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Abstract 
Most research on health interventions aims to find evidence to support better causal 

inferences about those interventions. However, for decades, a majority of this research has 

been criticised for inadequate control of bias and overconfident conclusions that do not 

reflect the uncertainty. Yet, despite the need for improvement, clear signs of progress have 

not appeared, suggesting the need for new ideas on ways to reduce bias and improve the 

quality of research. 

With the aim of understanding why bias has been difficult to reduce, we first explore the 

concepts of causal inference, bias and uncertainty as they relate to health intervention 

research. We propose a useful definition of ‘a causal inference’ as: ‘a conclusion that the 

evidence available supports either the existence, or the non-existence, of a causal effect’. 

We used this definition in a methodological review that compared the statistical methods 

used in health intervention cohort studies with the strength of causal language expressed in 

each study’s conclusions. Studies that used simple instead of multivariable methods, or did 

not conduct a sensitivity analysis, were more likely to contain overconfident conclusions and 

potentially mislead readers. The review also examined how the strength of causal language 

can be judged, including an attempt to create an automatic rating algorithm that we 

ultimately deemed cannot succeed. 

This review also found that a third of the articles (94/288) used a propensity score method, 

highlighting the popularity of a method developed specifically for causal inference. On the 

other hand, 11% of the articles did not adjust for any confounders, relying on methods such 

as t-tests and chi-squared tests. This suggests that many researchers still lack an 

understanding of how likely it is that confounding affects their results. 

Drawing on knowledge from statistics, philosophy, linguistics, cognitive psychology, and all 

areas of health research, the central importance of how people think and make decisions is 

examined in relation to bias in research. This reveals the many hard-wired cognitive biases 

that, aside from confirmation bias, are mostly unknown to statisticians and researchers in 

health. This is partly because they mostly occur without conscious awareness, yet everyone is 
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susceptible. But while the existence of biases such as overconfidence bias, anchoring, and 

failure to account for the base rate have been raised in the health research literature, we 

examine biases that have not been raised in health, or we discuss them from a different 

perspective. This includes a tendency of people to accept the first explanation that comes to 

mind (called take-the-first heuristic); how we tend to believe that other people are more 

susceptible to cognitive biases than we are (bias blind spot); a tendency to seek arguments 

that defend our beliefs, rather than seeking the objective truth (myside bias); a bias for causal 

explanations (various names including the causality heuristic); and our desire to avoid 

cognitive effort (many names including the ‘law of least mental effort’). 

This knowledge and understanding also suggest methods that might counter these biases 

and improve the quality of research. This includes any technique that encourages the 

consideration of alternative explanations of the results. We provide novel arguments for a 

number of methods that might help, such as the deliberate listing of alternative explanations, 

but also some novel ideas including a form of adversarial collaboration. 

Another method that encourages the researcher to consider alternative explanations is 

causal diagrams. However, we introduce them in a way that differs from the more formal 

presentation that is currently the norm, avoiding most of the terminology to focus instead on 

their use as an intuitive framework, helping the researcher to understand the biases that may 

lead to different conclusions. 

We also present a case study where we analysed the data for a pragmatic randomised 

controlled trial of a telemonitoring service. Considerable missing data hampered the forming 

of conclusions; however, this enabled an exploration of methods to better understand, 

reduce and communicate the uncertainty that remained after the analysis. Methods used 

included multiple imputation, causal diagrams, a listing of alternative explanations, and the 

parametric g-formula to handle bias from time-dependent confounding. 

Finally, we suggest strategies, resources and tools that may overcome some of the barriers to 

better control of bias and improvements in causal inference, based on the knowledge and 

ideas presented in this thesis. This includes a proposed online searchable causal diagram 

database, to make causal diagrams themselves easier to learn and use.  
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Chapter 1 
Causal Inference 

1.1 Introduction 

A fundamental question of interest to most people is how can we speed up the rate of 

progress in health intervention research? The appeal is simple: better interventions for health 

problems sooner. More health researchers might be one answer, and that is perhaps the 

easiest action to take, but better health research may make a greater difference by providing 

more reliable and useful answers to our questions.⁠

1
⁠

,2 And this is where causal inference 

enters the scene, because progress in research depends heavily on researchers inferring 

cause and effect associations that are accurate. This applies not only to finding the true 

causes of disease, but also to finding out if proposed health interventions can cause some 

people to become healthier. If a researcher infers wrongly that an intervention caused good 

health outcomes, then progress can be delayed while people use an ineffective intervention 

hoping for a benefit, or it is further evaluated far more than necessary, wasting valuable 

resources.⁠

3
⁠

,4 

The World Health Organisation describes a health intervention as “an act performed for, with 

or on behalf of a person or population whose purpose is to assess, improve, maintain, 

promote or modify health, functioning or health conditions”. ⁠

5 Research that evaluates one or 

more health interventions often aims to answer one or both of the causal questions: does it 

work, and is it safe. These can be stated more explicitly as ‘does the intervention cause an 

improvement in the health outcome of interest’ and ‘does the intervention cause health 

problems’. 

To better understand how health researchers might improve the causal inferences they 

make, we will first examine the different ways in which a “cause” and a “causal inference” 
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have been defined, because different definitions and conceptual models can reflect the 

different perspectives someone may take when considering a causal association. And 

different perspectives can lead to different interpretations of research data. One famous 

example involved the well-known statistician from last century, Ronald Fisher. Despite the 

considerable body of evidence on smoking and lung cancer that had accumulated by the 

late 1950’s, Fisher was among a small number of prominent scientists who still believed that 

only an association had been demonstrated, rather than sufficient evidence for causation. ⁠

6 In 

fact, some statisticians have even claimed that they don’t make causal claims, they only 

estimate associations. ⁠

7 Causal inference itself is a cognitive process, influenced by many 

factors, so understanding how different people think about and resolve causal questions may 

be an important consideration in our pursuit of better causal inference. 

 

1.2 Causes 

It could be argued that one of the first things we learn about as an infant is the existence of 

cause and effect. At some point a baby might realise, in a very basic sense, that crying will 

often cause them to be picked up and held.⁠

8 Indeed, there is a large body of evidence from 

psychology that suggests we have an innate tendency to view the world in terms of cause 

and effect, ⁠

9 and thus are pre-programmed to detect causal associations. 

But while we intuitively know what is meant by the phrase ‘X caused Y’, health-related 

research and indeed, science in general, is usually more concerned with finding out if ‘X 

causes Y’ or ‘X is a cause of Y’, and these statements are less straightforward because they 

are aimed at predicting future events. Yet these concepts are also fundamental to our day-

to-day experience, as how else could we navigate our physical and social world without 

some ability to predict the effects of actions. 

As something fundamental yet hard to precisely define, causality has been the subject of 

philosophical debate for thousands of years. Aristotle identified four types of causes of an 

object: that which it is made out of (e.g. bronze), that into which it is made (e.g. a statue), the 

reason that it was made (e.g. to commemorate a war), and that which made it (e.g. the 
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sculptor).10 As such, Aristotle used the word "cause" in the wider sense of an "explanation" or 

an “answer to a why question”. 

Aristotle’s way of thinking more or less held sway until the age of enlightenment in the 17th 

and 18th centuries.11 The Scottish philosopher David Hume challenged the idea that causal 

associations could be known with certainty, since all we ever have are a sequence of 

perceptions of one thing following another, that we cannot guarantee will be repeated in the 

future.12 This somewhat idealist philosophy13 could be seen in the views of statisticians like 

Karl Pearson who believed we could never know more about two variables than that they 

were correlated.14 

A more pragmatic approach was promoted by the 17th century philosopher John Locke who 

defined a cause as that which makes something begin to be; and an effect as that which had 

its beginning from some other thing.15 With a belief in the value of experimentation,16 the 

19th century philosopher John Stuart Mill devised criteria for identifying a causal 

relationship. Namely that cause should precede and covary with effect, and that alternative 

explanations for the relationship between cause and effect are implausible.15 

There are plenty of other definitions of a cause or causal effect to be found in both the 

academic philosophy and epidemiology literature, along with those from the other sciences. 

Definitions found in epidemiology tend to be associated with a detailed framework for 

causal inference, and these will be discussed in section 1.5. First however, we will examine the 

concept of uncertainty and the important role it plays in causal inference. 

 

1.3 Uncertainty and causal inference 

Following Hume, it became clear that causality can never be established beyond all doubt 

because, however bizarre, a plausible alternative explanation for observed associations will 

always be conceivable. Hence, there will always be some uncertainty. 

The word uncertainty refers simply to “a state of being uncertain”,17 or a state where 

something is ‘not able to be relied on; not known or definite’. And when we are uncertain 
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about something, such as whether a drug causes some people to improve in their state of 

health, this implies an underlying truth exists,18 we just do not know with certainty what that 

truth is. 

This uncertainty is why we use the term inference when talking about causes, because we 

cannot simply see that one thing causes another, even though for practical purposes we 

often think that way.19 Instead, we need to use reason. 

The Oxford English Dictionary defines inference as “a conclusion reached on the basis of 

evidence and reasoning”.17 Inference has been divided into three types: deduction, induction 

and abduction. As with most words, definitions tend to differ depending on the user and the 

context,20 nevertheless, deduction generally refers to inference that logically derives a 

conclusion from information known or assumed to be true, and thus the conclusion is known 

or assumed to be true; induction is the process of drawing a more general conclusion from 

specific information so that, in contrast to deduction, the specific information does not 

guarantee the truth of the conclusion,21 in other words, the process of generalising; and 

abduction, which starts with an observation or set of observations and seeks to find the 

simplest and most likely explanation.22 The generation of hypotheses might be called 

abduction, though it is often called induction.20 

The principle of falsification was introduced by Karl Popper in 1935 in which he rejected 

induction as a valid method of inference23 and proposed that a theory or hypothesis should 

not be considered scientific unless it can be falsified.24 He also believed that science 

progresses only by falsifying hypotheses.25 While popular with many scientists, it may be an 

approach better suited to physics than to epidemiology, because the failure to observe a 

relationship in a health-related research study will always have room for alternative 

explanations, just as the observation of an effect will have more than one explanation.26 

The label applied to someone’s approach to causal inference is not very important, but the 

approach will have an influence on the conclusions they reach. For example, those favouring 

the deductive approach might follow Popper’s philosophy and design studies that favour the 

refutation of hypotheses through deductive means, instead of looking for evidence that 

supports hypotheses – an inductive approach. It has been suggested that randomised 
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controlled trials follow the deductive approach with blinding, randomisation and controls 

aimed at refuting hypotheses.23 While no-one would dispute the value of blinding, 

randomisation and control in the evaluation of possible causes, nor the value of falsification 

itself, there are those in epidemiology who do not agree that the primary focus should be on 

deductive refutation.20
⁠

,26
⁠

,27 The debate continues28
⁠

–30 and probably will for some time yet, but 

it is easy to view causal inference itself as always inductive,31 at least in the sense that there is 

always some uncertainty present. And ever since Hume exposed the fallibility of induction, 

the question of how to progress in science when nothing may be proved has been the 

subject of debate.12 

This uncertainty is why statistical inference came into being, though as with all terminology, it 

is used a little differently by different groups of people. At the heart of all definitions, 

however, is the use of probability theory and other mathematics to derive insights from data, 

often about a population from which a sample has been observed, and usually through the 

use of statistical models.32 As such, while deductive inference plays a role when developing a 

model,33 statistical inference can largely be described as an inductive process.20 

When making a causal inference, the underlying truth might resemble either ‘A causes B’ or 

‘A does not cause B’. However, in general, labelling something as a cause of a particular 

effect does not mean that if the cause is present then the effect will always occur; though 

extreme examples will exist, such as the incineration of a person will always cause death. And 

nor does it mean that if the effect is observed, a specific cause will have preceded it — a 

logical, or deductive fallacy called the Fallacy of Affirming the Consequent — thought by 

some to be especially common in epidemiology, though also common throughout science. 

For example, a researcher’s hypothesis H implies a prediction B, he or she observes that B is 

indeed what has been observed, and concludes that H must therefore be correct.20 Hence, 

with reference to health outcomes we should say instead that, in general, when 

contemplating a question of causality, the underlying truth will either be ‘A causes B for at 

least some people' or ‘A does not cause B for anybody'. 

An accurate research conclusion or causal inference, even when highly cautious such as ‘drug 

A was associated with a higher outcome than drug B’, is one that happens to agree with the 
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underlying truth. But while we can never really know if a conclusion is accurate, the results of 

future research should give an indication over time. 

1.3.1 A definition of a causal inference 

Lastly, with uncertainty ever present to some degree, a causal inference can be defined 

simply as a statement about a causal effect.34 However, a more precise definition is needed 

and we propose the following: 

A causal inference is conclusion that the evidence available supports either the existence, 

or the non-existence, of a causal effect. 

This definition acknowledges the reality that a decision such as ‘A is not a cause of B’ can 

have just as much of an impact on people’s behaviour regarding A (e.g. a health 

intervention) as a decision that ‘A is a cause of B’. 

Often accompanying a causal inference, especially when it relates to research, is some sense 

of the uncertainty associated with that inference. This uncertainty might even be considered 

as part of a causal inference, though we have opted to treat them as separate concepts 

because a causal inference is often made with no conscious sense of uncertainty. 

 

1.4 Early frameworks for causal inference in 
epidemiology 

1.4.1 Bradford Hill criteria 

We now turn to modern frameworks for causal inference, within which, additional definitions 

of a cause can be found. One of the best known remains the “Bradford Hill criteria”, so 

named even though Sir Austin Bradford Hill only called them “viewpoints” when they were 

published in 1965.35 The nine items can be briefly summarised as: 
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1. Strength: strength of the association 

2. Consistency: association is consistently observed (reproducibility) 

3. Specificity: the effect is associated specifically with this particular cause  

4. Temporality: the cause precedes the effect 

5. Biological gradient: stronger effects with increasing dose or exposure 

6. Plausibility: in terms of current scientific knowledge and theory 

7. Coherence: with related facts and evidence 

8. Experiment: study where the exposure is manipulated e.g. RCT 

9. Analogy: with similar effects and exposures 

Hill did not believe these should be considered criteria for causal inference, however, but 

instead “a useful tool to help us make up our minds on the fundamental question - is there 

any other way of explaining the set of facts before us, that is equally, or more likely, than the 

cause and effect association we suspect?”.35 He did not believe that all criteria should be met 

for valid causal inference and, in truth, the only criteria necessary is that the cause precedes 

the effect in time.14 Nevertheless, while time and experience has led to criticism that many of 

the items do not work in practice,36 there remains strong support for their use within 

epidemiology.37
⁠

,38 

1.4.2 Sufficient-component cause model 

Just over a decade later, Kenneth Rothman defined a cause as “an act or event or a state of 

nature which initiates or permits, alone or in conjunction with other causes, a sequence of 

events resulting in an effect”.39 His definition accompanied a conceptual framework for 

causal inference that he independently introduced into epidemiology, following Mackie in 

philosophy in 196540 and Cayley in 1853.41
⁠

,42 It came to be called the ‘sufficient-component 

cause model’,43 ‘sufficient-cause framework’,42 ‘sufficient-cause model’44 or ‘component-

cause model’45. It derives from the fact that every event occurring in nature will be caused by 

many prior events that combine to produce the eventual outcome. And each of these prior 

events will consist themselves of prior events that caused them to occur. He called the final 
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sequence of component causes a sufficient cause, with the event not occurring if any of the 

component causes did not occur beforehand. Hence, a sufficient cause is the complete 

causal mechanism that produced an event,⁠

8 and when each component cause occurs leading 

up to the event, the probability of the event occurring increases.39 

One of the main advantages of this framework, is that it emphasises that few things that we 

label causes will always be followed by an effect, because if one or more component causes 

are not present, the effect will not occur. So, when we denote something as a cause, we 

rarely, if ever mean, that the cause will always be followed by the effect we associate with it. 

Just as smoking is not always followed by lung cancer and lung cancer sometimes develops 

in people with no history of smoking. 

But while the sufficient-component cause model is conceptually very useful,46 it could be said 

that it focuses on the causes of effects, which are potentially limitless in number, whereas the 

potential outcomes framework, which we cover next, focuses on the effects of causes,42 and 

thus is better suited to the analysis of a single cause, such as an intervention. 

 

1.5 Potential outcomes or counterfactual framework 

1.5.1 Development and definition 

In the health sciences today, the potential outcomes framework, also called the 

counterfactual framework, is the most commonly used formalised framework for analysing 

causal effects.47 It is based on common ideas about counterfactuals that can be found at 

least as far back as David Hume.48 A counterfactual refers to what would have been the case 

if something in the past had been different, for example, a person with a headache took 

aspirin and the headache went away (the fact), instead of what would have happened if they 

had not taken aspirin (the counterfactual).49 Thus, when the potential cause 𝐴𝐴 is 

dichotomous, such as taking or not taking aspirin, a counterfactual definition of a causal 

effect can be stated: if we compare the outcome when 𝐴𝐴 is present to the outcome when 𝐴𝐴 

is absent, all else being equal, and the outcomes differ, then 𝐴𝐴 has had a causal effect on the 

outcome.50 
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One example of this definition is sometimes called the ‘ideal experiment’.51 We first take an 

individual and give them the active treatment. We wait and measure the health outcome of 

interest. Next, we jump in a time machine and go back in time and, without changing 

anything else, switch the treatment the individual received to the control. We then wait and 

measure the outcome as before. If the outcomes are different, we know that the only 

possible cause of the difference was the active treatment. 

If, on the other hand, the potential cause is not dichotomous, such as when different 

amounts of aspirin are being considered, then the counterfactual definition of a causal effect 

becomes more complicated. For example, simply comparing the outcome when the dose of 

aspirin is set to level 𝐴𝐴 = 𝑎𝑎 with the outcome when the level 𝐴𝐴 ≠ 𝑎𝑎 would lump together all 

possible outcomes for levels of aspirin both above and below 𝑎𝑎. When 𝐴𝐴 is essentially 

continuous, there may also be the problem of deciding how close the level would need to be 

to 𝑎𝑎 to be considered equal to 𝑎𝑎. 

The potential outcomes framework was first formalised mathematically by Jerzy Neyman in 

1923, although this was not widely known until 1990.52
⁠

–54 His treatment was limited only to 

concepts involving randomisation, however, though it was a couple of years before R. A. 

Fisher proposed randomised experiments.55 Donald Rubin then extended the model to 

observational studies in the 1970’s.56
⁠

–58 

1.5.2 Mathematical notation 

A key aspect of the potential outcomes framework is its mathematical formulation. Using the 

notation of Hernan and Robins,59 then for a binary treatment (e.g. drug or placebo) and a 

binary outcome (e.g. death or survival): 

• if 𝑌𝑌 is a random variable representing the outcome of an individual, and 

• 𝐴𝐴 is a random variable representing the treatment an individual received, then 

• let  𝑌𝑌𝑎𝑎=1 be the potential outcome variable that would have been observed following 

the treatment 𝑎𝑎 = 1, and 

• 𝑌𝑌𝑎𝑎=0 be the potential outcome variable that would have been observed under the 

treatment 𝑎𝑎 = 0 
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Then, a formal definition of a causal effect for an individual can be stated mathematically as: 

• the treatment 𝐴𝐴 has a causal effect on an individual’s outcome 𝑌𝑌 if  𝑌𝑌𝑎𝑎=1 ≠  𝑌𝑌𝑎𝑎=0 for 

an individual 

As already mentioned, observing both outcomes for the same individual is not possible (as 

far as we know), however, the average causal effect in a population of individuals can be 

estimated if we combine their observed outcomes. 

In this case, a formal definition of the average causal effect in a population can be stated:59 

• an average causal effect of treatment 𝐴𝐴 on outcome 𝑌𝑌 is present if 

Pr[𝑌𝑌𝑎𝑎=1 = 1] ≠ Pr[𝑌𝑌𝑎𝑎=0 = 1]  in the population of interest 

This can be contrasted with a definition of association: 

• treatment 𝐴𝐴 and outcome 𝑌𝑌 are associated if 

Pr[𝑌𝑌 = 1|𝐴𝐴 = 1] ≠ Pr[𝑌𝑌 = 1|𝐴𝐴 = 0] 

More generally, for outcomes that are nonbinary as well as those that are binary, the average 

causal effect can be stated in terms of expected values:59 

• an average causal effect of treatment 𝐴𝐴 on outcome 𝑌𝑌 is present if 

E[𝑌𝑌𝑎𝑎=1] ≠ E[𝑌𝑌𝑎𝑎=0]  in the population of interest 

1.5.3 ‘Potential outcomes’ or ‘counterfactual outcomes’ 

The mathematical framework was first labelled the “randomization model”60
⁠

,61 in 1973 and 

then the “Rubin causal model”16 in 1986, though not initially by Rubin. In 1990, Rubin 

referred to the framework as the “potential outcomes with assignment mechanism 

perspective” after he became aware that Neyman had given the first formal treatment in 

1923 where the term ‘potential yield’ was used.54 Since then, it has become widely known by 

various names such as the ‘potential outcomes framework’, ‘potential outcomes model’, 

‘counterfactual framework’, or ‘counterfactual model’, as well as the ‘Rubin causal model’. 

The terms ‘potential outcomes’ and ‘counterfactual outcomes’ are often used 

interchangeably by authors,10 suggesting they are viewed as having an equivalent meaning. 
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Rubin, however, prefers ‘potential outcomes’ because he considers that neither of the 

potential outcomes are counterfactual until after treatments are assigned, and then only one 

of the outcomes will be counterfactual.62 On the other hand, some authors prefer to use 

‘counterfactual outcomes’ for the random variables 𝑌𝑌𝑎𝑎=1 and 𝑌𝑌𝑎𝑎=0 because they are viewed, 

with reference to the naturally occurring outcome 𝑌𝑌, as only occurring if an intervention is 

set to 𝑎𝑎 = 1 or 𝑎𝑎 = 0. Hence, they are both considered counterfactual.10 

1.5.4 Assumptions for valid causal inference 

Before discussing some criticisms recently directed at the most common way of using the 

potential outcomes model, we need to briefly introduce the four main assumptions for 

causal inference that this framework rests upon: consistency, exchangeability conditional on 

the measured covariates, positivity, and faithfulness.59 

Exchangeability conditional on the measured covariates means that there is no confounding 

or selection bias (informative censoring) using the structural definitions of these terms 

developed in recent decades.63 Exchangeability will be discussed in more detail in Chapter 2. 

Positivity refers to the assumption that there were participants in both the intervention and 

the control groups with each possible combination of values for the observed confounders.64 

In other words, participants with each unique combination of individual characteristics had a 

positive probability of receiving either the intervention or the control. This is important 

because if positivity does not hold, then for some confounder values, no treated and 

untreated participants can be compared.63 

Faithfulness is the assumption that no perfect cancellation of effects has occurred in the 

study, such as might be seen with a high risk medical intervention that saves some patients’ 

lives buts kills others, leading to the appearance that the intervention has no effect on the 

outcome.65 
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The consistency assumption is often stated: an individual’s potential outcome under their 

observed exposure history is precisely their observed outcome.66 In the mathematical 

notation used above,59 

• if a subject’s observed treatment is 𝐴𝐴 = 𝑎𝑎 then his observed outcome 𝑌𝑌 should be 

equal to his potential outcome  𝑌𝑌𝑎𝑎 

• the consistency assumption can also be expressed as 𝑌𝑌 = 𝑌𝑌𝐴𝐴 

To understand the importance of this assumption, recall that within the potential outcomes 

framework, a binary treatment 𝐴𝐴 has had a causal effect on outcome 𝑌𝑌 if, had 𝐴𝐴 been absent 

with everything else the same, then 𝑌𝑌 would have been different. For this hypothetical 

situation, however, we must assume that treatment 𝐴𝐴 was assigned to the individual, as in 

experimental trials, and not a result of choice, because if everything else had been the same 

except for 𝐴𝐴, no reasons would have existed that might have led to a different choice.67 

Thus, to satisfy the consistency assumption, the outcome observed for each person needs to 

be the same as the outcome that would have been observed had the intervention been 

assigned to them, instead of being chosen. In other words, we need to be able to explain 

how a particular value of the treatment or exposure (e.g. the control) could be hypothetically 

assigned to a participant exposed to another value (e.g. the treatment).66 For this to be 

possible, the intervention being investigated needs to be well defined, because otherwise the 

causal contrast  𝑌𝑌𝑎𝑎=1 −  𝑌𝑌𝑎𝑎=0 would not itself be well defined. 

This requirement for well-defined interventions is easily satisfied in most trials where 

interventions are assigned to participants, such as in randomised controlled trials. But in 

observational studies, and randomised trials where the interventions may exhibit some 

variation, this assumption may not be satisfied, and as a result, the assumptions of 

exchangeability and positivity also become less plausible.68 

A brief note about terminology is appropriate here. Robins introduced the consistency 

assumption in the 1990’s in relation to his development of structural nested failure time69 

and structural nested mean70 models, both of which adjust for time-dependent covariates. 

This assumption has since been widely adopted for models not involving time-dependent 

variables. 
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However, a similar assumption is incorporated within Rubin’s stable unit treatment value 

assumption or SUTVA, that he introduced in 1980,71 which states that “the potential 

outcomes for any unit do not vary with the treatment assigned to other units, and, for each 

unit, there are no different forms or versions of each treatment level, which lead to different 

potential outcomes”. This assumption clearly incorporates the consistency assumption, as 

well as the condition: no multiple versions of the same treatment. An additional assumption 

this includes is no interference between study subjects, where one subject’s treatment 

sometimes affects another subject’s outcome.63 This condition is clearly violated in many 

different types of studies, with one of the most obvious examples that of vaccination, where 

an unvaccinated subject might infect another subject, but not if they had been vaccinated. 

Such examples have encouraged research in recent decades investigating and developing 

methods for causal inference in the presence of interference.72 

Because of the overlap of these various assumptions, either the consistency assumption or 

SUTVA tends to be referred to in practice, but not both. In this thesis, we will use the 

consistency assumption, as it appears to be more commonly used, and because the no 

interference assumption may sometimes be relaxed.72 

1.5.5 Criticisms 

Asserting that only well-defined causal effects are worth investigating would seem to be at 

odds with the more traditional way that epidemiologists look for aetiologic factors.73 For 

example, should non-manipulable factors such as sex and race not be regarded as causes?73 

Indeed, there has been growing debate for a number of decades. In recent years, a number 

of articles on this topic have appeared from prominent epidemiologists,31
⁠

,73
⁠

–81 criticising what 

some called the “restricted potential outcomes approach (RPOA)”,73 along with replies from 

those maintaining the need for well-defined causes.47
⁠

,82
⁠

–86 It should be noted, however, that 

there is also much agreement between the groups, with Robins and Weissman making the 

following point about an issue that often plagues debates: “the exchanges for and against 

the counterfactual approach to causation to this point appear to exhibit much mutual 

misunderstanding about what different players advocate, leading to many ‘straw-man’ 

complaints”.87 
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The proposed alternatives to a more restrictive interpretation of causes have been called 

‘inference to the best explanation’,73
⁠

,88 and ‘triangulation’.73
⁠

,89 

 

1.6 Inference to the best explanation and 
triangulation 

Inference to the best explanation (IBE) is the name of a framework developed by the 

philosopher of science Peter Lipton88 and centres on ruling out competing hypotheses that 

could explain the evidence by utilising, in turn, a two-stage mechanism that involves 

generating hypotheses and then selecting from among them. As Krieger and Davey Smith 

put it: “IBE is thus driven by theory, substantive knowledge, and evidence, as opposed to 

being driven solely by logic or by probabilities”.77 But those on the other side of the 

‘causality wars’90 seemed to be largely in agreement with IBE as an important way that 

scientists reason.47
⁠

,85
⁠

,87 

A similar approach, triangulation, was also put forward and described as: “one’s confidence 

in a finding increases if different data, investigators, theoretical approaches and methods all 

converge on that finding”,73 and also “the practice of strengthening causal inferences by 

integrating results from several different approaches, where each approach has different 

(and assumed to be largely unrelated) key sources of potential bias”89. But as with IBE, this is 

also seen as an important approach to science from those who otherwise disagree on 

methodological details.85
⁠

,90 

 

1.7 Other frameworks for causal inference 

1.7.1 Structural equation modelling 

Structural equation modelling uses two types of variables in equations that represent 

structural models.91 The observed variables contained in the data are one type, while the 

other type  of variables are called latent variables, which correspond to hypothetical 
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constructs presumed to represent something not directly observable92 but that influence the 

measured variables and so might be estimated. For example, the latent constructs might be 

factors that affect the chance of infection with an influenza virus, such as ‘perception of 

infection risk’, ‘host susceptibility to virus infection’ and ‘compliance with preventive 

behaviours’.93 

The collection of related techniques that are grouped under the term structural equation 

modelling (SEM) emerged following work on exploratory factor analysis and path analysis in 

the early part of the 20th century.92 The techniques are widely used in the social and 

behavioural sciences, but are relatively uncommon in the health sciences.  

Structural equation modelling appears to have been one of the more controversial 

approaches when used for causal inference, attracting considerable criticism from 

statisticians for the strong assumptions required.94
⁠

–96 Consequently, causal language has 

often been avoided, with models usually interpreted as either strictly confirmatory, for 

testing alternative models, or as tools to discover possible models by repeatedly fitting 

different models to the data.92 

Nevertheless, some authors believe this has been unfortunate, with Bollen and Pearl 

concluding that “the current capabilities of SEMs to formalize and implement causal 

inference tasks are indispensable”.97 

1.7.2 Decision-Theoretic approach 

Philip Dawid has probably argued the loudest against the majority view of counterfactuals, 

beginning his campaign in the 1970’s98 and persisting still99. But unlike the recent concerns 

detailed above about the restrictive way counterfactuals are used, Dawid argues against their 

use altogether.100
⁠

,101 He believes that making inferences with counterfactuals involves 

assumptions that can be arbitrary and untestable. However, others would argue that this 

simply reflects the nature of reality and, in turn, because this makes them sensitive to 

assumptions, it is a strength rather than a weakness, and making clearly defined assumptions 

allows them to be tested.102 
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His alternative framework derives from Bayesian decision analysis and thus incorporates a 

probabilistic view of causality.103 But while this has many attractions, he is somewhat vague 

on how these probabilities are to be calculated in practice, other than with randomised 

trials.104 

He also notes the potential for confusion given the variety of formal and informal 

frameworks for causal inference that are available. But although he wishes for “the arrival of a 

messianic figure who (just as Kolmogorov did for probability theory) will sweep away the 

confusion and produce a single theory that everyone can accept”,103 this might simply reflect 

his preference, as a mathematician, for the precision found in mathematical theorems. And 

though some, such as Pearl, have claimed in their work that “causality has been 

mathematized”,91 it seems to us unlikely that a problem, still unresolved after centuries of 

philosophical debate, can ever be settled with mathematics alone. 

Nevertheless, while Dawid’s particular approach to causal inference has not appealed to 

many, by providing a counterpoint to conventional views over recent decades he has helped 

spark debate around important issues in the field of causal inference, and public debate 

about research and ideas is partly how science progresses.23
⁠

,105 

1.7.3 Threats to validity 

The final framework that we will briefly cover was developed by Donald Campbell and his 

colleagues from the 1950’s through to the 1970’s and has been the most influential 

approach to causal inference in field settings (non-laboratory research) in psychology and 

education.49 Campbell’s framework revolves around threats to validity, grouped into 

statistical conclusion validity, internal validity, construct validity, and external validity.106 In 

fact, these terms were invented by Campbell, along with quasi-experimental research designs 

such as the regression discontinuity design.49 Campbell was a psychologist, rather than a 

statistician, and this may be one reason that his causal framework emphasised design over 

analysis.107 There can be benefits to such an approach, however, as Campbell’s initial focus 

when designing studies, was to reduce the number of plausible alternative hypotheses that 

could explain the data.49 
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1.8 Causal inference from different perspectives 

By understanding the concepts surrounding causes and causal inference, and the different 

ways that people think about and identify causes, our ability to improve our own causal 

inferences may be enhanced. More importantly, it may also lead to new ideas on how we 

might improve the causal inferences made by health researchers generally. 
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Chapter 2 
Concepts and classifications of bias 
in health research 
 

 

2.1 Bias and causal inference uncertainty 

Improvements in healthcare, such as a new intervention, often hinge on multiple research 

studies returning findings that are true. Operating against better healthcare is research that 

clouds the truth by delivering findings that are false. Such research is sufficiently biased to 

produce conclusions that are wrong. But while this cannot be entirely avoided, the damage 

to scientific progress will be even greater if the uncertainty conveyed with the result is also 

untrue because most of the time this uncertainty is underestimated;108
⁠

,109 leading to 

conclusions that are not only false, but overconfident in the accuracy of their claim. 

For research asking a causal question, such as an intervention study, the uncertainty of a 

result relates to doubt about its accuracy. P-values and confidence intervals provide 

numerical estimates of uncertainty; however, these only reflect a random component that 

depends on factors like sample size and sample variability. In statistics, the difference 

between an estimate of a parameter, such as a causal effect, and the true value is called the 

error, which is traditionally split into a random and a systematic component.⁠

8 The systematic 

component is the net effect of the sources of bias that have influenced the calculation of the 

estimate. If the opposite of random error is precision and the opposite of systematic error is 

validity, then the accuracy of an estimate can be defined by its validity and precision.⁠

8 

We can likewise say that an accurate causal inference is one that agrees with the underlying 

truth in three ways: 
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1. The inference of whether the causal effect exists or not is true. 

▹ And if we believe that most hypothesised causal effects cannot equal exactly 

zero,110
⁠

–115 † then we will assume a true causal effect is strong enough to be 

detected and is meaningful. 

2. The inferred direction of the causal effect is true. That is, if an association between A 

and B is detected and is causal, then the inference made that either ‘A causes B’ or ‘B 

causes A’, is true. 

3. The magnitude of the causal effect is also true. However, just as a measurement of 

length is always to a finite number of decimal places, this last component of an 

accurate causal inference can only ever be accurate to some approximation. Likewise, 

there is going to be a point where increased precision would have no practical value. 

And in health research, where estimated causal effects are usually population 

averages, the true magnitude will depend on the population it belongs to, suggesting 

that an effect size more precise than a rough measure of strength is unlikely to be 

useful, and potentially misleading in its accuracy. 

If the third component includes the sign (positive or negative), then we know that the first 

component is ‘it exists’, and that the second is given by the sign. Nevertheless, uncertainty 

always implies some doubt about all three of these components, even though in some cases, 

                                                 
† For example, most health interventions, such as a drug or even a placebo, will have some 

effect on everyone even if that effect is extremely small. If the population is large enough, 

this effect will inevitably be the tiny 'straw that broke the camel's back' in some people and 

hence, will be a cause of the outcome in that case. In other words, for possible health causes, 

the underlying truth is rarely, if ever, ‘A does not cause B in anyone’, or ‘the effect does not 

exist’, where zero effect means 0.0000.... Likewise, when two interventions are compared, 

there could not possibly be zero difference between their average effects, though the 

difference might be very small. In both cases, the important question is whether the 

difference is clinically meaningful, rather than asking if an effect or difference exists. This view 

also poses problems for the traditional null hypothesis as it assumes a null, or zero, effect 

size. 
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doubt about the first and second will be very small (e.g. smoking increases the risk of lung 

cancer). 

The difficulty in estimating the uncertainty lies, not surprisingly, in its uncertain nature. The 

random component, often expressed as confidence intervals though other forms exist such 

as Bayesian credible intervals, is the easiest to quantify because it can be modelled using the 

laws of probability. The non-random component, however, derives from sources of bias that 

were either not measured accurately, not measured at all, or are not even known, and so is 

mostly estimated through judgement based on sensitivity analyses, prior knowledge of other 

studies, relevant experience, and the plausibility of different types of bias. Quantitative bias 

techniques also exist and will be briefly discussed in Chapter 4. 

To reduce the uncertainty surrounding a research conclusion, sources of bias need to be 

identified and their influence removed. However, history suggests that if a type of bias is 

unknown to the researcher, they are unlikely to detect it. While the basic concept of 

confounding bias can be traced at least back to the 18th century,116 and some types of 

selection bias to the 19th,117 it wasn’t until the second half of the 20th century117 that a great 

number of additional types118 of bias were progressively identified. Hence, many types of 

bias were not revealed to exist until decades after susceptible studies were first run, so unless 

a researcher has either prior knowledge of the bias, or they somehow become alerted to its 

possibility, the existence of that bias will not only distort the results, but remain hidden, 

encouraging the researcher to feel overconfident that the result is accurate. 

The identification and control of bias underpins the truth of causal inferences from research, 

so to gain an understanding of bias, we next examine what is meant by the word itself, and 

how that meaning has evolved over time. But in mathematical statistics, the approach to bias 

became more implicit than explicit: ignoring possible biases with terms like ‘objective 

methods’ and ‘test assumptions’; made worse by the dominant practice of null-hypothesis 

significance testing. The use of causal diagrams, discussed in the last section of this chapter, 

is a different approach that aims is to make potential sources of bias as explicit as possible. 

By also making the goal of causal inference explicit — a task avoided by statisticians for many 

years — causal diagrams can help researchers avoid more bias and thus make better causal 

inferences. 
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2.2 Use and meaning of the word bias 

2.2.1 Evolution of the word bias in English 

The issue of bias is approached somewhat differently in different research settings, and this 

is partly linked to the evolution of the word’s use in English. 

The word bias first appeared in written English in the 16th century, derived from the French 

word biais,119 and it may have first been applied to the way a bowl in lawn bowls moves away 

at an angle from the straight line it was propelled along.120 But it was soon also used in the 

modern social sense of an “inclination or prejudice for or against one person or group, 

especially in a way considered to be unfair”.119
⁠

,120 

At least as early as 1827, the word bias can be seen in relation to mortality statistics, in a 

warning to view other statistical estimates with caution unless they come from someone 

without “bias for, a particular party, or who possess so rare a degree of candour, as to enable 

them to state facts without partiality or concealment”.121 This use corresponds to a number 

of biases we are familiar with today, such as confirmation bias. Another example, also 

referring to a type of cognitive bias, comes from an 1885 Science article in which it is 

suggested that people’s “natural bias in favour of round numbers” had resulted in census 

reports containing “many more persons … recorded as being just 20 or just 50 years old than 

were as being 19 or 49”.122 

By the turn of the century, however, bias was also starting to be used in the burgeoning field 

of statistics, such as this line from Elements of Statistics (1901) by Arthur Bowley: “in 

calculating averages give all your care to making the items free from bias”.123 The first giant 

of the statistics profession, Karl Pearson, similarly used it to describe a dice experiment where 

“the results show a bias from the theoretical results”.124 

From describing numbers, this versatile word was then utilised by another giant of statistics, 

Ronald Fisher, to not only describe measurement error, but also for when equations gave an 

“unbiased estimate” of a statistic, such as variance.55 This additional use of the word was 

perhaps why the statistician John Wishart suggested, in 1939, that “… difficulties might arise 

because of the ambiguity of language. Consider, for example, the various meanings that 
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might be attached to the word ‘bias’”.125 Nevertheless, around the same time, the abstract 

term unbiased estimator was introduced into mathematical statistics.126 This was, and 

remains, a much narrower use of the word bias, however, as it relates only to idealised 

settings with a definable “true” value of a parameter. The following is a standard definition: 

A point estimator 𝜃𝜃� is said to be an unbiased estimator of 𝜃𝜃 if 𝐸𝐸�𝜃𝜃�� = 𝜃𝜃 for 

every possible value of 𝜃𝜃. … That is, 𝜃𝜃� is unbiased if its probability (i.e., 

sampling) distribution is always “centred” at the true value of the parameter.127 

Converting this to non-mathematical language: for example, assuming the parameter of 

interest is the mean height of all males in a specified population, then the mean height of a 

random sample of males from that population (𝜃𝜃�) is an unbiased estimator of the true mean 

height of males in the population. In this case, unbiased simply indicates that the average 

value (𝐸𝐸�𝜃𝜃��) of all the mean heights calculated from all possible samples taken from the 

population (the sampling distribution), is equal to the population’s true mean male height 

(𝜃𝜃). 

This was, and still is, an important theoretical concept in mathematical statistics. However, 

estimates produced from an unbiased estimator assume that no unmeasured confounding, 

selection bias or measurement error exists. Hence, as Greenland and Pearce note: “no 

available estimator can be shown to be unbiased or consistent under realistic epidemiologic 

conditions”.128 Nevertheless, this use of the word ‘unbiased’ is routinely included in 

introductory statistics courses, and so at times, may have encouraged the widespread 

overconfident belief of researchers that the estimates produced by their analysis really are 

unbiased. 

Finally, many early advances in science were reported only in languages such as French or 

German, and they appear to have used words with a similar meaning to bias. Though not in 

English, communication between scientists of that era might nevertheless have led to some 

influence of these concepts on the modern meaning of bias. For example, concepts similar to 

confirmation bias and social-desirability bias can be found in an 1825 book on probability 

theory by the French mathematician Pierre-Simon de Laplace.129 And in 1835, Pierre-Charles-
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Alexandre Louis, a French physician investigating the efficacy of bleeding patients, identified 

confounding bias as a threat to inference.130 

2.2.2 Modern use of the word bias 

Word meaning changes over time and few words mean the same now as when they first 

appeared in the language.131 We cannot know for certain how the word bias was first used in 

English, but over time it has acquired a variety of senses by which it is commonly used. Word 

meaning usually depends on context, however, even native speakers might interpret a word 

a little differently.132 But with this in mind, from an epidemiological point of view, Porta et al. 

provides a good summary of the various meanings that have come to be associated with 

bias in health-related research: 

A systematic deviation of results or inferences from truth. Processes leading to 

such deviation. An error in the conception and design of a study - or in the 

collection, analysis, interpretation, reporting, publication, or review of data - 

leading to results or conclusions that are systematically (as opposed to 

randomly) different from truth.118 

There are also words and terms with meanings that closely relate to bias. For example, an 

inference that is free from bias might be described as valid or accurate; while a biased 

inference might be called a statistical artefact or spurious. Bias is also called, and sometimes 

defined as systematic error (as opposed to random error). In common usage, valid will be in 

reference to a logically sound or reasonable argument, but not necessarily a true argument, 

if it is based on assumptions that are false. The related terms 'internal validity' and 'external 

validity' do refer to truth, however, and have become popular, perhaps because they 

succinctly capture two related concepts we can easily picture as inside and outside a study. 

It is not uncommon to reserve the word bias for when there is a lack of internal validity, but 

not for when there is a lack of external validity, which is also known as generalizability.133 And 

we will follow this convention as well, partly because internal validity biases relate directly to 

causal inference in health intervention studies, and hence, are the only ones we will be 

examining in this thesis. However, it is terminology associated with the many classifications 

of bias, such as selection bias, confounding, measurement error, and all of the individual types 
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of bias, that seem to cause the most confusion. Yet, as psycholinguist Steven Pinker notes: 

“when it comes to correct English, there’s no one in charge”,131 so familiarity with multiple 

meanings is, to some extent, necessary. He does go on to say, however, that tacit 

conventions about word meaning and use emerge over time, even though this implicit 

consensus “… can change over the years in a process as unplanned and uncontrollable as the 

vagaries of fashion”.131 

 

2.3 The approach to bias in mathematical statistics 

Emerging in the latter part of the 19th century, the discipline of statistics was initially led by 

Francis Galton (1822-1911), who developed ideas around regression and correlation,134 

followed by his protégé, Karl Pearson (1857-1936), who was the first to incorporate 

probability distributions into the analysis of data with chi-squared goodness-of-fit tests.135 

Pearson also had strong views about the concept of causality and how it should be treated in 

science; these he discussed in detail in The Grammar of Science136 with lines such as “science 

for the past is a description, for the future a belief; it is not, and has never been, an 

explanation”. As a consequence, he focused on developing methods to find associations, or 

correlations, in data. 

Pearson’s contributions added momentum to the shift in science towards the abstract, where 

reality is often described in terms of probability distributions, parameters and degrees of 

freedom; instead of the natural categories we use to understand ourselves and our world.135 

It may not be surprising then, that scientists have struggled to fully understand how to use 

or interpret the results of statistical methods over the last 80 or more years.  

This mathematical perspective also led to a contrasting approach to bias. As mentioned in 

2.2.1, mathematical statistics makes use of the word bias only to refer to an unbiased 

estimator or the unbiased estimate that the estimator produces. The danger of this approach 

is that statisticians working in mathematical statistics might lack an adequate understanding 

of the problems that scientists are trying to solve with statistics.137 Practising statisticians who 

work with subject matter experts need to assume the scientific meaning of the word bias 
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when constructing statistical models. However, the definition of the word bias in one 

currently available statistics dictionary is simply: “bias. See estimator”.126 

In the 1920s and ‘30s, three statisticians developed the theory and methods that remain the 

basis for most statistical analyses carried out today: Ronald A. Fisher, Jerzy Neyman and Egon 

Pearson (son of Karl Pearson).⁠

8 But it was Fisher who developed the bulk of it, including the 

distinction between a population and sample, the modern conception of a statistical model, 

analysis of variance, p-values, significance tests, and maximum likelihood estimation.135 His 

most important innovation, however, was randomised experiments, published in his 1935 

book The Design of Experiments.138 And in just over a decade it would lead to the first 

randomised controlled trial; designed by Austin Bradford Hill.139 This approach to study 

design ensures that the bias known as ‘confounding by indication’ cannot occur, though it 

does not protect against any of the other biases that observational studies can fall prey to.140 

However, confounding by indication is a common source of bias when randomised 

treatment allocation is not used.141 

The methods that Fisher developed were fundamentally aimed at providing “objective” 

means by which conclusions could be formed from data.142 In other words, conclusions that 

were independent of personal biases.143 These methods included his version of significance 

testing which incorporated a suggestion to use p < 0.05 as a cutoff to decide significance, a 

custom that has lasted more than 90 years. Nevertheless, Fisher believed that the 

interpretation of the p-value should be made each time by the researcher, and he included p 

< 0.01 as another rule that he sometimes used. His thoughts on the appropriate use of such 

decision rules were not clear in his writing, however.144 

This apparent arbitrariness in decision making led Neyman and Egon Pearson to propose 

“hypothesis tests” so that further rules could be imposed on, and restrict, decisions.145 By 

predefining the Type 1 error rate (probability of rejecting the null hypothesis when it is really 

true) and the Type 2 error rate (probability of accepting the null hypothesis when it is really 

false), along with a null and an alternative hypothesis, the researcher would know whether to 

accept or reject the null hypothesis at the end of the experiment, thereby limiting personal 

biases.145 In fact, Neyman and Pearson believed that “as far as a particular hypothesis is 

concerned, no test based upon the theory of probability can by itself provide any valuable 
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evidence of the truth or falsehood of that hypothesis”.146 What they wanted, instead, was a 

rule that would tell them how they should behave regarding the null and alternative 

hypotheses.147 

Fisher did not favour this predefined hypothesis testing approach,148 but scientists soon 

adopted what was, perhaps, the easiest option of combining Fisher’s suggestion to use p < 

0.05 as a decision rule, misinterpreting it as the “observed Type 1 error”, while mostly 

ignoring the Type 2 error rate.147 And with a null and alternative hypothesis defined 

beforehand they could then accept or reject the null hypothesis at the end of the 

experiment. This model for scientific experiments and studies has been the dominant 

method for making inferences ever since, yet an implicit assumption when using tests that 

produce p-values and confidence intervals is that non-random errors, meaning sources of 

bias, do not exist for the problem at hand, regardless of the regression model or estimation 

technique used.130 One implication is that plausible sources of bias may be overlooked by 

researchers who are not sufficiently aware that the non-existence of non-random sources of 

bias is only an assumption.149 

 

2.4 Reasons to classify types of bias 

To reduce the chance of bias affecting their research findings, researchers need to recognise 

how such bias might occur, and to do this at each stage of their study (e.g. design, 

implementation, analysis, interpretation, publication). But it would be unrealistic to expect 

anyone to learn and reliably recall every type of bias that has ever been catalogued. To assist 

and provide a basis for understanding the nature of bias, a range of conceptual tools have 

been proposed and developed over time, such as bias classification schemes and risk of bias 

checklists, and they continue to evolve. Causal diagrams are also increasingly being used to 

help identify and reduce the effects of bias in research studies,59 and they provide one way to 

avoid the confusion that stems from ambiguous terminology, such as ‘selection bias’.150 First, 

however, we will consider the potential benefits of a widely accepted classification system. 
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There are several distinct advantages to having a classification system of bias, and one that is 

common to many people. The first, already suggested above, is that it will assist in learning 

about and recalling specific types of bias that a study may be susceptible to. In 2010, 

Chavalarias and Ioannidis151 identified 235 separate bias terms in a review of PubMed titles 

and abstracts, with 40 terms in over 100 papers each. They also noted that “the wide 

diversity in this nomenclature makes categorisation difficult”. Nevertheless, categorising 

specific types of bias, such as ‘choice of treatment influenced by a participant’s health’, into a 

vague sort of category hierarchy, is something we do naturally over time, anyway. There is 

evidence to suggest that much, or perhaps all, of our thinking involves a constant flow of 

conceptual categories that are formed over time through analogy-making, with new 

concepts understood by relating them to existing concepts through their similarities, and in 

time, similar concepts are grouped, or ‘chunked’,152 into new information units that we can 

process mentally as a single category. And all of this depends on our personal experience.153 

So, without awareness of an existing classification system, each person with enough 

experience involving bias identification will end up mentally grouping specific biases in a 

haphazard and not always helpful way. For example, someone with limited experience in 

clinical trials might group under a ‘doctor bias’ category, without thinking deliberately about 

it, ‘the bias caused by doctors ignoring random treatment allocation’ along with ‘the bias 

caused by doctors treating the intervention patients differently to control patients in an 

unblinded trial’. However, the ‘doctor bias’ concept would not help in recognising this type 

of bias if the next trial they were involved in saw nurses assigning the intervention. 

Learning about specific types of bias through a well-designed classification system would 

facilitate the formation of a more useful and enduring mental hierarchy that (1) reduced the 

complexity of many types of bias, (2) highlighted the similarities and differences, and as such, 

(3) showed how each bias could be easily related conceptually.154 A coherent classification 

system would also guide the formation of checklists used to determine the risk of bias in 

studies in a systematic review. Existing examples of this include Cochrane Risk of Bias tool for 

randomised trials,155
⁠

,156 the Quality of Cohort studies tool (Q-Coh),157 and the Risk Of Bias in 

Non-randomized Studies of Interventions [ROBINS-I] tool.158 

On the other hand, while risk of bias judgements are important for evidence synthesis, or 

even for judging a single study, it would clearly be better if there were fewer studies at high 
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risk of bias in the first place. To this end, checklists of some kind may help. They have had 

widespread success in the aviation industry (e.g. preflight checklists) as well as product 

manufacturing,159 and in recent decades they have seen increasing use in medicine, initially 

in nursing, and now also with doctors, especially in critical care settings.160 By assisting with 

memory recall and establishing a minimum standard of bias identification and control, 

checklists derived from a bias classification system might prove a feasible method of 

improving the quality of research. 

The other obvious benefit of a shared classification system is ease of communication. It has 

been noted by many that the variation in bias terminology and classification can create 

confusion in communication and understanding.150
⁠

,161
⁠

–165 In 1992,166 the goal of developing a 

widely accepted bias classification scheme was called the ‘holy grail of epidemiologic 

research’. It seems an unlikely prospect, now, yet remains a worthy goal, and each 

contribution may bring a larger consensus one step closer. On the epidemiological side, 

people like David Sackett, Oli Miettinen, and many others have developed classifications of 

bias in research. But before any of these were considered, statisticians examined the problem 

from a mathematical perspective, and their work had an enormous impact on scientific 

research, including all the areas related to health. 

 

2.5 Early concepts of bias in health research 

One of the themes of this chapter is the variation in meaning of important terminology, like 

the words bias and valid in Chapter 2. An additional word that is used in a number of ways is 

epidemiology. It originally referred only to epidemics, however, its meaning has expanded 

over the last 90 years118 so that definitions at times imply all research that relates to human 

health, including experimental studies like clinical trials,167 though usually the definition will 

refer to groups or populations of people, rather than individuals. On the other hand, use of 

the term ‘epidemiological studies’ is more likely to refer to observational studies, but not 

experimental studies,”167 while ‘clinical trials’ always refer to experiments where (at least 

some) study participants are deliberately given a treatment. This confusion of terminology 

can lead to confusing definitions, as evidenced by the Wikipedia page for ‘epidemiology’, 
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where the first paragraph states “Epidemiology is the study and analysis of the distribution 

(who, when, and where) and determinants of health and disease conditions in defined 

populations.”168 However, the first sentence of the third paragraph starts with “Major areas of 

epidemiological study include disease causation, …”, and ends with “… and comparisons of 

treatment effects such as in clinical trials”. Hence, to avoid ambiguity in this chapter, we will 

use ‘health research’ as an umbrella term for all research relating to health, while separating 

epidemiology and clinical trials. Partly, this is because bias has come to be classified 

somewhat differently in these two areas. 

Research on human health has a long history, but before the development of study designs 

and statistical methods that could aid analysis, it was difficult to avoid the cognitive biases 

that affect the perception of cause and effect, such as confirmation bias. A clear example is 

the fact that bleeding people with an illness, also known as bloodletting, survived as a 

standard therapeutic treatment from ancient times until late into the 19th century. Many 

factors would have contributed to its ineffectiveness not being discovered, including well-

established traditions among physicians; ill people preferring to be treated rather than left 

alone; and the effect of confirmation bias where physicians would have focused their 

attention on those who improved or recovered following treatment, thus confirming their 

belief, unaware that they would have improved or recovered without treatment.169 

Bloodletting was still commonly used when the physician Pierre-Charles-Alexandre Louis 

(1787–1872) assessed the treatment by comparing the average number of deaths and time 

to death, or time to recovery, between those who were bled and those not bled, for patients 

with typhoid fever, pneumonia, and angina tonsillaris.139 While not the first physician to 

compare patient outcomes by group rather than individually, he was nevertheless the most 

prominent to show a preference for average number statistics over clinical judgement.139  

With the growth of statistical theory in the early 20th century, an obvious application was the 

study of health and disease. Karl Pearson had an interest in promoting the new statistical 

methods to the medical profession and occasionally contributed to The Lancet and the 

British Medical Journal.170 One physician, Major Greenwood (not a military title)(1880-1949), 

became a statistician in 1910 after training under Pearson, and in 1924 published an article in 

The Lancet titled “Is the statistical method of any value in medical research?”. While it clearly 

promoted the use of statistics, the final paragraph contained: 
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When I first took an interest in these matters, more than 20 years ago, there 

was some tendency to treat the statistician or biometrician as a pariah, and he 

acquired the virtues and vices of a minority, a certain courage and a certain 

trick of over-emphasis - they always characterise a fighting minority. Now, 

statistics and statisticians are perfectly respectable; there may even be a risk of 

putting the claims of the statistical expert too high. ... The statistician must be 

the equal not the predominant partner.171 

Sander Greenland recently labelled this “a prescient warning against inference dominated by 

statisticians”.86 This would also apply to statistics throughout health research, whether a 

statistician is involved or not, and points to the evident overconfidence that many 

researchers feel about the accuracy of their results. This issue will be examined in more detail 

in Chapter 4. 

 

2.6 Clinical trials 

Around the same time that Fisher was revolutionising statistics, in 1927 Greenwood was 

appointed as Professor in Epidemiology and Vital Statistics at the newly created London 

School of Hygiene and Tropical Medicine (LSHTM).139 One of his students was Austin 

Bradford Hill (1897-1991) (known as Tony to his family and friends, he included his middle 

name Bradford to be distinguished from the physiologist A. V. Hill),172 who would take over 

Greenwood’s post when he retired in 1945.170 In 1946, influenced by Fisher’s work on 

randomised experiments, he designed what is considered the first properly designed 

randomised controlled trial (RCT); it aimed to assess the efficacy of streptomycin as a 

treatment for tuberculosis.173 Although placebos were not used, allocation of streptomycin 

and bedrest, or just bedrest, was random and contained in sealed envelopes to preserve the 

randomisation. Within a decade, concerns by clinicians about withholding treatments from 

control group patients had given way to concerns about the claims from drug companies, 

with a wave of new medications entering the market in the 1950s, cementing the place of 

RCTs in health research.174 
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The masking or blinding of a treatment with, for example, placebos or sham procedures for 

patients, and some form of deliberate ignorance for investigators to allow blind assessment, 

sometimes literally a blindfold, can occasionally be found in research studies over the last 

few hundred years.175 Following World War II, however, its value as an addition to the new 

RCT methodology was soon realised, enabling a further reduction in the bias that patients 

and investigators could subconsciously impart to the data; in the case of investigators, this 

was sometimes called ‘experimenter bias’.176 

Beginning in the 1960s, governments took advantage of these developments in experimental 

design and began to require pharmaceutical companies to conduct clinical trials, both 

randomised and blinded, as the only way to show sufficient proof of efficacy and safety 

before regulatory approval would be granted.139 This sparked a boom in the number of RCTs 

that added to the available evidence, yet often the evidence for a particular intervention is 

not consistent. This led to the rise of meta-analyses and systematic reviews in the 1980s as 

the only way for the medical community to make reasonably informed decisions.177 It also 

led to many statisticians specialising in clinical trials, both in private companies and in 

academia, with the focus of concerns about bias tending to be different to bias concerns in 

observational epidemiology. Not surprisingly, the terminology has also evolved differently, 

and this is most evident in the way bias has been classified in the various ‘risk of bias’ 

assessment tools that have been developed over the last 20 years. 

