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SUMMARY 

Since the introduction of antibiotic use almost 80 years ago, bacterial resistance to 

antibiotics has posed significant problems in both hospital and community settings, 

and there is insufficient development of new antibiotics to keep ahead of the spread 

of antibiotic resistance. Plasmids act as vehicles to facilitate the rapid and 

widespread dissemination of antibiotic resistance determinants. To prevent plasmid 

mis-segregation and plasmid loss during cell division, low copy-number plasmids, 

such as the staphylococcal multiresistance plasmid, pSK1, encode plasmid 

segregational stability mechanisms to ensure that plasmids are stably inherited and 

maintained by progeny cells, even in the absence of selection.  

pSK1 is the prototype of the pSK1 family of staphylococcal multiresistance 

plasmids. The par locus on pSK1 enhances plasmid segregational stability using a 

putative plasmid partitioning mechanism. Homologues of pSK1 par are widespread 

on staphylococcal multiresistance plasmids (~80%), and hence understanding the 

mechanism of par will contribute to our knowledge of plasmid maintenance and 

inheritance, particularly in coccoid-shaped staphylococcal cells. This, in turn, can 

provide insight into potential targets for the development of antimicrobial therapies 

aimed to disrupt plasmid inheritance and the dissemination of resistance genes.  

Unique to pSK1 par is the production of a single protein, Par, from the partitioning 

locus. This is in contrast to the two proteins (a centromere-binding protein and a 

NTPase motor protein) that are encoded by other characterised plasmid partitioning 

systems. Previous studies on pSK1 Par revealed that the N-terminal helix-turn-helix 

(HTH) domain is essential for DNA-binding, while the central coiled-coil (CC) 



 

 i 

domain is crucial for Par multimerisation. Mutations to either of these domains have 

severe effects on plasmid segregational stability. 

The experimental data presented in this thesis reveal important mechanistic insights 

into pSK1 par-mediated plasmid segregational stability. Importantly, a distantly-

related pSK1 Par homologue was identified on a S. epidermidis multiresistance 

plasmid, and was also shown to exhibit plasmid stabilisation activity, which 

highlights the relevance of pSK1 par-like systems to the maintenance of 

staphylococcal multiresistance plasmids and their antibiotic resistance determinants. 

Functional studies, performed both in vivo and in vitro, highlight the importance of 

the predicted disordered C-terminal domain (CTD) for Par self-interaction. These 

interactions appear to directly affect the formation of higher-order Par multimers, as 

well as the cooperativity of Par binding to the centromere-like site. These results are 

consistent with a role of the Par CTD in stabilisation of the partition complex. 

With regard to mechanism, the functional characterisation of Par was complemented 

by experiments performed to explore the possibility of the involvement of host 

factors in Par function. Yeast two-hybrid screening of S. aureus genomic DNA 

libraries did not identify any functionally significant Par interaction partners, and no 

direct evidence of nucleoid interaction was obtained. However, the possibility 

remains open that a host-encoded protein or the host chromosome might contribute 

to Par function. This possibility should be explored further. 

Finally, cytological studies of plasmid segregation by pSK1 par revealed that Par-

GFP and plasmid DNA are localised around the cell periphery or near the division 

site in S. aureus. The fluorescence localisation experiments described in this thesis 

represent the first visualisation of plasmid segregation in S. aureus. Results from 



 

 ii 

these studies provide indications of plasmid pairing and demonstrate the 

functionality of pSK1 par in the accurate segregation and inheritance of plasmid 

DNA.  

Taken together, the results presented in this thesis provide strong evidence to suggest 

that pSK1 par encodes a plasmid segregational stability determinant that functions 

using a mode of action that cannot be described by mechanisms proposed for active 

plasmid partitioning systems known to date. The results, therefore, imply a novel 

mechanism of plasmid partitioning mediated by pSK1 par and par-like loci. 
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CHAPTER 1 

INTRODUCTION 

1.1. The staphylococci 

The staphylococci are a group of Gram-positive opportunistic pathogenic bacteria 

that are coccoid shaped and 0.5–1 µm in diameter (Prescott et al. 2005). They are 

non-motile, salt-tolerant, facultative anaerobes that have a low G+C content of 30–

38%, similar to other Gram-positive bacteria such as bacilli, streptococci and 

enterococci. Due to cell division in three orthogonal planes (Tzagoloff and Novick 

1977, Pinho et al. 2013), staphylococci are differentiated from streptococci by their 

appearance as grape-like clusters, as opposed to chains, when observed by 

microscopy.  

The staphylococci are part of the commensal bacteria of approximately 30% of the 

human population, with S. aureus colonising the nasal passage and axillae, and S. 

epidermidis commonly found on the skin (Kluytmans et al. 1997, Wertheim et al. 

2005, Grice and Segre 2011). The most pathogenic species of the staphylococci, S. 

aureus, is characterised by its coagulase-producing properties, whereas most other 

species, including S. epidermidis, are coagulase-negative. S. aureus, also commonly 

known as “Golden Staph”, due to the production of a carotenoid pigment on solid 

growth media, is one of the most common causes of hospital-acquired, or 

nosocomial, infections world-wide (Klein et al. 2007, Laxminarayan et al. 2013). 

Infections caused by S. aureus include infections of the skin, such as boils, styes and 

impetigo, infections of the bone, such as osteomyelytis, and more serious conditions 

such as bacteraemia, pneumonia, meningitis, endocarditis and septicaemia (Baron 
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1996). Multiply-resistant S. aureus infections are a frequent cause of hospital 

outbreaks (Boucher and Corey 2008, Lindsay 2013), which can become epidemic 

and lead to increased morbidity and mortality, as well as increased health care costs 

(Klein et al. 2007). The success of S. aureus as a human pathogen that is commonly 

associated with antibiotic resistance can be attributed to its ability to rapidly evolve 

and adapt to changes in its environment (see Section 1.2.2). Although less 

pathogenic than S. aureus, other species of the staphylococci can also be pathogenic, 

such as S. epidermidis, which is commonly associated with infections from 

indwelling medical devices, and S. saprophiticus, which causes urinary tract 

infections.  

1.2. Antimicrobial resistance in the staphylococci 

1.2.1. Emergence of antimicrobial resistance in the staphylococci 

With the discovery of penicillin by Alexander Fleming in 1928, and the prescribed 

use of penicillin for the treatment of infections in the 1940s, the prognosis for 

bacterial infections was greatly improved. However, less than two years after the 

introduction of penicillin use, reports emerged of S. aureus strains that had 

developed resistance to the drug (Rammelkamp and Maxon 1942). The emergence of 

antibiotic resistance in S. aureus was repeated following the introduction of other 

antibiotics in the mid-1940s, such as erythromycin, streptomycin and the 

tetracyclines (Mitsuhashi et al. 1965, Plorde and Sherris 1974, Brumfitt and 

Hamilton-Miller 1989). In 1959, a semi-synthetic penicillin, methicillin, was 

introduced to overcome penicillin resistance, however, strains of methicillin-resistant 

S. aureus (MRSA) were detected less than two years later (Jevons 1961). Over time, 

with increased widespread use of antibiotics, the efficacy of antibiotics for the 
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treatment of S. aureus infections has rapidly diminished. What was once used as a 

drug of last resort, vancomycin is now the drug of choice for serious MRSA 

infections. Alarmingly, strains of S. aureus with reduced susceptibility to 

vancomycin, vancomycin-intermediate S. aureus (VISA), were detected in Japan in 

1997 (Hiramatsu et al. 1997) and are becoming more widespread (Howden et al. 

2010). Although rare, a number of reports have identified strains of S. aureus that are 

highly resistant to vancomycin (CDC 2002, Weigel et al. 2003, Bataineh 2006, 

Tiwari and Sen 2006). Newer antibiotics introduced in the 1970s to 1980s, such as 

linezolid and daptomycin, remain largely effective against MRSA, although 

resistance to these drugs has also emerged (Tsiodras et al. 2001, Hayden et al. 2005, 

Mangili et al. 2005, Morales et al. 2010, Gu et al. 2013). 

Whereas MRSA infections were traditionally hospital-acquired, cases of community-

acquired MRSA (CA-MRSA) infections are increasing (Chambers 2001, Salgado et 

al. 2003, Sowash and Uhlemann 2014, Stryjewski and Corey 2014). CA-MRSA 

were found to be acquired and transmitted in populations that have no known risk 

factors for colonisation, such as exposure to healthcare environments or previous 

antimicrobial therapy (Herold et al. 1998, Gorak et al. 1999). CA-MRSA are often 

associated with mild skin or soft tissue infections (Stryjewski and Chambers 2008), 

although invasive and severe infections causing death have also been reported (CDC 

1999, Gillet et al. 2002, Gonzalez et al. 2005). Unlike hospital-acquired MRSA, CA-

MRSA isolates were initially susceptible to multiple drugs, and resistant only to β-

lactams (Naimi et al. 2003). However, recent surveys have found resistance of CA-

MRSA to non-β-lactams, such as cotrimoxazol, erythromycin and clindamycin (John 

et al. 2017). Indeed, isolates of one of the most predominant strains of CA-MRSA, 

clone USA300 (Diep et al. 2006, King et al. 2006, Carrel et al. 2015), were shown to 
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exhibit multiresistance to β-lactams, erythromycin, clindamycin, tetracycline, 

levofloxacin, ciprofloxacin, fluoroquinolones, gentamicin, mupirocin, vancomycin 

and/or daptomycin (Diep et al. , Tenover and Goering 2009, Stryjewski and Corey 

2014), and contain genes encoding the Panton-Valentine leucocidin and resistance to 

arsenic, bacitracin, cadmium and fosfomycin (Tenover et al. 2006, Stryjewski and 

Corey 2014). 

Today, resistance to methicillin by S. aureus is indicative of resistance to multiple 

antibiotics. MRSA is a major cause of hospital- and community-acquired infections 

world-wide (Stefani et al. 2012), accounting for 72,444 cases of severe infections, 

and causing 9,194 deaths in 2014, in the US alone (CDC 2014). MRSA infections 

are associated with prolonged hospital stays, heightened risk of morbidity and 

increased healthcare costs compared to non-resistant forms of the infection (Filice et 

al. 2010, Gould et al. 2010). As such, the Centers for Disease Control and 

Prevention (CDC) identified MRSA as a serious threat level pathogen, and 

acknowledged that antibiotic resistance in MRSA needs to be addressed urgently 

(CDC 2013). The World Health Organisation (WHO) has recognised that the world 

is now facing an antibiotic crisis, wherein there is a substantial threat that effective 

antimicrobials will no longer be available for simple invasive surgical procedures or 

for the treatment of common infections. In May 2015, the WHO developed a global 

action plan on antimicrobial resistance to support the surveillance and management 

of drug resistance (WHO 2015). Without proper management of antibiotic 

resistance, the prognosis for once-treatable S. aureus infections, and infections 

caused by other antibiotic resistant pathogenic bacteria, could potentially revert to 

those of pre-antimicrobial days. 
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1.2.2. Mechanisms of genetic exchange in the staphylococci 

Rather than arising from spontaneous mutations in the chromosome, it is believed 

that antibiotic resistance in the staphylococci most likely results from the acquisition 

of pre-existing resistance determinants (Lyon and Skurray 1987, Jensen and Lyon 

2009, Lindsay 2010, Malachowa and DeLeo 2010, Ramsay et al. 2016). The 

exchange of genetic material between staphylococcal cells occurs via four main 

mechanisms: transformation, transduction, conjugation and mixed-culture transfer. 

Although observed in the laboratory, the occurrence of these mechanisms of 

horizontal gene transfer in the natural environment is unclear, however, it is thought 

that genetic exchange is facilitated predominantly by transduction and conjugation 

(Firth and Skurray 2000, Lindsay 2014, Ramsay et al. 2016). 

Transformation is the process of the cellular uptake of naked exogenous DNA. 

Transformation of staphylococcal cells with DNA occurs in the presence of calcium 

ions and relies on cells having attained competency, for example, by lysogeny with 

phage (Rudin et al. 1974) or heat inactivation of nucleases (Sjöström et al. 1979). 

Additionally, sigma H factor has been shown to induce bacterial competency, albeit 

with very low transformation frequencies (Morikawa et al. 2012). However, due to 

intrinsic deoxyribonucleases and restriction modification systems present in the 

staphylococci (Waldron and Lindsay 2006, Corvaglia et al. 2010, Lindsay 2014), 

genetic exchange by transformation is not expected to occur frequently in the natural 

environment.  

In the staphylococci, transduction involves the packing of genetic material into the 

heads of transducing phage particles from a donor strain, which then attach to 

glycosylated wall teichoic acid of a recipient strain to mediate transfer of genetic 
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material in the presence of calcium ions (Rountree 1951, Xia et al. 2011, Winstel et 

al. 2013). Transduction is predicted to be a major contributor to the horizontal 

transfer of genetic material between staphylococcal cells (Iandolo et al. 2002, 

Lindsay 2010, Lindsay 2014), since phage are widespread amongst S. aureus 

isolates, which often harbour one to four different phage types (Kwan et al. 2005, 

Lindsay et al. 2006, Lindsay 2010).  

In a laboratory setting, transduction frequencies of between 10-6 and 10-8 

transductants per PFU have been observed for chromosomal DNA fragments, and 

between 10-4 and 10-6 for plasmid DNA (Novick 1990). The phage head is capable of 

packaging up to 45 kb of DNA from the donor strain (Bächi 1980, Löfdahl et al. 

1981, Stewart et al. 1985), with higher transduction frequencies observed for 

plasmids smaller than 40 kb (Rush et al. 1969, Chopra 1976, McDonnell et al. 

1983). Phage-mediated transfer of genetic material is often associated with the 

transfer of antibiotic resistance genes, such as chloramphenicol (Dyer et al. 1985) 

and tetracycline (Novick et al. 1986), virulence factors, such as enterotoxin A 

(Betley and Mekalanos 1985), exfoliative toxin A (Yamaguchi et al. 2000) and 

Panton-Valentine leucocidin (Kaneko et al. 1998, Narita et al. 2001), as well as S. 

aureus pathogenicity islands (SAPIs) (Section 1.3.4) (Ruzin et al. 2001, Kwan et al. 

2005). Once injected into the recipient cell, the packaged DNA then either integrates 

into the chromosome or is resolved as plasmid DNA (Canchaya et al. 2003). 

Plasmid-mediated conjugation involves the transfer of plasmid DNA from donor to 

recipient cells via direct cell-to-cell contact. Conjugative plasmids are vehicles for 

genetic exchange, although the prevalence of conjugative plasmids in staphylococci 

is predicted to be relatively low, with only 5–20% of strains carrying plasmids that 



 

 7 

contain conjugative transfer regions (Shearer et al. 2011, McCarthy and Lindsay 

2012). Despite this, mobilisation of non-conjugative staphylococcal plasmids has 

been observed in the presence of a co-resident conjugative plasmid. For example, 

early observations showed that the mobilisation of a staphylococcal chloramphenicol 

resistance plasmid, pC221 (Archer and Johnston 1983, McDonnell et al. 1983, 

Projan and Archer 1989), occurred at even higher frequencies than the transfer of the 

co-resident conjugative plasmid itself, pGO1 (Projan and Archer 1989), which 

suggests that conjugation and mobilisation of plasmids play major roles in the spread 

of antibiotic resistance determinants in the staphylococci.  

Interestingly, a recently described relaxase-in trans mechanism of plasmid transfer 

was identified for relaxases encoded by staphylococcal plasmids from the pWBG749 

and pSK41 family of conjugative multiresistance plasmids (Section 1.3.2.4) (O'Brien 

et al. 2015, Pollet et al. 2016, Ramsay et al. 2016). This mechanism describes the 

mobilisation of non-conjugative staphylococcal plasmids that contain origin of 

transfer (oriT) sequences that mimic the oriT sequences recognised by the relaxase 

from a co-resident conjugative multiresistance plasmid (SmpP or Nes for pWBG749 

and pSK41, respectively). Approximately 89% of large staphylococcal plasmids 

(>14.5 kb), which includes multiresistance plasmids (Section 1.3.2.3), carry at least 

one oriT mimic sequence, which highlights the significant potential of these non-

conjugative plasmids to be mobilised in trans. Therefore, plasmid-mediated 

conjugation, which includes relaxase-in trans mobilisation of non-conjugative 

staphylococcal plasmids, is a potentially significant contributor to the dissemination 

of antimicrobial resistance determinants in S. aureus (McDonnell et al. 1983, 

Ramsay et al. 2016). 
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Phage-mediated conjugation, or mixed-culture transfer, requires phage in either the 

donor or recipient cell, as well as a high cell density and calcium ions (Lacey 1980). 

While little is known about the mechanism of genetic exchange, high transfer 

frequencies have been reported, with transfer frequencies of plasmid-located 

resistance determinants reaching 10-1 transcipients per donor cell (Lacey 1980). 

Lacey (1980) proposed that phage, or components of phage, may alter cell surface 

proteins to increase adhesiveness. Indeed, evidence suggests that conditions such as 

sub-inhibitory concentrations of β-lactam antibiotics, increase the frequency of 

phage-mediated conjugation, possibly by promoting aggregation and cell-to-cell 

contact, thus allowing plasmid DNA to be transferred from donor to recipient (Barr 

et al. 1986).  

1.3. Mobile genetic elements associated with antibiotic resistance 

in the staphylococci 

1.3.1. Transposons and insertion sequences 

Transposons and insertion sequences are mobile genetic elements that are able to 

independently translocate between genetic locations, using a mechanism called 

transposition. The simplest of the transposable elements, insertion sequences are 

typically comprised of a transposase gene, which encodes the transposase that 

mediates transposition, flanked by a pair of inverted repeats (IRs). Transposons, in 

addition to encoding the transposase, also often contain genes that confer antibiotic 

resistance. Composite transposons are transposons that are bound by insertion 

sequences.  
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Transposable genetic elements are widespread on the staphylococcal chromosome 

and on multiresistance plasmids. Table 1.1 provides a list of transposons and 

insertion sequences that have been identified in the staphylococci, along with the 

resistance genes associated with the mobile elements. The mobility of transposons 

and insertion sequences results in genetic rearrangements in the staphylococcal 

genome, such as insertions, deletions, inversions and replicon fusions. Due to the 

replicative nature of transposition, insertion elements are often present in multiple 

copies in the genome. As such, further recombination and insertion events are 

promoted, and can lead to clustering of resistance determinants and mobile elements 

(Firth and Skurray 1998). The transposition of transposons and insertion sequences 

within and between staphylococcal genomes and plasmids is, therefore, a significant 

contributor to the evolution of multiresistance plasmids in the staphylococci.  

Amongst the staphylococci, IS257 is a widespread transposable element that is often 

responsible for the acquisition and clustering of resistance determinants on 

staphylococcal chromosomes and multiresistance plasmids. IS257 is associated with 

a range of antibiotic resistance genes (Table 1.1), and is frequently identified 

bordering composite transposons, such as Tn4003 and Tn4004, and bordering the 

sequences of small resistance plasmids that have cointegrated with the host genome 

(Firth and Skurray 1998). For example, on pSK41-like plasmids, IS257 is found 

flanking pUB110, pSK108-like, pSK89-like and pSK639-like plasmid sequences 

(Byrne et al. 1990, Berg et al. 1998, Liu et al. 2013), while on pSK1, IS257 elements 

are found flanking the insertion of a pSK639-like plasmid (Jensen et al. 2010). 

Tn4001 is a composite transposon that is prevalent on the chromosomes and 

multiresistance plasmids of clinical S. aureus and coagulase-negative staphylococcal 



Table 1.1 Staphylococcal transposons and insertion sequences 

 
 

Element Associated resistance(s) 
Associated 
resistance 

gene(s) 
Reference 

IS256 Gentamicin, kanamycin, 
tobramycin 

aacA-aphA Rouch et al. 
(1987), Byrne et 
al. (1989) 

IS257  
(IS431) 

Antiseptics, disinfectants smr Littlejohn et al. 
(1991), 
Leelaporn et al. 
(1996) 

 Bacitracin bcrAB Chalker et al. 
(2000) 

 Bleomycin ble Byrne et al. 
(1991) 

 Cadmium cadD Crupper et al. 
(1999) 

 Fusidic acid fusB O’Brien et al. 
(2002) 

 Gentamicin, kanamycin, 
tobramycin 

aacA-aphA Byrne et al. 
(1990) 

 Kanamycin, neomycin, 
paromomycin, tobramycin 

aadD Byrne et al. 
(1991),  
Dubin et al. 
(1991) 

 Lysostaphin immunity 
factor 

lif Thumm and 
Götz (1997) 

 Macrolides, lincosamides, 
streptogramin B (MLS) 

ermC (Holden et al. 
2013) 

 Mercury merA, merB Gillespie et al. 
(1987a), Stewart 
et al. (1994) 

 Methicillin mecA Stewart et al. 
(1994) 

 Mupirocin mupA Needham et al. 
(1994), Morton 
et al. (1995) 



Table 1.1 Staphylococcal transposons and insertion sequences (continued) 

 
 

Element Associated resistance(s) 
Associated 
resistance 

gene(s) 
Reference 

IS257 
(IS431) 

Preprolysostaphin lss Thumm and 
Götz (1997) 

 Streptogramin A vatA, vgaA Haroche et al. 
(2003) 

 Streptothricin sat4 (Derbise et al. 
1997) 

 Tetracycline tetA(K) Leelaporn et al. 
(1996), Stewart 
et al. (1994), 
Needham et al. 
(1994), 
Werckenthin et 
al. (1996) 

 Trimethoprim dfrA Leelaporn et al. 
(1996), Rouch 
et al. (1989) 

 Virginiamycin vgb Allignet et al. 
(1988) 

IS1181 Kanamycin, neomycin aphA-3 Derbise et al. 
(1994) 

 Streptomycin aadE  

IS1182 Kanamycin, neomycin aphA-3 Derbise et al. 
(1994) 

 Streptomycin aadE  

IS1272 Methicillin mecA Archer and 
Niemeyer 
(1994), Archer 
et al. (1996) 

ISSau9 
(IS21-558) 

Chloramphenicol, 
florfenicol 

fexA Kehrenberg and 
Schwarz (2006) 

 Chloramphenicol, 
florfenicol, clindamycin 

cfr  



Table 1.1 Staphylococcal transposons and insertion sequences (continued) 

 
 

Element Associated resistance(s) 
Associated 
resistance 

gene(s) 
Reference 

ISSau10 Macrolides, lincosamides, 
streptogramin B 

erm(T) Kadlec and 
Schwarz 
(2010a) 

 Tetracycline tet(L)  

 Trimethoprim dfrK  

Tn551 Macrolides, lincosamides, 
streptogramin B 

ermB Khan and 
Novick (1980) 

Tn552 Penicillins blaZ Rowland and 
Dyke (1989), 
Rowland and 
Dyke (1990) 

Tn554 Macrolides, lincosamides, 
streptogramin B 

ermA Murphy et al. 
(1985) 

 Spectinomycin spc  

Tn558 Chloramphenicol, 
florfenicol 

fexA Kehrenberg and 
Schwarz (2005) 

Tn559 Trimethoprim dfrK Kadlec and 
Schwarz 
(2010b) 

Tn1546 Vancomycin, teicoplanin vanHAX Weigel et al. 
(2003) 

Tn3854 Kanamycin, neomycin Unknown Udo and Grubb 
(1991) 

Tn4001 Gentamicin, kanamycin, 
tobramycin 

aacA-aphD Rouch et al. 
(1987), Byrne et 
al. (1989), 
Gillespie et al. 
(1987b) 

Tn4003 Trimethoprim dfrA Rouch et al. 
(1989) 



Table 1.1 Staphylococcal transposons and insertion sequences (continued) 

 
 

Element Associated resistance(s) 
Associated 
resistance 

gene(s) 
Reference 

Tn4004 Mercury merA, merB Lyon and 
Skurray (1987) 

Tn4291 Methicillin mecA Trees and 
Iandolo (1988) 

Tn5404 Kanamycin, neomycin aphA-3 Derbise et al. 
(1995) 

 Streptomycin aadE  

Tn5405 Kanamycin, neomycin aphA-3 Derbise et al. 
(1996) 

 Streptomycin aadE  

Tn5406 Streptogramin A vgaAv Haroche et al. 
(2002) 

Tn5801 Tetracycline, minocycline tet(M) Kuroda et al. 
(2001) 

Tn6072 Gentamicin, kanamycin, 
tobramycin 

aacA-aphD Chen et al. 
(2010) 

 Spectinomycin spc  

Tn6133 Macrolides, lincosamides, 
streptogramin B 

ermA Schwendener 
and Perreten 
(2011) 

 Streptogramin A, 
lincosamides, pleuromutilin 

vga(E)  
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strains (Gillespie et al. 1987). Along with the related transposable elements, Tn3851 

and Tn4031, Tn4001 is largely responsible for the spread of aminoglycoside 

resistance (gentamicin, tobramycin and kanamycin resistance) amongst the 

staphylococci, via the dissemination of the aacA-aphD gene that it carries (Table 

1.1) (Lyon et al. 1984b, Lyon and Skurray 1987). Tn4001 is flanked by inverted 

copies of IS256, the upstream element of which contains the promoter that drives 

expression of aacA-aphD (Rouch et al. 1987, Byrne et al. 1989). 

First identified on pSK1, Tn4003 (Table 1.1) is a composite transposon that carries 

three copies of IS257 (Rouch et al. 1989). This transposon is associated with high-

level trimethoprim resistance in the staphylococci, which is driven by expression of 

the dfrA gene by a hybrid promoter located in the upstream copy of IS257 

(Leelaporn et al. 1994). Deletions within the flanking region lead to reduced 

trimethoprim resistance (Leelaporn et al. 1994). An IS257-associated hybrid 

promoter also drives expression of high-level tetracycline resistance from the tetA(K) 

gene located in the chromosomal mec region of some MRSA strains (Simpson et al. 

2000).  

Transposons in the Tn3 family, which include Tn552 and the related transposons, 

Tn3852 and Tn4002 (Table 1.1), do not rely on insertion sequences for transposition 

(Rowland and Dyke 1989, Dyke and Gregory 1997). Instead, these elements encode 

other transposition determinants in addition to the transposase. Tn552, which is 

thought to be the source of β-lactamase determinants in the staphylococci (Dyke and 

Gregory 1997), carries the β-lactamase resistance gene, blaZ, as well as blaRI and 

blaI, which encode the coinducer and repressor, respectively (Rowland and Dyke 

1989). The transposon is flanked by inverted repeats, and transposition is mediated 
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by its transposase, Orf480, and a putative accessory transposition protein, Orf271 

(Rowland and Dyke 1989, Rowland and Dyke 1990). Tn552 has been found to 

integrate into both the chromosome and plasmids of the staphylococci, however, in 

many plasmids, only remnants of Tn552 can be identified, due to recombination 

events that have disrupted the transposon (Gillespie et al. 1988, Paulsen et al. 1994, 

Berg et al. 1998). 

