monitor the time of arrival on Earth of the pulses coming
from a selected set of pulsars. In comparison with the previous types of instruments,
the role of test masses is now played by the pulsars and the Earth. The lengths of
the arms of this "interferometer" are then just the distances between each pulsar and
the Earth. If GWs of low frequency (10−9 to 10−6 Hz) propagate in our neighbour-
hood, they will produce some measurable disturbance in the time of arrival of the
pulses. The International Pulsar Timing Array (IPTA) [92], a collaboration of various
telescopes around the world, is currently looking for such perturbations by observ-
ing roughly 30 pulsars. No GW signal has been observed yet and this allowed the
collaboration to place various constraints on the properties of the stochastic GW
background [93–95]. A new instrument, the Square Kilometer Array (SKA) [96],
is currently under development and is expected to deliver first results in the next
decade.

1.2.3 Testing the quantum nature of space-time

Now that we have an overall understanding of GWs, we can discuss their useful-
ness for fundamental physics. Let us first mention that the LIGO/Virgo detection
has been important to confirm the existence of GWs and to strengthen the validity
of general relativity. It allowed physicists to probe GR in a way which had never
been possible before. Previous tests were indeed restricted to processes involving
weak and almost static gravitational fields. The collision of two black holes belongs
however to the regime of strong and dynamical fields and it could have led to unex-
pected phenomena. As we will explain in details in Section 2.2.3, it turns out that all
observed signals are in good agreement with GR so far.

There are various other reasons that make the observed waveforms interesting.
They can be used to study models of modified gravity [97], to confirm that GWs
propagate at the speed of light [98] or even to look for dark matter in the form of pri-
mordial black holes [99]. In our papers [1, 2], we used such a signal, GW150914 to be
precise, to study the quantum nature of space-time. The details of our investigation
are given in Chapter 4 but we give here a summary of our approach and results.

In our brief discussion about quantum gravity, we emphasized that it is unclear
how to conciliate the principles of quantum field theory with general relativity. In
particular, the nature of space-time as we imagine it is expected to change at very
small distances. In general relativity, the implicit assumption is that space-time is a
continuous fabric and that events can be localized unambiguously from their coor-
dinates. So it is possible, in this framework, to divide space-time indefinitely and to
consider smaller and smaller distances without needing to modify the laws of grav-
itation. But there is a priori no reason to think that this is true. Could space-time be
made of small "atoms"? Could space-time be discrete rather than continuous? Such
questions indeed sound legitimate once we take quantum mechanics into account.
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Non-commutative space-time

Various mathematical models of quantum space-times have been proposed. Al-
though they differ in their formalism, most of them invoke at some point the ex-
istence of a minimal length scale. A comprehensive review discussing various of
these approaches can be found in [100]. The particular model in which we are in-
terested is named non-commutative space-time. The idea is that space-time becomes
fuzzy below a given scale such that it is no longer possible to localize events with ar-
bitrary accuracy. Formally, coordinates are not real numbers anymore but quantum
operators that do not commute. Similarly to the position and velocity of a particle
in usual quantum mechanics, this assumption results in an uncertainty principle for
the coordinates. For example, if we consider the x̂ and ŷ coordinate operators, we
will get:

x̂ŷ− ŷx̂ 6= 0 , ∆x ∆y &
1
2

l2
xy , (1.12)

where lxy is the length at which non-commutative effect starts to take place between
the x and y coordinates. Similar identities exist for all other couples of coordinates
such as t̂ and ẑ.

This idea of non-commuting coordinates was originally proposed by Heisenberg
as a possible way to cure the divergences appearing in quantum field theory. The
first article based on this formalism was then published in 1946 by Snyder [101].
However, maybe because renormalization proved to be efficient to deal with diver-
gences, space-time non-commutativity has not received a lot of attention until the
1990s-2000s. This period coincides with the development of noncommutative ge-
ometry [102] and the observation that space-times with the property (1.12) can be
seen as low-energy limits of certain string theories [103, 104] (see also the reviews
[105, 106]).

As of today, there is still no experimental indication supporting the existence
of a minimal length or the fuzziness of space/time. This is not surprising as such
effects are only expected to occur at distances which are still far from the reach of
current technology. Based on intuitive theoretical arguments, this distance should
correspond to the length at which gravitational effects start to be comparable to other
forces such as electromagnetism. This scale is known as the Planck scale and is
defined from the combination of the fundamental constants appearing in gravitation
(G), quantum mechanics (h̄) and special relativity (c). Explicitly the Planck length
and time are given by:

lP =

√
h̄G
c3 ≈ 1.6 · 10−35 m tP =

√
h̄G
c5 ≈ 5.4 · 10−44 s. (1.13)

Constraint from GWs

According to several analysis [107–110], the best existing constraints on the scale
of non-commutativity are roughly at the order of 10−20 m. It means that if non-
commutativity exists, it has to appear at distances smaller than this value. Our claim
in [1, 2] is that GW signals from binary black hole mergers, such as GW150914, allow
us to give a more stringent bound. Our computations and results are given in full
detail in Chapter 4. The approach we follow is to compute the dynamics of the two
black holes with the new assumption that space-time admits non-commutativity of
the form given by Equation (1.12). We are thus able to explicitly compute the domi-
nant non-commutative effect on the phase of the GWs produced during the merger.
By comparing our analytic formula to the data analysis performed by LIGO/Virgo
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on the GW150914 signal [111], we can extract a constraint that the scale of non-
commutativity has to satisfy in order to stay consistent with observation. Interest-
ingly, we find that the scale cannot be much bigger than the Planck scale. More
precisely, we explicitly get that

l2
xt . 12 · lPtP , (1.14)

and argue that similar constraints should exist for the other components (lxy, . . . ).
This represents a strong improvement compared to the previous bounds we men-
tioned. It means that GWs give us here information that was previously not avail-
able in another form. Of course, this result does not allow us to conclude on the
existence or non-existence of non-commutativity around the Planck scale or below.
More precise apparatus would be needed to probe the quantum nature of space-time
further.

1.2.4 Probing the history and fate of the Universe

A substantial part of the work presented in this thesis lies at the interplay between
particle physics and cosmology. We are particularly interested in the large scale
behaviour of quantum fields as it may involve interesting phenomena such as phase
transitions, quantum tunnelling and the production of GWs. Let us discuss these
concepts in more details.

Phase transitions

QFT predicts that space-time is filled by various quantum fields whose excitations
are interpreted as particles. As with any physical system, these fields naturally tend
to reach their state of lowest energy. In most situations, this means that the fields
admit a homogeneous background value, called a vacuum expectation value (vev),
over all space-time. It is also possible for some physical systems to have non-trivial
vacuum configurations, namely to admit one or several metastable states on top of
the true ground state. Metastability corresponds here to configurations which are
not of lowest energy but in which a system will stay for a long time as long as not
enough energy is provided to the system by the exterior environment.

Actually, the vacuum configuration of a dynamical system can change with time
and depends on its interactions with other systems. For example, the value of the
ground state can evolve or metastable states can appear or disappear. In the context
of cosmology, it is of prime importance to know how the vacuum configurations of
quantum fields evolved in order to understand the processes that happened dur-
ing the history of the Universe. According to computations that we shall present
in Chapters 3 and 5, the standard model predicts that at least two important events
should have occurred during the early Universe: the electroweak phase transition
and the quantum chromodynamic (QCD) phase transition. The former process cor-
responds to a change of vacuum state of the Higgs field and is expected to be the
mechanism at the origin of the masses of the elementary particles. It should have
happened roughly 20 picoseconds after the Big Bang. The latter process is expected
to have occurred later (at 20 microseconds) when the quark fields acquired a non-
zero vacuum expectation value (and subsequently combined together to form com-
posite particles such as protons).
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Quantum tunnelling and bubble nucleation

The two phase transitions we just described could have happened in two different
ways. The picture is as follows. Initially, the field is trapped in its ground state. As
the temperature of the Universe decreases, another vacuum state of lower energy
forms such that the initial configuration either becomes unstable or metastable. In
the first case, the field simply transitions to the new vacuum homogeneously over all
the Universe at the same time. Such a transition is said to be a crossover. In the second
case, the field will stay trapped for a while in the metastable phase until it decays
to the new state through quantum tunnelling. This process is not homogeneous and
happens via the nucleation of bubbles of the new phase (like in boiling water) which
then expand and gradually convert all the Universe. This is the signature of a first-
order phase transition.

It is possible to show that the standard model predicts the electroweak and QCD
phase transitions to be crossovers [112, 113]. In that case, it would be difficult to
find experimental signs that could prove that these events really happened. On the
other hand, several extensions of the standard model, for example motivated by the
problems discussed in Section 1.2.1, are known to predict first-order transitions. As
explained below, we could have the opportunity in that case to find signatures in the
form of GWs observed today on Earth. This is exactly what we investigate in detail
in Chapters 5 and 6 for particular particle physics models we shall discuss in due
time.

We also want to briefly emphasize that quantum tunnelling and phase transitions
may play a role regarding the fate of the Universe. As we explain in Section 7.1, there
is a chance for the current vacuum state of the Higgs field to be metastable. Fortu-
nately, even if this is the case, computations show that the probability for the Uni-
verse as we know it to decay into another state is extremely small. This raises how-
ever a few interesting questions such as why the Universe has not decayed into this
lowest-energy state during inflation. Motivated by all these considerations about
quantum tunnelling, one of our research works has been to study if the creation of
particles during tunnelling influences the decay rate of the metastable fields [5]. This
is the topic of Chapter 7, which in itself is not related to the subject of GWs, but is
anyway relevant for our overall discussion of fundamental physics.

Stochastic GW background from bubble collisions

The final idea we want to mention in this broad introduction is why GWs are ex-
pected to be produced during a first-order transition. This is simply because the
collisions between the expanding bubbles create perturbations in the matter content
of the Universe which then disturb the curvature of space-time according to general
relativity. This would result in a stochastic GW background that could be detectable
by the instruments we described in Section 1.2.2.

Chapter 6 shows how to compute the properties of such a GW background. Our
main conclusion is that there exist extensions of the standard model that predict
GWs potentially detectable by pulsar timing arrays [3, 4]. Future GW measurements
(either detections or absence of detections) are therefore expected to give new infor-
mation on both the dynamics of the Universe and its matter content.
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Chapter 2

From General Relativity to GWs

As it has been emphasized in our Introduction, the paradigm of modern of physics
relies on both the general theory of relativity and quantum field theory. They give
the foundation on which are built the standard models of both cosmology and parti-
cle physics. The next two Chapters present the physics and mathematics of these the-
ories by focusing on the aspects which are the most relevant for this thesis. Whereas
the Introduction was given with minimal technicality, it is assumed from now on
that the reader is familiar with modern physics. The reader interested in a more
comprehensive description of these topics can refer to the textbook reviews men-
tioned in the text. Regarding this Chapter, see for example [29, 114] for GR and [115,
116] for GWs.

2.1 The General Theory of Relativity

Einstein’s general theory of relativity, or general relativity (GR) for short, is a geo-
metrical and classical theory which describes the gravitational interaction, namely
the dynamics of massive objects. As explained in Section 1.1.3, it relies on the equiv-
alence principle, general coordinate invariance and curved space-time. The general for-
malism summarizing these concepts is presented now. It will allow us to give a
precise mathematical description of both GWs and cosmology, two key concepts of
this thesis.

2.1.1 The mathematics of curved space-time

In order to write physical laws which are invariant under general coordinate trans-
formations, we need to express physical quantities as mathematical objects satisfy-
ing well-defined transformation properties. In this sense, GR makes use of tensors
which are abstract objects made of m upper (contravariant) and n lower (covariant)
indices and transform as

xµ → x̄µ ⇒ Tµ1 ...µm
ν1 ...νn → T̄µ1 ...µm

ν1 ...νn =

(
m

∏
i=1

∂x̄µi

∂xρi

n

∏
j=1

∂xσj

∂x̄νj

)
Tρ1...ρm

σ1...σn . (2.1)

The transformation rule of any quantity built from a combination of tensors is then
uniquely determined by the previous equation. This is particularly useful to find
expressions satisfying required transformation properties.

A major achievement of GR is its ability to express the geometrical nature of
space-time and the gravitational interaction in terms of tensors. More particularly,
the geometry of space-time is entirely defined by its metric tensor, gµν, which can
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be introduced as follows. Imagine a test particle in a gravitational field. Accord-
ing to the equivalence principle, there exists a local inertial frame, ξµ, at rest re-
spectively to the particle. The line element, which gives the distance between two
points separated by infinitesimal coordinate intervals dξµ, is therefore specified by
the Minkowski metric of special relativity as ds2 = ηµνdξµdξν.1 However, if the tra-
jectory of the particle is seen from a general coordinate system, xµ = xµ(ξ), the line
element becomes

ds2 = ηαβ
∂ξα

∂xµ

∂ξβ

∂xν
dxµdxν ≡ gµν(x) dxµdxν . (2.2)

In other words, the metric gµν gives the notion of distance as measured in a gen-
eral coordinate system and automatically satisfies the requirement (2.1) for being a
tensor. It allows us to compute any finite distance along a path γ between two space-
time points A and B. Indeed, if the curved γ is parametrized by a scalar σ as xµ(σ),
with xµ(σ0) = xµ

A and xµ(σ1) = xµ
B, we have

sγ =
∫

γ
ds =

∫ σ1

σ0

√
gµν

dxµ

dσ

dxν

dσ
dσ . (2.3)

It is now possible to study the motion of a test particle in the general coordinate
system xµ. In a way which reminds us about Newtonian mechanics, GR assumes
that test objects travel along "shortest" trajectories, namely curves which minimize
(2.3). Such trajectories xµ(σ) are called geodesics and a straightforward variation of
Equation (2.3) shows that they satisfy the following geodesic equations:

d2xµ

dσ2 + Γµ
νρ

dxν

dσ

dxρ

dσ
= 0 , (2.4)

where the Christoffel symbols are defined as

Γρ
µν =

1
2

gρσ
(
∂µgσν + ∂νgσµ − ∂σgµν

)
. (2.5)

The geodesic equations are invariant under general coordinate transformations, but
we note that the Christoffel symbols are not tensors as they do not satisfy Equation
(2.1). In particular, it is always possible to find a coordinate system ξµ such that at a
given point P we have Γρ

µν(P) = 0. This frame is nothing but the local inertial frame
introduced above and the vanishing of the Christoffel symbols is a mathematical
consequence of the equivalence principle. The equations of motion for the particle
simply reduce to d2ξµ/dσ2

∣∣
P = 0 and therefore ξµ is called a local free-falling reference

frame.2

The word local is important and actually leads to the notion of curvature. It
means that it is generally not possible to find a single frame in which two distinct
free particles are both seen as free-falling. In other words, two free particles can
accelerate towards each other when seen from the same frame. This is expressed by
the geodesic deviation equations. Consider a family of geodesics xµ(σ, λ) specified
by the parameter λ. We write the tangent vector to the trajectory as uµ(σ, λ) =

1The metric signature is given by (−,+,+,+). Greek indices range from 0 to 3 and Latin indices
range from 1 to 3. We also work in natural units (c = 1, h̄ = 1) unless otherwise specified.

2We briefly mention that the geodesic equations share some similarity with the second law of New-
ton. The first term in (2.4) is the acceleration of the particle and the second term can be interpreted as
the fictitious forces appearing in non-inertial reference frames.
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∂xµ(σ,λ)
∂σ and the deviation between geodesics as vµ(σ, λ) = ∂xµ(σ,λ)

∂λ . It can be shown
that the deviation satisfies the following equations:

D2vµ

dσ2 = −Rµ
νρσ uνuσvρ , (2.6)

where we have introduced the intrinsic derivative D and the Riemann tensor R given
by

Dvµ

dσ
=

dvµ

dσ
+ Γµ

νρvν ∂xρ

dσ
, (2.7)

Rµ
νρσ = ∂ρΓµ

νσ + Γµ
αρΓα

νσ − (ρ↔ σ). (2.8)

The fact that Rµ
νρσ is a tensor means that the right-hand side of Equation (2.6) cannot

be turned off by going to a free-falling frame. In terms of gravitational interaction,
this term represents a tidal acceleration. In terms of geometry, it represents the no-
tion of curvature of the manifold from which the Riemann tensor is built, in this case
space-time.

Diffeomorphism invariance implies that coordinates are a priori meaningless in
GR and proper care has to be taken when extracting physical observables. This is
particularly true if we want to introduce causality. It cannot be defined from the
"time" coordinate anymore as in special relativity. Fortunately, curved space-time
seen as a Lorentzian manifold admits a mathematically well-defined causal struc-
ture. We can say that two events are causally connected if they can be joined by
a curve whose tangent vectors Vµ at each point are either null (gµνVµVν = 0) or
timelike (gµνVµVν < 0). It is then not difficult to define causal hypersurfaces gen-
eralizing the light cones of special relativity. More details about such considerations
and the geometry of Lorentzian manifolds can be found in [29] Chapters 2 and 3.

2.1.2 Einstein Field Equations

The formalism we just presented allows us to interpret the motion of an object in a
gravitational field as the motion of a particle in a curved space-time. The remaining
question to answer is how the gravitational field, namely the massive matter content
of the Universe, determines the curvature of space-time. We present an answer to
this question based on a field theoretic approach. On one hand, the metric gµν(x)
is seen as a classical field taking values at each point of a coordinate system x. On
the other hand, the matter content is determined by a Lagrangian density LM. The
dynamics and interaction between space-time and matter can therefore be given by
an action S[gµν,LM] which has to be a scalar under general coordinate transforma-
tions. The simplest scalar than can be built from the metric is the Ricci scalar given
by R = gµνRµν where Rµν = Rσ

µρν is the Ricci tensor. This gives rise to the Einstein-
Hilbert action of GR:

SEH =
∫

d4x
√
−g
(

1
16πG

R + LM

)
, (2.9)

where g = Det(gµν) is the determinant of the metric and G the gravitational con-
stant. The variation of the action according to the metric (gµν → gµν + δgµν) gives:

δSEH =
1

16πG

∫
d4x
√
−g
(

Rµν −
1
2

R− 8πG Tµν

)
δgµν , (2.10)
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where Tµν = − 2√−g
∂(
√−gLM)

∂gµν is the energy-momentum tensor associated to the mat-
ter distribution. As the variation of the metric is arbitrary, we obtain the following
field equations:

Rµν −
1
2

R = 8πG Tµν . (2.11)

This last expression is known as the Einstein Field Equations (EFE) and it governs
the interrelated dynamics of space-time and matter. As the EFE involves symmetric
4 × 4 tensors, it forms a system of ten second-order partial differential equations.
Studying the predictions and validity of GR requires to solve the EFE for different
space-time and matter configurations. This is generally a difficult task as no exact
analytic solutions of these equations are known. As we shall see, we usually resort
to various kinds of approximations or numerical methods.

It is however important to realize that the complexity of the EFE can be slightly
reduced once remembering that these equations are invariant under coordinate trans-
formations. Indeed, we expect the freedom to choose any coordinate system to re-
duce the number of independent equations from 10 to 6. This can be seen in various
ways, notably from the properties of the Riemann tensor. It is known to satisfy the
following Bianchi identities:

∇κRµ
νρσ +∇σRµ

νκρ +∇ρRµ
νσκ = 0 and ∇µ

(
Rµν − 1

2
gµνR

)
= 0 , (2.12)

where we remind that the covariant derivative of any tensor is given by

∇ρTµ1 ...µm
ν1 ...νn = ∂ρTµ1 ...µm

ν1 ...νn + Γµ1
λρTλ...µm

ν1...νn + . . .− Γλ
ν1ρTµ1 ...µm

λ...νn
− . . . (2.13)

It directly follows from Equations (2.11) and (2.12) that

∇µTµν = 0 . (2.14)

In other words, 4 of the 10 EFEs govern the dynamics of the matter system. The
remaining 6 equations determine the geometry of space-time, namely 6 components
of the metric gµν. Its 4 remaining components are fixed by the choice of coordinates
and we will see in the next Section how an appropriate choice can allow us to sim-
plify the expression of the EFE. We also observe what is called the local conservation
of energy-momentum. Indeed, Equation (2.14) for Tµν reduces to ∂µTµν = 0 in a lo-
cal free-falling frame. However, note that the energy and momentum of matter is in
general not conserved in GR as it changes in response to the curvature and dynamics
of space-time.

2.1.3 Harmonic gauge and post-Minkowskian expansion

Diffeomorphism invariance allows us to choose any coordinate system in order to
solve the EFE (2.11). This so-called gauge freedom is very useful as it means that the
coordinates can be fixed on a case by case by basis depending on the specific system
we want to describe. In particular, it means that we can often take advantage of the
possible symmetries of a configuration to simplify its analysis.

Unless otherwise specified, we will make use of the harmonic gauge throughout
this thesis. As we shall see, this choice is particularly appropriate for the analysis
of GWs and also to study the solution of the EFE when the metric consists of only
small perturbations around a flat background. The harmonic condition on a set of
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coordinates xµ reads:
2gxµ = 0 , (2.15)

where 2g = gµν∇µ∇ν is the covariant d’Alembertian.3 When working in this gauge,
it is more appropriate to trade the metric gµν for the following gravitational-field
amplitude:

hµν ≡
√
−ggµν − ηµν . (2.16)

The harmonic condition (2.15) then implies

∂µhµν = 0 , (2.17)

which gives four constraints on the metric, in the same way as explained below
Equation (2.14). This allows us to rewrite the EFE as an inhomogeneous flat d’Alembertian
equation [117]:

2hµν = 16πG τµν , (2.18)

with 2 = ηµν∂µ∂ν. The source term τµν of this expression can be derived from the
original EFE (2.11) and it contains the stress-energy-momentum content of both the
matter and gravitational fields:

τµν = |g| Tµν +
1

16πG
Λµν, (2.19)

where Λµν is a gravitational source term. Actually, τµν is not a tensor under general
coordinate transformations4 and its form will change under such transformations.
This shall not be a problem as long as we keep to the harmonic gauge, for which the
exact expression of the gravitational source is [117]

Λµν =− hαβ∂2
αβhµν + ∂αhµβ∂βhνα +

1
2

gµνgαβ∂λhασ∂σhβλ

− gµαgβσ∂λhνσ∂αhβλ − gναgβσ∂λhµσ∂αhβλ + gαβgλσ∂λhµα∂σhνβ

+
1
8

(
2gµαgνβ − gµνgαβ

) (
2gλσgκρ − gσκgλρ

)
∂αhλρ∂βhσκ .

(2.20)

Equation (2.18) accompanied with the condition (2.17) is completely equivalent
to the original form of the EFE (2.11) and no approximation has been made to derive
it. It is particularly adequate if we want to find solutions which are perturbations
around the Minkowski metric and far away from any matter source (Tµν = 0). In the
spirit of [117], this can be seen if we assume that h can be written as a formal power
series in terms of the Newton’s constant G:

hµν
vac =

+∞

∑
n=1

Gnhµν

(n) , (2.21)

where the index "vac" means that the solution is valid in vacuum. This expansion is
usually called a post-Minkowskian iteration, as each hµν

(n) coefficient corresponds to
an nth-order perturbation of the metric around ηµν. Once this expansion is substi-
tuted in both Equation (2.18) and the harmonic condition (2.17), terms with similar

3The name of these coordinates comes from the fact that any function f satisfying 2 f = 0 is called
"harmonic".

4Note however that τµν is invariant under Lorentz (flat space-time) transformations.
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powers in G can be equated to get an iterative set of equations at each order n:

2hµν

(n) = Λµν

(n)[h(1), h(2), . . . , h(n−1)] ,

∂νhµν

(n) = 0 .
(2.22)

The successive Λµν

(n) can be explicitly computed by expanding the expression (2.20).
Section (2.2) will show us that this approach is useful to study GWs produced by the
merger of two astrophysical objects.

2.1.4 GWs from linearized gravity

We now present how GWs emerge when we consider approximate solutions of GR.
As a starting point, note that Λµν

(1) = 0 in Equation (2.22). This suggests that the EFE
should simplify greatly if we only consider linear perturbations of the metric. Let us
therefore restrict our attention to a metric of the form

gµν = ηµν + h̃µν, |h̃µν| � 1 . (2.23)

The gravitational-field amplitude (2.16) reads hµν = −h̃µν +
1
2 ηµνh̃α

α +O(|h̃|2), after
having properly expanded the term

√−g =
√−η

(
1 + 1

2 h̃α
α

)
+O(|h̃|2). It is usual to

introduce the "trace-reversed" amplitude

h̄µν = h̃µν −
1
2

ηµνh̃ , (2.24)

with h̃ = h̃α
α. The EFE (2.18) and harmonic gauge condition (2.17) then become at

linear order:

2h̄µν = −16πGTµν ,
∂νh̄µν = 0 .

(2.25)

This is nothing but a wave equation with a source term. This tells us that the ge-
ometry of space-time can admit some wave-like dynamics, generically referred to as
gravitational waves. Although Equation (2.25) is only valid for small metric perturba-
tions, it is a good starting point to get an overview of the properties of GWs.

Propagation in vacuum

Let us consider the previous linear wave equation in vacuum: 2h̄µν = 0. It is a well-
known fact that it is invariant under a larger class of coordinate transformations
than those imposed by the harmonic gauge. In addition to ∂νh̄µν = 0 which reduces
the number of independent components of the metric from 10 to 6, there is another
residual gauge freedom allowing us to reduce it to only 2 components. A particu-
larly convenient choice is the "transverse-traceless" (TT) gauge which imposes [115]

h̄0µ = 0, h̄i
i = 0, ∂jh̄ij = 0 . (2.26)

Note that such a gauge choice is not possible in general inside the source where
2h̄µν 6= 0.

The homogeneous equation 2h̄µν = 0 admits plane wave solutions of the form5

h̄TT
ij (x) = eij(k)eikµxµ where kµ = (|k|, k) and the polarization tensor eij(k) admits

5We use the superscript TT to specify that the solution is given in the TT gauge.
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two independent components. Note that such plane waves propagate at the speed
of light. Moreover, similarly to electromagnetism, such solutions are transverse to
the direction of propagation given by n̂ = k/|k|. Indeed, the gauge condition (2.26)
implies njh̄ij = 0. If we define n̂ along the z-axis, the solution of the linearized EFE
in vacuum with specific wave number |k| is given by

h̄TT
µν (x) =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 ei|k|(z−t) , (2.27)

where h+ and h× are the two degrees of freedom called the "plus" and "cross" polar-
ization of GWs.

The most general solution of the linearized EFE in vacuum can then be written as
a superposition of such plane waves with different wave vectors k and polarization
coefficients:

h̄TT
ij (x) =

∫ d3k
2π

(
Aij(k) eikµxµ +A∗ij(k) e−ikµxµ

)
=
∫ +∞

0
d f f 2

∫
d2n̂

(
Aij( f , n̂) e−2πi f (t−n̂x) + c.c.

)
,

(2.28)

where Ai
i = 0 and kiAij = 0. In the second line we have introduced the frequency

f satisfying |k| = 2π f . At this stage, it is not possible to determine the coefficients
of this expansion from the linearized EFE in vacuum alone. Any specific solution
will typically depend on the source from which it has been generated. In this thesis,
we will mainly focus on two different types of sources. First, we will consider GWs
emitted from two inspiralling black holes (see Section (2.2) and Chapter (4)). In such
a case, the propagation of the waves is well defined along a specific direction n̂0 such
that Equation (2.28) at a particular position x0 (e.g. at the location of a detector) can
be written as [115]

h̄TT
ab (t) =

∫ +∞

0
d f f 2

(
Aab( f ) e−2πi f t + c.c.

)
, (2.29)

with a, b = 1, 2 the indices in the transverse plane. In addition to being well oriented
along n̂0, this type of signal is also transient meaning that it will only last for a short
period of time at a given location. The second source type we will consider is from
cosmological origin (see Section (3.2) and Chapter (6)). In this case, the produced
signal corresponds to a stochastic background of GWs with superposition of waves
propagating in multiple directions over long period of time. Therefore h̄TT

ij will not
reduce to a 2× 2 matrix as in Equation (2.29).

Effect on test masses and detection principle

GWs are expected to be detected from their effect on test masses (namely objects
moving along the geodesics of space-time but not heavy enough to produce any sig-
nificant curvature by themselves). The motion of such test masses in the background
of GWs can be studied from both the geodesic equations (2.4) and geodesic deviation
equations (2.6) in the TT gauge. These two equations actually tell us that if some test
masses are initially at rest at σ = 0, namely dxi/dσ

∣∣
σ=0 = 0, they will stay at rest and

their coordinate separation will stay constant. This can be seen from the fact that the
Christoffel symbols Γi

00 vanish in the TT gauge at linear order of perturbation.



Chapter 2. From General Relativity to GWs 36

This observation does not mean that GWs have no effect on test masses but just
that the coordinates in the TT gauge have been implicitly chosen such that they
do not change under the passage of GWs. However, coordinates do not express
physical quantities by themselves. Physical distances and times have to be extracted
from the line element ds2 =

(
ηµν + h̄TT

µν (x)
)

dxµdxν. For GWs propagating along the
z axis and two test masses at (t, x1, 0, 0) and (t, x2, 0, 0), the coordinate separation
L = x2 − x1 indeed remains constant, but the proper distance s is given at linear
order by

s = (x2 − x1) (1 + h+ cos(|k|t))
1
2

≈ L
(

1 +
1
2

h+ cos(|k|t)
)

,
(2.30)

where we have used the metric (2.27). It means that the physical distance seen in the
TT frame oscillates in response to the GWs. It is straightforward to generalize the
previous formula to a ring of test masses. The effect of the cross and plus polariza-
tions results in the behaviour that we described in the Introduction in Figure 1.6. We
will not describe the properties of GW detectors or experimental processes in more
details than what we have already written in this Section.

Generation of GWs from weak sources

The above discussion gives us information on how GWs propagate and can be de-
tected. We now show how they are produced from the dynamics of matter. To begin
with, we assume that the source is sufficiently weak such that the metric around it
can be considered as flat and the linear approximation (2.23) still holds. Another use-
ful approximation at this stage is to assume that the typical velocity v of the source
is small compared to the speed of light, such that we can focus on the lowest-order
solution in terms of v/c. We shall see in Section 2.2 how to go beyond such approxi-
mations.

A typical way to solve the wave equation (2.25) with a source term is by the use
of retarded Green functions. This gives

h̄µν(x) = 4G
∫

d3x′
1

|x− x′|Tµν

(
t− |x− x′|, x′

)
. (2.31)

Note that this solution directly satisfies the Harmonic gauge conditions (2.17). This
is because the local conservation law (2.14) of the energy-momentum tensor reduces
to the flat space-time conservation ∂µTµν = 0 at linear order. Our aim is to study the
form of the previous solution at a distance r = |x| far away from the source. This
would allow us to find the relations between the coefficients in Equations (2.27)-
(2.28) and the properties of the source. Therefore we can assume that |x| � d where d
is the typical radius of the source. Hence we can write |x− x′| = r− x′ · n̂+O

(
d2/r

)
where we use the notation n̂ = x/r. The solution (2.31) becomes

h̄µν(x) =
4G
r

∫
d3x′Tµν

(
t− r + x′ · n̂, x′

)
, r � d . (2.32)

This expression can be further simplified if we now assume that the source is
non-relativistic. To make the argument clear, let us first consider the energy-momentum
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tensor in terms of its Fourier transform:

Tµν

(
t− r + x′ · n̂, x′

)
=
∫ d4k

(2π)4 T̃µν(ω, k) e−iω(t−r+x′·n̂)+ikx′ . (2.33)

For a non-relativistic source, we can expect T̃µν to be peaked at a characteristic fre-
quency ωs and that v ∼ ωs d � c. Using the facts that the frequency ω of the
produced GWs is expected to be of order ωs and that |x′| < d, we have ω x′ · n̂ .
ωs d � c. We note in passing that the wavelength of the GWs, λ̄ = c

ω , roughly
satisfies λ̄ ∼ c

v d and that the non-relativistic condition implies

v� c ⇒ λ̄� d . (2.34)

This allows us to expand the exponential in Equation (2.33) and to write the energy-
momentum tensor as a multipole expansion:

Tµν

(
t− r + x′ · n̂, x′

)
= Tµν

(
t− r, x′

)
+ x′ini∂tTµν

(
t− r, x′

)
+ . . . (2.35)

We will come back to this expansion in the next Section. For the moment, we only
keep the first term and get

h̄µν(x) =
4G
r

∫
d3x′ Tµν

(
t− r, x′

)
, r � d, v� c . (2.36)

There is one further step we can apply to get more information about this equa-
tion. The flat space-time conservation of the energy-momentum tensor, ∂µTµν = 0,
gives the following relations:∫

d3x Tij(x) =
1
2

d2

dt2

∫
d3x xixjT00(x) . (2.37)

Moreover, T00 corresponds to the mass-density ρ of the source at lowest order in v/c.
We can therefore introduce the second mass moment Iij(t) =

∫
d3x ρ(x)xixj and obtain

the GW metric perturbation far away from a weak non-relativistic source:

h̄ij(x) =
2G
r

Ïij(t− r), r � d, v� c. (2.38)

We can use this formula to get a rough estimate of the amplitude of typical GWs.
Imagine an astrophysical source of mass M, radius R and period P at a distance r
from the Earth. The second mass moment of this system is roughly Iij ∼ MR2 and
then Ïij ∼ MR2/P2. The radius is related to the mass and period from Newtonian
mechanics such that we can get [114]

h̄ij ∼ 10−21
(

M
M�

)5/3 (1 h
P

)2/3 (100 pc
r

)
. (2.39)

We see that it is a small value for typical sources. This gives us an estimate of the
sensitivity needed by a detector to observe such GWs.
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2.2 GWs from compact binaries

We have learned from the previous Section that GWs are not the result of a specific
phenomenon but rather a generic prediction of GR. Among the various types of
GWs, we are particularly interested in those produced by compact binary systems,
such as a binary black hole (BBH) and a binary neutron star (BNS). As explained in
our Introduction, this is the kind of GWs that has been observed by LIGO/Virgo.
The data obtained from these detections are crucial as they allow us to test GR and
other fundamental theories of nature. We will see how this can be done in practice
in this Section. In particular, this requires to compute solutions of the EFE to a much
higher accuracy compared to the result we obtained in Equation (2.38).