Through the 1980s and ‘90s, many scales and checklists were published that could help 

researchers judge the methodological quality of RCTs.178 This task is clearly important for 

anyone conducting a systematic review, with or without a meta-analysis, but the limited 

utility of summary scores from the use of a scale was well recognised by the end of the 

century.179 This drove the development of more comprehensive “risk of bias” tools, such as 

the Cochrane Collaboration’s Risk of Bias tool for randomised trials (2008), 155
⁠

,180 and the 

ROBINS-I tool for non-randomised intervention studies (2016).158 

The Cochrane tool highlights the different way that categories of bias have developed since 

the 1960’s in comparison to observational epidemiology, with the classification system in 

Table 1 given as part of their tool.180 
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Table 2.1 Bias domains in the Cochrane Collaboration’s Risk of Bias tool155
⁠

,180 

Bias domain Brief description Examples 

Selection 
bias 

Systematic differences between 
baseline characteristics of groups 
compared 

Inadequate generation or 
concealment of allocation 
sequence 

Performance 
bias 

Systematic differences between 
groups in the care, treatment or 
exposures, other than the 
intervention 

No blinding of participants or 
trial staff to treatment allocation 

Detection 
bias 

Systematic differences between 
groups in how participant outcomes 
are determined 

No blinding of outcome 
assessment 

Attrition bias Systematic differences between 
groups in completeness of outcome 
data resulting from participant 
withdrawals or exclusions 

Inadequate procedures to retain 
participants or measure outcome 

Reporting 
bias 

Systematic differences between 
reported and unreported findings 

Selective outcome reporting 

Other biases Sources of bias relevant in specific 
trial designs or circumstances 

Carry-over in cross-over trials; 
recruitment bias in cluster 
randomized trials; contamination 
where experimental and control 
interventions get mixed 

 

On the other hand, the ROBINS-I tool for non-randomised intervention studies (including 

cohort, case-control and quasi-randomised studies) uses domains of bias that are closer to 

the common tripartite classification (confounding, selection bias, measurement or 

information bias) used in epidemiology, with 7 domains of bias, grouped by the stage of 

research:155 
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Pre-intervention 

1. Bias due to confounding 

2. Bias in selection of participants into the study 

At intervention 

3. Bias in classification of interventions 

Post-intervention 

4. Bias due to deviations from intended interventions 

5. Bias due to missing data 

6. Bias in measurement of outcomes 

7. Bias in selection of the reported result 

 

2.7 Classifications of bias in epidemiology 

Outside clinical trials, health research usually falls under the heading of epidemiology, 

although in this sense it has been called ‘traditional epidemiology’.181 The discipline mostly 

relies on observational (non-randomised) study designs, such as case-control and cohort 

designs, to assess the distribution, potential causes of disease and other health-related states 

like injury, as well as interventions. When assessing health interventions, similar designs are 

used, and aim to provide evidence that is either additional to or not feasible to obtain with 

an RCT. This includes research on long term efficacy, rare side-effects, and efficacy and safety 

in a large and diverse clinical population.158 In this thesis, we have mostly restricted the scope 

to health intervention research. 

2.7.1 A common classification of bias 

At the beginning of the 1950s, epidemiology was in the process of expanding from a 

discipline long associated with communicable diseases, like typhus, malaria, tuberculosis, and 

many others, to one that would also take on noncommunicable diseases, a relatively new 

field, with targets such as lung cancer and cardiovascular disease.182 But the considerable 

research that was spurred by the tobacco-lung cancer debate was also followed by criticism 
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from statisticians about their research and analysis methods. They expressed scepticism 

about results derived from case-control studies that contained few protections against 

selection bias and no agreed upon methods for analysing the data.182 

However, the criticism had a positive effect, stimulating numerous developments in statistical 

design and analysis.183 Nevertheless, many epidemiologists remained resistant to formal 

methods.86 Efforts to get epidemiology onto a firmer methodological foundation started to 

gain momentum in the 1970s and ‘80s, led by people such as Olli Miettinen and Kenneth 

Rothman at Harvard University, and joined by Greenland, Morgenstern, Kleinbaum, Kupper, 

and others.182 By the end of the 1980s, epidemiology had transformed from a ‘classical’ to a 

‘modern’ phase, where epidemiologists were more likely to have PhDs instead of medical 

degrees, and most would have some training in statistics.183 In the process, the discipline 

became much more mathematical, resulting in for example, the introduction of ‘cumulative 

incidence’ to better distinguish ‘risk’ from ‘rate’; methods for matching in cohort and case-

control studies; case-control designs were split into three types based on how the controls 

were sampled; and distinct types of bias were more carefully defined or identified, with their 

similarities and differences better explained.183 

These methodological developments were generally aimed at reducing the chance of bias, 

and some are discussed in sections 2.8.2 and 2.8.3 on confounding and selection bias. Out of 

this process came the idea of classifying biases into confounding, selection bias and 

measurement bias, first mentioned in an article by Kleinbaum et al. in 1981,184 but based on 

ideas developed by Miettinen.185 

2.7.2 Confounding 

The word confounding has been used in two primary ways by groups that are distinct, yet 

often closely related: 

1. epidemiologists, who use the word in its oldest and most commonly used sense that 

describes a mixing together of separate causal effects with the effect of interest ⁠

8 

2. mathematical statisticians, for whom confounding relates to a concept called non-

collapsibility, where an association is non-collapsible if the summary measure of 
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association (e.g. odds ratio) changes when conditioning on, compared to not 

conditioning on, a potential confounder186 

The result is that when the word confounding is used, miscommunication can easily occur if 

the meaning of the word is assumed incorrectly. 

Confounding may have been the earliest type of bias to be identified, with the concept 

appearing in a variety of 18th and 19th century treatises, sometimes beginning with the 

English philosopher John Stuart Mill (1806-1873),187 although it was observed earlier, and 

was sometimes used as a criticism of another’s study.116 This early concept can be broadly 

defined as the non-comparability of groups,188 or as the British statistician G. Udny Yule 

(1871-1951) described it in 1903:189 a “fictitious association caused by mixing records”. In 

other words, a mixing of the effect of one factor on an outcome with the effects of other 

factors on that outcome,⁠

8 and it can also be roughly understood in the same fashion as the 

well-known idiom ‘like comparing apples and oranges’. 

Use of the word confounding did not appear in health research until 1970,116 but appears to 

derive from its use by Ronald Fisher116 who included a long chapter with the title 

‘Confounding’ in his 1935 book The Design of Experiments.138 But contrary to the meaning 

implied by the word now, Fisher described an experimental design that could take advantage 

of ‘confounding’. One example he used involved small agricultural land plots containing 

fertiliser made up with differing amounts of each ingredient. Called a factorial design, it 

meant that more than one comparison was possible. In this example, the experimental units 

are the different amounts, sometimes zero, of each ingredient and the measured outcome is 

the amount of corn produced from each plot. If certain interactions between experimental 

units, that is, ingredient combinations, were not of interest in the analysis, the precision of 

the main effect, such as the ideal level of one of the ingredients, could be increased by 

eliminating some high-order interactions; that is, by deliberately introducing ‘confounding’. 

The book’s influence did not come from this, however.188 

The word confounding appeared next in an influential 1959 methodologic paper in sociology 

by Leslie Kish.188 Meanwhile, the concept of confounding, which at this time consisted of the 

two criteria (a) the confounder must cause the outcome, and (b) the confounder must be 
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associated with the exposure under study, was discussed in occasional health research 

articles, such as the 1959 landmark paper on smoking and lung cancer by Jerome Cornfield 

et al..190 The word confounding finally appeared in the epidemiology literature in 1970 with 

an article on matching by Olli Miettinen,191 who has said he got the word from Fisher.192 It 

then appeared in a few influential articles and books through the 1970s, including Kenneth 

Rothman (1975)193 and David Sackett (1979).194 With Greenland and Neutra (1980)195 and 

Miettinen and Cook (1981),196 a third requirement for a confounder was added: the 

confounder must not be a mediator on the causal pathway between the exposure and 

outcome.116 

Perhaps the most important development was the 1986 article by Sander Greenland and 

James Robins titled ‘Identifiability, exchangeability, and epidemiological confounding’.197 

Using the potential outcomes framework, they drew a connection between epidemiological 

confounding; the term identifiability from mathematical statistics, which relates to whether 

the parameters in a statistical model can be identified from the available data, which 

depends on no unmeasured confounding;198 and exchangeability† from Bayesian statistics, 

which means the same data would be obtained if the intervention group participants 

received the control treatment and the control group received the intervention;197 in other 

words, if the participants in each group are exchangeable, it means they are sufficiently 

identical that the same data would be expected if they were, in fact, exchanged. Greenland 

and Robins also discussed collapsibility-based definitions of confounding which state that, if 

after stratification the effect measure (e.g. odds ratio), in each stratum is the same and also 

equals the crude effect measure, then the effect measure is said to be collapsible and the 

crude effect measure is unconfounded. They agreed with Miettinen and Cook196 that a 

collapsibility-based definition is not ideal because it depends on the chosen measure of 

effect, and they give the example that a cohort study might find the risk difference 

collapsible but the odds ratio not collapsible. They conclude that a comparability-based 

                                                 
† (not to be confused with an 'exchangeable working correlation' used in generalized 

estimating equations) 
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definition of confounding is preferred over collapsibility-based ones, and should relate in 

some way to assumptions about exchangeability.197 

Finally, it is worth noting that some authors prefer to keep confounding and bias as separate 

concepts. For example, in “Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE): Explanation and Elaboration” (2007):199 

Bias is a systematic deviation of a study’s result from a true value. … Bias and 

confounding are not synonymous. Bias arises from flawed information or 

subject selection so that a wrong association is found. Confounding produces 

relations that are factually right, but that cannot be interpreted causally … 

But this interpretation is not common in non-experimental epidemiology. 

2.7.3 Selection bias 

Like confounding, some types of selection bias were identified prior to the 20th century. For 

example, the British statistician and public health proponent William Augustus Guy (1810-

1885), who would go on to serve as president of the Statistical Society of London,139 tested 

the possibility that self-selection of workers might have biased an association between 

occupation and ‘pulmonary consumption’.117 An early example in the 20th century was 

demonstrated by Joseph Berkson (1899-1982), an American statistician who, in 1946,200 used 

algebraic analysis to show the theoretical possibility of what came to be known as Berkson’s 

bias, though he only relates it to hospital-based case-control studies.183 However, it is now 

thought unlikely to have had much effect on the results of epidemiological studies,201 though 

the ensuing controversy it generated may have helped drive the development of more 

general selection bias theories.183 And a quick search on Google Scholar suggests it is still 

prompting ideas.202 

In 1977, Greenland published ‘Response and Follow-Up Bias in Cohort Studies’ in which he 

states that, at that time, selection bias was a well-known problem in case-control studies, 

perhaps because of Berkson’s warning, yet selection bias was less well known as a possibility 

from loss to follow-up in cohort studies.203 A subsequent paper by Kleinbaum, Morgenstern 

and Kupper in 1981 offers a definition of selection bias as “a distortion in the estimate of 
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effect resulting from the manner in which subjects are selected into the study population”.184 

This is quite general, however, and suggests that many sources of bias more commonly 

thought of as confounding would instead be labelled selection bias; such as confounding by 

indication where, for example, a doctor ‘selects’ the patients that are prescribed the 

treatment, based on their symptoms or health history, which in turn has an influence on the 

probability of the outcome occurring.118 

Confounding and selection bias have been distinguished by Rothman et al. (2008)⁠

8 with: 

… differential selection that occurs before exposure and disease leads to 

confounding … In contrast, selection bias as usually described in epidemiology 

… arises from selection affected by the exposure under study … 

Examples of selection bias that are common across epidemiology include differential loss to 

follow-up; missing data from reluctance of participants to provide detailed information; and 

self-selection or volunteer bias. On the other hand, healthy worker bias, can be classed as 

selection bias or confounding, depending on the definition of the bias and the classification 

system.204 

2.7.4 Measurement bias 

Under the heading of measurement bias, also known as information bias or measurement 

error, we find errors in the measurement or recording of information about participants, 

including their baseline characteristics, exposure status and outcome data. ⁠

8 A bias will exist 

when these errors differ between comparison groups. For errors in discrete data, such as the 

recording of sex or disease status, the term misclassification is often used, sometimes divided 

into differential misclassification and nondifferential misclassification, where the first refers to 

misclassification that is more likely for one of the study groups, and the second refers to 

equal likelihood of misclassification for each group.118 

The way in which misclassification errors can produce a bias seems intuitive, and this may 

have been why it was the first type of measurement bias discussed theoretically in the 

epidemiological literature;182 in a 1954 article by the American statistician Irvin Bross.205 

Further types of measurement bias were discussed soon after as epidemiology and 
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biostatistics rapidly evolved.182
⁠

,183 Other examples include recall bias, response or self-report 

bias, and a bias sometimes called observer-expectancy bias, detection bias, or ascertainment 

bias, that can be reduced with blinded outcome assessment. 

 

2.8 Classifications that did not catch on 

Substantial change rarely occurs unless the existing way of doing things is challenged, and 

we saw this in the 1970s with the campaign to introduce more methodological rigour into 

epidemiology. But at the same time, certainty can never exist about the best way forward, 

and no two people will view a problem from the same perspective. This means that different 

people will come up with different solutions, and this is what has happened and continues to 

happen with the classification of bias in epidemiology. 

One of the earliest and best known classifications of bias was put together by David Sackett 

(1979)194 and based, in part, on earlier work by Murphy (1976)206 and Feinstein (1967).207 He 

lists 35 biases and groups them by the stage of research they occur in: 

1. reading-up on the field 

2. specifying and selecting the study sample 

3. executing the experimental manoeuvre (or exposure) 

4. measuring exposures and outcomes 

5. analysing the data 

6. interpreting the analysis 

7. publishing the results 

Sackett presented the list at a symposium on case-control methodology, however, he 

included biases specific to cohort studies as well. In fact, it is one of the most comprehensive 

taxonomies produced for epidemiology in terms of the areas it covers. For example, 

although he specifically tried to avoid the inclusion of ‘biases of rhetoric’ (p.51), which he 

thought were not appropriate for the symposium aimed at the design of case-control 

studies, he nevertheless includes a few such biases in the first stage, ‘reading-up on the field’, 

such as ‘The all's well literature bias’, and the ‘One-sided reference bias’. He also included 
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biases that relate to the analysis and interpretation of results, usually not combined into a 

single taxonomy. 

Although many of the names he gave to biases have not survived, such as  his original 

publication has inspired a new initiative based at the University of Oxford’s Centre for 

Evidence-Based Medicine: The Catalogue of Bias Collaboration and the associated Catalogue 

of Bias website (catalogofbias.org).208 

In the 1980’s, the main development was the growing popularity of dividing bias is in 

epidemiology into confounding, selection bias and information or measurement bias. One 

prominent academic who disagreed with this classification was Alvan Feinstein, well known 

for occasional disagreements with Miettinen, Rothman, Greenland and many others,209 who 

exerted part of his influence as co-editor of the Journal of Clinical Epidemiology from 1982 

until his death in 2001; though it was called the Journal of Chronic Diseases until 1988. 

Feinstein preferred to classify biases into:210 

1. susceptibility bias (the same as confounding by indication) 

2. performance bias (different treatment or phenomena experienced by groups) 

3. detection bias (different methods of outcome measurement) 

4.  transfer bias (differential loss to follow-up) 

And he thought that “Instead, the customary approach is to use vague terms, such as 

“information bias”, “selection bias”, and “confounders”.211 

A few years later, Choi and Noseworthy (1992)212 extended the now common three category 

framework to “include subclassification according to the type of study design: cross-

sectional, case-control, retrospective cohort, and prospective cohort”. This can be seen in 

some later taxonomies of bias, as well such as Delgado-Rodríguez and Llorca (2004).185 

That same year, Steineck and Ahlbom (1992)213 published “A definition of bias founded on 

the concept of the study base” which utilised Miettinen’s idea of the ‘study base’, a concept 

that he recently said could be “rather subtle”.214 Steineck and Ahlbom described the study 

base as “a specific slice of person-time; it is from the study base that the data are 

collected”,213 while Kass,166 in a commentary on Steineck and Ahlbom’s paper, described the 

study base as “the source population of individuals to be enrolled in an epidemiologic 
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study”. Steineck and Ahlbom used this concept to classify biases into one of three distinct 

stages of a study: definition of the study base, data collection “on disease events and 

person-time among the exposed and unexposed from the study base”, and analysis of the 

data. It didn’t catch on, and Kass suggests that a potential drawback of Steineck and 

Ahlbom’s approach was the use of new terminology for familiar biases, such as “analysis 

deviance” instead of “specification bias” or ‘misspecification’. 

In a different approach by Maclure and Schneeweiss (2001),215 instead of defining a different 

classification system of bias – they used confounding, information bias and selection bias – 

they presented an alternative model to help us understand how biases might influence our 

perception of causal effects. As such, it is similar to an alternative classification system. They 

used the analogy of a telescope that contained lenses and filters, the “episcope”, through 

which an epidemiologist observes possible causal effects in a population. Each lens or filter is 

where certain biases act. They then combine, as if within a telescope, to distort our 

perception of a possible causal effect. Eleven layers of lenses and filters were described: 

1. The causal effect, if it exists 

2. Random confounding 

3. Correlated causes producing non-random confounding 

4. Making of and recording of diagnoses 

5. Recording of exposures 

6. Missing data and data aggregation errors 

7. Hypothesis generation and forming of cohorts 

8. Selection of cases and controls and loss to follow-up 

9. Interpretation of results 

10. Judgments of journals after paper submission (publication bias) 

11. Biases in reviews and meta-analyses 

They also used causal diagrams to describe specific examples of biases within each layer. 
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Using text-mining and the PubMed database, Chavalarias and Ioannidis (2010)151 searched 

for “235 bias terms and 103 other terms that appear commonly in articles dealing with bias”, 

while noting that: 

New terms have been coined, cumulatively creating an extensive dictionary of 

bias nomenclature. Some biases are relevant to a wide spectrum of research 

designs, studies, and settings, whereas others are specific to special situations. 

The wide diversity in this nomenclature makes categorization difficult. 

This helps explain why they chose a different strategy that avoided a classification scheme; 

instead they identified clusters of bias terms that were organised and displayed in network 

visualisation maps and in tables. The bias terms came from all areas of biomedical research 

with many specific to certain areas e.g. “codon usage bias”. One thing they found that is 

relevant to this discussion is that the terms publication bias, confounding, selection bias, and 

response bias (also called self-report bias, a type of measurement bias) have been increasing 

noticeably in the literature over the past few decades. However, one unexplained curiosity is 

that the term ‘performance bias’ was not mentioned. 

Three final classifications warrant mentioning. One was proposed by Weisberg (2011),165 with 

20 sources of bias grouped into 5 categories: Sampling (e.g. participation voluntary); 

Assignment (e.g. subject can influence assignment); Adherence (e.g. requirements onerous 

for subjects); Exposure ascertainment (e.g. inaccurate exposure reported or recorded); 

Outcome measurement (e.g. inaccurate outcome reported or recorded). Another, by Howe et 

al. (2015),216 explained how biases normally classified under confounding, selection or 

measurement bias could instead be characterised as missing data problems. The final system 

takes, in a sense, an approach that advocates tightening existing definitions, rather than 

suggesting something entirely new. Schwartz et al. (2015)217 with “Toward a Clarification of 

the Taxonomy of “Bias” in Epidemiology Textbooks”, expressed a desire for epidemiology 

textbooks to all use exactly the same “consistent taxonomy” of bias, and they go on to 

suggest one that is based on the standard three categories of confounding, selection bias 

and information bias, as well as random error. However, history does not present many 

examples of disparate terminology being successfully merged into one, so this does not 

seem likely to be a productive exercise. 
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As to why the three-part classification system became dominant in epidemiology, we can 

think of a few possible reasons: 

1. It was one of the first coherent systems to be proposed - the critical period appears 

to be the late 1970s and the 1980s, when a lot of new terminology was being 

introduced into health research 

2. A related reason is the popularity of textbooks written by proponents of this system, 

especially “Modern Epidemiology” by Kenneth Rothman in 1986218 (with Sander 

Greenland as co-author for later editions), which had become the most cited 

epidemiology textbook by 2006219 

3. Its simplicity in terms of only three classifications, though this was at the expense of 

leaving out biases relating to data analysis, and the interpretation and 

communication of the results which, for example, Sackett194 had included 

Finally, a possible explanation for the different terminology associated with clinical trials, at 

least in regards to risk of bias assessments, revolves around the many disagreements 

between Feinstein, who was often highly critical of observational study designs,220
⁠

–223 and 

epidemiologists or biostatisticians such as Miettinen, Rothman and Greenland. Terms now 

used in clinical trials such as “performance bias” and “detection bias” appear to originate 

with Feinstein, whereas the term confounding came from Miettinen (though Fisher first 

proposed it) and this word became dominant in epidemiology, where selection bias is used 

for the same concept in clinical trials. 

This brief review of the history and current status of bias classification in health research 

suggests at least two things. First, it does not appear likely that a consensus would ever be 

reached on a common system, not only across all of health research, but even just in 

observational epidemiology which Schwartz et al.217 showed did not use consistent 

definitions across the field. And second, it seems likely that new classification systems will 

continue to be suggested. 
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Chapter 3 
Causal Diagrams 
 

 

3.1 What causal diagrams are 

A causal diagram is a visual model of the cause and effect relationships between variables in 

a system of interest.224 Such a system might comprise the variables that are causally related 

to an activity, such as playing sport every weekend, and an outcome it may affect, such as 

blood pressure. For the research question ‘does playing sport every weekend reduce the 

chance of high blood pressure’, imagine that we analysed a sample of patient blood pressure 

measurements, where all patients, regardless of age, were asked if they played sport every 

weekend. A simplified system containing only three variables is shown in Figure 3.1, and 

describes how confounding might occur in this example. In this case, while playing sport 

might decrease the chance of high blood pressure, age may confound the observed 

relationship because older people are less likely to play weekend sport but more likely to 

have high blood pressure. 

Figure 3.1 Simple causal diagram that describes possible confounding 
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Put simply, causal diagrams can make it easier to draw realistic causal inferences.59 They can 

help by stimulating the identification of more potential confounders and sources of selection 

bias than might otherwise have been considered; and they can help to illuminate the set of 

assumptions that are made when inferring a result from the statistical analysis. 

The causal diagram in Figure 3.1 is also an example of a directed acyclic graph, or DAG, by far 

the most common type of causal diagram used in health research. In this case, the word 

‘graph’ refers to its meaning from mathematical graph theory: a set of points where some 

points are connected by lines;134 instead of meaning a chart or plot as commonly used in 

data analysis.142 

A directed graph is one in which the connecting lines represent a direction from one point to 

another, and a directed acyclic graph is a directed graph where it is not possible to move 

from one point to another, following the directed lines (usually drawn as arrows), and arrive 

back at the original point. In other words, one cannot follow the arrows along a path that 

forms a closed loop or cycle.224 This is necessary for a causal model so that past events can 

cause future events but future events cannot affect past events.225 It is also a common 

convention for a DAG to be drawn where time flows to the right.59 This may enhance both 

the drawing and interpretation of a DAG because it enables a causal story226 to be 

constructed that agrees with English and other language speakers’ intuition that time flows 

from left to right.227 And the dominant view in cognitive science is that people understand 

the world largely by constructing causal narratives or stories.228
⁠

–230 

Unlike most introductions to causal diagrams in epidemiology that include some of the 

formal language and procedures, in this thesis we have instead attempted an alternative 

approach that avoids the mathematical terminology of DAGs unless it will hinder an initial 

understanding. We suspect that most of the concepts can be understood using words in 

common English, and with fewer new words to keep stored in working memory, an ease of 

understanding will hopefully be promoted.131 In Chapter 4, we expand on the influence that 

cognitive ease has on the decisions people make, such as whether to continue learning 

about causal diagrams. Once the core concepts have been understood and can be retrieved 

from long-term memory, the more formal terms such as nodes, edges, vertices, d-separation 

and back-door criterion231 can easily be associated with those concepts. 
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3.2 Brief history 

The geneticist Sewall Wright, in 1921, was the first to use directed graphs to represent 

probabilistic cause and effect relationships among a set of variables.232 He developed path 

diagrams and path analysis,233 which later went on to be used in the social sciences in 

methods such as structural equation modelling in the 1970s.97 Path diagrams also led to 

probabilistic DAGs known as Bayesian networks in the 1980s, with artificial intelligence 

researcher Judea Pearl one of the leading developers.91 And soon after, causal path diagrams 

and probabilistic DAGs were merged234 by Spirtes, Glymour and Scheines (1993)235 and Pearl 

(1995, 2000)236
⁠

,237 into a formal theory of causal diagrams, before its introduction into 

epidemiology in 1999 by Greenland, Pearl and Robins.224 At the same time, a concerted 

effort by Pearl and others fought against the longstanding prejudice in statistics over 

causality.234 

Pearl, especially with his book Causality: Models, Reasoning, and Inference in 2000,237 

developed a detailed structural theory of causation that he claims incorporates and unifies 

other approaches to causation, namely causal graphs, structural equation modelling, and 

potential outcomes.238 It is a mathematical theory and includes a new operator he called the 

𝑑𝑑𝑑𝑑(∙) operator that is to be interpreted as an intervention in the underlying model.237 The 

word ‘structural’ is in reference to the causal structure underlying effects in a research study, 

as represented in a causal DAG,239 and Pearl defines a structural causal model as one that 

represents the causal relationships underlying a dataset.91 As such, it represents any 

assumptions we might make in the analysis of that data.* Each structural causal model is 

related to a graphical model, usually a DAG,226 but it is mainly his development of DAGs that 

have earned widespread application. 

Nevertheless, some prominent statisticians still regard causal diagrams as inferior to other 

options. For example, Donald Rubin states that while these “graphical approaches seem to 

be a clear advance with respect to causal inference over older, less subtle graphical 

approaches”, he nevertheless feels that “the framework is inherently less revealing than the 

                                                 
* ‘data’ is used here in the modern sense as a mass noun rather than the plural of datum 
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potential outcomes framework because it tends to bury essential scientific and design 

issues”.240 

Despite such views, however, over the last two decades the use of causal diagrams has 

grown, and they have even been called the “flagship of the new methods”,241 though 

perhaps claims that “there must be few epidemiologists who do not use directed acyclic 

graphs”242 are more applicable to some universities than others, given that many 

epidemiological articles do not yet mention them. Nevertheless, numerous researchers and 

statisticians are now promoting their use,59
⁠

,86
⁠

,150
⁠

,241
⁠

,243
⁠

–253 so continued growth does seem 

likely. 

 

3.3 Structural classification of bias 

Of the classifications of bias examined in the previous chapter, two apparent problems are 

that: 

1. the same terminology is often used with different meanings, such as selection bias 

2. the same type of bias is often known by different names, for example, see Table 3.1 

This can lead to both misunderstandings in communication between researchers and 

confusion of students in epidemiology and biostatistics.217 

Table 3.1 Bias terms in clinical trials and epidemiology adapted from Mansournia et al.150 

Cochrane Bias Domain Epidemiologic Term 

Selection bias confounding or selection bias 

Performance bias Biased direct effect or confounding 

Detection bias Measurement bias 

Attrition bias Selection bias 

Reporting bias Non-structural bias that cannot be 
represented in causal diagrams 
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Language is full of ambiguity,132 however, which possibly evolved because of our need to 

communicate with the least effort needed and rely heavily on context instead.254 Thus, 

ambiguity cannot be eliminated. But in a series of papers from 2002 to 2009,255
⁠

–257 Miguel 

Hernán and colleagues took an entirely different approach by defining types of bias using 

causal diagrams. They did not avoid terminology, but they were able to give precise 

definitions for the standard epidemiological terms of confounding, selection bias, and 

measurement bias; calling it the “structural classification of bias”.256 

Before defining the types of bias, we need to understand how to use a causal diagram once 

the variables and arrows have all been added. In a DAG, the arrows represent the belief that 

one variable causes another, and in a DAG with many variables, a causal pathway can be 

traced by following the arrows from one variable to another, and this can indicate how one 

variable might influence another further down the causal pathway. An association, on the 

other hand, does not have a direction, and in a DAG, an association will exist between two 

variables if a path can be traced along some arrows, regardless of the direction of the 

arrows.59 

In terms of the structural definition of bias, an association between two variables in a study 

can be explained by one of three possible causal structures. With an intervention and an 

outcome as the two variables of interest, these are:256 

1. Cause and effect: The intervention caused changes in the outcome, or the outcome 

caused changes in the intervention, on average, in the study population 

 For example, a randomised trial with a true causal effect (Figure 3.2) 

Figure 3.2 Cause and effect in a randomised trial 

 

2. A shared cause: A third variable, a confounder, caused either the receiving of the 

intervention, or the type of the intervention received, and also caused changes in the 

outcome 
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 For example, Figure 3.3 depicts an observational study where poor health makes 

it more likely that a study patient was given a particular intervention, for example, 

an expensive treatment drug, but poor health also makes it more likely that the 

patient will die, producing an association between receiving the intervention and 

the outcome (which may, in this case, cancel out an association produced by the 

intervention causing a reduction in the chance of death) 

Figure 3.3 Confounding produced by a common cause 

 

 

3. A shared effect: A third variable that was conditioned on† was affected by both the 

intervention and the outcome; that is, a third variable, called a collider, was affected by 

either receiving the intervention, or by the type of the intervention received, and the 

collider was also affected by the chance of experiencing the outcome; called selection 

bias or collider bias 

 For example, in a randomised controlled trial depicted in Figure 3.4, patients with 

poor health are more likely to die (the outcome), and receiving the treatment 

drug instead of the placebo (the intervention) was more likely to produce side 

                                                 
† The term ‘conditioned on’ or ‘conditional on’ derives from probability theory and intuitively means 
that the data or the results of the analysis depend on information contained by the variable(s) 
conditioned on. This might occur by restricting the data to a specific value of a variable, such as 
including only patients who did not withdraw from a study, or it might occur by adjusting the results 
of the analysis to remove the effect of (‘condition on’) confounding variables, usually by including the 
variables in a regression model or stratifying. Conditioning on a variable can also be described as 
narrowing the scope of the discussion to those situations where the variable is a given value; in other 
words, where the variable is held constant. 231. 
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effects (the shared effect) that led to withdrawal from the study, which is the 

same as conditioning on patients not withdrawing from the study 

Figure 3.4 Selection bias created by conditioning on a common effect (collider bias) 

 

 

In Figure 3.3, the association between the intervention and the outcome can be blocked by 

conditioning on the confounder, often achieved by stratifying or including the confounder in 

a regression model. A common practice with causal diagrams is to place a border around 

variables that are conditioned on, such as in Figure 3.5; and also done in Figure 3.4, where 

the results of the study are conditioned on patients remaining in the study, hence a border is 

around the variable ‘Withdrawal from study’. But in this case, the effect on bias is the same as 

conditioning on whether the patients got side effects, and this is why it is called collider bias, 

because the arrows ‘collide’ at the collider. With this example, however, the selection bias 

from dropout can be removed by conditioning on poor health, thus blocking the 

associational pathway highlighted in red. With the structural classification of bias, both 

selection bias and confounding result in a lack of exchangeability, or non-comparability, with 

statistical adjustment achieved using the same type of methods for both types of bias.256 
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Figure 3.5 DAG with confounding removed by conditioning on the common cause 

 

The remaining type of bias is measurement bias, and Hernán and Cole (2009)257 identified 4 

general types using causal diagrams. However, because there is no apparent confusion of 

terminology regarding measurement bias, we won’t explore this type of bias any further. 

Finally, there is sometimes confusion about the difference between confounding and effect 

modification,39 so an effect modifier was added to the causal diagram in Figure 3.6. A 

fundamental difference is that confounding is a bias that we aim to either prevent by design 

or remove by conditioning, whereas effect modification is a property of the causal effect 

being studied and ideally, we would like to estimate and describe it. ⁠

8 

Figure 3.6 DAG with confounding and the addition of an effect modifier 

 

In the example in Figure 3.6, poor health is a suspected confounder of the relationship 

between taking the treatment drug and the chance of dying. However, it is also suspected 

that the causal effect of the drug will vary depending on how quickly the drug is metabolised 

and that is determined by each patient’s genotype, though not in a way that can be tested. 
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Hence, the drug’s metabolism in each patient does not affect their chance of receiving the 

treatment. 

Effect modification is especially important for the generalizability of any findings, because if 

the intervention only works, or is only safe for some people, then such effect modifiers need 

to be identified. Hence, another term for effect modification is effect heterogeneity.258 An 

intervention is also likely to work better for some individuals than for others, potentially 

leading to different decisions on whether to use it if information were available to be able to 

predict someone’s outcome. 

It is important to note, however, that causal diagrams are limited in how well they can 

portray effect modification, where we cannot usually distinguish between multiple possible 

modifications of the effect.59 And in general, it is not possible to show how variables might 

interact using causal diagrams, though some work has been done to suggest exceptions may 

exist.259 There have also been proposals to modify causal diagrams so that interactions could 

be displayed, but this would mean they would no longer be directed acyclic graphs.260 

The main advantage of using the structural classification system to define biases like 

confounding and selection bias is that, although terminology still plays a role, the use of a 

causal diagram to guide decisions about the study design, analysis or interpretation, means 

that the terminology a researcher uses for these biases should not affect such decisions. In 

this way, the problem of ambiguity can be avoided. But even if a researcher does not use 

causal diagrams, this classification system might provide the rigorous, formal definitions of 

confounding and selection bias that will appeal to some researchers, especially those 

unhappy with the uncertainty that can surround whether a bias should be called 

confounding or selection bias.256 
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3.4 Constructing a causal diagram 

Non-DAGs 

Although standard DAGs are by far the most common type of causal diagram in use, they 

may not always be the best choice. But while various alternatives have been developed, such 

as chain event graphs,261 compartmental model diagrams,262 diagram-based analysis of 

causal systems,263 graphical chain models,262 and single world intervention graphs, simple 

conceptual causal models can also be constructed264 without regard to the rules that go with 

DAGs, to help understand the possible causal paths between the variables in a study. 

DAGs 

The basic actions needed to construct a causal DAG are: 

1. Add variables for the exposure/intervention and the outcome 

2. Add all other variables for which data was collected or is expected to be 

3. Add the potential confounders collected in the study or expected to be 

4. The causes of any one variable currently in the diagram may be included, but causes 

of two or more variables must be included for it to be considered a causal DAG256 

o This includes suspected unknown common causes of two or more variables, in 

which case a symbol such as U might serve as a label 

5. Draw an arrow between any variables thought likely to be causally associated that 

indicates the direction of the causal relationship 

6. If the study is longitudinal and a prior value of the outcome Y affects the exposure X, 

which then affects the following Y, each instance of the exposure and each 

measurement of the outcome must be shown as separate variables, for example:  X0 

→ Y0 → X1 → Y1 

7. Do not draw an arrow between two variables if available knowledge and the 

plausibility of potential mechanisms suggests it is unlikely one may cause the other 
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o This also means that our research conclusions rest, in part, on our assumption 

that no causal relationship exists between them 

Software 

A possibly neglected issue in the promotion of causal diagrams has been the availability of 

software and published guidance on the choices that are available. A number of software 

packages have been developed over the years to facilitate the drawing and analysing of 

causal diagrams. One of the first was TETRAD in 1986,265 becoming the TETRAD Project in 

1998,266 but it was aimed primarily at structural equation modelling. It has since been 

expanded and is available at www.phil.cmu.edu/projects/tetrad/, however, it is still not really 

aimed at most types of health research. 

The only software package specifically designed to create DAGs that has been made known 

to health research through publications in epidemiology journals is DAGitty,267 available at 

www.dagitty.net and also as the R package ‘dagitty’.268 As such, to our knowledge, it is the 

only package that has been mentioned whenever the software used to create a DAG is listed 

in an article. And while it is being improved from time to time, it is non-commercial software 

with very few programmers, so progress is slow, and its limited features and interface full of 

what to many, is technical jargon, may act to discourage some researchers from getting 

started with causal diagrams. 

Alternatives to DAGitty are mostly diagramming software packages like Microsoft Visio 

(visio.microsoft.com), LucidChart (www.lucidchart.com) and Gliffy (www.gliffy.com). However, 

while easy to use, they do not offer features that are specific to DAGs. 

 

3.5 Uses of causal diagrams 

The widespread use of diagrams to convey abstract information shows it is generally 

accepted that diagrams can assist in the understanding of abstract concepts, at least 

sometimes.269 Research in cognitive science has suggested that diagrams can make it easier 

to find the information relevant to a concept,270 such as the causal paths between variables 

that might lead to selection bias in a study. Diagrams can also help when considering 

http://www.phil.cmu.edu/projects/tetrad/
http://www.dagitty.net/
http://www.lucidchart.com/
http://www.gliffy.com/
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alternative possibilities by making all the possibilities explicit,271
⁠

,272 such as when a researcher 

is forming conclusions at the end of a study, based partly on alternative explanations for the 

results.  

Causal diagrams, which in most cases are DAGs, provide an intuitive framework that can help 

researchers conceive of and understand the biases that might influence a study, and can 

make communicating more difficult concepts easier than explaining solely with words.59 This 

makes DAGs a useful tool to enhance the communicating of concepts relating to bias, 

whether teaching basic concepts59
⁠

,150
⁠

,253
⁠

,273 or publishing the results of methodological 

research.274
⁠

–277 This is especially the case with the structural classification of bias, covered in 

the previous section, but DAGs have also been used to explain more specific types of bias, 

such as different types of time-dependent confounding,278 missing data biases,244
⁠

,279
⁠

–281 and 

possible explanations for apparent paradoxes such as Simpson’s paradox,282 the birth weight 

paradox,283 and the obesity paradox.284
⁠

–286 

It is now well established that an analysis of observational data should take into 

consideration not only the study design, but also substantial background subject-matter 

knowledge if the goal is to obtain evidence regarding a causal association.255
⁠

,287 Otherwise, 

important uncontrolled confounding might not be considered when making inferences, or 

variables might be included in a model that instead of reducing bias, increases it via collider 

bias. Also, by constructing a causal DAG that aims to adequately represent background 

causal knowledge, a researcher or statistician might be prompted to include variables that 

otherwise would not have been considered. 

This means that if a DAG is constructed during the planning stage of a study, potential 

confounders that otherwise might not have been considered, can instead be either 

controlled by modifying the design, or else have data collected on that variable so it can be 

used to adjust the analysis.224 The DAG can also be used to communicate this understanding 

to fellow investigators or study staff, or to ask for feedback from subject matter experts.59 

Once a study’s data has been collected, a DAG can be useful in identifying previously 

unconsidered sources of bias, such as from missing data,244 loss to follow-up279 or time-
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dependent confounding.288 And this can help plan the analysis with the most appropriate 

methodology.47 

It is also possible to use a DAG to identify a minimally sufficient set of variables that is 

needed to control for confounding in the analysis.224 This would exclude variables such as 

intermediates on the causal pathway between the exposure and the outcome. The program 

DAGitty was recently criticised, however, because it can calculate such a set automatically. 

This may potentially mislead a researcher into thinking they could successfully control for 

confounding by adjusting for the variables DAGitty chose, even though important 

confounders were not included in the DAG.76 

Finally, a DAG can help with the interpretation and communication of the results. By making 

the assumptions on which causal inferences rest more explicit, such as the possibility of 

confounding from sources that were not controlled, conclusions by researchers might be 

more likely to be adequately cautious. The DAG can, and should, also be included with any 

published report, to help communicate the sources of bias identified, how they were 

controlled in the design and the analysis, and the assumptions and associated uncertainty 

that remains following the analysis. Unfortunately, it is still not uncommon to find articles 

that merely mention that a DAG was used to help select the model covariates, without 

providing the DAG itself. 
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Chapter 4 
Understanding the biases in health 
intervention research 
 

 

4.1 Introduction 

Two questions are very important when considering the quality of health research, yet are 

hard to answer accurately: How often are research study findings sufficiently biased that 

there are consequences for human health and, has progress been made over recent decades 

in reducing the level of bias in health research? Articles criticising the standard of health 

research can be found in any era (for example),121
⁠

,149
⁠

,289
⁠

–295 and many factors will contribute 

to the volume of such criticism, such as changing expectations of research quality. But these 

articles are important for motivating improvement, and while expectations might now be 

higher than in the past, there is an abundance of evidence to suggest that, despite regular 

educational efforts by a variety of researchers and statisticians, improvements in research 

quality appear to have been somewhat limited. Methodological advances might have helped 

experts, but misuse of those methods by many less familiar with the details could still lead to 

biased results. For example, logistic regression became popular in health research in the 

1980s296 but problems with its use since then have been well documented.297
⁠

–299 

To motivate change, researchers and statisticians must first be aware that an important 

problem exists. To address this issue, the current level of bias in health research is examined 

next in section 4.2, with the evidence strongly suggesting that not only are the findings of 

many studies likely to be biased, but that improvements over time have been modest, at 

best. And this is despite researchers now receiving considerably more training in statistics 

than many of their predecessors.300 
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Possible reasons for this lack of improvement are discussed in sections 4.5 – 4.10, with the 

focus primarily on the science of cognition and how our brain possesses many energy-

conserving and time-saving features that, while mostly helpful, can also lead to errors in 

judgement and behaviour that can introduce bias into a research project. Some cognitive 

biases are well known, such as confirmation bias, but many are known only in fields such as 

cognitive psychology and behavioural economics. However, the topic has had a well-

established presence in the area of medical decision making since the 1990s,301
⁠

–306 and some 

physician training programmes now include education on the role of cognitive biases in 

diagnostic errors and poor treatment.307 Application of this knowledge to research 

environments has been limited, but in recent years a number of articles have raised the issue 

in relation to scientific research generally,308
⁠

,309 or health research in particular.109
⁠

,310
⁠

–314 

One recommendation we make is the use of causal diagrams to make it easier for 

researchers to identify, and appropriately control for, potential sources of bias. These 

diagrams will be described, along with the associated structural classification system of bias, 

that seeks to avoid some of the problems with terminology highlighted in Chapter 3, such as 

the confusing number of ways the term ‘selection bias’ is used. The chapter will conclude 

with examples of biases commonly encountered in health intervention research; described 

with the use of causal diagrams. 

 

4.2 Evidence of bias 

One of the problems with detecting bias is that we can never know with certainty what the 

true result or inference should be, and this means that allegations or suggestions of bias can 

be easily rejected by the authors of studies alleged to be biased, and in our experience 

mostly are. This makes it more difficult to determine whether the results from the initial 

study are indeed biased, even though many would suspect the original authors may be guilty 

of a conflict of interest akin to ‘myside bias’.315 Evidence can still be gathered, however, and 

inferences formed about the degree of bias that might exist in an area of research. 
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4.2.1 Continuum from unintentional bias to fraud 

Our primary focus is bias in health intervention research that is not deliberately created by 

researchers. Hence, cases of fraud, such as the deliberate fabrication of data or statistics, will 

not be included here, partly because clear cases of scientific misconduct are most likely 

uncommon.316
⁠

,317 However, there are many questionable behaviours that lie on a continuum 

between scientific fraud and unintentional bias.316
⁠

–320 These include 

• presenting a relationship found to be statistically significant as being the main 

hypothesised target of a study, when it was really just one of many possible 

relationships tested, a practice known by many names, such as ‘data dredging’,321 

‘data trawling’,322 ‘P-hacking’,323 and ‘significance questing’324 

• not publishing a study’s results because they contradicted one’s previously published 

findings, or in the case of a commercial interest, not publishing results that might 

harm those interests, such as results showing little difference between a 

pharmaceutical company’s drug and a placebo; this is called publication bias325 

• concealing a conflict of interest, such as a source of funding that has a financial 

interest in a particular outcome of the study, even if the researcher does not believe it 

influenced their behaviour326 

In some cases, although the behaviour is deliberate, it might be so common as to be 

standard practice in their field,327 which in the eyes of many will make it acceptable 

behaviour.328 Nevertheless, the consequence of questionable behaviour by researchers is an 

increased chance that their study will be biased. 

4.2.2 Randomised versus non-randomised study results 

In the 1970s and 1980s, a number of reviews compared the results of non-randomised with 

those of randomised trials testing the same interventions and outcomes.329
⁠

–331 They found 

that non-random selection was associated with results more likely to favour the treatment 

and with larger effects. Under the assumption that RCT effect sizes were likely to be closer to 

the true effect size, these results suggested that non-randomised studies, which include 

observational studies, were more susceptible to confounding caused by their treatment 
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allocation procedures. Similar comparisons of randomised and non-randomised studies since 

then have yielded mixed results, however, with some finding differences332
⁠

–334 and some 

not.335
⁠

,336 Comparisons where the non-randomised trials used propensity score methods 

have been likewise mixed, with differences sometimes found337
⁠

,338 and sometimes not.339 

Randomised controlled trials have been called the “gold standard” of cause and effect 

research since 1982340
⁠

,341 because randomisation of treatment allocation greatly reduces the 

chance of substantial confounding, assuming there are a sufficient number of participants 

and concealment of treatment allocation is used. It also facilitates valid interpretation of 

inferential statistics like p-values and confidence intervals;342 and randomisation is essential 

for blinding of participants, investigators and outcome assessors sufficient to prevent biases 

like observer bias, response bias and placebo effects.343
⁠

,344 However, use of the term “gold 

standard” can sometimes sound like religious dogma, implying a perfection that does not 

exist.341
⁠

,345
⁠

,346 In reality, RCTs investigating the same intervention often report contradictory 

results,347 yet when the results from an RCT are compared with a non-randomised trial or an 

observational study, the RCT’s results are often assumed to be the correct ones. Many feel 

that when comparing results from different studies, the individual quality of each should be 

considered as important as the strength of their underlying research design.347
⁠

–352 

While we should probably avoid automatically favouring an RCT’s result over those of a 

contradictory observational study result, the fact that they disagree highlights that either one 

is biased, or in fact, they do not test the same intervention or outcome. Some specific 

examples from the last two decades include: 

Hormone replacement therapy and risk of coronary heart disease 

Observational studies in the early 1990s concluded that postmenopausal hormone 

replacement therapy (HRT) led to a reduction in the risk of coronary heart disease.353
⁠

,354 Later 

randomised controlled trials, however, found no beneficial effect of HRT on cardiovascular 

disease,355
⁠

–358 leading to numerous post-mortems of what went wrong359
⁠

–362 and much 

criticism of observational epidemiology,363 with prominent article such as “The scandal of 

poor epidemiological research”,364 and newspaper headlines like “Do We Really Know What 

Makes Us Healthy?”.365 
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Antioxidant vitamin supplements 

Findings that oxidative stress has a role in many diseases such as cancer, cardiovascular 

disease, and neurodegenerative diseases366 have led many people to take antioxidant 

vitamin supplements such as β-carotene, vitamin C and vitamin E to try to prevent these 

diseases.367 Early observational studies suggested they could provide a protective effect 

against these diseases,368
⁠

,369 but many RCTs since then have found either no effect,370 or an 

increased risk of disease.367
⁠

,371
⁠

,372 Articles with titles like “Epidemiology—is it time to call it a 

day?”373 followed, along with other similar commentaries.364
⁠

,374
⁠

,375 Yet a visit to any store 

selling vitamins will quickly reveal the continued popularity of taking these supplements. An 

explanation for this will be explored below in the section on causal thinking. 

Statins 

While the efficacy and safety of statins has been well established,376 there has been plenty of 

controversy surrounding adverse events,377 and the effect of statins on non-cardiovascular 

diseases.378 This controversy is partly due to the conflicting results of studies, and especially 

between observational studies and RCTs, with links between statins and adverse events much 

more common in observational studies than RCTs.379 This difference may be due to ‘nocebo’ 

effects,380 which are adverse symptoms experienced during an unblinded trial that the 

participant mistakenly attributes to the treatment. Similarly, suggestions from observational 

studies that statins might prevent some cancers were not backed up in RCTs,381 with 

selection bias and immortal time bias possible explanations.382 

4.2.3 Reviews, commentary and further evidence of bias 

The ongoing frustration with research quality, especially as it relates to the conduct and 

interpretation of statistical analyses, is well summarised in the opening lines from “Statistical 

tests, P values, confidence intervals, and power: a guide to misinterpretations” (2016)294 by the 

prominent statisticians and epidemiologists Sander Greenland, Stephen Senn, Ken Rothman, 

John Carlin, Charles Poole, Steve Goodman, and Doug Altman: 
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Misinterpretation and abuse of statistical tests … remain rampant. 

… correct use and interpretation … seems to tax the patience of working 

scientists. This high cognitive demand has led to … interpretations that are 

simply wrong … yet these misinterpretations dominate much of the scientific 

literature. 

This article coincided with the unusual step taken by the American Statistical Association of 

releasing a “Statement on Statistical Significance and P-Values”,383 a response to the 

increasing concerns expressed in the literature over recent years about a “reproducibility 

crisis”384 in all areas of science, including health research.385 And one of the main concerns is 

the continuing oversimplification of scientific reasoning encouraged by the use of “null-

hypothesis significance testing”, where the standard binary cutoff of p < 0.05 is used to 

decide whether an effect might be real or not. In terms of causal inference, it can: 

• lead to confounders being dropped from models, such as with stepwise regression;128 

• encourage the perception by many researchers, including statisticians, that a single 

study can tell us whether an effect is real or not386 

• strengthens the natural human tendency toward overconfidence in the accuracy of 

our inferences313 

Compared to articles criticising the use of null-hypothesis significance testing, very few have 

been published defending the practice,149 although it may have limited utility for some 

research tasks.387 

To a large extent, the above article on misinterpretation and misuse of statistics, mirrors 

those that have appeared regularly for decades. A small sample of titles can be seen in Table 

4.1. These commentaries, and the many others that have been published, all suggest that a 

sizable proportion of health intervention research studies have been analysed and 

interpreted poorly, greatly increasing the chance that the results are biased. 

Further evidence comes from reviews investigating conflicting results in health research 

(Table 4.2). When results from difference studies conflict, it suggests that at least one of the 

studies must be biased. 
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Randomised controlled trials are also susceptible to bias, though not to confounding by 

indication if the randomisation was done properly and concealed before allocation. Some 

articles that found evidence of bias in RCTs are listed in Table 4.3. 

Table 4.1 Articles criticising the misuse of statistics from each decade of the last 80 years 

Year Article title 

1942 “Tests of Significance Considered as Evidence”289 

1959 “Publication Decisions and Their Possible Effects on Inferences Drawn from 
Tests of Significance - Or Vice Versa”388 

1960 “The Fallacy of the Null-Hypothesis Significance Test”389 

1966 “Statistical Evaluation of Medical Journal Manuscripts”290 

1979 “Some Problems of Statistics and Everyday Life”295 

1982 “Statistics in Medical Journals”390 

1985 “The Religion of Statistics as Practiced in Medical Journals”291 

1990 “How Trustworthy is Epidemiologic Research?”391 

1994 “The Scandal of Poor Medical Research”292 

2005 “Why Most Published Research Findings Are False”392 

2018 “Medical Research - Still a Scandal”393 

 

Table 4.2 Reviews investigating conflicting results in health research 

Year Article title 

2005 “Contradicted and Initially Stronger Effects in Highly Cited Clinical Research”293 

2007 “How Quickly Do Systematic Reviews Go Out of Date? A Survival Analysis”394 

2011 “The Frequency of Medical Reversal”395 

2013 “Pioglitazone and Bladder Cancer: Two Studies, Same Database, Two Answers”396 

2013 “A Decade of Reversal: An Analysis of 146 Contradicted Medical Practices”397 

2015 “Eggs and Beyond: Is Dietary Cholesterol No Longer Important?”398 

2016 “A Corpus of Potentially Contradictory Research Claims from Cardiovascular 
Research Abstracts”399 

2018 “Association Between Risk-of-Bias Assessments and Results of Randomized Trials 
in Cochrane Reviews: The ROBES Meta-Epidemiologic Study”400 
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Table 4.3 Articles with evidence of bias in randomised controlled trials 

Year Article title 

1995 “Empirical Evidence of Bias: Dimensions of Methodological Quality Associated 
with Estimates of Treatment Effects in Controlled Trials”401 

2005 “Identifying Outcome Reporting Bias in Randomised Trials on PubMed: Review of 
Publications and Survey of Authors”402 

2008 “Empirical Evidence of Bias in Treatment Effect Estimates in Controlled Trials with 
Different Interventions and Outcomes: Meta-Epidemiological Study”403 

2012 “Observer Bias in Randomised Clinical Trials with Binary Outcomes: Systematic 
Review of Trials with Both Blinded and Non-Blinded Outcome Assessors”404 

2013 “Volunteer Bias in Recruitment, Retention, and Blood Sample Donation in a 
Randomised Controlled Trial Involving Mothers and Their Children at Six Months 
and Two Years: A Longitudinal Analysis”405 

2014 “Bias Due to Lack of Patient Blinding in Clinical Trials. A Systematic Review of 
Trials Randomizing Patients to Blind and Non-Blind Sub-Studies”406 

2014 “Comparison of Anticipated and Actual Control Group Outcomes in Randomised 
Trials in Paediatric Oncology Provides Evidence that Historically Controlled 
Studies are Biased in Favour of the Novel Treatment”407 

2015 “Data Interpretation in Analgesic Clinical Trials with Statistically Nonsignificant 
Primary Analyses: An ACTTION Systematic Review”408 

2016 “Empirical Evidence of Study Design Biases in Randomized Trials: Systematic 
Review of Meta-Epidemiological Studies”409 

2017 “Congruence Between Patient Characteristics and Interventions May Partly Explain 
Medication Adherence Intervention Effectiveness: An Analysis of 190 Randomized 
Controlled Trials from a Cochrane Systematic Review”410 

2017 “Cherry-Picking by Trialists and Meta-Analysts Can Drive Conclusions about 
Intervention Efficacy”411 

2017 “Simple Randomization Did Not Protect Against Bias in Smaller Trials”412 

2018 “A Review of Cluster Randomized Trials Found Statistical Evidence of Selection 
Bias”413 

 

Finally, evidence of bias is also suggested by articles (Table 4.4) identifying problems with 

methodologies, errors, reporting biases, and also by retractions, where the implication is that 

many more articles containing errors or poor judgement in methodology, as well as 

deliberate fraud, would be retracted if those problems were discovered.317
⁠

,414
⁠

,415 
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Table 4.4 More articles with evidence of bias from the last 5 years 

Year Article title 

2013 “Why Has the Number of Scientific Retractions Increased?”416 

2015 “Biased and Inadequate Citation of Prior Research in Reports of Cardiovascular 
Trials is a Continuing Source of Waste in Research”417 

2017 “Indirect Evidence of Reporting Biases was Found in a Survey of Medical Research 
Studies”418 

2017 “Top Ten Errors of Statistical Analysis in Observational Studies for Cancer 
Research”419 

2017 “The Distribution of P-Values in Medical Research Articles Suggested Selective 
Reporting Associated with Statistical Significance”420 

2017 “Survival Biases Lead to Flawed Conclusions in Observational Treatment Studies of 
Influenza Patients”421 

2018 “High and Unclear Risk of Bias Assessments are Predominant in Diagnostic 
Accuracy Studies Included in Cochrane Reviews”422 

2018 “Interpretation of Epidemiologic Studies Very Often Lacked Adequate 
Consideration of Confounding”423 

2018 “Kaplan-Meier Survival Analysis Overestimates Cumulative Incidence of Health-
Related Events in Competing Risk Settings: A Meta-Analysis”424 

2018 “Three Risk of Bias Tools Lead to Opposite Conclusions in Observational Research 
Synthesis”425 

 

 

4.3 Consequences of bias  

A memorable quote comes from an article by Andrew Vickers (2005):426 

A mistake in the operating room can threaten the life of one patient; a mistake 

in statistical analysis or interpretation can lead to hundreds of early deaths. So 

it is perhaps odd that, while we allow a doctor to conduct surgery only after 

years of training, we give SPSS to almost anyone. 

Unfortunately, while this statement is quite plausible and, in some cases probably true, 

except for major studies where the results are likely to influence treatment, for most 
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researchers analysing data, the link between their results being biased and people dying, 

probably contains too many steps and too much uncertainty to be a real enough threat to 

their conscience or reputation, such that it would change how carefully they conducted an 

analysis. Other, more immediate concerns, such as getting more publications, and getting 

them faster; providing results to colleagues in a timely fashion; or with the answers they are 

expecting or hoping for; may tend to drown out the less obvious consequences of their 

decisions. 