1.3.2. Staphylococcal plasmids 

Plasmids are extrachromosomal DNA elements that replicate independently of the 

chromosome (Lederberg 1952). They are typically double-stranded, circular 

molecules that encode accessory genes that often benefit the host. Importantly, 

plasmids frequently encode antibiotic resistance determinants, and are, therefore, 

vehicles for the transfer of resistance genes amongst cell populations.  

In the staphylococci, plasmids are believed to play an integral role in the acquisition, 

maintenance and dissemination of antibiotic resistance determinants (Firth and 

Skurray 1998, Ramsay et al. 2016). Approximately 90% of naturally-occurring 

staphylococcal strains carry plasmids, and it is not uncommon for strains 

(approximately 80%) to carry one or more plasmids larger than 20 kb, which 

typically include multiresistance plasmids (Shearer et al. 2011). Four different 

groups of staphylococcal antibiotic resistance plasmids are described in Sections 

1.3.2.1–1.3.2.4, below. 

1.3.2.1. Small rolling-circle plasmids 

Small rolling-circle (RC) plasmids are the most widely characterised plasmids 

amongst staphylococcal species. This class of plasmids is further divided into at least 
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four families, primarily based on the sequence relatedness of their replication regions 

(Novick 1989, Khan 1997). RC plasmids are relatively small in size (1–10 kb), 

which enables them to replicate via a rolling-circle mechanism to reach high copy-

numbers (15–50 copies) within the cell (Koepsel et al. 1985, Khan 2005). Most RC 

plasmids, such as pT181 (Khan and Novick 1983), are either phenotypically cryptic 

or carry only one antibiotic resistance gene, although a Bacillus-related plasmid, 

pUB110, was found to carry two resistance genes (Semon et al. 1987). Many RC 

plasmids share regions of sequence similarity, defined as cassettes, which can 

encode replication signals and resistance genes (Novick 1989). The RSA/pre 

mobilisation system on some RC plasmids is thought to mediate horizontal exchange 

of cassettes between RC plasmids of different families (Gennaro et al. 1987, Selinger 

et al. 1990). 

1.3.2.2. pSK639-like plasmids  

Similar to the RC class of plasmids, the prototype of the pSK639 family plasmids, 

pSK639, is a small, 8 kb plasmid that carries a single trimethoprim resistance gene, 

dfrA (Apisiridej et al. 1997). Other members of the pSK639 family of plasmids carry 

genes that confer resistance to antimicrobials, such as tetracycline, and antiseptics 

and disinfectants (Leelaporn et al. 1996). However, unlike RC plasmids, which 

replicate via rolling-circle replication (Khan 2005), pSK639 family plasmids utilise a 

theta-mode of replication (Apisiridej et al. 1997), similar to that of multiresistance 

plasmids (Sections 1.3.2.3–1.3.2.4). Indeed, pSK639 family plasmids are 

reminiscent of intermediates between RC and multiresistance plasmids, as 

demonstrated by the pSK639 family plasmids, pSK697 and pSK818, which seem to 
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have arisen from IS257-mediated cointegration of staphylococcal RC plasmids 

(Leelaporn et al. 1996). 

1.3.2.3. Multiresistance plasmids 

Staphylococcal multiresistance plasmids are relatively large (15–45 kb) and exist in 

low copy-numbers (approximately 5 copies per cell) (Novick 1989, Simpson et al. 

2003, Jensen et al. 2010). Plasmids in this group utilise a theta-mode replication 

system (Firth et al. 2000), with the vast majority (90%) of plasmids >10 kb encoding 

a highly conserved replication initiation protein, RepA, from the RepA_N family 

(Weaver et al. 2009a, Shearer et al. 2011). The RepA_N family of plasmid 

replication initiation proteins is also encoded by many staphylococcal conjugative 

multiresistance plasmids (Section 1.3.2.4) (Firth et al. 2000, Shearer et al. 2011, Liu 

et al. 2013), as well as plasmids from other Gram-positive bacteria, such as pAD1 

from Enterococcus faecalis (Francia et al. 2004, Weaver et al. 2009a). Expression of 

staphylococcal repA is regulated by an antisense RNA and its promoter, PRNAI 

(Kwong et al. 2004, Kwong et al. 2006, Kwong et al. 2008, Kwong and Firth 2015), 

which was initially thought to be the promoter of a closely-associated plasmid 

maintenance gene, par, on the staphylococcal multiresistance plasmid, pSK1 

(Section 1.6) (Simpson et al. 2003). RepA binds to iterative sequences in the origin 

of replication, oriV, located within the repA gene (Kwong et al. 2004, Kwong et al. 

2008). Studies on the evolutionarily related, but phylogenetically distinct (Firth et al. 

2000), RepA_N family replication initiation protein from the staphylococcal 

conjugative multiresistance plasmid, pSK41 (Section 1.3.2.4), revealed that binding 

of RepA to oriV, via its N-terminal winged helix-turn-helix (HTH) domain, appears 

to facilitate hand-cuffing of replicated plasmid pairs at the origin (Schumacher et al. 
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2014). RepA-DNA complexes subsequently interact with the host primase, DnaG, 

via the RepA C-terminal domain (Schumacher et al. 2014), which is believed to 

result in recruitment of the replicative helicase, DnaC, to stimulate primosome 

formation and plasmid replication (Corn and Berger 2006, Koepsell et al. 2006). 

Staphylococcal multiresistance plasmids carry genes that provide resistances to 

multiple antibiotics, often acquired from the integration of mobile genetic elements, 

such as transposons and insertion sequences (Firth and Skurray 1998, Jensen et al. 

2010). There are two major groups of staphylococcal multiresistance plasmids: the 

β-lactamase/heavy metal resistance plasmids, and the pSK1 family plasmids. 

β-lactamase/heavy metal resistance plasmids were initially identified in clinical S. 

aureus isolates in the 1960s and 1970s (Shalita et al. 1980). These plasmids 

frequently contain a Tn552-like transposon that encodes β-lactamase, resulting in 

resistance to antibiotics such as cephalosporins and penicillin (Rowland and Dyke 

1990). Furthermore, β-lactamase/heavy metal resistance plasmids have been found to 

carry Tn4001 and Tn551, which confer resistance to aminoglycosides, and the 

macrolide-lincosamide-streptogramin B antibiotics, respectively (Table 1.1) (Lyon et 

al. 1983). Other plasmids of this family encode resistances to dyes, inorganic ions, 

quaternary ammonium compounds and organomercurial reagents (Lyon and Skurray 

1987).  

pSK1 family plasmids, of which pSK1 is the prototype (Jensen et al. 2010), were 

first isolated from S. aureus strains in the 1980s, and characteristically carry the 

qacA gene, which confers multidrug resistance to antiseptics and disinfectants (Lyon 

et al. 1983, Lyon et al. 1984a, Townsend et al. 1987, Tennent et al. 1989). Other 

resistance determinants identified on pSK1 family plasmids include Tn4001, which 
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confers aminoglycoside resistance (Lyon et al. 1984b), Tn4002, which confers β-

lactamase resistance (Gillespie et al. 1988), and Tn4003, which confers trimethoprim 

resistance (Rouch et al. 1989). The genetic organisation of representative pSK1 

family plasmids is shown in Figure 1.1. 

1.3.2.4. Conjugative multiresistance plasmids 

Conjugative multiresistance plasmids, conventionally represented by pSK41, are the 

largest of the staphylococcal plasmids, at 30–60 kb in size (Novick 1989, Berg et al. 

1998, Liu et al. 2013). These plasmids are capable of mediating their own 

conjugative transfer using a system consisting of a transfer (tra) region and oriT 

sequences (Firth et al. 1993, Berg et al. 1998, Edwards et al. 2013, Liu et al. 2013). 

Similar to staphylococcal non-conjugative multiresistance plasmids, the majority of 

staphylococcal conjugative multiresistance plasmids utilise a theta-mode of 

replication that is facilitated by RepA_N family replicons (Section 1.3.2.3) (Weaver 

et al. 2009a, Shearer et al. 2011, Liu et al. 2013, Schumacher et al. 2014). A number 

of antibiotic resistance determinants are encoded by pSK41 family conjugative 

multiresistance plasmids, including aminoglycoside (Byrne et al. 1990), 

trimethoprim (Leelaporn et al. 1994), mupirocin (Morton et al. 1995), penicillin 

(Gillespie et al. 1988), vancomycin (Weigel et al. 2003) and mupirocin resistance 

(Diep et al. 2006, Pérez-Roth et al. 2006, Pérez-Roth et al. 2010), as well as 

resistance to antiseptics and disinfectants (Littlejohn et al. 1991, Liu et al. 2013).  

In addition to the pSK41 family, two other families of staphylococcal conjugative 

plasmids have been identified, pWBG749 and pWBG4 family plasmids, each 

carrying conjugation gene clusters that are distinct from pSK41 family plasmids 

(Ramsay et al. 2016). pWBG749 family plasmids are not usually associated with 



Figure 1.1 Genetic maps of pSK1 family plasmids 

Linear maps of selected pSK1 family multiresistance plasmids (pSK1, pSK4, pSK7 

and pSK18) are shown with their approximate sizes on the left. The positions of 

transposons are indicated above the linear maps. Insertion sequences, IS256 and 

IS257, are represented by blue and yellow arrowheads, respectively. Genes encoding 

resistance to trimethoprim (dfrA), β-lactams (blaZ), antiseptics and disinfectants 

(qacA) and aminoglycosides (aacA-aphD), are indicated by red lines below the maps. 

The locations of sin, which encodes a putative multimer resolution system, are 

indicated by green lines below the maps. The positions of EcoRI (E) and BglII (B) 

restriction sites are indicated on the maps. Regions shown inside the dashed box 

indicate conserved regions amongst pSK1 family multiresistance plasmids. Figure 

adapted from Firth and Skurray (1998). 
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antimicrobial resistance genes, however, genes encoding resistance to penicillin, 

aminoglycosides and vancomycin, have been identified on some plasmids (Rossi et 

al. 2014, O'Brien et al. 2015). Conjugative plasmids from the pWBG4 family have 

been found to encode resistance to trimethoprim, spectinomycin, aminoglycosides, 

macrolides, lincosamides and linezolid (Townsend et al. 1985, Udo et al. 1992, 

Mendes et al. 2013, Shore et al. 2016). Furthermore, pSK41 and pWBG749 

plasmids have demonstrated mobilisation of co-resident non-conjugative plasmids 

using a relaxase-in trans mechanism, described in Section 1.2.2 (O'Brien et al. 2015, 

Ramsay et al. 2016). 

1.3.3. Staphylococcal cassette chromosome mec  

All MRSA strains contain staphylococcal cassette chromosome mec (SCCmec), 

which is a large DNA fragment that inserts into the orfX site on the chromosome 

(Katayama et al. 2000, Ito et al. 2001, Ito et al. 2003, Turlej et al. 2011). SCCmec 

carries the methicillin resistance gene, mecA, which encodes penicillin-binding 

protein (PBP) 2a and confers resistance to β-lactam antibiotics (Hartman and 

Tomasz 1984, Ito et al. 1999). In addition to the mecA gene, SCCmec also carries 

two regulatory genes, mecI and mecR1, as well as genes encoding site-specific 

recombinases, ccrAB or ccrC (Ito et al. 1999, Katayama et al. 2000, Ito et al. 2004). 

The Ccr recombinases facilitate excision and integration of SSCmec complexes at a 

specific attachment site at the orfX locus (Katayama et al. 2000, Ito et al. 2004). The 

type of ccr and mec genes contained in SCCmec complexes usually defines the 

SCCmec type (type I–XII) (IWG-SCC 2009, Turlej et al. 2011, Wu et al. 2015). 

SCCmec joining, or junk-yard (J), regions often contain mobile genetic elements, 

such as plasmids, transposons or insertion sequences, that have integrated into the 
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region and confer additional antibiotic resistance phenotypes, such as spectinomycin 

(spc), erythromycin (ermA), bleomycin (ble), tobramycin and kanamycin (aadD) 

resistance (Dubin et al. 1991, Ito et al. 1999, Hiramatsu et al. 2001, Ito et al. 2001, 

Ito et al. 2003, Malachowa and DeLeo 2010). The genetic content contained in 

SCCmec J regions is used to further divide SCCmec types into subtypes (IWG-SCC 

2009). Perhaps due to the large size of SCCmec complexes, horizontal transfer of 

complexes is predicted to be rare (Hanssen and Ericson Sollid 2006, Nübel et al. 

2008). However, smaller SCCmec types, such as type IV SCCmec, are more 

prominent amongst staphylococcal isolates, and hence appear to be mobilised more 

readily (Daum et al. 2002). 

Other SCCs, which do not encode methicillin resistance, are known as non-mec 

SCCs, and often encode virulence determinants, such as mercury (Chongtrakool et 

al. 2006) or phagocytosis resistance (Luong et al. 2002). Similar to SCCmec, these 

complexes contain ccr recombinase genes and integrate at the orfX site of the 

staphylococcal chromosome (Katayama et al. 2003, Mongkolrattanothai et al. 2004). 

However, some non-mec SCCs, such as SCCcap1 (Luong et al. 2002), lack 

functional ccr recombinase genes, and hence are non-mobilisable. 

1.3.4. Staphylococcus aureus pathogenicity islands 

Although often not associated with antibiotic resistance determinants, S. aureus 

pathogenicity islands (SaPIs) are 15–17 kb DNA regions that usually contain genes 

for superantigen toxins, such as enterotoxins and toxic shock syndrome toxin-1 

(TSST-1) (Novick et al. 2001, Novick et al. 2010). The prototypical SaPI, SaPI1, 

contains genes encoding TSST-1, an enterotoxin, and an integrase (Lindsay et al. 

1998). SaPIs exhibit high transfer efficiencies and are commonly found at one or 
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more locations on the chromosomes of most S. aureus strains (Lindsay et al. 1998, 

Novick and Subedi 2007, Subedi et al. 2007, Úbeda et al. 2008). Mobilisation of 

SaPIs is facilitated by excision, replication and transduction by helper phages, 

followed by site-specific integration into the host chromosome using the SaPI-

encoded integrase (Lindsay et al. 1998, Ruzin et al. 2001, Maiques et al. 2007, 

Úbeda et al. 2008). 

1.4. Plasmid maintenance mechanisms 

Plasmids that exist in high copy-numbers in the bacterial cell, such as RC plasmids 

(Section 1.3.2.1), do not require specialised plasmid maintenance systems, since 

passive diffusion is sufficient to ensure that daughter cells receive at least one 

plasmid copy (Nordström and Austin 1989). Furthermore, being smaller in size, the 

high replication rate of RC plasmids is usually sufficient to restore plasmid copy-

number to characteristic levels, even if plasmids are not equally segregated. 

However, larger plasmids, such as the staphylococcal multiresistance and 

conjugative multiresistance plasmids (Sections 1.3.2.3–1.3.2.4), typically exist in 

lower copy-numbers, and hence passive diffusion would not be adequate for 

mediating equal plasmid segregation between daughter cells. As a result, low copy-

number plasmids commonly encode plasmid maintenance systems, such as multimer 

resolution systems (Section 1.4.1), post-segregational killing systems (Section 1.4.2), 

and active plasmid partitioning systems (Section 1.4.3), to ensure that plasmids are 

accurately inherited. 

1.4.1. Multimer resolution 

Multimer resolution systems facilitate the separation of plasmid multimers that may 

have formed due to recombination events between identical plasmid copies, for 
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example, during plasmid replication. Assuming plasmids are randomly distributed to 

daughter cells during cell division, the chances of plasmid inheritance would be 

directly correlated with plasmid copy-number – the higher the copy-number, the less 

chance of plasmid-free cells (Nordström and Austin 1989). For unresolved plasmid 

multimers, the unit of segregation is the multimer, rather than the plasmid number, 

and therefore, the copy-number of discrete replicons is effectively reduced. This 

results in worse-than-random segregation (Summers and Sherratt 1984), since the 

chance of plasmid inheritance would no longer be equal between daughter cells 

(Nordström and Austin 1989).  

Multimer resolution is particularly important for low copy-number plasmids, 

whereby plasmid multimerisation can reduce the copy-number to one. Multimer 

resolution systems have been shown to enhance the segregational stability of low 

copy-number plasmids, such as R1 of E. coli (Weitao et al. 2000), and the 

engineered plasmid, pBR322 (Summers et al. 1993). In S. aureus, the multimer 

resolution system, res, on the staphylococcal conjugative multiresistance plasmid, 

pSK41 (Berg et al. 1998), encodes a resolvase, Res, that binds to resolution sites 

upstream of the resolvase coding sequence (LeBard et al. 2008). The presence of 

pSK41 res on an unrelated plasmid resulted in the resolution of plasmid multimers 

into monomers, as judged by electrophoresis of plasmid DNA (LeBard et al. 2008). 

Importantly, pSK41 res enhanced the segregational stability of both its cognate 

replicon and an unstable heterologous replicon, whereas plasmids carrying a pSK41 

res knock-out mutation were significantly less stable (LeBard et al. 2008). This 

study, therefore, demonstrates a correlation between multimer resolution and 

increased plasmid segregational stability, which may be attributed to the generation 

of single plasmid units that can be independently segregated to daughter cells.  
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1.4.2. Post-segregational killing 

In post-segregational killing (psk) systems encoded by plasmid DNA, plasmid-free 

cells are selectively killed using a toxin-antitoxin (TA) mechanism. In this system of 

programmed cell death, plasmids encode a stable toxin and an unstable antitoxin. 

There are two main classes of psk systems, defined by the type of antitoxin encoded 

– type I systems, which encode an antisense RNA antitoxin (Gerdes and Wagner 

2007, Fozo et al. 2008), and type II systems, which encode a protein antitoxin (Van 

Melderen and Saavedra De Bast 2009, Rocker and Meinhart 2016). Essentially, in 

both types of mechanisms, plasmids carrying the TA system encode the antitoxin, 

which binds with high affinity to the toxin or toxin mRNA. In this toxin-antitoxin 

complex, the toxin is inactive and unable to exert its effect on cell survival. 

However, in plasmid-free cells, antitoxin production is absent, and hence any labile 

antitoxin molecules that may have been inherited during cell division are degraded 

more rapidly than the toxin (Unterholzner et al. 2013). This results in reduced 

antitoxin levels relative to the toxin, and thus the stable toxin remains unbound and 

active, selectively killing plasmid-free cells. 

Toxins usually target essential cellular proteins, such as DNA gyrase for the ccd 

system of F plasmid (Bernard and Couturier 1992), and DnaB for the parD system of 

R1 (Ruiz-Echevarría et al. 1995). The type I Fst TA system on the E. faecalis 

plasmid, pAD1, is the prototypical TA system for Gram-positive bacteria (Weaver et 

al. 1996). Type I Fst-like TA systems have been identified on numerous plasmids 

from Gram-positive bacteria, such as Enterococcus, Staphylococcus, Lactococcus, 

Macrococcus and Carnobacterium (Weaver et al. 2009b, Kwong et al. 2010). In Fst-

like TA systems, translation of a 27–35 residue Fst-like toxin is inhibited by the 
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binding of an antisense RNA antitoxin to complementary sequences in the toxin 

mRNA (Greenfield et al. 2000, Greenfield and Weaver 2000, Greenfield et al. 2001) 

which results in the formation of a stem loop structure that obstructs translation of 

the toxin transcript (Shokeen et al. 2008, Shokeen et al. 2009). Notably, putative Fst-

like TA systems have been detected on staphylococcal multiresistance (Section 

1.3.2.3) (Jensen et al. 2010, Kwong et al. 2010) and conjugative multiresistance 

plasmids (Section 1.3.2.4) (Kwong et al. 2010, Liu et al. 2013), which may provide 

an additional means of plasmid maintenance and acquisition and dissemination of 

antimicrobial resistance determinants.  

Interestingly, Fst-like TA systems are also commonly present on the chromosomes 

of Gram-positive bacteria (Weaver et al. 2009b, Kwong et al. 2010), although the 

role of chromosomally-encoded TA systems is unclear. It has been proposed that 

chromosomal TA systems may be involved in the stress response; under conditions 

of external cell stress, the antitoxin might be less stable, which could enable the toxin 

to remain active and target essential cellular processes to induce a stress response, 

such as attenuation of cell growth, or formation of biofilms and persister cells 

(Gerdes et al. 2005, Wang and Wood 2011, Wen et al. 2014, Page and Peti 2016). 

1.4.3. Active plasmid partitioning 

Active plasmid partitioning (par) systems are tripartite systems that consist of a 

centromere-like site, a centromere-binding protein (CBP) and a force-generating 

NTPase. These systems are generally divided into three types (types I–III), primarily 

based on the type of NTPase involved. Examples of the genetic organisation of 

prototypical partitioning systems from each type are shown in Figure 1.2. 



Figure 1.2 Genetic organisation of representative active plasmid partitioning 

systems 

Prototypical active plasmid partitioning systems from type Ia (plasmids P1 and F), 

type Ib (plasmids pB171 and pTP228), type II (plasmid R1) and type III (plasmid 

pBtoxis) systems are shown. Promoters are represented by bent arrows. Solid boxes 

represent centromere-like sites. Genes encoding NTPase proteins and centromere-

binding proteins are represented by purple and orange block arrows, respectively. 
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Studies of the three types of plasmid partitioning systems indicate the requirement of 

all three components of the partitioning locus for function. Although the mechanism 

of plasmid segregation differs between the three systems (Sections 1.5.1–1.5.3) 

(reviewed in Hayes and Barilla (2006), Schumacher (2008) and Baxter and Funnell 

(2014)), in all characterised active plasmid partitioning systems, the CBPs bind 

specifically to their cognate centromere-like site, which consists of repetitive DNA 

sequences. This DNA-binding triggers the recruitment of additional CBPs, which 

bind cooperatively as multimers to the DNA at the centromere-like site. Cooperative 

binding of CBPs results in the formation of a nucleoprotein complex known as the 

segrosome, or partition complex. Plasmid pairing has been described for most 

partitioning systems, whereby the CBPs pair two separate plasmid molecules, via 

their partition complexes, in a fashion analogous to the pairing of sister chromatids 

during eukaryotic mitosis (Skibbens 2008). 

To date, three types of NTPase motor proteins have been identified in active plasmid 

partitioning systems: Walker-type ATPases, actin-like ATPases and tubulin/FtsZ-

like GTPases (Gerdes et al. 2010, Schumacher 2012, Baxter and Funnell 2014). The 

motor proteins of all three types of partitioning systems are, therefore, nucleotide-

binding proteins. As anticipated, different mechanisms of plasmid segregation have 

been proposed, based on the type of motor protein utilised by each of the three 

systems, as described below (Sections 1.5.1–1.5.3). In all cases, motor proteins 

interact with the partition complex to stimulate separation of plasmid copies. 

Additionally, the binding of either the CBP (in types Ib, II and III systems), or the 

motor protein (in type Ia systems), to the centromere-like site results in 

autoregulation of the par operon. Further details on the mechanisms of types I–III 

active plasmid partitioning systems are provided in Section 1.5, below. 
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1.5. Active plasmid partitioning systems 

1.5.1. Type I active plasmid partitioning systems 

Type I systems are the most widespread of the active plasmid partitioning systems 

(Ebersbach and Gerdes 2005, Schumacher 2008), and are characterised by motor 

proteins containing the Walker-type ATPase motif (Walker et al. 1982, Motallebi-

Veshareh et al. 1990). In type I systems, the gene encoding the motor protein is 

located upstream of the gene encoding the CBP (Figure 1.2). Type I systems are 

divided into type Ia and type Ib systems, based on their genetic organisation and the 

size of the motor protein. The centromere-like site of the type Ia partitioning system 

is located distal to the par promoter, Ppar, downstream of the protein-encoding genes, 

whereas in type Ib systems, the centromere-like site overlaps Ppar, upstream of the 

par operon (Figure 1.2).  

The parABS system, of the E. coli P1 plasmid, is the archetype of the type I 

partitioning system. Like all type Ia partitioning systems, the centromere-like site, 

parS, is located downstream of the genes encoding the centromere-binding protein, 

parB, and the Walker-type ATPase motor protein, parA (Figure 1.2) (Austin and 

Abeles 1983, Abeles et al. 1985). However, the P1 parS site is unusual because it is 

multipartite; parS consists of two ParB binding sites, each containing at least one 

heptameric A-box and a hexameric B-box, flanking a binding site for integration 

host factor (IHF) (Funnell and Gagnier 1993).  

ParB binds parS via a C-terminal domain that consists of a HTH DNA-binding motif 

that is connected to a β-sheet dimerisation domain by a short flexible linker (4 
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A) (Surtees and Funnell 2001, Schumacher and Funnell 2005). X-ray 

crystallography of P1 ParB DNA-binding revealed that the structure of the HTH 

domain is similar to the HTH structures solved for other type Ia CBPs, such as the 

RP4 KorB (Khare et al. 2004) and F plasmid SopB proteins (Schumacher et al. 

2010). Furthermore, structural data showed that P1 ParB binds parS as dimers, with 

the recognition helix of the HTH domain binding the A-boxes, and the dimerisation 

domain binding the B-boxes (Figure 1.3A) (Schumacher and Funnell 2005, 

Schumacher et al. 2007b). Binding of ParB to parS is stimulated by the binding of 

IHF to a DNA region located between the two ParB binding sites (Funnell 1988b, 

Funnell 1991, Funnell and Gagnier 1993). Binding of IHF induces a bend in the 

DNA, which is thought to align the A- and B- boxes for optimal ParB binding 

(Funnell 1991, Schumacher and Funnell 2005). The parABS system of P1 is the only 

known system to utilise such a host-encoded factor for plasmid segregation.  

Additionally, non-specific DNA-binding by ParB, and its homolog SopB from F 

plasmid, is known to cause spreading of ParB for several kilobases around parS 

(Łobocka and Yarmolinsky 1996, Rodionov et al. 1999, Rodionov and Yarmolinsky 

2004). Although the mechanism and purpose of spreading is not clear, ParB 

spreading has been shown to cause silencing of adjacent genes (Rodionov et al. 