The general dynamics of a binary system can be decomposed in three phases,
each of them modelled by different methods. The first stage, the inspiral, describes
the adiabatic co-rotation of the two objects. Their orbit gradually shrinks and circu-
larizes as they radiate energy in the form of GWs. The equations of motion and the
production of GWs can be analytically estimated through the post-Newtonian [117]
and effective-one-body [118] methods. The second stage, the merger, starts when
the two bodies reach their innermost stable circular orbit and then fall towards each
other until they coalesce into a single object. The gravitational field is so strong that
analytic approximations break down and numerical relativity is required to model
this process. The last phase corresponds to the ringdown of the remnant body un-
til it reaches a stable state. It is described by models based on quasi-normal modes
[119]. Note that each phase can clearly be seen in Figure 1.5 that we gave in the In-
troduction. We also emphasize that various groups, using different techniques, have
contributed to the modelling of these three phases. Relevant references can be found
in the review [117] for analytic approaches and in the review [120] for numerical rel-
ativity.

The next part of the thesis will only present the inspiral phase of black hole
binaries. We will therefore not discuss neutron star mergers. As such events are
nevertheless very interesting, we briefly mention some of their characteristics. To
the best of our knowledge, a BBH does not produce any other detectable signal on
top of GWs. However, coalescing BNSs are known to also emit some electromag-
netic radiation resulting from nuclear processes occurring during this extremely
violent process. It means that such astrophysical events can be detected by both
gravitational and electromagnetic detectors. This has actually been the case with
the signal GW170817 seen by LIGO/Virgo and the corresponding gamma-ray burst
GRB 170817A detected by Fermi and INTEGRAL [121]. This event marked a break-
through for multi-messenger astronomy which is expected to be of prime impor-
tance in the future. Another interest of BNS mergers is that they can provide us
with information regarding the state of matter inside neutron stars and help us to
improve our understanding of fundamental interactions [122].

We now move to the detailed study of the analytic modelling of the inspiral
phase of a BBH. This will allow us to understand how LIGO/Virgo collaborations
have been able to test GR from GW waveforms, but this will also give us the for-
malism we need for our analysis of non-commutative space-time in Chapter 4. We
start by a brief discussion about the nature of black holes in GR and then present the
post-Newtonian formalism of Damour and Blanchet [117].
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2.2.1 Schwarzschild metric and Black Holes

Black holes are an important prediction of GR that appear when we consider the
metric produced by a static and spherically symmetric system of mass M. A priori,
such a metric will also be useful to describe the geometry of space-time outside a
star.

Metric outside a point mass

Only a few exact solutions of the EFE exist. They are most often found when some
symmetries are involved like in our case of interest. Indeed, Birkhoff’s theorem [123]
states that any spherically symmetric solution of the EFE in vacuum is static and
asymptotically flat. It follows that it is uniquely given by the Schwarzschild metric
[124] describing the geometry outside a point mass. In a suitable coordinate system,
this metric reads

ds2 = −
(

1− 2GM
r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2 (dθ2 + sin2(θ)dφ2) . (2.40)

where M can be identified as the mass of the central object. Although the last expres-
sion apparently admits two singularities at r = 0 and r = 2GM, it is well known that
the latter one is an artifact of the coordinate system and can be removed by choosing
other coordinates [29].

The first reason why this metric is interesting is that it provides a way to predict
the motion of planets around a star. This can be compared to solar system observa-
tions to test GR. As the radius of the orbits of the planets around the Sun are much
further away than 2GM�, the above coordinate system can be used without any
problem. To date, solar system tests are in good agreement with GR [125] and we
note in passing that it successfully resolves the problem (L1) we mentioned in our
Introduction regarding the precession of Mercury.

Black Holes

The second reason why the Schwarzschild metric is interesting appears if we try to
study the geometry (2.40) for values of r smaller or around 2GM. The usual ap-
proach is to investigate the behaviour of light rays and the causal structure of this
space-time. Interestingly, it turns out that light (and therefore any other particle)
cannot escape the region r < 2GM (see [29, 114] for more details). The stationary
three-dimensional null surface r = 2GM is therefore called the horizon of the metric
and has the property that once crossed it cannot be crossed back. If such a geometry
exists, no light would ever emerge from inside the horizon hence the name black
hole. For later convenience, we introduce the notation RS = 2GM where RS is called
the Schwarzschild radius of the BH.

There are various evidences supporting the existence of such objects. Maybe the
most convincing one has been provided very recently by the Event Horizon Tele-
scope which was able to get a picture of a black hole surrounded by its accretion disk
[126]. Another evidence actually comes from the detection of GWs by LIGO/Virgo,
although this is an indirect proof of their existence. Although there are several in-
teresting things to say about BHs, such as their production mechanisms, we will not
give more details in this thesis. It will be sufficient for our subsequent analysis to
know that they exist.
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2.2.2 The post-Newtonian formalism

We now show how to compute the waveform of GWs produced during the inspiral
of a BBH. We follow the formalism of Damour and Blanchet which is discussed at
great length in the review [117] and in [115] Chapters 3 and 5. Most of the steps
which are presented below will also be useful in Chapter 4 where we study the GWs
produced by a BBH in non-commutative space-time.

Approximation schemes and zone decomposition

The idea behind the post-Newtonian (PN) formalism is to compute approximate so-
lutions of the EFE as perturbative expansions in terms of the metric and velocity.
Equation (2.38) would then be the lowest order term of the waveform of GWs com-
puted in this way. Indeed, we remind that it was obtained for a weak (linearized
gravity) and slowly moving (v � c) source. For a gravitationally bound two-body
system, these two approximations are actually not independent. To see this, let us
consider two objects of masses m1 and m2 and let us introduce some useful quanti-
ties:6

M = m1 + m2

µ = m1m2
M

ν = µ
M = m1m2

M2 ,

(2.41)

known as the total mass, the reduced mass, and the symmetric mass ratio of the
system. Then the Virial theorem tells that7

1
2

µv2 =
1
2

GµM
r

⇒ v2

c2 =
RS

2r
. (2.42)

Since a weak gravitational field is equivalent to asking the Schwarzschild radius to
be small compared to the radius of the system, RS/r � 1, this is equivalent to v �
c. So unless we consider systems tied by non-gravitational forces, both expansions
have to be performed at the same time.

Let us now see how such perturbative expansions can be performed to solve the
full EFE. We consider the exact expression (2.18) valid in the harmonic gauge. It can
be formally written as a retarded integral of the form

hµν(t, x) = −4G
c4

∫ d3x′

|x− x′| τµν

(
t− |x− x′|

c
, x′
)

. (2.43)

Compared to the linear Equation (2.31), this expression does not represent a solution
for the metric as it appears on both sides of the equation, notably through τ. On the
contrary, the non-linearity of the EFE is now more than manifest and we clearly see
that retardation effects will occur. In particular, the metric at time t0 and distance r0
of the source will not only be determined by the state of the source at time t0 − r0/c
(as it would be the case in flat space-time) but also from all its previous states. This
will give rise to so-called hereditary and tails effects. Another strong complication
is that τ extends over all space-time and is not restricted to a compact region around
the source.

6Note that we shall neglect the spin of BHs in our discussion. More details can be found in [117]
Chapter 11.

7We will sometimes restore the speed of light c in our equations for clarity.
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Despite these difficulties, the important observation is that retardation effects
are much smaller near the source (small |x− x′|) than far away from it. This is one
motivation to try to solve the EFE with different perturbative schemes in different
space-time zones and then to match these solutions together. For a source of size d,
the idea is to consider three zones as follows:

near zone: 0 < r < d
exterior near zone: d < r < R
far zone: R < r

(2.44)

where, for non ultra-relativistic sources, R can be identified with the wavelength λ̄
satisfying Equation (2.34). Reference [117] argues that the EFE can be solved pertu-
batively as a post-Newtonian expansion in v

c for r < R and as a post-Minkowskian
expansion for r > R. The two series can then be matched together in the exterior
near zone where they are both valid.

Far zone solution

We remind that the post-Minkowskian approach looks for solutions of the vacuum
EFE (Tµν = 0 far from the source) of the form (2.21): hµν

vac = ∑+∞
n=1 Gnhµν

(n). This re-
quires to solve iterative equations of the form (2.22). This is not a trivial task as these
equations are inhomogeneous for n ≥ 2. As exposed in Chapter 2 of [117], gen-
eral solutions for each h(n) have been found in the form of a multipole expansion of
symmetric-trace-free (STF) harmonics. This method is now known as the multipolar
post-Minkowskian (MPM) approach. The generic solution can be written as

hµν
ext =

+∞

∑
n=1

Gnhµν

(n)[IL, JL, WL, XL, YL, ZL] , (2.45)

where the so-called mass-type multipole moments IL and current-type multipole mo-
ments JL encode the physical properties of the system. The other multipole moments
WL to ZL are there to ensure the harmonic gauge condition. Regarding the notation,
a STF tensor IL is made of l spatial indices j1 to jl . IL is also invariant under the
exchange of any pair of indices and it has a vanishing trace. Actually, any expan-
sion in terms of STF tensors is equivalent to an expansion in terms of the more usual
spherical harmonics.

Theorem 4 of [117] then states that the metric (2.45), valid in harmonic coordi-
nates (t, x), can be conveniently expressed far away from the source in terms of the
so-called radiative coordinates (T, X) as a series in 1/R (for R → +∞ and fixed re-
tarded time, U = T− R/c = const). Rather than the metric itself, we are more inter-
ested in the energy flux F carried away by GWs far away from the source. Equation
(68a) in [117] tells us that it is given by:

F =
+∞

∑
l=2

G
c2l+1

(
(l + 1)(l + 2)

(l − 1)l!(2l + 1)!!
dUL

dT
dUL

dT
+

4l(l + 2)
c2(l − 1)(l + 1)!(2l + 1)!!

dVL

dT
dVL

dT

)
, (2.46)

where UL and VL are the mass and current radiative moments encompassing the
information coming from the source. As explained in Section 3.3 of [117], they are
related in a complicated way to the moments IL and JL introduced above. We also
see that F is directly written as a post-Newtonian series. Actually, looking at the
form of F order by order in c shows that the flux is made of both instantaneous and
retarded terms (called tails effects). This is not a surprise taking into account our
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previous discussion below Equation (2.43). For clarity, it is useful to write the flux
as a sum of terms of different nature in the following way:

F = Finst +Ftail +Ftail−tail , (2.47)

where Finst is the so-called instantaneous flux, namely the flux produced only by
the source multipole moments, and Ftail is composed of tail integrals coming from
non-linear multipole interactions between source and radiative moments (see Sec.
3.2 in [117]). We give here the leading-order expression of the instantaneous part of
the flux in terms of the source moments. It will be useful for us in Chapter 4 and
reads:

Finst =
G
c5

{
1
5

d3 Iij

dt3

d3 Iij

dt3 +
1
c2

(
1

189
d4 Iijk

dt4

d4 Iijk

dt4 +
16
45

d3 Jij

dt3

d3 Jij

dt3

)
+O

(
1
c4

)}
. (2.48)

At this stage, the multipole moments are still arbitrary tensors. They can only be
determined from the source properties. This will be achieved once the general metric
solution (2.45) is matched to the near zone solution. We note in passing that the first
term in the above formula is nothing but a generalization of the well-known Einstein
quadrupole formula. It could have been derived from the lowest-order solution
(2.38) found under the linear approximation.

Near zone solution

In the near zone, the EFE has to be solved by taking into account the energy-momentum
tensor of the source. This is achieved in the post-Newtonian formalism by looking
for solutions of the form

hµν =
+∞

∑
n=2

1
cn hµν

n with τµν =
+∞

∑
n=−2

1
cn τ

µν
n . (2.49)

This provides the following set of equations:

∆hµν
m = 16πG τ

µν
m−4 + ∂2

t hµν
m−2 . (2.50)

They can be solved order by order in m ≥ 2 and eventually lead to a generic expres-
sion for the metric at arbitrary PN order. It is sufficient for us to present the 2PN
result which is given by [117]

g00 = −1 +
2
c2 V − 2

c4 V2 +O
(

1
c6

)
g0i = −

4
c3 Vi +O

(
1
c5

)
gij = δij

(
1 +

2
c2 V +

2
c4 V2

)
+

4
c4 Ŵij +O

(
1
c6

)
.

(2.51)

V, Vi and Wij are different retarded potentials that depend on the source. Note that
other potentials will appear if we consider higher-order terms in the metric. The
potential V actually contains all the information we shall need in this thesis. It is
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given in terms of a retarded integral as follows:

V(x, t) = 2−1
ret [−4πGσ] ≡ G

+∞

∑
k=0

(−1)k

k!

(
∂

c ∂t

)k ∫
d3x′|x− x′|k−1σ(x′, t) , (2.52)

where the matter source appears through the quantity σ = T00+Tii

c2 . Note that in
the general PN formalism, some of the integrals in the definition of the retarded
d’Alembertian may diverge at high PN orders and require the use of regularization
techniques. This problem will however not occur at the order we shall consider in
the rest of this thesis.

The previous formula tells us that if we know the energy-momentum tensor of
the source, we can iteratively compute the retarded potentials and deduce the ex-
plicit form of the metric (2.51). Things are actually more complicated in practice as
the energy-momentum tensor usually depends on the metric. In general, metric and
matter act and backreact on each other and so we also need to know what would
be the motion of the source according the metric. This can be done by computing
the geodesic equations of particles moving in this geometry. These equations can be
found from the local conservation of the energy-momentum tensor:

∇νTµν = 0 ⇒ ∂ν

(√
−g gλµTµν

)
=

1
2
√
−g ∂λgµνTµν . (2.53)

For a test particle of velocity v = (c, vi), it is possible to rewrite the previous equation
in the form [117]

dPi

dt
= Fi , (2.54)

where the linear momentum density P and the force density F are given by

Pi = c
giµvµ√
−gαβvαvβ

, Fi =
c
2

∂igµνvµvν√
−gαβvαvβ

. (2.55)

Explicit expressions for P and F in terms of the retarded potential V, Vi, . . . can be
found by inserting the metric (2.51) in these two equations. In summary, we now
have all the information regarding how the metric influences the motion of the bod-
ies and how the bodies are responsible for this metric. The only missing information
is the specific form of an energy-momentum tensor as function of the physical pa-
rameters of the source. We will see how this can be done for a BBH. Before that, we
show how the far zone and near zone results can be combined together.

Matching prescription

The space-time zone decomposition (2.44) suggests that the solutions of the metric
found in the far and near zones are simultaneously valid in the exterior near zone.
The existence of this latter region is well-justified as long as the radiation wavelength
λ̄ stays bigger than the size of the source d. This is the case for non-relativistic sources
as emphasized in Equation (2.34). However, this assumption seems less valid if we
consider relativistic bodies, as it will be the case for us. Indeed, we can expect a BBH
to have a high velocity and to create a strong gravitational field in its surroundings.
Fortunately, it can be shown that the zone decomposition formalism still holds even
for such objects. The justification can be found in [115] Section 5.5.
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We do not give the details of the matching procedure here. The important thing
to remember is that it allows us to relate the multipole moments IL and JL to the
source properties. If we introduce the retarded time u = t− r/c, Theorem 6 of [117]
gives the relation8

IL(u) = FP
∫

d3x
∫ 1

−1
dz
(

δl x̂LΣ− 4(2l + 1)
c2(l + 1)(2l + 3)

δl+1 x̂iL
dΣi

dt

+
2(2l + 1)

c4(l + 1)(l + 2)(2l + 5)
δl+2 x̂ijL

d2Σij

dt2

)
(u + zr/c, x) ,

(2.56)

and similar expressions for JL and WL, . . . ZL. This integral involves some source
quantities defined as

Σ =
τ00 + τii

c2 , Σi =
τ0i

c
, Σij = τij. (2.57)

Once the (near-zone) pseudo-tensor ταβ is itself post-Newtonian expanded, Equa-
tion (2.56) gives explicit expressions of the moments in terms of the source param-
eters. This task rapidly becomes very complicated as the PN order increases. For-
tunately for us, we shall only encounter expressions that stay relatively tractable in
this Chapter and Chapter 4. The lowest order part of (2.56) is actually quite simple
as it reduces to

Iij =
∫

d3x x̂ijσ +O
(

1
c2

)
, (2.58)

where σ has been introduced above. Note that we have also made use of the STF
notation in the sense that x̂ij = xixj − δij/3.

Binary black hole in circular orbit

Let us define an energy-momentum tensor describing a BBH without spin. The sys-
tem is fully characterized by the two masses m1 and m2 of each BH. In practice, we
shall mostly work with the reduced mass µ and symmetric mass ratio ν given by
Equation (2.41). The usual approach is to model this system by describing the BHs
as point-particles. The energy-momentum tensor is therefore given by [127]

Tµν(t, x) = m1γ1(t)v
µ
1 (t)v

ν
1(t)δ

3(x− y1(t)) + 1↔ 2 , (2.59)

with yi(t) the positions, and vµ
i (t) =

(
c, dyi(t)

dt

)
the velocities of the two bodies i =

1, 2. The factor γ1 (and similarly γ2) is expressed from the metric as

γ1 =
1√

g1(gαβ)1
vα

1 vβ
1

c2

. (2.60)

This description in terms of point-particles actually comes with a price. If we di-
rectly insert the expression (2.59) into the metric, this one will be infinite because

8The symbol FP stands for finite part. It means that in general some divergences may appear when
trying to compute the integral, see [117] for more details.
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of the delta functions describing the position of the bodies. Fortunately, it is possi-
ble to resolve this problem by using the so-called Hadamard regularization which is
described in [128].9

It is now possible to combine all the elements we have described above to de-
termine the motion of the two BHs in the geometry they induce. We do not present
the details of such computations here as we will repeat them in Chapter 4. We only
give the most relevant results at 2PN order. Since the orbit of a binary system tends
to circularize as it radiates GWs [130, 131], we assume that the objects are in quasi-
circular motion. In this case, the 2PN relative acceleration of the system, expressed
in terms of the relative position y(t) = y1(t)− y2(t), reduces to

acirc = −Ω2y +O
(

1
c5

)
, (2.61)

where the angular frequency Ω is given by

Ω2 =
GM
r3

[
1 + (−3 + ν)γ +

(
6 +

41
4

ν + ν2
)

γ2
]
+O

(
1
c5

)
. (2.62)

Note that we have introduced the following post-Newtonian parameter:

γ =
GM
c2r

= O
(

1
c2

)
. (2.63)

It is interesting to note that the equations of motion (2.61) can be derived from
a generalized Lagrangian L2PN

GR [y(t), v(t), a(t)] which depends on the acceleration
[132]. This Lagrangian admits various conserved quantities including the following
conserved energy:

E = −µc2x
2

[
1 +

(
−3

4
− 1

12
ν

)
x +

(
−27

8
+

19
8

ν− 1
24

ν2
)

x2
]
+O

(
1
c5

)
, (2.64)

where we have introduced the frequency parameter

x =

(
GMΩ

c3

) 2
3

= O
(

1
c2

)
. (2.65)

The word conservation has to be understood here in the sense of the post-Newtonian
expansion. It means that the time derivative of E will be at least of order O

( 1
c5

)
.

Of course, it is clear that the total energy of the system cannot be conserved be-
cause of the emission of GWs. In particular, it is well-known that this energy admits
radiation-reaction terms starting from 2.5PN order [117].

The balance equation

The energy loss we just mentioned is responsible for the adiabatic decrease of the dis-
tance r between the two bodies. It is therefore a key ingredient to infer the waveform
of the emitted GWs. One way to evaluate this radiation would be to compute the
higher-order terms of the energy (2.64). However, as explained in [117], we would
need to compute radiation-reaction terms of order (2.5 + x)PN to get the correct

9Note also that the metric and its determinant in (2.60) are evaluated at the location of the bodies,
namely, (gαβ)1 ≡ gαβ(y1(t)). This is only valid as long as we compute quantities up to 2.5PN order
[129]. At order 3PN or higher, g1 has to be replaced by g(t, x).
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equations of motion at order xPN. Since state-of-the-art knowledge of E is currently
limited to 4PN [133], this approach seems rather limited.

There exists another method which has been proved to be successful. The idea
is to identify the energy loss in the near zone with the flux F of GWs far away from
the source. We can obtain the information we are looking for by postulating the
following balance equation:

dE
dt

= −F , (2.66)

where E is the energy in the near zone. We indeed remind that we have obtained
a general expression for F given by Equations (2.47) and (2.48). It turns out that
F is currently known to 4PN order [133] and for illustration we give here its 2PN
expression:

F =
32c5

5G
ν2x5

[
1 +

(
−1247

336
− 35

12
ν

)
x + 4πx3/2

+

(
−44711

9072
+

9271
504

ν +
65
18

ν2
)

x2 +O
(

1
c5

)]
.

(2.67)

It is possible to combine Equations (2.64), (2.66) and (2.67) together and to solve
for x(t), namely Ω(t). In other words, the balance equation allows us to compute the
evolution of the orbital frequency. We can therefore completely predict the dynamics
of the inspiralling phase up to a given PN order.

GW waveform

The information about the dynamics of the BBH allows us to find the properties of
the emitted GWs. Let us start with a generic GW signal of amplitude A(t) and phase
Φ(t):

h(t) = 2A(t) cos Φ(t) . (2.68)

For data analysis purposes, it is actually convenient to work in the frequency-domain.
As the Fourier transform cannot be computed analytically in general, it is estimated
according to the stationary phase approximation (SPA), which gives [134]

h̃( f ) =

√
2πA(t f )√

Φ̈(t f )
eiψ( f ), ψ( f ) = 2π f t f − π/4−Φ(t f ). (2.69)

The parameter t f is the time when the GW frequency dΦ(t)/dt is equal to the Fourier
frequency f . The next step is to relate the frequency-domain phase ψ( f ) to the orbital
phase of the binary system. It is indeed known [117] that the GW frequency dΦ(t)/dt
is twice the orbital frequency Ω. Thus, after a straightforward computation, we
obtain the frequency-domain GW phase as the following PN expansion:10

ψI( f ) = 2π f tc − φc −
π

4
+

3
128ν

4

∑
j=0

ϕj

(
πMG f

c3

)(j−5)/3

, (2.70)

10The subscript I reminds us that this formula is only valid during the inspiral stage.
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FIGURE 2.1: Results of the gIMR analysis performed by LIGO/Virgo on the
GW150915 signal. The details of the Bayesian analysis as well as the exact meaning
of each column are explained in [111].

with tc and φc being the time and phase at coalescence. All the interesting informa-
tion is contained in the coefficients of this formula:

ϕ0 = 1

ϕ1 = 0

ϕ2 = 3715
756 + 55

9 ν

ϕ3 = −16π

ϕ4 = 15293365
508032 + 27145

504 ν + 3085
72 ν2

· · · ,

(2.71)

where we only give results up to 2PN for simplicity. Expressions up to 3.5PN can be
found in [117].

As expected, these coefficients are completely determined from the two masses
of the BBH. Such a result therefore represents a strong prediction of GR. It is clear
that being able to experimentally measure the phase of a GW signal directly provides
us with information about the nature of the source and about the validity of GR.

2.2.3 The GW150914 detection

We end this Chapter by briefly commenting on the GW150914 detection. The first in-
terest of the analytic formulae we derived in the previous section is that they allow
us to build templates that can be used to match potential signals in the detectors.
These analytic predictions are however only valid during the inspiral stage and nu-
merical relativity is needed to correctly model the merger and ringdown part of the
event. In practice, the LIGO/Virgo collaborations used two main waveform models
that combine the analytic PN results and numerical relativity: the effective-one-body
(EOB) formalism [118, 135] and the IMRPhenom model [136–138], where IMR stands
for Inspiral-Merger-Ringdown.
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It is also interesting to understand how LIGO/Virgo used the GW150914 sig-
nal to test for deviations from GR in [111].11 Their idea is to define a generalized
IMR model (gIMR) by introducing a set of new parameters, δϕj, describing potential
deviations from the GR coefficients (2.71). In practice, the IMRPhenom template is
modified by replacing the phase ϕj with ϕj(1 + δϕj). The deviations

{
δϕj
}

are then
allowed to vary (one at a time or all at once) in order to fit the observation with the
gIMR template. Bounds on each of these parameters are then inferred from Bayesian
analysis. The constraints they obtained from GW150914 are summarized in Table I
of [111] that we have reproduced in Figure 2.1. Their conclusion is that GW150914
is consistent with the prediction of GR.

It is important to notice that the same analysis can be applied to constrain or
test other models beyond GR. This is what we propose to do in Chapter 4. We shall
make use of the post-Newtonian formalism presented in this Section to predict the
waveform of a BBH in the background of non-commutative space-time. Our objec-
tive will be to derive some analytic corrections to the coefficients (2.71) and then to
use the results in Figure 2.1 to place a bound on the scale of non-commutativity.

11Note that other and more recent GW signals have also been used for this purpose and give similar
results.
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Chapter 3

Particle Physics and Cosmology

This Chapter presents the point of view of modern physics on the structure of mat-
ter and its interactions. The underlying mathematical formalism on which all this
description is built is quantum field theory (QFT) as we explained in our introduc-
tory Chapter. We show how the intuitive ideas we discussed at that time can be
mathematically formalized and how this gives rise to quantitative predictions. First,
we focus our attention on how QFT and symmetry principles allow us to categorize
elementary particles and their interactions in the so-called standard model (SM) of
particle physics. Then we move to the study of the early Universe which requires
knowledge about both cosmology and finite temperature QFT. All these topics are
covered in great details in several textbooks and lecture notes. In particular, we refer
to [72, 73] for QFT, [139] for the Standard Model, [140, 141] for thermal QFT and [142,
143] for the early Universe.

3.1 The Standard Model of Particle Physics

3.1.1 Quantum Field Theory

There are various ways to introduce and present quantum field theory. It is a vast
topic which has been developed over many years and it is obviously not our ob-
jective to give a comprehensive overview of such a formalism. The approach we
follow in this Section is to give first a summary of the fundamental principles on
which QFT is built and then we move to more advanced topics which are useful for
our subsequent discussion.

General principles

Quantum field theory originates from the ambition to build a quantum theory of
particles satisfying the following principles at once: unitarity, locality, Poincaré in-
variance, causality, and stability. Let us see how this works step by step. As a quan-
tum theory of particles, the fundamental quantities on which QFT is built are all
possible particles states (forming a Hilbert space H), and an Hamiltonian H specify-
ing the interactions and the time evolution of the states. It is convenient to classify
the states by the number of particles they contain and to write them as follows:

• vacuum state: |Ω〉

• one-particle state: |p, k〉

• two-particle state: |p1, k1; p2, k2〉

• . . .
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where p is the momentum of a particle and k a generic index encompassing all other
properties this particle might have. The full Hilbert space is then the tensor product
between each subspace HN made of all N-particle states: H = H0 ⊗H1 ⊗ . . . Phys-
ical behaviours and observables are then extracted by acting on these particle states
with carefully defined operators (such as the Hamiltonian H). In practice, this can
be formalized in two different ways: either through canonical quantization (namely
with operators expressed as a linear combination of creation and annihilation oper-
ators) or through the path integral formalism.

At this point, there is still nothing more than usual quantum mechanics: QFT
only appears when we try to impose the aforementioned principles. Since the aim
is to build a relativistic quantum theory, it is judicious to work in a Lagrangian for-
malism where space and time are treated on the same footing rather than with an
Hamiltonian. Therefore we consider that a theory is described in terms of an action
of the form

S =
∫

L(t)dt. (3.1)

If needed, the Hamiltonian H can be recovered from the Legendre tranform of the
Lagrangian L. We can now consider the content and consequences of each principle
one by one:

• Unitarity:
Conservation of probability over time imposes the evolution operator U =
e−iHt to be unitary. This is equivalent to require the Hamiltonian to be Hermi-
tian, H = H†, or the action S to be real.

• Locality:
An efficient way to resolve the problem of action at a distance from classical
mechanics (see (L3)) is to require that physical degrees of freedom at each point
in space at a given time are independent. This is mathematically satisfied if the
Hamiltonian and Lagrangian are expressed as

H =
∫

d3xH(x, t), L =
∫

d3xL(x, t), S =
∫

d4xL(x, t), (3.2)

where the Lagrangian and Hamiltonian densities H and L are evaluated at a
unique space-time location. The notion of field appears naturally: these densi-
ties return an operator at each space-time point. In full generality, a Lagrangian
density can then be seen as a functional over a set of operator fields, generically
written Aα, and their space-time derivatives: L = L(x, Aα(x), ∂µ Aα(x), . . . ).

• Poincaré invariance:
QFT requires the action (3.1) to be invariant under translations and Lorentz
transformations. The first condition implies that the Lagrangian density L
does not depend explicitly on x: L = L(Aα(x), ∂µ Aα(x), . . . ). Then Lorentz
invariance imposes some specific conditions on the fields Aα. In particular, if
some of these fields are not scalar but return multiple values at each space-time
point, they have to combine in a certain way which ensures that the action S
remains a Lorentz scalar. It is then judicious to choose as fundamental fields
those which transform in representations of the Lorentz group.

• Causality:
Causality means here that a measurement performed at x should not affect a
measurement at y if the events x and y are not causally connected. So any two
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field operators O1 and O2 have to commute when evaluated at space-like sep-
arations: [O1(x),O2(y)] = 0, if (x− y)2 < 0. As all operators O are built from
the fields Aα(x), the causality condition directly imposes some constraints on
the properties of these fields.

• Stability:
The vacuum state of any quantum theory is defined as the lowest-energy state.
It therefore requires the spectrum of the Hamiltonian to be bounded from be-
low. This generally requires the Lagrangian to be a functional of at most one
time derivative. Otherwise, the Hamiltonian would become linear in at least
one variable and not be bounded from below (see [144] for a detailed discus-
sion). In practice, this is roughly equivalent to asking L = L(Aα(x), ∂µ Aα(x)).

These principles are leading us to consider the fields Aα(x) as the quantities of
prime importance for the description of particles and their interactions. There are
two main steps which remain to be achieved before we can claim to have built a
consistent model. First, we have to define which types of fields and which types of
interactions are really allowed by the above principles. The answer is given by a
set of mathematical concepts and rules which have been formalized during the last
decades and form the content of QFT. Second, we have to explicitly specify which
fields and interactions, among the allowed possibilities, we think are the best to ex-
plain experimental observations. This is equivalent to asking the Lagrangian density
to be completely specified and then to be able to compute predictions from it.

Field, spin and gauge invariance

As is well explained in [73] Chapter 8, it is a non trivial task to combine unitarity and
Poincaré invariance. On one hand, the above principles ask for particles to trans-
form under unitary and irreducible representations of the Poincaré group. On the
other hand, no such representations are finite-dimensional. The solution proposed
by QFT is to embed particles into fields which transform in finite-dimensional rep-
resentations of the Lorentz group. Although these representations are themselves
non-unitary, it is still possible to combine the fields in such a way that the final the-
ory exhibits unitarity. This has various profound ramifications.