More generally, research with biased conclusions, regardless of the sources of bias, and 

depending on how influential each study turns out to be, might: 

• lead to new research that wastes money and the efforts of dedicated researchers if, 

had the original study’s conclusions been closer to the truth, more productive 

research would have been done instead 

• slow the availability of better health interventions through, for example, contradicting 

similar research, thus increasing the uncertainty over the efficacy of the intervention 

• mislead clinicians and patients about the intervention most likely to help in their 

particular case 

• lead to some people receiving care or using an intervention that makes their health 

worse than it would otherwise be 

• contribute to a systematic review coming to the wrong conclusion 

The Australian government provided $877 million to health research in the 2017 grant 

funding round through the National Health and Medical Research Council (NHMRC).427 

Funding from state governments, non-government entities such as charities, pharmaceutical 

and medical device companies, and private donations, would add considerably more each 

year to health research in Australia. Yet, in a widely publicised 2009 article in The Lancet, ⁠

3 it 

was estimated that as much as 85% of research investment might be wasted because of 

correctable errors in the production and reporting of research evidence. If the detection of 

bias in research continues to accelerate as it has over the last 10 years, the public’s 

enthusiasm for funding health research might diminish.428
⁠

,429 
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4.4 Efforts to reduce bias 

Most of the articles listed in section 3.4, either by criticising current practice or by reporting 

evidence of bias, aim to promote better research practices and thus reduce the number of 

articles providing biased evidence. Some of these, along with other articles, give explicit 

recommendations to encourage widespread improvement, including: 

• Better and more thorough training in statistics294 

• More statisticians and greater use of their expertise ⁠

2
⁠

,292
⁠

,430 

• Better peer review, possibly including a statistician431 

• Open peer review432 

• Pre-registration of trials or study protocols433
⁠

,434 

• Reporting guidelines199
⁠

,435 

• Independent attempts at replicating study findings436 

• Blind analyses437 

• Lowering the p-value threshold for statistical significance438 

And ongoing campaigns include 

• Evidence-Based Medicine (EBM)439 

• Strengthening Analytical Thinking for Observational Studies (STRATOS) initiative440 

A frustrating problem 

While it is likely that some improvement in the quality of research will have occurred over the 

last 40 years, progress has clearly been much slower than many would have expected given 

the efforts that have taken place. Many factors are likely at play, including bias-related 

methodological articles being swamped by the vast number of articles being published,441 

but this seems likely to be a minor cause. In the next section, we explore some insights from 

cognitive science in an attempt to explain why progress has been slow and in so doing, look 

for additional measures that might help. 
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4.5 Decisions in research and bias 

To a large extent, a bias in the results or conclusions of a study will exist because of the 

decisions made by the researchers. These may include: 

Decisions in the planning stage: 

• which potential confounders to measure 

• planned actions to reduce baseline measurement error and missing data 

• how to measure the outcome if continuous, such as blood sugar or a pain rating, 

o for example, a continuous scale; ordered categories; or a judgement of 

responder/non-responder 

Decisions during the conduct of the study: 

• actions taken to increase the accuracy of measurement, reduce missing outcome data 

and encourage measurement of non-compliance 

Decisions in the analysis of data stage: 

• the choice of one or more of the frameworks discussed in Chapter 1 to help guide 

the analysis methodology 

• whether to use a particular common bias classification system to help determine 

potential sources of bias, including in consultation with others involved in the project 

• the researcher’s preference for analysis methodology, such as: 

o common frequentist procedures with p-values, with or without null-

hypothesis significance testing, 

o or methods within a Bayesian framework 

• definitions chosen for different parameters that will depend, in part, on the study 

design and the availability of data, such as the start and end dates for time at risk of 

the outcome, or the eligibility window for the start and end dates that covariate data 

needs to have been collected in order to be included in the analysis dataset442 
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• their final choice of statistical model to estimate the effects of an intervention, from 

what might seem to be a bewildering variety of options443
⁠

,444 

• their choice of statistical software, which can range from simple tests on certain 

websites to programs such as SAS, Stata, R or SPSS 

Decisions when interpreting the results: 

• deciding how to interpret statistics such as p-values, 

o for example, using a 0.05 cutoff for ‘statistical significance’ 

• deliberate efforts to think of alternative explanations of the results 

• the use of tools to aid consideration of alternative explanations such as causal 

diagrams 

Decisions when communicating the results: 

• choice of words to either: 

o unambiguously convey the level of uncertainty remaining in the results 

o or use ‘spin’ to covey increased confidence in the accuracy of the results 

Factors such as the researchers’ level of knowledge, experience and understanding of 

statistical methods, all have some bearing on the way they investigate and try to find 

answers to causal questions. With the number of potential options, no two researchers are 

likely to take exactly the same approach to causal inference and so, not surprisingly, the 

answers to the same causal questions vary, as seen in section 4.2. But only one answer is 

true, and this suggests that some approaches are better than others. Some of the analysis 

decisions that can introduce bias include: 

• the use of an inappropriate model, such as a linear model for a non-linear 

relationship 

• using an inferior method for handling missing data, such as simply excluding non-

complete cases 

• using criteria to include or exclude covariates from a model that are not based on 

background subject-matter knowledge, such as a stepwise algorithm 
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• not using a method of checking for mistakes, such as another researcher or 

statistician checking the code or independently duplicating the analysis 

• not conducting a sensitivity analysis to see if decisions in the analysis might have 

biased the result, or greatly underestimated the uncertainty 

In general, however, with certainty about the best choices to make not possible, no research 

philosophy can be proven as best, though debate will continue. Nevertheless, some 

guidance can be obtained from mathematical and logical arguments, as well as evidence 

over time revealing which approaches produce results and conclusions that are less often 

contradicted by considerable later research. The approach that researchers take to the 

design, conduct, analysis, interpretation and finally, communication of their research, can end 

with very different, sometimes opposite research conclusions. It all comes down to avoiding 

the many sources of bias that otherwise result in biased causal inference, and this means 

making better decisions. 

 

4.6 Insights available from cognitive science 

To explore why a researcher or statistician might make a decision that leads to biased results 

and conclusions, we turn now to the science of decision making; an area that has grown over 

the last 60 years in fields such as cognitive psychology, behavioural economics and clinical 

decision making.445 However, it is important to recognise that some notion of the thinking 

biases that affect decisions seems to be intuitively understood by almost everyone, with 

some terms commonly used for this concept including human nature and human 

fallibility.138
⁠

,328
⁠

,446
⁠

,447 A longstanding implicit understanding of this human susceptibility to 

bias in the research arena is revealed by the generally stated goal of finding objective 

methods of inference in the field of statistics,143 and also by the strongly recommended 

technique of blinding in clinical trials.175
⁠

,344 

The burgeoning science of judgement and decision making reached a widespread audience, 

perhaps for the first time, in 1974 in the journal Science, with the article “Judgment under 

uncertainty: heuristics and biases”.448 It was written by two Israeli psychologists, Amos 
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Tversky (1937-1996) and Daniel Kahneman (1934-), and according to Google Scholar on 3 

Sep 2018, it has now been cited 46,715 times. Building on the work summarised there, 

Kahneman and Tversky went on to be highly influential in the field of decision making, and 

not only in cognitive psychology. Their work led to the establishment of behavioural 

economics,449 in turn leading to the Nobel Prize in Economics for Kahneman in 2002450 and 

Richard Thaler in 2017451, as well as the recent popular books by Nassim Nicholas Taleb 

Fooled by Randomness (2004)452 and The Black Swan (2010)453. 

Outside psychology and economics, however, findings from the decision sciences have so far 

had a much smaller impact, although interest is growing. One area that has made use of 

these ideas is clinical decision making. In fact, one of the first publications in cognitive 

science was by Paul Meehl with his 1954 book Clinical Versus Statistical Prediction.454 It 

reported studies that suggested linear models of relevant predictor variables performed 

better at clinical prediction than experts; in this case, mostly clinical psychologists. Later 

studies extended this to medical decision making, with results suggesting that, at least in 

some cases, clinical intuition performed less well than a probabilistic analysis.455
⁠

–457 Much 

research followed that looked at the influence of cognitive biases in medical decision making 

(for example301
⁠

–305
⁠

,328
⁠

,458
⁠

–464). 

In the rest of health research, however, concepts relating to cognitive bias have mostly been 

discussed without reference to research in the cognitive sciences.446
⁠

,465 For example, the 

recently created Bias Catalogue website (catalogofbias.org),208 developed by a collaboration 

headed by the Centre for Evidence-Based Medicine at the University of Oxford; it describes 

38 biases in detail, of which 16 are essentially cognitive biases, including ‘Confirmation 

bias’,466 ‘Positive results bias’,467 and ‘Biases of rhetoric’.468 On the other hand, an increasing 

number of articles have appeared in the last two decades that have focused on findings in 

cognitive science and their relevance to decision making in research,20
⁠

,109
⁠

,308
⁠

,313
⁠

,319
⁠

,469
⁠

,470 

including articles aimed at statisticians.113
⁠

,129
⁠

,471
⁠

,472 
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4.7 Models of decision making 

The general goal of science is to better understand some aspect of reality, often so we can 

exert some control over it.473
⁠

,474 But because our understanding can never be complete, we 

need some level of abstraction in the form of a model, the aim of which is a similar yet 

simpler representation of reality.473 If sufficiently accurate, models can be very useful, though 

it is important to avoid model reification,313 where we think as if the model was indeed 

reality, such as thinking the true value of a treatment effect really does lie within the bounds 

of an estimated confidence interval.313 Yet models are more than just potentially useful tools; 

they are the only means by which we can understand the natural world, including the 

processes in our brain we call thinking. Hence, to better understand how decisions are made 

during research, we first need a model that describes how people make decisions. And even 

though many have been developed, debated and extended over the last 40 years in 

cognitive psychology,475 an idea common to most models is that our decision making 

processes can be usefully classed into two broad types, hence the name dual-process 

models.476 These two types of thinking processes are: 

1. Type 1 processes and decisions act like automatic mental rules of thumb.477 They are 

fast, effortless and mostly occur below our conscious awareness.478 They include 

hard-wired heuristics as well as acquired skills.228
⁠

,479 

2. Type 2 processes are conscious, deliberate, relatively slow, and often require some 

effort.475 They use logic and statistics,477 but still involve the automatic Type 1 

processes, which cannot be turned off. This type of decision-making process, being 

conscious, is how we perceive ourselves making decisions.228 

Table 4.5 compares the Type 1 and Type 2 process characteristics that are frequently 

associated with dual-process models in the cognitive psychology literature.475
⁠

,478 

The underlying reality in our brain is, of course, far more complex, and there are researchers 

in the minority who feel that dual-process models are too vague,480 and as a result, do not 

yield precise, testable predictions.481 But for our purposes, the concept of dual-process 

thinking, and the heuristics and cognitive biases that relate to this model, can help us 
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understand why causal inference in health intervention research is remaining defiantly 

resistant to our efforts to improve it. 

 

Table 4.5 Characteristics frequently associated with Type 1 and Type 2 processes 
Adapted from Evans (2008)478 and Evans and Stanovich (2013)475 

Type 1 processes 
(sometimes called System 1) 

Type 2 processes 
(sometimes called System 2) 

Automatic 

Nonconscious 

Low effort 

Fast 

Controlled 

Conscious 

High effort 

Slow 

Context dependent 

Pragmatic 

Parallel processing 

Autonomous 

Abstract 

Logical 

Serial processing 

Involves mental simulations 

Heuristic 

Intuitive 

Impulsive 

Can produce biased responses 

Rational 

Analytic 

Reflective 

Can inhibit biased responses 

Evolved early 

Similar to animal cognition 

Responds to basic emotions 

Evolved late 

Much more distinct in humans 

Complex involvement of emotions 

Universal 

Independent of cognitive ability 

Independent of working memory 

Heritable 

Correlated with cognitive ability 

Limited by working memory capacity 
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4.8 Heuristics, cognitive effort and learned expertise 

Heuristics can be thought of as automatic, and often subconscious, decision rules that allow 

for the fast decisions our evolutionary ancestors needed to make.475 For example, decisions 

that prepare ourselves for possible danger, such as turning automatically toward a sudden 

unexpected sound,228 or decisions important to social goals, such as automatically imitating 

the behaviour of the majority unless it conflicts with another goal.482
⁠

,483 But while physical 

danger is now a less frequent need for many, our need for fast decision making has not 

changed, so heuristics are considered helpful most of the time.480 

Heuristic thought processes and decisions also use less energy than decisions that require 

effort,484 and the brain requires at least 20% of the energy consumed by our body.485 This 

helps explain why we evolved so that thinking that requires effort is often perceived as a 

mildly unpleasant experience, a feeling that leads to frequent avoidance of heavy thinking 

tasks unless a goal is sufficient to motivate the effort,228
⁠

,486
⁠

–488 though the subjective effort 

needed at any time is subject to factors like the amount of sleep the night before,489
⁠

,490 the 

time of day,491
⁠

,492 stimulant drugs such as caffeine,493
⁠

,494 age,492 and many others. Examples of 

avoidance behaviour include browsing news websites instead of replying to an important 

email; or avoiding tasks when analysing data if they are somewhat unfamiliar, such as 

checking model assumptions when such checking has not been done for a long time. This 

leads to one proposed built-in heuristic called the law of least mental effort487 (see Table 4.6), 

though also known by other names, including avoidance of cognitive demand,487 cognitive 

miser,495
⁠

,496 the principal of least effort,486 and “lazy System 2” in Daniel Kahneman’s widely 

read book Thinking, Fast and Slow (2011).228 This heuristic helps guide our decisions about 

the cognitive tasks we undertake so that only those tasks sufficiently important to us will be 

attempted. 

In psychology, cognitive effort or ease of cognition is often called fluency, and another 

proposed heuristic is called the fluency heuristic477
⁠

,497 (Table 4.6). This is similar to the 

availability heuristic498 (Table 4.6), one of the three general-purpose heuristics, along with 

representativeness and anchoring, discussed in Tversky and Kahneman’s famous 1974 Science 

paper.448 The influence of anecdotal evidence on inferences in clinical research, at least for 
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some clinician researchers, may relate in part to the increased ease of recalling the many 

occasions where a treatment had a particular outcome, compared to it being less easy to 

recall the occasions where the treatment outcome was different, thus leading to a belief that 

the anecdotal evidence they have observed is more common than it really is.499
⁠

,500 

Another related heuristic has been called the take-the-first heuristic477 (Table 4.6). For 

example, after reviewing the results of their study, a researcher might consider the question 

“why did we find p < 0.05?” and find that the easiest answer that comes to mind is “because 

the treatment caused better outcomes than the control”. 

Table 4.6 Some heuristics relating to cognitive effort that have been proposed 

Heuristic Description 

Law of least mental effort487 The tendency or urge to avoid cognitive effort 

unless there is sufficient motivation to make the 

effort required 

Fluency heuristic477
⁠

,497 If we consider a question and two alternative 

answers come to mind, then the one that is 

retrieved faster, which also means that it came to 

mind more easily, is the answer that we tend to 

give more weight to 

Availability heuristic448
⁠

,498 The frequency or probability of an event is 

judged by the ease with which relevant instances 

or associations come to mind; for example, 

judgements about how much work we did on a 

joint project compared to other members of the 

team 

Take-the-first heuristic477 A tendency to accept the first (and easiest) 

answer that comes to mind 
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The word ‘heuristic’ is mostly reserved (in cognitive science) for models of built-in or hard-

wired mental processes, assumed to exist by way of evolution,480
⁠

,501 though for some 

heuristics, especially social ones, it may be difficult to determine how much is innate and 

how much a learned skill. But where intuition does develop with learned expertise or the 

acquirement of skills, subconscious mental processes appear to work in a very similar way, at 

least from the perspective of our subjective experience.479 And as with heuristics, a learned 

skill can include much activity that takes little to no cognitive effort to perform. As we 

become familiar with a task, we can often not only do it faster, we can do it with less mental 

effort.502 Examples that most people can relate to include driving a car down a familiar road 

in light traffic, or in the case of a statistician, carrying out routine tasks when analysing 

data.479 

 

4.9 Causal thinking 

People appear to believe that almost all events are caused by previous events, and this may 

explain a general reluctance to consider phrases like “randomness”, “random error”, or 

“chance” as an explanation for a correlation between variables.229 There is also strong 

evidence to suggest that people have a built-in preference for causal explanations.228
⁠

–230
⁠

,503
⁠

–

506 This has variously been referred to as a “causality heuristic”,507
⁠

–509 “causal 

intuition”,50
⁠

,91
⁠

,228
⁠

,510
⁠

–512 “causal illusion”,19
⁠

,513 “causal thinking”,514
⁠

,515 and a variety of other 

terms. ⁠

9
⁠

,230 It may be experienced as a need to explain events we see as important,229 so we 

can understand the effect our actions might have, and the actions of others. In order to 

respond appropriately to our environment, it needs to make sense to us. 

It follows that we understand the world in terms of causes, not associations. Indeed, it may 

be that the only way we can understand a non-causal association between real events, that 

is, a correlation between two variables that is not causal, is by thinking of other causes that 

could produce the association. This could be a common cause, in other words, confounding, 

as suggested by the Common Cause Principle in philosophy,516
⁠

,517 or it could be through a 

mechanism that produces collider bias.518 
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Others, particularly those trained in mathematical statistics, might explain a ‘chance 

correlation’ more abstractly as arising from the way subjects were sampled, or even more 

simply as ‘due to chance’. But while ‘chance’ may be the only explanation currently available, 

it is probably not the best possible explanation, or as Greenland (1988)519 put it: 

… labelling a result as due to "chance" or "random" variation is analogous to 

diagnosing an illness as "idiopathic," in that it is just a way of making 

ignorance sound like technical explanation. 

Evidence also suggests that we prefer explanations of events if they contain plausible causal 

mechanisms. We automatically construct a causal sequence, or causal story, by running 

mental simulations, and sometimes we will compare different explanations by comparing 

their simulations.230 And taking into account the availability and take-the-first heuristics 

outlined in section 4.8, it seems reasonable to suppose that if a causal mechanism does not 

come easily to mind, it instead becomes easy to ignore, as if it did not exist. This may partly 

explain why many researchers find it easy to believe they have found convincing evidence, 

even though many alternative explanations were not considered. And it may also partly 

explain why many researchers believe a high p-value is best explained by “the null 

hypothesis is true”, whereas in reality, this interpretation is not valid.294
⁠

,520 

Likewise, ‘nocebo’ effects,380
⁠

380 where adverse symptoms in an unblinded trial are mistakenly 

blamed on the treatment, may instead result from the need for a coherent causal story or 

mechanism to explain their symptoms. And for many, the most obvious and plausible cause 

is the treatment. 

In a similar fashion, the placebo ‘effect’ has often been attributed solely to psychogenic or 

psychosomatic mechanisms,521 with the term ‘psychological factors’ commonly used,522 and 

perhaps this is because a psychological mechanism is the most plausible and easiest causal 

explanation that comes to mind. In reality, however, many factors lead to placebo group 

members improving, including regression to the mean,523 spontaneous improvement (natural 

course of the disease),524 additional treatment sought by the patient,525 methodological 

problems of the study,524 and others, though including psychogenic and psychosomatic 

causes in some cases. 
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Finally, in section 4.2.2, one of the examples discussing incongruent RCT and observational 

study results concerned antioxidant vitamin supplements. Of note is that, despite the lack of 

evidence for any benefit after many trials, including RCTs, and possibly even harm, the 

popularity of antioxidant supplements has continued.526 An explanation suggested by Ghezzi 

(2017)527 is the appeal of the simple causal story that goes something like: a widely accepted 

theory366 in science is that oxidative stress is a major cause of disease and aging → one way 

the body combats reactive oxygen species (ROS) and free radicals is by producing natural 

antioxidants → therefore supplements of antioxidants should help reduce the ‘bad’ free 

radicals. 

However, the underlying biology now looks to be far more complicated than the oxidative 

stress theory entails, and this may explain why antioxidant supplements have so far failed to 

demonstrate robust health benefits.527 If this absence of a meaningful effect is maintained, 

then from the point of view of preferring causal explanations that include mechanisms, we 

may find that without establishing a plausible and simple causal mechanism that can explain 

why antioxidant vitamins do not work, the belief that they are beneficial might be hard to 

change. 

 

4.10 Cognitive biases 

Heuristics serve us well most of the time, but not always, and when they lead to errors in a 

systematic fashion (i.e., not just random mistakes), cognitive biases and illusions result.228 

Table 4.5 lists some attributes of Type 1 processes, which heuristics use, with some that 

suggest a susceptibility to bias, such as ‘automatic’, ‘fast’, ‘impulsive’, and ‘responds to basic 

emotions’. 

However, we do not decide to think this way, and we are mostly unaware of it when it 

happens.478 This makes cognitive biases hard to avoid, and everyone is susceptible308
⁠

,471 Even 

higher intelligence, or cognitive ability, will offer only some protection, and only for some 

biases.528 
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We can sometimes reverse or prevent cognitive biases by monitoring ourselves, but we 

cannot do this constantly; and it gets harder when we are tired, mentally fatigued,529 or … 

relaxed and happy.530 

Some examples of the cognitive biases that can influence beliefs and decisions in a research 

project are described below. Like the statistical biases in Chapter 3, the definitions of 

different biases sometimes overlap, and all will tend to evolve over time. But where statistical 

biases can often be given precise mathematical definitions, cognitive biases and heuristics 

are less precise models of our thinking processes, often developed by different researchers 

with different perspectives. Yet they need only be useful to be worthwhile; by helping us to 

understand observed behaviour and by accurately predicting behavioural responses in 

certain situations. And they can help us to better understand why measures such as training 

in statistics has not greatly improved the quality of causal inference in health research. This 

improved understanding can suggest which current measures are worth pursuing, and also 

lead to new ideas that we can try. 

Cognitive biases relating to how we view our own 

Naïve realism 

A tendency to believe that we see the world objectively, or ‘as it really is’, referring both to 

physical reality and also to social and political issues. And we expect other reasonable people 

will perceive the same reality. Hence, if people disagree with us, it must have something to 

do with them rather than the issue, because we are objective. For example, they might be 

biased, lacking cognitive ability, not as informed as us, or thinking irrationally (make no 

sense) 320
⁠

,531 

Bias blind spot 

Related to naïve realism, we tend to believe that other people are more susceptible to 

cognitive biases than we are. 531
⁠

,532 
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Cognitive biases that relate to scientific reasoning 

Motivated reasoning 

People are motivated to use reasoning to reach accurate conclusions, but they are also 

motivated to reach particular conclusions, especially ones they already believe, or opinions 

they have previously expressed to others. To achieve both goals, people gather and evaluate 

evidence using strategies that feel appropriate, but which are also more likely to reach the 

desired conclusion. This leads, in turn, to biased beliefs that nevertheless seem 

objective.533
⁠

,534 

Confirmation bias 

A commonly cited‡ definition is by Nickerson (1998):169 “the seeking or interpreting of 

evidence in ways that are partial to existing beliefs, expectations, or a hypothesis in hand”. 

And one of the ways it is sometimes countered in research is by using blind analysis.437 As an 

example, Cox and Popken (2008)535 note the tendency of some researchers to prematurely 

adopt a causal conclusion after inadequate observations. They then seek confirming 

evidence, or p<0.05, and ignore or underweight disconfirming evidence.535 

Myside bias 

Closely related to confirmation bias is myside bias, defined by Mercier (2017)536 as: “A 

tendency to find arguments that defend our beliefs, whether they are supportive (if we agree 

with something) or refutational (if we disagree with something)”. Mercier goes on to argue 

that confirmation bias is a flawed concept, because people do not seek information to 

confirm a belief that already exists. Instead, people tend to search for arguments that will 

defend their position; in other words, they have a myside bias. 

To quote the epidemiologist Michael Marmot (1976):537 “any scientist should begin a 

scientific paper with the phrase: ‘Ladies and gentlemen, these are the opinions on which I 

base my facts ... ‘”; and (paraphrasing the philosopher of science Thomas Kuhn): “scientists 

                                                 
‡ (3,845 citations in Google Scholar on 24 November 2018) 
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choose paradigms or research programs in which to work and then attempt to defend their 

positions”. Deliberately provocative, but memorable. 

Argumentative theory of reasoning 

Closely related to myside bias is a theory of reasoning by Mercier and Sperber (2011),538 

where reasoning can be defined as a cognitive process that produces and evaluates 

reasons.315 Rather than holding to the common view of reasoning as a means to make better 

decisions and improve our knowledge, they suggest that the main function is to argue; that 

is, to find reasons that will convince others and to assess others’ reasons so we can either 

develop our counterargument, or instead change our mind, though only when appropriate. 

In their review of the research on reasoning and decision making, they conclude that the 

evidence strongly suggests that when people reason to produce arguments, they are biased 

and lazy, yet they are more objective and critical when evaluating the arguments of others. 

But Mercier and Heintz (2014)315 also note that, while scientists display the same biases as lay 

people, science as a community has developed traditions and institutions that encourage, to 

some extent, the exchange and critical evaluation of each other’s ideas, where 

argumentation plays a leading role. 

Overconfidence bias 

Known as overconfidence; three forms have been identified:539 

1. Overestimation of our actual performance, either in the past or in the future. A well-

established finding in psychology is that people typically feel that they performed 

better at a task than they really did.540 An overestimate regarding the future is 

described by a well-known example called the planning fallacy, in which people tend 

to overestimate how fast they will get a complex project done, or in the way it is 

usually expressed: they underestimate how long it will take. Examples include writing 

a draft manuscript, buying a new car, preparing to teach a new course, or just about 

any other complex task sufficiently different to past projects that there will be many 

uncertainties that need to be considered. And unfortunately, being aware of past 

failures to accurately predict the time it will take does not seem to help.541 
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2. Overplacement of our relative contribution, performance, or skills. Also called the 

“better-than-average” effect. For example, “82% of people say they are in the top 

30% of safe drivers”.542 

3. Overprecision, relating to overconfidence in the accuracy of our numerical 

estimates.540 

Some evidence of likely overconfidence bias can be found in the recent paper by Hemkens 

et al. (2018) “Interpretation of epidemiologic studies very often lacked adequate 

consideration of confounding”.423 Their conclusion contained: 

… Even when confounding bias is mentioned, authors are typically confident 

that it is rather irrelevant to their findings and they rarely call for cautious 

interpretation. … 

Dunning-Kruger effect 

A twist on the overconfidence bias is that people lacking relevant skill or knowledge tend to 

overestimate how well they performed in a task, relative to those with greater expertise, who 

were more accurate in their self-assessments.543
⁠

–545 This disparity may result because such 

people lack the knowledge to recognise their errors, and hence suggests that researchers 

lacking statistical expertise will tend to be more overconfident about how well they 

performed their analysis than researchers with greater statistical expertise, who are more 

aware of the difficulties and errors of judgement that can bias results and inferences. 

Cognitive biases where heuristics dominate 

Ambiguity or uncertainty aversion 

A tendency to choose the option with a known probability over one with an unknown 

probability, even though the chosen option could easily be the worse option if more 

information about the alternative were known. The same concept can be seen in the English 

proverb: "Better the devil you know than the devil you don't".546 It is possibly explained by a 

“fear of negative evaluation” brought on by expecting that, if the unknown probability option 

were chosen, we would not be able to justify that choice to other people.547 



4.10 Cognitive biases 

 83 

Default effect  

Making an option a default increases the chance that it is chosen, partly because considering 

other options involves cognitive effort.548
⁠

,549 It can be an effective intervention to promote 

better choices,550 but can sometimes deter better options being chosen; for example, options 

in software for regression models551
⁠

,552 A similar bias is status quo bias553 

Observer bias 

Outcome assessments systematically deviate from the truth because the observers are 

influenced during assessments by their expectations or by other factors404 Also called 

ascertainment bias or detection bias,150 blinding is used in RCTs to control for this bias.404 

Curse of knowledge 

Occurs when someone with substantial background knowledge of a subject does not realise 

that those they are communicating with do not have the same background knowledge or 

depth of understanding. In other words, it is often difficult to imagine what other people 

don’t know that you know. It can occur in verbal or written communication with examples 

including technical jargon; uncommon words; examples from the history of the subject; or 

the deep understanding of a complex concept that comes from greater experience thinking 

about it.131 This may partly explain the lack of success of some statistical training which is 

often taught by people with advanced mathematical training and experience to people with 

limited mathematical training and experience. 

Groupthink 

Where a leader, or the ‘ingroup’ of a group, encourages consensus instead of seeking 

alternative viewpoints, leading to poor decisions going unchallenged. People in the group 

feel pressure to conform and become marginalised if they disagree. Tends to be driven by 

overconfidence and reputational concerns.554 

Halo effect 

If a person is considered to have good or bad characteristics, like their social status, physical 

attractiveness, or publication record, then anything new that relates to them, regardless of 
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whether it relates to their known characteristics, like an opinion they express, or work they 

have just finished, is assumed to be similarly good or bad.555 

 

4.11 Getting the most out of research 

Understanding that we each rely on heuristics when we plan research, analyse data, interpret 

the results and communicate them, mostly without conscious awareness that we do so, may 

lead to better research by providing motivation to overcome some of the current obstacles. 

One obstacle is the high cognitive demand required for valid causal inference, or inference 

that is reasonably adjusted for controllable biases; with the remaining uncertainty 

understood and properly conveyed. But tools and techniques exist that can reduce the effort 

required to achieve these goals. Causal diagrams can trigger more information gathering 

than would otherwise occur, making it easier to identify variables that should be 

considered.86 This, in turn, can stimulate consideration of alternative explanations, which can 

overcome the biases of some other heuristics, like the bias to find causal explanations, 

myside bias, and overconfidence bias. 

Another strategy might be the deliberate creation of lists, such as one containing alternative 

explanations for the associations observed or the lack of associations expected. This may 

lead to a better sense of the uncertainty that remains. 

To make causal diagrams easier to use, some possibilities include using variable names 

instead of letters, because abstract symbols require greater use of working memory;556 

including causal mechanisms adjacent to arrows if the mechanisms are not very obvious, and 

indicating the expected or observed effect that a change in one variable has on another, 

similar to the ‘signed DAGs’ of VanderWeele and Robins (2010).557 If valid causal inference 

can be made easier to achieve, it will be more likely to occur. 
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Chapter 5 
A review of the statistical methods 
and related tools recently used in 
health intervention cohort studies 
 

 

5.1 Introduction 

In Chapters 1-4, we examined concepts and factors commonly involved when causal 

inferences are made generally, as well as more specifically in health intervention research. An 

understanding of these elements can help the statistician or researcher make better 

decisions during the research process. While an important task of methodological research is 

to identify bias that research might fall victim to, another is to identify the practices currently 

being used to avoid those biases, to better inform efforts to improve the quality of research. 

In this chapter and the next, we present the results of a methodological review of health 

intervention cohort studies with the dual aims of describing the analysis methodology used 

to avoid bias, and whether their use affects the strength of causal inference, as expressed in 

study conclusions. This chapter will focus on the first aim, while Chapter 6 will assess the 

relationship between the methods used and the strength of causal inference communicated. 

A research project can be divided into five stages: the design, collection of data, data 

analysis, interpretation of results, and communication of the research. It is perhaps the data 

analysis where decisions made by a statistician or researcher can have the most influence on 

beliefs held about an intervention after the research has concluded. 

Health interventions, such as drugs, tests, and exercise programs, work when they cause an 

improvement in health. But as discussed in Chapter 1, even when we feel confident that an 

intervention will work for some, causality can never be established beyond doubt because, 
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however bizarre or unlikely, a plausible alternative explanation for observed associations will 

always be conceivable. Hence, with uncertainty ever present to some degree, a causal 

inference can be broadly defined as a conclusion that the evidence available supports either 

the existence, or the non-existence, of a causal effect. 

Research that compares one intervention with another, or with a placebo or usual care, such 

as randomised controlled trials and many cohort studies, all ask the causal question: does 

intervention X produce better outcomes on average than no intervention, or intervention Y? 

Research conclusions that are communicated when such studies are published will generally 

address this causal question, and hence, can be considered a type of causal inference. 

As outlined in section 4.5, many decisions are made in the course of analysing data that can 

potentially alter the result in a meaningful way, like concluding that an intervention is 

effective instead of ineffective, or that it alters the outcome by a large amount, on average, 

instead of a small amount. These decisions include the choice of statistical framework (e.g., 

frequentist or Bayesian),558 the types of models and estimation methods employed,559
⁠

–564 the 

choice of software,565
⁠

–567 and whether to perform a sensitivity analysis.568 The range of 

methods, and the variations within methods, that are available for each research design is 

considerable and can lead to different conclusions,442
⁠

–444 with new or improved methods 

becoming available on a regular basis.440 

Some of the methods developed or introduced into health research in recent decades and 

associated explicitly with causal inference include propensity score methods, instrumental 

variables and marginal structural models, and they can sometimes remove bias more 

successfully than traditional regression modelling.569
⁠

–575 Other techniques that can assess 

potential bias and improve causal inferences are causal diagrams (usually directed acyclic 

graphs),59 sensitivity analysis576
⁠

,577 and a more recent variant of sensitivity analysis sometimes 

called quantitative bias analysis.578
⁠

–580 However, the proportion of studies that use each 

method type is not clear, with reviews of statistical methodology more common for 

randomised trials than for observational studies.440 With observational studies at a greater 

risk of bias than randomised trials, we decided to focus this review on cohort studies, the 

type of design that methods using propensity scores are most often used.581 Evidence 

suggests that the use of some of the newer methods may be increasing,581
⁠

–588 so the review 
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in this chapter aims to provide an update, or some insight, on how often specific statistical 

methods and related tools are used to analyse data leading to causal inferences in recent, 

mid to large scale, health intervention cohort studies. 

 

5.2 Methods 

5.2.1 Study criteria and selection 

The review commenced in mid-2015 with the broad aim of cataloguing the statistical and 

related methods used in recently published health intervention cohort studies, excluding 

small studies likely to be underpowered. To enable the review to be carried out successfully 

by one person, trial and error was used to develop specific criteria with an approximate 

target of retrieving 1,000 to 2,000 articles for initial screening. In tandem, a PubMed 

(www.ncbi.nlm.nih.gov/pubmed) query was developed to retrieve the list of articles, with trial 

and error used to identify PubMed search terms that increased the chance of retrieving 

studies meeting possible criteria, such as a specific date range, while decreasing the chance 

of other studies, reviews or commentaries that would need to be manually excluded. 

The original definition of ‘health intervention’ that we used in 2015 was: 

Any type of treatment, preventive care, or test that a person could take or 

undergo to improve health or to help with a particular problem. Health care 

interventions include drugs (either prescription drugs or drugs that can be 

bought without a prescription), foods, supplements (such as vitamins), 

vaccinations, screening tests (to rule out a certain disease), exercises (to 

improve fitness), hospital treatment, and certain kinds of care (such as physical 

therapy). 

This definition was obtained from the website http://effectivehealthcare.ahrq.gov although 

we note it is now no longer available. It is similar to the following definition of a ‘health 

intervention’: “an act performed for, with or on behalf of a person or population whose 

purpose is to assess, improve, maintain, promote or modify health, functioning or health 

conditions”. ⁠

5
⁠⁠

5 

http://www.ncbi.nlm.nih.gov/pubmed
http://effectivehealthcare.ahrq.gov/
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The final full criteria for each included article was as follows: 

1. assessed a health intervention that was deliberately prescribed or utilised, with the 

sole aim of improving the health of human study subjects 

2. measured some aspect of human health as the outcome 

3. was a cohort study 

4. was comparative, with at least two interventions compared or an intervention 

compared to no intervention, and at least two separate patient groups 

5. at least 200 people were included in the final analysis 

 while a somewhat arbitrary number, our focus was on methods to control for 

confounding and selection bias, so we wanted a majority of the studies to be 

ones where random error would not be the greater concern 

6. was published in a 2014 volume/issue of a journal (excluding ‘Articles in Press’/’Early 

View’ etc) that was 

i. in any 2013 Journal Citation Reports (JCR) clinical medicine category 

ii. with a 2013 JCR impact factor of at least 4.000 

iii. in the top 10 journals by impact factor of any clinical medicine category 

 

5.2.2 Screening and data extraction 

Articles returned by PubMed were manually screened using EndNote,589 often by reading the 

title, though sometimes with a need to view the abstract or full text. Excluded articles were 

categorised by the first reason apparent for exclusion. A custom database and data entry 

application was developed using Microsoft SQL Server590 and Microsoft Visual Studio,591 

where each article’s information was recorded and viewed separately in a form, and data 

such as methods used could easily and accurately be counted afterwards using SQL database 

queries. The information extracted from each article included reference details, author 

country, interventions and their type, outcome and their type, characteristics and size of the 

study population, cohort study type (retrospective or prospective), statistical and related 
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methods used for the primary analysis, language used to describe the methodology, and 

statistical software used because the use of statistical methods depends heavily on software 

capabilities and ease of use. 

To offset potential errors with one person extracting the data, a full-text search program 

(FileLocator Pro592) was used to search for approximately 100 keywords, using regular 

expressions, that might identify statistical method related information. If a word was found in 

an article, this was highlighted in the data entry application, ensuring that the keyword was 

not overlooked in the text. Sometimes, however, a keyword found in an article might only be 

mentioned in places like the Discussion or References, and not relate to the analysis 

methodology of that study. But when a particular keyword was found to relate to the primary 

analysis, for example, the word ‘logistic’ was found in an article that used logistic regression 

in the analysis, then this positive match was recorded for later use (see section 5.2.3). 

Given the number and variety of statistical methods available, no widely agreed-upon way of 

grouping or classifying methods exists. Nevertheless, the methods extracted from the articles 

were grouped together under commonly used headings. An exploratory analysis followed 

that looked at different study features and their possible relationship with the methods used 

to reduce biased results. 

 

5.2.3 Automated full-text search to assess secular 
changes 

When all the reviews had been completed, search keywords found to be related to the 

primary analysis in 90% or more of the articles the word was found in, were designated a 

‘reliable’ word for use in automated full-text search of a wider selection of articles from later 

years. To look for changes in the use of methods since 2014, the same PubMed query was 

submitted again in May 2017 for the publication years 2014 and 2015, and again in Oct 2018 

for the publication years 2016 and 2017. Once articles had been retrieved, and without 

manual screening, relevant keywords that were considered ‘reliable’ or, on the other hand, 

were rarely or never found, but nevertheless related to a method of analysis, were again used 
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in an automatic full-text search using regular expressions (see Appendix A.2 for a list of 

expressions used). The results were then compared between the years. 

We used Stata 15.1593 for the construction of graphs and conducting of chi-squared tests. 

 

5.3 Results 

5.3.1 Sample selection 

The final PubMed query that was used to identify articles is shown below, though with the 

part containing journal titles considerably abbreviated (the full query is contained in 

Appendix A.1): 

2014[dp] AND humans[mh] 
AND  
(cohort[tiab] OR cohorts[tiab] OR cohort studies[mh] OR cross-over studies[mh] OR 
follow-up[tiab] OR follow-up studies[mh] OR followup[tiab] OR longitudinal[tiab] 
OR observational studies[tiab] OR observational study[pt] OR observational 
study[tiab])  
AND  
(before and after[tiab] OR comparative study[pt] OR compared[tiab] OR 
comparison[tiab] OR comparative[tiab] OR versus[tiab])  
AND 
("Acta Derm Venereol"[ta] OR "Acta Neuropathol"[ta] ...)  
NOT  
(2013[ppdat] OR 2015[ppdat] OR case series[tiab] OR cross-sectional studies[mh] OR 
diagnosis[sh] OR economics[sh] OR genetics[sh] OR meta-analysis[pt] OR 
prevalence[mh] OR randomised[tiab] OR randomized[tiab] OR randomized controlled 
trial[pt] OR randomly[tiab] OR review[pt] OR systematic[sb]) 
 
 

In June 2015, an initial sample of 1,871 references was retrieved from the PubMed website 

using the query above. Table 5.1 lists the JCR Journal Categories contained in the query and 

the associated number of journals and references returned by PubMed. While not restricted 

to any clinical area, one consequence of using JCR impact factors to target the most widely 

read studies was that some medical fields were likely to be represented more so than others. 

Subsequent screening of these articles led to a final sample of 288 studies (Figure 5.1), 

followed by a detailed full-text review. 
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Figure 5.1 Flow diagram of the selection process 
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Table 5.1 JCR Journal Categories 
Of 247 journals in the PubMed search, 26 were in 2 categories and 2 journals in 3 categories 

JCR (2013) Journal Category 

Number of articles*  Number of journals* 
Returned 

by PubMed 
After 

screening 
 In PubMed 

query 
After 

PubMed 
After 

screening 
Allergy 13 1 (8%)  4 3 1 
Anesthesiology 29 5 (17%)  3 3 2 
Cardiac & Cardiovascular Systems 101 17 (17%)  10 9 6 
Clinical Neurology 49 3 (6%)  10 4 2 
Critical Care Medicine 115 15 (13%)  5 5 4 
Dentistry, Oral Surgery & Medicine 3 2 (67%)  2 1 1 
Dermatology 27 2 (7%)  7 4 2 
Emergency Medicine 10 3 (30%)  1 1 1 
Endocrinology & Metabolism 31 3 (10%)  10 2 1 
Gastroenterology & Hepatology 104 17 (16%)  10 9 7 
Geriatrics & Gerontology 66 6 (9%)  6 3 2 
Health Care Sciences & Services 15 0  5 2 0 
Hematology 51 10 (20%)  10 8 4 
Immunology 29 6 (21%)  10 2 2 
Infectious Diseases 118 15 (13%)  10 8 6 
Medical Informatics 6 0  1 1 0 
Medicine, General & Internal 97 28 (29%)  10 7 5 
Medicine, Research & Experimental 4 0  10 3 0 
Nutrition & Dietetics 84 2 (2%)  10 3 1 
Obstetrics & Gynecology 121 35 (29%)  4 3 3 
Oncology 35 10 (29%)  10 5 5 
Ophthalmology 31 2 (6%)  5 3 1 
Orthopedics 80 9 (11%)  3 3 2 
Pathology 1 0  10 1 0 
Pediatrics 48 10 (21%)  3 1 1 
Peripheral Vascular Disease 130 19 (15%)  10 7 4 
Pharmacology & Pharmacy 2 1 (50%)  10 2 1 
Primary Health Care 1 1 (100%)  1 1 1 
Psychiatry 25 1 (4%)  10 8 1 
Public, Environ. & Occup. Health 63 2 (3%)  10 6 2 
Radiology, Nuc. Med. & Med. Imag. 80 8 (10%)  10 9 4 
Rehabilitation 1 1 (100%)  1 1 1 
Respiratory System 93 13 (14%)  8 7 4 
Rheumatology 81 13 (16%)  8 5 4 
Sport Sciences 57 5 (9%)  6 3 2 
Substance Abuse 9 0  2 2 0 
Surgery 233 42 (18%)  10 10 8 
Toxicology 11 0  10 3 0 
Transplantation 37 5 (14%)  3 2 2 
Tropical Medicine 5 1 (20%)  1 1 1 
Urology & Nephrology 69 16 (23%)  8 6 4 

* Some journals and hence references in more than one category 
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5.3.2 Handling of missing data 

Of the 288 studies, Table 5.2 lists the number of articles that reported specific methods for 

handling missing data, with the remaining articles not reporting how they dealt with this 

problem. 

Table 5.2 Missing data methods that were reported 

Method to handle missing data (as described in article)  Articles 

Multiple imputation  21 

          multiple imputation 15  

multiple imputation using flexible additive imputation models 1  

multiple imputation using Markov chain Monte Carlo method 1  

multiple imputation using sequential regression models 1  

multiple imputation using the chained equations method 2  

multiple imputation via prediction mean matching 1  

Excluded people with missing data  22 

Imputation using last observation carried forward  2 

Imputation using linear interpolation  1 

Imputation using means, medians and/or modes  3 

Mid-point imputation  1 

Missing indicator method  1 

 

5.3.3 Statistical methods used 

There was considerable variation in the types of statistical methods used, however, familiar 

categories could still be used to group them together. A large majority of articles used at 

least one multivariable regression model (Figure 5.2). Note that articles often used more than 

one method and all methods were included in multiple categories. 

Aside from propensity score methods, found in 94 (33%) studies, use of methods associated 

explicitly with causal inference in the literature was uncommon, with 5 using marginal 

structural models, 3 using causal diagrams and 2 using instrumental variables (Figure 5.2). 



5.3 Results 

 94 

Figure 5.2 Number of studies using each method type 

All articles and methods were in more than one category; total studies = 288 
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More generally, of the more advanced regression methods often used implicitly for causal 

inference, various forms of survival analysis dominated, used in just over half of the articles, 

and mixed and random effects models were used in twice as many articles as generalised 

estimating equations. The specific methods reported and grouped in Figure 5.2 as ‘Any 

multivariable regression’, ‘Multivariable regression NOT used’, and ‘Propensity score (PS) 

methods’ are listed in Appendix A.3. Also listed are the multivariable methods in articles that 

used, or did not use, a ‘Propensity score method’ or a ‘Sensitivity analysis’, to provide more 

detail on the overlap of these categories with ‘Any multivariable regression’. 

Based on the data collected, three broad comparative groupings identified are: 

1. Use or non-use of a multivariable regression method 

 adjustment for confounding and selection bias in observational studies 

cannot be done with methods such as t-tests or chi-squared tests, and 

stratification is generally limited to a small number of confounders 

2. Use or non-use of a propensity score method 

 because there is an explicit association of these methods with causal 

inference in the literature, and there has also been a rapid rise in the 

popularity of these methods in the last two decades that some believe may 

give users a false sense of security about their control of bias594
⁠

–596 

 all articles in this group also used multivariable regression 

3. Use or non-use of a sensitivity analysis 

 while the use of this term will vary, any form of sensitivity analysis, if done 

properly, is likely to reduce the chance of a biased result or interpretation 

 most articles in this group also used multivariable regression (see Table 5.3) 
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Table 5.3 Articles using multivariable methods and a sensitivity analysis 

 No Multivariable 
regression 

Multivariable 
regression Total 

No Sensitivity analysis 28 132 160 (56%) 

Sensitivity analysis 3 125 128 (44%) 

Total 31 (11%) 257 (89%) 288 

 

All 3 articles that claimed to conduct a ‘sensitivity analysis’ (Table 5.3), yet did not use a 

multivariable method, were vaccine studies. 

 

5.3.4 Author location, journal and study size 

Comparing the location of the authors with the three method groupings singled out above 

(Table 5.4), and ignoring the relatively small number of articles from Asia-based authors and 

the heterogenous other continent (e.g. Africa or Australia) or multiple continent locations, 

the most obvious feature is that propensity score methods appear to be more commonly 

used by authors in the United States and Canada than in European countries. 

Table 5.4 Article numbers by author location and methods used 
Percentages relate to row N and values referred to in the text are highlighted in magenta 

Author Base 
N 

(288) 
Multivariable 

regression 
Propensity score 

method 
Sensitivity 
analysis 

North America 132 123 (93%) 52 (39%) 64 (48%) 

Europe 82 69 (84%) 20 (24%) 36 (44%) 

Asia 26 24 (92%) 10 (38%) 5 (19%) 

Other or Multiple 48 41 (85%) 12 (25%) 23 (48%) 
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Comparing the use of methods between JCR journal categories (Table 5.5), all three of the 

categories with the lowest use of multivariable methods are also three of the four journal 

categories with the smallest mean sample size (Table 5.6). The most obvious feature of 

propensity score use is the much higher proportion of cardiac and cardiovascular systems 

journal articles that used these methods, though the small N makes a chance result very 

plausible. In the last column sensitivity analysis was most commonly performed in Medicine, 

General & Internal as well as Urology & Nephrology journal articles, while Obstetrics & 

Gynecology had the lowest proportion of articles. 

Table 5.5 Article numbers by journal category and methods used 
Percentages relate to row N and values referred to in the text are highlighted in magenta 

JCR Journal Category 
N 

(329†) 
Multivariable 

regression 
Propensity 

score method 
Sensitivity 
analysis 

Cardiac & Cardiovascular Systems 17 17 (100%) 13 (76%) 10 (59%) 

Critical Care Medicine 15 15 (100%) 7 (47%) 8 (53%) 

Gastroenterology & Hepatology 17 14 (82%) 5 (29%) 6 (35%) 

Infectious Diseases 15 14 (93%) 5 (33%) 8 (53%) 

Medicine, General & Internal 28 26 (93%) 15 (54%) 24 (86%) 

Obstetrics & Gynecology 35 25 (71%) 0 6 (17%) 

Other categories 125 116 (93%) 38 (30%) 48 (38%) 

Peripheral Vascular Disease 19 19 (100%) 9 (47%) 7 (37%) 

Surgery 42 35 (83%) 11 (26%) 15 (36%) 

Urology & Nephrology 16 16 (100%) 8 (50%) 13 (81%) 
† Some journals were in multiple categories 
 

Consistent with this observation, studies containing less than 2,000 subjects had a lower 

proportion of studies using any of these three methods of analysis (Table 5.7). 

Additionally, Table 5.8 suggests that no meaningful difference exists between North 

American and European studies in terms of the general distribution of study sizes. 
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Table 5.6 Sample size statistics by journal category 

  Sample Size 

JCR Journal Category N Mean Median Min Max 

Cardiac & Cardiovascular Systems 17 82,767 5,203 380 725,680 

Critical Care Medicine 15 56,544 3,163 402 471,062 

Gastroenterology & Hepatology 17 39,200 835 204 550,696 

Infectious Diseases 15 318,272 3,990 200 4,231,923 

Medicine, General & Internal 28 337,176 37,730 1,838 5,104,594 

Obstetrics & Gynecology 35 85,191 3,159 252 1,047,644 

Other categories 125 142,079 4,120 207 10,912,834 

Peripheral Vascular Disease 19 109,678 4,989 281 985,569 

Surgery 42 22,745 1,687 215 371,527 

Urology & Nephrology 16 32,578 7,402 361 183,842 

Total 329† 
    

† Some journals were in multiple categories 

Table 5.7 Study size and methods used 
Percentages relate to row N and values referred to in the text are highlighted in magenta 

Study Total Subjects 
N 

(288) 
Multivariable 

regression 
Propensity 

score method 
Sensitivity 
analysis 

200 - 1,999 111 92 (83%) 25 (23%) 30 (27%) 

2,000 - 19,999 93 87 (94%) 38 (41%) 47 (51%) 

20,000 - 10,912,834 84 78 (93%) 31 (37%) 51 (61%) 

 

Table 5.8 Study size and author location 
Percentages relate to column N 

Study Total Subjects 
N 

(288) 
North 

America Europe Asia Multiple Other 

200 - 1,999 111 49 (37%) 31 (38%) 12 (46%) 17 (39%) 2 (50%) 

2,000 - 19,999 93 43 (33%) 25 (30%) 10 (38%) 13 (30%) 2 (50%) 

20,000 - 10,912,834 84 40 (30%) 26 (32%) 4 (15%) 14 (32%) 0 
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5.3.5 Type of comparison group and intervention type 

While the use of an inactive comparison group (a group receiving no intervention, or usual 

care interventions common to all groups) (Table 5.9) was found to be a little more likely for 

studies using propensity score methods, the difference is small and may not be meaningful. 

Putting aside the small numbers using radiation therapy, interventions classed as assisted 

reproductive technology (interventions designed to achieve pregnancy), and vaccine studies, 

were both less likely to have used multivariable regression, and likewise for propensity score 

methods and sensitivity analyses, although numbers were small. At the other end of the 

scale, studies investigating drugs or a mix of interventions (e.g., drug with surgery compared 

with drug alone or surgery alone) were more likely to have used multivariable regression, 

propensity score methods and a sensitivity analysis. And while surgery studies were near the 

middle in their use of multivariable methods, they were relatively less likely to have used 

propensity score methods. 

Table 5.9 Comparison group type, type of intervention and methods used 
Percentages relate to row N and values referred to in the text are highlighted in magenta 

 
N 

(288) 
Multivariable 

regression 
Propensity 

score method 
Sensitivity 
analysis 

Comparison group type     

Active intervention 118 104 (88%) 31 (26%) 50 (42%) 

No intervention/Usual care 170 153 (90%) 63 (37%) 78 (46%) 

Intervention Type     

Assisted reproductive tech. 19 12 (63%) 0 2 (11%) 

Drug 120 113 (94%) 55 (46%) 64 (53%) 

Mix 15 14 (93%) 7 (47%) 8 (53%) 

Other 56 50 (89%) 17 (30%) 25 (45%) 

Radiation therapy 6 6 (100%) 1 (17%) 4 (67%) 

Surgery 60 53 (88%) 12 (20%) 19 (32%) 

Vaccine 12 9 (75%) 2 (17%) 6 (50%) 
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To get a more detailed picture of the connections between the data, the type of intervention 

investigated was compared with author location (Table 5.10) and this suggests that the 

reason a higher proportion of total drug research takes place in North America is simply 

because more health intervention cohort studies took place there, at least in this sample. 

Table 5.10 Type of intervention and author location 
Percentages relate to row N and values referred to in the text are highlighted in magenta 

Intervention Type N 
North 

America Europe Asia 
Other or 
Multiple 

Assisted reprod. tech. 19 3 (16%) 10 (53%) 3 (16%) 3 (16%) 

Drug 120 52 (43%) 33 (28%) 13 (11%) 22 (18%) 

Mix 15 6 (40%) 5 (33%) 2 (13%) 2 (13%) 

Other 56 34 (61%) 10 (18%) 3 (5%) 9 (16%) 

Radiation therapy 6 3 (50%) 1 (17%) 0 2 (33%) 

Surgery 60 30 (50%) 16 (27%) 4 (7%) 10 (17%) 

Vaccine 12 4 (33%) 7 (58%) 1 (8%) 0 

Total 288 132 (46%) 82 (28%) 26 (9%) 48 (17%) 

 

 

5.3.6 Statistical software use 

The software packages R and SAS each had the highest proportion of studies also using 

multivariable regression, propensity score methods or sensitivity analyses (Table 5.11). Stata 

had the third highest proportion using each of the three methods, while the other major 

package SPSS, had the lowest proportion of the major packages. 
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Table 5.11 Statistical software and methods used 
Percentages relate to row N and values referred to in the text are highlighted in magenta 

Software 
N 

(333†) 
Multivariable 

regression 
Propensity 

score method 
Sensitivity 
analysis 

Not Specified 42 32 (76%) 12 (29%) 17 (40%) 

Other‡ 20 15 (75%) 4 (20%) 7 (35%) 

R597 35 35 (100%) 17 (49%) 18 (51%) 

SAS598 110 109 (99%) 50 (45%) 66 (60%) 

SPSS599 70 59 (84%) 13 (19%) 20 (29%) 

Stata600 56 51 (91%) 21 (38%) 28 (50%) 
† Some articles used more than one software package; 
‡ Included: JMP,601 Microsoft Excel,602 GraphPad Prism,603 and 14 others; 

Table 5.12 Software by author location 
Percentages relate to row N and values referred to in the text are highlighted in magenta 

Author 
continent N SAS SPSS Stata R Other Not spec. 

North America 152 63 (41%) 15 (10%) 25 (16%) 17 (11%) 9 (6%) 23 (15%) 

Europe 98 14 (14%) 34 (35%) 23 (23%) 12 (12%) 6 (6%) 9 (9%) 

Asia 33 13 (39%) 12 (36%) 3 (9%) 3 (9%) 1 (3%) 1 (3%) 

Other / Multiple 50 20 (40%) 9 (18%) 5 (10%) 3 (6%) 4 (8%) 9 (18%) 

Total 333† 110 (33%) 70 (21%) 56 (17%) 35 (11%) 20 (6%) 42 (13%) 

† Some articles used more than one software package 

 

Among the cohort studies in this sample, SAS was much more commonly used in North 

American studies than in European ones, whereas the opposite was true of SPSS and Stata. 

The type of software used by journal category can be seen in Appendix A.4. 
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5.3.7 Explanations for observed associations 

As was made clear in Chapter 4, people often try to explain the associations that they 

observe. And in reality, if we seek to better understand the factors underlying a phenomenon 

such as the choice of methods when analysing data, the only reason to test for associations 

is to suggest possible causes. Thus, taking an exploratory data analysis approach,604 we 

created a causal diagram (Figure 5.3) to see if it could assist in understanding the multiple 

interconnected relationships suggested by the associations. 

In the diagram, the blue variables are theorised common causes or mediators of the 

observed associations, and the black variables are those we analysed. Using a 0.1 p-value 

cutoff, each observed association is drawn as a dotted line and labelled with a letter, except 

for those associations considered causal which were drawn as black arrows. As discussed in 

section 3.3, an association between two variables is assumed to exist if a path can be traced 

along some of the arrows in the diagram, regardless of the direction of the arrows. As a way 

of checking that all of the associations have a possible explanation, and also, of illustrating 

this principle, the causal path for each association is labelled on each connecting arrow. Most 

are explained by common causes, but a few rely on a collider structure, such as ‘h’ and ‘r’. 

Drawing a causal diagram that starts with the associations allows for a more detailed and 

considered causal structure to be suggested. It is important to note, however, that the 

diagram contains only one set of plausible relationships, both causal and associational, 

where the latter could have arisen only by chance. Hence, it is recommended that more than 

one such diagram be created to help prevent such overconfidence in the initial causal 

explanations that come to mind. For example, a new variable could be introduced such as 

‘Location of influential propensity score method developers’, which may help to explain the 

increased use of propensity score methods found in articles by North American authors. 

Alternatively, a causal diagram could be drawn that includes an arrow from ‘Professional 

culture & history’ to ‘Inactive or Active comparison group intervention’. This is plausible, 

though it would increase the apparent problem that no association was found between 

‘Author location’ and ‘Inactive or Active comparison group intervention’. Such an association 

is already a problem, however, with a path connecting the two variables able to be traced in 

the diagram of Figure 5.3. 
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Figure 5.3 Causal diagram containing one possible explanation for observed associations 

 

5.3.8 Temporal trends 

Full-text search results of articles from 2014-2017 (Table 5.13) suggest a possible small 

increase in propensity score methods, including words often associated with their use 

(though not exclusively), such as ‘balance’ and ‘standardised difference’. A small increasing 

trend is also suggested for multiple imputation and sensitivity analysis. Other methods show 

no obvious trend or were found in small numbers only. 