1999, Hao and Yarmolinsky 2002). However, spreading does not appear to be a 

requirement for plasmid segregational stability, since mutants of ParB spreading 

were still able to partition plasmids (Rodionov and Yarmolinsky 2004). Recently, it 

was proposed that for chromosomal ParB proteins, spreading may have a role in 

bridging DNA regions to facilitate re-structuring and condensation of nucleoid DNA 

(Broedersz et al. 2014, Funnell 2014, Graham et al. 2014, Sanchez et al. 2015, 

Taylor et al. 2015).  



Figure 1.3 Structures of centromere-binding proteins bound to DNA 

A. Structure of one P1 ParB (aa 142–333) dimer binding to two pseudo-continuous 

16-mer DNA duplexes, each containing one A-box and one B-box of the parS site 

(PDB ID 2NTZ) (Schumacher et al. 2007b). 

B. Structure of one pSK41 ParR (aa 1–53) dimer-of-dimer binding to a 20-mer duplex 

containing the minimal centromeric repeat (PDB ID 2Q2K) (Schumacher et al. 

2007a). 

C. Structure of pBtoxis TubR binding to 24-mer duplexes of tubC (PDB ID 4ASS) 

(Aylett and Löwe 2012). 

Centromere-binding proteins are represented as ribbons, with subunits coloured 

differently. Images were visualised using Jmol software (http://www.jmol.org/). 

Detailed structures can be found in the referenced articles. 
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Following the specific binding of ParB dimers to parS, additional ParB dimers are 

cooperatively loaded to the centromere to form a higher-order nucleoprotein partition 

complex (Bouet and Funnell 1999, Bouet et al. 2000). Edgar et al. (2001) showed 

that ParB is capable of mediating plasmid pairing via the parS centromere-like sites. 

Structural data has since shown that the ParB HTH DNA-binding domain bridges 

adjacent A-boxes, and that the ParB dimer domain bridges adjacent B-boxes, 

forming a ParB-DNA bridged complex that signifies the potential of ParB to mediate 

plasmid pairing (Schumacher et al. 2007b). Pairing of plasmid copies is thought to 

be critical to successful plasmid partitioning; paired plasmids act as substrates for 

ParA interaction, and hence, for plasmid localisation and partitioning (Erdmann et al. 

1999, Sengupta et al. 2010). 

Once paired, ParA Walker-type ATPases interact with the partition complex in an 

ATP-dependent manner (Bouet and Funnell 1999, Fung et al. 2001, Havey et al. 

2012, Vecchiarelli et al. 2013a). In its ATP-bound form, ParA interacts with the 

ParB/parS partition complex (Vecchiarelli et al. 2010, Havey et al. 2012, 

Vecchiarelli et al. 2013b). The ATPase activity of ParA is stimulated by interaction 

with an arginine residue at the N-terminus of ParB (Barillà et al. 2007, Ah-Seng et 

al. 2009), and results in dissociation of ParA from the partition complex 

(Vecchiarelli et al. 2010, Havey et al. 2012). 

The exact mechanism of how ParA segregates plasmids has only recently become 

clearer. Fluorescence microscopy studies showed that P1 plasmids are localised to 

the quarter-cell positions, which become the mid-cell positions in daughter cells 

following cell division (Gordon et al. 1997, Erdmann et al. 1999, Gordon et al. 

2004). Earlier studies suggested that ParA family proteins form filaments, or helices, 
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that oscillate over the nucleoid (Ebersbach and Gerdes 2004, Lim et al. 2005, Adachi 

et al. 2006, Hatano et al. 2007, Ringgaard et al. 2009). Based on these observations, 

it was proposed that stimulation of ParA ATPase activity by ParB/parS results in 

depolymerisation of ParA filaments, which consequently pulls plasmids towards the 

quarter-cell positions, as plasmids rebind ParA-ATP at the ends of retracting ParA 

filaments (Ringgaard et al. 2009).  

However, in recent years, data has come to light, which show that ParA-ATP binds 

non-specifically to DNA via residues in its C-terminal domain (Hester and 

Lutkenhaus 2007, Vecchiarelli et al. 2010). Thus, interaction of ATP-bound ParA 

with non-specific DNA, i.e. nucleoid DNA, and with ParB/parS partition complexes, 

suggests that the bacterial nucleoid plays a key role in type I plasmid partitioning 

systems (Vecchiarelli et al. 2010, Vecchiarelli et al. 2013b). At present, research 

seems to favour a diffusion-ratchet model for type I plasmid partitioning, which 

involves exploitation of the nucleoid as a scaffold for the movement of ParB-bound 

plasmid DNA along a gradient of nucleoid-bound ParA-ATP molecules, driven by 

ATP-binding and hydrolysis (Figure 1.4) (Vecchiarelli et al. 2010, Vecchiarelli et al. 

2013b). 

In addition to its role in plasmid partitioning, type Ia ParA proteins also act as 

transcriptional repressors of the parAB operon (Friedman and Austin 1988, Davis et 

al. 1992). Similar to its interactions with ParB, the specificity of ParA for the par 

operator and for the ParB/parS complex is dictated by its nucleotide-bound state; 

when bound to ATP, ParA interacts with the partition complex, whereas ParA-ADP 

carries out parAB autoregulation activities (Davey and Funnell 1997, Bouet and 

Funnell 1999). ATP binding and hydrolysis, therefore, act as a molecular switch, 



Figure 1.4 Mechanistic models of active plasmid partitioning systems 

A. Diffusion-ratchet model of Type I active plasmid partitioning. ParA-ATP binds 

non-specifically to nucleoid DNA. ParB-bound plasmids interact with ParA-ATP and 

stimulate ATP hydrolysis, resulting in dissociation of ParB/parS complexes from 

ParA, and dissociation of ParA-ADP from the nucleoid, where it becomes diffuse in 

the cytoplasm. ParB/parS complexes on plasmid DNA re-bind nucleoid-bound ParA-

ATP, such that plasmids move along a gradient of Par-ATP, towards the cell poles, 

where higher concentrations of ParA-ATP are present (Section 1.5.1).  

B. Insertional polymerisation model of Type II active plasmid partitioning. 

Dynamically unstable ParM filaments form in the presence of ATP, and are stabilised 

by ParR/parC partition complexes on plasmid DNA by interaction with the barbed 

end of ParM filaments. Antiparallel ParM filaments form a bipolar ParM spindle, 

which is stabilised at both ends when capped by ParR/parC partition complexes. 

ParM-ATP inserts at the interface with ParR/parC complexes to extend the ParM 

spindle bidirectionally, pushing plasmids to the cell poles (Section 1.5.2).  

C. Tramming model of Type III active plasmid partitioning. TubZ filaments exhibit 

treadmilling behaviour, with polymerisation occurring in the presence of TubZ-GTP 

at the plus (+) end, and depolymerisation occurring at the minus (–) end. TubR/tubC 

complexes attach plasmid DNA to the flexible C-terminal tails presented on the 

surface of TubZ filaments. Plasmids are pulled along the filament in a cable-car, or 

tramming, motion until the filament reaches the cell poles, where the plasmids are 

unloaded (Section 1.5.3).  

Bacterial cells are represented by black ovals, and nucleoid DNA is shown in yellow. 

Red arrows indicate the direction of plasmid movement. For clarity, only one pair of 



plasmids is shown for each dividing cell in (A) and (B), and a single plasmid is shown 

in (C). Figures adapted from Baxter and Funnell (2014). 
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defining the function of ParA in plasmid partitioning or transcriptional repression 

(Bouet and Funnell 1999).  

Type Ib active plasmid partitioning systems include parABC from plasmid pB171 

(Ebersbach and Gerdes 2001) and parFGH from plasmid TP228 (Hayes 2000). 

Importantly, the DNA-binding proteins of the type Ib system differ from those of the 

type Ia system; type Ib DNA-binding proteins bind centromere-DNA as a dimer 

(Barillà and Hayes 2003), utilising a ribbon-helix-helix (RHH) instead of a HTH 

motif (Golovanov et al. 2003). Also, because the centromere-like site of type Ib 

systems overlaps the operator site (Figure 1.2), transcriptional repression of the 

partitioning locus is mediated by the CBP rather than by the motor protein, as in type 

Ia systems (Carmelo et al. 2005). 

1.5.2. Type II active plasmid partitioning systems 

The genetic organisation of type II active plasmid partitioning systems is reminiscent 

of the type Ib systems, whereby the centromere-like site and Ppar are located 

upstream of the par operon (Figure 1.2). Type II partitioning systems are 

distinguished by their motor proteins, which function as actin-like ATPases (Bork et 

al. 1992, Møller-Jensen et al. 2002, van den Ent et al. 2002), and by their CBPs, 

which contain a RHH motif (Schreiter and Drennan 2007, Schumacher et al. 2007a). 

The type II parMRC system of the R1 plasmid from E. coli is one of the most well-

characterised active plasmid partitioning systems. It consists of a centromere-like 

site, parC, located upstream of parM and parR, which encode the actin-like ATPase 

and the CBP, respectively (Figure 1.2) (Dam & Gerdes, 1994). parC comprises two 

sets of five 11-bp direct repeats that flank the par promoter (Breüner et al., 1996). 
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The parMR promoter is located within parC, such that binding of ParR to parC 

results in transcriptional repression of the par operon (Jensen et al. 1994).  

The structure of apo-pB171 ParR was solved using X-ray crystallography, and 

revealed an N-terminal RHH DNA-binding domain and packing of ParR crystals as 

tight dimers (Møller-Jensen et al. 2007). However, the first structure of the 

ParR/parC partition complex was obtained for the functionally homologous ParR 

protein from the staphylococcal conjugative multiresistance plasmid, pSK41 (Berg et 

al. 1998, Schumacher et al. 2007a). The pSK41 ParR/parC structure revealed that 

ParR binds as a dimer-of-dimers to a set of two centromeric repeats (Figure 1.3B), 

and that by doing so, forms a novel superhelical nucleoprotein complex, the 

segrosome, with parC DNA wrapped around 6 pairs of ParR dimers per helical turn 

(Schumacher et al. 2007a). Binding of ParR to parC is cooperative (Møller-Jensen et 

al. 2003), and stabilisation of the segrosome is thought to involve interactions 

between the disordered C-terminal domains of ParR dimers (Schumacher et al. 

2007a). Importantly, the structure showed that the pore of the helical segrosome, 

which is believed to be filled with disordered ParR C-terminal tails, could facilitate 

the capture of ParM filaments (Schumacher et al. 2007a, Popp et al. 2010). Indeed, 

studies have confirmed that ParR interacts with ParM via its flexible C-terminal end 

(Jensen and Gerdes 1997, Schumacher et al. 2007a, Salje and Löwe 2008, Gayathri 

et al. 2012). 

Meanwhile, the actin-like ATPase, ParM, polymerises in the presence of ATP, to 

form helical filaments that are made up of one or more protofilaments (Møller-

Jensen et al. 2002, van den Ent et al. 2002, Orlova et al. 2007, Salje et al. 2009, 

Popp et al. 2010, Gayathri et al. 2013, Bharat et al. 2015). However, these filaments 
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are dynamically unstable, and rapidly disassemble unless capped by ATP or 

ParR/parC complexes (Møller-Jensen et al. 2002, Garner et al. 2004). Consistent 

with this, the localisation of ParR/parC at the ends of ParM filaments has been 

visualised using numerous fluorescence methods, including in vivo (Jensen and 

Gerdes 1999, Møller-Jensen et al. 2003, Campbell and Mullins 2007) and in vitro 

assays (Garner et al. 2007, Salje and Löwe 2008, Gayathri et al. 2012). In all cases, 

ParR/parC complexes stabilised otherwise dynamically unstable ParM filaments, 

suggesting that ParM filamentation requires interaction of ParM-ATP with the 

partition complex. This led to the proposal of a ‘search and capture’ model, which 

emphasises the dynamic instability of ParM filaments as an essential component of 

plasmid segregation, allowing unstable ParM filaments to search the intracellular 

space until it is stabilised by interactions with ParR/parC partition complexes on 

plasmid DNA (Garner et al. 2004, Campbell and Mullins 2007, Garner et al. 2007). 

It has been suggested that stabilisation of ParM filaments by the segrosome may be 

facilitated, in part, by the ParR ring structure, which might act as a molecular clamp 

to secure ParM filaments to the helical segrosome (Salje and Löwe 2008).  

Recent crystal structures and cryo-electron microscopy reconstructions of ParM 

filaments revealed that filaments consist of a barbed end and a pointed end (Gayathri 

et al. 2012, Bharat et al. 2015). Furthermore, structures of a C-terminal ParR peptide 

bound to ParM indicate that ParR, and hence the partition complex on plasmids, bind 

exclusively to the barbed end of ParM filaments (Gayathri et al. 2012). In addition to 

stabilising the ParM filament, binding of the partition complex stimulates ParM 

polymerisation at the interaction interface, from which the insertional polymerisation 

model of ParM-mediated plasmid partitioning was derived (Figure 1.4) (Møller-
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Jensen et al. 2002, Møller-Jensen et al. 2003, Campbell and Mullins 2007, Garner et 

al. 2007, Gayathri et al. 2012).  

Since ParR stabilises ParM filamentation, and since ParR only interacts with the 

barbed end of ParM filaments (Gayathri et al. 2012), ParM, therefore, only 

polymerises at one end of the filament. Consequently, in order for ParM filaments to 

facilitate bidirectional separation of plasmid copies, ParM filaments interact in an 

antiparallel fashion to form bipolar spindles (Gayathri et al. 2012). Plasmids are, 

therefore, paired for plasmid segregation when both ends of the ParM spindle are 

captured by ParR/parC complexes. In this way, capping at the barbed end of each 

antiparallel ParM filament results in insertional polymerisation and bidirectional 

growth of the ParM spindle, which ultimately pushes plasmids to opposite cell poles, 

as observed by fluorescence microscopy (Møller-Jensen et al. 2003, Campbell and 

Mullins 2007). Once ParM spindles reach the cell poles, they depolymerise due to 

ATP hydrolysis, which is stimulated by ParR/parC complexes (Jensen and Gerdes 

1997, Møller-Jensen et al. 2002, Campbell and Mullins 2007). The trigger for this 

hydrolysis remains unclear, and may involve dissociation of the partition complex 

from the filament, or unwinding of antiparallel ParM filaments in the spindle 

(Gayathri et al. 2012). 

1.5.3. Type III active plasmid partitioning systems 

More recently, the partitioning loci of two Bacillus plasmids, pXO1 from B. 

anthracis (Tinsley and Khan 2006) and pBtoxis from B. thuringiensis (Tang et al. 

2006), were classified as type III active plasmid partitioning systems. Notably, the 

type III partitioning system differs from the type I and type II systems by encoding a 

tubulin/FtsZ-like GTPase motor protein rather than an ATPase motor protein 
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(Vaughan et al. 2004). Also, the gene encoding the motor protein, tubZ, is located 

downstream, rather than upstream, of the gene encoding the CBP, tubR (Figure 1.2). 

In pBtoxis, TubR dimers bind cooperatively to the centromere-like site, tubC, which 

consists of four 12-bp repeats (Tang et al. 2007, Aylett and Löwe 2012, Fink and 

Löwe 2015). Binding of TubR to tubC also mediates autoregulation of the par 

operon (Larsen et al. 2007, Tang et al. 2007). The first structure of pBtoxis TubR 

revealed a novel mode of DNA-binding that involves a winged-HTH motif that also 

facilitates dimerisation of TubR (Ni et al. 2010). Binding of tubC by a structurally 

homologous protein, TubR from B. megaterium, resulted in TubR-DNA filaments 

that formed a helical structure, with DNA wrapped external to the helix (Figure 

1.3C) (Aylett and Löwe 2012), analogous to the superhelical segrosome structure 

described for ParR-parC binding (Schumacher et al. 2007a). 

The GTPase partitioning protein, TubZ, forms double-helical filaments that are 

dependent on GTP-binding (Larsen et al. 2007, Chen and Erickson 2008, Akhtar et 

al. 2009, Aylett et al. 2010, Ni et al. 2010, Hoshino and Hayashi 2012, Fink and 

Löwe 2015). TubZ filaments are dynamic and move using a treadmilling 

mechanism, whereby TubZ filaments polymerise at one end and depolymerise at the 

other (Larsen et al. 2007, Chen and Erickson 2008, Aylett et al. 2010, Fink and 

Löwe 2015), which is characteristic of microtubules (Erickson and O'Brien 1992). 

TubZ filamentation is stimulated, and stabilised, by interaction with TubR/tubC 

complexes (Ni et al. 2010, Aylett and Löwe 2012, Oliva et al. 2012, Fink and Löwe 

2015). Interaction with the partition complex has been delimited to the flexible C-

terminal regions of TubZ, which are believed to be localised to the shrinking end of 

TubZ filaments, and rotated outwards along the sides of the filament (Aylett et al. 
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2010, Ni et al. 2010, Kraemer et al. 2012, Aylett et al. 2013, Montabana and Agard 

2014). In this way, plasmids attach to the sides and shrinking ends of TubZ filaments 

via their TubR/tubC complexes, and are pulled by treadmilling TubZ filaments using 

a predicted cable-car, or tramming, mechanism (Figure 1.4) (Ni et al. 2010, Fink and 

Löwe 2015). Plasmids are then thought to be released when filaments reach the cell 

poles (Ni et al. 2010).  

1.5.4. Other plasmid partitioning systems  

A non-conventional plasmid maintenance system, stbABC, has been described for 

the E. coli plasmid, R388 (Guynet et al. 2011). The stbABC operon has both plasmid 

conjugation and plasmid maintenance functions, and much remains to be revealed 

about the mechanism of segregational stability (Guynet et al. 2011). Remarkably, it 

has been shown that plasmid maintenance is dependent only on the DNA-binding 

protein, StbA, and not StbB, which plays a role in plasmid conjugation (Guynet et al. 

2011). Hence, R388 plasmid partitioning does not appear to require a motor protein 

(Guynet and de la Cruz 2011). Fluorescently-labelled R388 plasmids were localised 

to the bacterial nucleoid (Guynet et al. 2011), prompting Guynet and de la Cruz 

(2011) to propose a pilot-fish mechanism of plasmid segregation, in which plasmids 

attach to, and segregate with, the bacterial nucleoid. 

1.6. Staphylococcal multiresistance plasmid, pSK1 

The staphylococcal multiresistance plasmid, pSK1, is the prototype of the pSK1 

family of multiresistance plasmids that were first isolated from clinical S. aureus 

strains in Australia and the United Kingdom in the 1980s (Lyon et al. 1983, Lyon et 

al. 1984a, Townsend et al. 1987, Cookson and Phillips 1988). As illustrated in 

Figures 1.1 and 1.4, pSK1 family plasmids typically carry antimicrobial resistance 
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determinants, such as qacA, dfrA and Tn4001, which confer resistance to antiseptics 

and disinfectants, trimethoprim and aminoglycosides, respectively (Firth and 

Skurray 1998). 

The 28 kb nucleotide sequence of pSK1 has been analysed, and was found to contain 

a 14 kb DNA segment that is conserved amongst pSK1 family plasmids (Jensen et 

al. 2010). Within this conserved plasmid backbone (Figure 1.5), are the previously 

characterised genes for plasmid replication (rep) (Firth et al. 2000, Kwong et al. 

2008) and plasmid maintenance (par) (Firth et al. 2000, Simpson et al. 2003), as 

well as a newly-identified gene product encoded by orf30, that is similar to the Fst 

toxin of the type I TA system on the E. faecalis plasmid, pAD1 (Section 1.4.2) 

(Weaver et al. 1996, Jensen et al. 2010, Kwong et al. 2010). Other deduced gene 

products encoded by the pSK1 conserved backbone region include membrane 

transport and cell envelope proteins (Jensen et al. 2010).  

The remaining 14 kb of the pSK1 sequence is less conserved amongst pSK1 family 

plasmids, most likely due to genetic rearrangements caused by mobile genetic 

elements, including the integration of a pSK639-like plasmid, which disrupts orf226 

(Figure 1.5) (Jensen et al. 2010). Along with antibiotic resistance determinants, the 

putative multimer resolution system, sin (Paulsen et al. 1994), is also encoded by 

this region (Jensen et al. 2010). Notably, carriage of pSK1 was found to have 

minimal effect on host gene expression, which might contribute to the success and 

prevalence of pSK1-like plasmids as vehicles for the carriage and dissemination of 

multiple antibiotic resistance genes amongst the staphylococci (Jensen et al. 2010). 

 

 



Figure 1.5 Genetic map of the staphylococcal multiresistance plasmid, pSK1 

A linear map of the staphylococcal multiresistance plasmid, pSK1, is shown. The 

positions of insertions by a pSK639-like element, and the transposon, Tn4001, are 

indicated above the map. Black arrowheads within boxes denote the transposase (and 

direction of its transcription) of IS256 and IS257 elements. Filled boxes represent the 

orf226 gene that was disrupted by insertion of Tn4003, pSK639-like DNA. Genes 

encoding aminoglycoside resistance (aacA-aphD), trimethoprim resistance (dfrA) and 

resistance to antiseptics and disinfectants (qacA), are indicated on the map. The 14 kb 

conserved DNA region is indicated with a bracket above the map. Figure adapted from 

Jensen et al. (2010). 
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1.6.1. pSK1 plasmid segregational stability determinant, par 

In addition to putative multimer resolution and TA systems, pSK1 also encodes a 

gene, par (originally named orf245), which is located upstream of, and transcribed 

divergently from, the replication initiation gene, rep (Figure 1.5) (Firth et al. 2000, 

Simpson et al. 2003, Jensen et al. 2010). Consistent with staphylococcal 

multiresistance plasmids, pSK1 Rep belongs to the RepA_N family of replication 

initiation proteins, described in Section 1.3.2.3 (Kwong et al. 2008, Weaver et al. 

2009a). Plasmid segregational stability assays demonstrated that par was able to 

enhance the segregational stability of a pSK1 minireplicon (Firth et al. 2000), as well 

as heterologous replicons (Simpson et al. 2003). By elimination of post-

segregational killing and multimer resolution as potential mechanisms of stability, 

pSK1 par is predicted to play a role in plasmid maintenance by encoding a plasmid 

partitioning system (Simpson et al. 2003). 

Genes homologous to pSK1 par are carried on approximately 80% of staphylococcal 

plasmids >10 kb (Shearer et al. 2011), and homologues have also been identified in 

other Gram-positive bacteria, such as Streptococcus, Lactococcus, Lactobacillus, 

Clostridium and Tetragenococcus (Simpson et al. 2003). Consistent with its 

predicted role in plasmid partitioning, the sequence immediately upstream of pSK1 

par contains seven 12-bp direct repeats (Figure 1.6), and was shown to mediate 

incompatibility, thus implicating this region as a potential centromere-like site for 

plasmid partitioning (Simpson et al. 2003). Analysis of the 245-residue Par protein 

sequence predicted a highly-conserved N-terminal HTH DNA-binding domain and a 

highly-conserved, centrally-located coiled-coil (CC) domain, which is thought to be 

involved in protein-protein interactions (Figure 1.7) (Firth et al. 2000, Simpson et al. 



Figure 1.6 Organisation of the pSK1 par upstream promoter region 

Sequence of the par upstream promoter region, including the translated sequence of 

the 5 end of par, shown above the nucleotide sequence. Numbers at the ends of each 

line indicate the pSK1 sequence position (GenBank entry GU565967). The –10 and –

35 sequences of the par promoter, Ppar, are shown in boxes. The positions of direct 

repeats are indicated by arrows. The transcriptional start point (TSP) is denoted by a 

bent arrow, and the ribosome binding site (RBS) is double-underlined. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



Figure 1.7 Predicted Par protein domains 

Diagrammatic representation of predicted Par protein domains. Par is predicted to 

contain an N-terminal helix-turn-helix domain (red), central coiled-coil domain 

(green) and disordered C-terminal domain (blue). The predicted locations of Par 

domains are shown, with reference to the Par amino acid sequence (GenBank 

Accession Number AAF63251). The function of each predicted Par domains is given, 

as determined by previous studies (Lai (2008), Jensen, S. O. and Firth, N., unpublished 

data). 
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2003). Taken together, Par, therefore, has the potential to perform both the DNA-

binding and protein-protein interaction activities that are central to active plasmid 

partitioning mechanisms (Sections 1.5.1–1.5.3). The significance of this is 

highlighted by the fact that only a single protein, Par, is encoded by the pSK1 

partitioning locus, compared to separate CBP and NTPase proteins encoded by most 

other characterised plasmid partitioning systems (Sections 1.5.1–1.5.3). This, 

therefore, implies that pSK1 par encodes a novel mechanism of plasmid 

segregational stability. 

1.6.1.1. pSK1 Par N-terminal helix-turn-helix domain is involved in DNA-

binding 

DNaseI footprinting and electrophoretic mobility shift assays (EMSAs) have 

confirmed that Par exhibits DNA-binding activity (LeBard 2005, Lai 2008). Par 

binds specifically to the repeat sequences located immediately upstream of pSK1 

par, in the par-rep intergenic region, which encompasses the promoter, Ppar, and the 

putative centromere-like site (LeBard 2005). 

A predicted N-terminal HTH domain is encoded by residues 3–24 of Par (Figure 1.7) 

(Firth et al. 2000). HTH domains are commonly associated with DNA-protein 

interactions, and the specificity of DNA-binding is often dependent on the 

interaction between the second recognition helix and the major groove of the DNA 

(Brennan and Matthews 1989). Consistent with its predicted structure and function, 

EMSAs on a Par N-terminal HTH mutant, ParK15A, revealed that this mutant was 

incapable of binding to a DNA probe that contained the par-rep intergenic region to 

which Par was shown to bind (Lai 2008). Therefore, as expected, the DNA-binding 

activity of Par is localised to the N-terminal HTH domain. Accordingly, a pSK1 
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minireplicon encoding ParK15A was less stable compared to a minireplicon 

encoding wild-type Par, when grown in the absence of selection (Lai 2008). It is 

presumed that the K15A mutation interferes with possible electrostatic interactions 

between the positively-charged lysine residue and the negatively-charged DNA 

backbone. Par proteins with mutations in the CC domain (described below in Section 

1.6.1.2) also have impaired DNA-binding activity, although not to the same extent as 

ParK15A (Figgett 2007, Lai 2008). 