First, representation theory of the Lorentz group provides the theoretical founda-
tion for the notion of spin. It is well known that the Lorentz algebra is su(2)⊕ su(2),
such that its finite irreducible representations are characterized by two half-integers
(j1, j2) and have dimension (2j1 + 1)(2j2 + 1). Then, every such representation en-
genders several representations of SO(3) with spins j = j1 + j2, j1 + j2 − 1, . . . , |j1 −
j2|. There is therefore a clear relation between the spin of a particle and the repre-
sentation to which belongs the field describing it. Table 3.1 gives the fields which
are usually used to describe elementary particles. We also express how they trans-
form under a Lorentz transformation of the form xµ 7→ Λµ

ν xν. We remind that the
generic transformation rule is given by Φa(x) 7→ Ma

b(Λ)Φb(Λ−1x).
Another important consequence of the principles of QFT is the spin-statistics

theorem which states that particles of integer spin satisfy Bose-Einstein statistics
and particles of half-integer spin satisfy Fermi-Dirac statistics. This is a requirement
which is necessary if we want the theory to be stable and if we want the theory to
predict Lorentz invariant observables (see [73] Chapter 12, for more details). It fol-
lows that scalar fields and vector fields are used to describe bosons of spins 0 and 1
respectively, whereas spinor fields are used to describe fermions of spin 1/2.
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(j1, j2) Dimension Field type Notation Ma
b(Λ)

(0, 0) 1 scalar φ 1

(1/2, 0) 2 left-handed spinor ψL e
1
2 (iθj−β j)σj

(0, 1/2) 2 right-handed spinor ψR e
1
2 (iθj+β j)σj

(1/2, 0)⊕ (0, 1/2) 4 Dirac spinor (ψL, ψR)
T e−

i
2 θµνSµν

(1/2, 1/2) 4 vector Aµ Λµ
ν

TABLE 3.1: Main representations of the Lorentz group with their corresponding
field types. Λ corresponds to a generic Lorentz transformation with three rotation
angles θj and three boost angles β j which can be embedded in the matrix θµν. Here
σj are the Pauli matrices which can also be embedded in the matrix Sµν in the stan-
dard way.

It is not too complicated, from the previous considerations, to know how to com-
bine scalar and spinor fields together to build an interacting Lagrangian in agree-
ment with the principles of QFT. However, some difficulties arise when we consider
massless spin 1 particles. Such states have two degrees of freedom but are embedded
into vector fields, Aµ, which have four degrees of freedom. The solution proposed
by QFT to bypass this problem is to invoke gauge invariance. The extra degrees of
freedom are removed from the fact that the Lagrangian is symmetric under a redefi-
nition of the vector fields of the form

Aµ(x) 7→ ω(x)Au(x)ω−1(x) + ω(x)∂µω−1(x) , (3.3)

where ω(x) corresponds to an element of a (compact) Lie group G at each space-
time point x. It means that massless spin 1 particles are actually identified with an
equivalence class of vector fields. It follows that the unique kinetic Lagrangian for
Aµ which stays invariant under (3.3) is of the form L = − 1

4 F2
µν with the field strength

Fµν = ∂µ Aν− ∂ν Aµ + [Aµ, Aν]. For the full Lagrangian to be gauge invariant, we still
need to specify how scalars and spinors transform under the group G and which
types of interactions are allowed. This can be done by considering each field Φa
as transforming under a specific group representation T(ω) of G and by replacing
derivative terms ∂µΦa in the Lagrangian by covariant derivatives:

Φa(x) 7→ T(w(x))Φa(x) DµΦa =
[
∂µ + T(Aµ)

]
Φa , (3.4)

where T(Aµ) is the corresponding representation of the Lie algebra of the group G.
It is interesting to note that gauge invariance imposes a lot of restrictions on the

general structure of the Lagrangian. This is advantageous as it reduces the number
of possibilities that have to be considered when trying to build a theory correspond-
ing to a given set of phenomena. We will actually see that such restrictions are so
strong that, at first sight, they seem to contradict with the existence of massive spin
1 bosons.
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Symmetries and conserved charges

We are at a stage where the notion of symmetry seems to play a more and more im-
portant role in QFT. It is therefore important to briefly clarify the different types of
situations we can encounter and what are their consequences. Consider a continu-
ous1 transformation (typically given by a Lie group) with parameters α = {αi}:{

x′µ = f µ(x, α)
Φ′a(x′) = Fa(Φ(x), α)

(3.5)

This is a symmetry if L(Φ′a(x′), ∂′µΦ′a(x′))d4x′ = L(Φa(x), ∂µΦa(x))d4x. In particu-
lar, the equations of motions will be the same before and after the transformation.

A typical example is given by the Lorentz transformations which act on both
space-time and fields. Actually, most of the other symmetries we shall encounter
only act on the fields (x′µ = xµ) and are therefore called internal. Another common
distinction is made between global transformations with α being the same param-
eters over all space-time and local symmetries with α = α(x). Gauge symmetries
are typical examples of local transformations. Note also that if a theory is invariant
under a local symmetry, it is automatically invariant under the corresponding global
symmetry.

Continuous symmetries are important in QFT because Noether’s theorem [145]
states that there is a conserved current related to each of them2: ∂µ Jµ = 0. This
implies in particular that the charge Q =

∫
d3xJ0 is conserved with time: ∂tQ = 0.

Such conserved operators are very useful as they allow us to classify particle states
in a time-independent way. They also provide us with an interpretation of how
interactions work in QFT: gauge fields mediate interactions between matter fields
which are charged under the corresponding gauge group.3 Each charge is associated
to the representation of the gauge group to which the field belongs to.

The generating functional

We have almost all concepts in hand to describe the content of the SM. But first, we
want to understand how observables can be computed in QFT. Let us assume we
know the exact form of a Lagrangian L(Φa, ∂µΦa), where the Φa are all the fields in
the model whatever their spin. There are various observables we can infer from L
and compare to experimental results. Probably the most popular and well-described
phenomena are scattering processes where particles, initially free, interact with each
other over a short distance and during a brief period of time. This typically includes
collisions of particles inside accelerators or the decay of unstable particles. Other
phenomena of interest are those related to the large scale dynamics of quantum fields
over the history of the Universe. This is relevant for various mechanisms such as
spontaneous symmetry breaking and phase transitions. It turns out that the path
integral formalism of QFT provides a way to describe these two processes at the
same time. We remind how this works.

For simplicity (and this will be sufficient for us), we consider the dynamics of a
single scalar field with Lagrangian L(φ) and vacuum state |Ω〉. The quantities we
want to compute are the vacuum expectation value of the field, 〈Ω|φ(x)|Ω〉 and the
n-point functions G(n)(x1, . . . , xn) = 〈Ω|T {φ(x1) · · · φ(xn)} |Ω〉. Also known as the

1Discrete symmetries may also be relevant but are not discussed here.
2This statement is true as long as the the fields satisfy their equations of motion.
3Noether’s theorem indeed holds for global symmetries and therefore also applies to gauge trans-

formations.
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correlation functions or Green functions, we remind that these expressions are writ-
ten in the Heisenberg picture and T {. . . } is the time-ordered product. The vacuum
expectation value is indeed a relevant quantity to describe the global behaviour of
the field in the Universe. The correlation functions are also of prime interest as they
determine the elements of the scattering matrix S through the Lehmann-Symanzik-
Zimmermann (LSZ) reduction formula [73].

Following the path integral formalism, these quantities can be derived from the
vacuum amplitude in presence of an external source field J(x):

Z[J] = 〈Ω|Ω〉J =
∫

Dφ exp
[

iS[φ] + i
∫

d4x J(x)φ(x)
]

, (3.6)

We remind that the fields entering in the integral are classical fields and not oper-
ators anymore. Z[J] is similar to the partition function of statistical mechanics and
thus we expect it to completely specify the system under consideration. Indeed,
it allows us to obtain the correlation functions by taking functional derivatives as
follows:

(−i)n 1
Z[0]

δnZ
δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

= 〈Ω|T {φ(x1) · · · φ(xn)} |Ω〉 , (3.7)

and in particular

− i
1

Z[0]
δZ

δJ(x)

∣∣∣∣
J=0

= 〈Ω|φ(x)|Ω〉 . (3.8)

Z[j] is therefore called the generating functional for the correlation functions. In other
words, if we can compute Z according to the formula (3.6), we can predict any scat-
tering experiment and the vacuum expectation value of the field.

It is almost always impossible to find an exact expression for Z and we have
to resort to approximation methods. Perturbation theory is the most common ap-
proach, but it is only valid when the considered interactions are weak. To make
this statement clearer, consider the Hamiltonian associated to L and let us write it as
H = H0 +HI where the first term corresponds to the free theory and the second one
encompasses the interactions. If we assume for simplicity that the interaction Hamil-
tonian is a functional of the field, HI = HI [φ(x)], then we can formally rewrite the
generating functional as

Z[j] = e−i
∫ +∞
−∞ dtHI [−iδ/δj(x)]Z0[j] . (3.9)

Z0[J] is the generating functional of the free theory and it is well-known that it can
be explicitly computed (see e.g. [73] Section 14.3). For a weakly-interacting theory,
we can then approximate Z[J] by only keeping the leading terms after expanding the
exponential in (3.9). Each Green function G(n)(x1, . . . , xn) can therefore be computed
as a perturbative series as well. The computation of the terms of these series can be
performed with the help of Feynman diagrams.

We consider that the reader is familiar with the Feynman rules and we do not
give more details about their implementation. What is of prime importance for us
is to have introduced a formalism which is similar to statistical mechanics. It will
allow us to properly discuss the concepts of spontaneous symmetry breaking and
thermal field theory.
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Renormalizability

There is a last important concept of QFT we want to mention. The computation
of Green functions usually leads to the appearance of ultraviolet (UV) divergences.
Diagrams containing loops are generically infinite. As we explained in Section 1.2.1,
an entire machinery, known as renormalization, has been implemented to deal with
this problem. The idea is to absorb these infinities into the bare parameters of the
original Lagrangian which then become dependent on the so-called renormalization
scale.

In a given theory, as long as only a finite number of diagrams diverge, it is possi-
ble to eliminate them with an equal number of parameters of the Lagrangian. Once
this is done, observables can be computed unambiguously such that the model is
said to be predictive or renormalizable. Not all Lagrangians are renormalizable and
it is not difficult to exhibit models which contain an infinite number of divergent
amplitudes. It turns out that renormalizability is a quite restrictive condition as it asks
the Lagrangian to only contain operators with mass dimensions ≤ 4. Given a set of
fields, there is therefore only a limited choice of interactions we can build if we want
to keep the Lagrangian renormalizable.

It is important to keep in mind that non-renormalizable theories can also be pre-
dictive in their low-energy regime. Such models have an infinite number of diver-
gent diagrams and would therefore require an infinite number of parameters to can-
cel them. The point is that each successive higher-order operator in a Lagrangian has
a higher and higher mass dimension. Its effects are therefore more and more sup-
pressed at low-energy scales. As long as we are interested in low-energy processes,
it is possible to extract predictions from such models by only considering their lead-
ing operators. This process is widely used in particle physics under the name of
the Effective Field Theory (EFT) approach. This prescription obviously breaks down
whenever we reach higher energy scales and it is said that the theory requires a UV
completion to correctly describe this regime. More details about such concepts can
be found in [73] Chapters 22-23 and [139, 146].

We note in passing that GR, as a field theory, is non-renormalizable. As seen as
an EFT, it can nevertheless predict quantum effects (typically tiny) which are valid
at energy scales well below the Planck scale: E� MP. As discussed in Section 1.2.1,
it is however well-known that a UV completion of GR is needed in order to describe
gravitational effects at distances close to the Planck length. We shall discuss various
aspects at the frontier between quantum mechanics and GR in Chapter 4.

3.1.2 The content of the Standard Model

The standard model is a theory of particles describing three of the four forces that
have been observed in nature: the strong, weak and electromagnetic interactions. It
does not give a framework to describe gravity which is the concern of GR as we in-
vestigated in Chapter 2. The main idea of the SM is that fermions of spin 1/2 make
up matter and that their interactions are dictated by the exchange of gauge bosons.
The gauge principle gives the natural framework to interpret each interaction as be-
ing related to a specific group of symmetry and this restricts at the same time the
general structure that the SM Lagrangian can take. We shall see that an extra parti-
cle, the Higgs boson, is added to the theory in order to accommodate the observed
masses of some of the gauge bosons and fermions.
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Fields SUc(3)× SUL(2)×UY(1) (j1, j2) Content

Gα
µ (8, 1, 0) ( 1

2 , 1
2 ) 8 gluons

Wa
µ (1, 3, 0) ( 1

2 , 1
2 ) 3 bosons

Bµ (1, 1, 0) ( 1
2 , 1

2 ) 1 boson

li
L = (νi

e, ei
L)

T (1, 2,− 1
2 ) ( 1

2 , 0) 6 LH leptons

ei
R (1, 1,−1) (0, 1

2 ) 3 RH leptons

qi
L = (ui

L, di
L)

T (3, 2, 1
6 ) ( 1

2 , 0) 6 LH quarks

ui
R (3, 1, 2

3 ) (0, 1
2 ) 3 RH quarks

di
R (3, 1,− 1

3 ) (0, 1
2 ) 3 RH quarks

H (1, 2, 1
2 ) (0, 0) 1 Higgs boson

TABLE 3.2: Field content of SM including their representations under GSM and the
Lorentz group.

The SM elementary particles

The standard model is described by the following gauge group:

GSM = SUc(3)× SUL(2)×UY(1). (3.10)

The group SUc(3) of quantum chromodynamics [147–149] dictates the behaviour of
particles sensitive to the strong interaction. This interaction is mediated by eight
massless gluons, Gα

µ (α = 1, . . . , 8), and acts on particles which carry a charge called
color. On the other hand, the Glashow-Weinberg-Salam theory [150–152] unifies the
electromagnetic and weak interactions under the electroweak gauge group SUL(2)×
UY(1) with gauge bosons Wa

µ (a = 1, 2, 3) and Bµ. The subscript L means that only
left-handed fermions transform under SU(2) whereas Y is the weak hypercharge.
We will see below how these two interactions become distinct after spontaneous
symmetry breaking and how the usual electric charge and photon emerge.

On top of these gauge bosons, the SM contains several spin 1/2 particles. There
are two main categories of such fermions: the six leptons (electron, muon, tau and
the corresponding neutrinos) which are insensitive to the strong interaction and the
six quarks (up, down, charm, strange, top and bottom) which are colored. Under the
effect of the strong force, the quarks are usually combined together and form com-
posite particles called hadrons such as mesons and baryons. We can further classify
the 12 elementary fermions according to two criteria. First, the leptons and quarks
are decomposed into three families which carry the same quantum numbers under
the gauge group GSM. Second, the left-handed spinors representing these particles
are doublets under SUL(2), whereas the right-handed fields are singlet under this
group. We also note that there are no right-handed neutrinos in the SM. All this clas-
sification is summarized in Table 3.2 for clarity. We can see that this Table already
contains an extra particle of spin 0, the Higgs boson. It forms a doublet H under
SUL(2) and we will understand its relevance after having built the SM Lagrangian.
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The SM Lagrangian

The Lagrangian LSM provides the information regarding the dynamics and the inter-
actions of the fields we described above. It satisfies the various principles we have
discussed in the first part of this Chapter, in particular gauge invariance and renor-
malizability. The kinetic term for the gauge bosons and the fermions can be written
as follows:

Lkin = ∑
(
−1

4
F2

µν − ψ̄iγµDµψ

)
, (3.11)

where the summation is implicit over all spinors and all field strengths Fµν corre-
sponding to the gauge bosons. Various interactions are actually present in (3.11) if
we look in more details at the field strengths and covariant derivatives:

Gα
µν = ∂µGα

ν − ∂νGα
µ + g3 f α

βγGβ
µGγ

ν

Wa
µν = ∂µWa

ν − ∂νWa
µ + g2εa

bcWb
µWc

ν

Bµν = ∂µBν − ∂νBµ

Dµ = ∂µ − ig1YBµ − i
2 g2Wa

µσa − i
2 g3Gα

µλα ,

(3.12)

where it is understood that the Pauli and Gell-Mann matrices σa and λα only act on
the fields which are doublets under SUL(2) respectively triplets under SUc(3). We
see that the coupling constants g1, g2 and g3 dictate the strength of the interactions
between gauge bosons and gauge bosons and between gauge bosons and fermions.

The next step is to include terms in the Lagrangian that can accommodate the
experimentally measured masses of the fermions and electroweak gauge bosons.
This is not straightforward because gauge invariance forbids intuitive terms such as
m2BµBµ or mψ̄LψR. The solution rests on the introduction of the Higgs doublet H
and the following Lagrangian:

LHiggs =−
(

DµH
)†

(DµH)− λ
(

H†H − µ2/2λ
)2

−
(
yl l̄LHeR + ydq̄LHdR + yuq̄LH̃uR + h.c

)
,

(3.13)

where H̃ is the conjugate Higgs doublet and the covariant derivatives only involve
the electroweak bosons. The second line introduces the so-called Yukawa interac-
tions between the Higgs and the fermions. We also note that this Lagrangian con-
tains a mass term for the Higgs which is not forbidden by gauge invariance. The
SM Lagrangian LSM = Lkin + LHiggs is now complete and we can explain how the
masses of fermions and gauge bosons emerge in this picture.

The Higgs mechanism

The first thing to realize is that if the Higgs field takes a non-zero vacuum expecta-
tion value, the Yukawa interactions will result in a set of mass terms for the fermions.
It is then possible to adjust the Yukawa couplings (yl , yd, yu) to accommodate the ob-
served fermion masses. The situation is more complicated for the gauge bosons. One
solution rests on the idea of spontaneous symmetry breaking and the Higgs mech-
anism [50, 153–155]. Note that this is not the only possible prescription that can be
used. We shall indeed present another mechanism, beyond the SM, in Section 5.1.1.

A global continuous symmetry G is said to be spontaneously broken if the theory
under investigation has a ground state which is not invariant under this symmetry,
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but only under a subgroup H of G. Goldstone’s theorem [156, 157] then states that
there should exist at least as many spinless and massless particles as the number of
generators that are broken when we reduce G to H. Although this is an interesting
fact on its own, it does not solve the original problem as these massless scalars cannot
be identified with particles of the SM. The Higgs mechanism occurs when we apply
the idea of spontaneous symmetry breaking not to a global symmetry but to the
local symmetry given by the electroweak gauge group. In this case, the would-
be Goldstone bosons disappear from the spectrum and give a mass to some of the
electroweak gauge bosons during the process.

In practice, the ground state of the electroweak sector of the SM can be chosen
as Wa

µ = Bµ = 0 and H = (0, v/
√

2)T with v = µ/
√

λ. This breaks SUL(2) ×
UY(1) down to the subgroup Uem(1) with generator Q = T3 + Y. If we expand the
Lagrangian around the vev v of the Higgs and properly redefine the gauge fields,
the expected mass terms appear and are given as follows:

Aµ = sWW3
µ + cW Bµ M2

A = 0

Zµ = cWW3
µ − sW Bµ M2

Z = 1
4 (g2

1 + g2
2)v

2

W±µ = 1√
2
(W1

µ ∓ iW2
µ) M2

W = 1
4 g2

2v2

(3.14)

where cW = g2√
g2

1+g2
2

and sW = g1√
g2

1+g2
2
. We note that the charge Q can then be

associated with the usual electric charge and Aµ corresponds to the photon. On the
other hand, the weak interaction is mediated by the massive W and Z bosons.

3.1.3 The effective action

We have seen that spontaneous symmetry breaking plays an important role in the
SM and that this mechanism relies on the existence of a non-zero vacuum expecta-
tion value of the Higgs field. We have to keep in mind that the value v = µ/

√
λ

has been extracted from the classical Higgs potential V(H) in (3.13) but that the
true value of 〈H〉 also includes quantum corrections. In the case of a hot and dense
Universe, thermal corrections would also play an important role. We will have to
take such effects into account to discuss the physics of phase transitions in Chapter
5. Therefore, we introduce now the formalism allowing us to compute such correc-
tions.

Functional method

The main idea is to find a functional whose minimum would directly give us the
vev of the field including all quantum corrections. Such a functional is called the
effective action and it can be built from the generating functional Z[J] we introduced
in Equation (3.6). As emphasized in [72] Section 11.3, the way to derive the effective
action has some strong analogy with statistical mechanics.

Let us consider the theory of a single scalar field φ. We first introduce the gener-
ating functional of connected Green functions W[J] satisfying

eiW[J] = Z[J]. (3.15)
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The functional derivative of W[J] gives the vev of φ in presence of the source J:

δW[J]
δJ(x)

= 〈Ω|φ(x)|Ω〉J ≡ φ̄(x) , (3.16)

where we have introduced the classical field φ̄. The idea is now to find a functional of
this classical field which would reduce to the classical potential V(φ) when quantum
corrections are absent. Such a potential exists and is given by the Legendre transform
of W[J]:

Γ[φ̄] = W[J]−
∫

d4x φ̄(x)J(x) , (3.17)

which indeed satisfies

δΓ[φ̄]
δφ̄

= −J ⇒ δΓ[φ̄]
δφ̄

∣∣∣∣
J=0

= 0 . (3.18)

As Z[J] and W[J], Γ[φ̄] is also a generating functional. It can be expanded as

Γ[φ̄] =
+∞

∑
n=0

1
n!

∫
d4x1 . . . d4xn φ̄(x1) . . . φ̄(xn)Γ(n)(x1, . . . , xn) , (3.19)

where Γ(n) are the one-particle irreducible (1PI) Green functions. To get to our result
of interest, it is also useful to expand Γ in terms of momenta as follows:

Γ[φ̄] =
∫

d4x
(
−Veff(φ̄) +

1
2

∂µφ̄ ∂µφ̄ Z(φ̄) + . . .
)

. (3.20)

The terms in this integral are now functions of φ̄ instead of functionals. The first
one, called the effective potential, is actually the full quantum potential we were
looking for. In the case of a translation invariant theory, φ̄ becomes a constant and
the minimum condition (3.18) becomes

dVeff(φ̄)

dφ̄
= 0 , (3.21)

which is satisfied for a non-zero value of φ̄ in case of spontaneous symmetry break-
ing. In other words, the knowledge of Veff would allow us to precisely compute the
vev of the field φ including all quantum corrections. This cannot be done exactly
for most theories, but we note from Equation (3.19) that Ve f f is the sum of all 1P1
Feynman diagrams with vanishing external momenta. It can therefore at least be
estimated by perturbative approaches.

The one-loop effective potential

Coleman and Weinberg proposed in [158] to compute Ve f f according to a loop ex-
pansion. The first term of the series is given by the sum of all tree-level diagrams,
the second by summing all diagrams with one loop, etc. We note that this is not the
same approach as the usual perturbative expansion in terms of a small coupling con-
stant. As explained in [158], the advantage of the loop expansion is to preserve the
vacuum structure of the potential. Moreover, it is not worse than the perturbative
expansion as the set of n-loops diagrams include all diagrams of power n and less in
the coupling parameters.
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It is sufficient for us to consider the leading quantum corrections, namely to fo-
cus on the one-loop potential. After summing all 1PI diagrams with 1 loop and
vanishing external momenta, we can get the well-known formula

V1-loop(φ̄) =
1
2

∫ d4 p
(2π)4 ln

(
p2 + m2(φ̄)

)
, (3.22)

where the field-dependent mass is given by the second derivative of the tree-level
potential as m2(φ) = d2V0(φ̄)/dφ̄2. We note that the integration in Equation (3.22) is
performed over Euclidean four-momentum with p0 = ipE. In other words, we have
performed a Wick rotation towards Euclidean time τ = it. This 1-loop formula is
sometimes called the Coleman-Weinberg potential.

The above result can easily be extended to include the effects of fermions and
gauge bosons or additional scalar fields. We also emphasize that this expression is
divergent and requires renormalization. We do not discuss these details here as they
will be illustrated in practice several times in this thesis. However, we want to make
a final conceptual comment. The original motivation of Coleman and Weinberg in
their article was to study if radiative corrections alone could be at the origin of spon-
taneous symmetry breaking. In other words, starting from a tree-level potential V0
which admits a single minimum at φ̄ = 0, could V0 + V1-loop exhibit a non-zero min-
imum? The answer is yes for certain types of models. This is particularly interesting
for classical potentials of the form λφ4 which have no mass term. We shall make use
of this mechanism in Chapter 5 when considering a scale-invariant extension of the
SM.

3.2 Cosmology and the early Universe

The description of the dynamics of the Universe as a whole requires to combine
concepts from both general relativity and particle physics. Thanks to the previous
Sections, we now have the tools required for such an investigation. We will focus our
attention on the notions which are needed to understand the mechanism of phase
transitions.

3.2.1 The expanding Universe

The FLRW metric and the continuity equation

Our first aim is to describe the behaviour of the Universe at large scales by solving
the Einstein Field Equations of GR. As discussed in Section 1.1.5, we assume that
the cosmological principle holds and we look for a metric which is spatially homo-
geneous and isotropic but evolves in time. Based on these symmetry arguments,
the geometry of interest is given the Friedmann-Lemaître-Robertson-Walker metric
[52–55]

ds2 = −dt2 + a2(t)
[

dr2

1− κr2 + r2 (dθ2 + sin2(θ)dφ2)] , (3.23)

which is written in spherical coordinates. The curvature parameter κ can be +1, 0
or −1 for a closed, flat or respectively open Universe. The time dependence of the
metric is encompassed in the so-called scale factor a(t) which has to be determined
from the EFE.
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We need to specify the energy-momentum tensor describing the matter content
of the Universe. A good approximation at large scales is to assume that it is de-
scribed by a perfect fluid of energy density ρ(x) and pressure p(x) such that

Tµν = (ρ + p)UµUν + pgµν , (3.24)

where Uµ is the four-velocity of the fluid in the frame of the observer. Without even
solving the EFE, we can already use the covariant conservation of the energy mo-
mentum tensor, ∇µTµν, to get a continuity equation of the form

ρ̇ + 3
ȧ
a
(ρ + p) = 0 . (3.25)

The properties of the fluid therefore depend on the scale factor, but they are of course
also determined by the underlying behaviour and nature of the particles in the Uni-
verse. This dependence can be encompassed in the equation of state (EOS) relating
energy density and pressure as p = ωρ. In most situations, ω is considered inde-
pendent of time. This parametrization is advantageous as it allows us to solve the
continuity equation as a function of ω. This gives

ρ ∝ a−3(1+ω) =


a−3 if ω = 0 (matter)
a−4 if ω = 1/3 (radiation)
a0 if ω = −1 (vacuum energy)

(3.26)

where we have given the most important types of "fluids" which are matter, radi-
ation and vacuum energy. This shows how each of them evolves if the Universe is
expanding or contracting. Whereas the latter one does not correspond to any known
type of fluid, it is important to accommodate current observations as we shall men-
tion below.

The Friedmann equations

More information about the dynamics of the Universe can be obtained from the
EFE. Starting from the metric (3.23) and energy-momentum tensor (3.24), they can
be rewritten as the two independent Friedmann equations

H2 ≡
(

ȧ
a

)2

=
8πG

3
ρ− κ

a2 , (3.27)

ä
a
= −4πG

3
(ρ + 3p) , (3.28)

where we have introduced the Hubble parameter H = ȧ/a. For a flat Universe
(κ = 0) dominated by a single fluid, we can immediately see how the scale factor
evolves in time from Equations (3.26) and (3.27):

ρ =


t2/3 if ω = 0 (matter dominated)
t1/2 if ω = 1/3 (radiation dominated)
eHt if ω = −1 (vacuum dominated)

(3.29)

We have to keep in mind that the reality may be more complicated, in particular if
different types of fluids contribute almost equally to the total energy density and
pressure. Usually we have ρ = ∑i ρi where i labels the different contributions such
as matter, radiation, vacuum, etc.
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It is possible to rewrite the first Friedmann equation in a way which is convenient
to compare with observations. We first define the critical energy density today as
ρcrit = 3H2

0 /(8πG) and use it to define the dimensionless abundances today Ωi =
ρi(t0)/ρcrit. If we only consider radiation (i = r), matter (i = m), curvature (i = κ)
and vacuum energy (i = Λ), it is straightforward to rewrite (3.27) as

H2

H2
0
= Ωra−4 + Ωma−3 + Ωκa−2 + ΩΛ , (3.30)

where we have fixed a0 = 1, the scale factor today. If we can measure the different
Ωi in some way, we can then use this equation backwards in time to infer the state
of the Universe in the past.

Observations

Different types of observations support that the Universe is currently in an acceler-
ating expansion [58, 59] and that a substantial part of the matter energy density is
made of dark matter [159]. In terms of cosmological parameters, this corresponds to
[160]

Ωr ≈ 5.4× 10−5 Ωm ≈ 0.31 |Ωκ| . 0.01 ΩΛ ≈ 0.692 , (3.31)

where Ωm = Ωb + Ωc with

Ωb ≈ 0.05 Ωc ≈ 0.26 . (3.32)

We have decomposed the pressureless matter density into the baryon density Ωb
and cold dark matter density Ωc. It is interesting to note that the two dominant
components, ΩΛ and Ωc, are still far from being understood today, as we explained
in Section 1.2.1.

3.2.2 Thermal history and phase transitions

The cosmological parameters (3.31-3.32) combined with the Friedmann Equation
(3.30) tell us that the Universe was denser at earlier times. The paradigm of the hot
Big Bang cosmological model is to postulate that sufficiently far in the past all matter
was made of a hot plasma of interacting elementary particles. As the Universe was
expanding, the plasma diluted, interaction rates decreased and various phenomena
occurred leading to the formation of massive particles, baryons, nuclei, atoms, stars,
etc [142]. In this thesis, we are primarily interested in two events: the electroweak
and chiral phase transitions. Their description requires some knowledge of thermal
field theory that we present now.

Thermodynamics and the thermal effective potential

At a sufficiently high temperature (usually T & 100 GeV in the SM), all elementary
particles are relativistic such that the Universe is radiation dominated and in local
thermal equilibrium. Standard thermodynamics results give the radiation energy
density as follows:

ρr(T) =
π2

30
g?(T)T4. (3.33)

The number of relativistic degrees of freedom g? depends on temperature. Intu-
itively, its value decreases when the temperature drops below the mass of a given
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particle species such that it becomes non-relativistic. It can therefore be predicted
from particle physics considerations. We remind for example that g? = 106.75 in the
SM above 100 GeV.

Among the variety of thermodynamic processes occurring during the early Uni-
verse, we focus now our attention on the concept of symmetry restoration. As an
example, thermal field theory predicts that SUL(2) ×UY(1) was unbroken at high
enough T such that fermions and gauge bosons of the SM were massless. In other
words, thermal corrections can modify the shape of the Higgs effective potential
such that it only admits a single vev at zero field value. A similar process is ex-
pected for the chiral symmetry, with the vev of the quark-antiquark condensates
being zero a high enough temperature. We can therefore expect that something in-
teresting happened between this early period and now regarding the dynamics of
the Higgs field and condensates.

Thermal corrections to the effective potential Veff can be obtained from ther-
mal field theory. As in usual statistical mechanics, the fundamental quantity of in-
terest to describe a system at finite temperature is the partition function Z(T) =
Tr(exp(−βĤ)) with β = 1/T. As described in [140, 141], one way to compute this
partition function in QFT is to see that it is a generalization of the generating func-
tional Z[0] defined in (3.6). The prescription is to go to Euclidean time τ = it, change
the Lagrangian as LE = −L(τ = it) and time integrate it over the interval τ ∈ [0, β]:

Z(T) =
∫

Dφ exp
[
−
∫ β

0
dτ
∫

d3xLE(φ)

]
. (3.34)

We can now find the thermal effective potential Veff(φ̄, T) from the exact same pre-
scription that gave Veff(φ̄) in Section 3.1.3. We build the functional Z [J](T) by
adding a current J(x) to (3.34). Then the thermal effective action Γ[φ̄](T) is given
by the Legendre transform of W[J](T) = −i lnZ [J](T). From translation invariance,
we again obtain that

δΓ[φ̄](T)
δφ̄

∣∣∣∣
J=0

= 0 ⇒ ∂Veff(φ̄, T)
∂φ̄

= 0 . (3.35)

The thermal effective potential can then be estimated from the loop expansion
and Feynman rules. The 1-loop result is given by [141]

V1-loop(φ̄, T) =
1

2β

n=+∞

∑
n=−∞

∫ d3p
(2π)3 ln

((
2πn

β

)2

+ p2 + m2(φ̄)

)
, (3.36)

where the field-dependent mass is defined in the same way as in Section 3.1.3. This
formula can be simplified and it is interesting to note that it can be written as the sum
of the 1-loop Coleman-Weinberg potential (3.22) and a second term which carries all
the temperature dependence:

V1-loop(φ̄, T) = V1-loop(φ̄) +
1

2π2β4

∫ +∞

0
dx x2 ln

[
1− exp

(
−
√

x2 + β2m2(φ̄)

)]
. (3.37)

This result can be generalized to take into account the effects of fermions or gauge
bosons.

It is interesting to note that the temperature-dependent term does not suffer from
UV divergences, only the first term does. However, relativistic thermal field theory
usually leads to the appearance of infrared divergences which can be interpreted as
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a sign of the failure of the perturbative expansion [140, 141]. According to [161],
the one loop effective potential (3.37) is expected to stop being valid once the tem-
perature is such that symmetry restoration happens. Fortunately, the perturbative
expansion can be improved by identifying the diagrams that give rise to the infrared
divergences and then by summing over them at all orders. This technique is known
as Daisy resummation from the specific name of the divergent diagrams. Taking this
problematic into account, it is usual the rewrite the one-loop thermal potential as
follows [162–165]:

V(φ̄, T) = V0(φ̄) + V1-loop(φ̄, T) + VDaisy(φ̄, T) . (3.38)

Appendix A.1 gives an example of how Daisy corrections can be computed in prac-
tice.