In terms of statistical software packages, the use of SAS remained steady and the most used, 

whereas Stata and R showed an increasing trend and SPSS may be slowly decreasing. 
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Table 5.13 Full-text search of words or terms in articles identified with PubMed query 
Percentages relate to column N and possible trends are highlighted in magenta 

Words or combinations 
searched for in article full text 

2014* 
(N=2617) 

2015* 
(N=2563) 

2016† 
(N=2342) 

2017† 
(N=2084) Trend‡ 

propensity score 180 (6.9%) 210 (8.2%) 207 (8.8%) 211 (10.1%) 0.000 

propensity score and      

matching 127 (4.9%) 153 (6.0%) 147 (6.3%) 167 (8.0%) 0.000 

greedy matching 31 (1.2%) 30 (1.2%) 26 (1.1%) 25 (1.2%) 0.973 

nearest neighbour matching 27 (1.0%) 42 (1.6%) 36 (1.5%) 39 (1.9%) 0.029 

high dimensional 8 7 5 2  

inverse probability weighting 20 (0.8%) 27 (1.1%) 35 (1.5%) 36 (1.7%) 0.001 

balance 69 (2.6%) 83 (3.2%) 91 (3.9%) 87 (4.2%) 0.002 

standardised difference 37 (1.4%) 53 (2.1%) 57 (2.4%) 56 (2.7%) 0.001 

marginal structural model 15 (0.6%) 11 (0.4%) 21 (0.9%) 13 (0.6%) 0.368 

g-formula 0 1 3 4  

g estimation 1 0 1 0  

instrumental variable 12 (0.5%) 12 (0.5%) 14 (0.6%) 18 (0.9%) 0.063 

latent class 3 5 15 10  
structural equation 8 10 5 4  

difference in difference 9 7 10 6  

multiple imputation 119 (4.5%) 111 (4.3%) 123 (5.3%) 122 (5.9%) 0.018 

sensitivity analysis 557 (21%) 546 (21%) 593 (25%) 609 (29%) 0.000 

directed acyclic graph 17 (0.6%) 13 (0.5%) 23 (1.0%) 13 (0.6%) 0.557 

machine learning 3 10 9 10  

Bayesian 43 (1.6%) 45 (1.8%) 56 (2.4%) 44 (2.1%) 0.098 

stepwise 227 (8.7%) 245 (9.6%) 201 (8.6%) 168 (8.1%) 0.314 

SAS 781 (30%) 751 (29%) 718 (31%) 634 (30%) 0.466 

Stata 343 (13%) 352 (14%) 378 (16%) 327 (16%) 0.002 

SPSS 655 (25%) 622 (24%) 524 (22%) 461 (22%) 0.006 

R 150 (5.7%) 186 (7.3%) 186 (7.9%) 239 (11.5%) 0.000 

bias analysis 2 1 4 7  

alternative explanation 27 (1.0%) 29 (1.1%) 33 (1.4%) 20 (1.0%) 0.874 

significant(ly) 1214 (46%) 1187 (46%) 1100 (47%) 974 (47%) 0.705 

References from PubMed 2747 2739 2882 2664  

Articles for full-text search§ 2617 (95%) 2563 (94%) 2342 (81%) 2084 (78%)  

* Articles from PubMed query submitted in May 2017; † PubMed query submitted in Oct 2018; ‡ Chi-
squared test for linear trend on rows with a combined count of 40 or more; § Number of articles 
available through open access or the University of Sydney’s journal subscriptions 
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5.4 Discussion 

In this review of 288 health intervention cohort studies, across every area of medicine, we 

surveyed all statistical methods and related tools to provide a snapshot of current practice in 

causal inference related data analysis. Aside from methods that used propensity scores, 

employed by a third of the articles in our sample, most statistical methods and tools 

associated explicitly with causal inference, such as marginal structural models, instrumental 

variables, and causal diagrams, remain seldom used. And while a small increasing trend was 

observed for propensity score methods over 2014-2017, no such trend was apparent for the 

seldom used methods. 

The way studies handled missing data was unfortunately not explained clearly in the majority 

of the articles, and of those that did report it, the generally preferred method of multiple 

imputation605 was performed in a similar number of studies (21/288) as those stating that 

they excluded subjects with missing data from the analysis (22/288), a technique also called 

‘complete-case analysis’ and known to produce biased estimates where the reason for data 

being missing relates both to the chance of receiving the intervention and also to the 

outcome the subject did or would have recorded.606 Given that complete-case analysis has 

been observed to be the most commonly used technique in health research,607 it seems likely 

that it is under-reported in this review. However, multiple imputation showed a slight 

increasing trend over 2014-2017. 

Another technique that showed an increasing trend was the performing of a sensitivity 

analysis, considered by many to be an essential tool for causal inference,86
⁠

,580 and found in 

44% of the 288 studies. However, we only recorded whether a study called one of their 

analyses a ‘sensitivity analysis’, so the quality and relevance of these analyses was not 

assessed. For example, in some cases, we thought it may have been more appropriate to call 

an analysis a ‘subgroup analysis’, rather than a ‘sensitivity analysis’, but assessing this in 

detail for all 128 articles would have taken more time than we had available. There are 

currently few methodological reviews that focus on the quality of sensitivity analyses in 

health research. 



5.4 Discussion 

 106 

Of the other methods found, survival analysis dominated with use in 52% of the studies. And 

despite the well-known risk of bias in observational studies,608
⁠

,609 11% did not adjust for any 

confounders, relying instead on simple statistical methods such as t-tests and chi-squared 

tests. 

Of the propensity score methods, matching is an intuitive method and was one of those 

suggested when propensity scores were first introduced in 1983.610 Similar to previous 

reviews,583
⁠

,587
⁠

,611
⁠

–614 matching was the most popular propensity score method, found in 54/92 

(59%) propensity score studies, with the propensity score as a covariate the second most 

popular, in 25/92 (27%). This is also similar to earlier studies587
⁠

,611
⁠

–614 despite warnings for 

over 10 years that using the propensity score as a covariate can lead to biased results.611
⁠

,615 

Inverse probability of treatment weighting (IPTW) was found in 14/92 (15%) studies but was 

a relatively unknown method in health research before 2008.581 

In an exploratory exercise, plausible associations were examined between the methods used 

and study features that might in some way influence the decisions that precede a causal 

inference, such as factors that can make particular analysis choices more likely. One 

methodological grouping of interest was the use or non-use of a propensity score method, 

because of their explicit association in the literature with causal inference and rapid increase 

in uptake. The other two groupings of interest were the use or non-use of multivariable 

regression, and whether or not a sensitivity analysis was performed, because the use of 

either can reduce the chance of a biased result. 

Firstly, propensity score methods were more likely to be encountered if the authors resided 

in North America compared to Europe (39% vs. 24%), the two locations where most authors 

were based. This association does not appear to be related to the types of interventions 

investigated, such as pharmaceutical studies, because the proportion of studies investigating 

drugs was about the same for both continents. Further associations between various study 

features led to the creation of a causal diagram to help form at least one plausible 

explanation (Figure 5.3). It seemed to help noticeably and thus may be a useful tool for some 

types of exploratory data analyses. 
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One strength of this review is that at 288 articles, our sample was reasonably large; and 

because we searched highly ranked journals that were not restricted to specific disciplines or 

open access only, it is likely to be more generalisable across all of health research. One 

limitation might be that a single person extracted all of the data from the sample. However, 

this was offset by the use of full-text automatic search software, with key terms flagged when 

extracting from each article. Another limitation is that only cohort studies were included in 

the sample; however, to date, most statistical methods specifically targeting causal inference 

have been aimed at cohort designs.616 And, we should note that the exploratory nature of 

this review has produced many comparisons, so some low p-values are likely to have 

occurred by chance alone. 

Finally, where feasible and given the study design, the use of statistical methodology that is 

most suited to answering the research question —by reducing confounding and selection 

bias most effectively — can make accurate research conclusions more likely; though not if 

they are used inappropriately. Factors likely to increase uptake of advances in methodology 

or to promote improvements in how methods are used, such as more consistent checking of 

assumptions, include the appropriate use of methods by recognised opinion leaders and 

easily accessible and understandable statistical code.617
⁠

–619 
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Chapter 6 
Causal interpretation in health 
intervention cohort studies 
 

 

6.1 Introduction 

While there are many biases that can influence the generation of research evidence, many of 

these and more can alter the interpretation and communication of that evidence, with 

examples from Chapter 4 including myside bias, overconfidence bias, the Dunning-Kruger 

effect, and a bias for causal explanations. This chapter reviews again the sample of health 

intervention cohort studies from Chapter 5, but this time looking at the causal interpretation 

of that evidence and the communication of those inferences, with a focus on the strength of 

causal language in study conclusions. Our goals are first, to better understand how causal 

inferences are expressed in writing, and the words or grammatical features that convey their 

strength or certainty; and second, to explore whether the statistical methods or other study 

features might influence the strength of causal inference communicated by study authors. 

6.1.1 Causal interpretations 

A causal interpretation of the results is a causal inference, and both terms are often thought 

to mean, at least casually, that a black-and-white decision has been made favouring the 

existence of a causal effect.620 However, research can only provide supportive evidence, with 

uncertainty never dispelled entirely. In the case of a comparative health intervention study, 

the aim is to provide evidence to help answer one, or both, of the following questions: 

a) whether the intervention caused the health of subjects to improve, or 

b) whether the intervention caused the health of subjects to worsen 
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Using the definition of a causal inference proposed in Chapter 1: “that the evidence available 

supports either the existence, or the non-existence, of a causal effect”, any conclusion in a 

health intervention study that addressed one of the two questions above could be 

considered a form of causal inference. An exception would be any study that concluded that 

their results do not suggest anything about the intervention and the outcome, as if the study 

had not been done; but if these studies exist, they are rare. 

In addition, a conclusion that suggests a causal association does not exist can have as much 

of an influence over a person’s use of that intervention as a conclusion that the causal 

association does exist. Hence, the term ‘causal inference’ need not be restricted to decisions 

that a causal relationship does exist. Note that this is not to disagree with the fact that a 

large p-value does not provide direct evidence of ‘no effect’,294
⁠

,520
⁠

,621 which may have 

occurred, for example, from a lack of power; we only point out that conclusions of ‘no effect’, 

whether justified from a combination of evidence or not, are nevertheless inferences about a 

causal relationship. 

Some also assume that by concluding ‘an association’ was found between the intervention 

and outcome, a causal interpretation of the data has not been made.622 But while this is 

unlikely to be misinterpreted as a strong causal finding, stating that an association has been 

found between possible cause and effect events, can only be understood as the causal effect 

of either the intervention, a confounder, a collider, or a combination of the three. Combined 

with our preference for causal explanations (see Ch.4), use of the euphemism ‘association’, 

without reference to the causal question under study, seems unlikely to be interpreted 

completely non-causally. 

And lastly, while evidence that is considered weak by some people may well be thought of as 

no evidence by others, in the absence of any other information, even weak evidence will be 

used for a causal inference when a decision is required. 

Thus, all conclusions that address a causal question in research can be usefully thought of as 

a ‘causal inference’, even if the conclusion talks only of associations, favours no effect, or the 

evidence is weak. Such conclusions, however, will convey differing levels of uncertainty, and 

this is where the strength, or certainty, of the causal language being used, rather than 
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whether causal language is used, may be more useful when judging whether a conclusion is 

appropriately worded. 

The strength of a ‘causal inference’, the certainty of the belief that a causal effect exists, will 

vary from mostly uncertain to supremely confident. When these beliefs are expressed in the 

conclusions of research articles, the strength or confidence conveyed will likewise affect how 

the findings are interpreted by readers. Support for this notion comes from one study on 

spin,623 though not by another.624 However, studies in psychology also suggest that people 

have a confidence heuristic,625 such that increased confidence in an author or speaker tends 

to be more persuasive, based on the assumption that their confidence is determined by their 

knowledge and the certainty that this provides. Hence, a confident study conclusion, 

assuming there are no apparent reasons to doubt its validity, would seem more likely to 

leave a reader perceiving that strong evidence had been found, hence the confident 

conclusion. In other words, overconfidence can be catching. 

6.1.2 Causal language 

There are many influences on the causal inferences researchers make and the words they 

choose to communicate them. Our decisions, including when we write, aim to fulfil our 

motives,626 and one of the fundamental human motives that evolution left us most likely 

involves a desire, or drive, to increase the respect other people have for us.627
⁠

–632 In 

psychology, this desire is frequently merged with similar concepts into the unattractive 

sounding desire for status, defined in various ways, such as “the respect, admiration, and 

voluntary deference an individual is afforded by others, based on that individual’s perceived 

instrumental social value”;627 or alternatively, “the prominence, respect, honour, and influence 

that individuals enjoy in the eyes of others”.633 A more commonly known motive is the 

concept of self-actualization, popularised in 1943 by Abraham Maslow as part of his 

“hierarchy of needs”.634 It suggests that a fundamental drive in life is to fulfil, or ‘actualize’, 

our unique full potential. However, recent evidence suggests that underlying this drive may 

really be the desire for status or respect.635 And like all people, statisticians and researchers 

will be partly motivated by this need, along with others, such as compassion for people in 

need,636 when they make and communicate a research study causal inference. 
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One way the desire to increase our status can be satisfied is to make a research finding 

sound more important. But, at the same time, a statistician or researcher will be reluctant to 

risk losing the respect of their peers through a perception that they deliberately mislead 

readers. When an article favours the first of these competing motives, the word spin might 

sometimes be used to describe the writing. First appearing in public relations and politics in 

the 1980s, spin became “shorthand for a particular kind of political public relations, with the 

negative connotation of spinning a yarn – lacking truthfulness, not to be trusted, of suspect 

motivation”.637 As this meaning entered the general lexicon, it was taken up in health 

research to describe intentional, or unintentional, reporting that could distort the 

interpretation of study findings and mislead the reader.21
⁠

,408
⁠

,623
⁠

,624
⁠

,638
⁠

–663 

Boutron and Ravaud (2018)640 recently catalogued a variety of forms that spin could take in 

biomedical articles. They include the reporting of post-hoc hypotheses as though 

prespecified; selective reporting of analyses that favour the investigator’s hypotheses or 

those that display significant p-values; and biased interpretation of the results, such as 

ignoring regression to the mean, confounding, or overstating small study effects. An 

additional example of spin might involve avoiding a discussion of missing data. All of these 

would increase the apparent certainty of the result and thus increase its perceived 

importance as a scientific finding. 

The location of such spin is also important. When a person makes a decision about an 

intervention, the evidence they weigh will often come from the conclusions of other people, 

be they friends, doctors, journalists, or in the case of evidence from a research article, the 

study investigators. However, critically reading a research article takes time and effort, and 

that is assuming the full-text article is available in the first place, either through open-access 

or by a subscription the person may use. But abstracts are always free, and in health research 

they also tend to be structured, making it easy to quickly absorb the content of interest. 

Consequently, as put succinctly by Peter Gøtzsche (2009),664 a Cochrane collaboration co-

founder: “Most users of the scientific literature read vastly more conclusions than they read 

abstracts, and vastly more abstracts than full papers”. This is a commonly held view665
⁠

–668 and 

there is also some empirical support.669
⁠

,670 It may be why the abstract is where spin is most 

likely to be found,639 precisely because the wording used in the abstract, and especially the 

study conclusion, is where authors are most likely to influence readers. 
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However, it seems reasonable to assume that spin is not employed consciously by many 

authors, although it would be hard to determine when it is. Other than from a desire to 

impress peers, which may not be a conscious motive when wording a conclusion, spin may 

also result from an inadequate understanding of methodological principles, such as failing to 

fully understand how missing data can produce bias, or from following a reporting practice 

that is commonly observed in their field.640 

When conclusions are written with exaggerated confidence the consequences for findings 

that are false may be multiplied. Some even suggest that a majority of research money and 

researcher effort has been wasted because of false or exaggerated findings.⁠

3
⁠

,392
⁠

,671
⁠

,672 Thus, 

greater caution in the interpretation of results and conclusions has been recommended, with 

words implying uncertainty considered essential.673
⁠

–676 To put it another way, the uncertainty 

needs to be conveyed in a way that leaves the reader appropriately uncertain. 

Overlapping with issues of spin are legitimate concerns about the use of “causal language”, 

especially in non-randomised research. Overconfidence in the accuracy of results can be 

seen in many health research articles,109
⁠

,313
⁠

,423 and is not a recent problem.677 One response 

to the overstatements seen in articles, and encouraged by a causality-shy statistics 

profession, has been the development in research publishing and teaching of a convention 

where causal language is generally discouraged.678 But an increasing focus on causal 

inference in recent decades has seen this practice criticised. On one side of the argument are 

those maintaining a preference for associational language only, to avoid overinterpretations 

and leave more of the inference making to the reader.650
⁠

,679
⁠

–683 On the other side, some 

believe that the use of causal language to describe research with a causal aim, rather than 

leading to increased overinterpretations, will increase the chance that the statistical model 

used will be appropriate to the causal goal, instead of one better suited to prediction 

modelling, and that inferences will ultimately be less ambiguous to the reader.90
⁠

,622
⁠

,678
⁠

,684
⁠

–693 

At the heart of this issue is the meaning of the term ‘causal language’, and which approach 

will provide the least misunderstanding and the better science. 

Language is often ambiguous or vague in its meaning,132
⁠

,254 with interpretations of study 

conclusions likely to vary, at least a little. Hence, before we judged the ‘strength of causal 
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inference’ in study conclusions, we conducted a brief review of the words and grammatical 

features that might help determine the strength of a causal inference. 

Recommendations for greater caution when interpreting research have often come from 

statisticians, and training in statistics has long emphasized caution regarding correlation and 

causation.233
⁠

,694 Anecdotally, there also appears to be a common assumption that statisticians 

are more cautious when inferring causality. In general, with their greater methodological 

knowledge, statisticians would seem more likely to use statistical methods that, at least in 

theory, control for more confounding and selection bias, and this can strengthen causal 

inference. Naturally, this is only the case if they also have a good understanding of the study 

design and implementation, as well as sufficient knowledge of the subject matter to enable 

judgements about confounding. From another perspective, it might be said that statisticians 

are more likely to understand when the assumptions of a methodology are not met and to 

be able to take advantage of their greater knowledge of alternative methods that may 

reduce the potential for bias, thus potentially improving the strength of the results. This 

suggests the possibility that statisticians might be more likely to infer strong causality than 

non-statisticians. As this does not appear to be the case, it suggests another possibility: that 

the use of statistical methods more capable of controlling for confounding and selection bias 

will, in turn, result in changes to how causal inferences are formed, such that more cautious 

causal language is then used. Hence, our second goal is to examine whether the statistical 

methods used, or other study features, might affect the ‘strength of causal inference’ 

communicated by study authors. 

 

6.2 Methods 

Chapter 5 contains details on the selection and screening of studies for this review, and the 

general method of extracting data from the final 288 studies. 

6.2.1 Additional data extracted 

For each conclusion in the abstract of every article: 
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• providing that it addressed the question of whether the evidence found in the study 

did, or did not, support the inference that the intervention had an effect on some 

participants’ health 

• the following additional information was extracted: 

▹ the text of each conclusion 

▹ the outcome that the intervention might have affected, either: 

 a health benefit: some aspect of improved health, or 

 a harm to health: an adverse effect 

▹ the result after comparing group outcomes, as determined by the study 

investigators, either: 

 similar (a null result, a result of no difference), suggesting the 

evidence found did not support the inference that the intervention 

caused, or caused a change in, the outcome 

 different, suggesting evidence was found that supported the inference 

that the intervention may have caused, or caused a change in, the 

outcome 

6.2.2 Review of causal language 

Before assessing the ‘strength of causal inference’ in study conclusions, a brief review was 

conducted to better understand the words, grammatical features, and word combinations, 

that might help convey the strength of a causal inference to the reader. For this task, we 

reviewed relevant literature from linguistics,152
⁠

,695
⁠

–705 machine learning-based natural 

language processing,706
⁠

–714 health research532
⁠

,624
⁠

,641
⁠

,648
⁠

,650
⁠

,652
⁠

,654
⁠

,679
⁠

,682
⁠

,693
⁠

,715 and 

psychology;716
⁠

,717 as well as from Wikipedia,718
⁠

,719 online dictionaries,720
⁠

–724 and other 

grammar related websites.725
⁠

,726 The information gathered is summarised at the beginning of 

the Results section. 
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6.2.3 ‘Strength of causal inference’ ratings 

Over the last decade, a number of health research reviews have given ratings to articles that 

relate in some way to strength of causal language. Of six reviews identified,§ only one by Li 

et al.715 specifically rated the ‘strength of causal inference’, while the others rated ‘spin’,650
⁠

,654 

“misleading abstract conclusions”,652 ‘biased research reporting’,532 or the ‘use of causal 

language’.679 All rated causal language according to specific criteria using two or three 

reviewers, with initial disagreements discussed until a consensus was reached. Ochodo et 

al.654 used five additional reviewers for some articles each, and Li et al. used a panel of 34 

researchers to rate the ‘strength of causal inference’ using a Likert scale ranging from 1 to 7, 

with scores then analysed in a model. 

Instead of relying only on the ratings of one or more people, an initial goal was to 

investigate whether a more objective and repeatable method could be developed. A full-text 

search algorithm was designed, using SQL code and the database, that it was hoped could 

replace or assist with the human rating process. To reduce the number of words processed 

by the rating algorithm, and to avoid some possible bias when three reviewers gave 

subjective ratings, each conclusion was modified as follows: 

1. words that did not relate to the ‘strength of causal inference’ were removed 

2. words that described the intervention(s) became ‘intX’, ‘intY’, or ‘intZ’, and 

3. words that described the outcome became ‘outcome’ 

Using the understanding of causal language gained from experience and the review (section 

6.2.2), we extracted the words or word combinations (abbreviation: words/combinations) in 

the modified conclusions that might imply a specific ‘strength of causal inference’ when 

contained in a conclusion. At the same time, we assigned to the word/combination the 

specific ‘strength of causal inference’; initially ‘Weak’, ‘Moderate’, or ‘Strong’, but later it was 

changed to ‘Not strong’ or ‘Strong’. When combinations of words were thought necessary to 

convey the correct causal strength, they could be any number of characters, up to and 

                                                 
§ Our search was not systematic or exhaustive, however, so some may have been missed 
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including the entire modified conclusion, if required. The words/combinations were then 

labelled with the grammatical (parts-of-speech) categories they belonged to, focusing on 

those most relevant to causal inference, such as copula verb, epistemic modal verb, 

intensifier, comparative, and others. The database tables that stored this word/combination 

information, the algorithm ratings, and the human ratings, are displayed in Appendix B.1. 

The automatic rating algorithm we developed was: 

 For each modified conclusion: 

▹ For each word/combination in the table, and starting with the 

word/combination that has the most characters: 

 Search the modified conclusion for word/combination, and if found: 

• Assign the causal strength of that word/combination to the 

modified conclusion, but only if 

a. no strength is recorded for that conclusion, or 

b. the previous highest strength recorded is 'Not strong' 

and the new highest strength is 'Strong'** 

• Delete the word/combination in the modified conclusion 

 Repeat using the word/combination in the table with the next most 

number of characters, until no word/combination still exists in the 

modified conclusion 

▹ Repeat using the next modified conclusion 

An iterative process was used to improve the word/combination table that the algorithm 

relied on. This involved comparing the agreement between the rating given by the algorithm 

and my own rating of the conclusion, and if they differed, followed by either (a) modifying 

one or more of the word/combination strength ratings, (b) adding a word combination to 

the table with an associated causal strength that more accurately reflected the strength 

                                                 
** Slightly more complicated when the ratings were ‘Weak’, ‘Moderate’, or ‘Strong’ 
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implied by the modified conclusion, or (c) modifying my own rating if it seemed appropriate. 

The process was repeated until agreement for all modified conclusions was reached. 

At this point, two additional reviewers (statisticians Laurent Billot and Jannah Baker) were 

asked to rate the modified conclusions. Initially, only an intuitive judgement of ‘Weak’, 

‘Moderate’, or ‘Strong’ was given. We avoided using criteria in order to gain a glimpse of 

how variable an article’s interpretation might be when people only read the conclusion. 

Disagreements between the three reviewers (T.W., L.B. and J.B.) and the automatic algorithm 

were then discussed a number of times, and the word/combination table continued to be 

improved until a consensus was reached between the ratings of the three reviewers and the 

automatic algorithm. During this process, the scale was changed to a two-level rating system 

of ‘Strong’ (confident) or ‘Not strong’ (cautious) because agreement with the three-level 

scale could not be reached; and for a few modified conclusions, a two against one majority 

was used when unanimous agreement still could not be achieved. Interrater agreement 

between individual ratings was determined using the intraclass correlation coefficient (ICC) 

and Cohen’s kappa, with agreement also compared between the first rating each reviewer 

gave, the second after discussing the different interpretations, and the rating that resulted 

when each was converted to the binary scale. 

Finally, each article was given a consensus rating of ‘Strong’ causal inference if any of the 

article’s conclusions (or the article’s single conclusion) had a rating of ‘Strong’, otherwise a 

rating of ‘Not strong’ causal inference was given. Associations between the ‘strength of 

causal inference’ and various study features were conducted using chi-squared tests. 

We used Stata 15.1 to construct graphs and calculate statistics. 

 

6.3 Results 

6.3.1 Review of causal language 

The first thing to note is that, as in all academic disciplines, opinions in linguistics can vary 

about the best way to categorise words and other features of grammar.703 However, the 
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information summarised here is not particularly controversial, though specific terminology 

may not be common to all. For example, the same category of word might be called a 

“modal verb”698 by some and a “modal auxiliary” by another.131 

Many grammatical categories were examined for their relevance to causality, and those 

found to be important are described in Table 6.1, Table 6.2 and Table 6.3. 

Table 6.1 Grammatical categories of causal words and word combinations 

Category Description Examples from articles 

Verb Loosely defined as ‘doing’ or ‘action’ words.697 “IntX produced”; “InX 
conferred”; “was observed” 

Adverb Adds more information about a verb, and 
sometimes an adjective, another adverb or a 
sentence.720 

“IntY negatively affected 
the outcome” 

Noun Physical things, abstract ideas, events.698 “suspicion” 

Adjective An attribute of a noun.697 “IntX is a viable option” 

Copula 
verb 

Links a subject to a specified state, quality, 
nature, role, etc.727 Main forms:728 “be”, “am”, 
“is”, “are”, “being”, “was”, “were”, “been”. 
Related forms: “seem” and “appear”.152 

“IntX was associated with 
an improvement in the 
outcome” 

Evaluative 
verb 

Expresses the writer's attitude towards a 
statement that the writer accepts as true; 
often followed by “that”.703

⁠

,729 

“showed”; “indicating” 

Intensifier Modifier of an adjective or adverb that 
expresses the degree to which the quality 
expressed by that adjective or adverb is 
present.703 

“highly”; “marked”; 
“substantial” 

 

Epistemic modality (or mood) refers to when words express the degree of reality of a 

statement; or how possible, believable, or actual it is, in the opinion of the writer.703 Such 

words (Table 6.2) are often involved in expressions of causal strength. 
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Table 6.2 Words expressing modality 

Category Examples from review articles 

Modal verb “can”; “could”; “may”; “might”; “must”; “should”; 

Modal adverb “positively”; “possibly” 

Modal adjective “causal” 

 

During this review and the development of the rating algorithm, it became clear that causal 

strength would tend to depend on word combinations instead of individual words, so 

categorisation of phrases and sentences were also examined. Various theories of syntax and 

grammar use the term predicate in different ways.152
⁠

,730 Traditional grammar refers to 

predicate-subject combinations, while predicate calculus (also called predicate logic) makes 

use of predicate-argument structures. We used predicate-argument combinations to 

categorise the word combinations taken from the modified conclusions, because this system 

appeared to be more common in articles on causal relations in English (for example712
⁠

,731
⁠

,732). 

Below is an example that is used to explain three terms for different word combinations: 

For the sentence: IntX is associated with the outcome 

• the predicate: 

o is associated with 

• the verb phrase: 

o is associated with the outcome 

o with the verb in blue and its dependent in gold 

• the predicate-argument: 

o IntX is associated with the outcome. 

o with the green words representing the arguments of the predicate in red 
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Table 6.3 Grammatical categories of word combinations 

Category Examples from review articles 

Noun phrase “association between” 

Verb phrase “findings do not support”; “have different effects” 

Predicate “findings suggest”; “has a detrimental effect” 

Predicate and argument “a significant difference was observed”; “intX increased” 

 

The typical aim in linguistics articles is to simply describe causal language; and in natural 

language processing the common goal was to find causal relations in a large body of text. 

Our target, instead, was to judge the strength of a causal relationship already assumed to 

exist in a piece of text. 

The six health research reviews discussed in 6.2.3 each gave ratings to articles at least partly 

related to causal language. For example, Lazarus et al.650 classified spin in abstract 

conclusions and they included an assessment of whether “causal language” was used, 

defined as the use of “modal auxiliary verbs”; “causal relationship” words like “effective”, 

“improve”, or “enhance”; or a tone suggesting a “strong result (e.g., “The results 

demonstrate” or “This study shows that”)”. They considered that causal language was not 

used when only a statistical association was reported. 

Cofield et al.679 likewise judged whether causal language was used, defining language 

implying causation as: “effect, effect modifier, modify, increase, decrease, improve, influence, 

impact”; and non-causal language as “associated, related, correlated, predicts”. 

Li et al.715 used a “Likert scale that ranged from 1 (the investigators inferred no causal 

relationship) to 7 (the investigators inferred a strong causal relationship)” in order to rate the 

‘strength of causal inference’ in abstracts. However, unlike in our review, their consideration 

of the strength of the inference was combined with whether an effect was detected and the 

size of the effect. Hence, no effect was rated 1.0 regardless of whether a strong belief in this 

inference was expressed. In terms of language used, they provided the following examples 

for each rating range: 
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• 1.0 – 2.7: ‘no significant change’, ‘unable to’; ‘unsuccessful’; ‘no effect’; ‘no impact’ 

• 2.8 – 4.6: tentative tone with weak modal auxiliary verbs, e.g., ‘may’ 

• 4.7 – 5.1: mostly tentative; terms like ‘suggests’, ‘seems to’, ‘appears to be’, ‘is 

possible’, ‘has the potential’; strong modal auxiliary verbs like ‘can’ 

• 5.2 – 5.8: infers moderate to strong causality, e.g., ‘resulted in’, ‘demonstrates’, ‘was 

found to be’, ‘feel confident’, ‘believe the results show’, ‘support’, ‘strongly support’, 

‘have shown’, ‘indicate that’, ‘provide strong evidence’, ‘constitute objective 

evidence’; strong modal auxiliary verbs like ‘can’ or no modal auxiliary verbs 

• 5.9 – 7.0: definitive tone with terms like ‘is effective’, ‘more efficient’, ‘clear evidence’, 

‘had an impact’, ‘robust’, ‘significant’, ‘substantial effect’ 

6.3.2 ‘Strength of causal inference’ 

From 288 article abstracts, 338 distinct conclusions were identified, with 115 (40%) rated as 

‘Strong’, as opposed to ‘Not strong’. Most articles contained only one main conclusion in the 

abstract (Table 6.4), but those articles containing multiple primary interventions or multiple 

main outcomes (e.g., benefits and harms) also had more than one study conclusion. 

Table 6.4 Number of conclusions in the abstract 

Conclusions Articles 

1 244 

2 39 

3 4 

4 1 

Total 288 
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Table 6.5 contains some examples of the modified conclusions and associated consensus 

strength ratings. Included are the key word combinations that the algorithm used to provide 

an automatic ‘strength of causal inference’ rating. Despite many iterations involving 

modifications to the key word table, automatic strength ratings and personal ratings from 

the three reviewers, it became apparent that the word/combination data relating to the 

causal strength of different words, taken from linguistics and natural language processing 

and enhanced in our study, were not always able to distinguish the different strengths of 

conclusions accurately. In fact, sometimes a whole modified conclusion (18/338) needed to 

be available to the algorithm to accurately give the appropriate ‘strength of causal inference’. 

The most frequently occurring words and word combinations in the modified conclusions 

can be seen in Table 6.6, along with the strength rating used by the automatic algorithm, and 

a few of the relevant grammatical categories they belong to. The words ‘association’ and 

‘associated’ are common and, in fact, with ‘associate’, these words appear in 129/338 (38%) 

of the modified conclusions and 124 of these — almost all — were given the rating ‘Not 

strong’, which is 57% of the 217 conclusions given this rating. 
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Table 6.5 Examples of modified conclusions and consensus ‘strength of causal inference’ 

Study conclusion in abstract Modified conclusion Algorithm 
key words 

Strength 
rating 

Improved sports function and patient-
reported outcome measures are obtained 
when an autograft is used. 

Outcomes are 
obtained when intX is 
used. 

‘are obtained 
when’ 

Strong 

In conclusion, high-dose 
thromboprophylaxis nearly halves the rate 
of VTE in morbidly obese inpatients. 

IntX nearly halves the 
rate of the outcome. 

‘intX nearly 
halves the rate 
of the outcome’ 

Strong 
 

We found no significant overall difference 
in adjusted mortality between patients 
transported by the police department 
compared with EMS 

We found no 
significant difference in 
the outcome between 
intX compared to intY. 

‘found no 
significant 
difference’ 

Not 
strong 

Early initiation was associated with greater 
all-cause mortality and greater all-cause 
hospitalizations. 

IntX was associated 
with greater outcomes. 

‘was associated 
with’ 

Not 
Strong 

Dronedarone has not exposed patients to 
increased risks of death or liver disease. 

IntX has not exposed 
patients to increased 
risks of the outcome. 

‘IntX has not 
exposed 
patients to 
increased risks’ 

Strong 

Influenza vaccination was effective against 
hospitalization and mortality among the 
frail elderly. 

IntX was effective 
against the outcome. 

‘was effective’ Strong 

Live birth rates were significantly higher for 
IVF patients compared with IUI conversion 
when two follicles were present 

Outcome rates were 
significantly higher for 
intX patients 
compared with intY. 

‘outcome rates 
were 
significantly 
higher’ 

Not 
strong 

Rates of fetal and neonatal outcomes were 
similar in vaccinated and non-vaccinated 
women. 

Rates of the outcome 
were similar in intX 
and intY patients. 

‘rates of the 
outcome were 
similar’ 

Not 
strong 

Postoperative weight-bearing restrictions 
did not affect mid-term cartilage repair 
outcomes 

IntX did not affect the 
outcome. 

‘intX did not’ Strong 

For late fetal death, regular supplement 
use after conception may decrease risk, 
but numbers were small. 

For the outcome, intX 
may decrease risk, but 
numbers were small. 

‘intX may 
decrease risk’ 

Not 
strong 

5-year disease-free survival rates were not 
significantly different for patients 
undergoing transplantation using 3 types 
of donors 

Outcome rates were 
not significantly 
different for patients 
undergoing intX and 
intY. 

‘were not 
significantly 
different’ 

Not 
strong 

Past exposure to thiopurines increases the 
risk of myeloid disorders 7-fold among 
patients with IBD. 

Past exposure to intX 
increases the risk of 
the outcome. 

‘intX increases’ Strong 
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Table 6.6 Most frequent words and word combinations found in the modified conclusions 

Word or word combination Strength N 
Copula 
Verb 
Be 

Epistemic 
Modal 
Verb 

Evaluative 
Verb Predicate Predicate 

Argument 

was associated with Not strong 50      

is associated with Not strong 24      

suggest that Not strong 10      

potential Not strong 8      

is not associated with Not strong 7      

intX did not Strong 7      

intX does not Strong 6      

are associated with Not strong 6      

association between Not strong 6      

observed Not strong 6      

resulted in Strong 6      

showed Not strong 6      

was not associated with Not strong 6      

was independently associated 
with Not strong 5      

outcomes are Strong 5      

intX may be associated with Not strong 5      

intX reduced Strong 4      

can Strong 4      

appears Not strong 4      

conferred Strong 3      

could Not strong 3      

findings suggest Not strong 3      

improve Strong 3      

reported Not strong 3      

is associated with an 
increased risk of Not strong 3      

suggests that Not strong 3      

results in Strong 3      

the outcome was similar Not strong 3      

therefore Strong 3      
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Table 6.7 Examples of the varying strength of words/phrases depending on context 

Word or 
Phrase Rating given Modified conclusions Rating 

given 

improved Strong IntX improved the outcome. Strong 

  IntX was associated with improved outcomes. Not strong 

causal Strong We report a strong relationship between the outcome 
and intX. Patients treated with intX worldwide should 
be advised about this association and further studies 
should evaluate the potentially causal role of intX in 
these findings. 

Strong 

  The estimated causal effects of intX and intY were. Not strong 

potential Not strong IntX was associated with increased outcomes. These 
data underscore the potential for intX to promote the 
outcome. 

Strong 

  This study provides support for the potential for intX 
to exert outcome effects. 

Not strong 

observed Not strong In this prospective study of intX, we observed a 
significant increase in the rate of the outcome, a risk 
that must be weighed against the benefits of 
preventing adverse outcomes. 

Strong 

  A significant difference was observed in the outcome 
between intX and intY. 

Not strong 

showed Not strong IntX showed beneficial effects comparable with intY. Strong 

  IntX and intY showed similar safety with no 
differences in the outcome. 

Not strong 

there was no 
difference 

Not strong There was no difference in the long-term 
effectiveness of IntX and IntY in this population. 

Strong 

  There was no difference in the outcome after 
treatment involving IntX or IntY. 

Not strong 
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To highlight the dependence that individual words have on context for their meaning, 

including the ‘strength of causal inference’ they might impart to a conclusion when added, 

Table 6.7 lists a number of examples where specific words initially given a strength rating, 

were found in conclusions that ended up with opposite ratings. 

6.3.3 Interrater agreement 

The first rating by the three reviewers, using a 3-item scale of ‘Weak’, ‘Moderate’, or ‘Strong’, 

produced relatively poor agreement with Kappa = 0.19 and the ICC = 0.32. After discussion 

resolved some initial differences in word interpretation, and in some cases corrected errors, 

agreement improved with Kappa = 0.44 and ICC = 0.66. To achieve further agreement, the 

ratings were converted to a binary scale with ‘Weak’ or ‘Moderate’ converted to ‘Not strong’, 

with ‘Strong’ remaining as it was. This resulted in Kappa = 0.75 and ICC = 0.76. From there, 

the remaining differences were either successfully resolved, or for 59 (17%) modified 

conclusions, a two against one majority was used to provide a consensus strength rating. 

Some of the modified conclusions over which the three reviewers initially disagreed are 

shown in Table 6.8. 
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Table 6.8 Examples of modified conclusions where reviewers initially gave different ratings 

Modified conclusions 
Reviewer 

1 
Reviewer 

2 
Reviewer 

3 
Final 

consensus 

The estimated causal effects of intX and intY were. Strong Moderate Weak Not strong 

Comparison of intX and intY revealed no differences 
in the outcome. These findings should provide 
helpful information for clinicians. 

Strong Moderate Weak Not strong 

Patients receiving intX showed significantly lower 
outcome risk compared with intY. 

Weak Moderate Strong Not strong 

The rate of the outcome was significantly lower using 
intX. 

Weak Moderate Strong Not strong 

The outcome was superior in patients receiving intX. Weak Moderate Strong Not strong 

Patients treated with intX reported deterioration of 
outcomes in comparison with intY. 

Weak Moderate Strong Not strong 

Patients born after intX had a higher risk of the 
outcome compared with intY patients, but favourable 
outcomes compared to intZ. 

Weak Moderate Strong Not strong 

An almost 4-fold increase in the outcome was 
observed after intX compared with intY. 

Weak Moderate Strong Not strong 

Patients initiating intX were more likely to develop 
the outcome. 

Weak Moderate Strong Not strong 

Individuals who received intX had a greater risk of 
the outcome. 

Weak Moderate Strong Not strong 

A significant difference was observed in the outcome 
between intX and intY. 

Weak Moderate Strong Not strong 

The improvement of outcomes was superior after 
intX than after intY. 

Weak Strong Strong Strong 

We found that intX performed better than intY. Weak Strong Strong Strong 

IntX showed a statistically significant higher 
performance than intY. 

Weak Strong Strong Strong 

Our findings support intX. Moderate Moderate Strong Strong 

IntX predicted outcomes at follow-up. Moderate Strong Strong Strong 

IntX was less harmful than intY. Moderate Strong Strong Strong 

IntX was associated with the outcome. These findings 
have significant implications. 

Strong Moderate Moderate Not strong 
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6.3.4 Statistical methods used and reported 

Figure 6.1 suggests that articles expressing strong causal inference were less likely to have 

used statistical methods designed to improve control of adjustable biases. Of the three 

categories: multivariable regression, propensity score methods (compared to other 

multivariable regression methods), and sensitivity analysis, each control for these biases in 

different though related ways. 

When a study used an inactive control as the comparative group intervention — ‘no 

intervention’ or ‘usual care’ — then the proportion expressing strong causal inference was 

found to be around half that of ‘Not strong’ (Figure 6.2), compared to studies with two or 

more active interventions compared, where ‘Not strong’ and ‘Strong’ causal inference were 

approximately equal. 

Also in Figure 6.2, when studies focused on unintended harms or adverse effects of an 

intervention, such as drug side-effects or long-term health risks, they were less likely to use 

strong causal language in their conclusions than if they focused on the positive health 

benefits of an intervention, such as improved symptoms or survival. 

The final graphs in Figure 6.3 suggest no link between the ‘strength of causal inference’ and 

authors who reported their method of missing data handling. But a lower chance of using 

strong causal language was found for articles that had adequately described their 

methodology, where we thought a clear picture of the methods they used could be obtained 

from their reporting. 

An alternative way to compare these proportions is to calculate an odds ratio using 

univariate logistic regression, and Table 6.9 presents odds ratios with corresponding 

confidence intervals for each of the comparisons in Figure 6.1, Figure 6.2 and Figure 6.3. We 

also explored a number of possible multivariable models, however, with considerable 

uncertainty over the causal structure of the relationships between the variables, it was 

decided that too many possibilities existed and this would make interpreting such models 

difficult. Some relationships are briefly explored in Table 6.10 and Table 6.12. The exercise 

included an attempt to create a causal diagram, and it was the difficulty of doing this that led 

us to two realisations. One was to increase our doubt that some of the variables are really 
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causes of the outcome (strong causal language), with the type of software used and whether 

the methodology was adequately described considered the most unlikely to be causes. The 

second was the level of uncertainty over which variables might be causes of other variables, 

such that they might act as confounders. 

There was only very weak evidence suggesting that the result of comparing group outcomes 

had an effect on the ‘strength of causal inference’ in study conclusions (Table 6.10). When 

stratified by the type of outcome there was some difference; however, this largely just 

reflected the difference seen in the second graph of Figure 6.2, where ‘strong’ causal 

language was much more likely if the outcome was a health benefit than if a harm to health 

was the outcome. 

There appears to be no obvious association between strong causal inference and study size 

(Table 6.11), while for intervention type (Table 6.12), a difference can be seen between some 

study types, notably drugs, and a number of the other intervention types such as surgery. 

Also displayed was the relationship between intervention type and whether an inactive 

control was used. In most cases, studies with intervention types associated with strong causal 

language were also more likely to not use an inactive control. 

No clear difference in ‘strength of causal inference’ is apparent between different author 

locations, in terms of the continent where they all reside (Table 6.14). But journals in the 

categories of Infectious Diseases (60%), Gastroenterology & Hepatology (59%), and Surgery 

(57%) had the highest proportion of studies with causal inferences rated strong, while Critical 

Care Medicine (13%), Urology & Nephrology (13%), and Cardiac & Cardiovascular Systems 

(24%) journals had the lowest proportion. 

Finally, studies that used SAS, Stata or R, appeared to use weaker causal language, on 

average, compared to studies using SPSS (Table 6.15). 



6.3 Results 

 130 

Figure 6.1 Methods used and ‘strength of causal inference’ 
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Figure 6.2 Study design features and ‘strength of causal inference’ 
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Figure 6.3 ‘Strength of causal inference’ and reporting of methodology 
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Table 6.9 Results from logistic regression with outcome: ‘Strong’ causal language 
Univariate logistic model results for each variable 

 Odds 
ratio 

95% CI P 

No multivariable method used 
(compared to use of a multivariable method) 

2.7 (1.2 – 5.7) 0.012 

Multivariable but no propensity score method used 
(compared to use of a propensity score method) 

1.8 (1.1 – 3.1) 0.031 

No sensitivity analysis performed 
(compared to performing one) 

2.1 (1.3 – 3.4) 0.004 

Methodology not adequately described 
(compared to providing adequate description) 

1.8 (1.0 – 3.3) 0.045 

Comparison group used active control intervention 
(compared to inactive intervention or usual care) 

1.8 (1.1 – 2.9) 0.016 

Outcome is improvement in health or health benefit 
(compared to a harm to health) 

2.6 (1.6 – 4.3) 0.000 

Group results similar or no difference reported 
(compared to a difference found between groups) 

1.3 (0.8 – 2.2) 0.27 
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Table 6.10 Group outcome comparison result and the ‘strength of causal inference’ 
Percentages relate to row N 

 N 
‘Strong’ causal 

language 

Overall   

Similar (null result) 92 41 (45%) 

Different 196 74 (38%) 

Total 288 P = 0.27 † 

If outcome is harm to health   

Similar 44 13 (30%) 

Different 80 21 (26%) 

Total 124 P = 0.69 

If outcome is health benefit   

Similar 48 28 (58%) 

Different 116 53 (46%) 

Total 164 P = 0.14 
† Chi-squared test 

 

 

Table 6.11 Study size and ‘strength of causal inference’ 
Percentages relate to row N 

Study Total Subjects N 
(288) 

‘Strong’ causal 
language 

200 - 799 75 35 (47%) 

800 – 4,999 75 27 (36%) 

5,000 - 29,999 63 35 (56%) 

30,000 - 10,912,834 75 18 (24%) 
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Table 6.12 Intervention type and ‘strength of causal inference’ plus type of control 
Percentages relate to row N; highlighted values: high = magenta, low = blue 

Intervention Type N 
(288) 

Strong causal 
language 

Inactive 
control 

Assisted reproductive tech. 19 10 (53%) 8 (42%) 

Drug 120 41 (34%) 76 (63%) 

Mix 15 5 (33%) 10 (67%) 

Other* 56 17 (30%) 40 (71%) 

Radiation therapy 6 3 (50%) 2 (33%) 

Surgery 60 31 (52%) 22 (37%) 

Vaccine 12 8 (67%) 12 (100%) 
* For example, hospital procedures that do not fall under the other intervention types; interventions 
relating to quality or timing; other health services 

 

Table 6.13 Journal Category and the ‘strength of causal inference’ 
Percentages relate to row N; highlighted values: high = magenta, low = blue 

 

N 
(320†) 

Strong causal 
language 

Cardiac & Cardiovascular Systems 17 4 (24%) 

Critical Care Medicine 15 2 (13%) 

Gastroenterology & Hepatology 17 10 (59%) 

Infectious Diseases 15 9 (60%) 

Medicine, General & Internal 28 7 (25%) 

Obstetrics & Gynecology 35 15 (43%) 

Other categories 116 48 (41%) 

Peripheral Vascular Disease 19 9 (47%) 

Surgery 42 24 (57%) 

Urology & Nephrology 16 2 (13%) 
† Some journals were in multiple categories 
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Table 6.14 Other study features and the ‘strength of causal inference’ 
Percentages relate to row N 

 N 
Strong causal 

language 

All articles 288 115 (40%) 

Author Continent   

North America 132 46 (35%) 

Europe 82 34 (41%) 

Asia 26 11 (42%) 

Other or Multiple* 48 24 (50%) 

Total 288 P = 0.31 † 
* ‘Multiple’ if any of the authors were from different continents; † Chi-squared test; 

 

Table 6.15 Software use and ‘strength of causal inference’ 
Percentages relate to row N; highlighted values: high = magenta, low = blue 

 
N 

(333†) 
Strong causal 

language 

Not Specified 42 20 (48%) 

Other 20 10 (50%) 

R 35 13 (37%) 

SAS 110 39 (35%) 

SPSS 70 37 (53%) 

Stata 56 15 (27%) 
† Some articles used more than one software package 

 

6.3.5 Results if ‘Strong’ not used for ‘no effect found’ 

To see what the results would look like if a causal inference was defined as Li et al.715 had 

defined it — only for conclusions after evidence of ‘an effect’ was found, with the weakest 

rating given to conclusions of ‘no effect’ — all ‘Strong’ causal strength ratings were changed 

to ‘Not strong’ if a difference in the average outcome between the intervention groups was 

not observed. 
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The shift of 41 studies that did not find evidence of an effect, from a rating of ‘Strong’ to 

‘Not strong’ causal inference, makes an obvious difference to the relative numbers in Table 

6.16. This shift also had an impact on some of the comparisons made in this chapter. 

Table 6.16 Alternate definitions of a causal inference and group outcomes comparisons 
Values referred to in the text are highlighted in magenta 

 Causal inference definition can encompass 

Group outcomes comparisons N 
‘Effect’ and ‘No 

effect’ (Ch.6)  
‘Effect’ only 

(Li et al.) 

  ‘Not strong’ : ‘Strong’ ratio 

Similar (null result) 92 51 : 41  92 : 0 

Different (evidence of causal effect) 196 122 : 74  122 : 74 

 

For example, a substantial difference occurred with the relatively low number of articles that 

did not use a multivariable regression method (Table 6.17). By seeming chance, the ratio has 

been reversed. Combined with the p-value moving to the other side of 0.05, the inference 

would change to either one of ‘no effect’, or one where the inference is not clear; as opposed 

to the weak evidence we found, using our definition of a causal inference, of a much greater 

proportion of those who didn’t use multivariable regression also favouring strong causal 

language in the conclusion. 

Table 6.17 Alternate definitions of a causal inference and multivariable regression 
Values referred to in the text are highlighted in magenta 

 Definition of a causal inference can encompass 

Multivariable 
regression N 

‘Effect’ and ‘No 
effect’ (Ch.6)  

‘Effect’ only 
(Li et al.) 

Change in 
inference 

  ‘Not strong’ : ‘Strong’ ratio  

Not used 31 12 : 19  19 : 12 reversed 

Used 257 161 : 96  195 : 62 no change 

P-value for difference*  0.01  0.08  

* Chi-squared test 
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However, with most of the comparisons in this chapter exhibiting larger numbers in each 

category, the shift of some articles from the ‘Strong’ to the ‘Not strong’ column was more 

evenly balanced, with a similar proportion of articles shifting in each category. Nevertheless, 

three other comparisons that did change with the different definition of a causal inference 

are worth noting. The first involved whether the methodology was considered adequately 

reported (Table 6.18), with the inference changing from an association with the ‘strength of 

causal inference’ to no clear association, when the definition changes. 

 

Table 6.18 Alternate definitions of a causal inference and reporting of methodology 
Values referred to in the text are highlighted in magenta 

 Definition of a causal inference can encompass 

Description of 
methodology N 

‘Effect’ and ‘No 
effect’ (Ch.6)  

‘Effect’ only 
(Li et al.) 

Change in 
inference 

  ‘Not strong’ : ‘Strong’ ratio  

Inadequate 56 27 : 29  39 : 17 equal to unequal 

Adequate 232 146 : 86  175 : 57 no change 

P-value for difference* 0.04  0.37  

* Chi-squared test 

 

Table 6.19 Comparison group type with alternate definitions of a causal inference 
Values referred to in the text are highlighted in magenta 

 Definition of a causal inference can encompass 

Comparison group 
intervention type N 

‘Effect’ and ‘No 
effect’ (Ch.6)  

‘Effect’ only 
(Li et al.) 

Change in 
inference 

  ‘Not strong’ : ‘Strong’ ratio  

Active control 118 61 : 57  84 : 34 equal to unequal 

Inactive control 170 112 : 58  130 : 40 no change 

P-value for difference*  0.02  0.31  

* Chi-squared test  
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In Table 6.19, changing the definition of a causal inference likewise changed the inference for 

having an inactive control group defined in a study, from a possible effect to not clear. 

Lastly, SPSS appears to have had the greatest proportion of articles change from ‘Strong’ to 

‘Not strong’, and with it the inference that SPSS users used stronger causal language in 

conclusions, on average, than the users of SAS, Stata or R. 

Table 6.20 Software type with alternate definitions of a causal inference 
Values referred to in the text are highlighted in magenta 

 Definition of a causal inference can encompass 

 N 
‘Effect’ and ‘No 

effect’ (Ch.6)  
‘Effect’ only 

(Li et al.) 
Change in 
inference 

  ‘Not strong’ : ‘Strong’ ratio  

Not Specified 42 22 : 20  29 : 13 equal to unequal 

Other 20 10 : 10  13 : 7 equal to unequal 

R 35 22 : 13  26 : 9 no change 

SAS 110 71 : 39  82 : 28 no change 

SPSS 70 33 : 37  47 : 23 equal to unequal 

Stata 56 41 : 15  47 : 9 no change 

P-value for difference* 0.04  0.33  

* Chi-squared test 

 

6.4 Discussion 

The idea motivating this review is that scientific progress depends not only on researchers 

avoiding bias, but that they also convey the uncertainty that remains when a study is 

reported. In summary, after a brief review of causal language in the literature, our first 

objective was to rate the ‘strength of causal inference’ implied in the final study conclusions. 

The second objective involved assessing whether the ‘strength of causal inference’ might be 

affected by the use of more advanced statistical techniques, as well as with other study 
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features associated with the design, interpretation and reporting. Using a broader definition 

of a causal inference than many researchers might tend to use, this review suggests that 40% 

of 288 health intervention cohort studies implied relatively ‘Strong’ causal inference in study 

conclusions, as opposed to ‘Not strong’. We found that articles using either multivariable 

regression, propensity score methods (compared to other multivariable regression methods), 

or sensitivity analysis, were more likely to express ‘Not strong’ causal inference in study 

conclusions. Some associations were also noted with other study features, such as whether 

an inactive control intervention was used, and whether the outcome was a benefit to health 

or a harm. Given the evidence of bias summarised in Chapter 4, some of these cohort study 

conclusions are probably wrong, but confidence that exceeds the uncertainty will only 

compound any effect of evidence that is false. 

6.4.1 Review of causal language and strength rating 

Research sometimes involves an exploration to see what might be possible, and one 

outcome of this review is that an automatic algorithm that will rate the ‘strength of causal 

inference’ no longer seems an achievable goal, or at least, not as the sole judge. Partly, this is 

because the exact meaning of single words depends heavily on context,132 and the number 

of possible contexts in a conclusion would seem to be very high. The other apparent reason 

is that the causal strength implied by a study conclusion was often not clear-cut, with 

different reviewers interpreting words, and consequently the strength, a little differently. All 

communication involves some ‘reading between the lines’, with a balance maintained 

between the risk of losing the reader’s interest with tedious details, and the risk of 

misinterpretation from insufficient detail.254 Hence, communication involves the reader (or 

listener) making inferences about the meaning intended by the writer, and this will often 

leave multiple interpretations as a possibility.733 For example, the study conclusion 

“Intervention X had a lower risk of the outcome” might mean to some readers merely that 

Intervention X had a lesser association with the outcome than its comparator intervention, or 

it might imply that an association was observed in the study because Intervention X had a 

lower risk of causing the outcome. Said a different way, the inherent ambiguity and 

vagueness of language132
⁠

,254
⁠

,734
⁠

,735 means that the wording of conclusions will often not have 

a single precise and reasonable interpretation. The interpreted meaning will also depend on 
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the reader’s knowledge, experience and beliefs, and thus cannot be guaranteed to be the 

meaning intended by the author.736 For these reasons, an automatic algorithm to interpret 

the causal strength of some text will never be able to provide a truly objective interpretation. 

Hence, perhaps it is better to involve people when rating causal language, to avoid the 

misperception that ratings provided by an algorithm must be objective and therefore 

‘correct’. An algorithm can provide decision guidance, however, and it appeared to help in 

this review. 

From the first edition of Modern Epidemiology (1986), and quoted in at least two articles 

since then,678
⁠

,692 Rothman lamented that: 

Some scientists are reluctant to speak so blatantly about cause and effect, but 

in statements of hypothesis and in describing study objectives such boldness 

serves to keep the real goal firmly in focus and is therefore highly preferable to 

insipid statements about ‘association’ instead of ‘causation’. 

It is clear from Table 6.6, however, that the word ‘association’ remains common as a means 

of describing the results to avoid an explicit statement of a causal inference. It does not 

avoid implicit inferences, however, though they are likely to be interpreted as weak. Still, if 

words are included that make clear the causal aim of the research, then using the word 

‘association’ will often help to convey an appropriate sense of uncertainty. 

6.4.2 Associations and interpretations 

In this exploratory review, we wished not only to examine the strength of causal language 

that a range of studies implied in their conclusions, but to explore the factors that might 

have an influence on this strength. Understanding the potential causes of a problem, such as 

overconfidence expressed in some study conclusions, may lead to methods that can reduce 

the problem. 

Following the review on statistical methods, the subject of Chapter 5, such methods were 

again the main focus in this review. Using propensity score methods compared to other 

regression methods, using multivariable regression over simple methods, or performing a 

sensitivity analysis compared to not doing so, were each associated with increased caution in 
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judgements about causal effects. This finding offers support for the general assumption (as 

perceived in statistical circles, at least) that people with more advanced methodological 

knowledge tend to be more cautious with causal inference, even though more advanced 

methodology will sometimes provide better evidence for causality. It may be that, on 

average, the use of such methods will prompt researchers to consider more potential 

confounders than if those methods were not used, and this may lead them to consider more 

alternative explanations of the results, so developing a greater awareness of the uncertainty 

in their findings. 

This may also help explain why less ‘strong’ causal language was used in articles that had 

adequately described their methodology, assuming that greater methodological knowledge 

would increase the quality of their reporting of the methodology; though no relationship was 

found for whether missing data handling was reported. 

Likewise, SPSS developed a menu driven user interface earlier than the other major statistics 

packages like SAS and Stata737 and this is perhaps why it often seems to be used in beginner 

statistics courses, at least in the health sciences. Hence, if less experienced researchers are 

more likely to use SPSS, this may explain why SPSS was associated with stronger causal 

language than SAS, Stata or R. 

However, while inadequate reporting and software package used might help to predict the 

use of strong causal language, it does not seem likely that these are causes. More plausible is 

that they share common causes with the strength of causal language, such as the 

investigator’s level of statistical knowledge. 