1.6.1.2. pSK1 Par central coiled-coil domain is involved in multimerisation 

Cross-linking studies of pSK1 Par revealed the formation of dimers, trimers and 

even higher-order multimers (Lai (2008), Jensen, S. O. and Firth, N., unpublished 

data), which could potentially assemble into filaments in the absence of any 

nucleotide co-factor, as shown by electron microscopy of purified Par proteins 

(Barton, D. A., Jensen, S. O. and Firth, N., unpublished data). The multimerisation 

activity of Par is believed to be mediated by the predicted central CC domain (Figure 

1.7) (Simpson et al. 2003). CC domains consist of heptad repeats that coil around 

each other such that the nonpolar first and fourth residues of each heptad form a 

hydrophobic core, which mediates protein-protein interactions, especially 

oligomerisation (Burkhard et al. 2001). In previous studies, the Par L132 residue, 

located at the first residue of the most highly-conserved heptad repeat amongst Par 

homologues, was replaced with an alanine residue to generate a ParL132A mutant 

(Figgett 2007). An additional mutant, ParΔCC, in which the entire putative CC 

domain is absent, was also generated to ensure functional disruption (Figgett 2007, 

Lai 2008).  
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pSK1 minireplicons encoding the CC domain mutants, ParL132A and ParΔCC, 

exhibited reduced segregational stability compared to a minireplicon harbouring the 

wild-type par system (Figgett 2007). The reduced functionality of the CC mutants 

corresponded with an impairment in the ability of ParL132A to form multimers, and 

a complete inability of ParΔCC to multimerise (Lai (2008), Jensen, S. O. and Firth, 

N., unpublished data) or form filaments (Barton, D. A., Jensen, S. O. and Firth, N., 

unpublished data). These results indicate a role of the putative central CC domain of 

Par in self-interaction and multimerisation. 

1.6.1.3. pSK1 Par autoregulates its own expression 

The pSK1 par promoter, Ppar, is located within the centromere-like site of the 

partitioning locus (Figure 1.6), suggesting possible autoregulation of par expression 

upon Par DNA-binding, consistent with other partitioning systems (Sections 1.5.1–

1.5.3). Indeed, transcriptional reporter gene assays performed using Ppar fused 

upstream of a promoterless chloramphenicol acetyltransferase (cat) reporter gene, 

revealed that CAT activity was reduced in the presence of Par (LeBard 2005). This 

suggests that Par autoregulates its own expression, presumably by binding across the 

pSK1 par centromere-like site and promoter region (Section 1.6.1.1). 

1.7. Scope of thesis 

Traditional approaches to combating antibiotic resistance primarily focus on treating 

the infection, or infected individual, by eliminating the pathogen using drugs that 

target essential cellular processes (Bonhoeffer et al. 1997, Fischbach and Walsh 

2009, Dandekar and Dandekar 2010). However, the naturally-occurring reservoir of 

antibiotic resistance determinants in the environment (Alonso et al. 2001, Martínez 

2008, Forsberg et al. 2012), combined with the adaptability of bacteria to acquire 
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such resistance determinants through mobile genetic elements (Section 1.3), suggests 

that complete elimination of antibiotic resistant bacterial populations is impossible. 

Several views have been presented, which advocate the control of antibiotic 

resistance using an ecological and evolutionary (eco-evo) approach that takes into 

consideration the ecological and evolutionary history, behaviour and environment of 

antibiotic resistant bacterial populations (Amábile-Cuevas and Heinemann 2004, 

Pallen and Wren 2007, Garneau et al. 2010, Baquero et al. 2011, Ojala et al. 2013, 

Henriques-Normark and Normark 2014, Baquero et al. 2015). Eco-evo drugs and 

therapies, therefore, aim to reduce, and eventually eliminate, the acquisition, 

maintenance or spread of antibiotic resistance determinants (Baquero et al. 2011). 

Since 90% of staphylococcal isolates carry one or more plasmids (Shearer et al. 

2011), and since almost 80% of these plasmids are multiresistance plasmids that 

carry pSK1 par-like plasmid maintenance genes (Shearer et al. 2011), pSK1 par 

represents an ideal target for “promiscuity inhibitors” and “plasmid 

decontamination” eco-evo strategies (Amábile-Cuevas and Heinemann 2004, 

Baquero et al. 2011) aimed at disrupting the maintenance and dissemination of 

antibiotic resistance determinants carried by staphylococcal multiresistance 

plasmids. A greater understanding of the functional and mechanistic details of 

plasmid segregation by pSK1 par, and par-like systems, is paramount to the 

identification of targets for antiplasmid drugs that could be used to interfere with the 

acquisition, maintenance and dissemination of antibiotic resistance determinants in 

staphylococcal populations. Ultimately, it is envisaged that such eco-evo strategies 

could promote plasmid loss, or decontamination, within antibiotic resistant 

populations such that a reversion to antibiotic susceptible staphylococci might be 

achieved.  
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In the context of identifying and understanding potential targets for eco-evo 

therapies aimed at interfering with the maintenance of staphylococcal multiresistance 

plasmids and their resistance determinants, this study aims to elucidate the 

mechanism of pSK1 par by: 

a) determining the functional significance of the predicted disordered C-

terminal domain (CTD),  

b) investigating whether pSK1 Par interacts with S. aureus host factors to 

enhance plasmid maintenance, and 

c) examining the intracellular localisation of Par and plasmid DNA in S. aureus 

cells. 

Chapter 3 of this thesis describes experiments that were undertaken to determine the 

role of the predicted disordered Par CTD. A number of Par CTD mutants were 

generated and their effect on Par function, i.e. plasmid segregational stability, was 

assessed. The contribution of the CTD to Par activity, specifically, to DNA-binding, 

multimerisation and self-interaction, was determined using a range of in vitro 

studies, including electrophoretic mobility shift assays, cross-linking assays, and 

yeast two-hybrid assays. 

The potential for the involvement of S. aureus host factors in Par mechanism is 

explored in Chapter 4 of this thesis. The ability of a distant pSK1 Par homologue to 

stabilise a pSK1 minireplicon was investigated in S. aureus, and the functionality of 

pSK1 par was examined in a heterologous host, E. faecalis. Potential Par interaction 

partners in S. aureus were identified by yeast two-hybrid screening of S. aureus 

genomic DNA libraries with a Par bait fusion protein, and potential interactions were 

tested by performing pairwise yeast two-hybrid assays. Furthermore, the role of the 
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bacterial nucleoid in pSK1 par-mediated plasmid partitioning was investigated using 

epifluorescence microscopy, electrophoretic mobility shift assays using non-specific 

DNA, and searching the S. aureus chromosome sequence for potential Par binding 

sites.  

Lastly, epifluorescence microscopy was used to perform cytological studies on the 

localisation of Par and plasmid DNA in S. aureus cells. Presented in Chapter 5 of 

this thesis, the results describe the construction of Par GFP fusions and the genetic 

manipulations performed to achieve a balance between Par GFP functionality and 

fluorescence localisation. The localisation pattern of Par was also analysed by 

expressing fluorescent Par fusions in a heterologous host, E. coli. Additionally, for 

the first time, plasmid DNA was localised in S. aureus cells using a fluorescent 

repressor-operator system, which enabled plasmid segregation to be tracked during 

cell division.  

A discussion of the results obtained from this study, and how they contribute to the 

understanding of Par function and mechanism, is presented in Chapter 6. 
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CHAPTER 2 

Materials and methods 

2.1. Microbial strains, plasmids and growth conditions 

The microbial strains used throughout this study are described in Table 2.1. A 

description of the plasmids used and constructed in this study is provided in Table 

2.2. Growth media for bacterial and yeast cells are described in Table 2.3. Media and 

solutions to be added to growth media were sterilised by autoclaving at 121°C for 20 

min. Solutions containing heat labile compounds were sterilised at 105°C for 25 min 

or by filtration through a 0.45 µm pore size Millex® syringe-driven filter unit 

(Millipore). Where necessary, antibiotics were added to growth media at the final 

concentrations indicated in Table 2.4. Stock antibiotic solutions were prepared 

according to Sambrook and Russell (2001) and filter sterilised. 

Unless otherwise specified, bacterial cells were grown on solid media at either 37°C 

or 30°C for approximately 16 h. For stationary phase bacterial cultures, 3–10 ml of 

liquid medium were inoculated with a single bacterial colony and incubated at 37°C 

or 30°C with aeration at 220 rpm on a G10 gyratory shaker (New Brunswick 

Scientific), or in an Innova 42 incubator shaker (New Brunswick Scientific). Yeast 

cells were cultured on solid growth media by incubation at 30°C for 2–7 days. For 

stationary phase yeast cultures, 5–150 ml of liquid media were inoculated with 1–5 

yeast colonies and incubated at 30°C with aeration at 250 rpm for approximately 20 

h in an Innova 42 incubator shaker (New Brunswick Scientific). When required, the 



Table 2.1 Microbial strains 

 
 

Strain Genotype/Description Reference 

E. coli   

BL21 F- ompT hsdSB (rB
-mB

-) dcm gal  Studier et al. (1990) 

DC10B ∆dcm in the DH10B background; Dam 
methylation only 

Monk et al. (2012) 

DH10B 
(K-12 
strain) 

dam+ dcm+ ∆hsdRMS endA1 recA1 Invitrogen 

DH5α supE44 ΔlacU169 (Φ80lacZΔM15) 
hsdR17 recA1 endA1 gyrA96 thi-1 
relA1 

Bethesda Research 
Laboratories 

E. faecalis   

JH2-2 Clinical isolate harbouring defective 
ϕFL1C prophage. rif, fus 

Jacob and Hobbs 
(1974) 

S. aureus    

DU5883 Mutant of NCTC 8325-4 defective in 
expression of FnBPA and FnBPB 
fnbA::TcR fnbB::EmR 

Greene et al. (1995) 

RN4220 Restrictionless derivative of NCTC 
8325-4 

Kreiswirth et al. 
(1983) 

SK8250 RN4220 with the L1.LtrB-∆ORF intron 
inserted into the spa gene 

Liu (2012) 



Table 2.1 Microbial strains (continued) 

 
 

Strain Genotype/Description Reference 

S. cerevisiae   

AH109 MATa, trp1-901, leu2-3, 112, ura3-52, 
his3-200, gal4Δ, gal80Δ, LYS2:: 
GAL1UAS-GAL1TATA-HIS3, MEL1 
GAL2UAS-GAL2TATA-ADE2, 
URA3::MEL1UAS-MEL1TATA-lacZ 

James et al. (1996) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2.2 Plasmids 

Plasmid Descriptiona Resistanceb Reference 

Staphylococcal plasmids 

pSERP Multiresistance plasmid 
from S. epidermidis; 27.3 
kb 

PnR, KmR, 
GmR, multidrug 
resistance 

Gill et al. 
(2005) 

pSK1 Multiresistance plasmid 
from S. aureus; 28.2 kb 

KmR, TpR, 
GmR, multidrug 
resistance 

Lyon et al. 
(1983), 
Jensen et al. 
(2010) 

pSK41 Conjugative 
multiresistance plasmid 
from S. aureus; 46.4 kb  

GmR, TmR, 
KmR, multidrug 
resistance 

Wood et al. 
(1977), Berg 
et al. (1998) 

E. coli plasmids 

pLAU44 pUC18 carrying an ~9 kb 
fragment containing an 
array of 120 copies of the 
19-bp Tn10 tetO binding 
site separated by 10-bp 
random spacer sequence, 
flanking either side of a 
gentamicin resistance 
gene 

ApR, GmR Lau et al. 
(2003) 

pQE30 E. coli expression vector 
containing IPTG-inducible 
T5 promoter and lac 
operator; 3.4 kb 

ApR Qiagen 

pREP4 E. coli repressor plasmid 
carrying lacI repressor 
gene; 3.7 kb 

KmR Qiagen 



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

pTTQ18-
RGSH6 

E. coli expression plasmid 
containing IPTG- 
inducible tac promoter, 
lac operator, and lacIQ 
repressor; 4.6 kb 

ApR Stark (1987) 

Recombinant plasmids 

E. coli–S. aureus shuttle plasmids 

pJEG015 pLOW-GFP with ermC 
replaced by tetA(K); 8.0 
kb 

ApR E. coli; 
TcR S. aureus 

Jensen, S. O. 
(Western 
Sydney 
University, 
Australia) 

pLOW-GFP E. coli–S. aureus shuttle 
plasmid containing IPTG-
inducible Pspac promoter 
and lacI for controlled 
expression of gfp fusions 
in S. aureus; 7.9 kb 

ApR E. coli; 
EmR S. aureus 

Liew et al. 
(2011) 

pSK4829 pWE180 carrying a 2.3 kb 
BamHI/HindIII fragment 
containing the pSK1 par-
rep region; 7.0 kb 

ApR E. coli; 
EmR S. aureus 

Firth et al. 
(2000) 

pSK4833 pWE180 carrying a 1.4 kb 
BamHI/HindIII fragment 
containing pSK1 rep and 
the par-rep intergenic 
region; 6.1 kb 

ApR E. coli; 
EmR S. aureus 

Firth et al. 
(2000) 



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

pSK5623 E. coli-S. aureus shuttle 
vector containing rrnBT1 
transcription terminator 

ApR E. coli; 
CmR S. aureus 

Grkovic et al. 
(2003) 

pSK5630 pSK5623 carrying a 2.3 
kb BglII fragment 
containing the pSK1 par-
rep region; 5.9 kb 

ApR E. coli; 
CmR S. aureus 

Grkovic et al. 
(2003) 

pSK6195 pSK5623 carrying a 1.4 
kb BamHI/HindIII 
fragment containing pSK1 
rep and the par-rep 
intergenic region; 5.0 kb 

ApR E. coli; 
CmR S. aureus 

Firth, N. 
(The 
University of 
Sydney, 
Australia) 

pSK7721 pSK4829 site-directed 
mutant; par loop-out 
deletion of nucleotides 
247–465 (aa 83–155; 
∆CC); 7.0 kb 

ApR E. coli; 
EmR S. aureus 

Figgett 
(2007) 

pSK7726 pSK4829 site-directed 
mutant; par double point 
mutation TT395GC 
(L132A); 7.0 kb 

ApR E. coli; 
EmR S. aureus 

Figgett 
(2007) 

pSK7764 pSK4829 site-directed 
mutant; par double point 
mutation AA44GC 
(K15A); 7.0 kb 

ApR E. coli; 
EmR S. aureus 

Lai (2008) 



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

pSK9059 pSK4829 site-directed 
mutant; par double point 
mutation CG722GC 
(R241A). Also, par triple 
point mutation 
ACT724GGA to introduce 
silent AvaII restriction 
site; 7.0 kb 

ApR E. coli; 
EmR S. aureus 

This study 

pSK9065 E. coli–S. aureus shuttle 
plasmid containing 
tetracycline-inducible 
Pxyl/tetO promoter and tetR 
for controlled expression 
of mRFPmars fusions in 
S. aureus; 6.9 kb 

ApR E. coli; 
NmR S. aureus 

Brzoska and 
Firth (2013) 

pSK9067 pLOW-GFP containing an 
additional lacOid operator 
upstream of Pspac; 7.9 kb 

ApR E. coli; 
EmR S. aureus 

Brzoska and 
Firth (2013) 

pSK9069 pWE180 carrying a 1.9 kb 
BamHI/HindIII fragment 
containing pSK1 rep and 
the C-terminally truncated 
pSK1 par coding region 
(parΔCTD, aa 1–170); 6.6 
kb 

ApR E. coli; 
EmR S. aureus 

This study 

pSK9070 pSK4829 site-directed 
mutant; par double point 
mutation TG716GC 
(W239A). Includes silent 
NruI restriction site; 7.0 
kb 

ApR E. coli; 
EmR S. aureus 

This study 



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

pSK9075 pSK9065 carrying a 1.2 
kb SalI/SacI fragment 
containing S. aureus 
RN4220 ftsZ to create a C-
terminal FtsZ-mRFPmars 
fusion protein; 8.1 kb 

ApR E. coli; 
NmR S. aureus 

Brzoska and 
Firth (2013) 

pSK9086 pSK9067 carrying a 0.9 
kb SalI/BamHI fragment 
containing S. aureus 
spo0J and the superoxide 
dismutase (SOD) RBS to 
create a C-terminal Spo0J-
GFP fusion protein; 8.8 kb 

ApR E. coli; 
EmR S. aureus 

This study 

pSK9087 pWE180 carrying a 2.9 kb 
BamHI/HindIII fragment 
containing pSK1 rep and 
pSK1 gfpmut-1-par. N-
terminal GFP-Par fusion 
protein expressed from 
native pSK1 par 
promoter, Ppar; 7.6 kb  

ApR E. coli; 
EmR S. aureus 

This study 

pSK9088 pWE180 carrying a 2.9 kb 
BamHI/HindIII fragment 
containing pSK1 rep and 
pSK1 par-gfpmut-1. C-
terminal Par-GFP fusion 
protein expressed from 
native pSK1 par 
promoter, Ppar; 7.6 kb 

ApR E. coli; 
EmR S. aureus 

This study 

pSK9097 pJEG015 carrying a 0.8 kb 
SalI/BamHI fragment 
containing pSK1 par and 
the native par RBS to 
create a C-terminal Par-
GFP fusion protein; 8.7 kb 

ApR E. coli; 
TcR S. aureus 
 

This study 



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

pSK9102 pJEG015 carrying a 0.8 kb 
SalI/BamHI fragment 
containing pSK1 parK15A 
and the native par RBS to 
create a C-terminal Par-
GFP fusion protein; 8.7 kb 

ApR E. coli; 
TcR S. aureus 

This study 

pSK9103 pJEG015 carrying a 0.5 kb 
SalI/BamHI fragment 
containing pSK1 parΔCC 
and the native par RBS to 
create a C-terminal Par-
GFP fusion protein; 8.5 kb 

ApR E. coli; 
TcR S. aureus 

This study 

pSK9104 pJEG015 carrying a 0.8 kb 
SalI/HindIII fragment 
containing pSK1 par and 
the native par RBS cloned 
into the SalI and SmaI 
sites. Stop codon is 
located between par and 
gfp; 8.7 kb 

ApR E. coli; 
TcR S. aureus 

This study 

pSK9135 pWE180 carrying a 2.2 kb 
BamHI/HindIII fragment 
containing pSK1 rep and 
pSK1 RGSH6-par. N-
terminal RGSH6-Par 
fusion protein expressed 
from native pSK1 par 
promoter, Ppar; 6.9 kb 

ApR E. coli; 
EmR S. aureus 

This study 

pSK9136 pWE180 carrying a 2.3 kb 
BamHI/HindIII fragment 
containing S. epidermidis 
RP62A pSERP rep and 
the gene for replication-
associated protein; 7.0 kb 

ApR E. coli; 
EmR S. aureus 

This study 



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

pSK9137 
  

pWE180 carrying a 1.4 kb 
BamHI/HindIII fragment 
containing S. epidermidis 
RP62A pSERP rep and 
intergenic region to gene 
for replication associated 
protein; 6.1 kb 

ApR E. coli; 
EmR S. aureus 

This study 

pSK9140 pSK9067 with 1.2 kb 
KpnI/ClaI fragment 
containing ermC gene 
(EmR) removed and 
replaced with blunted 1.0 
kb NcoI/SphI fragment 
containing aadD gene 
(NmR) from pSK9065; 7.7 
kb 

ApR E. coli; 
NmR S. aureus 

This study 

pSK9142 pSK9140 carrying a 0.7 
kb SalI/BamHI fragment 
containing Tn10 tetR 
(amplified from 
pSK9065), SOD RBS and 
SCGAS linker; 8.3 kb 

ApR E. coli; 
NmR S. aureus 

This study 

pSK9144 pSK4829 carrying a 2.2 
kb KasI fragment 
containing Tn10 tetO 
array (amplified from 
pLAU44); 9.2 kb 

ApR E. coli; 
EmR S. aureus 

This study 

pSK9145 pSK4833 carrying a 2.2 
kb KasI fragment 
containing Tn10 tetO 
array (amplified from 
pLAU44); 8.4 kb 

ApR E. coli; 
EmR S. aureus 

This study 



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

pSK9166 pWE180 carrying a 2.9 kb 
BamHI/HindIII fragment 
containing pSK1 rep and 
pSK1 gfpmut-1-parK15A. 
GFP-ParK15A fusion 
protein expressed from 
native pSK1 par 
promoter; 7.6 kb  

ApR E. coli; 
EmR S. aureus 

This study 

pSK9169 pSK4829 site-directed 
mutant; par double point 
mutation AA4GC (K2A); 
7.0 kb 

ApR E. coli; 
EmR S. aureus 

This study 

pSK9170 pSK4829 site-directed 
mutant; par point 
mutation A29C (E10A). 
Includes silent NsiI site; 
7.0 kb 

ApR E. coli; 
EmR S. aureus 

This study 

pSK9171 pSK4829 site-directed 
mutant; par triple point 
mutation TAT127GCA 
(Y43A). Includes silent 
NsiI site; 7.0 kb 

ApR E. coli; 
EmR S. aureus 

This study 

pWE180 pUC18 carrying a 
PstI/ClaI fragment 
containing the pE194 
erythromycin resistance 
gene (ermC) cloned into a 
blunted NdeI site; 4.7 kb 

ApR E. coli; 
EmR S. aureus 

Firth et al. 
(2000) 

    

    



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

E. coli–E. faecalis shuttle plasmids 

pAM401 E. coli–E. faecalis shuttle 
vector with pACYC184 
and pIP501 replicons; 
10.4 kb 

CmR, TcR E. 
coli; CmR S. 
aureus 

Wirth et al. 
(1986) 

pSK5378 pAM401 carrying a 1.3 kb 
BamHI fragment 
containing pSK1 par and 
the par-rep intergenic 
region; 11.7 kb 

CmR, TcR E. 
coli; CmR S. 
aureus 

Simpson et 
al. (2003) 

pSK6110 pAM401 carrying a 0.2 kb 
DNA fragment containing 
the pSK1 par-rep 
intergenic region; 10.6 kb  

CmR, TcR E. 
coli; CmR S. 
aureus 

Simpson et 
al. (2003) 

E. coli–S. cerevisiae shuttle plasmids 

pGADT7 E. coli-S. cerevisiae 
shuttle vector encoding 
the GAL4 activation 
domain (AD) (aa 768– 
881). Generates N-
terminal GAL4 AD prey 
protein fusions; 8.0 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

Clontech 

pGADT7-T pGADT7 encoding SV40 
large T-antigen (aa 84– 
708) as a C-terminal 
fusion to GAL4 AD 

ApR E. coli; 
LEU+ S. 
cerevisiae 

Clontech 



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

pGBKT7 E. coli-S. cerevisiae 
shuttle vector encoding 
the GAL4 DNA-binding 
domain (BD) (aa 1–147). 
Generates N-terminal 
GAL4 DNA-BD bait 
protein fusions; 7.3 kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

Clontech 

pGBKT7-53 pGBKT7 encoding murine 
p53 (aa 72–390) as a C-
terminal fusion to GAL4 
BD 

KmR E. coli; 
TRP+ S. 
cerevisiae 

Clontech 

pGBKT7-
Lam 

pGBKT7 encoding human 
lamin C (aa 66–230) as a 
C-terminal fusion to 
GAL4 BD 

KmR E. coli; 
TRP+ S. 
cerevisiae 

Clontech 

pSK9107 pGBKT7 carrying a 0.7 kb 
EcoRI/BamHI fragment 
containing pSK1 par; 8.0 
kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9108 pGBKT7 carrying a 1.5 kb 
EcoRI/BamHI fragment 
containing pSK1 par-gfp 
(SCGAS linker); 8.8 kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9109 pGBKT7 carrying a 0.6 kb 
EcoRI/BamHI fragment 
containing S. aureus 
divIVA; 7.9 kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9110 pGADT7 carrying a 0.7 
kb EcoRI/BamHI 
fragment containing pSK1 
par; 8.7 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

pSK9111 pGADT7 carrying a 1.5 
kb EcoRI/BamHI 
fragment containing pSK1 
par-gfp (SCGAS linker); 
9.5 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 

pSK9112 pGADT7 carrying a 0.6 
kb EcoRI/BamHI 
fragment containing S. 
aureus divIVA; 8.6 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 

pSK9121 pGBKT7 carrying a 0.7 kb 
EcoRI/BamHI fragment 
containing pSK1 
parK15A; 8.0 kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9122 pGBKT7 carrying a 0.5 kb 
EcoRI/BamHI fragment 
containing pSK1 parΔCC; 
7.8 kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9123 pGBKT7 carrying a 0.7 kb 
EcoRI/BamHI fragment 
containing pSK1 
parL132A; 8.0 kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9124 pGBKT7 carrying a 0.5 kb 
EcoRI/SmaI fragment 
containing pSK1 
parΔCTD; 7.8 kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9125 pGADT7 carrying a 0.7 
kb EcoRI/BamHI 
fragment containing pSK1 
parK15A; 8.7 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

pSK9126 pGADT7 carrying a 0.5 
kb EcoRI/BamHI 
fragment containing pSK1 
parΔCC; 8.5 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 

pSK9127 pGADT7 carrying a 0.7 
kb EcoRI/BamHI 
fragment containing pSK1 
parL132A; 8.7 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 

pSK9128 pGADT7 carrying a 0.5 
kb EcoRI/SmaI fragment 
containing pSK1 
parΔCTD; 8.5 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 

pSK9130 pGBKT7 carrying a 0.7 kb 
EcoRI/BamHI fragment 
containing pSK1 
parR241A; 8.0 kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9131 pGBKT7 carrying a 0.7 kb 
EcoRI/BamHI fragment 
containing pSK1 
parW239A; 8.0 kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9132 pGADT7 carrying a 0.7 
kb EcoRI/BamHI 
fragment containing pSK1 
parR241A; 8.7 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 

pSK9133 pGADT7 carrying a 0.7 
kb EcoRI/BamHI 
fragment containing pSK1 
parW239A; 8.7 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

pSK9172 pGBKT7 carrying a 0.2 kb 
EcoRI/BamHI fragment 
encoding pSK1 Par N-
terminal domain (aa 1–
82); 7. 5 kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9173 pGBKT7 carrying a 0.2 kb 
EcoRI/BamHI fragment 
encoding pSK1 Par CC 
domain (aa 83–155); 7.5 
kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9174 pGBKT7 carrying a 0.3 kb 
EcoRI/BamHI fragment 
encoding pSK1 Par C-
terminal domain (aa 156– 
245); 7.5 kb 