The dynamics of first-order phase transitions

We finish this Chapter by briefly discussing how cosmological first-order PTs take
place. Note that most technical details will be given in Chapter 5 directly. Let us
keep considering the classical background field φ̄ that we have introduced above.
Its cosmological behaviour can be inferred from its free energy density, F (φ̄, T) =
V(φ̄, T), identified as the effective potential (3.38). For clarity let us also introduce
the following set of temperatures: T̃ > Tc > Tn > Tp.

At temperatures satisfying T > T̃, F (φ̄, T) admits a single minimum at φ̄ = v(+)
T ,

called the symmetric phase of the field. As the Universe expands and its tempera-
ture gets to T̃, a second minimum forms at φ̄ = v(−)T . This new vacuum state is called
the broken phase and it initially admits a free energy density which is higher than
that of the symmetric phase. As the temperature keeps decreasing, the free energy
density of this broken phase diminishes until it reaches a value similar to the free en-
ergy density of the symmetric phase. At that time, the two vacua are degenerate and
the corresponding temperature is called T = Tc, the critical temperature. For T < Tc,
the free energy density of the broken phase keeps decreasing such that the field at
v(+)

T becomes metastable. QFT therefore predicts that the field may decay into the
more energetically favorable sate at v(−)T . Once the decay probability becomes high
enough, bubbles of true vacuum nucleate and start to expand in the surrounding
symmetric phase. We can thus define the nucleation temperature Tn correspond-
ing to the temperature at which most of the bubbles are produced. Finally, the last
temperature Tp corresponds to the percolation temperature, namely the time when
a significant part of the Universe has been converted to the new stable phase. This
is at that instant that most of the bubbles are expected to collide.

The last paragraph gives a rough picture of what is expected to happen during a
first-order PT. It is important to keep in mind that the dynamics can be significantly
different from one particle physics model to another. We will have the opportunity
to confirm this statement in Section 5.2.
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Chapter 4

Constraining non-commutative
space-time with GW150914

The three previous chapters have given a detailed overview of many important as-
pects of fundamental physics and GWs. We now start the second part of this thesis
and engage in unknown territories. As emphasized in Section 1.2, our focus is on the
quantum nature of space-time and the dynamics of the early Universe ; two subjects
about which little is known. We now have all the technical tools in hands to support
our main claim that GWs provide relevant information about these topics. The cur-
rent Chapter shows in particular how to use the signal GW150914 to constrain the
scale of non-commutative space-time [1, 2].

We first formalize more rigorously the ideas we introduced in Section 1.2.3 about
quantum fuzziness. We adopt a mathematical model where space-time coordinates
are promoted to operators satisfying the canonical commutation relations

[x̂µ, x̂ν] = i θµν, (4.1)

where θµν is a real and constant anti-symmetric tensor. Through θµν, a new fun-
damental scale is introduced, which measures quantum fuzziness of space-time,
similar to the Planck constant h̄ that measures fuzziness of the phase space in the
conventional quantum mechanics. To mention the context of this work, various
aspects of non-commutative field theories have been investigated in the past; see
references [105, 106] and references therein. On one side, it was observed that quan-
tized space-times represent the low-energy field-theoretic limit of string theory in the
background of an anti-symmetric B-field [103, 104]. On an other side, based on dif-
ferent treatments of non-commutative gauge symmetry, two different formulations
of the non-commutative Standard Model of particle physics have been proposed
in [166, 167] and [168, 169]. Some limits on the non-commutative scale have been
obtained from various particle physics processes, including low-energy precision
measurements [107, 108] and processes involving Lorentz symmetry violation [109,
110]. In addition, inflationary observables can be used to constrain space-time non-
commutativity [170, 171]. Careful considerations [110] show that the scale of non-
commutativity is limited from these studies to be smaller than the inverse ∼ TeV
scale.

In addition, several versions of non-commutative theories of gravitation have
been suggested in references [172–177]. However, non-commutativity in all these
formulations shows only at the second order of the non-commutative scale [178,
179], and thus the bounds from the purely gravitational sector are expected to be
less restrictive. Bearing this in mind, we consider the effect of non-commutativity
on GWs through the non-commutative corrections to the classical matter source
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and ignore non-commutative corrections to gravity itself, which is highly model-
dependent and presumably subdominant or even nonexistent as in the string theory
formulation.

Under this assumption, it has already been shown in [180] that the lowest-order
non-commutative corrections to the matter source produce a second-order post-
Newtonian modification of the Schwarzschild metric. We extend this analysis here
to compute the non-commutative corrections to the waveform of the gravitational
waves produced during the inspiraling phase of a binary BH (BBH) system. We
closely follow the post-Newtonian formalism of Damour and Blanchet that we have
introduced in Section 2.2.2 and proceed in the following way. In Section 4.1, we
derive the non-commutative corrections to the energy-momentum tensor describ-
ing the BBH. In Section 4.2, we compute the equations of motion of this system
including lowest-order, namely 2PN, noncommutative modifications. The energy
flux radiated by the BBH is then derived in Section 4.3. Section 4.4 is devoted to
the calculation of the phase of the waveform and to its comparison with the LIGO
GW150914 observation.

4.1 Non-commutative corrections to the energy-momentum
tensor

In our review of the post-Newtonian formalism, Equation (2.59) showed how the
energy-momentum tensor of a BBH can be approximated by point masses in GR.
For clarity, we remind the formula here:

Tµν
GR(x, t) = m1γ1(t)v

µ
1 (t)v

ν
1(t)δ

3(x− y1(t)) + 1↔ 2,

γ1 =

(
g1(gαβ)1

vα
1vβ

1
c2

)−1/2

,
(4.2)

with mi the masses, yi(t) the positions, and vµ
i (t) =

(
c, dyi(t)

dt

)
the velocities of the

two bodies i = 1, 2. We remind that the point-mass approximation induces diver-
gences that can be cured thanks to the Hadamard regularization [128]. We also men-
tioned that the metric can be evaluated at the point mass location, (gαβ)i = gαβ(yi(t))
instead of gαβ(x, t), as long as we are interested in the equations of motion below
3PN order. Since the lowest-order non-commutative corrections will occur at 2PN
order in our equations of motion, we can safely use the above formula in our ap-
proach.

In order to compute non-commutative corrections to the energy-momentum ten-
sor (4.2), we follow the effective field theory formalism which has been used to com-
pute quantum corrections [181] and non-commutative corrections [180] to classical
BHs. In this approach, the Schwarzschild BHs are sourced by a massive real scalar
field φ. To build a quantum field theory in non-commutative space-time, it is pos-
sible to work with the usual commuting coordinates xµ instead of the operators x̂µ

if we replace the product of two space-time-dependent functions by the following
Moyal product [182]:

f (x) ? g(x) = f (x)g(x) +
+∞

∑
n=1

(
i
2

)n 1
n!

θα1β1 · · · θαn βn ∂α1 · · · ∂αn f (x) ∂β1 · · · ∂βn g(x). (4.3)
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The noncommutative energy-momentum tensor for a real scalar field φ (in natural
units) can then be written as

Tµν
NC(x) =

1
2
(∂µφ ? ∂νφ + ∂νφ ? ∂µφ)− 1

2
ηµν

(
∂ρφ ? ∂ρφ−m2φ ? φ

)
= ∂µφ ∂νφ− 1

2
ηµν

(
∂ρφ ∂ρφ−m2φ2)− 1

8
θα1β1 θα2β2

(
∂α1 ∂α2 ∂µφ∂β1 ∂β2 ∂νφ

− 1
2

ηµν∂α1 ∂α2 ∂ρφ∂β1 ∂β2 ∂ρφ +
1
2

ηµνm2∂α1 ∂α2 φ∂β1 ∂β2 φ
)
+ · · · ,

(4.4)

where we only keep the lowest-order non-commutative corrections. Note that the
first two terms correspond to the usual energy-momentum tensor of a massive scalar
field. We then quantize the field in flat space-time as explained in Section 3.1.1:

φ̂(x) =
∫ d3p

(2π)3
√

2ωp

(
â(p)e−ipx + â†(k)eipx

)
, (4.5)

where[
â(p), â†(p′)

]
= (2π)3δ3(p− p′), â(p) |0〉 = 0, â†(p) |0〉 = |p〉 . (4.6)

The expectation value of the energy-momentum tensor (4.4) between two arbitrary
states |p1〉 and |p2〉 becomes at tree level:

〈p2| : T̂µν
NC(x) : |p1〉 =

e−i q·x

2P0

(
2PµPν − 1

2
qµqν +

1
2

ηµνq2
)(

1− 1
8

(
θαβPαqβ

)2
)

, (4.7)

where we have defined P = 1
2 (p1 + p2), and q = p1 − p2, and we have chosen a

frame in which q0 = 0. Taking the Fourier transform of the previous formula, we
obtain the position-space expression

∫ d3q
(2π)3 ei q·y 〈p2| : Tµν

NC(x) : |p1〉 =

1
2P0

(
2PµPν +

1
2

ηµmηνn ∂

∂xm
∂

∂xn −
1
2

ηµν ∂

∂xi

∂

∂xi

)(
1 +

θαkθβl PαPβ

8
∂

∂xk
∂

∂xl

)
δ3(x− y).

(4.8)

We now interpret the previous formula as the energy-momentum tensor of a point-
like particle of mass m with momentum Pµ and position y(t), which we call TNC,P.
This expression can be further simplified once we restore the dimensions. Using the
usual relativistic relation Pµ = mγLvµ, where γL is the Lorentz factor, we have

Tµν
NC,P(x, t) =mγLvµvν δ3(x− y(t)) +

m3γ3
LG2

8c4 vµvνΘkl∂k∂l δ3(x− y(t))

+
(

ηµmηνn∂m∂n − ηµν∂i∂
i
)( h̄2

4mγL
+

mγLh̄2G2

32c4 Θkl∂k∂l

)
δ3(x− y(t)),

(4.9)

where we have introduced1

Θkl =
θ0kθ0l

l2
Pt2

P
+ 2

vp

c
θ0kθpl

l3
PtP

+
vpvq

c2
θkpθlq

l4
P

, (4.10)

in terms of the Planck length lP and time tP. The second line of Equation (4.9) is

1Note that the components θ0i and θij have different units.
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proportional to h̄2, meaning that it will be negligible in front of the first two terms
since we are considering astrophysical objects with m & M�. On the other hand,
Equation (4.10) tells us that in a post-Newtonian expansion Θkl = θ0kθ0l

l2
Pt2

P
+O

( 1
c

)
. We

will only keep this dominant term, since we are looking for the lowest-order non-
commutative corrections to the waveform of the GWs produced by the BBH. From
the two previous considerations, we can therefore simplify the energy-momentum
tensor as follows:

Tµν
NC,P(x, t) ≈ mγLvµvν δ3(x− y(t)) +

m3γ3
LG2

8c4 vµvν θ0kθ0l

l2
Pt2

P
∂k∂l δ3(x− y(t)). (4.11)

We remind the reader that the previous expression has been derived in flat space-
time. By identifying γL with γ1 defined by Equation (4.2), the first term in Equation
(4.11) reproduces exactly the GR energy-momentum tensor (4.2) for a single point
mass. On the other hand, we do not need to generalize the second term to curved
space-time since we are only interested in the lowest-order non-commutative cor-
rections. By the same argument, we can also replace the Lorentz factor (in the sec-
ond term) by its Newtonian value γL = 1 + O

( 1
c2

)
. This allows us to define the

BBH energy-momentum tensor with its lowest-order non-commutative corrections
as follows:

Tµν(x, t) =m1γ1(t)v
µ
1 (t)v

ν
1(t)δ

3(x− y1(t))

+
m3

1G2Λ2

8c4 vµ
1 (t)v

ν
1(t)θ

kθl∂k∂l δ3(x− y1(t)) + 1↔ 2 ,
(4.12)

where we have simplified the notation by introducing Λ θi ≡ θ0i/(lPtP), with θi rep-
resenting the components of a three-dimensional unit vector θ, θiθi = 1. In this way√

Λ corresponds to the time-component scale of non-commutativity relative to the
Planck scale and will be the scale of non-commutativity we aim to constrain. As we
argue in Section 4.4, the bounds on other components, θij, are expected to be similar.
We note in passing that θ0i is sometimes considered to be vanishing within effec-
tive field theories, because of the apparent violation of unitarity (see, however, an
alternative unitary formulation of non-commutative field theory with nonzero θ0i

in [183]). The potential violation of unitarity in the effective theory is not relevant
for our calculations, and we simply assume that the issue is resolved in a full the-
ory. Nonzero θ0i also appears in unitary theories with lightlike non-commutativity,
θµνθµν = 0, which are known to have a consistent string theory completion [184].

4.2 2PN equations of motion

4.2.1 General orbit

In order to infer the waveform of the GWs produced by a BBH, we require the equa-
tions of motion of the two bodies. Since we are neglecting noncommutative cor-
rections to Einstein field equations (EFEs), we can follow the approach we have de-
scribed in Section 2.2 and invoke the covariant conservation of the energy-momentum
tensor (2.53):

∂ν

(√
−g gλµTµν

)
=

1
2
√
−g ∂λgµνTµν. (4.13)

The difference with GR is that we will now insert the expression (4.12) for the energy-
momentum tensor in the previous formula. We obtain again geodesic equations



Chapter 4. Constraining non-commutative space-time with GW150914 69

of the form (2.54), namely dPi
1

dt = Fi
1 (for the body 1), where the linear momentum

density P1 and force density F1 are this time given by

Pi
1 = γ1 (giµ)1vµ

1 +
m2

1G2

8c4 Λ2θkθl (∂k∂l giµ
)

1 vµ
1 (4.14)

Fi
1 =

1
2

γ1
(
∂igµν

)
1 vµ

1 vν
1 +

m2
1G2

16c4 Λ2θkθl (∂k∂l∂igµν

)
1 vµ

1 vν
1. (4.15)

As usual, the equations of motion of the second body are obtained by replacing the
index 1 by 2 in the above formulas. Note that the expressions inside (· · · )1 have to
be evaluated at the location of the body 1, y1(t).

The previous equations describe the motion of the two point masses in the back-
ground of the metric gµν(x, t), which is itself generated by these two particles. The
general form of this metric in the near zone of the system was given in Equation
(2.51). At the order required for our analysis, it reads

g00 = −1 +
2
c2 V +O

(
1
c4

)
g0i = O

(
1
c3

)
gij = δij

(
1 +

2
c2 V

)
+O

(
1
c4

) (4.16)

where V is the retarded potential (2.52) given by2

V(x, t) = G
+∞

∑
k=0

(−1)k

k!

(
∂

c ∂t

)k ∫
d3x′|x− x′|k−1σ(x′, t), σ =

T00 + Tii

c2 . (4.17)

The matter source σ includes now non-commutative corrections from the expression
(4.12). Keeping the leading modification, we can rewrite it explicitly as

σ(x, t) = m1γ1

(
1 +

v2
1

c2

)
δ3(x− y1(t)) +

m3
1G2Λ2

8c4 θkθl∂k∂l δ3(x− y1(t)) + 1↔ 2. (4.18)

It is worth observing that V cannot be straightforwardly computed by inserting
Equation (4.18) in Equation (4.17) since σ depends on V itself through γ1 and γ2. So
σ and V are usually computed iteratively in each PN order. Fortunately, in our case
of interest the lowest-order non-commutative correction to V is simply computed by
inserting the second term of Equation (4.18) into the k = 0 term of the series (4.17).
In other words, we have

V(x, t) = V2PN
GR (x, t) +

3m3
1G3Λ2

8c4r3
1

θkθl n̂1kl +O
(

1
c5

)
+ 1↔ 2 (4.19)

where V2PN
GR is the GR expression for the potential V up to 2PN order, which can

be explicitly found in Equation (B1a) of [185]. We have also defined r1 = |x− y1|,
n1 = (x− y1)/r1, and the STF quantity n̂1kl = n1kn1l − δkl/3.

We can now compute the 2PN expression of the linear momentum densities P1,
P2 and force densities F1, F2. The first step is to introduce the metric (4.16) into

2Note that there is no problem of divergence regarding the retarded d’Alembertian at the PN orders
we are considering.
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Equations (4.14)-(4.15):

Pi
1 = vi

1 +
1
c2

(
P1PN

1

)i
+

1
c4

(
P2PN

1

)i
+O

(
1
c5

)
(4.20)

Fi
1 = (∂iV)1 +

1
c2

(
F1PN

1

)i
+

1
c4

(
F2PN

1

)i
+

m2
1G2Λ2

8c4 θkθl (∂k∂l∂iV)1 +O
(

1
c5

)
(4.21)

and similarly for P2 and F2. The terms PxPN and FxPN represent some 1PN and
2PN expressions involving the retarded potential V and some other higher-order
retarded potentials [see Equations (146)-(147) and Equation (152) in [117]]. The point
is that non-commutative corrections to these terms appear above 2PN order in the
final expression for P and F and are irrelevant in this study. Similarly, we observe
that non-commutative corrections to P start at 3PN order and thus can be neglected,
explaining their absence in Equation (4.20).

Thus only F admits 2PN-order corrections, which originate from both the first
and fourth terms of Equation (4.21). Consider first (∂iV)1 in which we replace V by
its expression (4.19). Considering only the non-commutative term, we have

(∂iVNC)1 =

(
−

15m3
1G3Λ2

8c4r4
1

θkθl n̂1ikl + 1↔ 2
)

1
= −15m3

2G3Λ2

8c4r4 θkθl n̂ikl (4.22)

where r = |y1 − y2|, n = (y1 − y2)/r, and n̂ikl = ninknl − 1
5 (niδlk + nkδil + nlδik).

At the second equality, we have used the Hadamard regularization described in
[128]. Indeed, the first term in brackets is divergent when evaluated at the location
of particle 1 since r1(y1(t)) = 0. The second 2PN non-commutative correction to
F1 comes from the fourth term in Equation (4.21) with V replaced by its Newtonian
value V = Gm1/r1 + Gm2/r2 +O

( 1
c2

)
. We find after regularization:

m2
1G2Λ2

8c4 θkθl (∂k∂l∂iV)1 = −15m2
1m2G3Λ2

8c4r4 θkθl n̂ikl . (4.23)

By adding the two contributions (4.22) and (4.23), we have the final 2PN correction
to the force density F1 as follows:(

Fi
1

)2PN

NC
= −15m2(m2

1 + m2
2)G

3Λ2

8c4r4 θkθl n̂ikl (4.24)

and similarly for the second body.
We now have all the ingredients to compute the acceleration of the first body in

harmonic coordinates from their geodesic equations (2.54). The calculation is per-
formed iteratively at each PN order. The Newtonian part of dPi

1/dt gives dvi
1/dt =

ai
1, which is directly compared to the Newtonian part of Fi

1. Then when the higher-
order terms of P1 are derived (e.g., dP1PN

1 /dt), each explicit acceleration that appears
is order-reduced by its previous lower-order expression. Since there are no 2PN non-
commutative corrections to Pi

1, it is straightforward to see that the only modification
to the 2PN-order acceleration directly comes from the term (4.24), namely,

ai
1 = (ai

1)
2PN
GR −

15m2(m2
1 + m2

2)G
3Λ2

8c4r4 θkθl n̂ikl +O
(

1
c5

)
. (4.25)

The GR acceleration (ai
1)

2PN
GR is given explicitly in Equation (203) of [117] and has

been computed iteratively following the procedure above. The acceleration of the



Chapter 4. Constraining non-commutative space-time with GW150914 71

second body is obtained by replacing the index 1 by 2 in the previous expression.

4.2.2 Relative motion

For the rest of the Chapter, we will consider only the relative motion of the two point
masses. So in addition to r and n, we introduce the relative velocity v = v1− v2 and
acceleration a = a1 − a2. The expressions will also simplify by using the reduced
mass µ and the symmetric mass ratio ν given in Equation (2.41). From (4.25), we
directly deduce the relative acceleration

ai = (ai)
2PN
GR −

15M3(1− 2ν)G3Λ2

8c4r4 θkθl n̂ikl +O
(

1
c5

)
. (4.26)

As in GR, this acceleration can be derived from a Lagrangian. Indeed, we see that

L = L2PN
GR +

3M3µ(1− 2ν)G3Λ2

8c4r3 θkθl n̂kl +O
(

1
c5

)
(4.27)

reproduces the equations of motion (4.26). Note that the non-commutative part of
this Lagrangian is not Lorentz invariant. However it still admits the following con-
served energy:

E = E2PN
GR −

3M3µ(1− 2ν)G3Λ2

8c4r3 θkθl n̂kl +O
(

1
c5

)
(4.28)

where E2PN
GR is given in Equation (205) of [117]. Indeed, a direct computation3 shows

that dE/dt = O
( 1

c5

)
.

In order to have a better understanding of the effect of the non-commutative
terms in the acceleration and the energy, we can use the following identities:

θkθl n̂ikl = ni (n · θ)2 − 1
5

ni −
2
5

θi (n · θ) , (4.29)

θkθl n̂kl = (n · θ)2 − 1
3

. (4.30)

In this form, we can see that the constant vector θ acts like a preferred direction and
will influence the motion of the BBH. In particular, we expect the orbital plane of the
two point masses to precess because of the term θi (n · θ). On the other hand, the
motion drastically simplifies if the orbital plane is perpendicular to this preferred
direction as all the terms with n · θ vanish. We argue now that we can restrict our
attention to this simpler case since we are only looking for a bound on the parameter√

Λ and not a precise value.
There is of course no reason for the BBH that produced the GW150914 signal to

satisfy this property. However it is important to observe that there are no orbital
configurations for which each of the two expressions (4.29) and (4.30) are constantly
zero, since θ is time independent and n varies with time. In other words, the contri-
butions − 1

5 ni in the acceleration and − 1
3 in the energy cannot be entirely canceled,

they will only be modulated by the angular-dependent terms. Consequently, we ex-
pect the non-commutative corrections to the GW waveform to be of the same order

3The time derivative of the second term in Equation (4.28) is canceled by the Newtonian part of
dE2PN

GR /dt in which the acceleration has to be replaced by Equation (4.26).
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of magnitude with or without these terms. Hence we will use the following expres-
sions for the relative acceleration and energy of the BBH:

ai = (ai)
2PN
GR +

3M3(1− 2ν)G3Λ2

8c4r4 ni +O
(

1
c5

)
(4.31)

E = E2PN
GR +

M3µ(1− 2ν)G3Λ2

8c4r3 +O
(

1
c5

)
. (4.32)

4.2.3 Quasicircular orbit

The previous equations further simplify if we assume that the two objects are in qua-
sicircular orbit. This assumption is well justified since it has been shown in GR that
the orbit of a BBH tends to circularize under the emissions of GWs [130, 131]. This is
particularly true at the time when the GWs of the system enter the sensitivity band
of the LIGO detector. It is important to note that this result has been directly derived
from Einstein’s quadrupole formula, which describes radiation of GWs at the low-
est (Newtonian) order of the PN expansion. As we will explain in the next section,
non-commutative corrections to the radiation formula appear at 2PN order, mean-
ing that they are subdominant compared to the circularization effect. Therefore,
even in non-commutative space-time, we expect to observe binaries with negligible
eccentricity. Of course, precession of the orbital plane could still occur due to the
angular-dependent terms in Equation (4.29). However, we shall not consider these
terms for the reasons explained above.

With these approximations, we can assume that r is constant, apart from the
gradual inspiraling that will ultimately cause the two bodies to merge. As explained
in Section 2.2, this effect appears at 2.5PN order in the equations of motion [185] and
we actually have ṙ = O

( 1
c5

)
. So we obtain again a simple expression for the circular

orbit acceleration

acirc = −Ω2y +O
(

1
c5

)
. (4.33)

where the angular frequency Ω is modified as

Ω2 =
GM
r3

[
1 + (−3 + ν)γ +

(
6 +

41
4

ν + ν2 − 3
8
(1− 2ν)Λ2

)
γ2
]
+O

(
1
c5

)
, (4.34)

as a function of the post-Newtonian parameter γ = GM/(c2r). Note that the non-
commutative term, proportional to Λ2, comes directly from the second part of Equa-
tion (4.31). In order to write the energy (4.32) of the two particles in circular orbit,
we note that the norm v of the relative velocity can be expressed as v2 = r2Ω2 +
O
( 1

c10

)
. This implies in particular that the energy will contain two 2PN-order non-

commutative corrections: one obvious contribution from the second term in Equa-
tion (4.32) and another one from the Newtonian part of E2PN

GR , once v2 is expressed in
terms of Ω2 given by (4.34). Adding these two contributions to the GR expression,
we find

Ecirc =−
µc2γ

2

[
1 +

(
−7

4
+

1
4

ν

)
γ +

(
−7

8
+

49
8

ν +
1
8

ν2 +
1
8
(1− 2ν)Λ2

)
γ2
]

+O
(

1
c5

)
.

(4.35)
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For later convenience, we want to express the energy as a function of the frequency-

related parameter x =
(GMΩ

c3

) 2
3 . In order to achieve this relationship, we need to

know how γ depends on Ω (or x). We must therefore take the inverse of Equation
(4.34). We find

γ = x
[

1 +
(

1− 1
3

ν

)
x +

(
1− 65

12
ν +

1
8

Λ2(1− 2ν)

)
x2
]
+O

(
1
c5

)
. (4.36)

By replacing γ in Equation (4.35), we finally obtain

E =− µc2x
2

[
1 +

(
−3

4
− 1

12
ν

)
x +

(
−27

8
+

19
8

ν− 1
24

ν2 +
1
4

Λ2(1− 2ν)

)
x2
]

+O
(

1
c5

)
,

(4.37)

which reduces to Equation (2.64) when Λ→ 0. In Section 4.4, we shall compare this
expression to the energy radiated in GWs.

4.3 Energy loss

In this section, we investigate the lowest-order non-commutative corrections to the
energy radiated in GWs by the BBH. As we have seen in Section 2.2.2, it is usual
to assume the energy balance equation (2.66), dE

dt = −F , between the variation of
energy in the near zone of the BBH and the flux in the far zone. Since we have ne-
glected non-commutative corrections to the EFEs, the GR strategy to compute the
flux in terms of radiative multipole moments is still valid in our case. The only mod-
ification to this procedure is to the source (4.12) itself. We remind that the general
form of the flux at 2PN order is F = Finst + Ftail . Since the tail part of the flux
starts at 1.5PN order, non-commutative corrections will appear above 2PN order in
this term. Hence we only need to compute corrections to the quadrupole part of the
instantaneous term which was given by Equation (2.48):

Finst =
G
c5

[
1
5

d3 Iij

dt3

d3 Iij

dt3 +O
(

1
c2

)]
. (4.38)

Non-commutative effects appear in the mass quadrupole moments which at low-
est order reduce to (2.58): Iij =

∫
d3x x̂ijσ+O

( 1
c2

)
. We first perform the integral over

the second term (non-commutative part) of σ given by Equation (4.18):

∫
d3x x̂ijσNC =

m3
1G2Λ2

8c4 θkθl (∂k∂l x̂ij
)∣∣

x=y1(t)
+ 1↔ 2

=
(m3

1 + m3
2)G

2Λ2

4c4

(
θiθj −

1
3

δij

)
.

(4.39)

We directly observe that this term does not depend on time, meaning that this contri-
bution will vanish in the instantaneous flux (4.38). Therefore the only nonvanishing
2PN non-commutative correction to F appears when we derive the Newtonian part
of Iij. Indeed, after two time derivations the expression will contain an acceleration
that has to be replaced by the formula (4.25), itself containing a 2PN correction. We
now explicitly compute this correction assuming a circular orbit as we discussed in
the previous section. In terms of the relative position y(t) of the two point masses,
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the quadrupole moment becomes

Iij = µ

(
yiyj −

1
3

δijr2
)
+O

(
1
c2

)
. (4.40)

In taking the time derivative, the second term within the brackets vanishes since
ṙ = O

( 1
c5

)
. The first term gives d3yiyj/dt3 = ȧixj + 3aivj + (i ↔ j). Inserting the

non-commutative term of the acceleration (4.31) (and its time derivative), we find
the following 2PN non-commutative correction:

d3

dt3 Iij

∣∣∣∣
NC

=
3µM3(1− 2ν)G3Λ2

2c4r5 (yivj + viyj). (4.41)

Adding this term to the 2PN expression for the quadrupole mass moment in GR
given in Equation (C2a) of [186], we obtain:

d3

dt3 Iij =−
8GνM2

r3

(
yivj + viyj

2

) [
1− γ

42
(149− 69ν)

+
γ2

1512
(
7043− 7837ν + 3703ν2 − 567Λ2(1− 2ν)

)]
+O

(
1
c5

)
.

(4.42)

The contribution from this quadrupole moment to the instantaneous flux is given
by Equation (4.38). Using the fact that in a circular orbit, v2 = Ω2r2 +O

( 1
c10

)
and

x · v = O
( 1

c5

)
, we have (yivj + viyj)

2 = 2r4Ω2 +O
( 1

c5

)
, where the angular frequency

is given by Equation (4.34). It follows straightforwardly that the lowest-order non-
commutative correction to the flux is

FNC =
32c5

5G
ν2γ5

[
−9

8
Λ2(1− 2ν)γ2

]
. (4.43)

The complete flux at 2PN order is computed by adding the previous term to the
GR flux given in Equation (4.16) of [186]. Note that the derivation of this latter
expression requires higher-order multipole moments in Equation (4.38) that we have
not discussed in this Chapter since the non-commutative corrections to these terms
will appear above 2PN in the final flux. As stated in Equation (2.47), tail effects
are also important and will produce a 1.5PN contribution to F . Taking all these
contributions into account and after expressing γ through x thanks to (4.36), the
final 2PN result including non-commutative corrections reads

F =
32c5

5G
ν2x5

[
1 +

(
−1247

336
− 35

12
ν

)
x + 4πx3/2

+

(
−44711

9072
+

9271
504

ν +
65
18

ν2 − 1
2

Λ2(1− 2ν)

)
x2 +O

(
1
c5

)]
.

(4.44)

4.4 Constraint on
√

Λ from the orbital phase

4.4.1 BBH orbital phase

We can now use the balance equation (2.66) to derive the secular decrease of the
orbital radius r and the rate of change of the orbital frequency Ω. This will allow
us to compute the evolution of the orbital phase of the BBH. For convenience, we
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introduce the following time variable:

Θ ≡ νc3

5GM
(tc − t) = O

(
c8) , (4.45)

where tc represents the instant of coalescence of the two point masses. Then the
balance equation can be rewritten as

dE
dx

dx
dΘ

=
5GM
νc3 F , (4.46)

where E(x) and F (x) are respectively given by Equations (4.37) and (4.44). We recall
that these quantities have been derived for a quasicircular orbit where the angular-
dependent non-commutative terms in (4.29)-(4.30) have been omitted. This expres-
sion provides a differential equation for the frequency parameter x(Θ), which can
be directly solved (in the PN expansion sense), giving

x =
1
4

Θ−1/4
[

1 +
(

743
4032

+
11
48

ν

)
Θ−1/4 − 1

5
πΘ−3/8

+

(
19583

254016
+

24401
193536

ν +
31
288

ν2 +
10
256

Λ2(1− 2ν)

)
Θ−1/2 +O

(
1
c5

)]
.

(4.47)

This equation is nothing but the explicit temporal evolution of the angular frequency
Ω. It is then straightforward to find the orbital phase φ of the BBH. Indeed, we have

dφ

dt
= Ω ⇒ dφ

dΘ
= −5

ν
x3/2. (4.48)

Integrating Equation (4.48) with respect to x [given in (4.47)] explicitly gives φ(Θ).
For data analysis purposes, it is more useful to express the phase in the frequency
domain. So by inverting Equation (4.47), we can find Θ(x), allowing us to write the
frequency-dependent phase evolution at 2PN precision:

φ =− x−5/2

32ν

[
1 +

(
3715
1008

+
55
12

ν

)
x− 10πx3/2

+

(
15293365
1016064

+
27145
1008

ν +
3085
144

ν2 +
25
4

Λ2(1− 2ν)

)
x2 +O

(
1
c5

)]
,

(4.49)

up to a constant of integration. We check that in the limit Λ → 0, the two previous
equations for x and φ reduce to their GR expressions (316) and (318) in [117].

It is now straightforward to use the previous results to predict the phase of the
GWs detected on earth, far away from the source. We remind that this is done
through the stationary phase approximation (SPA) which gives the frequency do-
main GW phase expression (2.70). As non-commutative corrections appear at 2PN-
order, the first coefficient that will be modified is ϕ4. From (4.49), we find

ϕ4 =
15293365
508032

+
27145

504
ν +

3085
72

ν2 +
25
2

Λ2(1− 2ν) . (4.50)

In standard space-time (Λ = 0), we recover the same coefficients as in Equation
(2.71). We also recall that in GR, the phase is known up to 4PN order and includes
the coefficients ϕ5 to ϕ8, which we have ignored for our current purposes. We would
expect non-commutative corrections to these terms as well, but their computation
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would be significantly more involved and are unnecessary to impose an initial con-
straint on

√
Λ. Also note that spin effects are usually included in the phase coeffi-

cients since it is known that spin-orbit and spin-spin terms appear from 1.5PN and
2PN order, respectively, in the equations of motion of a BBH (see Chapter 11 of [117]
and references therein). But for the same reason as above, we do not consider these
effects here.