Regarding features of study design, an association was not detected between the number of 

study subjects and the strength of causal language. On the other hand, when the 

comparative group was defined as receiving an inactive control intervention (‘no 

intervention’ or ‘usual care’), then ‘Not strong’ causal inference was twice as likely in the 

conclusion as ‘Strong’. Whereas when active controls were used, ‘Not strong’ and ‘Strong’ 

causal inference were approximately equal. Perhaps by comparing the primary intervention 

to what might happen if nothing is done, at least approximately, helps to provide a better 

causal contrast for imagining alternative explanations? 
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An even stronger difference was found between harm outcomes, where ‘Not strong’ was 

much more likely than ‘Strong’ causal inference, compared to those conclusions addressing a 

health benefit outcome, where the probability of ‘Strong’ was approximately equal to the 

probability of ‘Not strong’ causal inference. A plausible explanation might be that 

researchers were influenced by confirmation bias, given that all interventions had a history of 

being used and those involved may have already believed that it was an effective 

intervention. 

Another relationship found in the data was that studies investigating drugs were noticeably 

less likely to use ‘strong’ causal language (34%) than other study areas, such as assisted 

reproductive technology (53%), surgery (52%), and vaccine studies (67%). Possible underlying 

causes may relate to differences in professional culture, for example, surgery compared to 

the more heavily regulated pharmaceutical industry. Alternatively, studies with intervention 

types associated with strong causal language were also more likely to use an active control, 

similarly associated with strong causal language. It is not clear, however, how the 

intervention types listed might relate to the journal categories, other than with the most 

obvious ones like surgery. 

Finally, the definition of a causal inference that we used to judge the strength of causal 

inferences in study conclusions was uncommonly broad. Hence, to gain an idea of how the 

results might have differed with, for example, the definition of a causal inference used by Li 

et al.715 — only for conclusions after evidence of ‘an effect’ was found, with the weakest rating 

given to conclusions of ‘no effect’ — we changed all ‘Strong’ causal strength ratings to ‘Not 

strong’ if no difference in group outcomes was the reported finding. Not surprisingly, a 

number of inferences did change, all from ‘evidence of an effect’ to one of ‘no effect’, such as 

the link between the use of an active intervention for the comparison group and ‘strength of 

causal inference. 

Many factors have been suggested to help explain overconfidence expressed in study 

conclusions, including the pressure to publish,429 for which mixed evidence exists.738
⁠

,739 Other 

suggested factors include financial as well as social conflicts of interest.469
⁠

,740
⁠

,741 
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Potential mechanisms for a link between considering alternative explanations and caution 

when judging causal effects, may be related to cognitive biases,109 a topic covered in detail in 

Chapter 4. One potential debiasing technique relevant to causal inference might simply be 

trying to think of alternative explanations for the results, which the use of methods that 

control for more confounders might encourage. However, while overstatements of evidence 

appear to be common, they highlight the influence that many cognitive biases can have on 

causal inference; and while cognitive biases might lead to unjustified causal beliefs, they 

appear to affect everyone. 

While the use of more complex methods aimed at confounder control is one way to 

encourage this, an additional method that does not require expert statistical training is to 

simply, and deliberately, think about alternative explanations for the results. This might be 

any combination of: creating a list of plausible alternative explanations after searching the 

literature; a causal diagram such as a directed acyclic graph (DAG);250 or a quantitative bias 

analysis.578
⁠

–580 Each of these may prompt the researcher to think of potential confounders not 

previously considered, leading to a greater appreciation of the true uncertainty attached to 

most research results. 

For researchers to develop greater experience in adjusting for many confounders, various 

things must happen, with one clearly being that the process of learning and using new 

methods needs to be sufficiently simple, easy and quick. Otherwise, the researcher’s other 

professional responsibilities will soon capture and probably hold onto their attention. 

A journal might add a requirement to include a named heading in Discussions such as we 

have used here: “Limitations and alternative explanations”. Having such a heading would 

encourage authors to think more about the factors that increase the uncertainty of their 

results. This would hopefully increase the caution of authors who might otherwise have 

formed overconfident conclusions. 

6.4.3 Limitations and alternative explanations 

The strengths and limitations mentioned in Chapter 5 will apply here as well, and the most 

important may be that this is intended as an exploratory review rather than a test of 

hypotheses. However, analyses that are called "exploratory" can still provide evidence 
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relating to a causal question. Nevertheless, using the term "exploratory" warns the reader 

that the evidence should be considered suggestive, or fairly weak. 

Regarding the link between propensity score methods and strength of causal language, one 

alternative explanation is that papers using propensity score methods may be sent to 

reviewers more likely to ask authors to add more caution to their causal claims. However, this 

involves reasoning that is somewhat circular as it assumes that reviewers with expertise in 

propensity score methods will prefer more caution, thus it assumes the association already 

exists that this alternative mechanism attempts to explain. 

Another plausible alternative explanation is that studies expressing weaker causal inference 

were more likely to include a professional statistician as one of the authors. But rather than 

following the circular reasoning of the previous paragraph, that is, that statisticians will 

generally have more experience with advanced methods, statisticians also differ from 

researchers who are clinicians in that statisticians do not have to make regular clinical 

decisions. Such decisions often involve a need for certainty where often there is none. As a 

result, statisticians may feel more comfortable incorporating uncertainty into their decisions. 

It is unknown how many studies in our sample used a statistician, however, because 

professional occupations are usually not included. Additionally, involvement of a statistician 

is not always acknowledged with authorship.742
⁠

,743 

A further difference between the work of statisticians and health researchers is that the 

number of projects a statistician might contribute to, and potentially be an author on, is 

often going to be larger because of the nature of their work. A researcher, on the other 

hand, is more likely to work on a single project and hence, might feel more pressure to 

publish an important finding to safeguard their career opportunities. 

Lastly, researchers less familiar with the relatively more advanced methods for confounder 

control might also be less familiar with articles recommending caution when making 

inferences from research. 

Reviews assessing the quality of health research are an important means to both monitoring 

the current standard, as well as viewing whether changes occur over time. Reviews can act to 

highlight areas that can most be improved, and those that can most easily be improved, as 
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well as provide recommendations on how this can be done. In general, improvements in 

skills only come from deliberate efforts to improve,744 and these require not only incentives, 

but also the means by which the factors underlying the occurrence of bias can be countered. 

This will be the topic of the final chapter of this thesis. 
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Chapter 7 
Case study: Understanding the 
potential biases in a study 
 

 

List of acronyms and synonyms 

RCT Randomised controlled trial 
Telemonitoring group Intervention group 
TM Telemonitoring 
BP Blood pressure 
SBP Systolic blood pressure 
DBP Diastolic blood pressure 
GP General practitioner 
HbA1c Glycated haemoglobin A1c 
BMI Body mass index 
DAG Directed acyclic graph 
CI Confidence interval 
P P-value from a statistical test 
N Number of participants 
SD Standard deviation 
IQR Interquartile range 
MCAR Missing completely at random 
MAR Missing at random 
MNAR Missing not at random 
MI Multiple imputation 
IPW Inverse probability weighting 
MICE Multivariate imputation by chained equations 
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7.1 Introduction 

7.1.1 Overview 

In Chapters 7 and 8, we present a case study where we apply some of the principles 

discussed in this thesis. It centres on the analysis of a randomised controlled trial (RCT) of a 

telemonitoring service and our aim was to provide conclusions that were more accurate and 

relevant than we might otherwise have delivered. We also wanted to better understand and 

communicate to stakeholders and clinical researchers the true level of uncertainty that 

remained following the analysis. This communication goal became more important when the 

study revealed much more missing data than was expected, and as a result, needed to be 

analysed as if it were an observational study.745 Although the level of missing data would 

reduce the certainty of our conclusions, the human predilection for causal thinking, 

discussed in Chapter 4, may have left some of the staff involved believing that a causal 

relationship existed based primarily on their anecdotal observations during the trial. In 

reality, whether true or not, those causal inferences are likely to have been influenced by 

confounding and selection bias,745 as well as by the cognitive biases that can influence causal 

judgements, including confirmation bias746 and overconfidence bias.305 

Our view was that, of greatest value, might be an analysis that properly assessed the 

potential sources of confounding, selection bias, measurement error, and cognitive biases 

and, where possible, controlled for as much confounding and selection bias as could be 

determined, while ensuring that the level of uncertainty remaining was well understood and 

communicated. 

To facilitate an extended discussion of bias relating to the case study, the presentation is 

divided into two chapters. In Chapter 7, we focus on describing the study and the data, 

including the measures taken in response to missing data. The overall aim is to promote an 

understanding of the potential biases this study is exposed to. In Chapter 8, our focus shifts 

to the analysis of the data and presentation of the results; using models to reduce the 

potential for bias and sensitivity analyses to better understand and communicate the 

uncertainty. We also explore the concept of time-dependent confounding in a separate 

analysis that uses the parametric g-formula. 
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More specifically, in this chapter we will: 

1. briefly present the background and design of the case study 

2. fully describe the data collected and the data that is missing 

3. explain how we assessed and inferred aspects of the missing data mechanism 

4. examine the possible effects of the missing data in terms of biased results and 

increased uncertainty, and the use of multiple imputation to try to reduce such 

effects 

5. display the causal diagrams we constructed to more easily identify and communicate 

potential sources of bias 

7.1.2 Pragmatic trials 

Telemonitoring trials, the type of trial assessed in this case study, have returned mixed results 

over the last two decades. There have been at least 20 randomised controlled trials (RCTs)747
⁠

–

766 and 4 observational studies767
⁠

–770 assessing either home blood glucose or blood pressure 

measurement and all combined with some form of remote assessment and support. The HCF 

Telemonitoring RCT was a pragmatic trial that offered remote home blood glucose or blood 

pressure self-measurement, with associated telemonitoring by nurses. Originally introduced 

by Schwartz and Lellouch,771 the term ‘pragmatic trial’ refers to a randomised controlled trial 

where the intervention: (a) resembles those that are already in routine use and may be 

combined with other interventions, as would occur in normal clinical practice; (b) where the 

main aim is to inform routine clinical decision making, as opposed to testing whether the 

intervention really can cause improvements in some people; and (c) is trialled with a broad 

patient group that is sufficiently representative of those encountered in normal clinical 

practice.772 

In many cases, the analysis of a pragmatic trial relies on routinely collected data. Using such 

data often has substantial advantages, such as less interference with usual care and fewer 

expenses from a reduced need for onsite staff training regarding data collection and 

management.773 Relying on this type of data comes with a range of limitations, however, 

because the primary focus when the data is collected is on clinical care rather than answering 
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a research question. For example, data for some confounders may not be adequately 

collected, such as particular diagnoses, medications or lifestyle factors, unless prompted by a 

voiced health concern from the participant.773
⁠

,774 This may mean that important baseline data 

is not available for some, or even all, study participants. Participant outcome data is also 

more likely to be missing if it does not represent a major life event such as death, and this is 

often the case in pragmatic trials.775 

7.1.3 Missing data 

Missing data is one of the main concerns when using routinely collected data,773
⁠

,774 but the 

mechanisms can be difficult to understand280
⁠

,776
⁠

,777 and are often not handled 

adequately.776
⁠

,778
⁠

–783 The loss of information from missing baseline, intervention or outcome 

data leads not only to a reduction of precision and power, but more importantly, it can also 

result in biased estimates.784 Whether such bias occurs depends primarily on why participant 

values are missing, often called the missing data mechanism or missingness mechanism.785 

From a system developed by Rubin in 1976,786 these reasons are commonly classified into 

three types using the slightly confusing781
⁠

,785 terminology of Little and Rubin (1987, 2002).787 

They are missing completely at random (MCAR), missing at random (MAR), and missing not at 

random (MNAR). As well as having ambiguous labels, the three types are also frequently 

described in noticeably different ways. Hence, to assist with clarity, each missingness 

mechanism type will be described in a variety of ways below. We will also avoid formal 

mathematical definitions, partly because this chapter is focused more on the practical 

application of methods and concepts, and partly because in recent years, differences have 

been highlighted in the way these terms have been formally defined by various authors,788
⁠

–791 

but these details are beyond the scope of this case study. 

Missing participant values are considered to be MCAR when they are, in effect, a random 

sample of the complete data.785 In this case, the missingness mechanism does not depend 

on the values of any observed or unobserved variables in the causal network under study, 

including the missing values.792 This also implies that there are no systematic differences 

between the missing and the observed values.781 Describing missing participant data as 

MCAR is usually not a plausible assumption in health research, however.785
⁠

,792
⁠

,793 
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When missing participant data can be explained by the observed participant data, the 

missingness mechanism is labelled MAR.781 In this case, systematic differences do exist 

between the missing and observed values, however, conditioning on the measured values of 

the other variables removes the association between a value being missing and what that 

value would have been.785 A few statistical techniques used to handle missing data, including 

multiple imputation, can provide unbiased estimates if the missingness mechanism is MAR 

and other assumptions are met. But if it is MNAR, such techniques may or may not provide 

unbiased estimates, depending on the nature of the missing data.794 

If the missing participant data cannot be explained by what has been observed, then we say 

it is MNAR.792 This means that the probability that a participant’s value is missing is related to 

the value itself,785 and that value cannot be predicted from the observed data, making 

statistical adjustment not possible.552 But while this makes it more likely that particular values 

are missing compared to other values, and that may lead to biased estimates, such bias is 

not always inevitable as it depends on the specific causal structure and the parameter being 

estimated.280
⁠

,792 

Another term commonly encountered in the literature is ignorability, which is often used to 

mean that the missing data values are MAR or MCAR.792 But the formal mathematical 

definition is a little different and means that inferences made from a parametric model of the 

observed data do not differ from inferences made from a joint model describing the 

observed data and missingness mechanism.788 Missing data that is MNAR is sometimes 

referred to as informative missingness, meaning that the fact that the values are missing 

contains information about what that value is.142 

As an example, in the Glucose arm of the Telemonitoring trial, if occasional blood glucose 

measurements for some participants were the only missing data, and the reason was that 

their glucometer happened to have a defect that led to underestimated measurements, the 

missing data would likely have been MCAR. Alternatively, if blood glucose measurements 

were missing only for people who held a full-time job and it was inconvenient to take 

measurements sometimes, then if employment status was fully recorded the data might be 

described as MAR. But if blood glucose measurements were sometimes missing because 

participants had eaten foods that they knew would result in a high reading and thought they 
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would feel embarrassed providing such a reading, then assuming there was no record of diet 

the data would be MNAR. 

Missing data from loss to follow-up or dropout is the main mechanism by which a 

randomised controlled trial can become as susceptible to selection bias as an observational 

study,745 so a careful assessment of missing data is essential. The vital question is whether 

the results would have changed if the missing data had, instead, been obtained. In general, 

however, it is not possible to tell from the observed data whether the values that were 

missing were MAR or MNAR.792 Instead, as put by Sterne et al. (2009):781 

The onus rests on the data analyst to consider all the possible reasons for 

missing data and assess the likelihood of missing not at random being a 

serious concern. 

One tool that can assist in this assessment is causal diagrams, and a range of articles are now 

available that focus on causal diagrams for missing data.244
⁠

,279
⁠

,280
⁠

,795
⁠

,796 

Once the nature of the missing data has been ascertained, attempts can be made to reduce 

its influence. Over the last four decades, numerous authors have divided missing data 

methods into two groups. Methods often labelled ad hoc include the older, simpler methods, 

like complete-case analysis; all developed before the advent of modern computers.787 The 

more sophisticated and more recently developed methods, like multiple imputation, 

comprise the second group.142
⁠

,776
⁠

,779
⁠

–781
⁠

,787
⁠

,793
⁠

,797
⁠

–806 Additionally, an increasing number of 

authors are now referring to this second, model-based, group as the principled missing data 

methods.776
⁠

,780
⁠

,793
⁠

,798
⁠

,800
⁠

,801
⁠

,803
⁠

–806 

7.1.4 ‘Ad-hoc’ missing data methods 

The easiest method to employ when faced with missing data is complete-case analysis, 

where participants with missing values for any variable of interest are simply excluded from 

the analysis. While complete-case analysis can produce unbiased estimates in some 

situations,792 including when missingness depends on some of the covariates but not on the 

outcome,794 in general, its validity relies upon the assumption that the missingness 

mechanism is MCAR, an unrealistic assumption in most health research studies,785 though 
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bias will not always occur.807 Complete-case analysis also discards potentially useful 

information that is partially available on excluded individuals and as a result, will usually 

produce less precise estimates compared to methods such as multiple imputation.792 Despite 

these problems, numerous recent reviews have found that complete-case analysis is by far 

the most common method used to handle missing data.776
⁠

,778
⁠

–780
⁠

,782
⁠

,783
⁠

,808
⁠

,809 Underlying this 

are a number of factors related to mental effort and what has been called the law of least 

mental effort,487 from among the many names mentioned in Chapter 4 describing this 

influence. The decision to use only complete cases means no additional mental work will be 

required, making it an attractive option, assuming the analyst’s colleagues and peers also 

choose this method, as clearly most do. In addition, and also relating to avoiding mental 

effort, complete-case analysis is effectively the default method in most common software 

packages.552
⁠

,779 For example, when estimating most regression models, participants will 

simply be excluded if any of the variables in the model for that person do not have values.810 

And for non-statistician researchers, methods such as multiple imputation may well appear 

daunting to learn. 

A related method is to simply drop variables with missing values from any model being 

constructed. But this can easily lead to bias if an important confounding variable is one of 

those removed, so it is far from the best option in most circumstances.800 

The missing indicator method is another ‘ad hoc’ method.779
⁠

,797
⁠

,800 It involves setting the 

missing values to a fixed number, such as zero, but the specific value does not matter. An 

indicator variable is then created for each covariate with participant values missing; with its 

value set to 1 if the corresponding covariate value is missing, and it is set to 0 otherwise.811 

For missing baseline data in randomised trials it is considered a valid method that will enable 

all participants to be included in the analysis, because the covariate values are not related to 

treatment allocation.799
⁠

,812 Its use in observational studies, however, is strongly discouraged 

because there is a considerable risk that it will introduce bias, even if the missing data is 

MCAR.813
⁠

–815 

The remaining ‘ad hoc’ methods can be grouped under the label ‘single imputation’, where 

missing values are filled in by a single value, thus allowing data from all participants to be 

used in most statistical modelling procedures. A popular option in longitudinal studies, 
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though also strongly discouraged,816 is called last observation carried forward (LOCF), or last 

value carried forward (LVCF), where for each participant, the missing values of any variable 

that is measured repeatedly are filled in with the last value that was recorded for the same 

participant.785 Mean value imputation, on the other hand, involves filling in missing values 

with the mean of that participant’s previous non-missing values, though it still tends to 

provide biased results.779 

One problem with single imputation methods is that they do not adjust the uncertainty of 

the estimates, for example, by widening the confidence intervals, to take account of the fact 

that missing values have been imputed, because many of the imputed values will probably 

differ from the values that would have been recorded, had they not been missing.785 This will 

increase the precision of the estimate, but that increase will not reflect a decrease in the true 

uncertainty of the estimate. More importantly, however, single imputation methods can also 

produce estimates that are biased, including when the missing data is MCAR.779 

The term ad hoc is defined by the Cambridge English Dictionary to mean “happening only for 

a particular purpose or need, not planned before it happens”,817 and thus seems an apt label 

for methods that are, perhaps in many cases, more of an automatic response to missing data 

than methods applied with adequate forethought and planning. 

7.1.5 'Principled' missing data methods 

In recent decades, the term principled has been increasingly applied to specific methods for 

missing data, such as multiple imputation, inverse probability weighting, and likelihood-

based methods such as mixed models.605
⁠

,776
⁠

,780
⁠

,782
⁠

,792
⁠

,793
⁠

,798
⁠

,800
⁠

,801
⁠

,803
⁠

–806
⁠

,808
⁠

,818
⁠

–824 Often the term 

‘principled methods’ is used in a direct contrast with ‘ad hoc methods’.776
⁠

,780
⁠

,793
⁠

,798
⁠

,800
⁠

,801
⁠

,803
⁠

–

806
⁠

,819 At first, this seemed a curious word to use in the sense of a label or a name, with most 

articles not explaining why they used it to group these methods, and the word ‘principled’ 

has not been regularly used to group any other method types. The Oxford English 

Dictionary17 provides two definitions for principled, with the first regarding a person who 

shows a recognition of right and wrong, and the second regarding a method that is “based 

on a given set of rules”. The second definition could, of course, describe the use of most 

statistical methods. Somewhat similarly, the Cambridge English Dictionary,817 suggests 



7.1 Introduction 

 155 

“based on principles, or (of a person) having good personal standards of behaviour” as its 

definition in American English. 

A search of the literature reveals that the word’s connection with missing data methods 

possibly originates with Little and Rubin in 1983,825 where they suggest: 

A principled approach to the problem of missing data in large databases 

requires a plausible model for the missing data mechanism and estimation 

procedures that remove or minimize biases introduced by the incompleteness 

of the data. 

In 2000, Little and Rubin798 suggested that the methods are principled because “they are 

based on explicit assumptions about the data and missing-data mechanism”. And Kenward 

and Carpenter (2007)801 give an explanation that contrasts ‘principled’ with ‘ad hoc’: 

Principled methods are based on statistical models for the data … Unprincipled 

methods are characterized by ad hoc procedures – typically manipulating the 

data so that the analysis originally intended for fully observed data can be run. 

It is quite possibly meant to convey multiple meanings, both an adherence to principles or 

rules, but also implicitly suggesting that the analyst who uses such methods will be 

displaying good personal standards of behaviour. Possibly a useful strategy to encourage 

non-statistician researchers to try to use the more sophisticated methods for missing data. 

Perhaps the most common of these methods is multiple imputation,826 with the ability to use 

common software packages having become an option in recent years.785 But before a 

method such as this is employed, one of the first steps is to define the intervention, outcome 

and other covariates as precisely as possible, so we know the questions that are really being 

answered by the analysis.827
⁠

,828 For many trials this is straight forward but for some, such as 

this one, the amount of missing data meant that there were many equally valid definitions. 

Likewise, unless we defined the intervention and outcome that was of most interest in a per-

protocol analysis, or included a number of possibilities, our analysis may not have provided 

the range of answers that would satisfy stakeholders, given the limits of an intent-to-treat 

analysis when there is missing data.829 
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7.2 Methods 

7.2.1 Trial design 

An Australian not-for-profit private health insurer, HCF, offers a chronic disease support 

program to its members called My Health Guardian.830 Provided by the health management 

company Healthways, it features online as well as telephone support, and within this setting, 

a randomised controlled trial (RCT) of a telemonitoring program was conducted. It contained 

two intervention arms: one assessing the effects of home blood glucose self-measurement, 

and the other assessing home blood pressure self-measurement, each with associated 

telemonitoring. The aim was to assess the effectiveness of a telemonitoring service offered to 

suitable members from mid-2014 to mid-2016. From the point of view of the trial sponsor, 

HCF, they wanted to know whether the program produced meaningful improvements in the 

health of some of its members. This information would help them decide whether to keep 

the program running, make changes or end it. 

Aim 

To assess whether exposure to the Telemonitoring intervention lowers the mean blood 

glucose and/or blood pressure level in people with type 2 diabetes and/or hypertension after 

a minimum duration of 6 months, compared to people who were not exposed to the 

intervention. 

Eligible participants 

Those eligible were HCF members diagnosed with type 2 diabetes mellitus (Glucose arm) or 

hypertension (BP arm) who were participating in the My Health Guardian program and 

monitored their blood glucose and/or blood pressure at home. Participants also needed to 

reside in a Telstra mobile service area to be able to participate. 

Intervention 

The intervention was a telemonitoring service consisting of a Wi-Fi enabled glucometer 

and/or blood pressure monitor that was able to transmit blood glucose and/or blood 

pressure measurement data to the health service provider Healthways, combined with 

ongoing tailored advice via telephone calls from registered nurses employed by Healthways. 
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When attempting enrolment of participants via a telephone call, a verbal instruction to 

participants regarding measurement frequency was: 

There will be no need to increase the frequency of your readings due to your 

participation in this program and it is anticipated that you will continue 

monitoring your blood glucose levels and/or blood pressure as your treating 

doctor has recommended 

Design 

For both the Glucose and BP arms, members were randomised to be offered the 

telemonitoring program either in the early enrolment period, joining the Telemonitoring 

(TM) group if they accepted, or they were offered the program 12-24 months later, in which 

case they became part of the Control group if they accepted. 

As mentioned above, this type of RCT is sometimes called a pragmatic trial, and in this case, 

the only difference between this trial and the telemonitoring service, as it would otherwise 

have proceeded, was the addition of randomisation that determined the enrolment period in 

which members were offered the program. Hence, no blinding, allocation concealment or 

any other strategies to avoid potential bias were employed, and no attempt was made to 

increase the chance that either baseline or outcome data would be collected. The data was 

routinely collected over the phone or by email, with no face-to-face contact between nurses 

providing the service and the participants receiving it. 

Enrolment 

For the Glucose arm, the enrolment period for the Telemonitoring group was from 1 July 

2014, until all contactable randomised members had been offered the program and from 1 

July 2015 for the Control group, with blood glucose outcome data collected from July 2014 

to Dec 2015. For the BP arm, enrolment also occurred from 1 July 2014 for the 

Telemonitoring group and from 23 November 2015 for the Control group, with blood 

pressure (BP) outcome data collected from July 2014 to Feb 2017. 

Figure 7.2 in the Results illustrates the enrolment process. 
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Outcomes 

Before any comparative analyses were performed, the outcomes used were chosen following 

an assessment of data accuracy and level missing. The definition of each outcome variable 

can be seen in Table 7.3. The outcomes originally specified before the trial started are shown 

below. 

For the Glucose arm, the primary outcome was 

a) HbA1c (glycated haemoglobin A1c), measured at the end of the trial period by each 

participant. It is a marker for the average plasma glucose concentration over the 

previous 3 months. Values range from 4.0 – 12.0% and most people with diabetes aim 

for 6.5 – 7.0%. 

Secondary outcomes for the Glucose arm were 

b) Blood glucose measurements taken at home by the participant using the glucometer 

provided. The target for people with type 2 diabetes is 6-8 mmol/L before meals and 

6-10 mmol/L two hours after starting meals. 

c) BMI (body mass index), calculated from the last weight measurement recorded by 

each participant at the end of the trial period. This was included as an outcome 

because the intervention included lifestyle advice, via the telemonitoring component, 

that might lead to reductions in BMI. 

The pre-specified outcome for the BP arm was simply an undefined measure of systolic 

blood pressure for each participant. The BP arm analysis occurred after the Glucose arm 

analysis revealed considerable missing data, so the BP arm outcome was not specified more 

precisely until the amount of data collected could be examined. The final outcome 

definitions are shown in Table 7.4. 

For some participants, occasional BP measurements had also been collected routinely over 

the phone prior to starting the Telemonitoring trial as part of the My Health Guardian 

chronic disease support program. Because these values were recorded before any exposure 

to the intervention, their possible use as an alternative outcome for the Control group was 

also examined. 
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Baseline data 

The telemonitoring service was provided as an add-on service to the existing My Health 

Guardian disease management service that participants were already using, so the trial was 

able to take advantage of the existing data collection system for participant information. For 

both arms, the baseline variables were Age, Sex, Ethnicity, HbA1c, BMI, Diabetes type, 

Hypertension, Hyperlipidaemia, Cardiovascular Disease, Arthritis, Back Pain, Walking Pain, Eye 

Problem, Insulin or Analogue, Number of diabetes drugs, Pain relief drug, Employment 

status, Self-employed, Moderate exercise, Smoking history, and Risk level. The baseline 

variable ‘risk level’ was also referred to by Healthways nurses as the "risk summary score". 

When the telemonitoring nurses conducted a clinical assessment over the phone, they also 

reviewed the risk level at the end of the call to determine if it should be changed, though it 

was not clear how this was done. We were otherwise told that the risk level was determined 

by a proprietary Healthways algorithm. The risk of hospitalisation is perhaps similar to what it 

implies. From the nurse’s point of view, it determined the length of time before the nurse 

would call the member again, for example, 1 week or 1 month. 

7.2.2 Outcome data availability 

Glucose arm 

Following updates from Healthways, a significant amount of missing data was expected and 

so we planned to make an assessment of the outcome data that was available, before 

finalising outcome definitions. The primary aim was to compare the mean of each outcome 

of the Telemonitoring group, following at least 6 months exposure to the intervention, with 

the mean of each outcome of the Control group taken before they had been exposed to the 

intervention. Ideally, the measurements to be compared would have been recorded close to 

a common date, to avoid possible confounding in case measurements taken far apart in time 

were influenced by changes to the telemonitoring service that might have occurred over 

time. The participants may have been encouraged to ask their GP (general practitioner) for a 

blood test for HbA1c, either at the end of the trial period if they were in the Telemonitoring 

group, or when they enrolled if they were in the Control group, but it is unclear whether this 

encouragement occurred if it was not required for clinical reasons at the time. Nevertheless, 

it was unknown how many participants would have requested the test at that time anyway, 
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because some might not have understood that it was needed, did not want to see their GP at 

that time, they simply forgot, or perhaps they did not want to for some other reason. In 

those cases, it was hoped that a fairly recent measurement would still be available, but it was 

not known how far back in time we would have to go to find a measurement for most 

participants. This was also the case for weight measurements that were used to calculate 

BMI. As a result, the amount of outcome data that was available within various date ranges 

needed to be ascertained before outcomes could be fully defined with specific date range 

criteria. 

Blood glucose measurements vary considerably, with a heavy dependence on the type and 

timing of food and the time of the measurement.831 With blood glucose, there was no 

guarantee that the measurements were taken after fasting, so using a single blood glucose 

measurement as the outcome may have provided an inaccurate assessment of glucose 

control. Hence, a number of possible definitions were considered once the amount and 

nature of the data available could be assessed. 

BP arm 

For the BP arm, we wished to find out whether the program of home blood pressure self-

measurement with telemonitoring, caused at least some participants to make changes to 

their lifestyle, diet, medication adherence, exercise level or other relevant factors, that 

resulted in lower mean blood pressure over time. The only outcome measurements available 

were the self-measurements, produced by part of the intervention (the remote monitoring 

and advice by nurses was the other part). Unlike management of blood glucose, no generally 

applicable guideline exists for blood pressure measurement frequency or the best time of 

day for measuring. The advice instead, is likely to depend on a range of factors related to a 

person’s condition, treatment and personal preference.832 Hence, we used all measurements 

recorded by participants, either separately, or averaged with, at most, one measurement per 

day. 

7.2.3 Variable definitions 

Given the level of missing data, we wanted to assess whether the original primary outcome 

definitions would provide the most accurate information about the intervention for all 
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participants, or whether other outcome definitions would be preferable. Ideally, the 

outcomes would accurately reflect the participant’s true mean blood glucose or blood 

pressure, and whether it changed in response to the intervention. 

We also needed to define other variables more precisely following an assessment of the data 

available. For example, in a per-protocol analysis, the intervention in both arms could be 

defined as home self-measurement at least once a week or once a month. It could also be 

defined as just being given the measuring device with instructions. In each case, the number 

of participants eligible to be included would be different. Note that this is not important for 

an intention-to-treat analysis, often the preferred method because it maintains the 

advantages of randomisation.833 

We also wanted the intervention definition to reflect how it would be viewed in the 

community. In this case, however, it was not clear what this would be, so multiple definitions 

were used in the analysis to give a fuller picture of the intervention’s effect. And although 

HCF expressed interest in an intention-to-treat effect that evaluated the telemonitoring 

program as a whole, such estimates are most relevant when the program is to be continued 

unchanged and with the same level of dropout expected.829 

7.2.4 Causal diagrams 

A causal diagram can be very useful in the design stage to help identify additional potential 

sources of confounding or selection bias that might be measured, but while this did not 

happen here, with the trial commencing before this PhD project got underway, causal 

diagrams are nevertheless useful at every stage of a research project and can fulfil various 

purposes. For this analysis, we constructed diagrams for each arm of the trial to guide model 

construction, interpret the results and to help communicate the uncertainty that remained 

following the analysis. 

All but one of the diagrams was a directed acyclic graph (DAG), the most common form of 

causal diagram to such a degree that many consider the terms synonymous (see for 

example14
⁠

,85
⁠

,253
⁠

,267). For the Glucose arm we created the DAG in Figure 7.9, but for the BP arm, 

we decided to try a different approach and created an alternative causal diagram (Figure 

7.10), though similar to a DAG, that might be used to help guide a statistician or researcher 
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when they first consider the causes relating to their research question. This causal diagram 

was designed to make the initial collection of potential sources of confounding and selection 

bias easier by grouping potential sources of bias to help trigger thoughts and memories. 

Though not a DAG, such a diagram could act as an easier starting point that could then be 

used to create a conventional DAG for the analysis. By lowering the cognitive effort required 

to perform each step, the benefits of which were discussed in Chapter 4, more statisticians 

and researchers might give causal diagrams a try. 

Two other DAGs can be seen in Chapter 8. 

7.2.5 Missing data patterns 

A missing data pattern, as displayed in the data matrix of Figure 7.1 and in Table 7.8, is called 

monotone if the variables and patterns can be reordered so that it exhibits the pattern on the 

left in Figure 7.1, where if the variable Xj has been observed for a participant, then all 

variables Xk for k < j have also been observed for that participant.800 The advantage of a 

monotone missing data pattern is that methods for handling such missing data can be easier 

to apply than methods for non-monotone patterns,787 which include all patterns that are not 

monotone. In most health research settings, however, monotone missing data is 

uncommon.800 

Figure 7.1 Monotone and non-monotone missing data patterns 
Adapted from Figure 1 in Horton and Kleinman (2007); Val = observed value, ‘ - ‘ = missing 

  Monotone    Non-monotone  

Pattern Y X1 X2 X3  Y X1 X2 X3 

1 Val Val Val Val  Val Val Val Val 

2 Val Val Val -  Val Val Val - 

3 Val Val - -  Val Val - Val 

4 Val - - -  Val - - Val 

 

Missing data patterns can also be used to explain how missing data increases uncertainty, 

particularly to researchers or other people with an interest in the results. To attempt this for 
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the HCF staff coordinating the telemonitoring project, we modified a table produced by the 

SAS procedure PROC MI that shows missing data patterns and explained the problem by 

referring to specific rows as examples. 

7.2.6 Multiple imputation 

Multiple imputation and inverse probability weighting 

Of the recommended ‘principled’ methods for missing data that are available, multiple 

imputation (MI) and inverse probability weighting (IPW) are two of the more commonly 

utilised.785 IPW involves weighting complete cases by the inverse of the probability that they 

are a complete case.834 In general, IPW is simpler and easier to implement than MI785
⁠

,826
⁠

,834 

and has advantages in specific situations, such as when the only missing data is from 

dropouts/attrition/loss-to-follow-up and missingness is MAR. In this case, when only the 

outcome is missing, a recent simulation study has suggested that MI was unable to correct 

for attrition bias and, in fact, performed no better than complete-case analysis.795 

On the other hand, the validity of IPW relies on there being a sufficient number and variety 

of complete cases to enable the positivity assumption to be satisfied. That is, for all possible 

combinations of the full data, there is a non-zero probability that a complete case with those 

values has been observed.792 This is because, ideally, we’d like each distinct subtype of 

individual with missing data to have a representation in the complete cases. We did not 

expect this to be the case with the HCF dataset, however. 

In addition, MI is generally more efficient than IPW, producing estimates with greater 

precision.792 This occurs partly because MI works by using information from all participants, 

whereas IPW uses only the information from complete cases. It is also partly because the MI 

model makes an assumption about the distribution of the missing data given the observed 

data, which IPW does not, and this leads to increased efficiency, though dependent on this 

assumption being true.834 

MI was first proposed by Don Rubin in 1978835 and through the 1980s he led its 

development into a powerful statistical tool.818
⁠

,836 Rubin originally developed the method to 

handle nonresponse in surveys and, wanting to avoid the problems associated with single 
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imputation, he developed this method that instead replaced missing values with a 

distribution of two or more likely values.837 

The MI procedure is based on two separate models: the substantive model, which is used, in 

effect, in the complete-case analysis of the filled-in data following imputation of the missing 

values, and upon the results of which, inferences will be made; and the imputation model, 

from which the distribution of the missing data given the observed data is derived.801
⁠

,834 One 

advantage of MI is that the imputation model can potentially contain variables that are 

predictive of missingness but not causal (if the substantive model is causal),801 often called 

auxiliary variables.822 

There are three steps involved when using MI. The first step uses a Bayesian approach to 

create multiple copies of the dataset. During this procedure, missing values are replaced with 

values randomly sampled from the posterior distribution produced using the imputation 

model.781
⁠

,801 The process is then repeated until the desired number of datasets have been 

created. The second step then involves fitting the substantive model to each of the 

completed datasets using standard methods of analysis, with the resulting estimates 

combined in the third step using simple rules (Rubin’s rules)822 to produce a final estimate. 

This includes a standard error that acknowledges the uncertainty implied by some 

participant values not being known.605
⁠

,781
⁠

,801 A curiosity of MI is that it involves the 

combination of a Bayesian step with a frequentist step.801 

Multiple imputation by chained equations (MICE) 

The first step is often the more difficult one and depends on an appropriate imputation 

strategy and model being chosen.605
⁠

,822 A common strategy or method to use when the 

missingness pattern is non-monotone, and when a combination of categorical and 

continuous variables have missing values, is called multiple imputation by chained equations 

(MICE),605
⁠

,822
⁠

,838 or sometimes multivariate imputation by chained equations (MICE).820 It is also 

called fully conditional specification.839 The MICE procedure involves the fitting of a series of 

regression models where each variable with missing values is modelled separately, 

conditional upon the other variables in the imputation model. This allows continuous 

variables to be modelled using linear regression while binary variables can be modelled 

using logistic regression, and so forth.820 
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Model checking 

The implementation of MI in modern software packages still has many limitations, including 

the absence of procedure features that can be used to check imputation models.822 

Nevertheless, tables and graphs have been recommended for a number of years as one way 

to check that the imputation model has produced ‘reasonable’ values.820
⁠

,822 But rather than 

act as formal statistical tests, they can instead act as flags that can indicate when there may 

be problems with the imputation model that needs checking.840 
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7.3 Results and Discussion 

7.3.1 Enrolment and device measurements 

For both arms, collection of Telemonitoring device blood glucose or blood pressure 

measurements occurred following enrolment and at the discretion of the participant. The 

flow of participants can be seen in the Appendix. Figure 7.2 displays the number of 

participants in each group that were currently enrolled each month and the number who 

recorded at least one measurement during that month. The cumulative total enrolment is 

also shown. A table in the Appendix provides more detailed participant numbers and 

percentages for the Glucose arm. Figure 7.2 also shows that around a third of currently 

enrolled participants did not use the Telemonitoring device in any one month, even with 

non-adhering participants steadily dropping out. 

To check the range of values recorded, the distribution of all Telemonitoring device BP 

measurements was examined (see Appendix), while the distributions of both observed and 

imputed blood glucose, HbA1c and BMI outcome values, following multiple imputation, can 

be seen later in this chapter. 

Health (hospitalisation) risk level and order of enrolment 

The participants were randomised both to when they would be invited (Early or Late period) 

as well as the order in which they were to be invited. The My Health Guardian service 

provided by Healthways operates so that participants are contacted more frequently when 

their health is worse, as judged by the custom measure of health status labelled ‘risk level’ in 

the analysis dataset. Because adhering to a randomised ordering of people to invite might 

have conflicted with normal service delivery, we checked for evidence of a non-random 

ordering of invitations in the analysis of the BP arm. This was done by plotting the 

participant’s ‘risk level’ at the time of enrolment against the date of enrolment, for each 

group, and calculating a Lowess line of best fit. Suspicion that the enrolment order might not 

have been followed did not occur until after the Glucose arm analysis was complete. 
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Figure 7.2 Trial enrolment and number of participants measuring by month 
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In Figure 7.3, Telemonitoring group participants in the BP arm who were enrolled early 

appear to have been less healthy, on average, than those who enrolled later. This suggests 

that a randomised ordering of enrolment did not occur for this group. Such a pattern was 

not apparent with the Control group, however. Initial enrolment of the Telemonitoring group 

may have been balanced by the better than average health of participants who were enrolled 

toward the end, suggesting that the specific group the members were randomised into was 

nevertheless adhered to. 

With people of worse overall health starting earlier, on average, it may have increased the 

chance that participants with higher blood pressure would have dropped out by the time of 

the analysis period. It is unknown whether this occurred or whether average BP outcomes 

were affected.  

Figure 7.3 BP: Risk level at the time of enrolment Lowess lines of best fit 

 

Note: Early = Telemonitoring group; Late = Control group 

To assess this possibility, Table 7.1 lists the correlations between risk level, dropout and BP 

outcome. The correlation between the risk level at 1 July 2014 and the risk level at the time 

of enrolment suggests that the risk level varies quite a bit over time. Neither risk level 

appears to relate to the likelihood that the participant would withdraw from the trial or stop 
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using the Telemonitoring device before at least 7 months (approx. 208 days). Likewise, 

neither risk level was strongly correlated with the outcomes measured in the analysis period 

of 23 Nov 2015 to 31 Jul 2016, though less than half of the participants were able to be 

included in this calculation. This suggests that the non-random ordering of enrolment is 

unlikely to have had a significant impact on the outcomes measured. 

Table 7.1 BP: Correlations between risk level, dropout and BP outcome 

  
Risk level 

at 
enrolment 

No analysis 
outcome 

(dropped out) 

Mean SBP 
outcome 

Mean DBP 
outcome 

TM (Early) group      

Risk level at 1-Jul-14 r* 0.41 -0.002 -0.11 -0.02 

 P <.0001 0.96 0.01 0.55 
 N 1039 1039 624 624 

Risk level at enrolment r  -0.04 -0.09 0.04 

 P  0.25 0.03 0.31 
 N  1039 624 624 

Controls (Late) group      

Risk level at 1-Jul-14 r 0.20 -0.04 -0.05 -0.03 

 P <.0001 0.13 0.09 0.39 
 N 1158 1158 968 968 

Risk level at enrolment r  -0.01 -0.07 -0.01 

 P  0.70 0.02 0.81 
 N  1158 968 968 

* r = Pearson correlation coefficient; P = P-value; N = number of participants 

Time from enrolment to first measurement 

Another possible concern with enrolment is the gap in time between the enrolment date and 

the date on which participants first used the glucose or BP measuring device. In the Glucose 

arm there was a mean of 34 days and median of 20 days between enrolment and the first 

device measurement. For the BP arm, the problem of non-adherence is illustrated in Figure 

7.4, which shows the large variation in time between enrolment and many participant’s first 

measurement. 
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Figure 7.4 BP arm days between enrolment and first telemonitoring (TM) measurement 

 
 
Note: Early group = Telemonitoring group; Late group = Control group 

Time of day that measurements were taken 

Glucose arm 

While it was not known if blood glucose measurements were taken after fasting in this trial, 

the first measurement of any day seems the one most likely to be taken after fasting, and it is 

a common recommendation made to people with diabetes. Therefore, with some 

participants expected to record multiple blood glucose measurements on some days, only 

the first measurement from such days was used in the analysis. We do not know how often 

multiple measurements were carried out, however, so the number of measurements taken at 

each time of the day for all first-in-day blood glucose measurements was examined to 

enable visual assessment. 

For the Glucose arm, Figure 7.5 shows the distribution of the time of day that first-in-day 

blood glucose measurements were taken, displayed for each group. These are from the 
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435/549 (79%) of the Telemonitoring group and 256/299 (86%) of the Control group with at 

least 2 measurements recorded. No clear difference is apparent. 

One potential concern in comparing the Telemonitoring and Control groups is that the range 

of blood glucose measurements that make up each individual’s mean blood glucose, might 

not be equal in terms of the time-of-day they were taken (later in the day measurements are 

less likely to be after fasting), or date of the year (in case the treatment changes over time in 

subtle but influential ways). 

Figure 7.5 Glucose arm time of day of all first-in-day blood glucose measurements 
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BP arm 

With the BP arm, to see whether a pattern was apparent in Telemonitoring device 

measurements by hour of day, and whether any differences could be seen between the Early 

and Control groups, some penalized B-spline lines of best fit are shown in Figure 7.6. Blood 

pressure is known to drop at night for most people, though this can be blunted in people 

with hypertension, however, only a small number of measurements were recorded at this 

time so to avoid distorting the lines of best fit, they were constructed using only 

measurements from 6 AM to 11 PM. 

A small drop is suggested around 2 PM and 9 PM and may relate to a postprandial BP drop 

after lunch and dinner. The most obvious difference between the groups is a higher morning 

blood pressure in the Control group. However, all available Telemonitoring device 

measurements were used to construct Figure 7.6, so the Telemonitoring group contains a 

greater proportion of measurements from those people who continued to measure for many 

months. The Telemonitoring group measurements also include some 12 months or more 

after enrolment, the maximum length of time most Control group participants could have 

contributed measurements. This means the Telemonitoring group BP device data contains 

more measurements collected after a longer period of exposure to the intervention, as well 

as more measurements from the type of people who, for many reasons, decided to continue 

measuring. 

To look at more comparable groups, we restricted the Telemonitoring group measurements 

to those in the first 12 months only (until 31 July 2015) and constructed Figure 7.7. This 

shows a more similar pattern between the groups. 
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Figure 7.6 BP arm time of day of BP measurements and relationship to blood pressure 
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Figure 7.7 BP arm time of day of measurements and BP – initial 8-12 months only 
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7.3.2 Outcome data availability and definitions 

Glucose arm 

The amount of outcome data that was available for analysis in the Glucose arm is shown in 

Table 7.2. HbA1c, the original primary outcome, was available for just 25% of the 

participants, though this was only if we used HbA1c results recorded between April and 

December 2015, a fairly wide time window. A narrower time window would have reduced the 

number of participants with HbA1c results even further (not shown). And if, to avoid 

problems with regression to the mean, we had used our preferred criteria of only participants 

with baseline values available, then HbA1c measurements would have come from only 10% 

of those enrolled. Thus, the large majority of participants would have been missing an 

outcome, with some of the reasons for not having a value possibly related to the HbA1c 

result they would have provided had they arranged for the blood test. For example, age, 

employment status, and psychological and motivational factors might all increase or 

decrease the chance that someone would get the blood test done, and all might plausibly 

relate to an HbA1c level that was different to the group average. In this case, an analysis 

might have provided biased estimates if the available HbA1c results differed from the results 

missing, and one group had more of their results missing. This scenario was plausible 

because the HbA1c measurements in the Telemonitoring group did not include those from 

participants who dropped out early, unlike the Control group’s measurements which were 

recorded before any dropouts occurred. 

While body mass index (BMI) had the most complete data of the originally specified 

outcomes, from 38% of participants if baseline values were required, the plausible outcome 

with the most data available was blood glucose recorded using the telemonitoring enabled 

glucometer. But as these were from using the intervention, this was far from ideal because it 

would mean that the outcome was only available from participants who used the 

intervention — and many did not — introducing possible bias into an intention-to-treat 

analysis that would, by definition, include all participants. It also presented a problem with 

the Control group’s outcome values because they would be recorded following exposure to 

the intervention, albeit for a much shorter time than for the Telemonitoring group. 
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Table 7.2 Glucose arm outcome data available with possible definitions 
Chosen definitions used for the analysis are highlighted in red 

  Glucose participants with data 

Outcome variables 
Date range of 

≥1measurements 
TM* 

N=549 
Controls 
N=299 

Total 
N=848 

HbA1c 1 Apr - 31 Dec 2015 113 (21%) 96 (32%) 209 (25%) 

HbA1c 
1 Apr - 31 Dec 2014 

and 
1 Apr - 31 Dec 2015 

62 (11%) 22 (7%) 84 (10%) 

BMI 
1 Jul 2013 to 30 Jun 2014 

and 
1 Apr to 31 Dec 2015 

171 (31%) 151 (51%) 322 (38%) 

Glucometer blood glucose 1 Jul - 31 Aug 2015 264 (48%) 107 (36%) 371 (44%) 

Glucometer blood glucose 1 Jul - 30 Sep 2015 269 (49%) 173 (58%) 442 (52%) 

Glucometer blood glucose 1 Jul - 31 Oct 2015 270 (49%) 227 (76%) 497 (59%) 

Glucometer blood glucose 1 Jul - 30 Nov 2015 271 (49%) 263 (88%) 534 (63%) 

Glucometer blood glucose 1 Jul - 31 Dec 2015 276 (50%) 267 (89%) 543 (64%) 

* Telemonitoring group 

An additional problem was that the results may not then have been applicable to the 

participants in the Telemonitoring group who either didn’t use the glucometer or didn’t use 

it for long enough to have measurements recorded in the selected time window of 1 July 

2015 to 30 November 2015. This would have derived from needing to either restrict the 

analysis to those participants with outcome values, as well as all other covariates; or use 

some form of imputation, in which case, the data would still be based on the outcomes 

recorded, though the use of multiple imputation would make use of the recorded covariate 

data, as well, if used. Nevertheless, we decided that there would be a lower chance of bias if 

the primary outcome was changed from HbA1c to one of the definitions of mean blood 

glucose, though we still retained HbA1c and BMI as additional outcomes. 

After many time windows were considered, those we chose for the definitions of each 

outcome are highlighted in red in Table 7.2. There were many ways we could have defined 
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and calculated a mean blood glucose level for each participant at the end of the trial, with 

the superior definitions not immediately clear. But after some experimentation, and with 

group comparisons at times, unavoidable, the two outcomes used in analyses 1 and 2 were 

chosen and are summarised in Table 7.3, along with equivalent details for the HbA1c and 

BMI analyses. Although using a prespecified analysis plan was not feasible in this case, due 

to the level of missing data and, in particular, uncertainty about how best to define and 

analyse the available data, we feel that our focus on understanding the sources of 

uncertainty and potential bias and the desire to communicate this to the stakeholders, will 

have compensated for any motivation to produce a particular result. Nevertheless, we hope 

to describe the analysis process in a way that would reveal the possible influence of cognitive 

biases discussed in Chapter 4. 

Analysis 1 

The first outcome choice, the mean of many measurements, had the advantage of more 

accurately reflecting the mean blood glucose level for each participant, at least compared to 

a mean of only a few measurements or just a single measurement. The disadvantage, in this 

case, was that the mean for the Control group came from measurements taken after the 

participant had been exposed to the intervention, albeit for a much shorter time period. We 

attempted to compensate for this in analysis 2. 

Analysis 2 

Ideally, we would have preferred to compare the outcome for Telemonitoring group 

participants at the end of the trial with the outcome measured for Control participants just 

before they start, with one group fully exposed to the program and the other group having 

no exposure. But because the outcome, in this case, was measured using the health 

intervention being studied, some exposure of the Control participants was unavoidable. 

Thus, we needed this exposure to be as small as possible, however, it was not clear just how 

small the exposure could be that would still provide a reasonable approximation to the 

participant’s mean blood glucose level. 

Initially, a single measurement for each group was used, with the first measurement taken by 

Control participants compared to either the last or middle measurement taken by 

Telemonitoring participants. But when measurements close in time were used instead for 
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each participant’s value, the result of the comparison varied noticeably, depending on which 

particular single measurements were chosen. A number of factors may have accounted for 

this, such as the type and timing of a meal, exercise, or glucose lowering medication. In some 

cases, the first-in-the-day measurement that we used would have been after fasting, but 

while this is recommended by medical practitioners, we do not know how many of the 

measurements were before breakfast. Instead, as a compromise between avoiding the 

variability of single measurements while minimising the exposure that Control participants 

had to the intervention, we decided to use 5 measurements using the criteria in Table 7.3. It 

is worth noting, however, that individual blood glucose trajectories were quite variable in 

most cases (see the Appendix for some individual blood glucose trajectory examples), 

suggesting many factors may play a role in the blood glucose level that was measured. 

The distribution of measurement dates, using this criterion, is shown in Figure 7.8. The first 

measurement dates in the Control group are well spread over the time period July to 

November 2015, owing to the progressive enrolment of participants and variations in time 

between enrolment and first use of the glucometer. The Telemonitoring group participants, 

on the other hand, mostly had regular measurements throughout this period, so to make the 

distribution of measurement dates as similar as possible, we chose to select the 5 

measurements closest to the middle of this period. 
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Figure 7.8. Distribution of measurement dates for Analysis 2 

First 5 measurements for Control participants and middle 5 for the Telemonitoring group 
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Table 7.3 Glucose arm outcome definitions for group comparisons 

 Analysis 1 Analysis 2 Analysis 3 Analysis 4 

Participants All* All* All* All* 

Measurements 
used to create 
outcome† 

All first-in-day 
blood glucose 
1-Jul-15 to 
30-Nov-15 

First-in-day 
glucose 
1-Jul-15 to 
30-Nov-15 
satisfying 
below 

Any HbA1c 
1-Apr-15 to 
31-Nov-15 

BMI from height and 
• Last weight 1-7-13 

to 30-7-14 (baseline) 
• First weight 

1-04-15 to 31-12-15 

Telemonitoring 
outcome 

Mean blood 
glucose 

Mean of 
middle 5 
measurements 
→ closest to 
15-Sep-15‡ 

HbA1c 
(mean if 
more than 
one) 

Change in BMI from 
baseline 

Control 
outcome 

Mean blood 
glucose 

Mean of the 
first 5 
measurements 
from 1-Jul-15 
to 30-Nov-15 

HbA1c 
(mean if 
more than 
one) 

Change in BMI from 
baseline 

* all randomised participants following multiple imputation; † outcome measurements included before 
multiple imputation; ‡ mean of 5 measurements closest to 31-Mar-2016 (middle of 23-Nov-2015 to 
31-Jul-2016) - approximate middle of analysis period 

BP arm 

Summarised in Table 7.4 are the three variations of the group comparison analysis for the BP 

arm, varied to reduce our reliance on one choice of model. The methodology used, and 

results are reported in Chapter 8. 

Analyses 5 and 6 

Analysis 5 (numbering is continued) repeated the method we considered the most valid from 

the Glucose arm analysis. In Analysis 5, it was plausible that all 5 measurements could have 

been from the one day. The only difference between Analysis 5 and Analysis 6 was that when 

multiple measurements were recorded on any one day, in Analysis 6 those measurements 

were averaged so that participants had at most one measurement per day. 

All participants were used in analyses 5 and 6 following multiple imputation, and as such, 

they provided intention-to-treat estimates. However, considerable uncertainty remained 
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because these estimates were based on the strong assumption that the missing data were 

MAR or MCAR. Before we used multiple imputation, 38% of the Telemonitoring group and 

16% of the Control group had no BP measurements recorded in the analysis time window of 

23 November 2015 to 31 July 2016. The Control group enrolled during this time window, so 

only participants who did not use the device were without BP measurements. However, 

participants in the Telemonitoring group enrolled between 7 and 16 months prior to 23 

November 2015, so many had either withdrawn from the study or ceased using the device 

before the Control group began enrolling. 

There are many plausible reasons that might explain why these participants effectively 

dropped out before they could provide outcome values, and some of these reasons may be 

related to their blood pressure levels so that, had they stayed in the trial, their blood 

pressure measurements in the analysis time window might have been different, on average, 

to those participants who stayed in the trial and ended up providing BP measurements for 

the analysis. This suggests the possibility that the intent-to-treat results from Analyses 5 and 

6 may be biased because of, in effect, differential loss to follow-up.829 If the results suggest a 

difference may exist in mean blood pressure between the groups, this possible bias means 

we should be less sure of whether the difference was caused by the Telemonitoring 

intervention, or by the dropping out of Telemonitoring group members with higher mean 

blood pressure, leaving an overall lower mean in the Telemonitoring group outcome values. 

Analysis 7 

With the actual blood pressure values of many participants who dropped out or stopped 

measuring unknown, there is no way to know what the mean blood pressure would have 

been if those participants had remained in the trial. Nevertheless, to try to increase the 

similarity, or exchangeability, of the Telemonitoring and Control groups, and hence reduce 

the potential influence of selection bias from dropout, in Analysis 7 we restricted the 

Telemonitoring group participants to those with outcome measurements recorded in the 

analysis time window, though we still used all of the imputed baseline values generated for 

this subgroup through multiple imputation. And we restricted Control group participants to 

those who similarly went on to record their blood pressure for at least as long as the shortest 

time a Telemonitoring group member with measurements in the analysis window had 
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measured for. This was calculated as the shortest number of days between the last 

enrolment of an included Telemonitoring group member and the first Control group 

enrolment, which in this case was 208 days. In addition, to ensure that the participants’ mean 

values were more likely to represent their mean blood pressure, the analysis was restricted to 

participants with measurements recorded on at least 5 separate days. 

Outcome measurement distributions 

For the four outcome measurements: blood glucose, HbA1c, BMI, and blood pressure, 

distributions are presented in the Appendix. These were created to assist with familiarity of 

the data and the units used for measurements. 

Table 7.4 BP arm outcome definitions for group comparisons 

 Analysis 5 Analysis 6 Analysis 7 

Participants All* All All who measured on at least 5 days, 
at least 208 days after enrolment 

Blood pressure 
measurements† 

Any from 
23-Nov-15 to 
31-Jul-16 

Any from 23-Nov-15 to 31-Jul-16, but 
unlike analysis 5, daily averages were used 

instead of measurements 

Telemonitoring 
outcome 

Middle 5 BP 
measurements‡ BP measurements from middle 5 days§ 

Control 
outcome 

First 5 BP 
measurements¶ BP measurements from first 5 days** 

* following multiple imputation; † included for multiple imputation; ‡ mean of the 5 measurements 
closest to 31 March 2016 (approximate middle of analysis period); § mean of the 5 days with 
measurements closest to 31 March 2016; ¶ mean of the first 5 measurements in the analysis period; ** 
mean of the first 5 days with measurements in the analysis period 
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7.3.3 Baseline characteristics 

Some baseline data for both arms was collected prior to 1 July 2014 through the My Health 

Guardian program run by Healthways, and definitions of these covariates are included in 

Table 7.5 and Table 7.6 for the Glucose arm, and in Table 7.7 for the BP arm. 