KmR E. coli; 
TRP+ S. 
cerevisiae 

This study 

pSK9175 pGADT7 carrying a 0.2 
kb EcoRI/BamHI 
fragment encoding pSK1 
Par N-terminal domain (aa 
1–82); 8.2 kb  

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 

pSK9176 pGADT7 carrying a 0.2 
kb EcoRI/BamHI 
fragment encoding pSK1 
Par CC domain (aa 83– 
155); 8.2 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 

pSK9177 pGADT7 carrying a 0.3 
kb EcoRI/BamHI 
fragment encoding pSK1 
Par C-terminal domain (aa 
156–245); 8.2 kb 

ApR E. coli; 
LEU+ S. 
cerevisiae 

This study 

    



Table 2.2 Plasmids (continued) 

Plasmid Descriptiona Resistanceb Reference 

E. coli overexpression plasmids 

pSK5344 pQE30 carrying a 0.7 kb 
BamHI/HindIII fragment 
containing the pSK1 par 
coding region; 4.2 kb 

ApR Simpson 
(2002) 

pSK9071 pQE30 carrying a 0.5 kb 
BamHI/HindIII fragment 
containing pSK1 
parΔCTD (aa 1–170); 3.9 
kb 

ApR This study 

pSK9073 pSK5344 site-directed 
mutant; par double point 
mutation CG722GC 
(R241A). Also, par triple 
point mutation 
ACT724GGA to introduce 
silent AvaII restriction 
site; 4.2 kb 

ApR This study 

pSK9074 pSK5344 site-directed 
mutant; par double point 
mutation TG716GC 
(W239A). Includes silent 
NruI restriction site; 4.2 
kb 

ApR This study 

pSK9178 pTTQ18-RGSH6 carrying 
a 1.5 kb SmaI/HindIII 
fragment containing gfp-
par; 6.1 kb 

ApR This study 

a Nucleotide positions refer to the pSK1 nucleotide sequence (GenBank Accession Number 
GU565967). Amino acid positions refer to the pSK1 Par sequence (GenBank Accession 
Number AAF63251) 

b ApR, ampicillin resistance; CmR, chloramphenicol resistance; GmR, gentamicin resistance; 
EmR, erythromycin resistance; KmR, kanamycin resistance; PnR, penicillin resistance; TcR, 
tetracycline resistance; TmR, tobramycin resistance; TpR, trimethoprim resistance; LEU+, 
leucine autotrophy; TRP+, tryptophan autotrophy 



 

 

Medium Composition Source/Reference 

B2 1% (w/v) casein hydrolysate 

2.5% (w/v) yeast extract 

0.1% (w/v) K2HPO4 

0.5% (w/v) glucose 

2.5% (w/v) NaCl 

pH 7.5 

Schenk and 

Laddaga (1992) 

Brain heart infusion 

(BHI) 

3.7% (w/v) BHI 

1.5% (w/v) agar (for solid media) 

Oxoid 

Luria-Bertani (LB) 1% (w/v) tryptone 

0.5% (w/v) yeast extract 

1% (w/v) NaCl 

1.5% (w/v) agar (for solid media) 

Willets and 

Finnegan (1970) 

NYE  1% (w/v) casein hydrolysate 

0.5% (w/v) yeast extract 

0.5% (w/v) NaCl 

1.5% (w/v) agar (for solid media) 

Schenk and 

Laddaga (1992) 

SD/-Leu 0.67% (w/v) yeast nitrogen base 

1× Dropout solution (Table 2.5) 

0.002% (w/v) L-tryptophan 

0.002% (w/v) L-histidine HCl 

monohydrate 

0.002% (w/v) L-adenine 

hemisulphate 

2% (w/v) glucose 

1.5% (w/v) agar (for solid media) 

Yeast Protocols 

Handbook 

(Clontech) 



Table 2.3 Microbial growth media (continued) 

Medium Composition Source/Reference 

SD/-Leu/-Trp 0.67% (w/v) yeast nitrogen base 

1× Dropout solution (Table 2.5) 

0.002% (w/v) L-histidine HCl 

monohydrate 

0.002% (w/v) L-adenine 

hemisulphate 

2% (w/v) glucose 

1.5% (w/v) agar (for solid media) 

Yeast Protocols 

Handbook 

(Clontech) 

SD/-Leu/-Trp/-His 0.67% (w/v) yeast nitrogen base 

1× Dropout solution (Table 2.5) 

0.002% (w/v) L-adenine 

hemisulphate 

2% (w/v) glucose 

1.5% (w/v) agar (for solid media) 

Yeast Protocols 

Handbook 

(Clontech) 

SD/-Leu/-Trp/-His/-

Ade/X-α-Gal 

0.67% (w/v) yeast nitrogen base 

1× Dropout solution (Table 2.5) 

2% (w/v) glucose 

33 µg/ml 5-bromo-4-chloro-3-

indolyl α-D-

galactopyranoside (X-α-Gal) 

1.5% (w/v) agar (for solid media) 

Yeast Protocols 

Handbook 

(Clontech) 

SD/-Trp 0.67% (w/v) yeast nitrogen base 

1× Dropout solution (Table 2.5) 

0.01% (w/v) L-leucine 

0.002% (w/v) L-histidine HCl 

monohydrate 

0.002% (w/v) L-adenine 

hemisulphate 

2% (w/v) glucose 

1.5% (w/v) agar (for solid media) 

Yeast Protocols 

Handbook 

(Clontech) 



Table 2.3 Microbial growth media (continued) 

Medium Composition Source/Reference 

Synthetic dropout (SD)  0.67% (w/v) yeast nitrogen base 

1× Dropout solution (Table 2.5) 

2% (w/v) glucose 

1.5% (w/v) agar (for solid media) 

Yeast Protocols 

Handbook 

(Clontech) 

YPD 2% (w/v) bacteriological peptone 

1% (w/v) yeast extract 

2% (w/v) glucose 

1.5% (w/v) agar (for solid media) 

Yeast Protocols 

Handbook 

(Clontech) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.4 Concentrations of antimicrobial compounds 

 
 

Antimicrobial compound Final concentration used (µg/ml) 

Ampicillin 100 

Chloramphenicol 25 (E. coli); 10 (S. aureus) 

Erythromycin 10 

Kanamycin 25 

Neomycin 15 

Tetracycline 3 
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optical density of cell cultures was measured at 600 nm (OD600nm) using a 

SPECTROstar Nano microplate reader (BMG LABTECH). 

For long-term storage of microbial strains, stationary phase cultures were 

supplemented with 33% (v/v) glycerol and stored at -70°C. 

2.2. Reagents, solutions and oligonucleotides 

The compositions of reagents and solutions used in this study are presented in Table 

2.5. When required, reagents and solutions were sterilised as described in Section 

2.1.  

Oligonucleotide primers used in this study were synthesised by GeneWorks Pty Ltd 

(Adelaide, SA) and are listed in Table 2.6. Oligonucleotides were provided in 

lyophilised form and resuspended in sterile Milli-Q water to a stock concentration of 

100 µM, from which working stocks of 10 µM were prepared. Stock solutions of 

oligonucleotides were stored at -20°C.  

2.3. Bacterial transformation procedures 

2.3.1. Preparation of chemically-competent E. coli cells 

Chemically-competent E. coli cells were prepared based on the protocol by Kahn et 

al. (1979). Stationary phase E. coli cells were inoculated 1:50 in fresh LB-broth 

(Table 2.3) containing antibiotic selection where appropriate (Table 2.4). Cells were 

incubated at 37°C with agitation at 220 rpm until mid-exponential phase (OD600nm 

approximately 0.6), and then harvested by centrifugation (2,150 ×g / 5 min / 4°C; 

Heraeus Biofuge Primo). Cell pellets were washed with 0.2 volumes of ice-cold 0.1 



Table 2.5 Reagents and solutions 

 

 

Reagent/Solution Composition 

α-galactosidase Assay Buffer 333 mM NaOAc (pH 4.5) 

33 mM p-nitrophenyl α-D-

Galactopyranoside 

α-galactosidase Stop Solution (10×) 1 M Na2CO3 

Adenine dropout solution (10×) 0.02% (w/v) L-adenine hemisulphate 

Blocking buffer 3% (w/v) BSA or 5% (w/v) skim milk 

powder 

10 mM Tris-HCl (pH 7.5) 

150 mM NaCl  

Bromophenol Blue loading dye 50 mM EDTA (pH 7.0) 

50% (w/v) sucrose 

0.05% (w/v) bromophenol blue 

Coomassie Brilliant Blue stain 30% (v/v) methanol 

10% (v/v) glacial acetic acid  

0.25% (w/v) Coomassie Brilliant Blue 

R-250 

Denaturing Protein Elution Buffer 100 mM NaH2PO4 

10 mM Tris-Cl (pH 4.5) 

8 M urea 

Denaturing Protein Lysis Buffer 100 mM NaH2PO4 

10 mM Tris-Cl (pH 8.0) 

8 M urea 



Table 2.5 Reagents and solutions (continued) 

 

 

Reagent/Solution Composition 

Denaturing Protein Wash Buffer I 100 mM NaH2PO4 

10 mM Tris-Cl (pH 6.3) 

8 M urea 

Denaturing Protein Wash Buffer II 100 mM NaH2PO4 

10 mM Tris-Cl (pH 5.5) 

8 M urea 

Destain solution 30% (v/v) methanol 

10% (v/v) glacial acetic acid 

dNTP mix (20 mM) 20 mM dATP 

20 mM dCTP 

20 mM dGTP 

20 mM dTTP 

Dropout solution (10×) 0.02% (w/v) L-arginine HCl 

0.03% (w/v) L-isoleucine 

0.03% (w/v) L-lysine HCl 

0.02% (w/v) L-methionine 

0.05% (w/v) L-phenylalanine 

0.2% (w/v) L-threonine 

0.03% (w/v) L-tyrosine 

0.02% (w/v) L-uracil 

0.15% (w/v) L-valine 

Electroporation solution 500 mM sucrose 

10% (v/v) glycerol 



Table 2.5 Reagents and solutions (continued) 

 

 

Reagent/Solution Composition 

EMSA binding buffer 15 mM Tris-HCl (pH 7.5) 

1 mM EDTA 

100 mM KCl 

7.5% (v/v) glycerol 

FISH blocking solution 2× SSC buffer 

70% (v/v) formamide  

1 mg/ml sheared salmon sperm DNA 

FISH hybridisation solution 3× SSC buffer 

50% (v/v) formamide 

GTE buffer 50 mM glucose 

20 mM Tris-Cl (pH7.5) 

10 mM EDTA 

High ionic strength polyacrylamide gel 

mixture 

5% (w/v) acrylamide (19:1) 

0.5× TBE buffer 

0.2% (w/v) APS 

0.4% (w/v) TEMED 

Histidine dropout solution (100×) 0.2% (w/v) L-histidine HCl 

monohydrate 

HRP staining solution 7 mM Tris-HCl (pH 7.5) 

107 mM NaCl  

0.04% (v/v) H2O2 

0.04% (w/v) 4-chloro-napthol 

28.5% (v/v) methanol 

Leucine dropout solution (100×) 1% (w/v) L-leucine 



Table 2.5 Reagents and solutions (continued) 

 

 

Reagent/Solution Composition 

Native Elution Buffer 50 mM NaH2PO4 (pH 8.0) 

300 mM NaCl 

250 mM imidazole 

Native Protein Lysis Buffer 50 mM NaH2PO4 (pH 8.0) 

300 mM NaCl 

10 mM imidazole 

Native Wash Buffer A 50 mM NaH2PO4 (pH 8.0) 

300 mM NaCl 

20 mM imidazole 

Non-reducing SDS-PAGE sample 

buffer 

50 mM Tris-HCl (pH 6.8) 

2% (w/v) SDS 

0.1% (w/v) bromophenol blue 

10% (v/v) glycerol 

PBS 137 mM NaCl 

2.7 mM KCl 

10 mM Na2HPO4 

2 mM KH2PO4 

PEG/LiAc solution 40% (w/v) PEG 4000 

10 mM Tris-HCl (pH 7.5) 

1 mM EDTA 

100 mM LiAc 



Table 2.5 Reagents and solutions (continued) 

 

 

Reagent/Solution Composition 

Polyacrylamide/agarose hybrid gel  3% (w/v) acrylamide (19:1) 

0.5% (w/v) agarose 

0.5× TBE buffer 

0.2% (w/v) APS 

0.04% (v/v) TEMED 

SDS-PAGE resolving gel mixture 10% (w/v) acrylamide (29:1) 

125 mM Tris-HCl (pH 8.8) 

0.1% (w/v) SDS 

0.2% (w/v) APS 

0.04% (v/v) TEMED 

SDS-PAGE running buffer 25 mM Tris-HCl 

250 mM glycine 

0.1% (w/v) SDS 

SDS-PAGE sample buffer 50 mM Tris-HCl (pH 6.8) 

2% (w/v) SDS 

0.1% (w/v) bromophenol blue 

10% (v/v) glycerol 

100 mM DTT 

SDS-PAGE stacking gel mixture 5% (w/v) acrylamide (29:1) 

375 mM Tris-HCl (pH 6.8) 

0.1% (w/v) SDS 

0.3% (w/v) APD 

0.03% (v/v) TEMED 

SSC buffer (20×) 3 M NaCl 

300 mM sodium citrate 

pH 7.0 



Table 2.5 Reagents and solutions (continued) 

 

 

Reagent/Solution Composition 

SSCT buffer (20×) 3 M NaCl 

300 mM sodium citrate 

1% (v/v) Tween 20 

pH 7.0 

TAE buffer 40 mM Tris-HCl (pH 8.5) 

5 mM glacial acetic acid 

1 mM EDTA 

TBE buffer 90 mM Tris-HCl (pH 8.3) 

90 mM boric acid 

2.5 mM EDTA 

TBS buffer 10 mM Tris-HCl (pH 7.5) 

150 mM NaCl 

TBS-Tween buffer 10 mM Tris-HCl (pH 7.5) 

150 mM NaCl 

0.05% (v/v) Tween 20 

TE buffer 10 mM Tris-HCl (pH 7.5) 

1 mM EDTA 

TE/LiAc solution 10 mM Tris-HCl (pH 7.5) 

1 mM EDTA 

100 mM LiAc 

Tryptophan dropout solution (100×) 0.2% (w/v) L-tryptophan 



Table 2.5 Reagents and solutions (continued) 

 

 

Reagent/Solution Composition 

Western transfer buffer 25 mM Tris-HCl (pH 8.3) 

190 mM glycine 

20% (v/v) methanol 

WL buffer 25 mM Tris-HCl (pH 8.0) 

10 mM EDTA 

 



Table 2.6 Oligonucleotides 

 
 

Oligonucleotide Sequence 

3’AD sequencing1 5’ – agatggtgcacgatgcacag – 3’ 

3’ DNA-BD 
sequencing1 

5’ – atcataaatcataagaaattcgcc – 3’ 

879BamHI 5’ – cgcggatccaaaactataaaaatggttgctgatg – 3’ 

HC2 5’ – gaaatctttgaaactagagc – 3’ 

HC3 5’ – tgaaaccgttgaaactatgc – 3’ 

HC6 5’ – gccaccaaacaaagcggaccagaagccttt – 3’ 

HC7 5’ – aaaggcttctggtccgctttgtttggtggc – 3’ 

HC8 5’ – gcgaagctttcatcgatcattagtagatttatc – 3’ 

HC9 5’ – ccaaacaaacgactcgcgaagccttttttag – 3’ 

HC10 5’ – ctaaaaaaggcttcgcgagtcgtttgtttgg – 3’ 

HC11 5’ – gcgaagcttttagccatctgaattattatatc – 3’  

HC16 5’ – catggaggcgccgcaggagccaccaaacaaacgactcc – 3’ 

HC17 5’ – ggctcctgcggcgcctccatgagtaaaggagaagaac – 3’ 

HC18 5’ – gcgaagcttttatttgtatagttcatcc – 3’  

HC19 5’ – gttcttctcctttactcatatcatccacccttaggc – 3’ 

HC20 5’ – aaatcctgcggcgcctccatgaaaactataaaaatgg – 3’ 

HC21 5’ – gcgaagcttttagccaccaaacaaacg – 3’ 

HC22 5’ – gcctaagggtggatgatatgagtaaaggagaagaac – 3’ 

HC23 5’ – catggaggcgccgcaggatttgtatagttcatcc – 3’ 



Table 2.6 Oligonucleotides (continued) 

 
 

Oligonucleotide Sequence 

HC24 5' – cgcgcgaattcatgaaaactataaaaatgg – 3' 

HC25 5' – gccggatccttagccaccaaacaaacg – 3' 

HC26 5' – cgcggatccttatttgtatagttcatcc – 3' 

HC27 5' – cgcgcgaattcatgccttttacaccaaatg – 3' 

HC28 5' – cgcggatccttacttcttagttgtttc – 3' 

HC33 5’ – gtgatggtgatggtgatgcgatcctctcatatcatccacccttaggc – 3’ 

HC34 5' – cgcatcaccatcaccatcacggcggtggcatgaaaactataaaaatgg – 3' 

HC35 5’ – gccggatccgttgccttagcaaccacttg – 3’  

HC36 5’ – gcgaagcttgcaacagaacctagttatg – 3’ 

HC37 5’ – gcgaagcttctaacttccaattcttcac – 3’ 

HC38 5’ – cgcgtcgacttaggaggatgattatttatgtctagattagataaaagt – 3’  

HC39 5’ – cgcggatcccggaggcgccgcaggaagacccactttcacattt – 3’  

HC43 5’ – atcgcggcgccgctagcggccagtgccaagcttag – 3’  

HC45 5’ – atcgcggcgccgctagcgtgatgcactttgatatcg – 3’  

HC56 5’ – gccggatccttagccatctgaattattatatc – 3’ 

HC57 5’ – cgcgcgaattctttgagacattaaaaacaaaag – 3’ 

HC58 5’ – gccggatccttattcctctaattgatgttc – 3’  

HC59 5’ – cgcgcgaattcgagagacaattaagttattc – 3’  

HC60 5’ – gggtggatgatatggcaactataaaaatggttgc – 3’ 

HC61 5’ – gcaaccatttttatagttgccatatcatccaccc – 3’  



Table 2.6 Oligonucleotides (continued) 

 
 

Oligonucleotide Sequence 

HC62 5’ – ctataaaaatggttgctgatgcattgaatgtaactaaac – 3’ 

HC63 5’– gtttagttacattcaatgcatcagcaaccatttttatag – 3’ 

HC64 5’ – gaattatattgatgataatgatgcattgaaaatagtagaaaaaatc – 3’  

HC65 5’– gattttttctactattttcaatgcatcattatcatcaatataattc – 3’  

NFRepDwn48292  5’ – gcgggatccttttctgttgacttaattcc – 3’ 

SJ37 5' – atcagaatcatgttatgacc – 3' 

SJ38 5’ – cattcaattcatcagcaacc – 3' 

SJ69 5’ – gattgtcgactgcctaagggtggatgatatg – 3’  

SJ70 5' – ttaaggatccagccaccaaacaaacgactcc – 3' 

T7 sequencing1 5' – taatacgactcactatagggc – 3' 
1 Oligonucleotide sequence from Matchmaker GAL4 Two-hybrid System 3 & 

Libraries User Manual (Clontech) 
2 Oligonucleotide sequence from Firth et al. (2000) 
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M CaCl2 (2,150 ×g / 5 min / 4°C; Heraeus Biofuge Primo), and then resuspended in 

0.2 volumes of ice-cold 0.1 M CaCl2. Cell suspensions were incubated on ice for at 

least 30 min, before being harvested as above. Harvested cells were resuspended in 

0.04 volumes of 0.085 M ice-cold CaCl2 containing 15% (v/v) glycerol. Chemically-

competent E. coli cells were stored in 100 µl aliquots at -80°C. 

2.3.2. Transformation of chemically-competent E. coli cells with plasmid 

DNA 

A 50 µl aliquot of chemically-competent E. coli cells (Section 2.3.1) was thawed and 

incubated on ice for 30 min with approximately 100–200 ng of each plasmid DNA to 

be transformed. The mixtures were heated at 42ºC for 2 min and then returned to ice 

for a further 2 min. Heat-shocked cells were allowed to recover in 350 µl of LB-

broth (Table 2.3) at 37ºC with agitation at 220 rpm for 45–60 min. Cells were spread 

in 100 µl aliquots on LB-agar plates (Table 2.3) containing the appropriate antibiotic 

selection (Table 2.4), and plates were incubated overnight at 37ºC or 30°C. 

2.3.3. Preparation of electrocompetent S. aureus cells 

Electrocompetent S. aureus cells were prepared according to the method of Schenk 

& Laddaga (1992). S. aureus cells were grown overnight to stationary phase in B2-

broth (Table 2.3) at 37ºC with agitation at 220 rpm. Overnight cultures were diluted 

1:25 in fresh B2-broth (Table 2.3) and grown at 37°C with agitation until the cells 

reached mid-exponential phase (OD600nm approximately 0.4). Cells were harvested 

(2,150 ×g / 8 min / RT; Heraeus Biofuge Primo), and washed three times with 0.4 

volumes of Milli-Q water (2,150 ×g / 8 min / RT; Heraeus Biofuge Primo), followed 

by a single wash with 0.2 volumes of 10% (v/v) glycerol (2,150 ×g / 8 min / RT; 
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Heraeus Biofuge Primo). Cells were then resuspended in 0.1 volumes of 10% (v/v) 

glycerol and incubated at RT for 15 min before cells were pelleted by centrifugation 

(2,150 ×g / 8 min / RT; Heraeus Biofuge Primo). Harvested cells were resuspended 

in 0.03 volumes of 10% (v/v) glycerol and stored in 70 µl aliquots at -80ºC. 

2.3.4. Electroporation of electrocompetent S. aureus cells with plasmid DNA 

Electroporation of electrocompetent S. aureus RN4220 or SK8250 cells was 

performed according to the method of Schenk and Laddaga (1992). A 70 µl aliquot 

of electrocompetent S. aureus cells (Section 2.3.3) was thawed and mixed with 1 µg 

of plasmid DNA. The mixture was electroporated using a Gene Pulser electroporator 

(Bio-Rad) or Gene Pulser XCell electroporation system (Bio-Rad) at 23 kV/cm with 

100 Ω resistance and 25 µF capacitance. Electroporated cells were allowed to 

recover in 390 µl of B2-broth (Table 2.3) at 37ºC with agitation at 220 rpm for 1 h. 

Cells were then spread in 100 µl aliquots on NYE-agar plates (Table 2.3) containing 

the appropriate antibiotic selection (Table 2.4), and plates were incubated overnight 

at 37ºC or 30°C. 

Electroporation of electrocompetent S. aureus DU5883 cells (Table 2.1), which 

contain restriction modification systems, was performed according to the method 

described by Löfblom et al. (2007). Thawed aliquots of electrocompetent S. aureus 

DU5883 cells (Section 2.3.3) were harvested (16,060 ×g / 1 min / RT; Heraeus 

Biofuge Pico) and resuspended in electroporation solution (Table 2.5). Cells were 

incubated at RT for 30 min, after which 2 µg of plasmid DNA were added. 

Electroporation mixtures were incubated at RT for 10 min prior to electroporation as 

described above.  
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2.3.5. Preparation of electrocompetent E. faecalis cells 

Preparation of electrocompetent E. faecalis JH2-2 cells (Table 2.1) was performed 

based on the protocol of Dunny et al. (1991). E. faecalis JH2-2 cells were cultured at 

37°C with agitation at 220 rpm overnight in BHI-broth (Table 2.3) supplemented 

with 2% (w/v) glycine. Stationary phase cultures were inoculated 1:20 in fresh BHI-

broth (Table 2.3) containing 2% (w/v) glycine and subcultured at 37°C with aeration 

until mid-exponential phase (OD600nm approximately 0.5). Cells were chilled on ice 

for 5 min, and then harvested by centrifugation (2,150 ×g / 5 min / 4°C; Heraeus 

Biofuge Primo). Cells were washed with 1 volume of sterile Milli-Q water (2,150 ×g 

/ 5 min / 4°C; Heraeus Biofuge Primo), followed by 0.4 volumes and then 0.2 

volumes of electroporation solution (Table 2.5) (2,150 ×g / 5 min / 4°C; Heraeus 

Biofuge Primo). Cells were resuspended in 0.1 volumes of electroporation solution 

and incubated at RT for 15 min. After incubation, cells were harvested (16,060 ×g / 

1 min / RT; Heraeus Biofuge Pico), resuspended in 0.02 volumes of electroporation 

solution and then stored in 70 µl aliquots at -70°C.  

2.3.6. Electroporation of electrocompetent E. faecalis cells with plasmid DNA 

Electrocompetent E. faecalis JH2-2 cells (Section 2.3.5) were electroporated with 

plasmid DNA as described by Dunny et al. (1991). A 70 µl aliquot of 

electrocompetent E. faecalis cells was thawed on ice and mixed with 1 µg of plasmid 

DNA. The mixture was electroporated at 23 kV/cm with 200 Ω resistance and 25 µF 

capacitance, as described in Section 2.3.4. Electroporated cells were allowed to 

recover in 390 µl of BHI-broth (Table 2.3) at 37ºC with agitation at 220 rpm for 2 h. 

Cells were then spread in 100 µl aliquots on BHI-agar plates (Table 2.3) containing 
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the appropriate antibiotic selection (Table 2.4), and plates were incubated at 37ºC 

overnight. 

2.4. DNA manipulations 

2.4.1. Isolation of plasmid DNA  

Plasmid DNA was isolated from stationary phase E. coli cultures (Section 2.1) using 

the ISOLATE Plasmid Mini Kit (BioLine), according to the manufacturer’s 

instructions. For the isolation of plasmid DNA from S. aureus, cell suspensions were 

lysed with 0.4 mg/ml lysostaphin (Sigma) in resuspension buffer at 37°C for 30–60 

min before proceeding with plasmid isolation as described above. For the isolation of 

plasmid DNA from S. cerevisiae yeast cells, the resuspension buffer was 

supplemented with 0.1 U/µl lyticase (Sigma) and cells were lysed by incubation at 

37°C with agitation at 220 rpm for 1–1.5 h before proceeding with plasmid isolation 

as described above. Isolated plasmid DNA was quantified (Section 2.4.13) and 

stored at -20°C in sterile Milli-Q water. 