4.4.2 GW150914 signal and constraint

We have shown in Section 2.2.3 how LIGO/Virgo used the GW150914 signal to test
for deviations from GR. In order to find a robust constraint on the non-commutative
scale

√
Λ, we would have to perform a similar analysis, namely adding Λ as a new

parameter of the gIMR model and inferring it from a statistical analysis. However,
an estimated bound can be computed using a significantly simpler method. From
Equation (2.71), we define the fractional non-commutative deviation from GR as

δϕNC
4 =

ϕNC
4

ϕGR
4

=
1270080 (1− 2ν)

4353552ν2 + 5472432ν + 3058673
Λ2. (4.51)

We then want to compare this correction to the value δϕ4 computed by LIGO/Virgo
for GW150914. In order to do so we need the symmetric mass ratio ν of the BBH.
However, it is important to realize that the masses of the BHs, m1 = 36.2+5.2

−3.8M� and
m2 = 29.1+3.7

−4.4M� (in the source frame with 90% credible regions), have been derived
by LIGO [8] from matched filtering based on GR templates. So if non-commutative
corrections had been taken into account in those templates, we would expect slight
deviations in the reported masses. Fortunately, this correction would have little sig-
nificance on the constraint for

√
Λ. Indeed, by definition the symmetric mass ratio ν

ranges between 0 (test-mass limit) and 1/4 (equal masses limit), which implies from
Equation (4.51) that

δϕNC
4 ∈ [1.35, 4.15] · 10−1Λ2 (4.52)

for any BBH. In other words, the indeterminacy in the masses has less than one order
of magnitude impact on any constraints we can impose on Λ. Using the central
values for m1, m2 given above, we have δϕNC

4 = 1.37 · 10−1Λ2.
In Table I of [111], LIGO computed that the deviation from GR of the fourth

coefficient is given by δϕ4 = −2.0+1.6
−1.8 when only δϕ4 is allowed to vary, and δϕ4 =

0.5+17.3
−18.2 when all the coefficients can vary. Considering the worst case scenario and

asking that |δϕNC
4 | . |δϕ4|, we derive the following estimated constraint:

|δϕNC
4 | . 20⇒

√
Λ . 3.5 . (4.53)

Recalling that Λ ≡ |θ0i|/(lPtP), the previous result means that the temporal part of
the non-commutative tensor is constrained be around the Planck scale.

Although we have not explicitly considered the spatial components θij of the
non-commutative tensor in this analysis, we would expect a similar constraint on
them. From the energy-momentum tensor (4.9) and Equation (4.10), it is clear that
these terms would appear at 2.5PN and 3PN order in the equations of motion of the
BBH (and in the energy flux). So we expect the coefficient ϕ6 of the GW phase (2.70)
to admit non-commutative terms proportional to |θij|2/l4

P. These terms would then
be constrained as we just did, since LIGO/Virgo computed [111] that the deviation
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from GR of ϕ6 is similar to δϕ4, namely, δϕ6 = −0.6+18.2
−17.2. It also shows that the time-

like and space-like components of θµν can be constrained independently from each
other as they appear at different PN orders.

4.5 Chapter summary

In this Chapter we have derived, to lowest-order, an analytic deviation from GR
that would be present in the phase of gravitational radiation emitted from a BBH
merger, should non-commutative space-time be manifest in nature. This deviation
is dependent on the scale at which non-commutative space-time becomes prevalent.
We showed that (to lowest order) this phase deviation comes at 2PN order from a
term proportional to Λ2 ≡ |θ0i|2/(lPtP)

2 and can be compared to the waveforms
observed in the detection of GWs from BBH at LIGO, GW150914. By comparing
the Bayesian analysis of allowed deviations from GR, which the LIGO and Virgo
collaborations have completed using the GW150914 signal, we have constrained Λ
up to the order of the Planck scale.

In deriving this constraint, we have made a number of well-justified approxi-
mations. First, we assumed that non-commutative effects contribute mainly to the
energy-momentum tensor and ignored any corrections to the Einstein field equa-
tions. We expect these latter corrections to induce higher derivatives in the per-
turbed field equations and hence to be suppressed for low frequencies. Secondly, we
have removed some angular-dependent terms in the non-commutative corrections
to the equations of motion. As explained, these terms will only modulate the non-
commutative corrections on the GW phase and hence have little effect on the overall
bound that we placed on the scale of non-commutativity. Further, we assumed a
circular orbit of the BHs, which is justified by the fact that emitted gravitational ra-
diation removes angular momentum from a BBH and hence circularizes it. Finally,
we assumed that the BHs had no spin and we used the masses estimated by the
LIGO and Virgo collaborations for the GW150914 signal. We did not calculate these
parameters assuming non-commutative space-time. This is because deviations of
the masses of the binaries and spin effects play a very small role in constraining Λ
(as emphasized in Section 4.4).

Ultimately we have found that if non-commutative space-time is realized, its
scale has to be of the order of the Planck scale in order to fit with the current mea-
surements of gravitational waves from BBH mergers. Our bound (4.53) on Λ is in-
deed equivalent to

|θ0i| . 12 · lPtP (4.54)

This result is the most stringent limit to date on non-commutative space-time and
represents a significant improvement compared to previous constraints from particle
physics considerations. This shows that GWs can indeed give us useful information
about fundamental physics.
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Chapter 5

Cosmological phase transitions
beyond the Standard Model

We now enter into the second research topic covered in this thesis. Our objective is
to learn about the dynamics of the early Universe and potentially new physics by
studying the production of GWs from cosmological phase transitions (PTs). Such an
investigation can be decomposed in four steps: the choice of a particle physics model
of interest, the description of the dynamics of PTs that can occur for this model,
the prediction for the existence and properties of associated GWs and finally the
comparison with existing or future data from experiments. This Chapter focuses
on the first two steps whereas Chapter 6 will discuss the part related to the GWs.
Together they contain the results of our research that we obtained in our articles [3,
4].

We remind that there are various reasons to build models beyond the Standard
Model. By introducing new fields or new interactions between fields, it may be
possible to explain phenomena such as the existence of dark matter, the origin of the
matter anti-matter asymmetry or the hierarchy problem. A lot of such models have
been proposed during the last few decades and it is not straightforward to know
which ones would provide the best description of nature. It is therefore important
to find as many ways as possible to constrain them and test them from experimental
evidences. Complementary to accelerator investigations such as those with the LHC,
GWs from PTs can be considered as one of these tools. As emphasized in Section
1.2.4, the electroweak and QCD PTs are likely to be crossovers in the SM such that
no production of GWs is expected during these events. On the other hand, several
BSM extensions do predict one or the other of these transitions to generate GWs with
interesting experimental signatures. Typically, first-order PTs produce a stochastic
background of GWs from the collision of true vacuum bubbles and their interaction
with the surrounding hot plasma of elementary particles [187–191].

This thesis considers two specific BSM scenarios that are described in the next
Section. We present their main phenomenological properties as well as their rele-
vance to solve existing problems of the SM. We shall then see that they give rise to
very interesting (and different) types of PTs. We also emphasize that the general dy-
namics of the PTs we will discuss in Section 5.2 are not limited to these models and
that they could also take place in other situations.
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5.1 Beyond the Standard Model physics

5.1.1 A non-linearly realized electroweak gauge group

The idea of the first model we consider is to change the description of the elec-
troweak sector of the SM. We explained in Section 3.1.2 how fermions and gauge
bosons can get their masses through the Higgs mechanism and spontaneous sym-
metry breaking of the gauge group SUL(2)×UY(1). There exist however other al-
ternatives to this scenario. Here we present a theory where the electroweak gauge
group is non-linearly realized and the Higgs boson does not need to be a singlet un-
der this group anymore. Callan, Coleman, Wess and Zumino (CCWZ) formalized
the idea of working with non-linear realizations of groups instead of usual linear
representations in [192, 193]. This formalism has then be applied to the electroweak
group by several authors as an alternative to the SM [194–196]. We give a brief
overview of the approach and invite the reader to look either at the original articles
or to the Section 1.2.1 of [197] for more details.

Non-linear realization

In the SM, electroweak gauge bosons acquire a mass from the modes that would be
Goldstone bosons if the symmetry where global rather than local. These modes are
contain in three of the four real components of the Higgs doublet. In the CCWZ
approach however, we consider instead that the Goldstone modes are those which
parametrize the coset group Gc = SUL(2)×UY(1)/UQ(1) ∼= SU(2). We write these
such three fields πi(x) and we embed them in a matrix as follows:

Σ(x) = e
i
v πi(σi−Iδi3) DµΣ = ∂µΣ + ig2

σi

2
W i

µΣ + ig1Σ
σ3

2
Bi

µ (5.1)

where we recognize the Pauli matrices σi for i ∈ {1, 2, 3}. The CCWZ prescription
then tells us that such fields transform according to

Σ(x) 7→ e−iβe−iαi σi
2 Σ(x)e

β′
2 (I−σ3) (5.2)

where we have acted on the left with an element of SUL(2)×UY(1) and on the right
with the inverse of an element of U(1)Q (whose unbroken generator is 1

2 (Y + σ3)).
If we were now trying to build a Lagrangian describing the low energy of the

electroweak sector, it would typically contain a term of the form v2

4 Tr
(

DµΣDµΣ†).
By expanding around the vacuum Σ = I we would recover the usual mass terms for
the W± and Z bosons, and this without the need of a Higgs field. It means that the
resonance h(125) observed at the LHC [6, 7] is not required to be a doublet under
the electroweak gauge group. It is particularly interesting to consider the case where
this resonance is associated to a singlet under the SM gauge group. In this case,
interactions that were forbidden in the SM can now be present. Although several of
these interactions are severely constrained by electroweak precision measurements
or flavour physics, some of them are still compatible with data and can give rise to
interesting BSM phenomena as we will illustrate below. We note that this approach
is rather economic as it does not postulate the existence of new particles.
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Higgs potential with a cubic coupling

Motivated by our present discussion, let us consider the Higgs boson as a singlet
ρ(x) ∼ (1, 1)0 under the SM gauge group. The SM Higgs doublet can then be iden-
tified as

H(x) =
ρ(x)√

2
e

i
2 πi(x)(σi−Iδi3)

(
0
1

)
, i ∈ {1, 2, 3} (5.3)

in terms of the would-be Goldstone modes πi(x) we introduced above. The phys-
ical Higgs h then corresponds to the fluctuation of ρ around the electroweak vac-
uum expectation value v = 246 GeV such that ρ = v + h. Among the various BSM
interactions we can build from ρ, cubic Higgs-Higgs and CP violating Higgs-Top
couplings are particularly interesting. As described in [196], they can indeed drive
a strong first-order PT and accommodate the observed baryon asymmetry through
electroweak baryogenesis. It was further shown in [198] that the cubic Higgs cou-
pling alone is sufficient to account for a first-order PT and to produce a stochastic
background of GWs sizable enough to be observed by LISA. As the continuation of
these two articles, we will show in Section 5.2.1 that there is a range of values of this
cubic coupling for which the electroweak PT admits a very interesting dynamics.

We now give the details of our model of interest. All the SM configurations are
assumed, with the exception of the Higgs potential which now admits an anomalous
cubic coupling:

V(0)(ρ) = −µ2

2
ρ2 +

κ

3
ρ3 +

λ

4
ρ4. (5.4)

This tree-level potential explicitly depends on the three parameters µ, κ and λ. How-
ever, the relations dV

dρ

∣∣∣
ρ=v

= 0 and d2V
dρ2

∣∣∣
ρ=v

= m2
h ≈ (125 GeV)2 allow the model to

be controlled by a single free parameter, which is chosen to be κ. Taking the example
at tree level, the above relations can be solved analytically giving:

µ2 =
1
2
(
m2

h + vκ
)

, λ =
1

2v2

(
m2

h − vκ
)

. (5.5)

The same process can be used to express µ and λ as a function of κ consistently at
each order of perturbation theory, at least numerically. In this thesis, we shall solve
the relations at one-loop level. In order to describe the behaviour of the Higgs field
in the early Universe, we then require the one-loop finite temperature potential. As
described in Section 3.2.2, it reads:

V(ρ, T) = V(0)(ρ) + V(1)
CW(ρ) + V(1)(ρ, T) + VDaisy(ρ, T), (5.6)

where V(0) is the potential (5.4) and the other terms are given in Appendix A.1.
For each value of κ, the potential (5.6) can be numerically computed and the

thermal behaviour of the Higgs field can be analyzed. In particular we will be able
to predict the dynamics of the electroweak PT in Section 5.2.1 and the associated
production of GWs in Section 6.2.1. To be consistent, it is important to note that
constraints on κ can be extracted from collider experiments. The typical probe is
the trilinear coupling λ3 = d3V/dρ3 = 6λv + 2κ which is actually non-vanishing
in the SM: λSM

3 = 3m2
h/v. However, current constraints on deviations from λSM

3 are
weak and are expected to be only at the order of 25%− 50% accuracy at the high-
luminosity LHC [199].
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5.1.2 The Standard Model with hidden scale invariance

The second BSM theory we consider is based on the concept of scale invariance.
Scale invariance provides an attractive framework to address the problems related
to the origin of mass and to the hierarchy of mass scales. In this framework, quantum
fluctuations result in an overall mass scale via dimensional transmutation, while di-
mensionless couplings are responsible for generating mass hierarchies. The dimen-
sionless couplings in the low-energy sector of the theory are only logarithmically
sensitive to the high-energy sector and can be naturally small in the technical sense
[200–202]. If high-energy and low-energy sectors interact via feeble interactions,
the breaking of scale invariance in the higher energy sector would proliferate in the
low-energy sector resulting in a stable mass hierarchy between the two (see e.g. [203,
204]). Such a scenario can be even better motivated from the fact that conformal in-
variance is indeed an essential symmetry in string theory that is believed to provide
a consistent ultraviolet completion of all fundamental interactions including gravity.

Higgs-dilaton model

A minimal extension of the SM which incorporates spontaneously broken scale in-
variance as a low energy effective theory has been recently proposed in [205]. In this
approach, non-linearly realized scale invariance is introduced by promoting phys-
ical mass parameters (including the ultraviolet cut-off Λ) to a dynamical dilaton
field. The dilaton field develops a large vev via the quantum mechanical mechanism
of dimensional transmutation. The dilaton-Higgs interactions then trigger the elec-
troweak symmetry breaking and generate a stable hierarchy between the Higgs and
dilaton vevs. As a result of the spontaneous breaking of anomalous scale symme-
try, the dilaton develops a mass at two loop level, which can be as small as ∼ 10−8

eV (for a dilaton vev of the order the Planck scale, ∼ MP ∼ 1019 GeV). In addi-
tion, the Higgs-dilaton potential displays a nearly flat direction. Before we show
how to derive such results, we emphasize that the formalism of hidden scale invari-
ance is rather generic and can be applied to other effective field theory models, with
essentially the same predictions regarding the light dilaton and the Higgs-dilaton
potential [206].

Let us now be specific and consider the SM as an effective low energy theory
valid up to an energy scale Λ, as introduced in [205]. In the Wilsonian approach, the
ultraviolet cut-off Λ is a physical parameter that encapsulates physics (e.g. massive
fields) which we are agnostic of. The Higgs potential defined at this ultraviolet scale
reads:

V(H†H) = V0(Λ) + λ(Λ)
[

H†H − v2(Λ)
]2

+ ..., (5.7)

where H is the electroweak doublet Higgs field and V0 is a field-independent con-
stant (bare cosmological constant parameter). The ellipsis stands for all possible
dimension > 4 (irrelevant), gauge invariant operators,

(
H†H

)n, n = 3, 4.... The
other bare parameters are the dimensionless couplings λ(Λ) and a mass dimension
parameter v(Λ), namely the bare Higgs vev. In principle, this potential has an in-
finite number of nonrenormalizable operators and Λ-dependent parameters must
fully encode the physics beyond the SM. In practice, however, we usually deal with
a truncated theory, which is valid in the low-energy domain only.

We assume now that a fundamental theory maintains spontaneously broken
scale invariance, such that all mass parameters have a common origin. To make
this symmetry manifest in our effective theory, we promote all mass parameters to a
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dynamical field χ, the dilaton, as follows:

Λ→ Λ
χ

fχ
≡ αχ, v2(Λ)→ v2(αχ)

f 2
χ

χ2 ≡ ξ(αχ)

2
χ2, V0(Λ)→ V0(αχ)

f 4
χ

χ4 ≡ ρ(αχ)

4
χ4 , (5.8)

where fχ is the dilaton decay constant. Then, Equation (5.7) turns into the Higgs-
dilaton potential

V(H†H, χ) = λ(αχ)

[
H†H − ξ(αχ)

2
χ2
]2

+
ρ(αχ)

4
χ4 . (5.9)

Quantum scale anomaly

The potential (5.9) is manifestly scale invariant up to the quantum scale anomaly,
which is engraved in the χ-dependence of the dimensionless couplings1. Indeed,
the Taylor expansion around an arbitrary fixed scale µ reads:

λ(i)(αχ) = λ(i)(µ) + βλ(i)(µ) ln (αχ/µ) + β′
λ(i)(µ) ln2 (αχ/µ) + ..., (5.10)

where λ(i) ≡ (λ, ξ, ρ) and

βλ(i)(µ) =
∂λ(i)

∂ ln χ

∣∣∣∣∣
αχ=µ

, (5.11)

are the renormalization group (RG) β-functions for the respective coupling λ(i) de-
fined at a scale µ, while β′

λ(i)(µ) = ∂2λ(i)

∂(ln χ)2

∣∣∣
αχ=µ

, etc. For convenience, we fix the

renormalization scale at the cut-off scale Λ, which is defined through the dilaton
vev as 〈χ〉 ≡ vχ, i.e. µ = Λ = αvχ. Note that while the lowest order contribution
in β-functions is one-loop, i.e. ∼ O(h̄), the n-th derivative of β is nth order in the
perturbative loop expansion, ∼ O(h̄n).

The extremum condition dV
dχ

∣∣∣
H=〈H〉,χ=〈χ〉

= 0 together with the phenomenologi-

cal constraint on vacuum energy V(v, vχ) = 0, lead to the following relations:

ρ(Λ) = 0 , βρ(Λ) = 0 . (5.12)

One of the above relations can be used to define the dilaton vev (dimensional trans-
mutation) and another represents the tuning of the cosmological constant. The sec-
ond extremum condition dV

dH

∣∣∣
H=〈H〉,χ=〈χ〉

= 0 simply sets the hierarchy of vevs:

ξ(Λ) =
v2

v2
χ

. (5.13)

In the classical limit when all the quantum corrections are zero, i.e., βλ(i) = β′
λ(i) =

... = 0, the above vacuum configuration represents a flat direction of the Higgs-
dilaton potential (5.9). The existence of this flat direction is, of course, the direct
consequence of the assumed classical scale invariance. In this approximation, the
dilaton is the massless Goldstone boson of spontaneously broken scale invariance.
The flat direction is lifted by quantum effects and, as we will see later on, by thermal

1In this we differ substantially from the so-called quantum scale-invariant SM [207]. In their ap-
proach, the SM is extrapolated to an arbitrary high energy scale and regularized by invoking dilaton-
dependent renormalization scale, µ = µ(χ)
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FIGURE 5.1: Plot of the allowed range of parameters (shaded region) with m2
χ(v) >

0, i.e., the electroweak vacuum being a minimum. The solid line displays the cut-off
scale Λ as function of the top-quark mass mt for which the conditions in Equation
(5.12) are satisfied.

effects in the early universe. Note, however, that the dilaton develops a (running)
mass in our scenario at two-loop level [205] (see also [208]),

m2
χ '

β′ρ(Λ)

4ξ(Λ)
v2 , (5.14)

while the tree-level Higgs mass is given to a high accuracy by the standard formula:
m2

h ' 2λ(Λ)v2. Note that β′ρ ∝ ξ2 and hence the dilaton is a very light particle,
mχ/mh ∼

√
ξ.

Phenomenology

To verify whether the above scalar field configurations correspond to a local min-
imum of the potential one must evaluate the running masses down to low energy
scales. The relations in Equation (5.12) provide non-trivial constraints here. In Figure
5.1, we have presented our analysis based on solutions of the relevant (one-loop) RG
equations (see the appendix section in Reference [205] for more details). The shaded
region in the Λ − mt plane corresponds to a positive dilaton mass squared (mini-
mum of the potential) and the solid curve shows the cut-off scale Λ as a function
of the top-quark mass mt for which the conditions in Equation (5.12) are satisfied.
Hence, within the given approximation, we find that the model is phenomenolog-
ically viable for mt . 169 GeV and mt & 173 GeV with the cut-off scale accord-
ingly predicted to be Λ . 1019 GeV and & 1021 GeV respectively. We note that
the upper values are within the allowed experimental range for the top quark mass,
mt = 173.34± 0.27(stat)± 0.71(syst) GeV [209]. Assuming vχ ≈ Λ (α ≈ 1), the dila-
ton mass for the Planck scale cut-off is predicted to be mχ ≈ 10−8 eV. This prediction
for the ultraviolet scale Λ, however, should be taken as indicative only. Indeed,
besides high-loop corrections, the actual matching conditions (threshold effects) be-
tween low energy couplings and couplings in the ultraviolet completion of the SM
may affect the above predictions significantly (see, e.g., examples in Reference [210]).
However, these details of the evaluation of coupling constants at high energy scales
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are not essential for the purpose of the study of the electroweak PT that we will con-
duct in Section 5.2.2. In what follows we will always assume Λ = MP ≈ 1019 GeV
in our numerical calculations.

We mention that the most stringent bound on such a light dilaton (mχ ∼ 10−8 eV)
comes from the constraints on long-ranged Yukawa-like fifth force. According to
experiments on violation of the gravitational inverse square law, the strength of this
force is typically quoted to be at least two orders of magnitude smaller than the
strength of the corresponding gravitational interaction [211]. This constraint can
be satisfied by adjusting the dilaton-Ricci scalar coupling [212], which we will not
discuss explicitly here.

Another important observation is that the potential energy densities evaluated
at the origin and at the electroweak minimum are equal, V(0, 0) ' V(v, vχ). This
is readily seen for the potential evaluated at the cut-off scale Λ: see Equations (5.9)
and (5.12)-(5.13). Then, since the vacuum energy density does not depend on the
renormalization scale [213], the trivial and electroweak vacuum states must be de-
generate at any given low energy scale. This will have an important consequence
for our subsequent study of cosmological PT in this model.

5.2 On the dynamics of phase transitions

5.2.1 Prolonged electroweak phase transition

We now study a special case of PTs that can occur in the model of Section 5.1.1 based
on the non-linear realization of the electroweak gauge group. As show in Equation
(5.4), the Higgs potential admits a cubic term at tree-level. In other words, a bar-
rier exists between the two different phases of the Higgs field from the electroweak
scale down to zero temperature. Since the barrier will never vanish, a first-order
PT can occur a priori at arbitrarily low T, unless the Higgs field stays trapped in
its metastable state. We therefore expect to predict PTs with a significant amount of
supercooling.

Interestingly, we shall see that this model exhibits a range of parameters for
which the PT is long-lasting, meaning that most of the true vacuum bubbles are
nucleated around Tn ∼ 50 GeV but collide well below the electroweak scale, as low
as Tp ∼ [0.1, 10] GeV. Precise results will depend on the exact equation of state of the
Universe which is complicated to compute in this context. The most important point
to mention is that vacuum energy is expected to dominate over radiation energy be-
low a given temperature, potentially leading to an inflationary stage. However, we
shall argue that such a scenario is unlikely to happen in this model as a significant
amount of bubbles are produced early enough (during the radiation dominated era)
and subsequently act as a source of inhomogeneity which prevents inflation from
occurring. Therefore, this scenario differs from previous studies of a certain class of
scale-invariant models, such as [214–216], in which the nucleation of true vacuum
bubbles occurs at very low temperatures, namely after inflation started. To avoid
any confusion, we stress that the scale-invariant model we introduced in Section
5.1.2 will give rise to an even more different PT dynamics. This should convince us
that the cosmological history of the Universe can indeed be substantially sensitive
to new physics.
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Decay probability

We gave a sketch of how a usual PT occurs in Section 3.2.2 in terms of the critical,
nucleation and percolation temperatures. We now show how to explicitly compute
such quantities starting from the one-loop finite temperature V(ρ, T) given by Equa-
tion (5.6). We remind that it is completely specified by the value of the cubic coupling
κ which is the only free parameter of the model.

The first process to describe is the tunnelling of the Higgs field between the two
vacua. It is characterized by the decay probability Γ per unit time per unit vol-
ume. Quantum fluctuations drive this process at zero temperature [217, 218] while
thermal fluctuations dominate at finite T [219, 220]. Therefore, Γ is expressed as a
function of the temperature of the Universe and can be written in the semiclassical
approximation as follows:

Γ(T) ≈ A(T)e−S(T) (5.15)

where A(T) is a prefactor of mass dimension 4 and S(T) is the Euclidean action
S[ρ, T] evaluated along the bounce trajectory ρB. In full generality, the Euclidean
action is the functional over the Higgs field ρ defined as [221]:

S[ρ, T] = 4π
∫ β

0
dτ
∫ ∞

0
dr r2

[
1
2

(
dρ

dτ

)2

+
1
2

(
dρ

dr

)2

+ F̃ (ρ, T)

]
, (5.16)

where τ = −it is the Euclidean time, β = 1
T and F̃ (ρ, T) := V(ρ, T)− V

(
v(+)

T , T
)

is the free energy density normalised according to its value in the unbroken phase.
The bounce trajectory ρB(τ, r) is the solution which minimises the Euclidean action
and thus satisfies the following equation of motion:

∂2ρ

∂τ2 +
∂2ρ

∂r2 +
2
r

∂ρ

∂r
− ∂F̃

∂ρ
(ρ, T) = 0, (5.17)

with the boundary conditions

∂ρ

∂τ

∣∣∣∣
τ=0,±β/2

= 0,
∂ρ

∂r

∣∣∣∣
r=0

= 0, lim
r→∞

ρ(r) = v(+)
T . (5.18)

The specific shape of the bounce ρ(τ, r) depends on the temperature [220]. At
zero or low temperature, it reduces to an O(4) symmetric solution ρ(r̃) with r̃ =√

τ2 + r2, while at high temperature it is given by an O(3)-symmetric and time-
independent solution ρ(r). The temperature scale that allows us to distinguish be-
tween these regimes is given by the mass scale of the problem or equivalently by
the size R0 of the O(4) symmetric bubble at T = 0. In both the limits T � R−1

0 and
T � R−1

0 , the action (5.16) simplifies as follows:

S[ρ, T] ≈


S4[ρ, T] = 2π2

∫ ∞

0
dr̃ r̃3

[
1
2

(
dρ

dr̃

)2

+ F̃ (ρ, T)

]
, T � R−1

0

1
T S3[ρ, T] =

4π

T

∫ ∞

0
dr r2

[
1
2

(
dρ

dr

)2

+ F̃ (ρ, T)

]
, T � R−1

0

(5.19)
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In these limits, the equations of motion for the bounce become:

d2ρ

dr2 +
α

r
dρ

dr
− ∂F̃

∂ρ
(ρ, T) = 0,

dρ

dr

∣∣∣∣
r=0

= 0, lim
r→∞

ρ(r) = v(+)
T (5.20)

with α = 2 for T � R−1
0 and α = 3 with r replaced by r̃ for T � R−1

0 . The prefactor
A(T) in equation (5.15) also admits different forms in the low and high temperature
limits:

A(T) ≈


1

R4
0

(
S4(T)

2π

)2

, T � R−1
0

T4
(

S3(T)
2πT

)3/2

, T � R−1
0

(5.21)

The difference in these expressions comes from the fact that the O(4)-symmetric
bounce has 4 zero-modes contributing a factor [S/(2π)]1/2 each, while the O(3)-
symmetric solution only has 3 zero-modes.

In the case of a rapid PT occurring around the electroweak scale TEW ∼ 100
GeV, the high-temperature formula provides a good approximation. However, it is
not clear a priori how Tp and R0 will scale if the transition occurs with a significant
amount of supercooling. In particular if Tp . R−1

0 , approximating S by S3/T might
not be accurate anymore, requiring the use of the exact expression (5.16) (or S4 at
even lower temperature). For this reason, we compare how each of the three differ-
ent actions S(T), S4(T) and S3(T) behaves as a function of the temperature. To do
this, the bounce equations of motion must be solved numerically. In the low and
high temperature regime, (5.20) is an ODE and can be integrated using the shooting
method2. On the other hand, the space-time dependent equation (5.17) is a PDE and
thus more difficult to address. Following [221, 222], we discretize space-time over
a lattice. The PDE and the boundary conditions reduce then to a set of non-linear
algebraic equations located at each point of the lattice. This set of equations is solved
according to the Newton’s method: starting from a guess solution we build a new
solution which minimises the error and iterate until the error becomes small enough.
For this method to converge, the choice of the guess is important. In our case, we
use the zero-temperature O(4) solution, found from the shooting method, as a guess
to solve (5.17) at T = 0 + ∆T. This solution is then used to solve the problem at
T(n+1) = T(n) + ∆T recursively. The numerical solutions will be presented below.

Bubble dynamics and energy

Given the nucleation probability Γ(T) discussed above, we can now describe the
dynamics of a first-order PT. We apply the general formalism provided in [223]. We
consider an expanding Universe with scale factor a(t) and Hubble rate H = ȧ/a.
The probability p(t) for a given point of spacetime to be in the symmetric phase at

2Note that there is no bounce solution when the two vacua are exactly degenerate at Tc and that
tunnelling occurs only for T < Tc. Numerically, the shooting method provides solutions only for a
wide enough energy separation between the vacua, namely for T ≤ T? < Tc. Although tunnelling
solutions can exist for T? < T < Tc and be estimated through the thin-wall approximation, they are
negligible for the PT as Γ is more and more suppressed as the vacua are more and more degenerate
(see e.g. Section IV in [217]).
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time t is then given by [223]:

p(t) = exp

− 4π

3

∫ t

tc

dt′Γ(t′)a3(t′)r3(t, t′)︸ ︷︷ ︸
:=I(t)

, (5.22)

where I(t) corresponds to the volume occupied by the true vacuum bubbles3. In-
deed, bubbles which have nucleated at t′ < t with probability Γ(t′) would have then
grown until t reaching a (coordinate) radius r(t, t′) given by:

r(t, t′) =
∫ t

t′
dt′′

v(t′′)
a(t′′)

, (5.23)

with v(t) being the bubble wall velocity. In the previous equation, we have neglected
the initial radius of the bubble which rapidly becomes negligible compared to the
expanding size.

The condition that the PT completes can be translated to the condition that p(t)→
0 for t > tc, where we remind that tc is the time corresponding to the critical temper-
ature Tc. As we are ultimately interested in the production of gravitational waves
from bubble collisions, we are looking for the transition time corresponding to the
period of maximum bubble collisions. This period can be estimated by the percola-
tion time tp [224, 225]. According to numerical simulations performed with spheres
of equal size, percolation occurs when approximately 29% of space is covered by
bubbles [226]. As suggested by [224, 225], we thus define tp from the condition
p(tp) ≈ 0.7.

Knowing the collision time, we can then look for the distribution of number of
bubbles at that time as a function of their size. From (5.23), a bubble formed at time
tR will have a physical size R(t, tR) = a(t)r(t, tR) at time t. The number density of
such bubbles is then given by [223]:

dN
dR

(t, tR) = Γ(tR)

(
a(tR)

a(t)

)4 p(tR)

v(tR)
. (5.24)

For t = tp, the peak of this distribution gives us the size R̄ of the majority of the
bubbles which are colliding. Equivalently, it also provides the time tR̄ when most
of these bubbles have been produced. We call this moment the nucleation time tn
(rather than tR̄) and it can be explicitly computed via:

d
dtR

(
dN
dR

(tp, tR)

)∣∣∣∣
tR=tn

= 0. (5.25)

As we shall see in Section 6.1, R̄ := R(tp, tn) is the key parameter to determine the
peak frequency of the GW spectrum produced by bubble collisions.