Tables in the Appendix show how diagnoses and medications were classified and derived 

from Healthways data. It should be noted that all participants had some diagnoses data so, 

for the purposes of the analysis, we assumed this information was complete; that is, we 

assumed that the absence of a certain diagnosis was not due to missing data but instead, 

due to that person not having the corresponding condition. It was also assumed that those 

participants without medication data were, in fact, not taking any. Given the number of 

participants, however, it is highly likely that errors and omissions exist in the Diagnoses and 

Medications data. 

The level of baseline data missing for Glucose arm participants is shown separately in Table 

7.5 to enable an initial assessment. This also indicates the quantity of data we needed to 

impute using multiple imputation. 
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Table 7.5 Glucose arm number of participants missing baseline data 

 Glucose participants missing data 

Baseline data variable Telemonitoring 
N = 549 

Controls 
N = 299 

Total 
N = 848 

Age (at 1 July 2014) 0 0 0 

Sex 0 0 0 

Ethnicity 115 (21%) 88 (29%) 203 (24%) 

BMI (last weight recorded July 2013 - June 2014) 183 (33%) 98 (33%) 281 (33%) 

HbA1c (last recorded Jul 2013 - Jun 2014) 396 (72%) 225 (75%) 621 (73%) 

Diagnoses (onset before Jul 2014) 
(Diabetes type, Hypertension, Hyperlipidaemia, CVD, 
Arthritis, Back pain, Walking pain, Eye problem) 

7 (1%)* 5 (2%)* 12 (1%)* 

Medications (began taking before Jul 2014) 
(Insulin/Analogue; Diabetes drugs; Pain relief drug) 

36 (7%)† 28 (9%)† 64 (8%)† 

Employment status (before July 2014) 255 (46%) 155 (52%) 410 (48%) 

Moderate exercise (before July 2014) 278 (51%) 144 (48%) 422 (50%) 

Smoking status (before July 2014) 270 (49%) 141 (47%) 411 (48%) 

Risk level (last recorded July 2013 - June 2014) 0 0 0 

* No diagnoses recorded with onset before July 2014; † No medications recorded with start date 
before July 2014 

Table 7.6 presents the demographic and observed baseline data of participants with at least 

one home blood glucose measurement from July to November 2015. We restricted 

participants in this table to those with outcome data in the analysis time window because it 

is the outcomes of these participants that formed the basis for missing data imputation 

when multiple imputation was used. Around half of the participants were missing important 

baseline information, such as whether they engaged in moderate exercise or were current or 

past smokers, while around three quarters did not have baseline HbA1c results. 

This table also highlights a potential problem with an intention-to-treat analysis for the 

Glucose arm with outcome data available for 88% of the Control group but only 49% of the 

Telemonitoring group. As with the BP arm, the difference derives from the fact that Control 
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group participants enrolled during the analysis time window, so those who measured at least 

once but later dropped out, did not have missing outcome data. Telemonitoring group 

participants, on the other hand, enrolled between 4 and 12 months before the analysis time 

window started, so many had either dropped out or stopped measuring by 1 July 2015. And 

some of the participants might have dropped out for reasons predictive of their blood 

glucose level, such as poor motivation to measure because they had not been taking their 

medication and did not want to see anticipated unfavourable glucose readings. If this was 

the case, then with more participants dropping out from the Telemonitoring group, the 

participants from each group with available data would no longer have been exchangeable 

due to selection bias from dropout, and the intent-to-treat estimates would be biased. And 

the missing data mechanism would likely have been MNAR because variable such as 

motivation were not measured. 

Some differences are suggested by the range of p-values in Table 7.6, though with the 

number of tests conducted, some of the low p-values may be due to chance. Nevertheless, 

overall the differences suggest that the Telemonitoring group participants providing data 

were, on average, slightly older and not as healthy. This can be seen with the variables Age, 

Diabetes type, previous diagnosis of Hypertension, Hyperlipidemia, Cardiovascular disease or 

Arthritis, the prescription of a Pain relief drug, and the ‘hospitalisation’ risk level. To reduce 

potential confounding from the imbalances in the available data, which may carry over into 

the imputed data, these variables were incorporated into the regression models constructed 

in Chapter 8. 

For the BP arm, comparison of the baseline characteristics between the intervention and 

control groups, detailed in Table 7.7, suggests some differences also existed. For Analysis 7, 

we listed the baseline characteristics separately given the restricted participant inclusion. But 

although we used this restriction in an attempt to make the comparison groups more 

exchangeable, in the end, if we judge by comparing the range of p-values between analyses 

5 and 6 and analysis 7, this goal does not appear to have been achieved. 
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Table 7.6 Glucose arm baseline characteristics before multiple imputation 
For participants with ≥1 home blood glucose measurement from 1 Jul to 30 Nov 2015; 
Some variable categories are not shown, with the full details in the Appendix. 

 
 
Baseline characteristics 

Telemonitoring 
N = 271 

(49% of 549) 

Controls 
N = 263 

(88% of 299) 

 
 

P-value 

Sex, Male 169 (62% of 271) † 171 (65% of 299) † 0.530 
Age, mean (SD) 68.8 (9.2) 65.7 (11.1) 0.001 
Ethnicity, Caucasian (Missing: 22%)* 202 (87%) 165 (88%) 0.267 
HbA1c, mean (SD) (DCCT %) (Missing: 73%) 6.7 (1.2) 6.8 (1.2) 0.944 
BMI, mean (SD) (Missing: 31%) 30.5 (5.6) 30.4 (5.4) 0.838 
Diabetes Type 2 248 (92%) 237 (90.5%) 0.074 
Hypertension 157 (58%) 57 (22%) < .0001 
Hyperlipidemia 80 (30%) 56 (22%) 0.037 
Cardiovascular disease 145 (54%) 107 (41%) 0.003 
Arthritis (any type) 131 (48%) 100 (38%) 0.018 
Back pain‡ 55 (20%) 58 (22%) 0.672 
Walking pain‡ 48 (18%) 36 (14%) 0.235 
Eye problem‡ 34 (13%) 27 (10%) 0.418 
Insulin or Analogue 45 (17%) 41 (16%) 0.814 
Pain relief drug 155 (57%) 122 (46%) 0.015 
Number of Type 2 diabetes drugs    

0 drugs prescribed 71 (26%) 92 (35%) 0.263 
1 drugs prescribed 127 (47%) 113 (43%)  
2 – 4 drugs prescribed 73 (27%) 58 (22%)  

Employment status (Missing: 81%)    
Full-time, Part-time or Self-employed 8 (17%) 12 (23%) 0.734 
No employment 15 (31%) 13 (25%)  
Retired 25 (52%) 28 (53%)  

Moderate exercise (Missing: 88%) 9 (22%) 4 (16%) 0.752 
Smoking status (Missing: 45%)    

Never smoker 88 (58%) 89 (61%) 0.860 
Past smoker 56 (37%) 50 (34%)  
Current smoker 7 (5%) 6 (4%)  

Risk level    
Extreme Risk 11 (4%) 11 (4%) 0.011 
High Risk 63 (23%) 49 (19%)  
Medium Risk 17 (6%) 10 (4%)  
Low Risk 100 (37%) 77 (29%)  
Self-Care 80 (30%) 116 (44%)  

* missing from included participants (total=534); † % of non-missing; ‡ related diagnosis 
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Table 7.7 BP arm baseline characteristics before multiple imputation 

 Analyses 5 & 6  Analysis 7 

Baseline characteristics TM 
N = 1,429 

Controls 
N = 1,259 P  TM 

N = 773 
Controls 
N = 617 P 

Sex, Male 727 (51%) 661 (52%) 0.40  426 (55%) 370 (60%) 0.07 

Age, mean (SD) 70.6 (9.9) 69.1 (9.5) <.0001  70.6 (9.1) 69.4 (9.0) 0.01 

Ethnicity, Caucasian (m%)* 1,036 (73%) (21%) 809 (64%) (29%) 0.58  577 (75%) (19%) 424 (69%) (24%) 0.23 

BMI, mean (SD) (m%) 29.4 (6.3) (38%) 29.3 (5.3) (38%) 0.74  29.2 (5.9) (37%) 28.8 (4.5) (35%) 0.38 

Diabetes type 2 139 (10%) 145 (12%) 0.009  70 (9%) 46 (7%) 0.04 

Systolic BP, mean (SD) (m%) 132.6 (13.7) (46%) 132.2 (13.2) (48%) 0.57  132.3 (13.4) (42%) 132.4 (13.2) (42%) 0.88 

Diastolic BP, mean (SD) (m%) 75.1 (9.4) (48%) 76.0 (8.7) (49%) 0.08  75.0 (8.9) (43%) 76.2 (8.8) (44%) 0.06 

Cholesterol, mean (SD) (m%) 4.5 (1.6) (92%) 4.5 (1.3) (93%) 0.80  4.4 (1.4) (90%) 4.4 (1.2) (91%) 0.92 

Hyperlipidemia 504 (35%) 373 (30%) 0.002  283 (37%) 199 (32%) 0.09 

Cardiovascular disease 616 (43%) 543 (43%) 0.99  359 (46%) 279 (45%) 0.65 

Arthritis (any type) 712 (50%) 562 (45%) 0.007  393 (51%) 295 (48%) 0.26 

Back pain 342 (24%) 257 (20%) 0.03  196 (25%) 132 (21%) 0.08 

Walking pain 166 (12%) 147 (12%) 0.96  91 (12%) 88 (14%) 0.17 

Eye problem 159 (11%) 107 (9%) 0.02  89 (12%) 55 (9%) 0.11 

Insulin or Analogue 229 (16%) 164 (13%) 0.03  113 (15%) 85 (14%) 0.66 

Pain relief drug 801 (56%) 580 (46%) <.0001  447 (58%) 318 (52%) 0.02 

Employment status (m%) (46%) (53%)   (45%) (45%)  

Full-time 69 (5%) 57 (5%) 0.34  33 (4%) 36 (6%) 0.03 

Part-time 47 (3%) 50 (4%)   25 (3%) 32 (5%)  

Self-employed 43 (3%) 26 (2%)   25 (3%) 16 (3%)  

No employment 409 (29%) 295 (23%)   241 (31%) 156 (25%)  

Retired 211 (15%) 168 (13%)   104 (13%) 99 (16%)  

Moderate exercise (m%) 388 (27%) (51%) 345 (27%) (57%) 0.004  223 (29%) (50%) 211 (34%) (50%) 0.004 

Smoking status (m%) (56%) (62%)   (55%) (56%)  

Never smoker 380 (27%) 299 (24%) 0.82  218 (28%) 163 (26%) 0.33 

Past smoker 231 (16%) 178 (14%)   122 (16%) 108 (18%)  

Current smoker 12 (0.8%) 7 (0.6%)   6 (0.8%) 2 (0.3%)  

Risk level (m%) (6%) (7%)   (6%) (6%)  

Extreme Risk 68 (5%) 35 (3%) <.0001  35 (5%) 11 (2%) 0.009 

High Risk 284 (20%) 178 (14%)   140 (18%) 87 (14%)  

Medium Risk 102 (7%) 107 (9%)   59 (8%) 54 (9%)  

Low Risk 496 (35%) 467 (37%)   281 (37%) 243 (39%)  

Self-Care 393 (28%) 378 (30%)   210 (27%) 184 (30%)  

* missing % 
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7.3.4 Causal diagrams 

Following an assessment of missing data and determination of definitions to be used for the 

interventions, outcomes and covariates, the causal diagrams in Figure 7.9 and Figure 7.10 

were constructed. 

Figure 7.9 Causal diagram for the Glucose arm blood glucose outcome group comparisons 

 

 

Figure 7.9 shows a directed acyclic graph (DAG) that includes both measured and 

unmeasured variables. Though it is initially complex to look at, this feature appeared to be an 

advantage when trying to convey the level of complexity to stakeholders. Nevertheless, a 
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simpler version was also constructed, shown in the Appendix, and used as an example of a 

causal diagram in a Three Minute Thesis presentation. 

Features to note are: 

• variables that are conditioned on are surrounded by a box 

• the intervention and outcome are coloured blue 

• unmeasured variables are coloured red 

• the green coloured “Glucometer is used” variable is conditioned on because there 

is missing outcome data, and this produces selection (collider) bias 

In Figure 7.10, a simplified first step type of causal diagram is shown that was thought might 

have been an easier starting point for researchers not experienced in creating DAGs. Such a 

strategy might also appeal to some who do have such experience but find using the 

intermediate step easier. 
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Figure 7.10 A simplified first step causal diagram for the BP arm group comparisons 
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7.3.5 Missing data patterns 

To help understand the nature of the missing data mechanism, Table 7.8 was constructed 

using the SAS procedure PROC MI. As expected, the missing data pattern is clearly non-

monotone. 

Table 7.8 Glucose: Blood glucose missing data patterns 
Each variable within each row is a mean or proportion; Overall blood glucose mean was 8.4 

Pattern 
# 

Partici- 
pants 

N = 534 

Prop. of 
participants 

in TM 
group 

mean 
Age 

prop. 
Male 

mean 
baseline 
HbA1c 

mean 
baseline 

BMI 

prop. 
with 

Hyper- 
tension 

mean 
# 

Type2 
Drugs 

mean 
Employ- 

ment 
category 

mean 
Mod- 
erate 

Exercise 

mean 
Blood 

Glucose 
outcome 

1 5  0.4 63 0.6 6.4 32.6 0.4 1.2 2.0 0.8 8.4 
2 22 0.5 70 0.7 6.5 30.6 0.4 1.5 3.2 . 8.3 
3 14 0.9 70 0.6 7.2 33.1 0.7 1.0 . 0.8 8.5 
4 52 0.5 65 0.7 6.8 30.1 0.4 0.8 . . 8.4 
5 1 0.0 50 1.0 9.6 . 1.0 0.0 0.0 1.0 8.9 
6 2 1.0 70 0.5 5.3 . 1.0 1.0 0.5 . 7.9 
7 2 1.0 72 0.5 7.1 . 1.0 0.5 . 1.0 8.5 
8 22 0.6 68 0.8 6.6 . 0.5 0.9 . . 8.1 
9 12 0.5 69 0.6 . 27.0 0.6 1.3 2.9 0.8 7.8 

10 31 0.5 69 0.5 . 31.8 0.3 1.2 3.4 . 8.6 
11 19 0.6 68 0.6 . 31.7 0.2 0.7 . 0.9 8.0 
12 136 0.5 69 0.7 . 30.5 0.4 0.9 . . 8.5 
13 1 0.0 73 1.0 . 33.1 0.0 0.0 4.0 . 7.4 
14 1 1.0 84 1.0 . 24.7 1.0 0.0 . 1.0 5.4 
15 1 1.0 80 0.0 . 28.0 1.0 0.0 . . 6.9 
16 1 1.0 84 0.0 . . 0.0 2.0 4.0 1.0 6.9 
17 8 0.5 74 0.8 . . 0.4 1.0 3.4 . 8.7 
18 4 0.8 63 0.3 . . 0.5 1.8 . 0.5 9.3 
19 84 0.5 68 0.5 . . 0.4 0.8 . . 8.5 
20 3 0.3 71 0.7 6.6 30.3 0.0 1.0 4.0 . 8.3 
21 2 0.5 63 0.0 6.0 31.9 0.5 0.5 . 1.0 7.1 
22 17 0.5 62 0.5 7.2 27.9 0.4 0.5 . . 8.4 
23 1 0.0 53 0.0 5.6 . 0.0 1.0 . . 6.2 
24 3 0.3 67 0.7 . 30.4 0.7 1.7 2.7 0.0 6.1 
25 9 0.4 72 0.8 . 30.2 0.3 0.9 3.0 . 8.2 
26 2 0.0 55 0.5 . 24.1 0.0 1.0 . 1.0 8.2 
27 40 0.4 66 0.8 . 30.2 0.4 0.6 . . 8.3 
28 3 0.3 64 1.0 . . 0.3 1.3 3.0 . 8.3 
29 36 0.3 61 0.5 . . 0.3 0.8 . . 9.0 
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Table 7.8 was also used to help convey to HCF researchers and other interested staff how 

missing data increases uncertainty. Highlighting two rows as an example, we can see that the 

mean blood glucose outcome is 7.8 for one and 9.0 for the other. However, while the mean 

number of Type 2 diabetes drugs might help to explain the difference, 1.3 versus 0.8, mean 

BMI and the proportion engaging in moderate exercise is not known for one of the groups. 

Hence, we cannot know whether the difference in the outcome is because of the difference 

in the proportion using the intervention, 0.5 versus 0.3, or whether differences in the 

unknown variable values might have some influence. Thus, it increases the uncertainty. 

7.3.6 Multiple imputation 

The assessment of missing data for the Glucose arm revealed that only 5 participants out of 

848 had complete data, so conducting a complete-case analysis with all covariates included 

in the model would not have been possible, even had we wanted to do so. This number can 

be seen as the top missing data pattern in Table 7.8. With some brief experimentation, we 

found that to use 120 (out of 848) participant’s results, we would have needed to leave the 

following covariates out of the model: Employment status, Moderate exercise and baseline 

BMI. And to use 415 participants would have required the further dropping of baseline 

HbA1c. All of these are potential confounders and so leaving them out might have led to 

biased results. 

All of the variables for which data was collected were included in the imputation model, 

including the outcome,841 with the chained equations approach employed to create the 

imputations. For the Glucose arm, systolic BP, diastolic BP and total cholesterol were also 

included in the imputation model as auxiliary variables. With the aid of the causal diagram in 

Figure 7.9, these variables were not considered sufficiently plausible causes of blood glucose 

levels and so were not included in the substantive (analysis) model. Nevertheless, they were 

considered possible predictors of blood glucose through non-causal associations, and hence 

may have been able to contribute to the imputation model. 

Initial experimenting with multiple imputation using SAS produced some variation in the 

estimates depending on the number of imputations specified and the seed number used 

(Table 7.9). The estimates and standard errors for each of the three seed numbers appeared 
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to be quite similar when the number was increased to 100 imputations. However, with p-

values of 0.05, 0.06 or 0.07, although essentially providing the same information about the 

estimate and the model, they may have been viewed differently by those who would see 0.05 

as ‘significant’, and 0.06 and 0.07 as ‘not significant’. It also left open the question of exactly 

which estimate to report. 

Another problem that we encountered when using PROC MI in SAS was that quite a few 

specific seed numbers led to errors when generated automatically for 200 imputations, with 

the 3 estimates listed in Table 7.9 some of the few where no error was encountered. 

Consequently, a SAS macro was created that combined the multiple imputed datasets 

produced from system generated seeds and 50 imputations, the number at which most 

PROC MI runs finished successfully. 

With the goal to obtain stable estimates, the number of imputations was increased until the 

estimates remained relatively unchanged regardless of the seed number used. We speculate 

that the quantity of missing data may have been a factor that led to PROC MI having 

convergence problems when it tried to impute 100 or more sets of data. To avoid this 

problem, imputed data sets, each using a different seed, were combined into a dataset 

containing 1000 imputations. To check that this produced stable estimates, the procedure 

was run twice, and the estimates came out almost identical. But to account for slight 

differences, the final estimates were calculated as an average of the estimates from the two 

imputed data sets. 

The BP dataset was analysed after the glucose analysis was complete and so, with the 

datasets very similar, we were able to take advantage of the experimentation already carried 

out. Perhaps with less missing data that needed to be imputed, with the BP dataset we found 

that 100 imputations were sufficient to generate stable estimates. 
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Table 7.9 Estimates, imputation number and seeds in SAS PROC MI for the Glucose arm 
Estimates are for the effect of being in the Telemonitoring group on mean blood glucose 

Imputations   5     10     20  

Seed  264 5545 64728   264 5545 64728   264 5545 64728 

P-value  .003 .050 .037   .031 .048 .106   .035 .068 .061 

Estimate  -0.48 -0.45 -0.37   -0.39 -0.43 -0.34   -0.37 -0.39 -0.36 

Std. Error  0.16 0.21 0.17   0.18 0.21 0.20   0.17 0.21 0.19 

Imputations   50     100     200  

Seed  264 5545 64728   264 5545 64728   264 5545 64728 

P-value  .028 .070 .065   .056 .065 0.051   .057 .057 .062 

Estimate  -0.42 -0.38 -0.38   -0.39 -0.38 -0.40   -0.39 -0.39 -0.38 

Std. Error  0.19 0.21 0.20   0.20 0.20 0.21   0.21 0.20 0.20 

 

7.3.7 Checking the imputation model 

To check that the imputation model produced values that seemed reasonable, given both 

subject matter knowledge and the observed data, we compared the observed and imputed 

data for the Glucose arm using summary statistics and graphs. The distributions of observed 

and imputed categorical variables for Analysis 1 (Figure 7.11) appear mostly similar. Diabetes 

type was the only one that warranted checking, but a look at the corresponding numbers to 

this graph in Table 7.10 suggest it is only because very little data was missing for this 

variable. The other group comparison analyses for the Glucose arm (analyses 2, 3 and 4) 

produced very similar categorical variable comparisons. 
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Figure 7.11 Distribution of observed and imputed categorical variables for Analysis 1 

 

Table 7.10 Categorical variable proportions of observed and imputed values (Glucose arm) 

Categorical Variable Levels Observed Imputed 

Diabetes type Type 1 51 (6%) 0.04 
 Type 2 760 (90%) 4 
 Type 1 & 2 2 (0.2%) 0 
 Other/unspecified 31 (4%) 0.1 
Employment status Full-time 13 (8%) 63 (9%) 
 Part-time 13 (8%) 96 (14%) 
 Self-employed 9 (6%) 35 (5%) 
 No employment 42 (26%) 152 (22%) 
 Retired 82 (52%) 344 (50%) 
Ethnicity Caucasian 563 (87%) 177 (87%) 
 Asian 36 (6%) 13 (7%) 
 Other 42 (7%) 12 (6%) 
Smoking status Never smoker 261 (60%) 245 (60%) 
 Past smoker 156 (36%) 135 (33%) 
 Current smoker 20 (5%) 31 (7%) 
Moderate exercise Yes 68 (76%) 597 (79%) 
 No 21 (24%) 162 (21%) 
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Figure 7.12 Distributions of observed and imputed continuous variables – Glucose arm 

  

  

  



7.3 Results and Discussion 

 197 

Table 7.11 Continuous variable means for observed and imputed values (Glucose arm) 

Variable 
Data 

Source Mean Std. 
Dev Min Max N in 

dataset 
N per 

imputation 

Baseline Variables        

HbA1c Observed 6.85 1.16 4.0 11.4 227000 227 
 Imputed 6.81 1.34 -1.1 14.5 621000 621 

BMI Observed 30.32 5.60 17.3 56.9 567000 567 
 Imputed 30.16 6.09 -6.4 59.3 281000 281 

Systolic BP Observed 130.99 14.85 75.0 192.0 365000 365 
 Imputed 129.82 16.53 32.0 257.0 483000 483 

Diastolic BP Observed 74.67 9.67 44.0 129.0 365000 365 
 Imputed 75.42 11.07 15.0 164.0 483000 483 

Outcome variables        

Mean blood glucose Observed 8.32 1.90 3.9 18.8 534000 534 
 Imputed 8.29 2.05 -1.7 20.4 314000 314 

Last/first glucose Observed 8.32 2.81 1.1 23.0 534000 534 
 Imputed 8.11 3.02 -6.4 28.1 314000 314 

HbA1c Observed 6.94 1.18 4.2 13.6 209000 209 
 Imputed 6.94 1.42 -1.4 16.1 639000 639 

BMI Observed 30.47 6.08 17.2 61.2 465000 465 
 Imputed 29.74 6.03 -13.3 58.2 383000 383 

BMI change* Observed -0.14 2.06 -9.6 8.0 322000 322 
 Imputed -0.12 2.36 -23.9 13.7 526000 526 

* BMI change marked as imputed if either the baseline BMI or the outcome BMI was imputed 

The continuous variables are compared next for the Glucose arm (Figure 7.12), and this time 

the observed and imputed values for all four group comparison analyses are displayed. None 

of them, however, were sufficiently different to suggest something was wrong with the 

model. This was likewise the case for the corresponding numbers in Table 7.11. 

One thing worth noting, however, are the minimum imputed values of some of the variables 

in Table 7.11, which are negative. Such values for the observed data would not be possible 

for any of these continuous variables, and an attempt was made, using the options of PROC 

MI, to restrict the imputed continuous values to realistic ranges. But with each of many 

attempts leading to a “floating point error” within SAS, the goal was eventually abandoned. It 
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now appears, however, that restricting the range of imputed values may do more harm than 

good, with a simulation study by Rodwell et al. (2014)842 finding that restriction techniques 

can result in bias with highly skewed data. 

7.3.8 Exchangeability between groups and between 
those missing or not missing the outcome 

Although designed as a pragmatic randomised controlled trial, factors that have led to 

considerable missing data have likely made the participants with available data less 

exchangeable, between those in the Telemonitoring group and those in the Control group, 

compared to the original randomised sample. This can be seen in the baseline characteristics 

before MI was used (Table 7.6 and Table 7.7), and it could also be seen following MI (Table 

7.12), though not always with the same variables. 

In terms of the missing data mechanism, in Table 7.13, we have the baseline characteristics 

for participants in the Glucose arm, separated into participants with the outcome observed 

(not imputed), and those who self-selected (in effect) to not have blood glucose outcome 

data in the analysis period (hence imputed). A number of variables display differences 

between the groups that suggest some such selection bias may indeed have affected the 

data. 

The level of bias in the results of our analyses cannot, of course, be known, but will depend 

on missing baseline and outcome data, where those with missing data are, on average, 

different to those with data, and this difference varies between the groups. To get a sense of 

this, Table 7.14 presents a comparison of the baseline characteristics between those with 

measured outcome values in analysis 7, in other words, those who measured their blood 

pressure for more than 208 days (just under 7 months) following enrolment, and those who 

did not have outcome values available in the analysis period of 23-Nov-2015 to 31-Jul-2016. 

Not surprisingly, those in the excluded column were more likely to have missing baseline 

data as well. Yet, most importantly, of the available baseline characteristics, around half 

displayed clear differences between the included and excluded groups. This suggests that 

the measured outcome values were likely to have been different, on average, to those that 

would have been recorded, but to an extent that cannot be known because they are missing. 
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Table 7.12 Glucose arm baseline characteristics – full dataset after multiple imputation 
Including a comparison with the p-value calculated before multiple imputation 

 
Baseline characteristics 

Telemonitoring 
N = 549 

Controls 
N = 299 

 
P-value 

Pre-MI p-value 
from Table 7.6 

Sex, Male 322 (59%) 193 (65%) 0.093 0.530 
Age, mean (SD) 67.9 (10.8) 65.9 (11.4) 0.010 0.001 
Ethnicity§, Caucasian (Missing: 22%)* 481 (88%) 259 (87%) 0.753 0.267 
HbA1c, mean (SD) (DCCT %) (Missing: 73%) 6.8 (1.3) 6.9 (1.3) 0.723 0.944 
BMI, mean (SD) (Missing: 31%) 30.4 (5.8) 30.1 (5.8) 0.546 0.838 
Diabetes Type 2 494 (90%) 270 (90%) 0.129 0.074 
Hypertension 321 (58%) 64 (21%) < .0001 < .0001 
Hyperlipidemia 162 (30%) 60 (20%) 0.003 0.037 
Cardiovascular disease 258 (47%) 115 (38%) 0.017 0.003 
Arthritis (any type) 249 (45%) 113 (38%) 0.033 0.018 
Back pain‡ 108 (20%) 64 (21%) 0.549 0.672 
Walking pain‡ 77 (14%) 44 (15%) 0.784 0.235 
Eye problem‡ 59 (11%) 33 (11%) 0.897 0.418 
Insulin or Analogue 119 (22%) 50 (17%) 0.085 0.814 
Pain relief drug 292 (53%) 139 (46%) 0.062 0.015 
Number of Type 2 diabetes drugs     

0 drugs prescribed 162 (30%) 106 (35%) 0.209 0.263 
1 drugs prescribed 241 (44%) 126 (42%)   
2 – 4 drugs prescribed 146 (27%)  67 (22%)   

Employment status (Missing: 81%)     
Full-time, Part-time or Self-employed 137 (25%) 91 (30%) 0.221 0.734 
No employment 122 (22%) 72 (24%)   
Retired 289 (53%) 137 (46%)   

Moderate exercise (Missing: 88%) 135 (24%) 49 (16%) 0.183 0.752 
Smoking status (Missing: 45%)     

Never smoker 329 (60%) 177 (59%) 0.972 0.860 
Past smoker 185 (34%) 106 (35%)   
Current smoker 35 (6%) 16 (5%)   

Risk level     
Extreme Risk 20 (4%) 12 (4%) 0.008 0.011 
High Risk 127 (23%) 57 (19%)   
Medium Risk 41 (7%) 14 (5%)   
Low Risk 191 (35%) 87 (29%)   
Self-Care 170 (31%) 129 (43%)   

* missing from included participants (total=534); ‡ related diagnosis; § some variable categories with 
low numbers not shown, see Appendix for full table 
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Table 7.13 Baseline characteristics for participants with and without observed glucose 

 
 
 
Baseline characteristics 

With observed 
blood glucose 

N = 534 
(63% of 848) 

Imputed blood 
glucose only 

N = 314 
(37% of 848) 

 
 
 

P-value 
Sex, Male 340 (64% of 534) † 175 (56% of 314) † 0.024 
Age, mean (SD) 67.3 (10.3) 67.1 (12.2) 0.804 
Ethnicity, Caucasian (Missing: 24%)* 367 (88%) 196 (86%) 0.615 
HbA1c, mean (SD) (DCCT %) (Missing: 73%)* 6.8 (1.2) 7.0 (1.1) 0.086 
BMI, mean (SD) (Missing: 33%)* 30.4 (5.5) 30.1 (5.8) 0.549 
Diabetes Type 2 485 (91%) 275 (88%) 0.157 
Hypertension 214 (40%) 171 (54%) < .0001 
Hyperlipidemia 136 (25%) 86 (27%) 0.571 
Cardiovascular disease 252 (47%) 121 (39%) 0.015 
Arthritis (any type) 231 (43%) 131 (42%) 0.667 
Back pain‡ 113 (21%) 59 (19%) 0.427 
Walking pain‡ 84 (16%) 37 (12%) 0.127 
Eye problem‡ 61 (11%) 31 (10%) 0.568 
Insulin or Analogue 86 (16%) 83 (26%) 0.0004 
Pain relief drug 277 (52%) 154 (49%) 0.435 
Number of Type 2 diabetes drugs    

0 drugs prescribed 163 (31%) 105 (33%) 0.023 
1 drugs prescribed 240 (45%) 127 (40%)  
2 – 4 drugs prescribed 131 (25%) 82 (26%)  

Employment status (Missing: 81%)*    
Full-time, Part-time or Self-employed 20 (20%) 15 (26%) 0.783 
No employment 28 (28%) 14 (24%)  
Retired 53 (52%) 29 (50%)  

Moderate exercise (Missing: 90%)* 13 (20%) 8 (35%) 0.161 
Smoking status (Missing: 48%)*    

Never smoker 177 (60%) 84 (60%) 0.964 
Past smoker 106 (36%) 50 (35%)  
Current smoker 13 (4%) 7 (5%)  

Risk level    
Extreme Risk 22 (4%) 10 (3%) 0.180 
High Risk 112 (21%) 72 (23%)  
Medium Risk 27 (5%) 28 (9%)  
Low Risk 177 (33%) 101 (32%)  
Self-Care 196 (37%) 103 (33%)  

* missing from included participants (total=534); † % of non-missing; ‡ related diagnosis 
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Table 7.14 BP baseline characteristics of participants included and excluded from Anal. 7 

Baseline characteristics 

Included 
(measured BP for more than 

208 days after enrolment) 
N = 1,390 

Excluded 
(dropped out before 208 days 
had passed after enrolment) 

N = 1,259 P-value 

Sex    
Male 796 (57%) 592 (46%) <.0001 
Female 594 (43%) 706 (54%)  

Age (years)    
Mean (SD) 70.1 (9.1) 69.6 (10.4) 0.23 

Ethnicity    
Missing (%) 291 (21%) 372 (29%)  
Caucasian 1,001 (72%) 844 (65%) 0.99 
Asian 33 (2%) 28 (2%)  
Other 65 (5%) 54 (4%)  

BMI (last weight from Jul13-Jun14)    
Missing (%) 496 (36%) 536 (41%)  
Mean (SD) 29.0 (5.3) 29.7 (6.4) 0.01 

Diabetes type    
Type 1 4 (0.3%) 5 (0.4%) 0.002 
Type 2 116 (8%) 168 (13%)  
Other/unspecified 12 (0.9%) 10 (0.8%)  
No diabetes 1,258 (91%) 1,115 (86%)  

Systolic BP (last from Jul13-Jun14)    
Missing (%) 581 (42%) 680 (52%)  
Mean (SD) 132.4 (13.3) 132.5 (13.8) 0.81 

Diastolic BP (last from Jul13-Jun14)    
Missing (%) 606 (44%) 699 (54%)  
Mean (SD) 75.6 (8.9) 75.4 (9.4) 0.81 

Cholesterol (last from Jul13-Jun14)    
Missing (%) 1,258 (91%) 1,215 (94%)  
Mean (SD) 4.4 (1.3) 4.7 (1.7) 0.16 

Hyperlipidemia 482 (35%) 395 (30%) 0.02 
Cardiovascular disease 638 (46%) 521 (40%) 0.003 
Arthritis (any type) 688 (50%) 586 (45%) 0.02 

Back pain (related diagnosis) 328 (24%) 271 (21%) 0.09 

Walking pain (related diagnosis) 179 (13%) 134 (10%) 0.04 

Eye problem (related diagnosis) 144 (10%) 122 (9%) 0.40 

Insulin or Analogue 198 (14%) 195 (15%) 0.57 

Pain relief drug 765 (55%) 616 (47%) <.0001 
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Table 7.14 cont. BP: Baseline characteristics of participants included/excluded from Anal. 7 

Baseline characteristics 

Included 
(measured BP for more than 

208 days after enrolment) 
N = 1,390 

Excluded 
(dropped out before 208 days 
had passed after enrolment) 

N = 1,259 P 

Employment status    

Missing (%) 623 (45%) 690 (53%)  

Full-time 69 (5%) 57 (4%) 0.80 

Part-time 57 (4%) 40 (3%)  

Self-employed 41 (3%) 28 (2%)  

No employment 397 (29%) 307 (24%)  

Retired 203 (15%) 176 (14%)  

Moderate exercise    

Missing (%) 691 (50%) 757 (58%)  

Yes (before Jul 2014) 434 (31%) 299 (23%) 0.02 

Smoking status    

Missing (%) 771 (55%) 810 (62%)  

Never smoker 381 (27%) 298 (23%) 0.47 

Past smoker 230 (17%) 179 (14%)  

Current smoker 8 (0.6%) 11 (0.9%)  

Risk level (last from Jul13-Jun14)    

Missing (%) 86 (6%) 94 (7%)  

Extreme Risk 46 (3%) 57 (4%) 0.16 

High Risk 227 (16%) 235 (18%)  

Medium Risk 113 (8%) 96 (7%)  

Low Risk 524 (38%) 439 (34%)  

Self Care 394 (28%) 377 (29%)  

 

 

7.3.9 Conclusions about the trial 

This chapter provides an introduction to the HCF Telemonitoring randomised controlled trial, 

highlighting features of its design and other issues that led to significant problems with 

missing data. The overall aim of the Glucose arm was to determine if the program was 

effective in reducing the mean blood sugar of participants. HbA1c is the biomarker that best 

measures this because it is strongly correlated with mean blood levels over the previous 3 

months,843 but although it was nominated as the primary outcome in the trial protocol, at 
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most, only 25% of participants had a result available for analysis, depending on the date 

range used. This highlights one of the risks of being too ‘pragmatic’ in trial design, where the 

goal of providing a clinical service and the goal of collecting data to help answer a causal 

research question may not be compatible. 

The amount of missing data in this trial and the likelihood that, on average, those with data 

missing are different to those with data recorded, in ways that may relate to their measured 

or unmeasured outcome, suggests that the assumption of exchangeability will be hard to 

defend. Nevertheless, our ultimate aim was to extract as much information as we could 

manage about the causal effect of each intervention, while fully recognising and 

communicating the uncertainty that surrounds the results. 

A significant waste of resources occurs when missing data, measurement error, or any other 

source of bias, leaves the results of a trial ignored following publication or, perhaps just as 

bad, leaves the results ignored even by the investigators. When it comes to missing data, 

many have emphasised the crucial role that study design plays and the ways that a good 

design can reduce the chance of data not being collected. 

In the case of the blood pressure arm, an improved trial design might be one that required 

participants to provide baseline and final blood pressure measurements, for example by 

using 24-hour ambulatory blood pressure monitors, or requiring a clinic visit where multiple 

measurements are averaged. This action, however, might also modify behaviour enough to 

change their results. Hence, it would only be justified if the intervention, in practice, also 

included these as components of the intervention, perhaps as part of an initial agreement 

with participants whether in a formal trial or not. Otherwise, the results might not be 

transportable from the trial to normal clinical practice.828 This would probably limit the 

number of members agreeing when offered  the intervention, but the limited participation in 

this study suggests a more targeted approach, with additional steps to increase data for 

analysis, might be a worthwhile next step. 

On the other hand, it is important to note that these participants were recruited from a 

chronic disease management program that operates without face-to-face contact, whereas 

all of the 24 telemonitoring trials referred to at the start of this chapter recruited patients 



7.3 Results and Discussion 

 204 

from primary care or specialist medical clinics. Therefore, lower participation may have been 

unavoidable in this case, when compared to most other telemonitoring trials, and might 

remain so unless the chronic disease management program transformed into something 

quite different. 

When there is missing data, use of the intervention to generate control group outcomes, or 

concerns over data accuracy, any interpretation from an analysis needs to be viewed with 

caution and possibly allow for considerable uncertainty. In the case of this trial, however, of 

clear value is that it revealed the limits of analysing data from a clinical telemonitoring 

service containing no face-to-face contact. 

With no standardised protocol for collecting data, and an existing data collection routine 

that did not encourage sufficient data accumulation for accurate inferences to be made, any 

future pragmatic trials should be aware of the potential for this and try to ensure the 

problem will not be encountered in the analysis. 

If a similar trial were to be conducted in the future, the most important lesson learned from 

this would be to ensure that (somehow) HbA1c and BP values were recorded for most 

participants, both at the beginning and at the end, each within a short time frame that was 

the same for both groups. 
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Chapter 8 
Case study: Avoiding bias and 
communicating the uncertainty 
that remains 
 

 

List of acronyms and synonyms 

RCT Randomised controlled trial 

Telemonitoring group Intervention group 

TM Telemonitoring 

BP Blood pressure 

CI Confidence interval 

P P-value from a statistical test 

N Number of participants 

DAG Directed acyclic graph 

NHST Null-hypothesis significance testing 
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8.1 Introduction 

8.1.1 Overview 

Following the preparation detailed in Chapter 7, in this chapter we present and discuss the 

results of analyses 1 to 7 that used multiple complete datasets generated with the use of 

multiple imputation. 

Additionally, we: 

• Explain how causal diagrams helped to determine the variables included in models 

• Describe a variety of sensitivity analyses 

• Explain some further steps taken to better understand and communicate the 

uncertainty that remained following the analysis 

• Present an additional exploratory analysis that investigates whether the frequency of 

measurement made a difference to the outcome, a question that involves time-

dependent confounding and for which we used the g-formula 

And finally, as stated at the start of Chapter 7, we provide conclusions that we hope are more 

accurate and relevant than we might otherwise have delivered, along with a more accurate 

sense of the uncertainty that remained following the analysis. 

8.1.2 Avoiding bias and weighing the uncertainty 

In cohort studies, some form of regression model is usually involved when attempting to 

avoid the influence of confounding bias.253 Simpler methods, such as stratification of effect 

estimates, are sometimes used but are often not practical as the number of variables in the 

model increases.844 Also, if missing data is a problem, then methods such as multiple 

imputation may be used in the attempt to avoid bias, as done in this chapter. 

Regardless of whether the estimates from the analysis are true, the inferences researchers 

make and communicate can still be biased, potentially leading other people to form biased 

inferences as well. For example, the estimated average effect size of -4 mmHg for an 
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antihypertensive drug may happen to be the true effect size in a trial, but if the 95% 

confidence interval was (-10, 2), the researchers may incorrectly infer that there was “no 

evidence” of the drug having an effect. This example is sometimes of greater concern when 

the effect concerns a risk to health, such as a possible serious side effect of a drug, and 

investigators deem the drug safe simply because p > 0.05 or the confidence interval includes 

the null.845 

Of course, we never do know what the true value is, and so an appropriate sense of 

uncertainty needs to be considered and conveyed with any estimate. This thesis has 

attempted to shed light on the sources of bias that are less well understood by researchers 

and statisticians, such as the cognitive biases that influence the inferences people make and 

express. These sources will continue to hamper progress in research unless there is improved 

understanding, not only of these sources of bias but also of methods that can reduce their 

influence. Some of these will be discussed in the final chapter, but causal diagrams have 

already been introduced and can serve multiple purposes. Apart from helping with the 

identification and selection of confounders to include in a model, the process of creating the 

diagram can also help improve our understanding of the uncertainty surrounding either an 

effect or the absence of an effect. This includes potential sources of confounding or selection 

bias that have not been controlled for in the analysis. A causal diagram can also make it 

easier to judge the plausibility and potential strength of such confounding when forming 

conclusions following the analysis. But without a deliberate effort to understand the causal 

structure that underlies the research question, researchers may remain ignorant of possibly 

important sources of bias. 

8.1.3 Sensitivity analysis 

Sensitivity analysis is another method that can reduce the chance of biased inferences. The 

idea of a sensitivity analysis dates back at least to the 1950s where the term can be found in 

articles from econometrics846 and marketing.847 The meaning they ascribed to the term was, 

in essence, to alter some aspect of the final model to see if possible variations would lead to 

different results. A few years later, the landmark paper by Cornfield et al. (1959)190 which 

assessed the sensitivity of the evidence for a causal association between smoking and lung 
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cancer, became what is widely held848 to be the first example of a sensitivity analysis in health 

research. 

Nowadays, the term sensitivity analysis refers to a variety of processes, however, there are 

two general meanings used in health research, depending on the context and the experience 

and statistical philosophy of the analyst. The first broad sense of the term is often used for 

an analysis that mimics the study’s primary analysis but varies one or more of the 

assumptions that the primary analysis has made.⁠

8 This may be a model-based assumption, 

such as using a random effects model where a generalised estimating equation model would 

be equally valid,849 or it may involve adding or removing variables in the model when there is 

doubt about a variable’s role as a confounder. In a similar way, if there is doubt about the 

best way to define the intervention (such as when it started being used, possibly influencing 

eligibility of participants or measurements), the outcome (when hard to define precisely, 

such as mean blood glucose when HbA1c is not available), or an important confounder, then 

a sensitivity analysis may use a different definition to see if the results change. In other 

words, this type of sensitivity analysis tests how sensitive the results are to changes in the 

assumptions that underlie the original results. 

Sensitivity analysis can also refer to a process, often now called bias analysis848 or 

quantitative bias analysis850 in fields such as epidemiology, where an attempt is made to 

estimate, or quantify, an unmeasured or uncontrolled bias in terms of direction (whether it 

increased or decreased the main effect), magnitude, and uncertainty.851 It was in this sense of 

the term that Cornfield et al. estimated that an unmeasured and unknown confounding 

variable would need to increase the risk of lung cancer 10-fold to be able to explain away the 

apparent association of smoking and lung cancer.188 Such bias analysis can also be used for 

measurement error and selection bias,848 and methods now exist to estimate the combined 

effect of multiple unmeasured confounding variables.852 

In the context of missing data, it is recommended that a sensitivity analysis should make 

assumptions about the missing data mechanism that are different from the primary analysis. 

Hence, if the primary analysis uses a method that is valid only if the missingness mechanism 

is MCAR, such as complete-case analysis, then the sensitivity analysis should assume that 

missingness is MAR or MNAR.778 
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In the context of a randomised trial, Morris et al. (2014)568 suggest that for an analysis to 

qualify as a sensitivity analysis, assuming that it targets the conclusions drawn from the 

primary analysis, then (a) it should address the same primary research question, (b) it should 

be possible for the analysis to reach a different conclusion, and if that happens, then (c) it 

should not be clear which conclusion should be believed. That is, if a different conclusion is 

reached, it should increase the uncertainty attached to the original conclusion rather than be 

easy to dismiss. 

The criteria by Morris et al. are general enough to also apply to observational studies, and 

the publication of these criteria suggests that many analyses that are called a sensitivity 

analysis’ do not, in fact, meet that aim. One example is the observation we made in the 

methodological review of Chapter 5 that quite a few ‘sensitivity analyses’ appeared to be no 

more than subgroup analyses. As such, they could not have challenged the original primary 

analysis conclusion. But because a sensitivity analysis can increase confidence in the original 

result if the new result agrees, a false ‘sensitivity analysis’ may in turn lead to false confidence 

in the study’s finding because it is thought that a sensitivity analysis was done.313 They can 

also be consciously or subconsciously manipulated until the result agrees with the original, 

and there is less pressure to publish additional sensitivity analyses, unlike the primary 

analysis. Thus, it is not surprising that not all prominent statisticians recommend sensitivity 

analyses. Frank Harrell, for example, recently wrote in an online forum:†† 

I've always had trouble with sensitivity analysis. When the different approaches 

disagree it gives those who favor a certain answer an excuse to use the 

analysis that most closely provides that. Contrast that with a principled 

selection of 'the' analysis, which is the way I like to operate in most cases. 

8.1.4 Alternative explanations 

However, a core reason to conduct a sensitivity analysis is to assess the evidence for one or 

(preferably) more alternative explanations,47 because it seems that unless there is a specific 

stimulus to consider alternative explanations, such as having to devise a sensitivity analysis, 

                                                 
†† discourse.datamethods.org/t/many-analysts-one-data-set-many-conclusions/1051/12 

https://discourse.datamethods.org/t/many-analysts-one-data-set-many-conclusions/1051/12
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or at least assessing how likely it is that an alternative exists, as suggested by a statistic like 

VanderWeele and Ding’s E-value,580 then people will tend to be influenced by the take-the-

first heuristic480 and fail to consider alternative explanations of a study’s results. 

Another way that a person may be stimulated to consider explanations for an association 

different from ‘the intervention caused the outcome’ is for that person to deliberately create 

a list of plausible alternative explanations.109
⁠

,308
⁠

,528
⁠

,853
⁠

,854 While the motivation to routinely do 

this may need to come from, for example, journals, regulatory agencies or research funders, 

the establishment of pre-specification of statistical analysis plans as an expected standard for 

many randomised controlled trials855 suggests that other standards of practice can happen 

with time if there is widespread agreement. And this can perhaps be done most easily with 

the aid of causal diagrams.856 

8.1.5 Time-dependent confounding and the g-methods 

Prior to this century, it was generally accepted that once an intervention had commenced, 

only data for the outcome should contribute to the analysis, with included covariates 

restricted to baseline values only. This is because when the intervention is being used, it 

might affect not only the outcome but also some of the covariates, and this can only occur in 

the group that receives the treatment, thereby introducing bias if those modified covariate 

values are conditioned on in the analysis.857
⁠

,858 But not including the covariate might also 

introduce bias, as Kalbfleisch and Prentice suggested in 1980 (discussed in Keiding and 

Clayton (2014)859). For example, if the covariate represented the severity of a particular 

symptom in a trial where the final outcome is all-cause mortality, and the symptom’s severity 

often leads to an additional treatment that increases survival (and possibly censoring), then 

leaving the covariate out of the model ignores this source of confounding. On the other 

hand, the covariate might lie on the causal pathway between the treatment and the 

outcome; hence, conditioning on that covariate could remove some of the causal effect of 

the treatment on the outcome. Standard regression methods such as linear, logistic and Cox 

regression are unable to handle time-dependent confounding. 

A solution to this problem was devised by James Robins in 1986860 which he called the g-

computation algorithm, with the ‘g’ referring to the ‘generalised’ nature of the algorithm 
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where, subject to the standard assumptions of no unmeasured or uncontrolled confounding, 

no measurement error and no model misspecification, it has the ability to provide unbiased 

estimates of the causal effect of a ‘hypothetical’ intervention, providing that the intervention, 

outcome and all covariates are measured at each individual time point.861 In the same 

original paper as the algorithm was the more compact g-computation algorithm formula, 

which by 1995 had been shortened to the g-formula.862 In addition, it is also sometimes 

referred to as the parametric g-formula because although in simple cases the g-formula can 

be used without the aid of statistical models, in most realistic analyses, the g-formula 

algorithm will require parametric models and a Monte Carlo simulation.861 

Within a few years, Robins developed an alternative method for time-dependent analysis 

with the semiparametric g-estimation for structural nested models (SNMs) (1989),863 where the 

models include structural nested failure time models (1989, 1992)69 and structural nested 

mean models (1989, 1994).70 Finally, in 1998 Robins developed a third method for time-

varying exposures that he called marginal structural models (MSMs) and which are 

commonly estimated using inverse probability weighting (IPW), which is usually inverse 

probability of treatment weighting (IPTW). Note, however, that MSMs can be estimated using 

g-computation or targeted maximum likelihood estimation (TMLE).864 Taken together, the g-

formula, inverse probability weighted marginal structural models, and g-estimation of 

structural nested models make up the group that Robins and Hernán calls the g-

methods.865
⁠

,866 

When the intervention and covariates are all discrete, with only a few time points and the 

study is large, then estimates can be calculated non-parametrically because the models are 

fully saturated and in this case, all three g-methods will give the same answer.867 In most 

cases, however, modelling assumptions are needed and these differ between the three 

methods. 

The g-formula 

Briefly, and based on examples by Robins and Hernán (2009)865 and Daniel et al. (2013),278 

the simplest version of the g-formula is for the expectation of the mean outcome 𝑌𝑌, given 

the intervention received 𝐴𝐴 = 𝑎𝑎 (e.g., treatment or control), and a set 𝐿𝐿 of baseline 
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covariates, and is defined to be the weighted sum of the means of 𝑌𝑌 within each unique set 𝑙𝑙 

of covariate values or strata and for each intervention a. The weights equal the number of 

participants in each stratum and the sum is over all the different levels 𝑙𝑙 of 𝐿𝐿 in the study 

sample. In mathematical notation, the g-formula for 𝐸𝐸(𝑌𝑌𝑎𝑎) can be expressed as: 

𝐸𝐸(𝑌𝑌𝑎𝑎) = �𝐸𝐸(𝑌𝑌|𝐴𝐴 = 𝑎𝑎, 𝐿𝐿 = 𝑙𝑙)Pr(𝐿𝐿 = 𝑙𝑙)
𝑙𝑙

 

If 𝐿𝐿 contains continuous variables, then the sum becomes an integral: 

𝐸𝐸(𝑌𝑌𝑎𝑎) = �𝐸𝐸(𝑌𝑌|𝐴𝐴 = 𝑎𝑎, 𝐿𝐿 = 𝑙𝑙)𝑑𝑑𝐹𝐹𝐿𝐿(𝑙𝑙) 

The estimates 𝐸𝐸(𝑌𝑌𝑎𝑎) for each hypothetical intervention 𝑎𝑎 can then be compared. And 

because the average is taken over the whole sample, we consider it to be marginal over all of 

the covariates, meaning that the estimated mean is in relation to an average of the measured 

covariates, as opposed to the results from a regression analysis which is conditional on 

specific values of the measured covariates. Hence, the g-formula is considered to be a 

generalisation of the technique of standardisation to enable the handling of time-varying 

treatments and confounders. 

Generalising to a time-varying setting, for the period of a study up to and including time 𝑡𝑡 

(e.g., a follow-up visit or regular home measurement), we now set 𝐴𝐴̅𝑡𝑡 = (𝐴𝐴0,⋯ ,𝐴𝐴𝑡𝑡) to 

denote the vector of treatment history up until that time and 𝐿𝐿�𝑡𝑡 = (𝐿𝐿0,⋯ , 𝐿𝐿𝑡𝑡) to denote the 

covariate history. The above formula for fixed settings now becomes:278 

𝐸𝐸(𝑌𝑌𝑎𝑎�) = �𝐸𝐸�𝑌𝑌�𝐴𝐴̅ = 𝑎𝑎�, 𝐿𝐿� = 𝑙𝑙�̅
𝑙𝑙∈̅ℒ̅

�𝑓𝑓�𝐿𝐿𝑡𝑡−1 = 𝑙𝑙𝑡𝑡�𝐴𝐴̅𝑡𝑡−1 = 𝑎𝑎�𝑡𝑡−1, 𝐿𝐿�𝑡𝑡−1 = 𝑙𝑙𝑡̅𝑡−1�
𝑇𝑇

𝑡𝑡=0

 

The g-formula for time-varying exposures can provide estimates 𝐸𝐸(𝑌𝑌𝑎𝑎�) for each treatment 

by simulating the joint distribution of the intervention history (if received on multiple 

occasions), covariate history, and the outcome, such that the means of 𝑌𝑌 are estimated for 

each unique combination of the intervention and covariate history. In other words, 

𝐸𝐸(𝑌𝑌|𝐴𝐴 = 𝑎𝑎, 𝐿𝐿 = 𝑙𝑙) is calculated for each combination of the treatment and covariates at 

each time point. 
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One potential downside of using the g-formula is what has been called the “g-null paradox”, 

where a null hypothesis of no effect would tend to be rejected with a large study, even when 

it is true.278 Hence, the g-formula is not recommended when interest lies in testing such a 

causal null hypothesis. Neither marginal structural models nor g-estimation exhibit this 

problem, however.865 

Marginal structural models and inverse probability weighting 

The most popular of the g-methods by a considerable margin, marginal structural models 

and their estimation by inverse probability of treatment weighting (IPTW)864
⁠

,868 are perhaps 

the easiest to understand and implement with available software, helping to explain their 

appeal.865
⁠

,869 

The weights for each individual are calculated as the inverse of the probability that they 

received treatment, conditional on the measured potential confounders. In other words, the 

inverse of the propensity score.59 The weighting of a participant by the conditional 

probability that they are in the intervention group can remove confounding by creating a 

pseudo-population where participants with each unique combination of covariate values will 

have an equal number who received the treatment and an equal number who received the 

control. Further details are beyond the scope of this chapter, however, with the g-formula 

the only method that we make use of. Likewise, we do not feel that any understanding of the 

more complicated g-estimation can be achieved without an in-depth study, and hence we 

will not try to provide a simple description nor explore it any further here. 

On a final note, while one or more of the g-methods are an obvious choice to deal with 

time-dependent confounding, some recent developments288 suggest they are no longer the 

only option. Nevertheless, such methods will need to be understandable without exhaustive 

effort, if any but a small number of specialists are to use them. 
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8.2 Methods 

8.2.1 Group comparisons 

To assist the reader, Tables 3 and 4 from Chapter 7 have been combined (Table 8.1) to show 

the group comparison analyses that were devised following an assessment of missing data. 

Table 8.1 Intervention, control and definitions of the sample used for group comparisons 

Glucose arm Analysis 1 Analysis 2 Analysis 3 Analysis 4 

Participants All* All* All* All* 

Measurements 
used to create 
outcome† 

All first-in-day 
glucose 
1-Jul-15 to 
30-Nov-15 

First-in-day glucose 
1-Jul-15 to 
30-Nov-15 
satisfying below 

Any HbA1c 
1-Apr-15 to 
31-Dec-15 

BMI from height and 
• Last weight 1-7-13 

to 30-6-14 (baseline) 
• First weight 

1-4-15 to 31-12-15 

Telemonitoring 
outcome 

Mean blood 
glucose 

Mean of middle 5 
measurements♯ 

HbA1c Change in BMI from 
baseline 

Control 
outcome 

Mean blood 
glucose 

Mean of first 5 
measurements HbA1c Change in BMI from 

baseline 

BP arm Analysis 5 Analysis 6 Analysis 7 

Participants All All All who measured on at least 5 days, 
at least 208 days after enrolment 

Blood pressure 
measurements 
used† 

Any from 
23-Nov-15 to 
31-Jul-16 

Any from 23-Nov-15 to 31-Jul-16 but daily averages used 

Telemonitoring 
outcome 

Middle 5 BP 
measurements‡ BP measurements from middle 5 days§ 

Control 
outcome 

First 5 BP 
measurements¶ BP measurements from first 5 days** 

† before multiple imputation; * following multiple imputation; ♯ mean of 5 measurements closest to 
31-Mar-16 (middle of 23-Nov-15 to 31-Jul-16) ‡ mean of 5 measurements closest to 31-Mar-16 (middle of 
23-Nov-15 to 31-Jul-16); § mean of 5 days with measurements closest to 31-Mar-16; ¶ mean of first 5 
measurements 23-Nov-15 to 31-Jul-16; ** mean of first 5 days with measurements 23-Nov-15 to 31-
Jul-16 
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All outcomes were continuous, so a linear regression model was used to compare the 

Telemonitoring and Control groups. And although most participants recorded more than 

one blood glucose or blood pressure measurement, they were not recorded at the same 

time or with the same frequency, so a single summary measure was thought to be the best 

way to compare measurements instead of attempting a longitudinal model. 