2.4.2. Isolation of genomic DNA 

Genomic DNA was isolated from 2 ml of stationary phase S. aureus cultures 

(Section 2.1). Cells were harvested by centrifugation (16,060 ×g / 1 min / RT; 

Heraeus Biofuge Pico) and resuspended in 50 µl of WL buffer (Table 2.5). Cells 

were lysed with 0.4 mg/ml lysostaphin (Sigma) at 37°C for 30–60 min, before 

genomic DNA isolation using the ISOLATE Genomic DNA Mini Kit (Bioline), 

according to the manufacturer’s instructions. Isolated genomic DNA was quantified 

(Section 2.4.13) and stored at -20°C in sterile Milli-Q water. 
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2.4.3. Agarose gel electrophoresis 

Prestained 0.8–3 % (w/v) agarose gels containing 1× SYBR Safe DNA gel stain 

(Invitrogen) were prepared in TAE buffer (Table 2.5). DNA samples were mixed 

with Bromophenol Blue loading dye (Table 2.5) prior to loading. Samples were 

electrophoresed alongside 1 kb DNA ladder or 100 bp DNA ladder (New England 

BioLabs) size markers at 100 V in TAE buffer (Table 2.5) until the bromophenol 

blue tracking dye had migrated approximately three quarters of the gel length. DNA 

was visualised by UV transillumination at 302 nm using the GelDoc-It TS Imaging 

System (UVP). 

2.4.4. Polymerase chain reaction 

Amplification of DNA fragments was achieved by polymerase chain reaction (PCR) 

using the appropriate oligonucleotide primer pair and template DNA. PCRs were 

performed in a total volume of 20 µl or 50 µl using either iProof High-Fidelity DNA 

polymerase (Bio-Rad) or KAPA Taq DNA polymerase (Kapa Biosytems) in a T100 

thermal cycler (Bio-Rad) or an iCycler thermocycler (Bio-Rad). For PCRs using 

iProof High-Fidelity DNA polymerase, reactions contained 1–20 ng of template 

DNA, 0.5 µM of each forward and reverse primer, 0.2 mM deoxynucleotide 

triphosphate (dNTP) mix (Table 2.5) and 0.02 U/µl of iProof High-Fidelity DNA 

polymerase, in 1× iProof High-Fidelity DNA polymerase buffer (Bio-Rad). 

Amplification was carried out with an initial denaturation step of 98ºC for 30 s, 

followed by 25 cycles of the following conditions: denaturation at 98ºC for 10 s, 

annealing at 40–60ºC for 30 s, and extension at 72ºC for 15–30 s/kb. A final 

extension was carried out at 72ºC for 7 min. For DNA amplification using KAPA 
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Taq DNA polymerase, reactions included 10–20 ng of template DNA, 0.4 µM of 

each forward and reverse primer, 0.2 mM dNTP mix (Table 2.5) and 0.02 U/µl of 

KAPA Taq DNA polymerase in 1× Buffer B (Kapa Biosystems). Amplification was 

carried out with an initial denaturation step of 95ºC for 2 min, followed by 25 cycles 

of the following conditions: denaturation at 95ºC for 30 s, annealing at 40–60ºC for 

30 s, and extension at 72ºC for 1 min/kb. A final extension was carried out at 72ºC 

for 2 min. PCRs were held in the thermal cycler at 4°C and processed immediately, 

or stored at -20°C until required. 

2.4.5. Site-directed mutagenesis 

Site-directed mutagenesis (SDM) of plasmid DNA was performed according to the 

QuikChange protocol (Stratagene). Site-directed mutations were introduced using 

complementary mutagenic primers, listed in Table 2.6. Where possible, silent 

restriction sites were introduced into the primers to facilitate screening of plasmid 

DNA for incorporation of the mutagenic primer. Each SDM reaction consisted of 

approximately 10–20 ng of template plasmid DNA, 0.2 µM of each forward and 

reverse mutagenic primer, 0.2 mM dNTP mix and 0.02 U/µl of iProof High-Fidelity 

DNA polymerase (Bio-Rad) in 1× iProof High-Fidelity DNA polymerase buffer 

(Bio-Rad), made up to a total reaction volume of 50 µl with Milli-Q water. 

Mutagenesis reactions were performed using a T100 thermal cycler (Bio-Rad) or an 

iCycler thermocycler (Bio-Rad) with an initial denaturation step of 98°C for 30 s, 

followed by 15 cycles of the following conditions: denaturation at 98°C for 10 s, 

annealing at 40–60°C for 30 s, and extension at 72°C for 1 min/kb. A final extension 

was carried out at 72°C for 7 min.  
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Following SDM, the reaction mixtures were incubated with 0.4 U/µl of DpnI 

restriction endonuclease (New England BioLabs) at 37°C for 2–16 h to specifically 

digest the methylated, wild-type parental DNA template, leaving the unmethylated, 

newly-synthesised mutant DNA undigested. After restriction digestion, DpnI was 

heat-inactivated by incubation at 80°C for 20 min, and the DpnI-digested SDM 

reactions were used to transform chemically-competent E. coli DH5α cells (Section 

2.3.2). 

2.4.6. Restriction endonuclease digestion 

Restriction endonuclease digestion of DNA was performed at 37°C in the restriction 

buffer recommended by the manufacturer (New England BioLabs). Each reaction 

contained 300 ng–2 µg of DNA and 0.2–0.4 U/µl of restriction endonuclease (New 

England BioLabs) in 1× restriction buffer (New England BioLabs), made up to a 

total volume of 20 µl or 50 µl. Restriction endonuclease digestions were incubated at 

37ºC for a minimum of 1 h. Digestions were terminated by purification of the DNA 

(Section 2.4.7), or by heat-inactivation of the restriction endonucleases at 65°C or 

80°C for 20 min. 

2.4.7. DNA purification 

DNA fragments were purified, either from agarose gels or directly from reactions, 

using the ISOLATE PCR and Gel Kit (Bioline), according to the manufacturer’s 

instructions. For the extraction of DNA from agarose gels, fragments were visualised 

by UV transillumination at 302 nm using a Mighty Bright UV transilluminator 

(Hoefer) or the GelDoc-It TS Imaging System (UVP). The desired DNA fragment 

was excised from the gel with a scalpel before proceeding with DNA purification. 
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2.4.8. Blunting of DNA ends 

Blunting of overhangs from DNA ends was performed using DNA polymerase I, 

large (Klenow) fragment (New England BioLabs). DNA was treated with Klenow (1 

U/µg DNA) in the presence of 33 M dNTP mix (Table 2.5) in 1× T4 DNA Ligase 

Buffer (New England BioLabs) at 25°C for 15 min. Reactions were terminated by 

the addition of 10 mM EDTA, followed by heat-inactivation of the enzyme at 75°C 

for 20 min. 

2.4.9. Phosphorylation of DNA ends 

Blunt DNA ends were phosphorylated using T4 polynucleotide kinase (PNK) (New 

England BioLabs). T4 PNK (0.33 U/µl) was added to DNA fragments and reactions 

were incubated at 37°C for 30 min in 1× T4 DNA Ligase Buffer. Reactions were 

terminated by heat-inactivation of T4 PNK at 65°C for 20 min.  

2.4.10. Dephosphorylation of DNA ends 

Dephosphorylation of DNA ends was performed using Antarctic phosphatase (AnP) 

(New England BioLabs). DNA ends were treated with 0.67 U/µl of AnP in 1× 

Antarctic Phosphatase Reaction Buffer (New England BioLabs) at 37°C for 15 min 

for 5’ overhangs and blunt ends, or for 60 min for 3’ overhangs. Following 

dephosphorylation, AnP was heat-inactivated at 70°C for 5 min. 

2.4.11. DNA ligation 

DNA ligation reactions were conducted in a total volume of 10 µl using an 

insert:vector molar ratio of 3:1. Each reaction contained 50–100 ng of digested 



 

51 

 

(Section 2.4.6), purified (Section 2.4.7) and dephosphorylated (2.4.10) vector DNA 

and the appropriate amount of digested (Section 2.4.6) and purified (Section 2.4.7) 

insert DNA. For blunt-end ligations, approximately 200 ng of vector DNA was used. 

Ligation reactions proceeded at 16ºC overnight using 2 U/µl T4 DNA ligase (New 

England BioLabs) in 1× T4 DNA Ligase Buffer (New England BioLabs).  

2.4.12. Ethanol precipitation of DNA 

DNA was precipitated with the addition of 0.1 volumes of 3 M NaOAc pH 5.2 (4°C) 

followed by 3 volumes of 100% (v/v) ethanol (-20°C). DNA was allowed to 

precipitate at -70°C for at least 1 h before recovery of the DNA by centrifugation 

(16,060 ×g / 30 min / 4°C; Heraeus Biofuge Pico). The DNA pellet was washed 

twice with 1 ml of 70% (w/v) ethanol (-20°C), and the ethanol was removed by 

centrifugation (16,060 ×g / 5 min / 4°C; Heraeus Biofuge Pico). The DNA pellet was 

dried and then resuspended in sterile Milli-Q water or in the appropriate buffer. 

2.4.13. Quantification of DNA  

The concentration of DNA samples was measured spectrophotometrically using a 

NanoDrop ND-1000 UV/Vis Spectrophotometer with NanoDrop software 

(NanoDrop Technologies). 

2.4.14. DNA sequencing 

Automated sequencing of DNA was performed by the Australian Genome Research 

Facility (Sydney). Reactions comprised approximately 1 µg of purified plasmid 

DNA (Section 2.4.1) with 10 pmol of oligonucleotide primer, made up to a total 
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volume of 12 µl with sterile Milli-Q water. Nucleotide sequences were analysed 

using Sequencher 4.5 software (Gene Codes Corporation).  

2.5. Protein manipulations 

2.5.1. Protein overproduction 

pQE30-based E. coli expression constructs (Table 2.2) were used to transform 

chemically-competent E. coli BL21 cells (Table 2.1) (Section 2.3.2) containing the 

repressor plasmid, pREP4 (Table 2.2). Single colonies of transformants were used to 

inoculate 10 ml of LB-broth (Table 2.3) containing ampicillin and kanamycin 

selection (Table 2.4), and cultures were grown at 37°C with agitation at 220 rpm 

overnight (Section 2.1). Overnight cultures were diluted 1:50 in 500 ml of selective 

LB-broth (Table 2.3) for large-scale protein overproduction, or in 25 ml for small-

scale overproduction. Cultures were grown at 37ºC with aeration at 220 rpm until 

mid-exponential phase (OD600nm approximately 0.6), whereupon production of Par 

proteins was induced by the addition of isopropyl-β-D-thiogalactopyranoside (IPTG) 

to a final concentration of 0.1 mM. Induced cultures were incubated at a reduced 

temperature of 30ºC with aeration at 220 rpm for 3.5 h. Following protein 

overproduction, cells were harvested (9,820 ×g / 10 min / 4°C; Beckman JA-14 rotor 

for large-scale protein overproduction cultures, and 2,150 ×g / 5 min / 4°C; Heraeus 

Biofuge Primo for small-scale cultures) and cell pellets were stored at -80°C until 

required. 
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2.5.2. Protein purification under non-denaturing conditions 

Small-scale protein purifications were performed under non-denaturing conditions 

using cells that were harvested from small-scale protein overproduction experiments 

(Section 2.5.1). Cell pellets from 2 ml of induced protein overproduction cultures 

were thawed and resuspended in 100 µl of Native Protein Lysis Buffer (Table 2.5) 

and incubated with 1 mg/ml lysozyme (Sigma) on ice for 30 min. Lysed cells were 

sonicated on ice for 5 s on Setting 4 using a Sonifier B-12 Cell Disrupter (Branson). 

Cell lysates were cleared by centrifugation (16,060 ×g / 10 min / 4°C; Heraeus 

Biofuge Pico) and mixed with 20 µl of a 50% slurry of ProBond Ni2+-NTA metal 

chelate affinity agarose (Thermo Fisher Scientific) that had been pre-equilibrated 

with Native Protein Lysis Buffer (Table 2.5). Mixtures were incubated at 4°C for 30 

min with gentle rotation on a RSM-6 rotary mixer (Ratek Instruments). Following 

incubation, the resin was recovered by centrifugation (1000 ×g / 30 s / RT; Heraeus 

Biofuge Pico) and washed twice with 100 µl of Native Wash Buffer A (Table 2.5) at 

RT with gentle rotation for 5–10 min. The resin was recovered by centrifugation 

(1000 ×g / 30 s / RT; Heraeus Biofuge Pico) between each wash step. Proteins were 

then eluted from the resin three times with 20 µl of Native Elution Buffer (Table 2.5) 

at RT with gentle rotation for 5–10 min. Elution fractions were kept on ice until 

required.  

2.5.3. Protein purification under denaturing conditions 

Overproduced proteins from large-scale protein overproduction cultures were 

purified under denaturing conditions by batch affinity chromatography. Cell pellets 

from 500 ml protein overproduction cultures (Section 2.5.1) were thawed and 
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resuspended in 15 ml of Denaturing Protein Lysis Buffer (Table 2.5). Resuspended 

cells were lysed using a pre-chilled French pressure cell (Sim-Aminco Spectronic 

Instruments) at 20,000 psi up to six times, and cell lysates were then cleared by 

centrifugation (17,400 ×g / 10 min / 4°C; Beckman JA-20 rotor). The supernatant 

was mixed with 2 ml of a 50% slurry of Ni2+-NTA resin (Thermo Fisher Scientific) 

that had been pre-equilibrated by washing three times with Denaturing Protein Wash 

Buffer I (Table 2.5). The resin was recovered by centrifugation (35 ×g / 2 min / 4°C; 

Heraeus Biofuge Pico) between each wash step. Soluble proteins were incubated 

with the resin at 4°C for 3 h or overnight with gentle rotation on a RSM-6 rotary 

mixer (Ratek Instruments). The resin was recovered by centrifugation (35 ×g / 2 min 

/ 4°C; Heraeus Biofuge Pico) and washed two times with 9 ml of Denaturing Protein 

Wash Buffer I (Table 2.5) at 4°C with gentle rotation for 1 h each wash. The resin 

was recovered (35 ×g / 2 min / 4°C; Heraeus Biofuge Pico) after each wash, and then 

washed a further two times with 9 ml of Denaturing Protein Wash Buffer II (Table 

2.5) at RT with gentle rotation for 15 min each wash. After centrifugation to pellet 

the resin after each wash (35 ×g / 2 min / RT; Heraeus Biofuge Pico), proteins were 

eluted with 2.5 ml of Denaturing Protein Elution Buffer (Table 2.5) at RT with 

gentle rotation for 1 h. Elutions were kept on ice until buffer exchange (Section 

2.5.4) was performed. 

2.5.4. Protein buffer exchange 

Protein buffer exchange was performed in order to renature proteins that had been 

purified under denaturing conditions (Section 2.5.3) and to replace the Denaturing 

Protein Elution Buffer with buffers compatible with downstream experiments. 
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Proteins were exchanged into EMSA binding buffer or PBS (Table 2.5), as described 

in Simpson (2002), LeBard (2005) and Lai (2008), using PD-10 Desalting Columns 

(GE Healthcare), according to the manufacturer’s instructions. Columns were pre-

equilibrated with 25 ml of the new buffer, subsequent to which 2.5 ml of denatured 

protein samples from Section 2.5.3 were passed through the column by gravity force. 

Proteins were re-buffered with the addition of 3.5 ml of the new buffer, and eluates 

were collected in three fractions. The concentrations of re-buffered protein fractions 

were measured using Bradford assays (Section 2.5.5), and fractions containing 

satisfactory amounts of protein were stored in 100 µl aliquots at -80°C until required. 

2.5.5. Protein quantification 

Estimates of total protein concentration were performed using the colorimetric 

method of Bradford (1976). Assays were performed in a 96-well microplate using 

bovine serum albumin (BSA) (New England BioLabs) as the protein standard. BSA 

was diluted in EMSA binding buffer or PBS (Table 2.5) to give final concentrations 

of 0–1000 µg/ml. To 5 µl of each protein sample and standard, 200 µl of Quick Start 

Bradford 1× Dye Reagent (Bio-Rad) was added to start the reaction. The absorbance 

of each reaction was measured spectrophotometrically at 595 nm using a 

SPECTROstar Nano microplate reader (BMG LABTECH). Standard curves and 

protein concentrations were calculated using the data analysis software, MARS 1.20 

(BMG LABTECH). When necessary, protein samples were appropriately diluted in 

EMSA binding buffer or PBS to obtain absorbance readings within the linear range 

of the BSA standard curve. 
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2.5.6. Sodium dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) 

Separation of proteins by sodium dodecyl-sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) was performed as described by Laemmli (1970), using 

the Mini-PROTEAN 3 cell (Bio-Rad), assembled according to the manufacturer’s 

instructions. Glass gel plates were secured in a casting frame and sealed on a casting 

stand, before a 10% (w/v) SDS-PAGE resolving gel mixture (Table 2.5) was poured 

between the plates to approximately 1 cm below the bottom of the wells. The 

resolving gel was then overlaid with Milli-Q water to facilitate polymerisation 

(approximately 1 h). Following polymerisation of the resolving gel, the Milli-Q 

water was removed and a 5% (w/v) SDS-PAGE stacking gel mixture (Table 2.5) was 

poured on top of the resolving gel, and the appropriate well comb put in place. The 

stacking gel was allowed to polymerise (approximately 30 min), after which the well 

comb was removed and the wells flushed with SDS-PAGE running buffer (Table 

2.5) in preparation for sample loading.  

Prior to loading, protein samples were heated in SDS-PAGE sample buffer (Table 

2.5) at 95ºC for 5 minutes and then centrifuged (16,060 ×g / 3 min / RT; Heraeus 

Biofuge Pico) to pellet the insoluble material. Section 2.5.8 below describes the 

preparation of whole cell lysates for SDS-PAGE. A 10 µl sample of the supernatant 

was loaded into the wells of the stacking gel, and the samples were co-

electrophoresed with Prestained Protein Ladder, Broad Range (10–230 kDa) (New 

England BioLabs) or Precision Plus Protein All Blue Standards (Bio-Rad) at 150 V 

in SDS-PAGE running buffer (Table 2.5) until the blue dye front reached the bottom 
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of the glass plates. Visualisation of fractionated proteins was achieved by staining 

the gels overnight with Coomassie Brilliant Blue stain (Table 2.5), followed by 

destaining with two washes of Destain solution (Table 2.5) until protein bands could 

be clearly visualised. Gels were scanned using a GS710 densitometer (Bio-Rad) and 

Quantity One software (Bio-Rad). 

2.5.7. Non-reducing SDS-PAGE 

Non-reducing SDS-PAGE was performed essentially as described in Section 2.5.6, 

except the reducing agent, dithiothreitol (DTT) was omitted from the sample buffer. 

Protein samples were instead mixed with non-reducing SDS-PAGE sample buffer 

(Table 2.5) and loaded directly onto SDS polyacrylamide gels, without heat 

treatment.  

2.5.8. Preparation of whole cell lysates for SDS-PAGE 

For the preparation of E. coli whole cell lysates, 1 ml samples were obtained from 

mid-exponential phase cultures, pelleted by centrifugation (16,060 ×g / 1 min / RT; 

Heraeus Biofuge Pico) and resuspended in PBS (Table 2.5) to 12 OD600nm units. 

SDS-PAGE sample buffer (Table 2.5) was added to the cell suspension to a final 

concentration of 1×, before cells were lysed by heating at 95°C for 5 min as 

described in Section 2.5.6. 

For the preparation of S. aureus cell lysates, 25 ml of mid-exponential phase cultures 

were pelleted (16,060 ×g / 1 min / RT; Heraeus Biofuge Pico) and resuspended in 

WL buffer (Table 2.5) to 30 OD600nm units. Cell lysis was induced with 0.4 mg/ml 

lysostaphin (Sigma) at 37°C for 30–60 min, followed by sonication with three 5 s 



 

58 

 

bursts (Setting 4; Sonifier B-12 Cell Disrupter (Branson)) on ice. Lysates were 

cleared by centrifugation (16,060 ×g / 30 min / 4°C; Heraeus Biofuge Pico) and then 

10 µl of the supernatant was mixed with SDS-PAGE sample buffer (Table 2.5) and 

prepared for SDS-PAGE as described in Section 2.5.6. 

Preparation of S. cerevisiae whole cell lysates was performed according to the 

method described by Kushnirov (2000). The equivalent of 2.5 OD600nm units of mid-

exponential phase yeast cultures were pelleted (16,060 ×g / 1 min / RT; Heraeus 

Biofuge Pico) and resuspended in 100 µl of sterile Milli-Q water. An equal volume 

of 0.2 M NaOH (final concentration of 0.1 M) was added to the cell suspension, and 

cells were incubated at RT with gentle rotation on a RSM-6 rotary mixer (Ratek 

Instruments) for 10 min. Cells were pelleted by centrifugation (16,060 ×g / 1 min / 

RT; Heraeus Biofuge Pico) and then prepared for SDS-PAGE (Section 2.5.6) by 

resuspension of the cells in 50 µl of SDS-PAGE sample buffer (Table 2.5). 

2.5.9. Western blotting 

2.5.9.1. Protein transfer 

Proteins separated by SDS-PAGE (Section 2.5.6 and Section 2.5.7) were transferred 

by the wet transfer method (Towbin et al. 1979) onto Amersham Hybond-P 

polyvinylidene difluoride (PVDF) membranes (GE Healthcare) using a Mini Trans-

Blot cell (Bio-Rad), according to the manufacturer’s instructions. The SDS 

polyacrylamide gel and a methanol-activated PVDF membrane were sandwiched 

between two fibre pads and two pieces of filter paper, and secured by a gel holder 

cassette (Bio-Rad). The trans-blot cell was assembled and Western transfer was 
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conducted at 4ºC in Western transfer buffer (Table 2.5) at 30 V overnight or at 100 

V for 1 h.  

2.5.9.2. Immunological detection of proteins 

Unless otherwise stated, all incubations and washes were performed at RT on an 

orbital mixer (Ratek Instruments). PVDF membranes containing the transferred 

proteins (Section 2.5.9.1) were activated with 100% (v/v) methanol and then washed 

twice in TBS buffer (Table 2.5). In order to prevent non-specific binding of 

antibodies, membranes were blocked for 1 h with blocking buffer (Table 2.5), and 

then washed twice with TBS-Tween buffer (Table 2.5) and once with TBS. For the 

detection of Par proteins in S. aureus SK8250 cells using anti-Par peptide antibodies, 

5% (v/v) normal goat serum (Sigma) was added to the blocking buffer. 

Membranes were incubated with the appropriate primary antibodies diluted in 

blocking buffer as follows: for the detection of purified proteins or proteins from E. 

coli whole cell lysates (Section 2.5.8), a 1:1,000 dilution of mouse penta-His 

antibodies (Qiagen) or a 1:2,000 dilution of rabbit anti-Par antiserum was incubated 

with the membrane for 1 h with gentle agitation. Membranes containing S. aureus or 

S. cerevisiae whole cell lysates (Section 2.5.8) were incubated with either a 1:100 

dilution of affinity-purified (Section 2.6.1) and preadsorbed (Section 2.6.2) rabbit 

anti-Par antiserum, a 1:100 dilution of anti-Par peptide antibodies (Section 2.6.3) or 

a 1:100 dilution of anti-HA antibodies (Abcam) at 4°C overnight with gentle rotation 

on a RSM-6 rotary mixer (Ratek Instruments).  

Following incubation with primary antibodies, membranes were washed twice with 

TBS-Tween and once with TBS. Membranes were then incubated with a 1:2,000 
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dilution of goat-anti-mouse or goat-anti-rabbit IgG HRP-conjugated secondary 

antibodies (Bio-Rad) in blocking buffer, with gentle agitation for 1 h. Membranes 

were subsequently washed four times with TBS-Tween and detection of secondary 

antibodies was performed using either chromogenic or enhanced chemiluminescence 

(ECL) detection methods.  

Chromogenic detection methods were used for the detection of purified proteins or 

proteins from E. coli whole cell lysates. HRP staining solution (Table 2.5) containing 

the HRP substrate, 4-chloro-1-napthol and H2O2, was prepared immediately before 

immunodetection. Membranes were incubated in the dark with the staining solution 

until protein bands became visible, whereupon the reaction was stopped by rinsing 

the membrane with Milli-Q water. Membranes were air-dried and scanned using a 

GS710 Imaging Densitometer (Bio-Rad) and analysed using Quantity One software 

(Bio-Rad).  

ECL detection methods were used for the detection of proteins from S. aureus or S. 

cerevisiae whole cell lysates. ECL detection was performed using the Clarity ECL 

Western Blotting Substrate (Bio-Rad). Detection was facilitated by mixing equal 

volumes of Clarity Western Peroxide Reagent (Bio-Rad) and Clarity Western 

Luminol/Enhancer reagent (Bio-Rad) immediately prior to immunodetection. 

Membranes were incubated for 5 min in the dark with the prepared solution, and 

then imaged using chemiluminescence imaging on a G:BOX Chemi gel 

documentation system (Syngene) with GeneSnap image acquisition software 

(Syngene). 
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2.6 Antibody preparation 

2.6.1 Affinity purification of antiserum 

When required, rabbit anti-Par antisera were affinity-purified using batch 

chromatography with a Par-coupled Affigel-15 activated immunoaffinity support 

(Bio-Rad). Affinity columns were prepared using the aqueous coupling method, as 

described by the manufacturer. To prepare the affinity column, 500 µl of a 50% 

slurry of Affigel-15 resin were pre-equilibrated by washing three times with ice-cold 

Milli-Q water (1000 ×g / 2 min / 4ºC; Heraeus Biofuge Primo). Purified RGSH6-Par 

protein (approximately 1 mg in PBS) was incubated with the Affigel-15 matrix at 

4°C overnight with gentle rotation on a RSM-6 rotary mixer (Ratek Instruments). 

Following the coupling reaction, the resin was recovered by centrifugation (1000 ×g 

/ 2 min / 4ºC; Heraeus Biofuge Primo) and the supernatant was subjected to Bradford 

assays (Section 2.5.5) to verify protein coupling efficiency. The Par-coupled Affigel-

15 support was washed two times with ice-cold Milli-Q water (1000 ×g / 2 min / 

4ºC; Heraeus Biofuge Primo) to remove unbound reactants, and then resuspended in 

2.5 ml of ice-cold Milli-Q water. The slurry was transferred to a column that was 

assembled using a 3-ml syringe packed with glass wool at the base, and the resin was 

washed two times with five column volumes of Milli-Q water by gravity force. 