Another important parameter, related to the amplitude of the GW spectrum,
is the kinetic energy stored in the bubble walls. This kinetic energy comes from
the vacuum energy released during the transition from the unbroken phase to the
broken phase of the scalar field ρ. In order to derive this quantity, we briefly re-
mind the basic thermodynamic properties of this field. As described above, its

3Note that the exponentiation of I in (5.22) corrects the fact that regions with overlapping bubbles
have been counted twice in I .
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free energy is given by the effective potential, F (ρ, T) = V(ρ, T), and this allows
us to define the pressure p = −F and the energy density ε(ρ, T) = F − T dF

dT .
The released vacuum energy density is associated with the following latent heat:
ε̃(T) = ε(v(+)

T , T) − ε(v(−)T , T). During the transition, this latent heat is converted
into the formation of the bubbles (surface energy and kinetic energy of the walls)
and into the reheating and fluid motion of the plasma. Following the notation of
[227], we write κρ the fraction of energy which goes into the kinetic energy of the
bubbles (i.e. the scalar field ρ). As a result, the kinetic energy of a bubble is given
by ε̃, the portion of space it has converted and κρ. For bubbles produced at tn, their
kinetic energy at the percolation time tp is then

Ekin = 4πκρ

∫ tp

tn

dt
dR
dt

(t, tn)R2(t, tn)ε̃(t) (5.26)

where we have taken into account the fact that the latent heat varies with time
(namely temperature). In the case of a short PT or a slowly varying ε̃, the above
equation reduces to Ekin = 4π

3 κρR̄3ε̃ as we should expect.
In order to explicitly compute R̄ and Ekin, we need to determine the bubble

growth which depends on the velocity v(t) and the scale factor a(t) according to
Equation (5.23). We discuss the details of the evolution of the background Universe
below. Regarding the velocity, it is usually a difficult task to calculate precisely v(t)
as its depends on the interaction between the bubble wall and the plasma. However,
it has been shown that for PTs with a sufficient amount of supercooling the produced
bubbles typically reach velocities near the speed of light [227–229].4 We shall then
assume v ∼ 1.

Equation of state

In order to carefully describe the dynamics of a long-lasting PT, the expansion of the
Universe cannot be neglected and this requires to determine the scale factor a(t). In
the same way, it is also important to know how the temperature of the Universe,
T(t), evolves during the process. Both these quantities depend on the equation of
state (EOS) of the different components of the Universe and which of them domi-
nate. We discussed in Section 3.2.1 how the scale factor behaves when the Universe
is dominated by a single component with EOS p = wε. It is given by a(t) ∝ tγ with
γ = 2

3(w+1) (w 6= −1). For w < −1/3 (γ > 1), it follows that the Universe un-
dergoes an accelerated expansion (power-law inflation). In the same way, the case
w = −1 (vacuum domination) also leads to an accelerating phase with a(t) ∝ eHt

(exponential inflation).
In the general scenario of electroweak PT, bubbles nucleate near the electroweak

scale, TEW ∼ 100 GeV, and percolate rapidly. During such a process, the Universe is
radiation dominated with

p =
1
3

ε, a(t) ∝ t1/2, t =
(

45M2
P

16π3g?

)1/2

︸ ︷︷ ︸
:=ζ

1
T2 , (5.27)

4Before the recent article [229] appeared, it was also usual to assume κρ ∼ 1 for supercooled PTs.
This assumption now seems less justified and we shall comment on it when discussing the production
of GWs in Section 6.1.
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with MP ∼ 1.22 × 1019 GeV the Planck mass and g? ∼ 100 the effective number
of relativistic degrees of freedom in the symmetric phase. However, this equation
of state might not be valid in the case of strong supercooling or for a prolonged
transition. The reason comes from the fact that as the Universe cools down, the
vacuum energy density of the scalar field which remains in the unbroken phase
starts dominating over the radiation energy density, εrad = π2g?T4/30, possibly
leading to the phase of inflation described above.

In order to have a general understanding of transitions with such a behaviour,
we introduce the time te of radiation-vacuum equality satisfying εvac(te) = εrad(te).5

In the standard case, tn . tp � te, and the vacuum energy is released into the
bubbles before it could dominate. Then, scenarios with an inflationary background
have been considered for some classes of scale-invariant models in [214–216]. In
such cases, most of the bubbles nucleate after radiation-vacuum equality, namely
te < tn . tp. On the other hand, the process we want to describe here (prolonged
PT) is different from the two previous ones in the sense that tn < te < tp, namely
bubbles are produced before vacuum energy would dominate and percolation re-
quires a long time to complete. We now address this type of transition in more
detail.

The large separation between nucleation and percolation comes from a decay
probability Γ weaker than in the standard case, such that less bubbles are produced
per unit volume and more time is required for them to collide. Let us clarify this rea-
soning by assuming that all bubbles are nucleated at tn such that Γ(t) = Γ̄(tn)δ(t−
tn). The exponent in Equation (5.22) becomes I(t) = 4π

3 Γ̄(tn)a3(tn)r3(t, tn) and this
clearly shows how a larger radius (i.e. longer time) compensates for a weaker nu-
cleation probability. However, this last expression also indicates than the transition
might never complete if the Universe is in accelerating expansion, since in such a
case r(t, tn) is bounded6 when t→ ∞. In other words, there is the possibility for the
bubbles to not grow fast enough in order to reach each other and to collide.

However, we now argue that such a scenario (with no percolation) is unlikely
to occur as long as enough bubbles are produced during the radiation dominated
period, namely before te. Indeed, as bubbles nucleate, vacuum energy is converted
into kinetic energy of the wall motion such that the energy budget at the time te is
not simply dominated by vacuum energy density even if the bubbles have not yet
collided. Actually, the bubbles are acting as inhomogeneity in the background of
the expanding space-time and this renders difficult to naively estimate what would
be the corresponding dynamics of the Universe. According to several studies in-
cluding numerical simulations [230–232] (see [233] for a recent review), it has been
shown that small-field inflation is very unlikely to proceed with inhomogeneous ini-
tial conditions. We shall then assume in the following part of our study that for a
sufficient number of bubbles produced at tn, the Universe expansion will not accel-
erate around te and that percolation does occur at a given time tp > te.

An exact description of the evolution (namely a precise value of γ) would require
numerical simulations which are beyond the scope of this study. As we expect no
acceleration because of the previous argument, we have γ < 1 and so we assume for
simplicity that the Universe remains radiation dominated during the entire process
(γ = 1/2). Deviation of the value of γ in the range [0, 1] would change the estimation

5For simplicity, we assume here that the Universe is dominated by a single component at a time
and that the transition is sharp between radiation and vacuum domination.

6This can easily be seen explicitly. Assuming a(t) ∝ t1/2 for t < te and a(t) ∝ tγ for t > te, Equation
(5.23) (with v ∼ 1) gives r(t, tn) ∝ 2(t1/2

e − t1/2
n ) + tγ−1/2

e (t1−γ − t1−γ
e )/(1− γ), such that when t→ ∞

r(t, tn)→ +∞ if γ < 1 and r(t, tn)→ (2 + 1/(γ− 1))t1/2
e − 2t1/2

n if γ > 1.
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of the parameters describing the transition, in particular R̄ and Ekin, but not the
qualitative picture. Moreover, we expect such a deviation to be compensated by a
shift in the value of the initial conditions describing the underlying particle physics
model (the parameter κ in Equation (5.4) in our case).

Under the aforementioned assumptions (γ ∼ 1/2, v ∼ 1) and using Equation
(5.27), we can simplify Equations (5.22), (5.23) and (5.26) and write them in terms of
temperature rather than time. Regarding the evolution of the temperature, we also
recall that for a strong transition the dominant part of the vacuum energy is trans-
formed into kinetic energy of the bubble walls meaning that we can neglect heating
of the plasma. In the same way, the kinetic energy is subsequently transformed into
GW energy through bubble collisions such that again heating is negligible. We even-
tually obtain the following key equations:

R(T, T′) =
2ζ

T

(
1
T
− 1

T′

)
p(T) = exp

[
−64π

3
ζ4
∫ Tc

T
dT′

Γ(T′)
T′6

(
1
T
− 1

T′

)3
]

Ekin = 32π κρ ζ3
∫ Tn

Tp

dT
1

T3

(
2− T

Tn

)(
1

T2 −
1

TTn

)2

ε̃(T) ,

(5.28)

where we remind that ζ has been defined in Equation (5.27). It is now possible to
numerically evaluate the previous expressions and to derive the key parameters Tn,
Tp, R̄ and Ekin defining the PT.

It is worth mentioning how the above formalism simplifies in the case of a quick
PT, which is the main situation investigated in the literature. In that case, the PT
is assumed to proceed rapidly around the temperature T̃n when at least one bubble
has been produced per Hubble volume, namely

∫ Tc
T̃n

dT Γ(T)
H4(T)T ∼ 1. In this context,

T̃n is called the nucleation temperature and replaces our expression Tn derived from
Equation (5.25). Then the decay probability can be expanded around that instant
as Γ(t) ≈ Γ(t̃n)eβ(t−t̃n), where β−1 gives the time scale of the transition. As such a
PT is not expected to proceed too far below the electroweak scale, we have Γ(T) ≈
A(T)e−S3(T)/T and hence:

β

H(T̃n)
= T̃n

d
dT

(
S3(T)

T

)∣∣∣∣
T=T̃n

. (5.29)

The characteristic size and energy of the bubbles are then expected to be R̃ = vβ−1

and Ẽkin = 4π
3 R̃3ε(T̃n) respectively.

Numerical solutions

We give the numerical results of the previous formalism applied to the model de-
scribed by the potential (5.4) and (5.6). We first mention that the range of parameter
κ ∈ [−1.85,−1]m2

h/v has already been investigated in [198]. In that case, the PT oc-
curs quickly and can be described by a rapid PT (as explained in the last paragraph
above). It results in the production of a GW spectrum potentially detectable by LISA.
However, for κ < −1.85m2

h/v, the transition lasts longer and we require the more
general prescription that we just outlined.
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FIGURE 5.2: Thermal behaviour of the Euclidean action for κ = −1.9m2
h/v. The

black solid line corresponds to the action S(T), Equation (5.16), whose spacetime
dependent bounce solution (5.17) has been solved over a lattice through Newton’s
method. The blue dotted line (resp. red dashed line) is the low (resp high) temper-
ature approximation S4(T) (resp. S3(T)/T) given by Equation (5.19).
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FIGURE 5.3: Thermal evolution of the probability p(T) for κ = [−1.92,−1.87]m2
h/v.

The intersection between the curves and the red solid line p(T) = 0.7 gives the
percolation temperature.
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κ [m2
h/|v|] Tc GeV Tn GeV Tp GeV (R̄Hp)−1 α

−1.87 98.3 48.9 43.4 8.79 0.57

−1.88 98.0 48.9 31.2 2.76 1.88

−1.89 97.7 49.0 14.4 1.41 37.8

−1.9 97.4 48.7 4.21 1.09 5.09 · 103

−1.91 97.1 48.6 0.977 1.02 1.73 · 106

−1.92 96.8 48.5 0.205 1.00 8.80 · 108

TABLE 5.1: Key parameters describing the PT for κ = [−1.92,−1.87]m2
h/v. This

range of κ values has been selected in prevision of its relevance for GW production.

First, we show in Fig. 5.2 how the Euclidean action behaves as a function of
temperature, for κ = −1.9m2

h/v. It appears that the action S(T) given by Equation
(5.16) is not only well approximated by S4(T) at T � R−1

0 ≈ 6 GeV and S3(T)/T at
T � R−1

0 , but is also close to R−1
0 . In other words, min{S4, S3/T} provides a good

approximation of the action over the entire range of temperatures considered, as
also suggested in [220]. This observation is important from a computational point of
view as it means we can avoid solving the time-dependent PDE (5.17) which is com-
putationally expensive. Moreover, we observe that the action becomes, and stays,
large at low temperatures (S ∼ S4 ∼ 930), meaning that its effect on the PT dynam-
ics is exponentially suppressed (see for example (5.15)).

Second, p(T) is computed from Γ(T) according to Equation (5.28). The results
for several key values of κ are given in Fig. 5.3. As expected, the PT can be identified
as a rapid change in p(T) from 1 to 0. The corresponding nucleation and percolation
temperatures are given in Table 5.1. We observe that Tn ∼ 49 GeV for each κ. This
is due to the fact that most of the bubbles are produced when the action S3(T)/T
reaches its minimum, whose location only slightly changes with κ. On the other
hand, we notice that Tp varies through several orders of magnitude. This is because
the number density of bubbles produced at the nucleation time changes as a function
of κ. This confirm the expectation that as the decay probability decreases, more
time is needed for the transition to complete. We have verified that these results
are consistent with our assumption that most bubbles are produced before vacuum
energy dominates. Indeed, vacuum-radiation equality would occur at Te ∼ 35.5
GeV for this range of κ, if no bubbles were produced earlier. This confirms Tn > Te.

The remaining task is to compute the characteristic bubble size R̄ and the kinetic
energy Ekin of the bubbles at the percolation temperature. For later convenience,
we rescale them compared to the Hubble radius and radiation energy density at
this time. To this end, Table 5.1 uses the dimensionless parameters (R̄Hp)−1 and
α = εkin/(κρεrad(Tp)) with εkin = Ekin/R̄3. In this way, we can easily compare our
results with those mentioned in the literature (as v ∼ 1, (R̄Hp)−1 takes the role of
β/H given by Equation (5.29)).7

7Note that Equation (5.29) could clearly not have been applied in this scenario as β would have
been negative for temperatures below the minimum of S3/T.
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Analysis

Table 5.1 contains all the information we need about the PT to predict the GWs spec-
trum that is produced during such an event. This will be presented in detail in the
next Chapter. At this stage, we can already extract interesting information from our
numerical results. As expected, Table 5.1 confirms that there exist some parameters
for which the PT completes well below the electroweak scale. Lower values of per-
colation temperature are also possible for lower values of κ, but they are constrained
from various considerations. First, the obvious lower bound Tp & 1 MeV is given by
nucleosynthesis constraints. Second, we shall see in the next Chapter that the GW
spectrum for κ . −1.92m2

h/v is already excluded from current PTA surveys.
Another observation from Table 5.1 is that the two quantities (R̄Hp)−1 and α

α+1
approach 1 for lower and lower values of κ. The fact that (R̄Hp)−1 → 1 means that
bubbles are almost of horizon size when they collide and that they never become of
super-horizon size because H−1 also increases linearly with time. Note also that the
increase in α for lower κ is mainly due to α ∝ T−4

p rather than to the change of kinetic
energy stored in the bubbles.

Finally, we note that at temperatures around T ∼ 100 MeV, the QCD PT, which
is believed to be second-order in the SM, takes place. As discussed in [234], a qq̄
condensate with non zero vacuum expectation value is thus expected to form and
to contribute to the thermal potential (5.6) via a linear term in the Higgs field. This
effect has no significant influence on this model since the cubic term in the tree-level
potential (5.4) induces a large barrier which is not affected by such a linear term.
This will however be a very important ingredient to understand the PT dynamics
that occur in the scale invariant model we introduced in Section 5.1.2 and to which
we return now.

5.2.2 QCD-induced electroweak phase transition

We finished our discussion about the extension of the SM with hidden scale invari-
ance by observing that the electroweak vacuum of the Higgs-dilaton potential is
degenerate with the vacuum at the origin: V(0, 0) ' V(v, vχ). This has an impor-
tant ramification for the cosmological PT in this model: the critical temperature of
the electroweak PT, Tc, defined as the temperature where the two minima are de-
generate, is Tc = 0. Hence, the premature conclusion is disastrous for our model:
no electroweak PT is possible. However, we argue that as the universe cools down
QCD chiral symmetry breaking happens such that the quark-antiquark condensate
triggers the electroweak symmetry breaking and the Higgs field relaxes in its elec-
troweak symmetry breaking vacuum configuration.

Witten has pointed out a long time ago [234] that in the SM with Coleman-
Weinberg radiative electroweak symmetry breaking, the cosmological electroweak
PT is strongly first-order. The electroweak PT is aided by the QCD quark-antiquark
condensate and hence occurs at low temperatures, namely around the temperature
of the QCD chiral PT. See also the follow up work which also introduces the dilaton
field [235]. Although these models are no longer phenomenologically viable, one
may consider their extensions which exhibit the same features for some range of pa-
rameters [236]. We now show how this can be implemented in our model of interest
with hidden scale invariance.



Chapter 5. Cosmological phase transitions beyond the Standard Model 94

The finite temperature Higgs-dilaton potential

The first step to perform is to compute the finite temperature corrections to the
tree-level Higgs-dilaton potential (5.9). We have to be careful before trying to di-
rectly apply the standard formalism we introduced in Section 3.2.2 and used in
our previous model. A notable difference comes from the presence of the dilaton-
dependent dynamical cut-off in this case. The standard quadratic divergent term
∝ Λ2, which are renormalized away within the standard calculations, and quartic
(field-independent) divergent terms ∝ Λ4, which are typically ignored altogether,
become now ∝ χ2 and ∝ χ4.

We explicitly show in Appendix A.2 how to derive the finite temperature poten-
tial taking these considerations into account. We state that purely quantum (temper-
ature independent) corrections of the sort χ2 and χ4 can be absorbed in the redefi-
nition of the tree-level couplings in Equation (5.9). Then the temperature indepen-
dent logarithmic terms ∝ ln χ2 do exactly reproduce the standard zero temperature
Coleman-Weinberg quantum corrections in our calculations. We remind that such
quantum corrections explicitly break scale invariance and give rise to the dilaton
mass at two-loop level. Therefore, in the early universe they are subdominant com-
pared to the thermal corrections (especially along the classical flat direction), which
also break scale invariance explicitly. Thus, we can safely ignore the quantum cor-
rections in what follows.

For the purpose of illustrating how the PT dynamics proceeds, it is convenient
to look at the leading high-temperature expansion of the effective thermal potential
we obtained in Appendix A.2. It reads:

VT(h, χ) =
λ(Λ)

4

[
h2 − v2

v2
χ

χ2

]2

+ c(h)π2T4 − λ(Λ)

24
v2

v2
χ

χ2T2

+
1
48

[
6λ(Λ) + 6y2

t (Λ) +
9
2

g2
1(Λ) +

3
2

g2
2(Λ)

]
h2T2 + · · · (5.30)

where h is the neutral, CP-even component of the Higgs doublet, H =
(

0, h/
√

2
)T

and c(h) is a number of relativistic degrees of freedom, which are in thermal equi-
librium at T. The parameter c(h) has implicit h dependence, through the relation
mi(h) < T, where mi(h) are h-dependent masses for SM fields. Only dominant ther-
mal fluctuations of heaviest SM fields (i = W±, Z, h, t) are taken into account and the
relations (5.12) and (5.13) are employed when deriving Equation (5.30).

To proceed further, we first eliminate the dilaton field by solving its equation of
motion, ∂VT/∂χ = 0, which implies at leading order:

χ2 ≈
v2

χ

v2

(
h2 +

T2

12

)
. (5.31)

Note that if we set the temperature to zero, the above equation displays the flat di-
rection of the zero temperature classical potential. Hence, the T2 term is the leading
contribution from thermal fluctuations that breaks scale invariance explicitly. Plug-
ging (5.31) back into (5.30), we obtain the finite temperature potential in terms of the
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Higgs field only:

VT(h, χ(h)) =

[
c(h)π2 − λ(Λ)

576

]
T4

+
1
48

[
4λ(Λ) + 6y2

t (Λ) +
9
2

g2
1(Λ) +

3
2

g2
2(Λ)

]
h2T2 + · · · . (5.32)

As expected in this approximation, the temperature independent terms vanish due
to the flatness of the classical potential. We verified numerically that 4λ(Λ)+ 6y2

t (Λ)+
9
2 g2

1(Λ) + 3
2 g2

2(Λ) > 0 and therefore the curvature of the effective potential (5.32) at
the origin h = 0 is positive. Hence, h = 0 is a minimum of the effective potential and
is separated from another local minimum, which corresponds to the electroweak
symmetry breaking configuration of the Higgs field, by the temperature dependent
barrier. Furthermore, this barrier persists down to T = 0 due to the two (and higher)
loop quantum corrections. As discussed earlier, the two vacuum states are degen-
erate in energy. We stress again that this generic prediction of the model is largely
independent of its ultraviolet completion and would imply that the Universe is stuck
in the trivial symmetric minimum.

QCD effects as a trigger of the electroweak PT

The above picture is actually altered as the universe cools down to temperatures
where QCD interactions become strong and various composite states start to form.
As the universe remains in the symmetric phase h = 0, all quarks (and other SM
particles) are massless at that epoch. Hence, the SU(6)L × SU(6)R chiral symmetry
in the quark sector must be exact and it gets spontaneously broken once the QCD
quark-antiquark condensate forms. Part of the SU(6)L × SU(6)R chiral symmetry is
actually gauged and represents SU(2)×U(1) electroweak symmetry. Therefore, the
quark-antiquark condensate also breaks the electroweak symmetry and results in
generation of small masses for the W± and Z gauge bosons. The finite temperature
quark-antiquark condensate, 〈q̄q〉T has been computed within the chiral perturba-
tion theory with N massless quarks in [237]:

〈q̄q〉T = 〈q̄q〉
[

1− (N2 − 1)
T2

12N f 2
π

− 1
2
(N2 − 1)

(
T2

12N f 2
π

)2

+O
(
(T2/12N f 2

π)
3)] , (5.33)

where 〈q̄q〉 ≈ −(250 MeV)3 is the zero temperature condensate and fπ ≈ 93 MeV is
the pion decay constant. From Equation (5.33) we can infer that for N = 6 the critical
temperature of the chiral symmetry breaking PT, defined by 〈q̄q〉Tc = 0, is equal to
Tc ≈ 132 MeV. The condensate (5.33) would generate a linear term in the effective
potential through the quark-Higgs Yukawa interactions: yq〈q̄q〉Th/

√
2, where yq is

the Yukawa coupling of q−type quark. It should be stressed that while all terms in
the effective potential Equation (5.32) diminish as T decreases, the magnitude of the
linear term increases. The extremum condition is modified as:

yq〈q̄q〉T/
√

2 +
∂VT

∂h
= 0 , (5.34)

and it is clear that the local minimum shifts from the origin h = 0 to non-zero values
of h.

The evolution of this local minimum can be analyzed more precisely by employ-
ing the full thermal potential given in Appendix A.2 rather than its high-temperature
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FIGURE 5.4: VT(h) − VT(0) for different temperatures below the chiral PT and h
near the origin.

expansion. We numerically find that just below the critical point of the chiral PT at
Tc, the QCD condensate term is small and a non-zero minimum, h0 does emerge
near h = 0. This is shown in Figure 5.4. This minimum is separated by a potential
barrier from another local minimum that later evolves into the electroweak vacuum.
This minimum exists for 127 GeV ≤ T ≤ 132 GeV. In this range of temperatures, the
top quark remains relativistic with mt(h0)

T . 1. Below this range of temperatures, the
contribution from |〈q̄q〉T| becomes large enough such that the local minimum near
the origin no longer occurs, indeed the first term in Equation (5.34) becomes larger
than the second term. Subsequently, the Higgs field quickly runs down classically
the slope from near the origin towards the true electroweak breaking vacuum.

Cosmological implications

The first thing we notice is that the Higgs field configuration during the PT is smooth
and homogeneous, and does not proceed through h−bubble nucleation. However,
since the QCD PT precedes the electroweak one, all the six flavours of quarks are
massless during that process. There are theoretical arguments [238], which are sup-
ported by numerical calculations [239], which suggest that the QCD PT with N ≥ 3
massless quarks is first-order. So we should expect the production of GWs related to
the dynamics of QCD bubbles formed during this transition.

We will show in the next Chapter that we can roughly estimate the properties
of such GWs. However, we can already realize that any precise prediction would
require more knowledge regarding the QCD PT than what we have presented at this
stage. Indeed, we remind that computing the production of GWs from a first-order
PT requires to determine the shape of the thermal potential along which tunnelling
takes place. Here we only have specified the Higgs-dilaton potential, as in Equations
(5.30) or (5.32), but not the potential for the quark-antiquark along which the first-
order transition occurs. Also, we have implicitly assumed that the q̄q and Higgs
transitions proceed independently one after the other. This seems justified from the
fact the temperatures corresponding to the condensate formation, T ∼ 132 MeV, and
to the Higgs rolling, T ∼ 127 MeV, are rather separated. However, a more careful
analysis would be necessary to completely confirm this assumption.
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We therefore understand that getting a more precise picture of the overall sce-
nario requires to build and analyze a mutlti-field potential of the kind VT(h, χ, q̄q).
This would allows us to clearly see if the QCD and electroweak PTs are distinct or
entangled (for example as taking place along a particular direction in field space).
We could also compute the bubble formation rate in details. We mention that such
a task is currently under investigation and is expected to appear in a forthcoming
publication. In this thesis, we will keep to our above assumptions and only extract
order of magnitude estimates.

On top of GWs that we describe in Section 6.2.2, another interesting phenomenon
we note in passing is the production of primordial black holes associated with a
first-order QCD PT [240]. The mass of a horizon size black hole can be estimated
to be of the order of solar mass, MBH ∼ 1/(H(Tc)G) ∼ M3

P/T2
c ∼ 1065 eV ∼ M�.

These are large enough black holes to survive the Hawking evaporation until the
present epoch and thus can contribute to the total dark matter density. Finally, we
also mention that the model may provide a natural framework for the so-called cold
baryogenesis [241].

5.3 Chapter summary

A substantial amount of content has been presented in this Chapter and it is judi-
cious to summarize our main results. We have introduced two different particle
physics models which have the potential to accommodate certain limitations of the
SM. Our main interest has been to study the type of PTs that can occur during the
early Universe for such theories. We remind for clarity that our ultimate motivation
behind this investigation is to predict new observables (such as GWs) that could
allow us to refute or consolidate the veracity of such models.

First, we discussed a modification of the SM where the electroweak gauge group
is non-linearly realized. Considering the Higgs field as a singlet under the full gauge
group, we argued that the Higgs potential can admit a cubic coupling κ at tree-level.
We found an interesting range of values of κ for which the electroweak PT completes
at a temperature significantly below the electroweak scale. This analysis required to
study the behaviour of the nucleation probability of true vacuum bubbles at low
temperature and to take into account the expansion of the Universe. Regarding the
former point, we compared the usual low and high temperature expressions of the
Euclidean action to a more general formula based on a time-dependent bounce so-
lution. We observed that the two approximate equations actually provide a good
estimate of the action over the entire range of valid temperatures. Regarding the lat-
ter point, we argued that we can consider the Universe as radiation-dominated all
along the process without changing the general behaviour of the PT. A better esti-
mation of the exact equation of state and scale factor during the PT would however
slightly increase the accuracy of the relation between the parameter κ and the pre-
dicted properties of the transition given in Table 5.1. These are those values we shall
use in the next Chapter to characterize the GWs produced during the transition.

Second, we studied the minimal SM with hidden scale invariance. The model
predicts a light dilaton which very feebly couples to the SM fields. The Higgs-dilaton
potential exhibits two degenerate minima at zero temperature, therefore the elec-
troweak PT can only be triggered by the QCD chiral symmetry PT at T . 132 MeV.
We found that the Higgs field configuration changes smoothly during this transition,
while the chiral symmetry breaking is likely to be first-order. We pointed out that
the exact description of the dynamics of the QCD-EW transition requires to define a
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thermal potential which involves the dilaton, the Higgs field and the q̄q condensates
at once. Although this task is currently still under investigation, this does not pre-
vent us to extract order of magnitude predictions. In particular, stable primordial
BHs of mass ∼ M� are expected to be produced during the PT. GW signals will also
be predicted in Section 6.2.2 once we learn how to characterize them.
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Chapter 6

GW background from phase
transitions

In Chapter 5, we have described two particle physics models which exhibit first-
order cosmological phase transitions. We now want to present the results we ob-
tained in [3, 4] regarding the production of GWs associated to these events. Our
main objective is to predict the spectrum of such GWs as a function of the param-
eters of the models in order to obtain constraints on these parameters from current
or future GW experiments. This requires to understand the different mechanisms
which are responsible for the production of GWs during a first-order PT and then to
be able to estimate the typical frequency and amplitude of such signals.

Although no stochastic GW background has been detected yet, the study of cos-
mological phase transitions is a promising research area. Indeed, we shall see that
the peak frequency of a stochastic GW background produced by a PT near the elec-
troweak scale, TEW ∼ 100 GeV, is expected to lie in the millihertz range, which co-
incides with the projected sensitivity of the future LISA space-based interferometer
[227]. This has motivated a series of investigations into the production of GWs in
various BSM models, see e.g. [198, 224, 225, 242–252]. Most of these studies focus
on the usual electroweak PT, but as we emphasized in our previous Chapter it is
possible to find scenarios whose dynamics differ substantially from the regular case.
The predicted GW spectrum is therefore expected to be quite different as well.

Let us give an overview of how the characteristic frequency and amplitude of the
spectrum are derived from the dynamics of the PT. They depend on a few key pa-
rameters: the duration of the transition, the size of the colliding bubbles, the bubble-
wall velocity, the fraction of vacuum energy transferred into the bubble-walls and
the interaction between the expanding bubbles and the surrounding plasma. In the
aforementioned studies, these quantities are computed under the assumption that
the PT occurs on a time scale much shorter than the Hubble time. The instant at
which most of the bubbles are nucleated is thus very close to the time when they col-
lide and cover a significant volume of the Universe. Our analysis of the prolonged
electroweak PT in Section 5.2.1 tells us however that this assumption is not justified
in that case since there is a non-negligible amount of time between nucleation and
collision. We expect the GW background to be predominantly produced by large
bubbles colliding much later than in a typical electroweak PT previously discussed
in the literature. A range of lower peak frequencies should then be observed in such
a scenario. Regarding the QCD-induced electroweak PT that we described in Sec-
tion 5.2.2, we already mentioned that it will be difficult to estimate the GW spectrum
at this stage. This is because we do not have access yet to the potential along which
the first-order chiral PT takes place. Nevertheless, we shall at least be able to give
an estimate of the associated GW signal and argue that it is an interesting scenario
to further investigate.
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6.1 Stochastic GW background

Saying that bubbles of true vacuum nucleate, expand and collide is equivalent to
saying that the corresponding background scalar field varies in space and time. The
Einstein equations therefore tell us that the energy-momentum tensor of this field
is a source of curvature perturbations. Moreover, a substantial amount of energy
released during the PT can be transferred into the surrounding fluid in the form of
turbulence or coherent motion (sound waves). This is also a source of GWs since
the fluid couples to the metric as well. An entire area of research is then devoted to
investigate how to solve the EFE in those cases, either analytically or numerically.
We will not present the details of the various approaches which have been proposed
but we focus instead on how they can be applied to obtain predictions. More infor-
mation can be found for example in [116] Chapter 22.

A stochastic GW background is usually described in terms of its contribution to
the energy density of the Universe per frequency interval:

h2
0ΩGW( f ) =

h2
0

ρc

dρGW

d(ln f )
, (6.1)

where f is the frequency, ρGW the GW energy density, ρc = 3H2
0 /(8πG) is the critical

energy density today and h0 the dimensionless Hubble rate. The energy density of
GWs depends on the metric perturbation hµν which satisfies the EFE, namely [253]

ρGW =
1

8πG
〈∂thµν∂thµν〉 ∂α∂αhµν ∼ 8πGTµν , (6.2)

with Tµν the energy momentum tensor describing the sources. As previously men-
tioned, the production of GWs from a first-order phase transition originates from
three sources: the collisions of bubbles walls [187–191, 254, 255], sound waves in the
plasma formed after collision [256–259] and magnetohydrodynamics turbulence in
the plasma [260–264]. As these three contributions should approximately linearly
combine [227], the total energy density can be written as

h2
0ΩGW ' h2

0Ωcol + h2
0Ωsw + h2

0ΩMHD . (6.3)

How much each of these terms contributes to the total energy density depends on
the details of the transition and the underlying particle physics model.

We expect the GW spectrum to be mainly produced around the percolation tem-
perature tp of the phase transition with a characteristic frequency fp. The amplitude
of this signal then decreases as a−4(t) up to today while its frequency redshifts as
a−1(t). In other words, the energy density stored in the GWs and the peak frequency
today are given by [191]:

f0 = fp
a(tp)

a(t0)
= 1.65× 10−7 Hz

(
fp

Hp

)(
Tp

1 GeV

)( g∗
100

)1/6

ΩGW,0 = ΩGW

(
a(tp)

a(t0)

)4 (Hp

H0

)2

= 1.67× 10−5h−2
0

(
100
g∗

)1/3

ΩGW ,

(6.4)

where g? is the number of relativistic degrees of freedom introduced in Section 3.2.2
Equation (3.33).
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Explicit formula

We now want to estimate the peak frequency and amplitude of each contribution in
Equation (6.3). We can first investigate the collision term from dimensional analysis.
We expect the peak frequency to scale with the inverse size of the bubbles at their col-
lision, namely fp ∼ (R̄)−1. Regarding the amplitude, we first have Ωcol = ρGW/εtot
where εtot is the total energy density of the Universe at the percolation time. The
energy density of GWs is given by Equation (6.2). We can expect that ∂α ∼ R̄−1 (the
characteristic size of bubbles) and Tµν ∼ εkin (the kinetic energy density stored in
the bubbles). This implies ρGW ∼ 8πGR̄2ε2

kin. Substituting G from the Friedmann
equation H2

p = 8πG
3 εtot, we get:

Ωcol ∼ (R̄Hp)
2 ε2

kin

ε2
tot
∼ (R̄Hp)

2 κ2
ρ

α2

(1 + α)2 . (6.5)

where we remind that α = εkin/(κρεrad) is an indicator of the amount of energy
from the PT which is transferred either into the wall motion of the bubbles or into
the cosmic fluid.