Figure 8.1 Causal diagram showing the causal structure for analyses 1 and 2 

 

 

Based on the causal diagram for mean blood glucose as the outcome (Figure 8.1), a 

multivariable linear model was fitted to the imputed datasets using the SAS multiple 

imputation procedures PROC MI and PROC MIANALYZE, and PROC GLM, with the following 

baseline covariates: 
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Telemonitoring, Age, Sex, Ethnicity, baseline HbA1c, baseline BMI, Diabetes type, 
Hypertension, Hyperlipidaemia, Cardiovascular Disease, Arthritis (any type), Back 
Pain, Walking Pain, Eye Problem, Insulin or Analogue, Number of diabetes drugs, 
Pain relief drug, Employment status, Self-employed, Moderate exercise, Smoking 
history, Risk Level 

The same linear model was used for each of the four outcomes. 

In terms of forming inferences from the results, to reduce the chance of accidental bias 

through a subconscious process such as ‘significance questing’,324 we followed the guidance 

of the American Statistical Association383 and many prominent statisticians294 by not using 

significance testing. That is, while p-values were calculated, we did not use a threshold such 

as 0.05 to declare support for an association, which we believe can easily mask the true level 

of uncertainty. Instead, p-values were used simply as a guide, along with confidence intervals 

and knowledge of potential confounding and selection bias, to help form judgements about 

the strength of any associations indicated by the data and model at hand. 

Finally, only the estimates of effect for the intervention group were reported from the results 

of the multivariable models, rather than the estimates for all of the variables in the model, as 

is not uncommon. This was to avoid what has been termed the “table 2 fallacy”,870 where the 

estimates for the confounders in the same model tend to also be interpreted as effect 

estimates when presented in a table (often “Table 2” in health research articles), though the 

“confounders of the confounders”678 are often going to be missing from the model, and 

some covariates are also likely to be mediators for the effect of other covariates. This last 

possibility can be seen in Figure 8.1 with, for example, the effect of Baseline BMI at least 

partly mediated, and thus diluted, by Baseline HbA1c. 

 

8.2.2 Sensitivity analyses 

Alternative definitions of the outcome 

For an individual participant who uses the telemonitoring intervention, it is hard to define 

what they or their doctor might consider to be a successful outcome, other than the long-

term goals of avoiding the health problems associated with poor glucose or blood pressure 
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control. Hence, it was worth varying the definitions we used to see if the results were 

consistent. Especially if this may have avoided a possible source of bias and thus tested for, 

or presented evidence for, an alternative explanation of the results. 

Measurement trajectories 

While comparison with a control group is very important for good evidence, analysing 

individual and group trajectories of measurements can provide further information to help 

understand the effects of an intervention. For both the blood glucose and blood pressure 

arms, we examined whether there was evidence that the telemonitoring program led to 

lower values, on average, being recorded over time. 

Examination of assumptions 

Numerous assumptions were made implicitly during the analysis and we endeavoured to 

examine any that seemed questionable. These assumptions included that: 

1. the delivery of the intervention did not change over time in a way that influenced the 

outcome (the consistency assumption) 

2. the intervention had no effect on the initial 5 measurements 

3. if the outcome had been assessed in a different way, a similar conclusion would have 

been reached 

4. the difference in group outcomes was not sensitive to small changes in the dates on 

which they were compared 

5. no measurement error existed sufficient to have changed conclusions 

E-values 

We note here that E-values were calculated for one of the BP arm analyses, however, it was 

decided that they were not readily interpretable within the context of this trial. As an 

explanation, VanderWeele and Ding580 define an E-value as “the minimum strength of 

association, on the risk ratio scale, that an unmeasured confounder would need to have with 

both the treatment and outcome, conditional on the measured covariates, to fully explain 

away a specific treatment–outcome association.” However, they also state that for a 
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“difference in continuous outcomes … an approximate E-value may be obtained by applying 

the approximation RR ≈ exp(0.91 × d) in the E-value formula”. In other words, while an E-

value could be calculated for the results in this trial, as a risk ratio, we could not clearly relate 

it to differences found in continuous measurements. 

 

8.2.3 Alternative explanations 

A deliberate attempt was made to think of alternative explanations for the results and to list 

them. In doing so, it was hoped that we would gain a more accurate sense of the uncertainty 

that remained following the analysis, and that we could communicate this more effectively to 

HCF and any other interested parties. 

 

8.2.4 The effect of measurement frequency 

Two clinical questions of interest were: 

1. If a person used the telemonitoring device more often, was their mean blood glucose 

level more likely to be lower at the end of the trial, compared to no change or 

higher? 

2. Is there likely to be any benefit from encouraging participants to take regular 

measurements? 

To help answer these questions the following research question was created: 

Did the frequency of home blood glucose self-measurement, within this telemonitoring 

program, have a causal effect on the group’s mean blood glucose level over time? 

We created a directed acyclic graph (DAG) (Figure 8.2), initially based on a design from 

Daniel et al.,871 but we added a few features that we thought might improve the ease and 

speed of understanding, with its intended use to explain the potential for time-dependent 

confounding to HCF researchers. These were simply labelling some arrows, using colours, 
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and using + or – to denote whether the causal effect was expected to increase or decrease 

the variable being acted on. 

The DAG shows a number of plausible causal associations. First, there is our initial hypothesis 

that the number of measurements each week might have an influence on the mean blood 

glucose of participants in the following week. This relates to the idea that measuring blood 

glucose will alert the participant to higher than expected values, if present, and hopefully 

prompt some action such as lowering sugars in the diet or increasing exercise. Second, the 

number of measurements in each successive week might be causally linked through the 

development of habits. However, third, it’s also possible that worse than expected blood 

glucose levels in one week, might increase measuring frequency in the following week due to 

increased motivation to know what the blood glucose levels are. Alternatively, better than 

expected results might create less of a psychological need to know and so measurement 

frequency might decrease. 

If any of these occurred, then a standard analysis of the data might find that higher 

measurement frequency was associated with higher blood glucose levels and lower 

measurement frequency with lower blood glucose levels. Hence, the relationship estimated 

using standard techniques might end up suggesting the opposite of what really occurred. To 

deal with this problem, we decided to use the parametric g-formula, partly because the 

‘treatment’ was effectively continuous and there was some mention in the literature on 

marginal structural models that “one should be careful when using IP weighting for 

continuous treatments because the effect estimates may be exquisitely sensitive to the 

choice of the model for the conditional density”.59 As it turned out, however, we eventually 

did define a binary treatment of sorts. 
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Figure 8.2 Causal diagram showing time-dependent confounding potential (Glucose arm) 
Causal effect of blood glucose measurement frequency on changes in mean blood glucose over time, 
where + or − denotes the expected increase or decrease of the variable being acted on 

 

 

For this analysis, the intervention (or treatment) was initially defined vaguely as more 

frequent measuring of blood glucose at home, while the alternative intervention was defined 

as non-frequent measuring. In the trial, the frequency was controlled by the participant and 

each participant’s measurement frequency (by month) was calculated. 

The outcome used in this analysis was the mean, each week, of all first-in-day blood glucose 

measurements between 1 Jul 2014 and 31 Dec 2015, with each participant’s data modified so 

that the week number for their first weekly or monthly measurement was set as occurring in 

week 1 (rather than week 5 or week 8, etc). 

The eligible participants were those in the Telemonitoring group with at least 1 blood 

glucose self-measurement in each of the 14 months covered. 



8.2 Methods 

 221 

Note that the consistency assumption would imply that for measurement frequency, the 

blood glucose outcome should be the same whether the person was “required” to measure 

blood glucose daily or happened to do so on their own. 

Before using the g-formula, we used a variety of techniques to examine whether time-

dependent confounding may have occurred. But as with the g-formula, the process was 

more one of discovery than pre-planned, and hence the process will be described with the 

results. 
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8.3 Results and Discussion 

8.3.1 Glucose arm group comparisons 

A summary of the main statistical results for the Glucose arm is shown in Table 8.2. 

Table 8.2 Glucose arm group comparison results 

Analysis Outcome  N 

N with 
outcome 
missing*  

Results  

Estimate† of difference 
between groups (95% CI) P 

1. Mean blood 
glucose 

 

TM 

Controls 
 

549 

299 
 

278 (51%) 

36 (12%) 
 

 

-0.38 mmol/L (-0.78, 0.02) 0.06 

2. Middle 5 vs 
first 5 glucose 
measurements 

 

TM 

Controls 
 

549 

299 
 

278 (51%) 

36 (12%) 
 

 

-0.59 mmol/L (-1.03, -0.14) 0.01 

3. HbA1c 

 

TM 

Controls 
 

549 

299 
 

436 (79%) 

203 (68%) 
 

 

-0.13 % (-0.49, 0.24) 0.50 

4. BMI change 
from baseline 

 

TM 

Controls 
 

549 

299 
 

378 (69%) 

148 (49%) 
 

 

-0.19 (-0.73, 0.35) 0.49 

* Before multiple imputation; † Mean difference in outcomes, adjusted for baseline values 

Some evidence of an association is apparent between both of the glucose outcomes and the 

Telemonitoring intervention. But while it should be remembered that both outcomes relate 

to the same overall dataset, the small subset of the first’s outcome data that the second 

analysis uses, is very different in important ways.  

One other concern is that a difference of 0.38 or 0.59 mmol/L may not be clinically 

meaningful. There is considerable doubt about the accuracy of these estimates, however, 

due both to the amount of missing data, as well as other possible biases we will explore 

below. There was no evidence found, however, that would suggest changes in HbA1c or BMI 

to the program. 
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8.3.2 Glucose arm group comparison sensitivity analyses 

For analysis 1 

In Figure 8.3, we compare the distribution of the dates on which blood glucose 

measurements were taken for the two groups. 

Figure 8.3 Glucose arm distribution of measurement dates for each group before 
matching 
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The difference can be explained by the fact that the Control group (top) started recruiting at 

the beginning of this period and so as enrolment progressed, we see the total number of 

participants measuring each week increasing. The Telemonitoring group participants 

(bottom), however, are those that have continued measuring for many months and, with 

most who have made it to this stage less likely to stop, the number of participants measuring 

each week remains relatively constant. 

Figure 8.4 Glucose arm distribution of measurement dates for each group after matching 
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To rule out the possibility that changes in intervention delivery over time might have had an 

effect on the outcome, we matched participants measurements by date so that the 

distribution of dates that measurements were taken on became roughly equal between the 

two groups (Figure 8.4). While there was no specific reason to suspect that the intervention 

did change over time, it is plausible that as staff gained greater experience with the 

intervention or there were changes in personnel, then the telemonitoring component, or 

even the types of participant that agreed to participate, might have changed slightly. 

Table 8.3 Glucose arm model results with and without date matched measurements 

 Variable Estimate (95% CI) * P-value 

With matching on date Telemonitoring -0.44 mmol/L (-0.85, -0.03) 0.03 

No matching Telemonitoring -0.38 mmol/L (-0.78, 0.02) 0.06 

* the estimate is for the mean difference in mean blood glucose, following multiple imputation and 
adjusted for baseline values 

Table 8.3 compares the results and suggests little difference. Assuming that no p < 0.05 cut-

off was used to designate the status of evidence, we would not alter any previous 

conclusions. 

For analysis 2 

One potential concern was that the intervention might have had an influence on participant 

behaviour as soon as they started measuring. If this were the case, the glucose 

measurements of the Control group might have rapidly dropped within the first 5 

measurements that they recorded. Figure 8.5 tested this by plotting lines of best fit through 

the first 5 measurements from the Control group and also from the Telemonitoring group. 

While a slight downward slope is suggested in the Control group curve, it is not present in 

the Telemonitoring curve, and the drop is too small to represent a concern. A simple linear 

regression model found that the slope had a p-value of 0.11 (for the Telemonitoring group P 

= 0.96). Thus, we can be somewhat confident that the first 5 measurements of the Control 

group are a reasonable approximation of the group’s mean blood sugar levels before the 

Telemonitoring program had a chance to influence it. 
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We added an interaction term for glucose measurement order number to the intervention 

term in a PROC MIXED model instead of using PROC GLM which did not appear to allow it, 

however, it only made a small difference to the Type 3 p-values. 

Figure 8.5 Glucose arm LOESS lines for the first 5 (Controls) or middle 5 (Telemonitoring) 

 

 

8.3.3 Visually judging line of best fit graphs 

The curves in Figure 8.6, Figure 8.7 and Figure 8.8 appear to suggest a reduction in blood 

glucose, on average, over the trial period in the Telemonitoring group members who used 

the glucometer: 454/549 participants (83%). There also appears to be an initial sharp drop in 

blood glucose levels, on average, that lasts about 2 months. Following this, the level appears 

to decline slowly until a rebound appears after 7 months and peaks at around 1 year. After 

this, the level starts to drop again, though by this point more than half of the participants 

who started recording their blood glucose have stopped (see Table 8.5) so the characteristics 

of these remaining participants are probably a little different to those no longer recording. 
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Figure 8.6 LOESS line for mean monthly blood glucose of Telemonitoring participants 

 

Figure 8.7 LOESS line for mean monthly blood glucose of Control participants 
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Figure 8.8 LOESS line for mean monthly glucose of Telemonitoring participants zoomed-in 

 

 

8.3.4 Glucose measurement trajectories 

For this analysis, the outcome was the weekly or (separately) monthly mean of all first-in-day 

blood glucose measurements. The included participants were the Telemonitoring group 

members with at least 2 glucose measurements (minimum for a trajectory line) between 1 

July 2014 and 31 December 2015. This resulted in 324/512 (59%) participants, and the 

research question was: 

Does the self-measurement telemonitoring program cause at least some participants to 

make changes to their lifestyle, diet, medication adherence or other factors, that result in a 

lower mean blood sugar level over time? 

The methods we used were: visually judging line of best fit graphs; using time series 

regression models to estimate the mean slope of blood glucose over time; and comparing 

the proportion of participants whose mean blood glucose increased or decreased over time. 
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The main trigger for looking at the trajectories of the Telemonitoring glucose group’s values 

was the lack of baseline values with which to compare changes between the two groups. 

The LOESS procedure that produced the graphs above assumes that the blood glucose 

measurements are independent. This is unlikely to be true for each individual participant, 

however, because values of blood glucose close in time will often be correlated through day-

to-day similarities in lifestyle, diet, medication and other factors that will be less similar with 

time gaps more distant, such as one year later. This phenomenon is termed autocorrelation 

and will lead to inflated standard errors if autoregressive terms are not included in regression 

models.872 However, autocorrelation does not bias the estimated slopes of the fitted 

regression lines,873 so for the purposes of calculating a mean of the slope estimates, 

autocorrelation can be safely ignored. 

For each participant, we calculated an estimate of their blood-glucose-over-time linear slope, 

and then calculated the overall mean slope for all participants with at least 10 weeks’ worth 

of measurements, as well as 30 or more weeks’ worth (Table 8.4). Shown also is the result of 

a one sample t-test. 

Table 8.4 Average slope of weekly mean blood glucose for Telemonitoring arm 

Participants 
measured for N Min Max Mean 95% CI for Mean P-value 

At least 10 weeks 314 -0.372 0.192 -0.0067 -0.0121 -0.0013 0.015 

At least 30 weeks 243 -0.102 0.155 -0.0017 -0.0053 0.0019 0.344 

A one sample t-test was used to determine, for the distribution of blood glucose slopes with a 
minimum number of weeks with measurements set to 10 or 30, the chance that it is sampled from a 
population of blood glucose slopes with a mean of 0. 

If this mean change in blood glucose were maintained for one year, the drop in a 

participant’s mean blood glucose would equal 52 x -0.0067 = -0.35 mmol/L. But it is worth 

noting that the individual trajectories were quite variable (see Figure 8.9 for some examples), 

with some seeming to decrease and some increase. 
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Figure 8.9 Some examples of individual participant’s weekly mean blood glucose series 
with time series predicted regression lines 
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An illustration of the variability of individual trajectories can be seen in Figure 8.10 and 

Figure 8.11, where the graphs of participants’ weekly mean glucose trajectory slopes appears 

to be an approximate normal distribution about a mean that is close to zero. 

Figure 8.10 Distribution of weekly mean blood glucose trajectory line slopes 10+ weeks 

 

Figure 8.11 Distribution of weekly mean blood glucose trajectory line slopes 30+ weeks 
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Supporting this perspective, Table 8.5 shows that a roughly equal number of participants had 

a positive or negative trajectory, though the subgroup that measured the longest appeared 

to favour negative trajectories where glucose levels rose slightly. This suggests that the 

program did not result in an overall reduction in mean blood glucose levels, at least not to 

any meaningful degree. There is still great uncertainty, however, because of the quantity of 

missing data, and in this case, the number that either did not use the glucometer or who did 

not use it for more than a few months. 

Table 8.5 Participants with a positive or negative glucose slope estimate 

Minimum weeks 
with measurements 

Number of participants 

Mean glucose 
went down 

 Mean glucose 
went up 

Total 
participants 

10 158 50%  156 50% 314 

15 147 49%  152 51% 299 

20 134 48%  144 52% 278 

25 124 48%  135 52% 259 

30 113 47%  130 53% 243 

35 104 45%  126 55% 230 

40 94 45%  116 55% 210 

45 83 44%  107 56% 190 

50 67 42%  91 58% 158 

54 57 43%  77 57% 134 

58 49 43%  64 57% 113 

 

 

8.3.5 BP arm group comparisons 

Comparison of the baseline variables between the Telemonitoring group and the Control 

group, detailed in Chapter 7, suggested some differences between the groups, at least in 

terms of the data available. Analyses 5 and 6 used all of the BP arm participants, with missing 
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values handled by multiple imputation before comparing the groups. Analysis 7, on the other 

hand, involved restricting the participants to those who measured for at least 208 days to try 

to make the Telemonitoring and Control groups more alike, though in the end, this did not 

appear to have been achieved when we looked at the baseline tables. 

At first glance, the results in Table 8.6 appear to provide some support for the idea that the 

telemonitoring program caused an average drop in blood pressure in the intervention group. 

However, it is uncertain whether these are of sufficient magnitude to be regarded as clinically 

meaningful. For example, a recent meta-analysis874 focused on a 10 mmHg reduction in SBP 

as their criteria, while another study875 suggested a reduction of at least 20 mmHg in SBP or 

10 mmHg in DBP could be regarded as clinically meaningful. 

Part of the precision that is indicated by the p-values comes from the reasonably large 

sample size. It is nevertheless a stronger result in support of the intervention than we saw for 

the Glucose arm, though in common with that arm there remains much uncertainty. 

Table 8.6 BP arm comparisons between the Telemonitoring and Control groups 

Analysis Group N 

N with 
outcome 
missing*  

 Results for both groups  

BP 
type 

Estimate† of difference 
between groups (95% CI) P 

5. 

 
 

TM 

Controls 
 

1,429 

1,259 
 

541 (38%) 

198 (16%) 
 

 SBP 

DBP 
 

-8.0 mmHg (-9.3, -6.7) 

-4.1 mmHg (-4.9, -3.3) 
 

<0.0001 

<0.0001 
 

6. 

 
 

TM 

Controls 
 

1,429 

1,259 
 

541 (38%) 

198 (16%) 
 

 SBP 

DBP 
 

-7.7 mmHg (-8.9, -6.5) 

-4.0 mmHg (-4.7, -3.3) 
 

<0.0001 

<0.0001 
 

7. 

 
 

TM 

Controls 
 

773 

617 
 

0 

0 
 

 SBP 

DBP 
 

-6.6 mmHg (-8.0, -5.3) 

-3.1 mmHg (-3.9, -2.3) 
 

<0.0001 

<0.0001 
 

* Before multiple imputation; † Mean difference in outcomes, adjusted for baseline values 
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8.3.6 BP arm sensitivity analyses 

Instability of gap between group outcomes over time 

The Lowess lines in Figure 8.12 suggest that: 

1) The mean of the device measurements in the Telemonitoring group (blue line) varied 

considerably over the two years. Possible reasons for this include the effect on mean 

blood pressure of certain types of people dropping out; and participants becoming 

used to the intervention so that it no longer prompted lifestyle changes or other 

factors that might have affected their blood pressure. 

2) If the analysis period had, by chance, been different, for example 23 Nov 2015 to 31 

Oct 2016 to include some people’s initial Telemonitoring group measurements that 

occurred after 31 July, the mid-point would then be 15 May 2016 (vertical red dashed 

line) instead of 31 March (vertical green dashed line), and the gap between the first 5 

measurements of the Control group and the Telemonitoring group’s mid-5 values 

(between the horizontal orange dashed line and the pink line) would be noticeably 

smaller. Likewise, if the Control group had, by chance, commenced enrolling in 

August 2015, one year after the Telemonitoring group’s first device measurements, 

and the comparison was made at this time point (vertical purple dashed line), the gap 

would also have been considerably smaller. 

Hence, the size of the gap estimated by the primary analysis and reported in Table 8.6, is 

probably larger than it might have been because of when it happened to occur by chance. 
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Figure 8.12 Lowess lines highlighting variability of gap between BP arm groups 

 

Early group = Telemonitoring group; Late group = Control group; TM = telemonitoring device 
measurements 

The possibility of pre-TM BP measurements as Control group outcome 

Unlike in the Glucose arm, where no pre-Telemonitoring trial blood glucose measurements 

were available, in the BP arm, some pre-trial blood pressure measurements were occasionally 

reported by participants during phone calls with Healthways nurses, as part of the My Health 

Guardian program. Referring to these as ‘Reported’ measurements, we explored the 

possibility that these values would serve as better Control group measurements than the first 

5 intervention measurements. To remove the potential impact that staggered enrolment 

might have had on average BP measurements, we first standardised the Telemonitoring 

group’s device measurements so that all measurements were shifted back in time with the 

effect that the first measurement occurred on 1 July 2014. The Control group’s Reported 

values were left with the same date. To avoid confusion, the week starting 1 July 2014 was 
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then called week 0. We used a total of 72 weeks as this was the number of full weeks from 1 

July 2014 to 23 November 2015. 

We must first make the assumptions that 

1. The Control group participants with Reported values were exactly the same type of 

people as those in the Telemonitoring group 

2. All BP measurements were accurately reported, both from the Telemonitoring device 

and reported by participants over the phone 

Using kernel-weighted local polynomial regression to provide a line of best fit through 

weekly means of each group’s BP values, Figure 8.13 shows some overlap of the lines. We 

included 99.9% confidence intervals because the amount of missing data suggests that 

significant unmeasured confounding might exist that the random-error-only 95% confidence 

intervals do not take into account. 

If the Telemonitoring device measurements and Reported measurements were of similar 

accuracy, we would expect both lines in Figure 13 to start at the same point. And if the 

intervention caused better blood pressure over time compared to not using the intervention, 

we would expect the blue Telemonitoring curve to slope down more steeply, or at least stay 

below the Control group’s curve, with the gap getting wider as the weeks progress. But 

because the two types of measurements did not start with the same mean blood pressure, 

the trajectories are difficult to interpret. We could potentially shift the Control group’s 

measurements higher so that the starting values are the same, and then compare the 

trajectories. However, the small number of participants (examined below) suggests this 

would probably give a biased result because it assumes that all participants’ Reported 

measurements were in error by the same amount. 

Figure 8.14 examines the number of participants contributing measurements to Figure 8.13. 

Comparing the Y-axis scales of each bar graph suggests that only a small number provided 

Reported measurements compared to the number contributing Telemonitoring device 

measurements each week. In total, there were 1303/1429 (91%) Telemonitoring device 

measurements and 481/1259 (38%) Reported measurements in this timeframe. 
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Potential bias from measurement error 

Jump from last Reported BP to first Telemonitoring device BP 

The Lowess curves in Figure 8.15 and Figure 8.16 suggest that the initial Telemonitoring 

device measurements (the beginning of the line on the right in each graph) were higher, on 

average, than the participant’s pre-trial Reported measurements. We compared the last few 

Reported measurements (5 or less) with the first few Telemonitoring device measurements (5 

or less) (Table 8.7) and there is a clear difference, suggesting that the Reported values might 

have been lower than in reality – a possibility because the measurements are reported over 

the phone to Healthways nurses and a reporting bias has been reported in the literature for 

home monitored BP.876 Alternatively, initial measurements taken with the Telemonitoring 

device might have been higher on average, than in reality, perhaps reflecting a ‘white coat’ 

type of effect.877 It is not uncommon to discard measurements from the first day of home 

blood pressure monitoring because it is believed they are often higher than a patients’ 

normal BP.878
⁠

,879 Or both may be at work in producing this difference. These possibilities 

provide one alternative explanation for part or all of the effect of the intervention. 
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Figure 8.13 TM (Early group) device and Control (Late group) reported weekly means 

 

Figure 8.14 Participants contributing to the weekly means above (note Y axis scales) 
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Figure 8.15 Systolic BP Lowess lines of best fit for Reported and Telemonitoring values 

 

Early group = Telemonitoring group; Late group = Control group 

Table 8.7 Last 5 Reported compared to first 5 Telemonitoring measurements 

 Telemonitoring group  Control group 

 Mean SBP Mean DBP  Mean SBP Mean DBP 

Last 5† Reported 
measurements 133 76  133 76 

First 5† Telemonitoring 
measurements 139 80  140 81 

† less if 5 not available 
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Figure 8.16 Diastolic BP Lowess lines of best fit for Reported and Telemonitoring values 

 

Early group = Telemonitoring group; Late group = Control group 

We examined the initial Telemonitoring device measurements in Table 8.8 to see if they 

suggest an initial spike before quickly settling down, presuming that the participants quickly 

became comfortable in using the device. However, the measurements appear reasonably 

consistent with each other. The mean number of days between each successive 

measurement of all participants is shown in Table 8.9 and it suggests that quite a few 

participants measured with gaps of a week or more between each use. It is possible that this 

may have prevented complete relaxation developing when using the device. 
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Table 8.8 Initial Telemonitoring device BP mean measurements 

Telemonitoring device 
measurements 

Telemonitoring group 
 

Control group 

SBP DBP  SBP DBP 

All participants†      

Mean of 2nd to 6th 139.4 80.1 
 

140.1 81.2 

1st 138.6 80.7 
 

140.1 81.7 

2nd 139.3 80.4 
 

140.5 81.3 

3rd 139.5 80.4 
 

139.5 81.1 

4th 138.7 79.7 
 

139.5 80.9 

5th 139.4 79.7 
 

139.3 80.9 

6th 139.0 79.9 
 

138.8 80.3 

Analysis 3 & 5 participants‡ 
     

Mean of 2nd to 6th 137.6 79.6 
 

138.3 80.3 

1st 136.5 79.7 
 

137.5 80.5 

2nd 137.6 79.8 
 

139.0 80.5 

3rd 138.1 80.1 
 

138.1 80.2 

4th 137.4 79.3 
 

138.2 80.4 

5th 137.6 79.3 
 

138.3 80.5 

6th 137.2 79.3 
 

137.7 79.8 
† 1241 participants had at least 2 Telemonitoring device measurements; 188 had 0 or 1 
‡ 772 participants had at least 2 Telemonitoring device measurements 

Table 8.9 Days between first 6 Telemonitoring device measurements (all participants) 

Telemonitoring device  
measurement interval 

Days between measurements 

Telemonitoring group  Controls 

Mean Median  Mean Median 

1st to 2nd 13 days 5 days  8 days 5 days 

2nd to 3rd 13 days 6 days  8 days 5 days 

3rd to 4th 15 days 6 days  9 days 5 days 

4th to 5th 15 days 6 days  8 days 5 days 

5th to 6th 14 days 6 days  7 days 4 days 
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If the initial measurements of both groups were found to be higher than the participants 

mean BP was in reality, then the differences found in the group comparison analyses might 

have overstated the effect because we compared the non-initial measurements of the 

Telemonitoring group with the initial measurements of the Control group. 

Accuracy of Reported measurements 

With concerns over the accuracy of measurements, we next examined the Reported and 

Telemonitoring device values after first standardising all participants’ measurements so that 

it was as if every participant recorded their first Telemonitoring device measurement in the 

same week (Week 0). Lowess lines of best fit are shown in Figure 8.17 and Figure 8.18 using 

these values. The Reported values appear to trend higher in the weeks before the first 

Telemonitoring device measurement. It is unclear why this might have happened, though the 

measurement number is small. It does, however, increase doubt over the accuracy of the 

Reported measurements. 

Once Telemonitoring had started, some Reported measurements were still recorded, and the 

curves of those measurements largely follow the Telemonitoring curves which suggests a 

mixing of Reported and Telemonitoring values. To check on this, Table 8.10 shows the 

proportion of Reported measurements that were the same as the previous Reported or 

Telemonitoring device measurement and suggests that more than half of the Reported 

measurements after Telemonitoring had started are, in fact, the most recent Telemonitoring 

measurement. This is perhaps not surprising, however, as Telemonitoring measurements 

were those readily available to participants during phone calls to nurses. 

Table 8.10 Proportion of Reported measurements that were the same as the previous 
Reported or Telemonitoring device measurement 

 Reported BP Date 
before Telemonitoring Start 

Reported BP Date 
after Telemonitoring Start 

Telemonitoring group 123 / 1,692 (7%) 1,671 / 2,653 (63%) 

Control group 660 / 2,851 (23%) 799 / 1,338 (60%) 
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Figure 8.17 Lowess lines of best fit comparing standardised Telemonitoring group TM 
device and Reported values 
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Figure 8.18 Lowess lines of best fit comparing standardised Control group Telemonitoring 
and Reported values 
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However, on inspection of the data, almost a quarter of the Reported measurements before 

Telemonitoring started were also repeats. This suggests that using initial Telemonitoring 

device measurements as baseline values for the Control group might provide more valid 

estimates than using the Reported values. 

 

8.3.7 Alternative explanations 

One of our aims was to help those involved in the trial develop a more complete 

understanding of the information the trial can provide and the uncertainty that needs to be 

taken into account. To fully understand the level of uncertainty that exists around research 

findings, it is essential to consider any plausible alternative explanations for part or all of the 

observed effects of the intervention being investigated. For example: 

• Participants who were less likely to modify their lifestyle to lower their blood glucose or 

blood pressure may have been more likely to drop out of the Telemonitoring group 

because they lacked the motivation to self-measure. 

 Those remaining in the Telemonitoring group would have been more willing to 

make the necessary lifestyle changes and so their measurements improved. 

Similarly motivated participants in the Control group provided only their initial 

measurements so later dropout was not a problem. 

 This suggests that the Telemonitoring group participants who provided outcome 

data for the analysis might have been more motivated to make lifestyle changes 

than Control group participants, regardless of the effect of the intervention, and 

this might partly or wholly explain any difference in the outcomes observed 

between the two groups. 

 The causal diagram in Figure 8.19 illustrates one specific example. 

• One assumption made in both analyses was that the Control group’s outcome of mean 

blood glucose or blood sugar could be approximated by the first few measurements 

taken by using the intervention and hence, we assumed that the intervention had no 

effect in that initial period of time. If it did, then the bias would be toward the null and 
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the real effect of the intervention was greater than that measured. While the BP arm had 

this problem from the beginning, the Glucose arm was originally designed with HbA1c as 

the outcome which would have avoided this possibility. While not an alternative 

explanation as such, because it suggests the effect might be greater, it is important to 

identify possible biases that might influence the results in either direction. 

Figure 8.19 Causal diagram showing one alternative explanation for the BP arm results 

 

• It is also possible that the intervention’s largest effect was, in fact, to raise blood pressure 

and possibly blood sugar when it was first used. The ‘white coat’ effect is fairly well 

known with respect to blood pressure, where the mild stress experienced by some 

patients when they visit their doctor causes a small increase in their blood pressure.877 

 However, such an effect has also been reported for blood glucose.880
⁠

,881 

Physiologically, this is plausible given that the hormones released during the 

stress response stimulate the liver to raise blood sugar.882 

 With initial intervention measurements used as the Control group’s outcome in 

both arms, while the Telemonitoring group’s measurements were from a period 

Blood pressure 
(after 6-12 months)

Dropout

BP self-monitoring 
with telemonitoring

Less likely to 
reduce salt in

diet

Lifestyle changes
Quit smoking
More exercise
Less salt in diet

Less alcohol
Take medication

Random selection

Not motivated 
to make lifestyle

changes

Possible result: TM group 
has lower average BP
because less motivated
participants with higher BP
dropped out

*

* Unknown number
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long after the start, it is plausible that an initial increase may partly or wholly 

explain the difference observed between the two groups. 

• Another assumption is that the treatment outcome at 12 months was not greatly 

different to the outcome a few months earlier or a few months later. This assumption 

appears not to have been met, however. Yet it is important because if such variation in 

the outcome is ignored, with just the difference at 12 months reported, many will have 

the impression that the difference was relatively stable. 

 

8.3.8 Parametric g-formula and the possible effect of 
measurement frequency 

Some participants enrolled months later in the trial than others, so the first step was to 

determine the maximum number of weeks we might use where every participant could 

potentially have measurements for that many weeks. In Figure 20, a sharp drop in the 

number of participants still enrolled appears to begin around the 58-week mark, or 

approximately 14 months. 

Figure 8.20 Participants still enrolled each week after first glucometer use (TM group) 

 
 



8.3 Results and Discussion 

 248 

 
Evidence for time-dependent confounding potential 

Before using the g-formula to handle possible time-dependent confounding, we first tried to 

determine if such confounding might be present. Figure 8.21 and Figure 8.22 use linear 

regression to plot the relationship between measurement frequency and mean blood 

glucose with one from the week before, and then the reverse. These causal relationships are 

represented by the green and blue arrows in the causal diagram. Both plots suggest that 

time-dependent confounding is possibly small enough to be ignorable. 

Figure 8.21 Mean glucose previous week and change in measurement frequency this week 
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Figure 8.22 Measurement frequency previous week and change in mean glucose this week 

 
The estimates and p-values (Table 11) from the predicted linear regression lines in Figure 

8.21 and Figure 8.22 in both cases suggests that the relationship is weak. 

Table 8.11 Linear relationship between meas. frequency and glucose with one lagged 1 
week 

Previous week Current week Estimate 95% Confidence Limits P-value 

Mean glucose M. frequency 0.005 -0.007 0.018 0.40 

M. frequency Mean glucose 0.011 -0.002 0.024 0.09 

 

 

G-formula used to adjust for possible time-dependent confounding 

The g-formula analysis was limited to the 113 (22% of 512) participants with blood glucose 

values in every one of the 14 months that were covered. And similarly, only complete 

covariates were included in the model. The included participants were from the 

Telemonitoring group only because the Control group had no more than a few months’ 

worth of data at the time of the analysis. Naturally, any inference on whether measurement 
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frequency makes a difference is only relevant to those who continue to measure. 

Unfortunately, this was not many. 

The g-formula compares the predicted outcome after several ‘intervention’ variations are 

implemented. Using the GFORMULA SAS macro883 we compared the predicted mean blood 

glucose level between a measurement frequency of 30 days per month on which 

measurements occurred, against only 1 day per month. In other words, we compared the 

effect of measuring blood glucose every day for 14 months against measuring only once per 

month. These could also be loosely described as two hypothetical treatment strategies; 

defined for the purpose of estimating the effect of frequent or non-frequent measuring. The 

variables used are listed in Table 8.12 with the code that makes use of the SAS macro shown 

below the table. 

One last feature of the dataset is that the first month during which the first measurement 

took place was not included. This is because the date that the first measurement occurred 

might be the 1st, and so the whole month potentially had measurements, or it might be later 

in the month and so the total reading count would be incomplete. 
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Table 8.12 Variables used with the GFORMULA SAS macro 

Variable Role in model Description 

id ID ID number of participant 

time Time Month number from first measurement 

Age Fixed Age on 1 July 2014 

Sex Fixed Sex 

DiabType Fixed Diabetes type 

HTN Fixed Hypertension 

HLD Fixed Hyperlipidemia 

CVD Fixed Cardiovascular disease 

Arthritis Fixed Arthritis (any type) 

BackPain Fixed Back pain 

WalkPain Fixed Walking pain 

EyeProb Fixed Eye problem 

Insulin Fixed Insulin 

NumT2Drugs Fixed Number of diabetes drugs 

PainDrugs Fixed Pain relief drugs 

RLBase Fixed Baseline risk level 

RL Time-varying Risk level after 1st measurement 

RL_l1 Lag1 time-varying Risk level 1 month before RL month 

RL_l2 Lag2 time-varying Risk level 2 months before RL month 

RL_l3 Lag3 time-varying Risk level 3 months before RL month 

meascount Time-varying Measurement frequency by month 

meascount_l1 Lag1 time-varying M. frequency 1 month before meascount month 

meascount_l2 Lag2 time-varying M. frequency 2 months before meascount month 

meascount_l3 Lag3 time-varying M. frequency 3 months before meascount month 

glucofinal Fixed Final mean glucose after 14 months 

glucomean Time-varying Mean glucose of each month 

glucomean_l1 Lag1 time-varying Mean glucose 1 month before glucomean month 

glucomean_l2 Lag2 time-varying Mean glucose 2 months before glucomean month 

glucomean_l3 Lag3 time-varying Mean glucose 3 months before glucomean month 
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SAS code used to call GFORMULA macro: 

%let interv1 =  
intno = 1,  /* intervention number */ 
nintvar = 1, /* number of intervened on variables. */ 
intlabel = 'meascount min of 30 per month',  /* for output */ 
intvar1 = meascount, /* variable undergoing intervention */ 
inttype1 = 2, /* 1=static, 2=threshold, 3=fixed, 4=prev val, -1=user def */ 
intmin1 = 30, /* min value for inttype=2 if interv value is below this */ 
inttimes1 = 0 1 2 3 4 5 6 7 8 9 10 11 12 13; /* times intvar# intervened on */ 

 
%let interv2 =  

intno = 2, 
nintvar = 1, 
intlabel = 'meascount set to 1 per month', 
intvar1 = meascount, 
inttype1 = 1, 
intvalue1 = 1, 
inttimes1 = 0 1 2 3 4 5 6 7 8 9 10 11 12 13; 

 
%gformula( 

data=monthlyrcountwithlag, 
id=id, 
time=time,  /* time point variable (must begin at 0) */ 
timepoints=14, /* number of time points */ 
timeptype=concat,  /* choices: conbin, concat, conqdc, concub, conspl */ 
timeknots = 1 2 3 4 5 6 7 8 9 10 11 12 13, 
 
outc=glucofinal,  /* outcome variable */ 
outctype=conteofu, /* outcome type: binsurv (time-varying failure), 

bineofu (binary end of follow-up), conteofu (contin. end of follow-up). */ 
fixedcov=RLBase Age Sex DiabType HTN HLD CVD Arthritis BackPain WalkPain 
EyeProb Insulin NumT2Drugs PainDrugs,  /* predictors not predicted */ 
 
ncov=3, /* number of (time-varying) covariates to be estimated */ 
cov1=meascount, /* covariate 1 name */ 
cov1otype = 3, /* defines cov1 outcome type for regression procedure */ 
cov1ptype = lag3bin, /* how cov1 history will be incl. in regress. models */ 
cov2=glucomean, 
cov2otype = 3, 
cov2ptype = lag3bin, 
cov3=RL, 
cov3otype = 5, 
cov3ptype = lag3cat, 
 
numint=4,  /* number of interventions called by the INTERV macro*/ 
seed= 9458  /* random numbers seed */ 
); 
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After running the macro in SAS 9.4, the results (Table 8.13) show that there is considerable 

overlap in the 95% confidence intervals and thus they support the previous results that 

suggest no meaningful relationship exists between measurement frequency and mean blood 

glucose level. 

Table 8.13 Predicted mean final blood glucose level under two possible interventions 
Observed mean= 7.78 

Measurement 
frequency 

(Days per month) 

Estimate of final mean blood glucose 
level (95% CI) (mmol/L) 

1 7.44 (6.78, 7.94) 

30 7.35 (7.26, 8.16) 

 

 

8.4 Final thoughts 

Using blood glucose as the outcome, some evidence was found that suggests the 

Telemonitoring program resulted in lower mean blood glucose levels in participants who 

continued to use the glucometer. It could be argued that this is not surprising and not 

particularly relevant that the statistical results do not relate to the kind of people who 

dropped out of this program early or did not even start measuring. But one potential 

scenario is that some of the members with certain characteristics who did not make use of 

this program following enrolment, might have measured if it had been set up a little 

differently, and hence they might still use a service that is very similar at another time. If they 

also have characteristics that mean they do not respond to the program with lowered mean 

blood sugar, or instead, respond better than the average response that was recorded by 

members who did measure for a sufficiently long time, then either way there is the possibility 

of bias in the estimates with respect to the population they are thought to relate to. 
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Conclusions provided to HCF 

Glucose: 

The balance of the available evidence seems to weigh on the side of supporting the 

program, though the effect on blood glucose levels is probably small. The lack of available 

data has added much uncertainty to any conclusions arising from these results. If a similar 

trial were to be conducted in the future the most important lesson learned from this one 

would be to ensure (somehow) that most participants had HbA1c values recorded, both at 

the beginning and at the end, each within a short time frame that is the same for both 

groups. 

BP: 

Evidence from this trial suggests the Telemonitoring program may have reduced the mean 

blood pressure of the Telemonitoring group participants compared to the Control group. 

However, this interpretation needs to be viewed with caution and allow for considerable 

uncertainty because of the level of missing data, use of the intervention to generate the 

Control group outcomes, and concerns over data accuracy. 

 



9.1 Understanding causal inference, bias and uncertainty 

 255 

Chapter 9 
Strategies and resources for less 
biased causal inference 
 

 

9.1 Understanding causal inference, bias and 
uncertainty 

For many health problems today where a cure is the ultimate goal like the common cold and 

permanent paralysis, no interventions exist that can help to restore full health. For many 

other conditions, more typical is simply an improvement, or none at all, with individual 

responses varying widely. And where interventions do have some success, they often come 

with side-effects so that new interventions are ever desirable. To get better health 

interventions sooner requires research that provides accurate answers to causal questions, 

where an example might be ‘does intervention X reduce illness A’ or ‘can intervention Y 

cause side-effect B’. Thus, progress in health intervention research depends on the accuracy 

of causal inferences. And that is determined by how we handle the many possible sources of 

bias that can shift such inferences away from the underlying truth; as well as the biases that 

lead us to perceive more certainty than is really justified, both in the information we make 

those inferences from, and in the inferences themselves. 

Like all areas of science, however, research in health has struggled to reduce the level of bias 

and improve the standard of the causal inferences researchers make. Despite regular 

criticism over the way researchers deal with bias and uncertainty, especially with regard to 

statistics, it is not clear that progress has been made over the last 40 years. This thesis sought 

to understand the reasons behind this enduring problem, with the hope that a deeper 

understanding of causal inference, bias and uncertainty — the concepts these words refer to, 
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their nature, and how they are dealt with — can clarify the strategies to follow for greater 

improvement in health intervention research. 

To enhance this understanding, an important component of this thesis is the drawing 

together of relevant knowledge from not only the discipline of health, but also of statistics, 

philosophy, linguistics, and cognitive psychology. This has made clearer the many factors 

that influence, and potentially bias a causal inference, itself a cognitive process. It also 

seemed that a more precise and useful definition of ‘a causal inference’ was needed, which 

we proposed as: ‘a conclusion that the evidence available supports either the existence, or 

the non-existence, of a causal effect’. And while not part of this definition, some sense of the 

uncertainty that surrounds the inference would tend to be part of this process, especially 

when in relation to research. 

We explored various frameworks that can be used when considering causal questions, with 

the use of more than one appearing optimal, depending on the perspective. For example, 

the potential outcomes framework is very useful when considering an analysis methodology, 

but the sufficient-component cause model might help when constructing a causal diagram. 

To understand why causal inference, bias and uncertainty are approached and handled as 

they currently are, we examined the evolution of these concepts in health research over the 

last few centuries, with their history contributing to an overall understanding of how 

problems have developed. Karl Pearson’s disapproval of talking about the ‘causes’ of 

phenomena, the use of the word ‘bias’ by mathematical statistics for an idealised situation, 

and the development of what some call null-hypothesis significance testing, have greatly 

influenced how causal inferences are often made in health research. 

The importance of using a classification system for bias was examined, with the suggested 

benefits relating to ease of recall, learning and communication. But with the unlikely chance 

that a consensus would ever be reached on terminology, the structural classification of bias 

that uses causal diagrams was promoted as possibly the only way out of this problem. 

The first three chapters provided many of the details that are needed for an understanding 

of causal inference, bias and uncertainty, as covered by the literature in health and statistics. 

Chapter Four began with an overview of the evidence that bias is a problem in health 
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research, because the motivation for change will not exist if statisticians and researchers are 

not aware of the problem. 

 

9.2 The importance of how people think 

The rest of Chapter Four discussed findings in cognitive psychology that have considerable 

relevance to the problem of ongoing bias in health research. Within this context, the content 

of Chapter Two and Chapter Three can also be better understood, such as the influence that 

our built-in desire for cognitive ease has likely had on the development of null-hypothesis 

significance testing, where decisions are considerably easier with a binary significance cutoff. 

In fact, the ‘principle of least effort’, one of many names by which the desire for cognitive 

ease is known, leads to many recommendations that are often understood in some fashion, 

but where knowledge of its fundamental role in how people think adds new weight. For 

example, to change the way researchers use statistics, new ways of analysing data need to be 

sufficiently easy to learn and use, else they will only be used by a small minority of people 

such as the mathematical statisticians who are familiar with them. Likewise, although the use 

of p-values is often criticised, any suggested replacement would probably need to be easy to 

understand. Hence, statistics like the likelihood ratio seem unlikely to take hold, with efforts 

to improve research perhaps more likely to work if they focus on how p-values are used, a 

statistic that almost all researchers are at least familiar with. 

Underlining the relevance of this information from cognitive psychology is that these 

cognitive biases occur mostly below conscious awareness. Likewise, the fact that everyone is 

susceptible to these biases, with higher intelligence only providing a little protection, and 

then only for some biases. But a few of these biases make combating them in research 

difficult, such as a tendency for people to accept the first explanation that comes to mind 

(take-the-first heuristic), or a bias blind spot for our own cognitive biases but not for the 

biases of other people, or a tendency to seek arguments for our beliefs rather than the 

objective truth (myside bias), and there is also our bias for causal explanations (causality 

heuristic). 
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One of the few debiasing techniques with some evidence of a benefit is anything that 

promotes thinking about alternative explanations for the results. This is especially important 

when forming conclusions at the end of a study. It also highlights one of the primary benefits 

of constructing causal diagrams. 

Chapter Five gave us a snapshot of the statistical methods being used to control for bias in 

health intervention cohort studies. The use of propensity scores by a third of the studies 

suggests that there is a widespread awareness of the need to improve the methodology 

used for causal inference, even though propensity scores may or may not have been the 

better approach in each case. But the other more recently developed methods that focus 

specifically on causal inference, including causal diagrams, were seldom used. Also, the 

underreporting of how missing data was handled suggests that many still lack a full 

appreciation for the potential bias that missing values can produce. 

The communication of causal inferences was examined in Chapter Six, beginning with a 

discussion on why we think all conclusions from health intervention studies can be usefully 

classed as causal inferences. We also discussed some of underlying drives that influence our 

choice of language, such as the desire for respect and social status, and how this helps to 

motivate spin. Also contributing is our built-in bias for causal explanations. 

One of the main findings from our review of causal language is that creating an algorithm 

that can automatically rate the strength of causal language no longer seems to be an 

achievable goal. This is because language depends more heavily on context than we had 

previously realised and the number of possible contexts of words in a conclusion is very high. 

We also found that articles using either multivariable regression, propensity score methods 

or a sensitivity analysis were more likely to be cautious in their use of causal language in 

conclusions. Partly, this may result from such methods helping to bring alternative 

explanations to mind when considering their interpretation of the results, leading in turn to 

more caution when judging causal effects. 
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9.3 Strategies and resources 

From the point of view of this thesis, one the main findings from conducting the case study 

is that methods like multiple imputation and the g-formula are not at all easy to do properly. 

While this will not hinder a determined statistician, it seems likely that many less well-trained 

and less experienced researchers would either avoid such methods, preferring much easier 

though often biased techniques like complete-case analysis, or they would use such 

methods but with a greater risk of making unintended and undetected mistakes. Other than 

demonstrating the advantage of including a statistician in the research team, this also 

highlights the benefit of easy to follow guides and additions to software. 

Another feature that became apparent when conducting the case study was the initial 

difficulty faced when constructing a causal diagram. With no examples to follow that bore 

any relation to that which was to be created, considerable effort was required to overcome 

the many unknowns. These included which software to try, which variables to include, how to 

start drawing each variable and the initial shape of the diagram. This level of effort may help 

to explain why causal diagrams are still used by only a minority of researchers. 

A resource that may be of some assistance would be an online searchable website 

containing examples of causal diagrams. It would hopefully expand over time and encourage 

the use of causal diagrams through learning by example and perhaps, by providing example 

DAGs (or other types of causal diagrams) with some similarity to a researcher’s own study. By 

acting as a mental starting point for their own DAGs it would lower the effort required to 

give DAGs a try. However, avoiding the accidental promotion of DAGs that are missing 

important sources of confounding or selection bias is one potential problem. Another would 

be copyright concerns. 
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9.4 Adversarial collaborations 

A research design that has appeared in psychology but is yet to be taken up by more than a 

handful of researchers has been called an 'adversarial collaboration’.884
⁠

,885 It is where a 

collaborative research project involves two opposing research groups with hypotheses that 

conflict. By conducting a combined research project that seeks to resolve the dispute, they 

are more likely to recognise the limitations of the claims they make.884 An alternative design 

that is somewhat different yet might also be called an ‘adversarial collaboration’, does not 

target hypotheses in dispute but instead targets the cognitive biases of an opposing 

research group and making use of the fact that people recognise the cognitive biases, or the 

product of such biases, much more easily in other people than in themselves. The word 

adversarial seems apt, in the sense of a courtroom or even a sporting contest, though the 

idea still lacks details. It would involve competing groups, where group 1 would design the 

study, group 2 would perform it, group 1 would analyse it and so on, with some kind of third 

party umpire, and where it is in each group's interest to publicly criticise any shortcomings of 

the other group's work in some pre-arranged way. 

An obvious downside of this design is that many researchers might not like the adversarial 

nature of it. On the other hand, if it could be made to work it would seem likely to produce 

better research, and the public and research funders alike would probably prefer this. 

Nevertheless, for research to overcome some of the biases that currently seem to prevent 

progress in combating bias, ideas need to be proposed and possibly tested. In time, 

solutions will be found that have some success, and the biases that influence causal 

inference and our perception of uncertainty can be better controlled. 
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Appendices 

Appendix A. (Chapter 5) 

A.1. Full PubMed search string 

PubMed search terms found to increase the chance of retrieving studies that would meet the 

criteria while decreasing the chance of other studies/articles were identified through trial and 

error. The final query used in PubMed that returned an initial sample of 1,871 articles on 14 

June 2015: 

2014[dp] AND humans[mh] 
AND  
(cohort[tiab] OR cohorts[tiab] OR cohort studies[mh] OR cross-over studies[mh] OR 
follow-up[tiab] OR follow-up studies[mh] OR followup[tiab] OR longitudinal[tiab] 
OR observational studies[tiab] OR observational study[pt] OR observational 
study[tiab])  
AND  
(before and after[tiab] OR comparative study[pt] OR compared[tiab] OR 
comparison[tiab] OR comparative[tiab] OR versus[tiab])  
AND 
("Acta Derm Venereol"[ta] OR "Acta Neuropathol"[ta] OR "Addict Biol"[ta] OR 
"Addiction"[ta] OR "Adv Drug Deliv Rev"[ta] OR "Adv Nutr"[ta] OR "Ageing Res 
Rev"[ta] OR "Aging Cell"[ta] OR "AIDS"[ta] OR "Aliment Pharmacol Ther"[ta] OR 
"Allergy"[ta] OR "Alzheimers Dement"[ta] OR "Am J Clin Nutr"[ta] OR "Am J 
Gastroenterol"[ta] OR "Am J Kidney Dis"[ta] OR "Am J Ophthalmol"[ta] OR "Am J 
Pathol"[ta] OR "Am J Physiol Lung Cell Mol Physiol"[ta] OR "Am J Psychiatry"[ta] 
OR "Am J Respir Cell Mol Biol"[ta] OR "Am J Respir Crit Care Med"[ta] OR "Am J 
Respir Crit Care Med"[ta] OR "Am J Sports Med"[ta] OR "Am J Surg Pathol"[ta] OR 
"Am J Transplant"[ta] OR "Anesthesiology"[ta] OR "Angiogenesis"[ta] OR "Ann Emerg 
Med"[ta] OR "Ann Fam Med"[ta] OR "Ann Intern Med"[ta] OR "Ann Neurol"[ta] OR "Ann 
Rheum Dis"[ta] OR "Ann Surg"[ta] OR "Annu Rev Immunol"[ta] OR "Annu Rev Med"[ta] 
OR "Annu Rev Nutr"[ta] OR "Annu Rev Pathol"[ta] OR "Annu Rev Pharmacol"[ta] OR OR 
"Annu Rev Public Health"[ta] OR "Antioxid Redox Signal"[ta] OR "Arch Neurol"[ta] 
OR "Arch Ophthalmol"[ta] OR "Arch Pediatr Adolesc Med"[ta] OR "Arch Toxicol"[ta] 
OR "Arterioscler Thromb Vasc Biol"[ta] OR "Arthritis Care Res (Hoboken)"[ta] OR 
"Arthritis Res Ther"[ta] OR "Arthritis Rheumatol"[ta] OR "Atheroscler Suppl"[ta] 
OR "Biol Psychiatry"[ta] OR "Blood Rev"[ta] OR "Blood"[ta] OR "BMC Med"[ta] OR 
"BMJ"[ta] OR "Br J Anaesth"[ta] OR "Br J Dermatol"[ta] OR "Br J Psychiatry"[ta] OR 
"Br J Sports Med"[ta] OR "Br J Surg"[ta] OR "Brain"[ta] OR "Bull World Health 
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Organ"[ta] OR "CA Cancer J Clin"[ta] OR "Cancer Cell"[ta] OR "Cancer Discov"[ta] 
OR "Cancer Res"[ta] OR "Cell Metab"[ta] OR "Chest"[ta] OR "Circ Cardiovasc 
Imaging"[ta] OR "Circ Cardiovasc Interv"[ta] OR "Circ Res"[ta] OR 
"Circulation"[ta] OR "Clin Exp Allergy"[ta] OR "Clin Gastroenterol Hepatol"[ta] OR 
"Clin Infect Dis"[ta] OR "Clin J Am Soc Nephrol"[ta] OR "Clin Microbiol 
Infect"[ta] OR "Clin Pharmacol Ther"[ta] OR "Clin Rev Allergy Immunol"[ta] OR 
"Cochrane Database Syst Rev"[ta] OR "Cold Spring Harb Perspect Med"[ta] OR "Crit 
Care Med"[ta] OR "Crit Care"[ta] OR "Crit Rev Food Sci Nutr"[ta] OR "Crit Rev 
Toxicol"[ta] OR "Curr Opin Infect Dis"[ta] OR "Curr Opin Lipidol"[ta] OR "Curr 
Opin Nephrol Hypertens"[ta] OR "Curr Opin Rheumatol"[ta] OR "Dent Mater"[ta] OR 
"Diabetes Care"[ta] OR "Diabetes"[ta] OR "Dis Model Mech"[ta] OR "Drug Resist 
Updat"[ta] OR "EMBO Mol Med"[ta] OR "Emerg Infect Dis"[ta] OR "Endocr Rev"[ta] OR 
"Endoscopy"[ta] OR "Environ Health Perspect"[ta] OR "Epidemiol Rev"[ta] OR 
"Epidemiology"[ta] OR "Eur Heart J"[ta] OR "Eur J Epidemiol"[ta] OR "Eur J Heart 
Fail"[ta] OR "Eur J Nucl Med Mol Imaging"[ta] OR "Eur Respir J"[ta] OR "Eur 
Urol"[ta] OR "Euro Surveill"[ta] OR "Exerc Immunol Rev"[ta] OR "Exerc Sport Sci 
Rev"[ta] OR "Exp Dermatol"[ta] OR "Fertil Steril"[ta] OR "Forensic Toxicol"[ta] OR 
"Front Neuroendocrinol"[ta] OR "Gastroenterology"[ta] OR "Gut"[ta] OR 
"Haematologica"[ta] OR "Health Aff (Millwood)"[ta] OR "Health Technol Assess"[ta] 
OR "Hepatology"[ta] OR "Hum Brain Mapp"[ta] OR "Hum Reprod Update"[ta] OR "Hum 
Reprod"[ta] OR "Hypertension"[ta] OR "Immunity"[ta] OR "Immunol Rev"[ta] OR 
"Inflamm Bowel Dis"[ta] OR "Int J Epidemiol"[ta] OR "Int J Obes (Lond)"[ta] OR 
"Intensive Care Med"[ta] OR "J Acquir Immune Defic Syndr"[ta] OR "J Allergy Clin 
Immunol"[ta] OR "J Am Acad Child Psychiatry"[ta] OR "J Am Acad Dermatol"[ta] OR "J 
Am Coll Cardiol"[ta] OR "J Am Coll Surg"[ta] OR "J Am Geriatr Soc"[ta] OR "J Am 
Med Assoc"[ta] OR "J Am Med Dir Assoc"[ta] OR "J Am Soc Nephrol"[ta] OR "J 
Antimicrob Chemother"[ta] OR "J Bone Joint Surg Am"[ta] OR "J Bone Joint Surg 
Am"[ta] OR "J Cachexia Sarcopenia Muscle"[ta] OR "J Cardiovasc Magn Reson"[ta] OR 
"J Cereb Blood Flow Metab"[ta] OR "J Clin Epidemiol"[ta] OR "J Clin Invest"[ta] OR 
"J Clin Oncol"[ta] OR "J Dent Res"[ta] OR "J Exp Med"[ta] OR "J Gerontol A Biol 
Sci Med Sci"[ta] OR "J Heart Lung Transplant"[ta] OR "J Heart Lung Transplant"[ta] 
OR "J Hepatol"[ta] OR "J Infect Dis"[ta] OR "J Invest Dermatol"[ta] OR "J Med 
Internet Res"[ta] OR "J Med Internet Res"[ta] OR "J Natl Cancer Inst"[ta] OR "J 
Neurol Neurosurg Psychiatry"[ta] OR "J Neuropathol Exp Neurol"[ta] OR "J Nucl 
Med"[ta] OR "J Nutr Biochem"[ta] OR "J Pathol"[ta] OR "J Pineal Res"[ta] OR "J 
Psychiatry Neurosci"[ta] OR "J Thorac Oncol"[ta] OR "J Thromb Haemost"[ta] OR "J 
Toxicol Environ Health B Crit Rev"[ta] OR "JACC Cardiovasc Imaging"[ta] OR "JACC 
Cardiovasc Interv"[ta] OR "JAMA Dermatol"[ta] OR "JAMA Intern Med"[ta] OR "JAMA 
Psychiatry"[ta] OR "Kidney Int"[ta] OR "Lancet Infect Dis"[ta] OR "Lancet 
Neurol"[ta] OR "Lancet Oncol"[ta] OR "Lancet"[ta] OR "Leukemia"[ta] OR "Med Res 
Rev"[ta] OR "Med Sci Sports Exerc"[ta] OR "Milbank Q"[ta] OR "Mod Pathol"[ta] OR 
"Mol Aspects Med"[ta] OR "Mol Psychiatry"[ta] OR "Mutat Res Rev Mutat Res"[ta] OR 
"N Engl J Med"[ta] OR "Nanotoxicology"[ta] OR "Nat Immunol"[ta] OR "Nat Med"[ta] 
OR "Nat Rev Cancer"[ta] OR "Nat Rev Cardiol"[ta] OR "Nat Rev Clin Oncol"[ta] OR 
"Nat Rev Drug Discov"[ta] OR "Nat Rev Endocrinol"[ta] OR "Nat Rev Gastroenterol 
Hepatol"[ta] OR "Nat Rev Immunol"[ta] OR "Nat Rev Nephrol"[ta] OR "Nat Rev 
Neurol"[ta] OR "Nat Rev Rheumatol"[ta] OR "Nat Rev Urol"[ta] OR "Neurobiol 
Aging"[ta] OR "Neuroimage"[ta] OR "Neurology"[ta] OR "Neuropathol Appl 
Neurobiol"[ta] OR "Neuropsychopharmacology"[ta] OR "Neurorehabil Neural 
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Repair"[ta] OR "Neuroscientist"[ta] OR "Nutr Rev"[ta] OR "Obes Rev"[ta] OR 
"Obesity (Silver Spring)"[ta] OR "Obstet Gynecol"[ta] OR "Ocul Surf"[ta] OR 
"Ophthalmology"[ta] OR "Osteoarthritis Cartilage"[ta] OR "Pain"[ta] OR "Part Fibre 
Toxicol"[ta] OR "Pediatrics"[ta] OR "Pharmacol Rev"[ta] OR "Pharmacol Ther"[ta] OR 
"Pigment Cell Melanoma Res"[ta] OR "PLoS Med"[ta] OR "PLoS Negl Trop Dis"[ta] OR 
"Proc Nutr Soc"[ta] OR "Prog Lipid Res"[ta] OR "Prog Retin Eye Res"[ta] OR 
"Psychother Psychosom"[ta] OR "Radiology"[ta] OR "Radiother Oncol"[ta] OR 
"Rheumatology"[ta] OR "Schizophr Bull"[ta] OR "Sci Transl Med"[ta] OR "Semin 
Immunopathol"[ta] OR "Sleep Med Rev"[ta] OR "Sports Med"[ta] OR "Stem Cells 
Dev"[ta] OR "Stem Cells"[ta] OR "Stroke"[ta] OR "Surg Obes Relat Dis"[ta] OR 
"Theranostics"[ta] OR "Thorax"[ta] OR "Thromb Haemost"[ta] OR "Tob Control"[ta] OR 
"Toxicol Sci"[ta] OR "Trends Endocrinol Metab"[ta] OR "Trends Immunol"[ta] OR 
"Trends Mol Med"[ta] OR "Trends Pharmacol Sci"[ta] OR "Ultraschall Med"[ta] OR 
"World Psychiatry"[ta])  
NOT  
(2013[ppdat] OR 2015[ppdat] OR case series[tiab] OR cross-sectional studies[mh] OR 
diagnosis[sh] OR economics[sh] OR genetics[sh] OR meta-analysis[pt] OR 
prevalence[mh] OR randomised[tiab] OR randomized[tiab] OR randomized controlled 
trial[pt] OR randomly[tiab] OR review[pt] OR systematic[sb]) 

 

A.2. Regular expressions used for full-text search 

For the detailed manual review, the 288 PDF articles were automatically searched for words 

or word combinations using the following regular expressions (regex) in the full-text search 

software program FileLocator Pro (https://www.mythicsoft.com/filelocatorpro). The same 

process was repeated for each of the unscreened years 2014-2017. 