For affinity-purification of rabbit anti-Par antisera, 1 ml of antiserum was heated at 

56°C for 20 min to inactivate complement factors, and then passed five times 

through the Par-coupled Affigel-15 column. The column was washed with five 

column volumes of 10 mM Tris-HCl (pH 7.5), followed by five column volumes of 

10 mM Tris-HCl, 0.5 M NaCl (pH 7.5). Bound antibodies were eluted three times 
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with 0.5 column volumes of 4.5 M MgCl2, 10 mM Tris-HCl (pH 7.5) into an equal 

volume of 2× PBS, 80% (v/v) glycerol, 1% (w/v) BSA and 0.04% (w/v) sodium 

azide. Affinity-purified anti-Par antibodies were stored in 50 µl aliquots at -80°C. 

2.6.2 Preadsorption of antibodies with S. aureus cell lysates 

Where applicable, affinity-purified anti-Par antibodies were further purified by 

preadsorption with whole cell lysates prepared from S. aureus SK8250 cells (Table 

2.1) carrying pSK4833 (no Par) (Table 2.2). Cell lysates were prepared essentially as 

described in Section 2.5.8, but without the addition of SDS-PAGE sample buffer. 

Preadsorption of affinity-purified antibodies was conducted by incubating 500 µl of 

cleared S. aureus lysates with 10 µl of affinity-purified antibodies at 4°C overnight 

with gentle rotation on a RSM-6 rotary mixer (Ratek Instruments). Following 

preadsorption, aggregates were precipitated by centrifugation (16,060 ×g / 30 min / 

4°C; Heraeus Biofuge Pico), and the supernatant containing preadsorbed affinity-

purified antibodies was used immediately. 

2.6.3 Production of anti-peptide antibodies 

Polyclonal antibodies against two predicted antigenic peptides from RGSH6-Par 

were raised in two individual New Zealand White rabbits by Mimotopes Pty Ltd 

(Victoria, Australia). Details on the selection of predicted antigenic Par peptides are 

provided in Section 5.2. 

2.7 Plasmid segregational stability assays 

Strains harbouring the plasmid to be assayed were grown overnight in liquid broth 

containing the appropriate antibiotic selection (Table 2.4). The following day, 
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stationary phase cultures were diluted 10-4 in fresh selective media and subcultured 

for 4 h. This constituted Day 0 of the assay. The culture was serially diluted in 0.1% 

(w/v) NaCl, and viable counts were performed on non-selective solid media. The 

culture was used to inoculate 10 ml of fresh broth without antibiotic selection (10 -4 

dilution) and the cells were grown overnight. Cell cultures were serially diluted and 

viable counts were performed. The number of generations per day was calculated 

using the formula log(cfu/ml) / log(2), where cfu/ml is the difference in cfu/ml 

between the end and start of subculture. This process was repeated until 70–260 

generations of growth had been reached. After each day of subculture, 50–100 

individual colonies from the non-selective viable count plates were patched in 

duplicate onto selective and non-selective agar plates and incubated overnight to 

determine the proportion of the population that retained the plasmid. Plasmid DNA 

was isolated from selected colonies (Section 2.4.1) and visualised by agarose gel 

electrophoresis (Section 2.4.3) to confirm the presence or absence of the assayed 

plasmid. 

2.8. Electrophoretic mobility shift assays 

2.8.1. Preparation and radioactive end-labelling of DNA probes 

A 212 bp DNA fragment encompassing the par-rep intergenic region, including the 

seven 12-bp direct repeats of the par centromere-like site (nt 1689–1900, GenBank 

entry GU565967, Figure 1.6), was PCR-amplified (Section 2.4.4) from pSK4829 

template DNA (Table 2.2) using primers SJ37 and SJ38 (Table 2.6). The PCR 

product was electrophoresed on an agarose gel (Section 2.4.3) and the 212 bp DNA 

fragment was excised and purified as described in Section 2.4.7.  



 

64 

 

For the generation of radiolabelled DNA probes, end-labelling reactions were 

performed using 500 ng of the purified DNA probe with 3 µl of [γ-32P]-ATP (Perkin-

Elmer) and 0.5 U/µl of T4 PNK (New England BioLabs) in 1× T4 PNK buffer in a 

total volume of 20 µl. Labelling reactions proceeded at 37°C for 30 min, after which 

labelled DNA probes were purified as described in Section 2.4.7. The radioactivity 

of labelled probes was estimated in counts per minute (cpm) using a mini Geiger-

Muller tube. Labelled DNA probes were stored in lead pots at -20°C. 

2.8.2. Gel shift assays 

Electrophoretic mobility shift assays (EMSAs) were performed by incubating end-

labelled DNA probes (approximately 500 cpm) with 100 µg/ml of poly(dI-dC) 

(Sigma) and various amounts of purified protein in EMSA binding buffer for 30 min 

at RT. Binding reactions were electrophoresed on a non-denaturing and non-

reducing 5% (w/v) high ionic strength polyacrylamide gel (Table 2.5) in 0.5× TBE 

buffer (Table 2.5) at 100 V for 30 min. Following electrophoresis, the gel was 

transferred to Whatman filter paper and dried at 80°C for 1 h in a vacuum gel drying 

apparatus (Haeffer Scientific Instruments). The gel was then exposed to a phosphor 

screen (Kodak), which was scanned using a Molecular Imager FX (Bio-Rad) after 

overnight exposure. 

DNA-binding reactions that were electrophoresed on polyacrylamide/agarose hybrid 

gels (Table 2.5) were performed as described above, using approximately 135 ng of 

unlabelled DNA probe in place of the radiolabelled probe. Binding reactions were 

electrophoresed on hybrid gels under the conditions described above, and gels was 

stained in the dark with 1× SYBR Safe DNA gel stain (Invitrogen) in 0.5× TBE 
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buffer with gentle agitation for 30 min at RT. Gels were imaged using UV 

transillumination at 302 nm on the GelDoc-It TS Imaging System (UVP). 

2.9. Protein cross-linking 

2.9.1. in vitro cross-linking of purified proteins using glutaraldehyde 

in vitro cross-linking of purified RGSH6-Par and mutant derivatives was performed 

based on the method described by Abajy et al. (2007) using a glutaraldehyde cross-

linker. Cross-linking reactions (20 µl) consisted of 5–6 µg of purified RGSH6-Par 

proteins in EMSA binding buffer (Table 2.5) along with the specified concentration 

of glutaraldehyde, which was prepared from a stock solution of 25% (v/v) 

glutaraldehyde (Electron Microscopy Services). Reactions were incubated for 10 min 

at RT and then quenched with 0.1 M Tris-HCl (pH 8.0). Samples were fractionated 

by SDS-PAGE and analysed by Coomassie Brilliant Blue staining (Section 2.5.6). 

2.9.2. in vivo cross-linking of proteins using dithiobis(succinimidyl 

propionate) 

in vivo cross-linking of Par proteins in S. aureus was performed using 

dithiobis(succinimidyl propionate) (DSP) (Thermo Scientific) and adapted from 

Ogura et al. (2003). 10 ml of mid-exponential phase S. aureus SK8250 cells 

(containing pSK4829 or mutant derivatives thereof) (Table 2.2) were washed and 

resuspended in an equal volume of PBS (Table 2.5), and then incubated with various 

concentrations of DSP (0, 0.1, 0.25, 0.5 and 1 mM) in dimethyl sulfoxide (DMSO) 

for 30 min at RT. Cells were pelleted by centrifugation (16,060 ×g / 1 min / RT; 

Heraeus Biofuge Pico) and the cross-linking solution was removed. Cells were 
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resuspended in 10 ml of PBS and cross-linking reactions were quenched with 20 mM 

Tris-HCl (pH 7.5) for 15 min at RT. Cells were pelleted (16,060 ×g / 1 min / RT; 

Heraeus Biofuge Pico) and then resuspended in 200 µl of WL buffer (Table 2.5) and 

lysed as described in Section 2.5.8. Cell lysates were fractionated by non-reducing 

SDS-PAGE (Section 2.5.7) and analysed by Western blotting (Section 2.5.9) using 

affinity-purified (Section 2.6.1) and preadsorbed (Section 2.6.2) anti-Par antibodies. 

For cleavage of cross-linked complexes, samples were boiled in SDS-PAGE sample 

buffer (Table 2.5) containing 100 mM DTT for 10 min prior to SDS-PAGE. 

in vivo cross-linking of proteins in E. coli was performed as described above for S. 

aureus, except 3 ml of mid-exponential phase cultures were treated with the DSP 

cross-linking solution, and cells were resuspended in 100 µl of PBS (Table 2.5) 

following the quenching of cross-linking reactions. Cells were lysed by vortexing in 

non-reducing SDS-PAGE sample buffer (Table 2.5) without heating, and cross-

linked proteins were analysed by non-reducing SDS-PAGE (Section 2.5.7) and 

Western blotting (Section 2.5.9) using rabbit anti-Par antiserum. 

2.10. Yeast experiments 

2.10.1. Preparation of competent S. cerevisiae cells 

Competent S. cerevisiae AH109 cells were prepared according to the small-scale 

lithium acetate (LiAc) yeast transformation procedure in the Yeast Protocols 

Handbook (Clontech). Liquid YPD medium (Table 2.3) or synthetic dropout (SD) 

medium, SD/-Trp (Table 2.3) (50 ml), was inoculated with 3–5 single colonies of S. 

cerevisiae AH109 and cells were grown to stationary phase at 30°C with aeration at 
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250 rpm for approximately 20 h, as described in Section 2.1. The entire 50 ml 

stationary phase culture was added to 250 ml of fresh medium and cells were 

subcultured at 30°C with aeration at 230 rpm until mid-exponential phase (OD600nm 

approximately 0.4–0.5). Cells were harvested by centrifugation (2,150 ×g / 5 min / 

RT; Heraeus Biofuge Primo), washed with 30 ml of sterile Milli-Q water (2,150 ×g / 

5 min / RT; Heraeus Biofuge Primo), and then resuspended in 1.5 ml of freshly-

prepared, sterile TE/LiAc solution (Table 2.5). Competent S. cerevisiae AH109 cells 

were transformed immediately with plasmid DNA (Section 2.10.2). 

2.10.2. Transformation of yeast cells with plasmid DNA  

Transformation of competent S. cerevisiae AH109 cells (Section 2.10.1) was 

performed using the small-scale LiAc yeast transformation procedure described in 

the Yeast Protocols Handbook (Clontech). In cases where yeast cells were to be 

transformed with two plasmids, both plasmids were introduced simultaneously. Each 

transformation reaction contained 100 µl of competent S. cerevisiae AH109 cells, 

approximately 500 ng of each plasmid to be introduced, 0.1 mg of sheared salmon 

sperm DNA (Invitrogen) and 600 µl of freshly-prepared, sterile PEG/LiAc solution 

(Table 2.5). Mixtures were incubated at 30°C for 30 min with shaking at 200 rpm, 

after which 70 µl of DMSO was added to each mixture and mixed by gentle 

inversion. Cells were heat-shocked for 15 min in a 42°C water bath, and chilled on 

ice for 2 min. Cells were then centrifuged (16,060 ×g / 30 s / RT; Heraeus Biofuge 

Pico) and cell pellets were resuspended in 500 µl of sterile TE buffer (Table 2.5) for 

transformations with a single plasmid, and in 200 µl for simultaneous 

transformations with two plasmids. A 100 µl sample of the cell suspension was 
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spread onto solid SD media containing the appropriate nutritional selection, and 

plates were incubated at 30°C for 3–5 days until colonies appeared. 

2.10.3. Yeast two-hybrid assays 

Yeast two-hybrid (Y2H) assays were carried out as described by the Yeast Protocols 

Handbook (Clontech). Competent S. cerevisiae AH109 cells (Section 2.10.1) were 

simultaneously transformed with pGBKT7 bait and pGADT7 prey plasmid 

derivatives (Table 2.2) as described in Section 2.10.2. Co-transformants were 

selected on low-stringency selection medium (SD/-Leu/-Trp) (Table 2.3) to select for 

the presence of both bait and prey plasmids. Single colonies were triplicate-patched 

onto low-, medium- (SD/-Leu/-Trp/-His) and high- (SD/-Leu/-Trp/-His/-Ade/X-α-

Gal) stringency selection media (Table 2.3) and incubated at 30°C for 3–5 days to 

identify co-transformants that showed activation of the reporter genes from 

interaction between the GAL4 BD bait and GAL AD prey fusion proteins. The 

presence of blue pigment on high-stringency selection medium provided an 

indication of α-galactosidase activity. 

2.10.4. Yeast two-hybrid screening of S. aureus genomic DNA prey libraries 

A small-scale transformation procedure (Section 2.10.2) was used to initially 

transform competent S. cerevisiae AH109 cells (Section 2.10.1) with pSK9107 

(Table 2.2), which encodes the GAL4 BD-Par bait protein. S. cerevisiae AH109 

transformants carrying pSK9107 were subsequently made competent and 

transformed with S. aureus genomic DNA libraries according to the library-scale 

yeast transformation procedure outlined in the Matchmaker GAL4 Two-hybrid 

System 3 & Libraries User Manual (Clontech). Approximately five large colonies of 
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S. cerevisiae cells harbouring pSK9107 were used to inoculate 150 ml of SD/-Trp 

broth (Table 2.3) and cells were grown to stationary phase at 30°C with aeration at 

250 rpm for approximately 20 h (Section 2.1). The overnight culture was added to 1 

L of fresh YPD liquid medium (Table 2.3) and cells were subcultured to mid-

exponential phase (OD600nm approximately 0.5) at 30°C with shaking at 250 rpm. 

Mid-exponential phase cultures were harvested by centrifugation (1,000 ×g / 5 min / 

RT; Beckman JA-14 rotor), washed with 400 ml of sterile Milli-Q water (1,000 ×g / 

5 min / RT; Beckman JA-14 rotor), and then resuspended in 8 ml of freshly-

prepared, sterile TE/LiAc solution (Table 2.5).  

Twelve S. aureus genomic DNA Y2H prey libraries were generated by Schumacher 

et al. (2014) by restriction digestion of S. aureus genomic DNA with four restriction 

enzymes, and fusion with GAL4 AD in all three reading frames. Competent S. 

cerevisiae cells containing pSK9107 were mixed with 6 µg of an equal mix of the 

twelve genomic prey libraries in the presence of 60 ml of freshly-prepared, sterile 

PEG/LiAc solution (Table 2.5) and 20 mg of high molecular weight salmon sperm 

DNA (Sigma). The mixture was incubated at 30°C for 30 min with shaking at 200 

rpm, after which 7 ml of DMSO was added and mixed with gentle inversion. Cells 

were subsequently heat-shocked for 15 min in a 42°C water bath, and then chilled on 

ice for 2 min. Cells were harvested (1,000 ×g / 5 min / RT; Beckman JA-14 rotor) 

and the pellet was resuspended in 7.5 ml of TE buffer (Table 2.5). A small aliquot of 

the resuspended cells was used to prepare dilutions (undiluted, 10-1, 10-2, 10-3) that 

were spread on SD/-Leu, SD/-Trp, and SD/-Leu/-Trp agar plates (Table 2.3) to 

evaluate cell viability and transformation efficiency. The remaining cell suspension 

was spread on medium-stringency selection agar plates (SD/-Leu/-Trp/-His) (Table 
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2.3) and incubated at 30°C for 5–7 days, or until colonies appeared. Colonies from 

medium-stringency selection plates were triplicate-patched onto low-, medium- and 

high- stringency selection agar and incubated at 30°C for 3–5 days to verify co-

transformants that showed activation of the reporter genes from interaction between 

the GAL4 BD-Par bait and GAL AD-library prey fusion proteins. The presence of 

blue pigment on high-stringency selection medium provided an indication of α-

galactosidase activity. 

The number of colony-forming units (cfu) on appropriate SD/-Leu/-Trp dilution 

plates (containing 30–300 colonies) was counted and transformation efficiency was 

calculated using the formula: 

cfu × total suspension volume (µl)

volume plated (µl) × dilution factor × µg of limiting DNA used
 

The total number of library clones screened was calculated using the formula: 

cfu/µg DNA × µg of library plasmid used 

2.10.5. Quantitative α-galactosidase assays 

Quantitative α-galactosidase assays were performed according to the α-Gal 

quantitative assay protocol described in the Yeast Protocols Handbook (Clontech). S. 

cerevisiae AH109 strains showing interaction between bait and prey fusion proteins 

were grown at 30°C with aeration at 250 rpm for approximately 20 h (Section 2.1) in 

5 ml of SD/-Leu/-Trp/-His liquid medium (Table 2.3), or in SD/-Leu/-Trp (Table 

2.3) for the negative control strain (which harbours pGBKT7-Lam and pGADT7-T) 

(Table 2.2). The optical density of overnight cultures was recorded at 600 nm as 
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described in Section 2.1, and 1 ml of the culture was pelleted by centrifugation 

(16,060 ×g / 1 min / RT; Heraeus Biofuge Pico) and the supernatant transferred to 

fresh tubes. 

α-galactosidase assays were performed by adding 16 µl of the supernatant to 48 µl of 

α-galactosidase Assay Buffer (Table 2.5) in the wells of a 96-well microplate. 

Reactions were incubated at 30°C for 3 h and then terminated by the addition of 136 

µl of 10× α-galactosidase Stop Solution (Table 2.5). The absorbance of each reaction 

was measured at 410 nm using a SPECTROstar Nano microplate reader (BMG 

LABTECH) and α-galactosidase activity [milliunits/(cell × ml)] was calculated using 

the formula: OD410nm × Vf × 1000 / [(ɛ × b) × t ×Vi × OD600nm], where t = time 

elapsed (in min) of incubation; Vf = final volume of assay (µl); Vi = volume of 

culture medium supernatant added (µl); OD600nm = optical density of overnight 

culture; (ɛ × b) = p-nitrophenol molar absorbtivity at 410 nm × the light path (cm), 

which was calculated at 10.5 ml/µmol for 200 µl-format assays (Clontech). 

2.11. Microscopy 

2.11.1. Immunofluorescence microscopy 

Immunofluorescence microscopy (IFM) of Par proteins in S. aureus SK8250 and E. 

coli DH5α cells was performed based on protocols described by Pinho and Errington 

(2003) and Addinall et al. (1996). A 500 µl aliquot of mid-exponential phase 

cultures was fixed with an equal volume of 2.7% (v/v) paraformaldehyde (Electron 

Mircoscopy Services) and 0.005% (v/v) glutaraldehyde (Electron Microscopy 

Services) in PBS (Table 2.5) for 15 min at RT. Cells were pelleted by centrifugation 
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(16,060 ×g / 1 min / RT; Heraeus Biofuge Pico), washed three times with an equal 

volume of PBS (16,060 ×g / 1 min / RT; Heraeus Biofuge Pico), and then 

resuspended in 90–500 µl of GTE buffer (Table 2.5). S. aureus cells were lysed with 

60 µg/ml of lysostaphin (Sigma), and E. coli cells were lysed with 20 µg/ml of 

lysozyme (Sigma) for 1 min at 37°C on a poly-L-lysine (Sigma) treated multitest 

slide. The liquid was aspirated from the wells, and the wells were washed twice with 

PBS and then air-dried. Wells were rehydrated with PBS for 4 min at RT, and then 

blocked with 2% (w/v) BSA and 5% (v/v) normal goat serum in PBS for 15 min at 

RT. The blocking solution was removed, and wells were incubated at 4°C overnight 

with 10 µl of the primary antibody diluted in blocking buffer. Rabbit anti-FtsZ 

antibodies (Prof. Elizabeth Harry, University of Technology, Sydney, Australia) 

were used at a 1:20,000 dilution, and anti-Par anti-peptide antibodies (Section 2.6.3) 

were diluted 1:100 or 1:10,000 for S. aureus and E. coli IFM, respectively. 

Following incubation with primary antibodies, each well was washed eight times 

with PBS and 10 µl of a 1:2,000 (for S. aureus) or 1:5,000 (for E. coli) dilution of 

goat anti-rabbit IgG Alexa Fluor 488-conjugated antibodies (Invitrogen) were added 

to the wells and incubated in the dark for 1 h at RT. Wells were washed eight times 

with PBS and, where appropriate, DNA staining was performed by incubating the 

wells in the dark with 1 µg/ml of DAPI (Sigma) for 5 min at RT. Slides were 

mounted in 50% (v/v) glycerol in PBS and microscopy was performed at 100× 

magnification using a Zeiss AxioImager Z.1 microscope equipped with an AxioCam 

MRm cooled charge-coupled device (CCD) camera controlled using Zen software 

(Blue edition, 2012, Carl Zeiss). Cells were visualised using brightfield microscopy, 

and Alexa Fluor 488 and DAPI fluorescence were visualised using filter sets 44 and 
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49 (Carl Zeiss), respectively. Image analysis and processing, including 

deconvolution of image stacks, were performed using Zen software (Blue edition, 

2012, Carl Zeiss) and Adobe Photoshop CS3 Extended (version 10.0). 

2.11.2. Epifluorescence microscopy 

S. aureus or E. coli cells harbouring the relevant plasmids were grown overnight in 

10 ml of selective LB-broth (Table 2.3) at 30°C and 37°C, respectively, with 

aeration at 220 rpm (Section 2.1). Overnight cultures were used to inoculate (1:50 

dilution) 25 ml of fresh selective LB-broth, and cells were grown under the 

conditions described above until mid-exponential phase (OD600nm approximately 

0.6). Where applicable, nucleoid condensation was achieved by the addition of 25 

µg/ml or 300 µg/ml of chloramphenicol to mid-exponential phase S. aureus and E. 

coli cultures, respectively. Incubation of the cultures in the presence of 

chloramphenicol was continued for 1 h or 1.5 h for S. aureus and E. coli, 

respectively, after which 750 µl of cells were harvested by centrifugation (16,060 ×g 

/ 1 min / RT; Heraeus Biofuge Pico) and resuspended in 500 µl of PBS (Table 2.5). 

Where applicable, nucleoids were stained in the dark with 1 µg/ml of DAPI for 5 

min at RT. Cells were harvested (16,060 ×g / 1 min / RT; Heraeus Biofuge Pico) and 

then resuspended in 250 µl of PBS, and 3 µl of the cell suspension were mounted on 

2% (w/v) agarose pads prepared either directly on the slide, or within a Gene Frame 

(Thermo Fisher Scientific) assembled on the slide.  

Epifluorescence microscopy was performed at 100× magnification using a Zeiss 

AxioImager Z.1 microscope equipped with an AxioCam MRm cooled charge-

coupled device (CCD) camera controlled using Zen software (Blue edition, 2012, 
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Carl Zeiss). Cells were visualised using brightfield microscopy, and GFP, 

mRFPmars and DAPI fluorescence were visualised using filter sets 44, 20 and 49 

(Carl Zeiss), respectively. Image analysis and processing were performed using Zen 

software (Blue edition, 2012, Carl Zeiss) and Adobe Photoshop CS3 Extended 

(version 10.0). Cell counts were performed using the Cell Tracker plugin on ImageJ 

software (version 1.49, National Institutes of Health, USA).  

2.11.3. Fluorescence in situ hybridisation 

2.11.3.1.  Preparation of Cy3-labelled DNA probes 

Cy3-labelled DNA probes for fluorescence in situ hybridisation (FISH) were 

prepared as described by Pogliano et al. (2001). DNA fragments were end-labelled at 

the 3’-terminus with 5-Propargylamino-dCTP-Cy3 (Cy3-dCTP) (Jena Bioscience) 

using terminal deoxynucleotidyl transferase (Thermo Fisher Scientific). End-

labelling reactions consisted of 1 pmol of DNA ends, 60 pmol of Cy3-dCTP and 30 

U of terminal transferase in 1× reaction buffer in a total volume of 20 µl. Reactions 

were conducted at 37°C for 15 min, before the enzyme was heat-inactivated at 70°C 

for 10 min. Cy3-labelled DNA probes were purified (Section 2.4.7) and stored in the 

dark at -20°C. 

2.11.3.2.  Fluorescence in situ hybridisation in S. aureus 

The detection of pSK1 minireplicons in S. aureus was performed based on protocols 

described by Jensen and Shapiro (1999) and Lawson et al. (2011b). Stationary phase 

cultures of S. aureus SK8250 strains (Table 2.1) carrying the appropriate plasmid 

were diluted 1:50 in fresh LB-broth (Table 2.3) with antibiotic selection. Cells were 
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subcultured at 37°C with agitation at 220 rpm until mid-exponential phase (OD600nm 

approximately 0.6), whereupon 500 µl of cells were fixed with 2.6% (v/v) 

paraformaldehyde in 32 mM sodium phosphate buffer (pH 7.5) for 15 min at RT. 

Fixed cells were washed three times with PBS (Table 2.5) (16,060 ×g / 1 min / RT; 

Heraeus Biofuge Pico), and resuspended in 90 µl of GTE buffer (Table 2.5). 10 µl of 

the cell suspension were applied to the wells of a multitest slide, air-dried, and then 

fixed with 100 % (v/v) ethanol (-20 °C) for 1 min. Cells were lysed with 15 mg/ml 

of lysozyme (Sigma) at 37°C for 6 min and then rinsed with PBS and air-dried. A 

second cell lysis was performed with 100 µg/ml of lysostaphin (Sigma) at 47°C for 6 

min. The lysostaphin was removed and slides were rinsed with 100% (v/v) ethanol (-

20°C) for 1 min and then dried at 60°C for 1 min. Wells were blocked with FISH 

blocking solution (Table 2.5) at 75°C for 2 min and then washed two times with 2× 

SSCT buffer (Table 2.5) at RT for 5 min each wash. Slides were then incubated with 

2× SSCT buffer containing 50% (v/v) formamide at 37°C for 30–60 min, during 

which the Cy3-labelled DNA probe (Section 2.11.3.1) was denatured at 75°C for 5 

min and then kept on ice. 10 µl of FISH hybridisation solution (Table 2.5), 

containing approximately 100 ng of Cy3-labelled DNA probe, was added to the 

wells and covered with a coverslip. Slides were heated at 94°C for 2 min to denature 

the DNA, and hybridisation reactions proceeded at 42°C overnight in a humidity 

chamber. After overnight hybridisation, wells were washed two times with 2× SSCT 

buffer containing 50% (v/v) formamide at 37°C for 30 min each wash. This was 

followed by a wash with 2× SSCT buffer containing 25% (v/v) formamide and three 

washes with 2× SSCT buffer, performed at RT for 5 min each wash. Slides were 

briefly rinsed twice with PBS, and DNA was stained in the dark with 1 µg/ml of 4',6-
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diamidino-2-phenylindole (DAPI) for 5 min at RT. Slides were mounted in 10% 

(v/v) glycerol in PBS and microscopy was performed at 100× magnification using a 

Zeiss AxioImager Z.1 microscope equipped with an AxioCam MRm cooled charge-

coupled device (CCD) camera controlled using Zen software (Blue edition, 2012, 

Carl Zeiss). Cells were visualised using brightfield microscopy, and Cy3 

fluorescence was visualised using filter set 20 (Carl Zeiss). Image analysis and 

processing were performed using Zen software (Blue edition, 2012, Carl Zeiss) and 

Adobe Photoshop CS3 Extended (version 10.0).
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CHAPTER 3 

Functional significance of pSK1 Par domains 

3.1. Introduction 

pSK1 Par was shown to enhance plasmid segregational stability (Simpson et al. 