In reality, Ωcol also depends on the bubble wall velocity v. Several studies have
actually provided more accurate expressions for the GW spectrum from bubble col-
lisions, beyond the simple dimensional analysis. They usually rely on the envelope
approximation and numerical simulations [190, 191, 254], although some analytic
formula have also been suggested [255, 265]. Using the results of [254], the spectrum
today can be described as follows:

h2
0Ωcol( f ) = 1.67× 10−5

(
100
g∗

)1/3 ( β

Hp

)−2

κ2
ρ

(
α

1 + α

)2 ( 0.11v3

0.42 + v2

)
S( f ), (6.6)

where:

S( f ) =
3.8( f / f0)2.8

1 + 2.8( f / f0)3.8 ,

f0 = 1.65× 10−7
(

Tp

1 GeV

)( g∗
100

)1/6
(

β

Hp

)(
0.62

1.8− 0.1v + v2

)
Hz.

(6.7)

In these expressions β is the time scale of the transition. It is usually given by Equa-
tion (5.29) for a rapid PT but we emphasized that this formula is not valid for a
long-lasting transition. Therefore we shall instead substitute β ∼ vR̄−1 in Equation
(6.6-6.7) in agreement with the dimensional estimate given by Equation (6.5).

Formulae of the kind (6.6)-(6.7) have been obtained for the contributions from
sound waves and turbulence as well. They can be found in the literature, namely
in [256–259] and [260–264] respectively. We do not present them here since we shall
not use them in our subsequent computations for reasons we shall justify below.

6.2 GWs beyond the Standard Model

6.2.1 GWs from a prolonged phase transition

We now want to compute the GW spectrum produced during the long-lasting and
supercooled PT detailed in Section 5.2.1. We remind that the dynamics is determined
by the cubic coupling κ which appears in the Higgs tree-level potential 5.4. The
numerical results presented in Table 5.1 for κ = [−1.92,−1.88]m2

h/v confirm that the
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FIGURE 6.1: Lines: GW spectra estimated from Equations (6.6-6.7) and the parameters of
Table 5.1 for κ = [−1.92,−1.88]m2

h/v. Green shaded area: current exclusion limits from
EPTA [93]. Blue shaded area: planned detection sensitivity of SKA [266].

electroweak PT is very strong and release a lot of energy for this parameter range.
The GW results we will present therefore assume that the the collision term Ωcol is
dominant:

h2
0ΩGW ' h2

0Ωcol . (6.8)

As explained in [227], this is based on the idea that the bubbles are in a runaway
configuration. The amount of converted vacuum energy is such that the energy
deposited in the plasma saturates and the majority goes into accelerating the bubble
wall. This is equivalent to saying that v ∼ 1 and κρ ∼ 1.1 We shall discuss the
validity of this assumption below.

It is now straightforward to evaluate Equations (6.6)-(6.7) for the parameters
given in Table 5.1. It appears that the peak frequency f0 can be as low as ∼ 10−9 −
10−7 Hz and thus lies in the detection range of PTA experiments. In Fig. 6.1, we
compare the GW spectrum for several values of κ and the current status of PTA de-
tectors. Three collaborations have published limits on the amplitude of a stochastic
GW background: the European Pulsar Timing Array (EPTA) [93], the Parkes Pul-
sar Timing Array (PPTA) [94] and the North American Nanohertz Observatory for
Gravitational waves (NANOGrav) [95]. All these three limits are of similar ampli-
tudes and thus we only display the EPTA results2. The sensitivity area should be
improved in the future by the Square Kilometre Array (SKA) [96] whose expected
detection range is also given in Fig. 6.1 [266].

1Note that the same approach has been followed and described in detail in [198] (see their Section
4) for our model of interest given in Section 5.1.1 (but for a parameter range of κ for which the PT is
fast and corresponds to the typical electroweak scenario).

2Note that the exclusion line is computed as explained in [266].
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Discussion of the results

It is clear that the model we investigated predicts GWs detectable by the aforemen-
tioned detectors and consequently we argue that this demonstrates a new method
for probing first-order electroweak PTs. We might be tempted now to define the
range of κ values which is not yet excluded by EPTA and which could be tested by
SKA. Although Fig. 6.1 gives us a rough estimate around κ ∼ −1.9m2

h/v, we have to
keep in mind that there are a few limitations in our computation that may need to
be improved in order to get more accurate predictions.

First, we remind that these results rely on our assumption of a radiation dom-
inated period. As explained in Section 5.2.1, the exact equation of state describing
the Universe during the transition is expected to be more complicated with the po-
tential effect of changing the value of the parameters entering in the GW spectrum.
This would however not change the general behaviour that we observed. Second, it
is important to realize that the GW formulae (6.6)-(6.7) have been derived under the
assumption of a short-lasting PT. It is not clear a priori if these fitted formula accu-
rately describe a long-lasting transition with large bubbles. Obtaining more precise
results would require new numerical simulations of bubble collisions without the
assumption that the PT completes in a time less than the Hubble time. Lattice sim-
ulations beyond the envelope approximation, such as for example [267], could shed
new light on this question.

Probably the main remaining concern is related to the assumption of runaway
bubbles with κρ ∼ 1. This hypothesis actually seemed to be well justified at the time
when the results in Figure 6.1 have been computed [3]. However the recent paper
[229] now argues that next-to-leading order friction effects between the bubble wall
and the plasma prevent the bubble to run away. They conclude that for strong PT,
the velocity can still almost reach the speed of light, v ∼ 1, but that the wall would
carry less energy such that Ωsw and ΩMHD would be the dominant contribution to
ΩGW instead of the collision term. Assuming that this claim is true, it would then
be important to add the sound wave and turbulence effects in our Figure 6.1. The
amplitude of the signal coming from the collision term would therefore be reduced
(κρ < 1) but we expect the total amplitude to have roughly the same order of mag-
nitude as the curves in Figure 6.1. The parameter α of the PT is indeed not modified
by such considerations.3

Although it is clear that these limitations need to be addressed in the future,
we argue that they should not change the general behaviour we observed, namely
the possibility to detect a first-order electroweak PT with pulsar timing arrays. In
our model of interest, the aforementioned corrections are indeed expected to be
compensated by a small shift in the value of the parameter κ around the value of
−1.9m2

h/v which is indicated in Figure 6.1. Nevertheless, we realize that the detec-
tion of such GWs would provide interesting information regarding deviations from
the SM Higgs trilinear coupling which can only be poorly constrained from collider
experiments [198, 199]. At a more general level, we also expect other particle physics
theories (e.g. models with a barrier in the tree-level Higgs potential) to exhibit su-
percooled and long-lasting PT with the production of low-frequency GWs.

3A very recent analysis of supercooled PTs taking these elements into account has been performed
in [268]. Their Figure 8 shows for example how each term contributes to ΩGW.
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6.2.2 GWs from hidden scale invariance

We want to estimate the characteristics of the GWs produced during the first-order
chiral PT discussed in Section 5.2.2. First, note that during the whole PT the universe
is dominated by radiation since the energy difference between the two vacua is due
to the difference in thermal energy (the ∝ c(h)T4 term in Equation (5.32)), which
vanishes as T → 0. Therefore the peak frequency (observed today) of the waves
produced at Tc ≈ 132 MeV can be estimated as:

f0 ∼ H(Tc)
T0

Tc
∼ TcT0

MP
∼ 10−8 Hz (6.9)

where T0 ≈ 10−4 eV. As already mentioned, a stochastic GW background with such
frequencies can potentially be detected by means of pulsar timing arrays (see also
[269] for the specific case of a QCD PT).

This is of course a very rough approximation for the frequency as we are missing
the information regarding the dynamics of the QCD bubbles. In the same way, we
cannot estimate the amplitude of the signal unless we specify the potential for the
quark-antiquark condensates. However the estimate (6.9) motivates us to look into
the predictions of this model in more detail. This task is currently under investi-
gation and should result in a forthcoming publication containing more information
regarding the expected GW signal.

6.3 Chapter summary

We are now at the end of our investigation that we started in Chapter 5 regard-
ing the production of gravitational waves from cosmological phase transitions. In
particular, we have studied the production of GWs during a strongly supercooled
electroweak phase transition. Considering a particle physics model based on a non-
linear realization of the electroweak gauge group, we carefully computed the dy-
namics of the Higgs field during such a transition. We argued that the collisions
of large bubbles (of the order the horizon size) induced a large amplitude stochastic
GW background in the frequency range 10−9− 10−7 Hz which can be probed by pul-
sar timing arrays. We derived this prediction from both dimensional arguments and
the use of previous numerical simulations of colliding bubbles. Although it is clear
from these analyses that our model of interest predicts a GW spectrum in the sensi-
tivity band of PTA detectors, more refined simulations would be needed to improve
the accuracy of our results. In particular, a better estimation of the exact equation
of state and the inclusion of sound waves and fluid turbulence would increase the
accuracy of the relation between GW predictions and specific values of the parame-
ter κ of the particle physics model we considered. We have also estimated the peak
frequency of GWs produced during a first-order chiral PT that is predicted to hap-
pen in an extension of the SM with scale invariance. Again, the signal is expected to
have a frequency as low as ∼ 10−8 Hz. Future computations will be able to improve
the accuracy of this prediction.

In summary, we provided examples of non-trivial PTs that can be detected with
pulsar timing arrays. This enlarges the way of probing first-order cosmological PT
in addition to previous proposals with space-base interferometers such as LISA. This
also increases the prospects of new generation PTA detectors like SKA.
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Chapter 7

Backreaction of particle production
on false vacuum decay

We showed in Chapter 5 that quantum tunnelling is a key ingredient of first-order
cosmological phase transitions. False vacuum decay is actually an interesting pro-
cess on its own and we propose to investigate some of its aspects in more details
in this Chapter. In particular, we present the results we obtained in [5] regard-
ing the backreaction of particle production on the decay rate of a metastable scalar
field at zero temperature. In the 1980s, Rubakov proved that the fluctuations gener-
ated during the tunnelling of a metastable field produce a spectrum of real particles
[270, 271]. This observation was then confirmed by other groups using different for-
malisms [272, 273]. We propose to review and extend Rubakov’s work to evaluate
the impact of these particles on the decay rate of the field. Our approach will fol-
low the reduced density matrix formalism used in quantum mechanics to address
the influence of the environment on a given quantum process [274–277].1 In this
scheme, the information related to the system is extracted by integrating out the
external degrees of freedom. Applied to our case, the decaying field is considered
as the system of interest while the environment corresponds to the external bath of
created particles.

7.1 Motivation from Higgs vacuum stability

Our analysis will be restricted to its simplest form, namely the backreaction of scalar
particles in flat space-time. However, it should be possible to extend this formal-
ism to include spinor, vector fields and even gravitational effects. It would then be
interesting to study how such backreaction affects the stability of the current SM
electroweak vacuum. This is related to a peculiarity of the SM that we have not dis-
cussed in Chapter 3. Since the discovery of the Higgs boson, all the parameters of
the SM are known and the theory can be extrapolated to high energies. Assuming
the absence of new physics, state-of-the-art calculations indicate that the Universe
is lying at the edge between stability and metastability [278–282]. In the latter case,
the Higgs potential becomes negative at an instability scale around ΛI ≈ 1011 GeV
and thus develops a global minimum at large field values. In this context, the decay
probability of the electroweak vacuum may become a crucial parameter to probe
both the fate and the history of our Universe. In particular, it has to agree with the
observation that the Higgs field has not yet decayed during the early stage of the
Universe or during its subsequent evolution.

1This formalism was actually proposed to describe the environment-induced decoherence which
attempts to explain why the world looks classical despite its quantum nature.
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The usual starting point to evaluate such a false vacuum decay rate in flat space-
time is the instanton method of Coleman [217] that we introduced and used in Sec-
tion 5.2.1. The decay probability per unit time per unit volume is computed at the
lowest order of the semi-classical approximation: Γ ≈ e−S, where S is the Euclidean
action evaluated along the bounce trajectory. The precision of this result can then
be improved including one-loop quantum corrections [218] or finite temperature ef-
fects [219, 220]. When gravitational effects cannot be neglected, e.g. during inflation,
it is well known that the decay can take place either through the Coleman-de Luc-
cia instanton [283], which is the analogue of bubble nucleation in flat space-time,
or through the Hawking-Moss instanton [284] which is a homogeneous process al-
lowed when the geometry of the Universe is closed.

Such computations have been applied to the SM and they indicate that the life-
time of the current electroweak vacuum is much longer than the age of the Universe
by many orders of magnitude, both at the semi-classical [281] and one-loop [285,
286] level. Thus, it does not contradict any observation. However, the situation
is more intriguing during the early Universe assuming a period of inflation. Sev-
eral investigations suggest that the survival of the electroweak vacuum during this
epoch implies stringent constraints on the Hubble rate and the top quark mass de-
pending on the details of the process, like for example the coupling of the Higgs
field to gravity [287–296]. It also appears that the temperature of the Universe dur-
ing the reheating process following inflation influences the stability of the SM [296–
298]. In addition to this, some other effects that could change our knowledge of the
Higgs decay rate have also been considered including modifications from Planck
scale higher-dimensional operators [286, 299–301], the presence of an impurity in
the metastable phase [302] or the influence of black holes as nucleation seeds [303,
304].

7.2 Particle production during vacuum decay

7.2.1 Semi-classical decay rate

We explained how to compute the decay probability of a scalar field in Section 5.2.1.
It is worth illustrating again how this works at zero temperature in order to see that
there actually exist two different types of process that can take place depending on
the geometry of the Universe. Consider a real scalar field σ in Minkowski space-time
(with metric (+,−,−,−)):

Lσ =
1
2

∂µσ∂µσ−V(σ). (7.1)

We assume that the potential V has a local minimum at σF (false vacuum) and a
global minimum at σT (true vacuum). In the semi-classical approximation, the decay
probability per unit time per unit volume of a field initially trapped near σF is given
by [217]

Γ = A e−
SB
h̄ (1 + O(h̄)) (7.2)

The semi-classical exponent SB corresponds to the Euclidean action SE computed
along the bounce trajectory: SE =

∫
dτd3x

[
1
2 (∂τσ)2 + 1

2 (∂iσ)
2 + V(σ)

]
, with τ = it

the usual Euclidean time. The bounce σB(x, τ) is the Euclidean trajectory which
minimizes SE with the conditions that it starts from σF at τ = −∞, evolves under
the barrier until it reaches the boundary with the classically allowed region at τ = 0
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and then bounces back to σF at τ = +∞. In equations, it satisfies

(∂2
τ + ∂2

i )σ =
∂V
∂σ

, σ(τ, x) τ→±∞−−−−→ σF,
∂σ

∂τ

∣∣∣∣
(τ=0, x)

= 0. (7.3)

According to Equation (7.2), the decay process is exponentially suppressed for
large values of SB. It means that the field cannot decay homogeneously in an open
universe. This restricts our attention to two cases of interest: a homogeneous decay
taking place in a finite volume V or the nucleation of a bubble of true vacuum σT.
In the former case, Equation (7.3) reduces to ∂2

τσ = ∂V
∂σ with the same boundary

conditions. The Euclidean action also simplifies to

SE,hom = V
∫

dτ

[
1
2
(∂τσ)2 + V(σ)

]
. (7.4)

In the latter case, Coleman proved that there always exists an O(4) symmetric solu-
tion σB(r̃), where r̃ =

√
τ2 + x2, satisfying2

d2σ

dr̃2 +
3
r̃

dσ

dr̃
=

∂V
∂σ

, σ(r̃ → +∞) = σF,
dσ

dr̃

∣∣∣∣
r̃=0

= 0. (7.5)

The Euclidean action then becomes

SE,O(4) = 2π2
∫ +∞

0
dr̃ r̃3

[
1
2

(
dσ

dr̃

)2

+ V(σ)

]
. (7.6)

The above set of formulae is obviously completely similar to the set of Equations
(5.16-5.20) at T = 0. It gives all the information to compute the decay rate at the
lowest order of the semi-classical approximation. On the other hand, the prefactor
A in Equation (7.2) corresponds to the one-loop quantum corrections. Using a path
integral formulation, Callan and Coleman showed in [218] that it reduces to the com-
putation of a functional determinant. In practice, this is often a difficult task since
this quantity is UV divergent and requires renormalization techniques. Physically,
this prefactor corresponds to the smallest fluctuations of the tunnelling field around
the bounce trajectory. Thus, roughly speaking, it represents the effect of virtual par-
ticles on the decay rate. Our aim in this Chapter is actually to derive a new correction
factor related to the production of real particles during false vacuum decay.

7.2.2 Particle production

Formally, the phenomenon of particle creation takes place once we add another field
to the Lagrangian (7.1). We restrict our attention to an external scalar field φ coupled
to σ in the following way:

Ltot = Lσ +
1
2

∂µφ∂µφ− 1
2

m2(σ)φ2︸ ︷︷ ︸
Lφ

, (7.7)

where m2(σ) represents an arbitrary coupling between the fields. It is worth men-
tioning that this model allows us to consider the self-excitation of the tunnelling

2Note that the last condition in Equation (7.5) is not a consequence of (7.3) but is added to avoid
any singular solution at the origin.
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field around its bounce solution if we write σ = σB + φ and if m2(σ) is replaced by
V ′′(σB).

We now review the formalism of Rubakov [270] who proved that some φ parti-
cles are created during the decay process of σ. The state vector of the total system
|Ψ〉 satisfies the stationary Schrödinger equation(

Hσ + Hφ

)
|Ψ〉 = E |Ψ〉 , (7.8)

where Hσ and Hφ are the Hamiltonians associated to the Lagrangians Lσ and Lφ.
In the absence of φ, the model is well approximated by the quasiclassical bounce
trajectory σB(x, τ) described in the previous section. In that case, the wave functional
associated to the state |Ψ〉 becomes parametrized, in the field representation, by the
Euclidean time τ as 〈σB(τ)|Ψ〉 = Ψ[σB(τ)] ≈ e−SE[σB(τ)] where

SE[σB(τ)] =
∫ τ

−∞
dτ′

∫
d3x

[
1
2
(∂τ′σB)

2 +
1
2
(∂iσB)

2 + V(σB)

]
. (7.9)

Then, we assume that the addition of the new field φ does not significantly change
this behavior. In other words, we study the field φ in the background of the semi-
classical tunnelling bounce σB without taking into account the action of the former
on the latter. This is actually the purpose of Section 7.3 to investigate this effect.
Under this assumption, we can parametrize the total state for the two fields as

|Ψ(τ)〉 ≈ e−SE(τ) |φ(τ)〉 , (7.10)

where the state |φ(τ)〉 := |φ[σB(τ)]〉 encodes all the information related to the fluc-
tuating field φ along the Euclidean trajectory (for convenience we simply wrote the
dependence in τ instead of σB(τ)). Before tunnelling, we ask for this state to be an
eigenstate of Hφ according to

Hφ[σF] |φ[σF]〉 = E |φ[σF]〉 , (7.11)

where the Hamiltonian is also parametrized as a function of the bounce:

Hφ[σB(τ)] =
∫

d3x
[

1
2

π2
φ +

1
2

∂iφ∂iφ +
1
2

m2 (σB(x, τ)) φ2
]

. (7.12)

Even in the Schrödinger picture (with time-independent operators φ(x) and πφ(x)),
we note that the Hamiltonian has an explicit τ dependence coming from m2(x, τ) :=
m2 (σB(x, τ)). This is a typical signature of systems exhibiting particle production
like the well-known examples of particle creation by an external electromagnetic
field [305] or by a curved space-time background [306] (with the important differ-
ence that our system evolves in Euclidean time rather than in physical time).

From the above considerations, Rubakov showed that the stationary equation
(7.8) with the boundary condition (7.11) reduces to a Euclidean Schrödinger equa-
tion for φ:

∂ |φ(τ)〉
∂τ

= −(Hφ(τ)− E) |φ(τ)〉 . (7.13)

Since we are only concerned here with φ initially in its vacuum state, we set E = 0
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and |φ[σF]〉 = |Oτ−〉.3 For convenience, we write the initial instant as τ− remember-
ing that the limit τ− → −∞ has to be taken at the end of the calculation. As usual
in the Schrödinger picture, the solution of the previous equation can be expressed
from the evolution operator

Uτ = T exp
(
−
∫ τ

τ−
Hφ(τ

′)dτ′
)

(7.14)

as
|φ(τ)〉 = Uτ |Oτ−〉 , (7.15)

where T is the time ordering operator. In contrast with quantum field theory in
Minkowski space-time, this operator is not unitary: U−1

τ 6= U †
τ (note the absence of

the imaginary factor i in the exponent since we are working in Euclidean time).
We now introduce the set of creation-annihilation operators b†

α, bα which di-
agonalize the initial Hamiltonian Hφ(τ−) and satisfy bα |Oτ−〉 = 0 (α represents a
generic set of quantum numbers and ∑α shall either refer to summation or integra-
tion). Since Hφ is explicitly time dependent, the vacuum state is not conserved. In
other words, at a given instant τ, the vacuum is defined by a new set of operators
a†

α,τ, aα,τ as aα,τ |Oτ〉 = 0. The two sets of operators at different times are related by
a time-dependent unitary Bogoliubov transformation aα,τ = W†

τ bαWτ, where the
unitary operatorWτ has the property to relate the different vacuum states through
|Oτ−〉 = Wτ |Oτ〉. Combining this expression with Equation (7.15), we observe that
the state of φ at any given instant can be expressed from the vacuum at this moment
according to

|φ(τ)〉 = UτWτ |Oτ〉 := Xτ |Oτ〉 . (7.16)

Starting from the vacuum, the field has evolved to an excited state whose spectrum
is encompassed in the nonunitary operator Xτ. The main result of Rubakov was
to explicitly write this operator in terms of the creation-annihilation operators a†

α,τ,
aα,τ, thus acting directly on their related vacuum state |Oτ〉. He used the method of
nonunitary (resp. unitary) Bogoliubov transformations to compute Uτ (resp. Wτ).
We do not give the details of this calculation and directly present the prescription to
find Xτ.

At any instant τ, the state of φ is given by4

|φ(τ)〉 = Xτ |Oτ〉 = C(τ) exp

(
1
2 ∑

α,β
Dαβ(τ)a†

α,τa†
β,τ

)
|Oτ〉 (7.17)

and the number of particles in a given mode α is then

Nα(τ) =
〈φ(τ)|a†

α,τaα,τ|φ(τ)〉
〈φ(τ)|φ(τ)〉 =

(
D2(τ)

1− D2(τ)

)
αα

, (7.18)

where C(τ) is a τ dependent c-number5 and D is a real symmetric matrix defined as
follows. The two key ingredients to compute D are the sets of functions {ξα

τ(x)} and
{hα(x, τ)}. At each instant τ, the ξα

τ form the complete set of real wave functions of

3For the interesting discussion of an initially excited state, we refer to Rubakov’s original paper
[270].

4We stress that this formula is only valid if |φ(τ−)〉 = |Oτ− 〉. Rubakov [[270], Equation (3.16)] gave
the more complete expression for an initially excited state.

5This prefactor C cannot be computed from the Bogoliubov transformations, but as we will discuss
later we do not need it to extract the backreaction of particle production.
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the φ particles in the background of the bounce. So, they satisfy[
−∂2

i + m2(x, τ)
]

ξα
τ(x) = (ωα

τ)
2 ξα

τ(x) (7.19)

with the normalization condition(
ξα

τ, ξ
β
τ

)
:=
∫

d3x ξα
τ(x) ξ

β
τ(x) = (2ωα

τ)
−1 δαβ. (7.20)

On the other hand, the hα form the set of real Euclidean mode functions similar
to the positive-frequency functions in Minkowski space-time. So, they satisfy the
Euclidean field equation [

−∂2
τ − ∂2

i + m2(x, τ)
]

hα(x, τ) = 0 (7.21)

with the condition that they exponentially decrease to zero for τ → −∞. The last
step is to construct the above matrix as

D = VZ−1, (7.22)

where

Vαβ(τ) =
(
ωα

τξα
τ, hβ

)
−
(
ξα

τ, ∂τhβ

)
Zαβ(τ) =

(
ωα

τξα
τ, hβ

)
+
(
ξα

τ, ∂τhβ

). (7.23)

In summary, the spectrum of created particles described by Equations (7.17) and
(7.18) is entirely defined by the solutions of the differential Equations (7.19) and
(7.21). However, the computation of the matrix D can be a very difficult task since it
requires us to invert a generally infinite-dimensional matrix. In the case of a homo-
geneous decay, we shall see in Section 7.4 that this computation can be performed
straightforwardly because the above matrices are diagonal. However, this often be-
comes impossible in the case of bubble nucleation. In order to avoid this problem,
Rubakov actually provided an iterative way to estimate D. Before presenting this
method in the next section, it is worth making some remarks on the above result.

First, the number of created particles (7.18) only has a physical meaning at τ = 0
when the bubble materializes. Second, we observe that this result diverges if the
matrix 1 − D2 has a zero eigenvalue. According to Rubakov, this problem could
occur for the self-excitation of the tunnelling field σ itself. So we should remember
this remark if we want to consider such a case. However, it is important to realize
that this divergence is not related to the common UV divergences of QFT. Actually,
Rubakov proved that the total number of created particles per bubble N = ∑α Nα

is UV finite. As this result will be important for our own discussion regarding the
backreaction of these particles, we shall discuss the reason of this fact below.

7.2.3 Weak particle production and UV finiteness

Let us now present how the matrix D can be approximated without inverting an
infinite-dimensional matrix. It relies on the observation that D satisfies the following
matrix differential equation:

∂τD = −(ED + DE) + B + (AD− DA)− DBD (7.24)

where E, A and B are some matrices given by Rubakov ([270], Section 3.3.3):
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Eαβ = ωα
τδαβ, Aαβ =

{
0, α = β

1
ωα

τ−ω
β
τ

(
ξα

τ, ∂τm2ξ
β
τ

)
, α 6=β

, Bαβ =
1

ωα
τ + ω

β
τ

(
ξα

τ, ∂τm2ξ
β
τ

)
. (7.25)

We note that D is now uniquely specified by the wave functions ξα
τ, without reference

to hα. Moreover, when the parameter ∂τm2 is small (typically compared to (ωα
τ)

3),
the matrices A and B can be considered as a perturbation and Equation (7.24) can
be solved iteratively. The lowest order solution of Equation (7.24) is given by the
formula (3.28) in [270]:

Dαβ(τ) = e−(Wα(τ)+Wβ(τ))
∫ τ

−∞
e(Wα(τ′)+Wβ(τ

′))

(
ξα

τ′ , ∂τ′m2ξ
β
τ′

)
ωα

τ′ + ω
β
τ′

dτ′, (7.26)

where Wα(τ) =
∫ τ

0 dτ′ωα
τ′ . This limit corresponds to say that the number of created

particles is weak and the matrix D is small. Thus, Equation (7.18) for the number of
created particles in a given mode and the total number of particles reduce to

Nα(τ) =
(

D2(τ)
)

αα
and N = Tr D2. (7.27)

The two previous equations are also useful to prove that the total number of
created particles is UV finite. Indeed, ∂τm2 becomes clearly negligible in front of
(ωα

τ)
3 for high energy particles. Moreover, the m2 term can be neglected in Equation

(7.19), such that the wave functions ξα
τ simply become in that sector6

ξα
τ(x) =

eikx

(2π)3/2
√

2ωk
τ

with ωk
τ = k = |k|. (7.28)

Plugging Equation (7.28) in Equations (7.26) and (7.27), Rubakov [270] concluded
that the number of particles in the UV region roughly behaves as

NUV =
∫

d3kd3k′|Dkk′ |2 ∝
∫

d3kd3k′
1

kk′(k + k′)4

∣∣∣∂̃τm2(k− k′, τ)
∣∣∣2 , (7.29)

where ∂̃τm2 is the Fourier transform of ∂τm2. The above integral converges if ∂̃τm2

rapidly goes to zero when |k − k′| → +∞. This is actually the case since at high
momentum m � ωk

τ ≈ k. It means that in the UV sector the system is insensitive to
the variations of the background ∂τm2 and this naturally regularizes the expression
(7.29).

7.3 Backreaction of particle production

7.3.1 Reduced density matrix formalism

In the previous section, we assumed that the external field φ had no impact on the
tunnelling process. We propose now an approach to estimate the effect of the created
particles on the semi-classical decay rate of σ. The idea is to work with the reduced
density matrix which is a tool introduced in the early days of quantum mechanics
by Landau [274]. Its use is convenient to investigate the impact of the environment

6Although the formalism was built with real wave functions ξα
τ , there is no difficulty to consider

complex functions in this short discussion.
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on a given quantum system. Let us briefly expose how this mechanism works at the
general level.

Consider a system S of interest described by a Hilbert space HS coupled to an
environment E with the Hilbert space HE . The total state vector satisfies |Ψ〉 ∈
HS ⊗HE and the total density operator is then given by

ρ̂ = |Ψ〉 〈Ψ| . (7.30)

We suppose that we are interested in an observable Â which is only related to the
system S and not to the environment E . In other words, we can write it as Â =
ÂS ⊗ ÎE where ÂS acts on HS and IE is the identity acting on the environment. An
important consequence from quantum mechanics is that the measurement of Â sat-
isfies [276, 277]

〈Â〉Ψ = Tr
(
ρ̂Â
)
= TrHS

(
ρ̂S ÂS

)
, (7.31)

where ρ̂S is the reduced density operator obtained by tracing over the environment:

ρ̂S = TrHE (ρ̂) . (7.32)

The right-hand side of Equation (7.31) tells us that the effect of the environment only
enters in the reduced density operator and thus it entirely contains the effect of these
external degrees of freedom.

We can now apply this formalism to our situation as well. Indeed, the role of S
and E is played by σ and φ respectively. Moreover, since the decay rate is a quantity
which is only related to σ, the backreaction of the created φ particles is entirely en-
compassed in the reduced density operator. We shall now explicitly compute it and
discuss its impact on Γ. From the expressions (7.10) and (7.17) describing the state
vector of the model of the two scalar fields, we can write the density operator as

ρ̂(τ) = |Ψ(τ)〉 〈Ψ(τ)| = e−2SE[σB(τ)]
(
Xτ |Oτ〉 〈Oτ| X †

τ

)
. (7.33)

In this context, tracing over the environment means to sum over all possible particle
states of the field σ. So we define

|{α}n (τ)〉 =
n

∏
i=1

a†
αi ,τ |Oτ〉 , (7.34)

which describes an unnormalized n-particle state with each particle in a given mode
αi: {α}n = {α1, α2, . . . , αn}. As should be the case for bosons, no restriction on {α}n is
imposed, meaning that two or more particles can be in the same state, as for example
if αi = αj for some i 6= j. To obtain the reduced density operator, we first apply the
state (7.34) on both sides of (7.33) and then we have to sum over all the possible
configurations {α}n and all the numbers of particles. Thus,

ρ̂r(τ) = e−2SE[σB(τ)]
∞

∑
n=0

∑
{α}n

|〈{α}n (τ)|Xτ|Oτ〉|2

n!
, (7.35)

where we have introduced the factor n! to ensure the correct normalization. In this
formula, the dependence on the modes appears as a sum and can easily be extended
to an integral in the case of a continuous index α. For convenience, we shall keep the
summation symbol throughout this section.
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The decay rate of σ including the backreaction of the φ particles is now given by

ΓBa =
ρ̂r(0)

ρ̂r(−∞)
= e−SB

F (0)
F (−∞)

|C(0)|2 , (7.36)

where we have used SB = 2SE[σB(τ = 0)] and F (τ) is defined as

F (τ) =
∞

∑
n=0

∑
{α}n

∣∣∣〈{α}n (τ)| exp
(

1
2 ∑α,β Dαβ(τ)a†

α,τa†
β,τ

)
|Oτ〉

∣∣∣2
n!

. (7.37)

As expected, we recover in Equation (7.36) the semi-classical exponential and the
new correction factor. The main purpose of the next section is to find a convenient
expression for F (τ).