Program search settings: 

Multi-line RegEx with Match case on; Match Across whole file with Allow wildcards ticked. 

/*** Search PDF text for: "propensity score" ***/ 
Regex: ((p|P)ropensity((?:)|.)(s|S)core).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "propensity score" AND "balance" ***/ 
Regex: 
((((p|P)ropensity((?:)|.)(s|S)core).*(\<(b|B)alance\>))|((\<(b|B)alance\>).*((p|P)ropensity((?:)
|.)(s|S)core))).*((References)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "Hosmer-Lemeshow" ***/ 
Regex: (Hosmer((?:)|.)Lemeshow).*((References)|(REFERENCES)|(Reference List)|(Competing 
interest)) 
 
/*** Search PDF text for: "propensity score" AND "Hosmer-Lemeshow" ***/ 
Regex: 

http://www.mythicsoft.com/filelocatorpro)
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((((p|P)ropensity((?:)|.)(s|S)core).*(Hosmer((?:)|.)Lemeshow))|((Hosmer((?:)|.)Lemeshow).*(
(p|P)ropensity((?:)|.)(s|S)core))).*((References)|(REFERENCES)|(Reference List)|(Competing 
interest)) 
 
/*** Search PDF text for: " c statistic" ***/ 
Regex: (\<(c|C)(\s|-)(s|S)tatistic((?:)|s)\>).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "propensity score" AND "c statistic" ***/ 
Regex: 
((((p|P)ropensity((?:)|.)(s|S)core).*(\<(c|C)(\s|-)(s|S)tatistic((?:)|s)\>))|((\<(c|C)(\s|-
)(s|S)tatistic((?:)|s)\>).*((p|P)ropensity((?:)|.)(s|S)cor 
e))).*((References)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "standardi(s|z)ed difference" ***/ 
Regex: ((s|S)tandardi(s|z)ed((?:)|.)(d|D)ifference).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "propensity score" AND "standardi(s|z)ed difference" ***/ 
Regex: 
((((p|P)ropensity((?:)|.)(s|S)core).*((s|S)tandardi(s|z)ed((?:)|.)(d|D)ifference))|(((s|S)t
andardi(s|z)ed((?:)|.)(d|D)ifference).*((p|P)ropensity((?: 
)|.)(s|S)core))).*((References)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "propensity score matching/matched" ***/ 
Regex: 
(((p|P)ropensity((?:)|.)(s|S)core)((?:)|.)((m|M)atch(ed|ing))).*((References)|(REFERENCES)|
(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "propensity score" AND "matching/matched" ***/ 
Regex: 
((p|P)ropensity((?:)|.)(s|S)core).*((m|M)atch(ed|ing)).*((References)|(REFERENCES)|(Referen
ce List)|(Competing interest)) 
 
/*** Search PDF text for: "greedy matching" ***/ 
Regex: 
((((g|G)reedy).*((m|M)atch(ed|ing)))|(((m|M)atch(ed|ing)).*((g|G)reedy))).*((References)|(R
EFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "propensity score" AND "greedy matching" ***/ 
Regex: 
((((p|P)ropensity((?:)|.)(s|S)core).*((((g|G)reedy).*((m|M)atch(ed|ing)))|(((m|M)atch(ed|in
g)).*((g|G)reedy))))|(((((g|G)reedy).*((m|M)atch(ed|ing))) 
|(((m|M)atch(ed|ing)).*((g|G)reedy))).*((p|P)ropensity((?:)|.)(s|S)core))).*((References)|(
REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "nearest neighb" AND "matching" ***/ 
Regex: 
((((n|N)earest((?:)|.)(n|N)eighb).*((m|M)atch(ed|ing)))|(((m|M)atch(ed|ing)).*((n|N)earest((?:)|
.)(n|N)eighb))).*((References)|(REFERENCES)|(Referenc       e List)|(Competing interest)) 
 
/*** Search PDF text for: "propensity score" AND "nearest neighb" ***/ 
Regex: 
((((p|P)ropensity((?:)|.)(s|S)core).*((((n|N)earest((?:)|.)(n|N)eighb).*((m|M)atch(ed|ing))
)|(((m|M)atch(ed|ing)).*((n|N)earest((?:)|.)(n|N)eighb)))) 
|(((((n|N)earest((?:)|.)(n|N)eighb).*((m|M)atch(ed|ing)))|(((m|M)atch(ed|ing)).*((n|N)eares
t((?:)|.)(n|N)eighb))).*((p|P)ropensity((?:)|.)(s|S)core)) 
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).*((References)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "high dimensional" ***/ 
Regex: ((h|H)igh((?:)|.)(d|D)imensional).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "propensity score" AND "high dimensional" ***/ 
Regex: 
((((p|P)ropensity((?:)|.)(s|S)core).*((h|H)igh((?:)|.)(d|D)imensional))|(((h|H)igh((?:)|.)(d|D)i
mensional).*((p|P)ropensity((?:)|.)(s|S)core))).*((Re ferences)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "inverse probability" AND "weights weighting" ***/ 
Regex: 
((i|I)nverse((?:)|.)(p|P)robability).*((w|W)eight).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "propensity score" AND "inverse probability" ***/ 
Regex: 
((((p|P)ropensity((?:)|.)(s|S)core).*((i|I)nverse((?:)|.)(p|P)robability).*((w|W)eight))|(((i|I)
nverse((?:)|.)(p|P)robability).*((w|W)eight).*((p|P)r 
opensity((?:)|.)(s|S)core))).*((References)|(REFERENCES)|(Reference List)|(Competing 
interest)) 
 
/*** Search PDF text for: "marginal structural model" ***/ 
Regex: 
((m|M)arginal((?:)|.)(s|S)tructural((?:)|.)(m|M)odel).*((References)|(REFERENCES)|(Referenc
e List)|(Competing interest)) 
 
/*** Search PDF text for: " g formula" ***/ 
Regex: (\<(g|G)(\s|-)(f|F)ormula\>).*((References)|(REFERENCES)|(Reference List)|(Competing 
interest)) 
 
/*** Search PDF text for: " g estimation" ***/ 
Regex: (\<(g|G)(\s|-)(e|E)stimation\>).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "doubly robust" ***/ 
Regex: ((d|D)oubly((?:)|.)(r|R)obust).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "directed acyclic graph" ***/ 
Regex: 
((d|D)irected((?:)|.)(a|A)cyclic((?:)|.)(g|G)raph).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "instrumental variable" ***/ 
Regex: ((i|I)nstrumental((?:)|.)(v|V)ariable).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "latent class" ***/ 
Regex: ((l|L)atent((?:)|.)(c|C)lass).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "structural equation" ***/ 
Regex: ((s|S)tructural((?:)|.)(e|E)quation).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
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/*** Search PDF text for: "multiple imputation" ***/ 
Regex: ((m|M)ultiple((?:)|.)(i|I)mputation).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "sensitivity analysis" ***/ 
Regex: ((s|S)ensitivity((?:)|.)(a|A)nalys(i|e)s).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "machine learning" ***/ 
Regex: ((m|M)achine((?:)|.)(l|L)earning).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "Bayesian" ***/ 
Regex: (Bayesian).*((References)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "Bayesian Information Criterion" ***/ 
Regex: 
(Bayesian((?:)|.)(i|I)nformation((?:)|.)(c|C)riterion).*((References)|(REFERENCES)|(Referen
ce List)|(Competing interest)) 
 
/*** Search PDF text for: "regression discontinuity" ***/ 
Regex: ((r|R)egression((?:)|.)(d|D)iscontinuity).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "difference in difference" ***/ 
Regex: 
((d|D)ifference((?:)|.)(i|I)n((?:)|.)(d|D)ifference).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "stepwise" ***/ 
Regex: ((s|S)tepwise).*((References)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "SAS" (Note: used " SAS" in full-text review with 104/104) */ 
Regex: (\<SAS\>).*((References)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "Stata" ***/ 
Regex: (\<Stata\>).*((References)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: " SPSS" ***/ 
Regex: (\<SPSS\>).*((References)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "R" ***/ 
Regex: (\<R(\s|-)(((s|S)oftware)|((v|V)ersion))).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/* found 53 files */ 
/*** Search PDF text for: "R" ***/ 
Regex: (\<R(\s|-
)(((s|S)oftware)|((v|V)ersion)|((p|P)ackage)|((s|T)atistic(s|al))|(Foundation)|(3.1))).*((R
eferences)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "statistician" ***/ 
Regex: (\<(s|S)tatistician\>).*((References)|(REFERENCES)|(Reference List)|(Competing 
interest)) 
 
/*** Search PDF text for: "alternative explanation" ***/ 
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Regex: ((Discussion)|(DISCUSSION)).*(alternative 
explanation).*((References)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "bias analysis" ***/ 
Regex: ((b|B)ias((?:)|.)(a|A)nalys(i|e)s).*((References)|(REFERENCES)|(Reference 
List)|(Competing interest)) 
 
/*** Search PDF text for: "bias list" ***/ 
Regex: 
((((b|B)ias).{1,10}(\<(l|L)ist))|(\<((l|L)ist).{1,10}((b|B)ias))).*((References)|(REFERENCE
S)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "quantitative/probabilistic bias/sensitivity analys(i/e)s"*/ 
Regex: 
((((q|Q)uantitative)|((p|P)robabilistic))((?:)|.)((((b|B)ias)|((s|S)ensitivity))((?:)|.)(a|A)nal
ys(i|e)s)).*((References)|(REFERENCES)|(Reference List)|(Competing interest)) 
 
/*** Search PDF text for: "Significant or Significantly" ***/ 

Regex: (\<(s|S)ignificant\>).*((References)|(REFERENCES)|(Reference List)|(Competing 
interest)) 

 

 

A.3. Distinct statistical methods in some groups 

Table 1. Distinct methods extracted and grouped as ‘Any multivariable regression’ 
Articles: 257 
Distinct methods recorded References 
accelerated failure time model 1 
Andersen-Gill repeated-event model with robust variance 1 
ANOVA 1 
ARIMA regression model 1 
binomial regression 3 
competing risks regression model 11 
competing risks regression, Fine and Gray method 6 
Cox proportional hazards model 109 
Cox proportional hazards model, time-varying 1 
Cox proportional hazards model, weighted 3 
Cox regression analysis stratified for matched pairs 10 
Cox regression model with non-proportional hazards 7 
Cox regression with heavyside functions 1 
Cox regression, conditional 1 
cumulative logit regression model 1 
exact logistic regression 1 
fixed-effects model 2 
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generalized additive model 1 
generalized estimating equations 7 
generalized estimating equations with an independent correlation matrix 5 
generalized estimating equations with logit link 3 
generalized least squares for serially correlated continuous data 1 
generalized linear mixed model (GLMM) 2 
generalized linear mixed model with log link 2 
generalized linear model 2 
generalized linear model with a log link function 1 
generalized linear model with a logit link 1 
generalized linear model with log link and gamma distribution 1 
interrupted time-series model 2 
joint model for longitudinal and survival data 1 
linear mixed-effects model 12 
linear regression 17 
log-binomial logistic regression 1 
log-binomial model 2 
logistic regression 130 
logistic regression, conditional 6 
marginal structural Cox model 3 
marginal structural model 2 
mixed-effects Cox regression model 2 
mixed-effects linear regression model 1 
mixed-effects logistic regression model 6 
mixed-effects model 3 
mixed-effects pattern mixture model 1 
multilevel Poisson regression model 1 
multilevel random-effects logistic regression model 2 
multilevel random-effects Poisson regression model 2 
multinomial logit regression 5 
multi-state model 1 
negative binomial regression 7 
Poisson generalized estimating-equation model 1 
Poisson regression 14 
Poisson regression model with Pearson adjustment for overdispersion 1 
pooled logistic model 2 
propensity score analysis using stratification 1 
propensity score estimation using boosted regression trees 1 
proportional odds logistic regression 1 
proportional piecewise exponential survival model 1 
random-effects model 2 
zero-inflated negative binomial model 1 
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Table 2. Distinct methods extracted and grouped as ‘Multivariable regression NOT used’ 
Articles: 31 
Distinct methods recorded References 
binomial test 1 
Byar approximation to exact results based on the Poisson distribution 1 
case-coverage method 1 
chi-squared test 12 
Cox regression analysis stratified for matched pairs* 1 
crude odds ratio calculation 1 
descriptive statistics only 1 
Fisher’s exact test 8 
Kaplan-Meier method with log-rank test 4 
Kruskal-Wallis test 1 
logistic regression* 2 
Mann-Whitney U (Wilcoxon rank-sum) test 5 
Mantel–Haenszel test 1 
on-treatment analysis 1 
Poisson regression, conditional* 1 
standardized incidence ratio (SIR) 3 
stratified analysis 2 
Student's t-test 9 
two-sample Z-test 1 
* with a single explanatory variable 

Table 3. Distinct methods extracted and grouped as ‘Propensity score (PS) methods’ 
Articles: 94 
Distinct methods recorded References 
propensity score analysis using inverse probability of treatment weighting (IPTW) 14 
propensity score analysis using stratification 9 
propensity score analysis with bipartite weighting 1 
propensity score as covariate 25 
propensity score calculation using a high-dimensional propensity score 3 
propensity score calculation with custom method 3 
propensity score calculation, bivariate 1 
propensity score estimation using boosted regression trees 1 
propensity score for comparison of groups only 1 
propensity score matching 54 
propensity score matching of triads 1 
propensity score matching using a greedy matching algorithm 20 
propensity score matching using nearest neighbour matching 16 
propensity score matching using Rubin’s Rules 2 
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Table 4. Multivariable methods used in articles using ‘Propensity score (PS) methods’ 
Articles: 94 
Distinct methods recorded References 
Andersen-Gill repeated-event model with robust variance 1 
ANOVA 1 
competing risks regression model 3 
competing risks regression, Fine and Gray method 3 
Cox proportional hazards model 42 
Cox proportional hazards model, time-varying 1 
Cox proportional hazards model, weighted 2 
Cox regression analysis stratified for matched pairs 9 
Cox regression model with non-proportional hazards 2 
Cox regression with heavyside functions 1 
cumulative logit regression model 1 
generalized estimating equations 1 
generalized estimating equations with an independent correlation matrix 3 
generalized estimating equations with logit link 1 
generalized linear mixed model (GLMM) 1 
generalized linear mixed model with log link 1 
generalized linear model with a log link function 1 
generalized linear model with log link and gamma distribution 1 
joint model for longitudinal and survival data 1 
linear mixed-effects model 2 
linear regression 5 
logistic regression 70 
logistic regression, conditional 5 
marginal structural Cox model 2 
mixed-effects Cox regression model 1 
mixed-effects logistic regression model 1 
mixed-effects model 1 
multinomial logit regression 3 
negative binomial regression 3 
Poisson regression 5 
Poisson regression model with Pearson adjustment for overdispersion 1 
propensity score analysis using stratification 1 
propensity score estimation using boosted regression trees 1 

 

Table 5. Multivariable methods used in articles NOT using ‘Propensity score (PS) methods’ 
Articles: 163 
Distinct methods recorded References 
accelerated failure time model 1 
ARIMA regression model 1 
binomial regression 3 
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competing risks regression model 8 
competing risks regression, Fine and Gray method 3 
Cox proportional hazards model 67 
Cox proportional hazards model, weighted 1 
Cox regression analysis stratified for matched pairs 1 
Cox regression model with non-proportional hazards 5 
Cox regression, conditional 1 
exact logistic regression 1 
fixed-effects model 2 
generalized additive model 1 
generalized estimating equations 6 
generalized estimating equations with an independent correlation matrix 2 
generalized estimating equations with logit link 2 
generalized least squares for serially correlated continuous data 1 
generalized linear mixed model (GLMM) 1 
generalized linear mixed model with log link 1 
generalized linear model 2 
generalized linear model with a logit link 1 
interrupted time-series model 2 
linear mixed-effects model 10 
linear regression 11 
log-binomial logistic regression 1 
log-binomial model 2 
logistic regression 60 
marginal structural Cox model 1 
marginal structural model 2 
mixed-effects Cox regression model 1 
mixed-effects linear regression model 1 
mixed-effects logistic regression model 5 
mixed-effects model 2 
mixed-effects pattern mixture model 1 
multilevel Poisson regression model 1 
multilevel random-effects logistic regression model 2 
multilevel random-effects Poisson regression model 2 
multi-state model 1 
negative binomial regression 3 
Poisson generalized estimating-equation model 1 
Poisson regression 9 
pooled logistic model 1 
proportional odds logistic regression 1 
proportional piecewise exponential survival model 1 
random-effects model 2 
zero-inflated negative binomial model 1 
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Table 6. Multivariable methods in articles that claimed to do a ‘Sensitivity analysis’ 
Articles: 125; Note that all 3 articles that claimed to conduct a ‘sensitivity analysis’ yet did not 
use a multivariable method were vaccine studies 
Distinct methods recorded References 
accelerated failure time model 1 
Andersen-Gill repeated-event model with robust variance 1 
competing risks regression model 2 
competing risks regression, Fine and Gray method 5 
Cox proportional hazards model 58 
Cox proportional hazards model, time-varying 1 
Cox proportional hazards model, weighted 2 
Cox regression analysis stratified for matched pairs 7 
Cox regression model with non-proportional hazards 5 
Cox regression, conditional 1 
cumulative logit regression model 1 
custom matching procedure 2 
fixed-effects model 2 
generalized estimating equations 4 
generalized estimating equations with an independent correlation matrix 5 
generalized estimating equations with logit link 2 
generalized linear mixed model (GLMM) 2 
generalized linear mixed model with log link 2 
generalized linear model 2 
generalized linear model with a log link function 1 
generalized linear model with a logit link 1 
generalized linear model with log link and gamma distribution 1 
interrupted time-series model 1 
joint model for longitudinal and survival data 1 
linear mixed-effects model 6 
linear regression 5 
log-binomial logistic regression 1 
log-binomial model 2 
logistic regression 63 
logistic regression, conditional 4 
marginal structural Cox model 3 
marginal structural model 2 
mixed-effects Cox regression model 1 
mixed-effects linear regression model 1 
mixed-effects logistic regression model 4 
mixed-effects model 2 
mixed-effects pattern mixture model 1 
multilevel random-effects logistic regression model 1 
multilevel random-effects Poisson regression model 1 
multinomial logit regression 4 
negative binomial regression 4 
Poisson generalized estimating-equation model 1 
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Poisson regression 5 
Poisson regression model with Pearson adjustment for overdispersion 1 
pooled logistic model 2 
proportional piecewise exponential survival model 1 
random-effects model 2 

 

 

A.4. Software use in articles by journal category 

Table 7. Software use in articles by journal category 

Journal Category SAS SPSS Stata R Other Not spec. Total 

Cardiovascular 11 (55%) 1 (5%) 2 (10%) 2 (10%) 2 (10%) 2 (10%) 20 

Critical Care Medicine 7 (39%) 7 (39%) 2 (11%) 0 (0%) 1 (6%) 1 (6%) 18 

Gastroenterol. & Hep. 5 (21%) 8 (33%) 4 (17%) 5 (21%) 1 (4%) 1 (4%) 24 

Infectious Diseases 6 (33%) 3 (17%) 3 (17%) 2 (11%) 2 (11%) 2 (11%) 18 

Gen. & Internal Med. 17 (47%) 2 (6%) 4 (11%) 5 (14%) 1 (3%) 7 (19%) 36 

Obstetrics & Gynec. 6 (16%) 15 (39%) 9 (24%) 1 (3%) 4 (11%) 3 (8%) 38 

Other categories 47 (36%) 17 (13%) 22 (17%) 15 (11%) 7 (5%) 23 (18%) 131 

Peripheral Vascular 11 (52%) 3 (14%) 2 (10%) 0 (0%) 2 (10%) 3 (14%) 21 

Surgery 9 (20%) 13 (30%) 9 (20%) 3 (7%) 3 (7%) 7 (16%) 44 

Urology & Nephrol. 10 (56%) 3 (17%) 3 (17%) 2 (11%) 0 (0%) 0 (0%) 18 
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Appendix B. (Chapter 6) 

B.1. Database tables 
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Appendix C. (Chapter 7) 

C.1. HCF Case Study 

Figure 1. Glucose arm participant flow diagram 

 

Chronic disease & accepted ‘My Health Guardian’ offer 
i.e. My Health Guardian member (n = 19,131) 

Did not meet Glucose arm 
inclusion criteria 

Telemonitoring group 
Offered telemonitoring service early (n = 1,134) 

Control group 
Delayed offer of telemonitoring 

service (n = 605) 

Randomised (n = 5,598) 

Declined (n = 585) Accepted (n = 549) 

Device not used 
so no outcome 

(n = 278) 

Glucose 
RCT TM group (n = 271) 

Glucose 
RCT Control group (n = 263) 

to compare 

Device not used so 
no outcome (n = 36) 

Glucose 
RCT TM group (n = 549) 

Glucose 
RCT Control group (n = 299) 

to compare 

multiple imputation     -----      multiple imputation 

Telemonitoring group (n = 2,799) Control group (n = 2,799) 

Accepted (n = 299) Declined (n = 306) 
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Figure 2. BP arm participant flow diagram 

 

Chronic disease & accepted ‘My Health Guardian’ offer 
i.e. My Health Guardian member (n = 19,131) 

Did not meet BP arm inclusion criteria 

Telemonitoring group 
Offered telemonitoring service early (n = 2,561) 

Control group 
Delayed offer of telemonitoring 

service (n = 2,080) Declined (n = 1,116) Accepted (n = 1,445) 

Device not used so 
no outcome (n = 126) 

Blood pressure 
RCT TM group (n = 1,303) 

Accepted = Blood pressure 
RCT Control group (n = 1,157) 

Device not used so 
no outcome (n = 102) 

Blood pressure 
RCT TM group (n = 1,429) 

Accepted = Blood pressure 
RCT Control group (n = 1,259) 

multiple imputation     -----      multiple imputation 

Accepted (n = 1,283) Declined (n = 797) 

Enrolled late 
(n = 16) 

Enrolled late 
(n = 24) 

Telemonitoring group (n = 5,924) Control group (n = 5,923) 

to compare 

Randomised (n = 11,847) 
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Table 8. Glucose arm participant enrolments and use of glucometer each month 
 2014 2015 
 Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul† Aug Sep Oct Nov Dec 

Telemonitoring Telemonitoring group Total enrolled = 549       

Enrolled July 290 284 265 258 247 234 224 221 216 214 209 205 191 186 172 171 161 157 

used glucometer 116 202 190 190 182 167 164 162 149 149 147 137 141 134 130 125 114 110 

Enrolled August  92 88 82 77 70 66 66 64 63 60 58 55 49 48 46 44 42 

used glucometer  24 55 50 56 48 43 46 42 40 37 34 36 36 31 30 27 27 

Enrolled September   104 101 96 90 86 85 81 80 78 76 72 70 69 66 63 62 

used glucometer   44 62 63 56 48 45 50 50 49 48 47 40 40 38 41 38 

Enrolled October    43 42 41 39 39 38 37 37 35 31 28 27 25 24 24 

used glucometer    27 28 28 24 23 23 22 22 20 16 15 15 15 14 12 

Enrolled November     3 3 3 3 2 2 2 2 2 2 2 2 2 2 

used glucometer     0 0 0 1 1 2 2 2 2 2 2 2 2 2 

Enrolled January       5 5 5 5 5 5 5 5 5 4 4 4 

used glucometer       1 4 3 3 4 4 5 5 5 4 4 3 

Enrolled February        12 11 10 9 9 9 9 9 9 9 8 

used glucometer        6 7 7 7 7 7 6 6 6 5 5 

Total enrolled 290 376 457 484 465 438 423 431 417 411 400 390 365 349 332 323 307 299 

used glucometer 116 226 289 329 329 299 280 287 275 273 268 252 254 238 229 220 207 197 

% enrolled used gluco 40% 60% 63% 68% 71% 68% 66% 67% 66% 66% 67% 65% 70% 68% 69% 68% 67% 66% 

% group total used gluco 21% 41% 53% 60% 60% 54% 51% 52% 50% 50% 49% 46% 46% 43% 42% 40% 38% 36% 

Controls Control group Total enrolled = 299       

Enrolled July             152 152 150 146 137 133 

used glucometer             27 95 110 105 102 83 

Enrolled August              57 57 57 53 49 

used glucometer              11 40 43 36 29 

Enrolled September               69 69 65 65 

used glucometer               11 43 55 48 

Enrolled October                19 19 18 

used glucometer                9 15 17 

Enrolled November                 2 2 

used glucometer                 1 2 

Total enrolled             152 209 276 291 276 267 

used glucometer             27 106 161 200 209 179 

% enrolled used gluco             18% 51% 58% 69% 76% 67% 

% group total used gluco             9% 35% 54% 67% 70% 60% 

† the months highlighted in yellow were used to define the mean blood glucose primary outcome 
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Table 9. Glucose arm baseline characteristics before multiple imputation 
For participants with ≥1 home blood glucose measurement from 1 July to 30 Nov 2015 

 
 
Baseline characteristics 

Telemonitoring 
N = 271 

(49% of 549) 

Controls 
N = 263 

(88% of 299) 

 
 

P-value 

Sex    
Male 169 (62%) 171 (65%) 0.530 
Female 102 (38%) 92 (35%)  

Age (years)    
Mean (SD) 68.8 (9.2) 65.7 (11.1) 0.001 
Median (IQR) 69 (12) 67 (15)  

Ethnicity    
Missing (%) 40 (15%) 76 (29%)  
Caucasian 202 (87%) 165 (88%) 0.267 
Asian 13 (6%) 12 (6%)  
Other 16 (7%) 10 (5%)  

HbA1c (DCCT %) (last from Jul13-Jun14)    
Missing (%) 191 (70%) 200 (76%)  
Mean (SD) 6.7 (1.2) 6.8 (1.2) 0.944 
Median (IQR) 6.6 (1.2) 6.5 (1.4)  

BMI (last weight from Jul13-Jun14)    
Missing (%) 82 (30%) 82 (31%)  
Mean (SD) 30.5 (5.6) 30.4 (5.4) 0.838 
Median (IQR) 29.6 (7.8) 29.9 (6.5)  

Diabetes type    
Type 1 8 (3%) 17 (6.5%) 0.074 
Type 2 248 (92%) 237 (90.5%)  
Other/unspecified 13 (5%) 8 (3%)  

Hypertension 157 (58%) 57 (22%) < .0001 
Hyperlipidemia 80 (30%) 56 (22%) 0.037 
Cardiovascular disease 145 (54%) 107 (41%) 0.003 
Arthritis (any type) 131 (48%) 100 (38%) 0.018 
Back pain (related diagnosis) 55 (20%) 58 (22%) 0.672 
Walking pain (related diagnosis) 48 (18%) 36 (14%) 0.235 
Eye problem (related diagnosis) 34 (13%) 27 (10%) 0.418 
Insulin or Analogue 45 (17%) 41 (16%) 0.814 
Pain relief drug 155 (57%) 122 (46%) 0.015 
Number of Type 2 diabetes drugs    

0 drugs prescribed 71 (26%) 92 (35%) 0.263 
1 drugs prescribed 127 (47%) 113 (43%)  
2 drugs prescribed 62 (23%) 48 (18%)  
3 drugs prescribed 9 (3%) 8 (3%)  
4 drugs prescribed 2 (1%) 2 (1%)  
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Table 9. cont. Glucose arm baseline characteristics before multiple imputation 

Baseline characteristics 

TM 
N = 271 

(49% of 549) 

Controls 
N = 263 

(88% of 299) P-value 
Employment status (before Jul14)    

Missing (%) 223 (82%) 210 (80%)  
Full-time 4 (8%) 4 (8%) 0.734 
Part-time 2 (4%) 6 (11%)  
Self-employed 2 (4%) 2 (4%)  
No employment 15 (31%) 13 (25%)  
Retired 25 (52%) 28 (53%)  

Moderate exercise    
Missing (%) 230 (85%) 238 (90%)  
Yes (before Jul 2014) 9 (22%) 4 (16%) 0.752 

Smoking status    
Missing (%) 120 (44%) 118 (45%)  
Never smoker 88 (58%) 89 (61%) 0.860 
Past smoker 56 (37%) 50 (34%)  
Current smoker 7 (5%) 6 (4%)  

Risk level (last from Jul13-Jun14)    
Extreme Risk 11 (4%) 11 (4%) 0.011 
High Risk 63 (23%) 49 (19%)  
Medium Risk 17 (6%) 10 (4%)  
Low Risk 100 (37%) 77 (29%)  
Self-Care 80 (30%) 116 (44%)  
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Table 10. BP arm baseline characteristics before multiple imputation 

 Analyses 5 & 6  Analysis 7 

Baseline characteristics TM 
N = 1,429 

Controls 
N = 1,259 P  TM 

N = 773 
Controls 
N = 617 P 

Sex        
Male 727 (51%) 661 (52%) 0.40  426 (55%) 370 (60%) 0.07 
Female 702 (49%) 598 (48%)   347 (45%) 247 (40%)  

Age (years)        
Mean (SD) 70.6 (9.9) 69.1 (9.5) <.0001  70.6 (9.1) 69.4 (9.0) 0.01 
Median (IQR) 72 (13) 70 (13)   72 (12) 71 (12)  

Ethnicity        
Missing (%) 298 (21%) 365 (29%)   143 (19%) 148 (24%)  
Caucasian 1,036 (73%) 809 (64%) 0.58  577 (75%) 424 (69%) 0.23 
Asian 34 (2%) 27 (2%)   20 (3%) 13 (2%)  
Other 61 (4%) 58 (5%)   33 (4%) 32 (5%)  

BMI (last weight Jul13-Jun14)        
Missing (%) 549 (38%) 483 (38%)   283 (37%) 213 (35%)  
Mean (SD) 29.4 (6.3) 29.3 (5.3) 0.74  29.2 (5.9) 28.8 (4.5) 0.38 
Median (IQR) 28.6 (7.1) 28.7 (6.0)   28.4 (6.6) 28.6 (5.2)  

Diabetes type        
Type 1 7 (0.5%) 2 (0.2%) 0.009  3 (0.4%) 1 (0.2%) 0.04 
Type 2 139 (10%) 145 (12%)   70 (9%) 46 (7%)  
Other/unspecified 18 (1%) 4 (0.3%)   11 (1%) 1 (0.2%)  
No diabetes 1,265 (89%) 1,108 (88%)   689 (89%) 569 (92%)  

Systolic BP (last Jul13-Jun14)        
Missing (%) 659 (46%) 602 (48%)   321 (42%) 260 (42%)  
Mean (SD) 132.6 (13.7) 132.2 (13.2) 0.57  132.3 (13.4) 132.4 (13.2) 0.88 
Median (IQR) 130.0 (17.0) 130.0 (16.3)   130.0 (15.8) 130.0 (15.0)  

Diastolic BP (last Jul13-Jun14)        
Missing (%) 683 (48%) 622 (49%)   333 (43%) 273 (44%)  
Mean (SD) 75.1 (9.4) 76.0 (8.7) 0.08  75.0 (8.9) 76.2 (8.8) 0.06 
Median (IQR) 75.0 (10.0) 76.3 (10.3)   75.1 (10.0) 76.0 (10.8)  

Cholesterol (last Jul13-Jun14)        
Missing (%) 1,309 (92%) 1,164 (93%)   695 (90%) 563 (91%)  
Mean (SD) 4.5 (1.6) 4.5 (1.3) 0.80  4.4 (1.4) 4.4 (1.2) 0.92 
Median (IQR) 4.2 (1.4) 4.4 (2.0)   4.1 (1.4) 4.4 (2.1)  

Hyperlipidemia        
Diagnosis before Jul 2014 504 (35%) 373 (30%) 0.002  283 (37%) 199 (32%) 0.09 

Cardiovascular disease        
Diagnosis before Jul 2014 616 (43%) 543 (43%) 0.99  359 (46%) 279 (45%) 0.65 

Arthritis (any type)        
Diagnosis before Jul 2014 712 (50%) 562 (45%) 0.007  393 (51%) 295 (48%) 0.26 

Back pain (related diagnosis)        
Diagnosis before Jul14 342 (24%) 257 (20%) 0.03  196 (25%) 132 (21%) 0.08 
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Table 10. cont. BP arm baseline characteristics before multiple imputation 
 Analyses 5 & 6  Analysis 7 

Baseline characteristics TM 
N = 1,429 

Controls 
N = 1,259 P  TM 

N = 773 
Controls 
N = 617 P 

Walking pain (related diagnosis)        
Diagnosis before Jul14 166 (12%) 147 (12%) 0.96  91 (12%) 88 (14%) 0.17 

Eye problem (related diagnosis)        
Diagnosis before Jul14 159 (11%) 107 (9%) 0.02  89 (12%) 55 (9%) 0.11 

Insulin or Analogue        
Prescribed before Jul14 229 (16%) 164 (13%) 0.03  113 (15%) 85 (14%) 0.66 

Pain relief drug        
Prescribed before Jul14 801 (56%) 580 (46%) <.0001  447 (58%) 318 (52%) 0.02 

Employment status        
Missing (%) 650 (46%) 663 (53%)   345 (45%) 278 (45%)  
Full-time 69 (5%) 57 (5%) 0.34  33 (4%) 36 (6%) 0.03 
Part-time 47 (3%) 50 (4%)   25 (3%) 32 (5%)  
Self-employed 43 (3%) 26 (2%)   25 (3%) 16 (3%)  
No employment 409 (29%) 295 (23%)   241 (31%) 156 (25%)  
Retired 211 (15%) 168 (13%)   104 (13%) 99 (16%)  

Moderate exercise        
Missing (%) 731 (51%) 717 (57%)   384 (50%) 307 (50%)  
Yes (before Jul 2014) 388 (27%) 345 (27%) 0.004  223 (29%) 211 (34%) 0.004 

Smoking status        
Missing (%) 806 (56%) 775 (62%)   427 (55%) 344 (56%)  
Never smoker 380 (27%) 299 (24%) 0.82  218 (28%) 163 (26%) 0.33 
Past smoker 231 (16%) 178 (14%)   122 (16%) 108 (18%)  
Current smoker 12 (0.8%) 7 (0.6%)   6 (0.8%) 2 (0.3%)  

Risk level (last Jul13-Jun14)        
Missing (%) 86 (6%) 94 (7%)   48 (6%) 38 (6%)  
Extreme Risk 68 (5%) 35 (3%) <.0001  35 (5%) 11 (2%) 0.009 
High Risk 284 (20%) 178 (14%)   140 (18%) 87 (14%)  
Medium Risk 102 (7%) 107 (9%)   59 (8%) 54 (9%)  
Low Risk 496 (35%) 467 (37%)   281 (37%) 243 (39%)  
Self-Care 393 (28%) 378 (30%)   210 (27%) 184 (30%)  
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Table 11. Both arms: Diagnosis variable definitions 
With an assumption that some diagnoses are data entry mistakes, e.g. Diabetes insipidus. 
Variable Variable values ICD10Code Diagnosis from Healthways database 

Diabetes Type Other or unspecified E09 Impaired glucose regulation 
 Type 1 E10 Type 1 diabetes mellitus 
 Type 1 E1040 Type 1 diabetes mellitus with unspecified neuropathy 
 Type 1 E1043 Type 1 diabetes mellitus with diabetic autonomic neuropathy 
 Type 1 E108 Type 1 diabetes mellitus with unspecified complication 
 Type 2 E11 Type 2 diabetes mellitus 
 Type 2 E1131 Type 2 diabetes mellitus with background retinopathy 
 Type 2 E1140 Type 2 diabetes mellitus with unspecified neuropathy 
 Type 2 E1142 Type 2 diabetes mellitus with diabetic polyneuropathy 
 Type 2 E1164 Type 2 diabetes mellitus with hypoglycaemia 
 Type 2 E1172 Type 2 diabetes mellitus with features of insulin resistance 
 Type 2 E1173 Type 2 diabetes mellitus with foot ulcer due to multiple causes 
 Type 2 E119 Type 2 diabetes mellitus without complication 
 Other or unspecified E13 Other specified diabetes mellitus 
 Other or unspecified E1336 Other specified diabetes mellitus with diabetic cataract 
 Other or unspecified E1340 Other specified diabetes mellitus with unspecified neuropathy 
 Other or unspecified E1373 Other specified diabetes mellitus with foot ulcer - multiple causes 
 Other or unspecified E14 Unspecified diabetes mellitus 
 Other or unspecified E1434 Unspecified diabetes mellitus with other retinopathy 
 Other or unspecified E1440 Unspecified diabetes mellitus with unspecified neuropathy 
 Other or unspecified E1472 Unspecified diabetes mellitus with features of insulin resistance 
 Other or unspecified E232 Diabetes insipidus 
 Other or unspecified HCF9 Diabetes - unconfirmed 
Hypertension Yes/No EM258 Hypertension 
  I10 Essential (primary) hypertension 
  I11 Hypertensive heart disease 
  I158 Other secondary hypertension 
Hyperlipidemia Yes/No  High cholesterol 
  E780 Pure hypercholesterolemia 
  E781 Pure hyperglyceridaemia 
  E784 Other hyperlipidemia 
  E785 Hyperlipidemia, unspecified 
Cardiovascular Yes/No  Arrhythmia 
Disease   Atrial fibrillation 
   Atrial fibrillation2006 
   Bilateral varicose veins operation 
   Blockage in 1 valve 
   Cardiac stent placed x 7 
   Mitral valve stenosis 
   Pacemaker and AICD replaced 
   Systemic stroke 
  AM034 Cerebrovascular disorders except transient ischemic attacks 
  B70C Stroke w/o other cc 
  EM249 Acute myocardial infarction 
  EM253 Deep vein thrombophlebitis 
  EM254 Peripheral vascular disorders 
  EM270 Angina pectoris 
  EP223 Cardiac valve procedures 
  EP224 Coronary bypass 
  EP236 Perm cardiac pacemaker implant 
  EP238 Cardiac pacemaker device replacement 
  F15Z Percutaneous coronary angioplasty w/o AMI W stent implantation 
  HCF3 Atrial fibrillation - unconfirmed 
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  HCF6 Coronary artery disease (CAD) - unconfirmed 
  I058 Other mitral valve diseases 
  I083 Combined disorders of mitral, aortic and tricuspid valves 
  I088 Other multiple valve diseases 
  I089 Multiple valve disease, unspecified 
  I20 Angina pectoris 
  I209 Angina pectoris, unspecified 
  I21 Acute myocardial infarction 
  I219 Acute myocardial infarction, unspecified 
  I25 Chronic ischaemic heart disease 
  I250 Atherosclerotic cardiovascular disease, so described 
  I251 Atherosclerotic heart disease 
  I252 Old myocardial infarction 
  I259 Chronic ischaemic heart disease, unspecified 
  I26 Pulmonary embolism 
  I30 Acute pericarditis 
  I319 Disease of pericardium, unspecified 
  I350 Aortic (valve) stenosis 
  I359 Aortic valve disorder, unspecified 
  I390 Mitral valve disorders in diseases classified elsewhere 
  I42 Cardiomyopathy 
  I455 Other specified heart block 
  I460 Cardiac arrest with successful resuscitation 
  I471 Supraventricular tachycardia 
  I472 Ventricular tachycardia 
  I48 Atrial fibrillation and flutter 
  I499 Cardiac arrhythmia, unspecified 
  I50 Heart failure 
  I500 Congestive heart failure 
  I516 Cardiovascular disease, unspecified 
  I519 Heart disease, unspecified 
  I64 Stroke, not specified as haemorrhage or infarction 
  I7020 Atherosclerosis of arteries of extremities, unspecified 
  I712 Thoracic aortic aneurysm, without mention of rupture 
  I73 Other peripheral vascular diseases 
  I730 Raynaud's syndrome 
  I738 Other specified peripheral vascular diseases 
  I739 Peripheral vascular disease, unspecified 
  I82 Other venous embolism and thrombosis 
  I829 Embolism and thrombosis of unspecified vein 
  R00 Abnormalities of heart beat 
  R000 Tachycardia, unspecified 
  R001 Bradycardia, unspecified 
  R002 Palpitations 
  R01 Cardiac murmurs and other cardiac sounds 
  R011 Cardiac murmur, unspecified 
  R110 Neurological stroke 
Arthritis Yes/No  Psoriatic arthritis 
(any type)  HCF19 Osteoarthritis - unconfirmed 
  M0125 Arthritis in Lyme disease, pelvic region and thigh (A69.2+) 
  M06 Other rheumatoid arthritis 
  M0680 Other specified rheumatoid arthritis, multiple sites 
  M0689 Other specified rheumatoid arthritis, site unspecified 
  M069 Rheumatoid arthritis unspecified 
  M0690 Rheumatoid arthritis, unspecified, multiple sites 
  M0699 Rheumatoid arthritis, unspecified, site unspecified 
  M0900 Juvenile arthritis in psoriasis, multiple sites (L40.5+) 
  M13 Other arthritis 
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  M130 Polyarthritis, unspecified 
  M138 Other specified arthritis 
  M139 Arthritis unspecified 
  M1390 Arthritis, unspecified, multiple sites 
  M1393 Arthritis, unspecified, forearm 
  M1394 Arthritis, unspecified, hand 
  M1396 Arthritis, unspecified, lower leg 
  M1397 Arthritis, unspecified, ankle and foot 
  M1398 Arthritis, unspecified, other site 
  M1399 Arthritis, unspecified, site unspecified 
  M150 Primary generalised (osteo)arthrosis 
Back Pain Yes/No  Back pain 
   Back problems 
   Degenerative spine 
   Laminectomy - spinal fusion 
   Lower back pain 
   Ruptured disc 
   Scoliosis of spine 
   Spinal surgery 
   Upper back pain 
  AP025 Spinal procedures 
  HCF16 Low back pain - unconfirmed 
  HM432 Medical back problems 
  HP447 Back and neck procedures with spinal fusion 
  HP448 Back and neck procedures without spinal fusion 
  M41 Scoliosis 
  M4326 Other fusion of spine, lumbar region 
  M4506 Ankylosing spondylitis, lumbar region 
  M480 Spinal stenosis 
  M4802 Spinal stenosis, cervical region 
  M4807 Spinal stenosis, lumbosacral region 
  M51 Other intervertebral disc disorders 
  M513 Other specified intervertebral disc degeneration 
  M518 Other specified intervertebral disc disorders 
  M519 Intervertebral disc disorder, unspecified 
  M54 Dorsalgia 
  M543 Sciatica 
  M545 Low back pain 
  M546 Pain in thoracic spine 
  S1316 Dislocation of C6/C7 cervical vertebrae 
Other Walking Yes/No  Cervical fractures 
Pain   Dorsal and plantar spur on both feet 
   Femoral bypass and graft surgery 
   Hip replacement 
   Knee replacement 
   Poor circulation of the leg 
   Right ankle injury 
   Stenting on the left leg 
   Toe amputation 
  HM425 Fracture of femur 
  HM437 Tendonitis, myositis and bursitis 
  HP403 Hip and femur procedures except major joint 
  HP413 Knee procedures 
  HP416 Foot procedures 
  HP422 Arthroscopy 
  JP520 Amputation of lower limb for endocrine, nutrit and metabol 

disorders 
  K41 Femoral hernia 
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  M0737 Other psoriatic arthropathies, ankle and foot (L40.5+) 
  M10 Gout 
  M109 Gout unspecified 
  M1096 Gout, unspecified, lower leg 
  M353 Polymyalgia rheumatica 
  M6265 Muscle strain, pelvic region and thigh 
  M6797 Unspecified disorder of synovium and tendon, ankle and foot 
  M706 Trochanteric bursitis 
  M707 Other bursitis of hip 
  M710 Abscess of bursa 
  M7115 Other infective bursitis, pelvic region and thigh 
  M7117 Other infective bursitis, ankle and foot 
  M712 Synovial cyst of popliteal space [Baker] 
  M7136 Other bursal cyst, lower leg 
  M7141 Calcium deposit in bursa, shoulder region 
  M7156 Other bursitis, not elsewhere classified, lower leg 
  M722 Plantar fascial fibromatosis 
  M797 Fibromyalgia 
  M7970 Fibromyalgia, multiple sites 
  M8437 Stress fracture, not elsewhere classified, ankle and foot 
  M955 Acquired deformity of pelvis 
  R235 Orthopaedic - other joint replacement 
  S720 Fracture of neck of femur 
  S7205 Fracture of base of neck of femur 
  S821 Fracture of upper end of tibia 
  S8241 Fracture of upper end of fibula 
  S825 Fracture of medial malleolus 
  S832 Tear of meniscus, current 
  S837 Injury to multiple structures of knee 
  S860 Injury of achilles tendon 
  S870 Crushing injury of knee 
  S96 Injury muscle tendon at ankle foot level 
  W01 Fall same lvl from slip trip & stumble 
  W010 Fall on same level from slipping 
  W06 Fall involving bed 
  W109 Fall on & frm oth and unspec stair step 
  W135 Fall from or through floor 
  W138 Fall from, out of or through other specified building or structure 
  W18 Other fall on same level 
  W189 Unspecified fall on same level 
  Z441 Fitting and adjustment of artificial leg (complete)(partial) 
  Z740 Reduced mobility 
  Z9664 Presence of hip implant 
  Z9665 Presence of knee implant 
Eye Problems Yes/No  Bleeding in the back of eye 
   Blindness 
   Cataract r eye 
   Cataract surgery and glaucoma 
   Cataracts 
   Cateracts removed 
   Cva and loss of eyesight in right remaining eye 
   Detached retina right eye 
   Left eye with very limited eyesight. 
   Macular degeneration 
   Vision impairment 
  BM085 Other disorders of the eye 
  BP073 Lens procedures with or without vitrectomy 
  H183 Changes in corneal membranes 



 

 367 

  H25 Senile cataract 
  H259 Senile cataract, unspecified 
  H26 Other cataract 
  H262 Complicated cataract 
  H264 After-cataract 
  H269 Cataract, unspecified 
  H28 Cataract & oth disrd lens in dis cl/e 
  H33 Retinal detachments and breaks 
  H350 Background retinopathy and retinal vascular changes 
  H353 Degeneration of macula and posterior pole 
  H40 Glaucoma 
  H409 Glaucoma, unspecified 
  H544 Blindness, one eye 
  H57 Other disorders of eye and adnexa 
  Z947 Corneal transplant status 
  Z961 Presence of intraocular lens 

 

 

Table 12. Both arms: Medication variable definitions 

Variable Variable values Medicine Class from Healthways database 

Insulin or Analogue Yes/No Alpha glucosidase inhibitors 
  Biguanides 
  Comb.sulfonamides & trimethoprim incl. derivatives 
  Combinations of oral blood glucose lowering drugs 
  Intermediate-acting sulfonamides 
  Oral blood glucose lowering drugs 
  Other oral blood glucose lowering drugs 
  Sulfonamides, plain 
  Sulfonamides, urea derivatives 
  Thiazolidinediones 
Number of Type 2 Drugs 0 to 4 Alpha glucosidase inhibitors 
  Biguanides 
  Comb.sulfonamides & trimethoprim incl. derivatives 
  Combinations of oral blood glucose lowering drugs 
  Intermediate-acting sulfonamides 
  Oral blood glucose lowering drugs 
  Other oral blood glucose lowering drugs 
  Sulfonamides, plain 
  Sulfonamides, urea derivatives 
  Thiazolidinediones 
Pain Relief Drugs Yes/No Acetic acid derivatives and related substances 
  Anilides 
  Corticosteroids 
  Corticosteroids and antiinfectives in combination 
  Corticosteroids and mydriatics in combination 
  Corticosteroids, plain 
  Corticosteroids, potent (group III) 
  Corticosteroids, weak (group I) 
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  Corticosteroids, weak, comb with antiseptics 
  Glucocorticoids 
  Natural opium alkaloids 
  Opioids 
  Opium alkaloids and derivatives 
  Oripavine derivatives 
  Other antiinfl./antirheumatic agents, non-steroids 
  Other opioids 
  Oxicams 
  Preparations inhibiting uric acid production 
  Preparations w. no effect on uric acid metabolism 
  Propionic acid derivatives 
  Salicylic acid and derivatives 

 

 

 

Figure 3. BP arm distribution of all telemonitoring device SBP and DBP measurements 
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Figure 4. Causal diagram for the Glucose arm modified for a presentation 
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Figure 5. BP arm participants and total number of weeks with BP measured 
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Figure 6. Participants in BP arm with total weeks between first and last measurement 

Telemonitoring device measurements from the Telemonitoring group; reported over the 
phone measurements from Control group  
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Table 13. Glucose arm baseline characteristics for the full dataset after multiple imputation 
All enrolled participants are included. 

Baseline 
characteristics  

Telemonitoring 
N = 549 

Controls 
N = 299 P-value 

Sex N imputed 0 0  
 Male 322 (59%) 193 (65%) 0.093 
 Female 227 (41%) 106 (35%)  
Age (years) N imputed 0 0  
 Mean (SD) 67.9 (10.8) 65.9 (11.4) 0.010 
 Median (IQR) 69 (13) 67 (15)  
Ethnicity N imputed 115/549 88/299  
(missing 22%) Caucasian 481 (88%) 259 (87%) 0.753 
 Asian 28 (5%) 22 (7%)  
 African 0 1  
 Pacific Islander 0 1  
 Aboriginal 1 1  
 Other 39 (7%) 15 (5%)  
HbA1c N imputed 396/549 225/299  
(missing 73%) Mean (SD) 6.8 (1.3) 6.9 (1.3) 0.723 
 Median (IQR) 6.8 (1.6) 6.8 (1.7)  
BMI N imputed 183/549 98/299  
(missing 31%) Mean (SD) 30.4 (5.8) 30.1 (5.8) 0.546 
 Median (IQR) 29.8 (7.6) 29.6 (7.0)  
Diabetes type N imputed 3/549 1/299  
 Type 1 30 (5%) 21 (7%) 0.129 
 Type 2 494 (90%) 270 (90%)  
 Type 1 & 2 1 1  
 Other/unspecified 24 (4%) 7 (2%)  
Hypertension N imputed 0 0  
 Diagnosis before Jul 2014 321 (58%) 64 (21%) < .0001 
Hyperlipidemia N imputed 0 0  
 Diagnosis before Jul 2014 162 (30%) 60 (20%) 0.003 
Cardiovascular N imputed 0 0  
disease Diagnosis before Jul 2014 258 (47%) 115 (38%) 0.017 
Arthritis (any type) N imputed 0 0  
 Diagnosis before Jul 2014 249 (45%) 113 (38%) 0.033 
Back pain N imputed 0 0  
related diagnosis Diagnosis before Jul14 108 (20%) 64 (21%) 0.549 
Walking pain N imputed 0 0  
related diagnosis Diagnosis before Jul14 77 (14%) 44 (15%) 0.784 
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Table 13 cont. Glucose arm baseline characteristics after multiple imputation 

Baseline  
Telemonitoring 

N = 271 
Controls 
N = 263 P-value 

Eye problem N imputed 0 0  
related diagnosis Diagnosis before Jul14 59 (11%) 33 (11%) 0.897 
Insulin or Analogue N imputed 0 0  
prescribed before Jul14 Prescribed 119 (22%) 50 (17%) 0.085 
Pain relief drug N imputed 0 0  
prescribed before Jul14 Prescribed 292 (53%) 139 (46%) 0.062 
Number of Type 2 N imputed 0 0  
diabetes drugs 0 drugs prescribed 162 (30%) 106 (35%) 0.209 
prescribed before Jul14 1 drugs prescribed 241 (44%) 126 (42%)  
 2 drugs prescribed 113 (21%)  56 (19%)  
 3 drugs prescribed 31 (6%) 9 (3%)  
 4 drugs prescribed 2 2  
Employment status N imputed 449/549 240/299  
(missing 81%) Full-time 46 (8%) 30 (10%) 0.221 
 Part-time 62 (11%) 46 (16%)  
 Self-employed 29 (5%) 15 (5%)  
 No employment 122 (22%) 72 (24%)  
 Retired 289 (53%) 137 (46%)  
Moderate exercise N imputed 486/549 273/299  
(missing 88%) Yes before Jul 2014 135 (24%) 49 (16%) 0.183 
Smoking status N imputed 270/549 141/299  
(missing 45%) Never smoker 329 (60%) 177 (59%) 0.972 
 Past smoker 185 (34%) 106 (35%)  
 Current smoker 35 (6%) 16 (5%)  
Risk level N imputed 0 0  
(last recorded Jul13-Jun14) Extreme Risk 20 (4%) 12 (4%) 0.008 
 High Risk 127 (23%) 57 (19%)  
 Medium Risk 41 (7%) 14 (5%)  
 Low Risk 191 (35%) 87 (29%)  

 Self Care 170 (31%) 129 (43%)  
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