7.3.2 Explicit computation

Since we shall work at a given instant, we omit the τ dependence in the expres-
sion (7.37) for F . As a first step, we want to simplify the matrix element M{α}n

:=

〈O|aα1 . . . aαn exp
(

1
2 ∑α,β Dαβa†

αa†
β

)
|O〉. Once we expand the exponential as the usual

power series, we observe that the only nonvanishing contribution comes from the
term which contains the same number of creation operators a† as the number of an-
nihilation operators a on their left. It implies in particular that the matrix element
vanishes for n odd. So with n = 2k, we get

M{α}n
= M{α}2k

=
1

2kk!
〈O|aα1 . . . aα2k

(
∑
α,β

Dαβa†
αa†

β

)k

|O〉

=
1

2kk! ∑
β1,...,β2k

Dβ1β2 . . . Dβ2k−1β2k 〈O|aα1 . . . aα2k a†
β1

. . . a†
β2k
|O〉 ,

(7.38)

where we have factorized the Dαβ since they are real numbers. The remaining ma-
trix element can be computed straightforwardly from the commutation rules of the
bosonic operators ([aα, a†

β] = δαβ and zero otherwise):

〈O|aα1 . . . aα2k a†
β1

. . . a†
β2k
|O〉 = 〈O|O〉 ∑

π∈S2k

δβ1απ(1)
. . . δβ2kαπ(2k)

(7.39)

where π is a permutation of the symmetric group S2k. Once (7.39) is introduced into
(7.38), each delta symbol selects one term of each sum over the modes βi and thus

M{α}2k
= 〈O|O〉 1

2kk! ∑
π∈S2k

k

∏
i

Dαπ(2i−1)απ(2i) . (7.40)

The initial expression (7.37) actually involves
∣∣∣M{α}2k

∣∣∣2. As D is a real matrix, it
reduces to take the square of Equation (7.40). As usual, the square of a sum can be
written as a double sum and we find

F = |〈O|O〉|2
+∞

∑
k=0

1
(2k)!(k!)222k ∑

{α}2k

∑
π,σ∈S2k

k

∏
i=1

Dαπ(2i−1)απ(2i)Dασ(2i−1)ασ(2i) . (7.41)
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Thanks to the summation over {α}2k, we can relabel the dummy indices in the previ-
ous equation as απ(i) → αi and ασ(i) → απ−1(σ(i)). It allows us to factorize the product

∏k
i=1 Dα2i−1α2i in front of the summation over π and σ and then to use the identity

∑
π,σ∈S2k

k

∏
i=1

Dα
π−1(σ(2i−1))απ−1(σ(2i))

= (2k)! ∑
λ∈S2k

k

∏
i=1

Dαλ(2i−1)αλ(2i) . (7.42)

This equality holds because for each one of the (2k)! permutations π, the sum over
σ is always the same up to the order of the terms. The reason behind this statement
comes from the group property of S2k: when π is fixed and σ runs over all the ele-
ments of the symmetric group, π−1 ◦ σ covers the whole group as well. So, we have
reduced the expression to a single sum over the permutations and moreover the two
factors (2k)! cancel out:

F = |〈O|O〉|2
∞

∑
k=0

1
(k!)222k ∑

{α}2k

∑
λ∈S2k

k

∏
i=1

Dα2i−1α2i Dαλ(2i−1)αλ(2i)︸ ︷︷ ︸
:=Ak

. (7.43)

To understand how to further simplify this expression, it is worth writing the
first terms Ak explicitly. Since the matrix D is symmetric, the summation over the
modes α1, α2, . . . gives the trace of an even power of the matrix D, as for instance

∑
α1,α2

Dα1α2 Dα1α2 = ∑
α1,α2

Dα1α2 Dα2α1 = ∑
α1

(
D2)

α1α1
= Tr

(
D2) . (7.44)

So a straightforward computation gives us the first four terms:

A0 = 1
A1 = 1

2 Tr
(

D2)
A2 = 1

8 Tr
(

D2)2
+ 1

4 Tr
(

D4)
A3 = 1

48 Tr
(

D2)3
+ 1

8 Tr
(

D2)Tr
(

D4)+ 1
6 Tr

(
D6) .

(7.45)

It is clear from both (7.43) and (7.45) that each term Ak is a sum of products of the
following form: Tr(D2)j1 Tr(D4)j2 . . . Tr(D2k)jk , where the integers ji satisfy j1 + 2j2 +
. . . + kjk = k. Such a set {ji}k is called a partition of k. Thus, Ak can be written as a
sum over all the partitions of k as

Ak = ∑
{ji}k

C{ji}k

(k!)222k

k

∏
i=1

Tr
(

D2i
)ji

, (7.46)

where each coefficient C{ji}k
counts the number of permutations λ ∈ S2k in (7.43)

which lead to the partition {ji}k. In particular, they satisfy ∑{ji}k
C{ji}k

= (2k)!. Ac-
cording to a combinatorial argument given in [5] Appendix A, we find an explicit
formula for them:

C{ji}k
=

(k!)222k

∏k
i=1 ji!(2i)ji

. (7.47)

This result significantly simplifies Ak and F . Indeed, if we insert it in (7.46) and
define for convenience the variables ai := Tr

(
D2i) i!/(2i), we find that Ak actually
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corresponds to a complete Bell polynomial Bk(a1, . . . , ak) [307]:

Ak = ∑
{ji}k

k

∏
i=1

1
ji!

( ai

i!

)ji
=

1
k!

Bk(a1, a2, . . . , ak). (7.48)

It is a well-known fact in combinatorics that these polynomials give an exponential
formula for any formal series a1x + · · ·+ an

n! xn + · · · [308]:

+∞

∑
k=0

Bk(a1, . . . , ak)

k!
xk = exp

(
+∞

∑
k=1

ak

k!
xk

)
. (7.49)

If we set x = 1, the left-hand side of this equation is exactly the sum over the terms
Ak. So it is now straightforward to conclude that F is given by the following expres-
sions

F = |〈O|O〉|2 exp

(
∞

∑
k=1

Tr
(

D2k)
2k

)

= |〈O|O〉|2 exp
(
−1

2
Tr ln

(
1− D2))

= |〈O|O〉|2 1√
Det (1− D2)

.

(7.50)

From this result, we can now derive a convenient expression for the backreaction
factor F (0)

F (−∞)
in Equation (7.36). Since D(τ = −∞) = 0 and 〈Oτ=−∞|Oτ=−∞〉 =

〈Oτ|W†
τWτ|Oτ〉 = 〈Oτ|Oτ〉, we obtain the modified decay rate as follows:

ΓBa =
|Cτ=0|2 e−SB√

Det
(
1− D2

τ=0

) = |Cτ=0|2 e−SB− 1
2 Tr ln(1−D2

τ=0). (7.51)

In this expression, the backreaction of the real φ particles produced during the
decay of the field σ is encompassed in the prefactor

[
Det

(
1− D2

τ=0
)]−1/2. On the

other hand, the coefficient |Cτ=0|2 can be evaluated from the well-known path in-
tegral method of Callan and Coleman [218], corresponding to one-loop quantum
fluctuations of φ. We shall now exclusively focus our attention on the properties of
the new backreaction factor.

7.3.3 Interpretation of the backreaction factor

Without considering any particular model, Equation (7.51) gives interesting infor-
mation on the effect of particle production during tunnelling. The first remark is
to realize that our derivation has been formal and that we should pay attention to
potential divergences. As was already the case for the number of particles (7.18),
we observe again a problematic behavior when 1− D2 has a zero eigenvalue. As
already explained, this has nothing to do with the usual UV divergences and this
problem should be treated on a case-by-case basis. More interestingly, we can show
that the backreaction factor is UV finite. The reason is clear if we look at the first
line of Equation (7.50). Indeed, we already showed in Equation (7.29) that the first
term Tr D2 is finite. It is then straightforward to extrapolate the argument to each
following term, Tr

(
D2k) for k = 2, 3, . . ., since they will converge faster and faster.



Chapter 7. Backreaction of particle production on false vacuum decay 116

We conclude, in contrast with one-loop quantum corrections, that the backreaction
factor does not require any renormalization technique in order to be computed.

The second remark is related to the weak particle production limit. As we ex-
plained in Section 7.2.3, the total number of created particles is given in this approx-
imation by N ≈ Tr D2 since D is small. For the same reason, the terms Tr

(
D2k)

with k > 2 appearing in Equations (7.50) and (7.51) are negligible in front of the
dominant term Tr D2. It means that in this limit, the modified decay rate becomes
ΓBa ≈ e−SB+

1
2 N . In other words, we see that the backreaction is directly given by

one half of the total number of produced particles. This is a useful result if we are
interested in an approximated value of the backreaction, since its evaluation does
not require us to perform any computation in addition to Rubakov’s prescription to
find N.

The third observation of interest is that the backreaction of scalar particle produc-
tion enhances the semi-classical decay probability in this given framework. Looking
at Equation (7.51) or at the approximate formula we just discussed, ΓBa ≈ e−SB+

1
2 N ,

we observe that the backreaction contribution is positive compared to the semi-
classical (−SB) contribution. At first sight, this result might seem surprising. During
tunnelling, the field σ transfers some amount of energy to the environment φ which
consequently exhibits a spectrum of particles. We may have expected that this dis-
sipation from the system to the surrounding bath slows down the decay process.
However, the created particles are fluctuations of the field φ which in turn reacts on
σ. We are actually facing a situation which has some similarities with the fluctuation-
dissipation relation in statistical physics [309]. Both the system and the environment
interact with each other in a nontrivial way and eventually Equation (7.51) tells us
that the tunnelling process is enhanced in this particular case. This kind of behavior
has already been discussed in a variety of situations. The investigation of the impact
of the environment on the tunnelling of a quantum mechanical particle was initi-
ated by Caldeira and Leggett in [310]. By considering a dissipative interaction with
a bath of harmonic oscillators, they derived a friction term suppressing the decay
rate. On the other hand, [311, 312] subsequently described systems for which the
impact of the environment results in an enhancement of the tunnelling probability
of the quantum particle. More closely related to our case, [313, 314] also reported an
enhanced decay rate for a quantum field interacting with some external degrees of
freedom.

Our next objective is to quantitatively estimate the contribution of the backre-
action in comparison to the semi-classical decay exponent SB. This requires us to
explicitly evaluate the formula (7.51) and thus to consider some specific models.

7.4 A toy model potential

In order to illustrate the mechanism of particle production and the related backreac-
tion, we consider the following tractable potential:

V(σ) =
λ

8
(
σ2 − v2)2 − ε

2v
(σ + v), (7.52)

where λ, v and ε are three parameters with dimension [λ] = E0, [v] = E1 and
[ε] = E4. This model is widely used in the literature since the bounce solution
can be computed analytically in the limit of small ε. In particular, Coleman [217]
introduced it to show how to compute the semi-classical decay rate SB and Rubakov
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[270] used it to illustrate its prescription of particle production. Our aim is now to
extend these investigations by estimating the backreaction of the created particles.

As already discussed in Section 7.2.1, we can focus on two different types of
decay, namely the nucleation of an O(4) bubble or a homogeneous process in a finite
volume V . We shall consider both these cases in the approximation that the energy
difference between the two vacua of the potential V(σ) is much smaller than the
height of the barrier. It is not difficult to show that it corresponds to a small value
of ε. Indeed, in that case, the vacua are approximately located at σT/F ≈ ±v, the
energy difference becomes ∆V = |V(σF) − V(σT)| ≈ ε and the barrier height is
given by VB ≈ V(0) ≈ 1

8 λv4. As expected, the requirement ∆V � VB is fulfilled for

ε� 1
8

λv4. (7.53)

We compute the semi-classical decay exponent SB in the two cases of interest:

1. Thin-wall (TW) bounce

Let us focus first on the bubble nucleation under the condition (7.53). The
bounce satisfying Equation (7.5) is well approximated by the kink

σ(r̃) = v tanh
(

1
2

v
√

λ(R− r̃)
)

, (7.54)

where R is the radius of the bubble at the nucleation time τ = 0. The value of
this parameter which minimizes the action (7.6) is given by

R? =
2
√

λv3

ε
. (7.55)

The semi-classical decay exponent is then computed by evaluating the action
(7.6) along the solution (7.54) with this value of R?. This gives

SB,TW =
8
3

π2 λ2v12

ε3 . (7.56)

We now understand why this solution is called a thin-wall bubble. Under the
approximation of small ε, its radius (7.55) is large while the transition wall
between the false and true vacua is thin because of the tanh shape of Equation
(7.54).

2. Homogeneous bounce

We consider a spatially homogeneous solution σB(τ) of Equation (7.3) in a
sphere of radius RH. For a small ε, the result is again the kink:

σ(τ) = v tanh
(

1
2

v
√

λτ + C
)

. (7.57)

The constant C is chosen in order to satisfy the condition that the field emerges

under the barrier at τ = 0. Since the escape point is given by σesc = v− 1
v

√
2ε
λ +

O(ε), we have

tanh(C) ≈ 1− 1
v2

√
2ε

λ
. (7.58)
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We can evaluate the Euclidean action (7.4) along the bounce taking into ac-
count the above value of C and the volume V = 4

3 πR3
H.7 In the limit of vanish-

ing ε, we get

SB,hom =
16
9

πR3
H

√
λv3. (7.59)

Looking at the tanh form of the bounce, we observe that the field is nearly
constant in Euclidean time until it suddenly endures a rapid transition from
its false vacuum to the escape point beyond the barrier. This change occurs
around the moment τ̃ < 0 corresponding to the center of the kink:

σ(τ̃) = 0⇒ τ̃ = − 2C
v
√

λ
. (7.60)

Now that we have explicitly computed the semi-classical exponents in both cases,
we rewrite them in terms of dimensionless parameters. First we introduce α = λv4

ε
such that the approximation (7.53) of small ε reduces to α � 8. Another useful
quantity is the ratio β = RH

R? between the size of the homogeneous bounce and the
radius of the thin-wall bubble. It is straightforward to see that the semi-classical
decay exponents reduce to

SB,TW =
8π2

3
α3

λ
SB,hom =

128π

9
α3β3

λ
. (7.61)

From this parametrization, we can give a few remarks. First, the thin-wall exponent
is generally large and leads to a highly suppressed decay probability. Indeed, for the
minimal acceptable value α ∼ 10 and for λ of order one, SB,TW is already of order
four. On the other hand, there is more freedom for the homogenous factor SB,hom,
because of the parameter β entering in it. When β = 1, namely when the bounces are
of the same size, we observe that the two types of decay have a similar probability
to occur. Since the radius R? of the thin-wall bubble is very large, it is reasonable to
also consider a homogeneous tunnelling taking place in a smaller volume. In that
case, the decay probability would be more significant. For instance, when α = 10,
β = 0.1 and λ = 1, we find SB,hom ≈ 45 and e−SB,hom ≈ 10−20. We shall make use of
this discussion to investigate how the backreaction of particle production modifies
these results.

7.4.1 Backreaction during a homogeneous bounce

We consider the production of φ particles during the homogeneous tunnelling pro-
cess. As described in Section 7.2.2, the key parameter to introduce is the coupling
m2(σ) between the two fields σ and φ. Since the homogeneous bounce (7.57) is al-
most a step function, we approximate this coupling in the following way:

m2(σ) = m2(τ) =

{
m2
− for τ < τ̃

m2
+ for τ > τ̃

, (7.62)

where m± are the masses of the φ particles in the true and false vacua, respectively.
We remind that the transition occurs at the instant τ̃ given by Equation (7.60) and
that τ̃ < 0.

7Note that the solution (7.57) only covers one half of the bounce (τ < 0) and that σ(−τ) gives the
τ > 0 part.
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In this model, Rubakov’s prescription to compute the matrix D can be performed
easily. According to the spherical background geometry, the indices of this matrix
are given by the discrete radial momentum k = n

RH
(n = 0, 1, 2, . . .) and the usual

angular momentum (l, m) (0 ≤ l ≤ n, −l ≤ m ≤ l). According to a computation
detailed in [5] Appendix B, we note that D is diagonal and does not depend on (l, m).
Omitting these indices, the diagonal part of this matrix reads

Dnn(τ = 0) =
ω+ −ω−
ω+ + ω−

e2ω+ τ̃, (7.63)

where

ω± =
√

k2 + m2
± =

√
n2

R2
H
+ m2

±. (7.64)

It is worth directly rewriting this expression in terms of dimensionless quantities.
In addition to the two parameters α, β already introduced above, we define δ± =
RHm±. From the previous equation for Dnn and expression (7.60) for τ̃, it is straight-
forward to show that

Dnn =

√
n2 + δ2

+ −
√

n2 + δ2
−√

n2 + δ2
+ +

√
n2 + δ2

−

e−2

√
n2+δ2

+
α̃β , (7.65)

where α̃ := α

arctanh
(

1−
√

2
α

) .

In this way, the backreaction is entirely determined by the four parameters (α, β,
δ±). We can now compute the correction factor entering in Equation (7.51). Since D
is diagonal, the logarithm of 1− D2 is just the logarithm of each diagonal element
and we get

1
2

Tr ln
(
1− D2) = 1

2

+∞

∑
n=0

n

∑
l=0

l

∑
m=−l

ln
(
1− D2

nn
)
=

1
2

+∞

∑
n=0

(n + 1)2 ln
(
1− D2

nn
)

. (7.66)

For consistency with our discussion in Section 7.3.3, we explicitly check that this
series is convergent. Indeed, its asymptotic expansion is given by

1
2
(n + 1)2 ln

(
1− D2

nn
)
−−−→
n→∞

[
− 1

32n2

(
δ2
+ − δ2

−
)2

+ O
(

1
n3

)]
e−4 n

α̃β , (7.67)

meaning that the backreaction is exponentially suppressed at high momentum. It is
also clear that the dominant part in Equation (7.66) comes from the n = 0 term and so
the computation of this leading contribution will already tell us if the backreaction is
negligible or significant compared to SB,hom. For simplicity, we restrict this analysis
to two limiting cases, namely a small and a large mass difference.

• Small mass difference: ∆δ2 := δ2
+ − δ2

− � δ2
+.

In this limit, the n = 0 term in the series (7.66) becomes

1
2

ln
(
1− D2

00
)
= − 1

32

(
∆δ2

δ2
+

)2

e−4 δ+
α̃β + O

((
∆δ2

δ2
+

)3
)

. (7.68)
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and we directly conclude that this contribution is small. Indeed, the exponen-
tial is bounded by 1 and ∆δ2

δ2
+
� 1 because of the small mass difference assump-

tion. Thus we conclude that the backreaction is negligible in front of values of
SB,hom which are typically bigger than order one.

• Large mass difference: δ− � δ+.
Under this assumption, we obtain

1
2

ln
(
1− D2

00
)
=

1
2

ln
(

1− e−4 δ+
α̃β

)
+ O

(
δ−
δ+

)
, (7.69)

where the leading term corresponds to directly take δ− = 0. In contrast with
the previous case, this contribution can be arbitrarily large when δ+

α̃β becomes
small. Thus we should investigate if the backreaction could become of the
order of SB,hom for some reasonable values of these parameters. It turns out
that the expression (7.69) grows very slowly because of the logarithm. Hence
the backreaction would unlikely be significant in front of large values of SB,hom.
For instance for (α, β) = (10, 1), we saw that SB,hom = O(104) and so δ+ should
be as small as many thousand orders of magnitude for the backreaction to be
non-negligible.
However the situation is more interesting for smaller decay exponents. When
(α, β) = (10, 0.1) we found SB,hom ≈ 45 and in this case the correction (7.69)
becomes significant for acceptable values of δ+. Explicitly, we have

−1
2

ln
(
1− D2

00
)∣∣∣∣

(α,β,δ+)=(10,0.1,{10−1,10−4,10−10})
≈ {0.8, 4.1, 11.2} . (7.70)

In terms of the decay probability, this corresponds to corrections respectively
of order e0.8 = O(1), e4.1 = O(102) and e11.2 = O(105), in front of e−SB ≈ 10−20.
It confirms that in this case the backreaction enhances the decay rate by some
orders of magnitude.

Although we have not investigated the entire range of parameters of this toy
model, the two above cases already give us useful information. The first remark
is that large semi-classical decay exponents would generally be insensitive to the
production of particles. However, we were also able to exhibit a choice of parameters
leading to weaker values of SB,hom which are significantly modified by the particle
backreaction.

7.4.2 Backreaction during a thin-wall bounce

We want to perform the same kind of analysis as above but during the nucleation
process of the thin-wall bubble. Since the bounce solution (7.54) is again almost a
step function, the system is also well described by the two quantities m+, m− cor-
responding to the masses of the φ particles in the background of the true and false
vacua, respectively.

In contrast to the homogeneous case, the matrix D is not diagonal. A tractable
way to compute it is the use of the weak particle production limit described in Sec-
tion 7.2.3. Under this approximation, we saw in Section 7.3.3 that the backreaction
correction is given by one half of the total number of created particles as 1

2 Tr D2. For-
tunately for us, Rubakov ([270], Section 5) already computed this quantity since he
was interested in the number of created particles in this model. He proved that the
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main contribution to the number of produced particles comes from the case m− �
(R?)−1 � m+ and from particles with radial momentum m− � p � m+ and angu-
lar momentum l = m = 0. In these conditions, he found that N = Tr D2 = O(10−2).
It means that the number of particles is small (at the best roughly one particle pro-
duced per 100 bubbles) whatever the values of the parameters. Remembering that
SB,TW in Equation (7.61) is at least of order O(104), it is clear that the backreaction
factor 1

2 Tr D2 is completely negligible.

7.5 Chapter summary

We have presented an approach to compute the backreaction of particle production
on the decay rate of a false vacuum. We explicitly derived a formula which corrects
the usual semi-classical decay probability, in the case of a tunnelling field coupled to
a scalar environment in flat space-time. Starting from Rubakov’s formalism describ-
ing the spectrum of created particles, the main idea of this work was to integrate out
this external bath of particles using the reduced density matrix prescription.

As a first consequence, we found that the correction factor is UV finite. Hence
its computation does not require any renormalization techniques in contrast with
the calculation of one-loop quantum corrections. We also showed that scalar par-
ticle production enhances the decay probability in the context of this formalism. It
may be interpreted as the sign that the dissipation of the tunnelling field into the
environment is compensated by the external fluctuations. Another important ob-
servation is the fact that the backreaction is given by one half of the total number
of created particles, in the approximation that they are weakly produced. In other
words, Rubakov’s prescription gives directly both the spectrum of particles and their
backreaction in this limit.

These general remarks would not be of particular importance if the backreac-
tion were always negligible compared to the semi-classical decay rate. That is why
we explicitly computed this effect for a toy model potential. We found a negligible
impact in the case of the thin-wall bubble nucleation. However, when the field de-
cays homogeneously in a finite volume, we computed a significant correction for a
reasonable choice of parameters. Therefore, it would be relevant to apply this for-
malism to more realistic systems in the future. One of the most interesting scenarios
to investigate seems to be the decay of the Higgs field during inflation through the
Hawking-Moss instanton which is indeed a homogeneous process (see e.g. [288]).
This would require to extend the formalism presented in this Chapter to include
possible gravitational effects.
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Chapter 8

Conclusion

This thesis has been the occasion to investigate various topics at the interplay be-
tween particle physics and cosmology. More particularly, we studied three main
subjects. Chapter 4 proposed first to probe the quantum nature of space-time with
gravitational waves produced from a black hole merger. We modelled the effect of
a hypothetical non-commutative space-time through a modification of the energy-
momentum tensor describing the two inspiraling black holes. We then made use of
the post-Newtonian formalism to get an analytic prediction for the waveform pro-
duced by these co-rotating bodies. We showed that the leading non-commutative
correction compared to general relativity appears at 2PN order, namely at order
(v/c)4. Whereas such a correction is usually small for slow-moving systems in weak
gravitational fields, it plays a more important role when considering almost relativis-
tic black hole binaries. Indeed, by comparing our theoretical prediction to the signal
GW150914 detected by LIGO/Virgo, we were able to extract the most stringent con-
straint to date on the scale of non-commutativity, improving previous bounds by
several orders of magnitude.

The second topic, which has been investigated in details in Chapters 5 and 6, is
the production of a stochastic GW background from beyond the standard model cos-
mological phase transitions. We explicitly considered two different particle physics
models that exhibit non standard PT dynamics. The first model was based on a
non-linear realization of the electroweak gauge group. In this scenario, electroweak
symmetry breaking does not rely on the existence of a scalar electroweak doublet.
The physical Higgs field can therefore be treated as a singlet allowing the appear-
ance of BSM interactions without new particles. We considered in particular the
addition of a Higgs cubic coupling having the advantage to force the electroweak
PT to be first-order. We found an interesting range of parameters for which the PT
is long-lasting and supercooled, thus resulting in the production of low-frequency
GWs potentially detectable by pulsar timing arrays.
The second theory we considered was a scale-invariant extension of the standard
model containing a dilaton field. Phenomenological considerations predict a very
light dilaton particle with a mass as small as 10−8 eV. We emphasized that the elec-
troweak symmetry breaking cannot happen by itself unless it is triggered by the
chiral QCD transition occurring at a temperature around T ∼ 130 MeV. It was par-
ticularly interesting to realize that the chiral transition is expected to be first-order
since all the quarks are still massless at that period. Low frequency GWs are there-
fore also expected to be produced in this scenario.
These two analyses also showed that it is not a trivial task to obtain accurate GW
predictions from the knowledge of a particle physics model. For example, we had to
perform several approximations at various stages of our computations. We pointed
out that future investigations and the development of new tools (such as new nu-
merical simulations) could allow physicists to get more accurate theoretical results.
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Despite these limitations, our overall conclusion is that the study of the stochastic
GW background should provide relevant information about particle physics which
is complementary to collider physics.

The last topic we considered was the study of the backreaction of particle pro-
duction on false vacuum decay. We argued that quantum tunnelling of metastable
fields is an important process as it appears in various domains of physics, such as
phase transitions. It is therefore important to clearly investigate all the effects that
could influence the decay rate of these fields. In our case of interest, we investigated
how (real) particles produced during the tunnelling of a scalar field in flat space-
time influence the decay rate of the process. By using a density matrix formalism,
we were able to explicitly compute a correction factor accounting for this new effect.
We then used a toy model potential to investigate the significance of this correction
factor compared to the usual semi-classical decay rate. We predicted negligible ef-
fects if the transition occurs through bubble nucleation, as only very few particles
are produced per bubbles. However, we saw that backreaction can be significant
for homogeneous transitions occurring in a finite volume. This motivates us to try
to expand this formalism in the future and to apply it to scenarios of homogeneous
transitions that could occur during inflation.

Overall, an important conceptual conclusion we can draw from our study is that
some intriguing relationships between microscopic and macroscopic phenomena ex-
ist, which seem a priori completely unrelated taking into account the different scales
at which they occur. A second aspect which has attracted our interest during the
past few years is that the interplay between particle physics and cosmology is one
of the fields of research which has the best potential to cast doubt on our knowledge
and to show the limits of our understanding of nature.
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Appendix A

Appendix

A.1 Finite temperature potential with non-linearly realized
electroweak gauge group

We give here the detailed expression of the finite temperature potential (5.6) of Sec-
tion 5.1.1 and which was used in [3, 198]. The Coleman-Weinberg contribution V(1)

CW
at T = 0 is given by:

V(1)
CW(ρ) = ∑

i=W,Z,t,h
ni

m4
i (ρ)

64π2

(
ln
(

m2
i (ρ)

v2

)
− 3

2

)
. (A.1)

The finite temperature part V(1)(ρ, T) is defined via the thermal function J:

V(1)(ρ, T) =
T4

2π2 ∑
i=W,Z,t,h

ni J
[

m2
i (ρ)

T2

]
,

J[m2
i β2] :=

∫ ∞

0
dx x2 ln

[
1− (−1)2si+1e−

√
x2+β2m2

i

]
,

(A.2)

where si corresponds to the spin and ni to the number of degrees of freedom of the
particle species i. The field-dependent masses mi(ρ) are given by

nh = 1, m2
h(ρ) =3λρ2 + 2κρ− µ2

nZ = 3, m2
Z(ρ) =

g2
2 + g2

1
4

ρ2,

nW = 6, m2
W(ρ) =

g2
2

4
ρ2,

nt = −12, m2
t (ρ) =

y2
t

2
ρ2.

(A.3)

The correction from Daisy terms can be described by a shift in the longitudinal
components of the respective boson masses by their Debye correction (cf. e.g. [165,
315]):

m2
h → m2

h(ρ, T) = m2
h(ρ) +

1
4

λT2 +
1
8

g2
2T2 +

1
16

(g2
2 + g2

1)T
2 +

1
4

y2
t T2,

m2
WL

(ρ)→ m2
WL

(ρ, T) = m2
W(ρ) +

11
6

g2
2T2,

m2
ZL
(ρ)→ m2

ZL
(ρ, T) =

1
2

[
m2

Z(ρ) +
11
6
(

g2
2 + g2

1
)

T2 + ∆(ρ, T)
]

,

m2
γL
(ρ)→ m2

γL
(ρ, T) =

1
2

[
m2

Z(ρ) +
11
6
(

g2
2 + g2

1
)

T2 − ∆(ρ, T)
]

,

(A.4)
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where:

∆2(ρ, T) :=
(

m2
Z(ρ) +

11
6
(g2

2 + g2
1)T

2
)2

− g2
1g2

2
11
3

T2
(

11
3

T2 + ρ2
)

. (A.5)

The number of degrees of freedom is then:

gWL = 2gZL = 2gγL = 2, gWT = 2gZT = 2gγT = 4. (A.6)

A.2 Calculation of the finite temperature effective potential
with scale invariance

This appendix shows how to compute the thermal effective potential that we are
using in Section 5.2.2 to characterize the PT that take place in the scale invariant
model of Section 5.1.2. The contribution of a scalar field with field-dependent mass,
m(h), to the thermal effective potential with a 4-dimensional cut-off, ω2

n + ~p2 ≤ Λ2

is given by:

VT(h) =
1

2β

∫
|~p|≤Λ

d3 p
(2π)3

N

∑
n=−N

ln
(

1 +
m2(h)

ω2
n + ~p2

)
, (A.7)

where N =
⌊

β
2π

√
Λ2 − ~p2

⌋
, β = 1

T and ωn = 2nπ
β . Define

v(y) =
N

∑
n=−N

ln(n2 + y2) (A.8)

and ω2 = p2 + m2(h). The one-loop contribution then becomes

VT(h) =
1

2β

∫
|~p|≤Λ

d3 p
(2π)3 v

(
βω

2π

)
− 1

2β

∫
|~p|≤Λ

d3 p
(2π)3 v

(
βp
2π

)
. (A.9)

The difference of these integrals can thus be found by evaluating the first integral
and discarding any m-indepenedent terms. By using the fact that ln(n2 + y2) =
ln(n + iy) + ln(n− iy), it can be shown using the properties of Gamma functions as
well as the Euler reflection formula that:

v(y) = 2 ln sinh πy + 4< ln Γ(1 + N + iy) + m-independent terms. (A.10)

The first term of Equation A.10, when integrated, yields:

1
2β

∫
|~p|≤Λ

d3 p
(2π)3

(
2 ln sinh

(
βω

2

)
− 2 ln sinh

(
βp
2

))
=

1
2π2

[
1
8

m2Λ2 +

(
1
4
− ln 2− ln

Λ
m

)
m4

16
+

1
β4 JB(m2β2)

]
(A.11)

where terms with negative powers of Λ are ignored and

JB(m2β2) =
∫ ∞

0
dxx2 ln

[
1− e−

√
x2+β2m2

]
.

(In the above we take the upper integral limit to infinity, as contributions for large x
to the integral decay exponentially.) Using the Schwarz reflection principle and the
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Stirling formula, the second term of Equation A.10 can be expanded as

4< ln Γ(1 + z) = 4<z ln z + 2< ln z +
1
3
<1

z
+ O

(
1
z3

)
+ m-independent terms.

(A.12)
where z = N + iy. Integrating this, one finds that the corresponding contribution to
Equation A.9 is

2 ln 2− 1
64π2 m4 − 1

32π2 m2Λ2 + O
(

1
βΛ

)
+ O

(m
Λ

)
. (A.13)

The integration process is rather arduous, as N must be split into a continuous func-
tion and a sawtooth function. One then takes advantage of the fact that the sawtooth
function has a small period to extract relevant terms of positive powers of Λ. Hence,
adding equations A.11 and A.13 together, one obtains:

VT(h) =
1

32π2 m2Λ2 − 1
128π2 m4 − 1

32π2 ln
Λ
m

m4 +
1

2π2 T4 JB(m2/T2) (A.14)

Similarly, for a fermion field, one obtains the contribution:

VT(h) = −
1

32π2 m2Λ2 +
1

128π2 m4 +
1

32π2 ln
Λ
m

m4 +
1

2π2 T4 JF(m2/T2) (A.15)

where
JF(m2β2) =

∫ ∞

0
dxx2 ln

[
1 + e−

√
x2+β2m2

]
. Now, as Λ is proportional to χ in a scale invariant model, the first two terms of
Equations A.14 and A.15 can be included into the tree level potential through the
redefinition of ξ and λ. Hence, the full thermal effective potential is given by:

VT(h, χ) =
λ(Λ)

4

[
h2 − v2

v2
χ

χ2

]2

+ ∑
i

ni(−1)2si+1

[
m4

i
32π2 ln

αχ

mi
− 1

2π2 T4 Ji(m2
i /T2)

]
(A.16)

where i runs over all relativistic particles, ni is the number of degrees of freedom of
the corresponding particle, si is the spin and Ji(y) is JB(y) for bosons and JF(y) for
fermions.
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