2003) via a single protein using a mechanism that distinguishes itself from the three 

characterised plasmid partitioning systems. Structural predictions indicate three 

putative domains: an N-terminal helix-turn-helix (HTH) domain (aa 3–24), a central 

coiled-coil (CC) domain (aa 132–155), and an acidic, disordered C-terminal domain 

(CTD) (aa 156–245) (Simpson et al. 2003). Previous functional studies have 

revealed that the HTH domain is involved in DNA-binding to the centromere-like 

site of pSK1 par (LeBard 2005, Lai 2008), while the CC domain is required for Par 

multimerisation (Lai 2008). This chapter details experiments that were performed to 

elucidate the contribution of the disordered CTD to Par DNA-binding and 

multimerisation activities, and explores potential inter- and intra-molecular 

interactions between Par domains. 

3.2. Functional significance of the Par C-terminal domain 

3.2.1. Construction of pSK1 minireplicons expressing Par CTD mutants 

Par functionality has been demonstrated by plasmid segregational stability assays, 

which show that a pSK1 minireplicon containing pSK1 par (pSK4829) is 

substantially more stable in S. aureus populations compared to a par-deficient pSK1 

minireplicon (pSK4833) (Table 2.2, Figure 3.1) (Simpson et al. 2003). Therefore, in 



 
 

Figure 3.1 Graphical representation of pSK1 par mutants generated in this study 

Par protein mutants generated in this study are listed, along with the names of pSK1 

minireplicons encoding the respective mutant protein. The genetic organisation of the 

wild-type par-rep region of pSK1 is shown with block arrows representing the rep 

(yellow) and par (blue) genes. Orange arrowheads represent the seven 12-bp repeats 

of the par centromere-like site to which Par binds. For Par∆CTD, deletion of the last 

228 nucleotides of the par sequence (nt 1498–1725 of pSK1, GenBank Accession 

Number GU565967) is denoted by a hatched block arrow with dashed lines. Red stars 

denote the relative positions of alanine codon substitutions introduced for the 

generation of Par point mutations.  
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order to determine whether the CTD of Par is functionally important, CTD mutants 

were generated such that their functionality could be assessed using plasmid 

segregational stability assays. Studies conducted as part of an honours project had 

generated two Par CTD mutants, including a CTD deletion of residues 161–245, as 

well as a CTD point mutant, ParR241A, which was generated by site-directed 

mutagenesis of the conserved R241 residue identified by a multiple sequence 

alignment of the Par CTD with similar proteins (Supplementary Figure S1) (Chan 

2011). However, the C-terminally truncated mutant was not able to be overproduced 

in E. coli BL21 cells (possibly due to protein degradation) and hence the extent of 

the CTD deletion was altered to include a further nine amino acids of the CTD, 

resulting in a truncated protein encompassing residues 1–170 (ParΔCTD). 

 In order to generate a pSK1 minireplicon that encodes Par∆CTD for plasmid 

segregational stability assays, a nucleotide fragment encompassing pSK1 rep and 

encoding the first 170 residues of Par was amplified by PCR (Section 2.4.4) from 

pSK4829 template DNA (Table 2.2) using primers NFRepDwn4829 and HC8 (Table 

2.6). The resulting amplicon was gel-purified (Section 2.4.7) and then restricted with 

BamHI and HindIII (Section 2.4.6). The restricted amplicons were purified (Section 

2.4.7) and then ligated (Section 2.4.11) to the similarly digested pWE180 plasmid 

(Table 2.2) that had been dephosphorylated with Antarctic phosphatase (Section 

2.4.10). The ligations were used to transform E. coli DH5α cells to ampicillin 

resistance (Section 2.3.2). Plasmid DNA was isolated from selected transformants 

(Section 2.4.1), and clones carrying recombinant plasmid DNA were identified by 

restriction digestion of the plasmids with BamHI and HindIII (Section 2.4.6) and 

subsequent agarose gel electrophoresis (Section 2.4.3) of the digestion reactions. 
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Recombinant plasmids were sequenced (Section 2.4.14) using primers 

NFRepDwn4829, HC2, HC3 and HC11 (Table 2.6), and the resultant pSK1 

minireplicon containing the correct sequence encoding ParΔCTD was named 

pSK9069 (Table 2.2). 

Since ParR241A was shown to retain some functionality (Chan 2011), a second CTD 

mutant, ParW239A, was generated to determine whether mutation of the conserved 

W239 residue of the CTD would impart a greater loss of functionality. Similar to 

R241, W239 was identified as a conserved residue by a multiple sequence alignment 

of the Par CTD with Par homologues (Chan 2011) (Supplementary Figure S1). 

Alanine substitution of W239 was generated by site-directed mutagenesis (Section 

2.4.5) of pSK4829 template DNA (Table 2.2) using primers HC9 and HC10 (Table 

2.6). A silent NruI restriction site was incorporated into each of the primers to 

facilitate screening of mutagenised plasmid DNA. Mutagenesis reactions were used 

to transform E. coli DH5α cells to ampicillin resistance (Section 2.3.2) and plasmid 

DNA was isolated from selected transformants (Section 2.4.1). Isolated plasmids 

were subjected to restriction endonuclease digestion by NruI (Section 2.4.6) 

followed by agarose gel electrophoresis (Section 2.4.3) in order to identify potential 

plasmid mutants. The W239A mutation was verified by DNA sequencing (Section 

2.4.14) using primers NFRepDwn4829, HC2, HC3 and HC11 (Table 2.6), and the 

pSK1 minireplicon encoding ParW239A was designated pSK9070 (Table 2.2). An 

overview of the Par CTD mutants used in this study is provided in Figure 3.1. 
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3.2.2. Effect of Par CTD mutations on plasmid segregational stability 

To determine the functionality of the Par CTD mutants, pSK9069 (parΔCTD), 

pSK9059 (parR241A) and pSK9070 (parW239A) (Table 2.2), were each individually 

introduced into S. aureus RN4220 cells by electroporation (Section 2.3.4), and 

plasmid segregational stability assays were performed (Section 2.7). Figure 3.2A 

shows that after five days (approximately 75 generations) of serial subculture in the 

absence of antibiotic selection, approximately 52±5% of the bacterial population 

retained pSK4829 (par), whereas pSK4833 (∆par) was completely lost from the 

population by Day 4. The assays also revealed that the CTD mutations negatively 

affected Par function; ParΔCTD and ParW239A were both entirely non-functional, 

with plasmid loss comparable to the loss of pSK4833 (∆par) from the population 

(Figure 3.2A). In comparison, pSK9059, which encodes ParR241A, was less stable 

than pSK4829 (par), but more stable than pSK4833 (∆par), with approximately 

35±5% of the population retaining the plasmid after five days (Figure 3.2A), which 

suggests that ParR241A retains some functionality. 

To ensure that plasmid instability was due to loss of Par function rather than absence 

of Par protein, the production of Par CTD mutants in S. aureus was confirmed by 

Western blotting using anti-Par antibodies (Section 2.5.9). Chromogenic detection 

methods provided insufficient sensitivity for the immunodetection of Par (data not 

shown), and hence all subsequent Western blotting of Par in S. aureus was 

performed using enhanced chemiluminescent (ECL) detection methods. However, 

when rabbit anti-Par antiserum was used for the immunodetection of Par in S. 

aureus, the increased sensitivity of ECL detection resulted in significant background 



 
 

Figure 3.2 Effect of Par CTD mutations on plasmid segregational stability 

A. Plasmid segregational stability assay of pSK1 minireplicons encoding Par CTD 

mutants. The retention of pSK1 minireplicons pSK4829 (par) ( ), pSK4833 (∆par)     

( ), pSK9059 (parR241A) ( ), pSK9069 (par∆CTD) (  ) and pSK9070 (parW239A)    

(   ) in S. aureus RN4220 cells was determined as described in Section 2.7. Five days 

of serial subculture represents approximately 75 generations. Data are normalised to 

100% plasmid retention on Day 0. The averages of at least three independent assays 

are shown. Error bars represent standard error of the mean. 

B. Immunodetection of Par CTD mutants in S. aureus by Western blotting. Cleared 

lysates from S. aureus SK8250 cells carrying pSK4829 (Par), pSK4833 (No Par), 

pSK9069 (Par∆CTD), pSK9059 (ParR241A) or pSK9070 (ParW239A) were 

fractionated on a 10% (w/v) SDS polyacrylamide gel (Section 2.5.6) and subjected to 

Western blotting (Section 2.5.9) using affinity-purified anti-Par antibodies (Section 

2.6.1) that had been preadsorbed against S. aureus SK8250 cell lysates (Section 2.6.2). 

Lane M contains prestained protein markers, with marker sizes indicated in kDa on 

the left of the blot. Positions of relevant proteins and their approximate measured sizes 

are indicated by black arrowheads. 
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signals, which obscured the Par protein band and rendered interpretation of the blots 

difficult (data not shown). Therefore, the anti-Par antiserum was affinity-purified and 

preadsorbed against S. aureus SK8250 lysates (Table 2.1), as described in Sections 

2.6.1 and 2.6.2. This process reduced background signals and, as shown in Figure 

3.2B, Western blotting using affinity-purified and preadsorbed anti-Par antiserum 

confirmed the production of Par and all Par CTD mutants in the S. aureus strains 

assayed. Par, ParR241A and ParW239A appeared as 45 kDa bands of similar 

intensity, and Par∆CTD appeared as a faint band of approximately 23 kDa (Figure 

3.2B). Notably, the 45 kDa protein size determined for full-length Par proteins is 

larger than their expected size of 29 kDa, which is consistent with observations from 

previous studies (Simpson et al. 2003, LeBard 2005, Figgett 2007, Lai 2008). On the 

other hand, Par∆CTD migration was more consistent with its predicted size of 20 

kDa. 

3.3. Overproduction and purification of Par CTD mutants 

3.3.1. Construction of expression plasmids for Par CTD mutants 

In order to further investigate the contribution of the CTD to Par function, Par CTD 

mutants were overproduced and purified for in vitro analysis of DNA-binding and 

multimerisation activities. Protein overproduction was performed using the pQE30 

expression vector (Table 2.2), which contains sequences encoding a N-terminal 

RGSH6 tag upstream of the multiple cloning site (MCS) to facilitate 

immunodetection using anti-polyhistidine antibodies and protein purification using 

nickel-nitrilotriacetic acid (Ni2+-NTA) metal affinity chromatography. Regulated 

gene expression is provided by an IPTG-inducible T5 promoter/lac operator element 
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and a trans-acting Lac repressor, encoded by lacI, on a compatible co-resident 

repressor plasmid, pREP4 (Table 2.2). 

To generate an overexpression plasmid encoding RGSH6-ParΔCTD, the coding 

region for amino acids 1–170 of Par was amplified by PCR (Section 2.4.4) from 

pSK9069 (Table 2.2) using primers 879BamHI and HC8 (Table 2.6), and then 

restricted with BamHI and HindIII (Section 2.4.6). The doubly-digested amplicon 

was purified (Section 2.4.7) and ligated to restricted and dephosphorylated (Section 

2.4.10) BamHI and HindIII sites of pQE30, to be in-frame with the vector-encoded 

N-terminal RGSH6 tag. E. coli DH5α cells (Table 2.1) carrying the pREP4 repressor 

plasmid were transformed with the ligation reaction and selected for ampicillin and 

kanamycin resistance (Section 2.3.2). Plasmid DNA was isolated from selected 

transformants (Section 2.4.1), restricted with BamHI and HindIII (Section 2.4.6), and 

then analysed by agarose gel electrophoresis (Section 2.4.3) to identify recombinant 

plasmids. Restricted plasmids displaying the anticipated restriction profile were 

verified by DNA sequencing (Section 2.4.14) using primers 879BamHI and HC11 

(Table 2.6). The overexpression plasmid encoding RGSH6-Par∆CTD was named 

pSK9071 (Table 2.2). 

Overexpression plasmids encoding RGSH6-ParR241A and RGSH6-ParW239A were 

constructed by site-directed mutagenesis (Section 2.4.5) of pSK5344, which contains 

RGSH6-par in pQE30 (Table 2.2). Site-directed mutagenesis was performed 

essentially as described in Section 3.2.1 for the construction of pSK9070 (Table 2.2), 

except that primer pairs HC6/HC7 and HC9/HC10 (Table 2.6) were used to generate 

nucleotide substitutions for the R241A and W239A mutations, respectively. 



 

83 

 

Mutagenesis reactions were then used to transform E. coli DH5α cells carrying the 

repressor plasmid, pREP4, to ampicillin and kanamycin resistance (Section 2.3.2). 

NruI restriction digestion (Section 2.4.6) was used to identify plasmids that had 

incorporated the W239A mutation. Overexpression plasmids encoding RGSH6-

ParR241A and RGSH6-W239A were verified by DNA sequencing (Section 2.4.14) 

using primers 879BamHI and HC11 (Table 2.6), and were named pSK9073 and 

pSK9074, respectively (Table 2.2). 

3.3.2. Overproduction of Par CTD mutants  

In order to obtain sufficient quantities of purified protein for subsequent in vitro 

studies on Par DNA-binding and multimerisation activities, the pREP4 repressor 

plasmid and one of each of the overexpression plasmids generated in Section 3.3.1, 

pSK9071, pSK9073 or pSK9074 (Table 2.2), were used to sequentially transform the 

protease-deficient E. coli strain BL21 (Table 2.1) by heat shock (Section 2.3.2). 

Small-scale protein overproduction studies were initially performed as described in 

Section 2.5.1, using induction conditions of 100 µM IPTG at 30°C, which were the 

conditions established for the overproduction of RGSH6-Par from pSK5344 (Table 

2.2) (LeBard 2005). Aliquots of the culture were taken pre-induction (t0) and post-

induction at hourly intervals for 4 h (t1–4). Whole cell extracts were prepared from 

the samples (Section 2.5.8) and analysed by SDS-PAGE (Section 2.5.6) and Western 

blotting (Section 2.5.9) to confirm protein production. As shown in Figure 3.3, 

induction of Par protein production was evident, with small amounts of Par protein 

detected in uninduced cells, and production of higher quantities of recombinant 

proteins apparent within 0.5 h of induction. Full-length RGSH6-Par proteins were 



 
 

Figure 3.3 Overproduction of Par CTD mutant proteins in E. coli 

Immunodetection of overproduced Par and Par CTD mutant proteins in E. coli BL21 

cells by Western blotting. Protein overproduction for RGSH6-Par, RGSH6-Par∆CTD, 

RGSH6-ParR241A, and RGSH6-ParW239A, was induced with 100 µM IPTG for 4 h 

as described in Section 3.3.2. Aliquots of the cultures were sampled at various time 

points and whole cell lysates (Section 2.5.8) were fractionated on 10% (w/v) SDS 

polyacrylamide gels (Section 2.5.6) and analysed by Western blotting using rabbit 

anti-Par antiserum (Section 2.5.9). O/N: uninduced cells from overnight cultures; t0: 

cells sampled pre-induction; t0.5, t1, t2, t3, t4: cells sampled 0.5, 1, 2, 3 and 4 h post-

induction, respectively. Lane M contains prestained protein markers, with marker 

sizes indicated in kDa on the left of each blot. Positions of overproduced proteins and 

their approximate measured sizes are indicated by black arrowheads. 
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detected as protein bands of approximately 45 kDa, whereas RGSH6-Par∆CTD 

appeared as a 24 kDa band (Figure 3.3). The blots did not show any visible protein 

degradation for up to 4 h post-induction (Figure 3.3).  

3.3.3. Small-scale purification of Par CTD mutants under non-denaturing 

conditions 

Previous studies have employed denaturing conditions for the purification of 

overproduced RGSH6-Par proteins, as purification under native, or non-denaturing, 

conditions did not yield sufficient quantities of purified protein (LeBard 2005, 

Figgett 2007, Lai 2008). To determine whether the Par CTD mutant proteins could 

be purified under non-denaturing conditions, RGSH6-Par, RGSH6-ParΔCTD, 

RGSH6-ParR241A and RGSH6-ParW239A were overproduced in small-scale 

overexpression cultures of E. coli BL21 with 100 µM IPTG, as described in Section 

3.3.2. Small-scale protein purifications were subsequently performed under non-

denaturing conditions using Ni2+-NTA metal affinity chromatography (Section 

2.5.2). In order to evaluate the protein purification process, samples were taken 

throughout the procedure, and included the cleared lysate prior to incubation with the 

Ni2+-NTA resin (to check cell lysis and confirm the presence of overproduced 

protein in the soluble fraction of the cells), the unbound proteins after incubation 

with the Ni2+-NTA resin (to confirm that Par had bound to the resin and that other 

proteins did not bind non-specifically), and the proteins released after each wash and 

elution step. Protein fractions were analysed by SDS-PAGE and Coomassie Brilliant 

Blue staining (Section 2.5.6).  
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Figure 3.4 shows overproduced protein bands (migrating as approximately 45 kDa 

for full-length RGSH6-Par proteins, and approximately 23 kDa for RGSH6-

ParΔCTD) in the whole cell lysates of cells sampled 3.5 h post-induction. Following 

two brief washes, RGSH6-ParΔCTD, RGSH6-ParR241A and RGSH6-ParW239A 

proteins were detected in the elution fractions (Figures 3.4B–D), which indicates that 

they could be purified under non-denaturing conditions, albeit with low efficiency. 

Consistent with previous findings (LeBard 2005), RGSH6-Par could not be purified 

under non-denaturing conditions, possibly due to poor binding to the Ni2+-NTA 

resin, since the 45 kDa protein band was present in the unbound fraction but absent 

in the washes and elutions (Figure 3.4A). Therefore, for the purposes of consistency, 

denaturing conditions were used for the purification of all Par protein derivatives 

(see Section 3.3.4 below).  

3.3.4. Large-scale overproduction and purification of Par CTD mutants 

under denaturing conditions 

For the purification of large quantities of protein required for downstream 

experiments, RGSH6-Par, RGSH6-ParΔCTD, RGSH6-ParR241A and RGSH6-

ParW239A were overproduced in large-scale overexpression cultures as described in 

Section 2.5.1, using 100 µM IPTG induction at 30°C for 3.5 h. In order to confirm 

protein overproduction, samples of the culture were taken pre-induction (t0) and at 

the conclusion of the induction period (t3.5). The samples and remaining cultures 

were harvested and cell pellets were stored at -80 °C until required.  

Overproduced proteins were purified by Ni2+-NTA metal affinity chromatography 

under denaturing conditions (Section 2.5.3). As performed in Section 3.3.3, samples 



 
 

Figure 3.4 Small-scale overproduction and purification of RGSH6-tagged Par 

proteins under non-denaturing conditions 

Coomassie-stained 10% (w/v) SDS polyacrylamide gels showing the overproduction 

and purification process for RGSH6-Par (A), RGSH6-Par∆CTD (B), RGSH6-

ParW239A (C), and RGSH6-ParR241A (D). RGSH6-tagged proteins were 

overproduced in E. coli BL21 cells with 100 µM IPTG induction for 3.5 h (Section 

2.5.1) and purified using Ni2+-NTA resin under non-denaturing conditions (Section 

2.5.2). Protein fractions were collected at each stage of the protein purification process 

and analysed by SDS-PAGE and Coomassie Brilliant Blue staining (Section 3.3.3). 

t3.5: whole cell lysates from cells 3.5 h post-induction; S: supernatant from lysed E. 

coli cells; U: unbound fraction following incubation of cleared lysate with Ni2+-NTA 

resin; W1: fraction obtained after first wash with Native Protein Wash Buffer A; W2: 

fraction obtained after second wash with Native Protein Wash Buffer A; E1: first 

elution; E2: second elution; E3: third elution. Lane M contains prestained protein 

markers, with marker sizes indicated in kDa on the left of each gel; for clarity, some 

marker sizes are omitted (Marker sizes from top to bottom: 250, 150, 100, 75, 50, 37, 

25, 20, 15, 10 kDa). Positions of RGSH6-tagged Par proteins and their approximate 

measured sizes are indicated by black arrowheads.  
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were taken from each stage of the purification procedure, and protein fractions were 

analysed by SDS-PAGE and Coomassie Brilliant Blue staining (Section 2.5.6). As 

illustrated in Figures 3.5A, C and D, an overproduced protein band of approximately 

45 kDa was observed in whole cell extracts from cells that had induced expression of 

RGSH6-par, RGSH6-parR241A and RGSH6-parW239A for 3.5 h (t3.5). An 

overproduced protein band for RGSH6-ParΔCTD was not visible by Coomassie 

Brilliant Blue staining of cell lysates from induced cells (Figure 3.5B). During the 

protein purification process, most proteins were removed in the first wash step 

(Figures 3.5A–D, lane W1), with some of the RGSH6-tagged proteins removed in 

subsequent washes (Figures 3.5A–D, lanes W2–W4). The elution samples showed 

relatively pure protein of the expected sizes (approximately 45 kDa for full-length 

RGSH6-Par proteins and approximately 25 kDa for RGSH6-Par∆CTD), with the 

exception of an approximately 30 kDa protein that was co-purified with the RGSH6-

tagged proteins (Figures 3.5A–D, lane E, asterisk).  

To encourage refolding of the eluted proteins from their denatured states and to 

ensure buffer compatibility for downstream experiments, buffer exchange was 

performed using PD-10 desalting columns (Section 2.5.4) to replace the elution 

buffer (Table 2.5) with EMSA binding buffer or PBS (Table 2.5). To ensure that the 

purified and desalted proteins were indeed Par proteins, the desalted proteins were 

electrophoresed on polyacrylamide gels (Section 2.5.6) and immunologically 

detected by Western blotting (Section 2.5.9) using rabbit anti-Par antiserum. The 

Western blot shown in Figure 3.5E confirms the presence of RGSH6-tagged proteins 

of the expected sizes in the final protein preparations. RGSH6-Par, RGSH6-

ParW239A and RGSH6-ParR241A appeared as protein bands of approximately 45 



 
 

Figure 3.5 Large-scale overproduction and purification of RGSH6-tagged Par 

proteins under denaturing conditions 

Coomassie-stained 10% (w/v) SDS polyacrylamide gels showing the overproduction 

and purification process for RGSH6-Par (A), RGSH6-Par∆CTD (B), RGSH6-

ParW239A (C), and RGSH6-ParR241A (D). RGSH6-tagged proteins were 

overproduced in E. coli BL21 cells with 100 µM IPTG induction for 3.5 h (Section 

2.5.1) and purified using Ni2+-NTA resin under denaturing conditions (Section 2.5.3). 

Protein fractions were collected at each stage of the protein purification process and 

analysed by SDS-PAGE and Coomassie Brilliant Blue staining (Section 3.3.4). t0: 

whole cell lysates from cells pre-induction; t3.5: whole cell lysates from cells 3.5 h 

post-induction; S: supernatant from lysed E. coli cells; U: unbound fraction following 

incubation of cleared lysate with Ni2+-NTA resin; W1: fraction obtained after first 

wash with Denaturing Protein Wash Buffer I; W2: fraction obtained after second wash 

with Denaturing Protein Wash Buffer I; W3: fraction obtained after first wash with 

Denaturing Protein Wash Buffer II; W4: fraction obtained after second wash with 

Denaturing Wash Buffer II; E: elution. Lane M contains prestained protein markers, 

with marker sizes indicated in kDa on the left of each gel; for clarity, some marker 

sizes are omitted (Marker sizes from top to bottom: 250, 150, 100, 75, 50, 37, 25, 20, 

15, 10 kDa). Positions of RGSH6-tagged Par proteins and their approximate measured 

sizes are indicated by black arrowheads. The position of a co-purified contaminant 

protein is indicated by an asterisk.  

E. Western blot of purified RGSH6-tagged Par proteins following buffer exchange. 

RGSH6-tagged Par proteins were purified under denaturing conditions and then 

desalted and re-buffered in EMSA binding buffer as described in Section 3.3.4. 

Desalted proteins were fractionated on a 10% (w/v) SDS polyacrylamide gel (Section 



 
 

2.5.6) and transferred to a PVDF membrane for Western blotting (Section 2.5.9) using 

rabbit anti-Par antiserum. Lane M contains prestained protein markers, with marker 

sizes indicated in kDa on the left of the blot. Positions of desalted proteins and their 

approximate measured sizes are indicated by black arrowheads. 
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kDa, while RGSH6-Par∆CTD appeared as a 25 kDa band (Figure 3.5E). No protein 

degradation products were detected, since only a single protein band was observed 

for each purified protein sample (Figure 3.5E). The low-intensity band of around 45 

kDa in the RGSH6-Par∆CTD lane most likely represents cross-contamination with 

other full-length RGSH6-Par proteins during the gel loading process. The Western 

blot also suggests that the 30 kDa protein band that was co-purified with RGSH6-

tagged proteins (Figures 3.5A–D) was most likely a contaminating protein. The 

desalted proteins were quantified using Bradford assays (Section 2.5.5), which 

indicated final protein concentrations of 300–500 μg/ml (corresponding to protein 

yields of 0.9–1.5 mg/L of expression culture), which was deemed sufficient for use 

in downstream in vitro experiments. 

3.4. DNA-binding activity of Par CTD mutants 

In order to establish whether the CTD contributes to DNA-binding, electrophoretic 

mobility shift assays (EMSAs) (Section 2.8) were performed on Par CTD mutants. 

EMSAs rely on the detection of changes in the migration of a labelled DNA probe 

through a polyacrylamide gel. Free, unbound DNA probes migrate further on a gel 

compared to protein-bound DNA probes, and hence EMSAs can be used to 

determine whether a particular protein binds to a specific labelled DNA sequence. 

Previous EMSAs established that RGSH6-Par binds specifically to a 212 bp DNA 

fragment that encompasses the seven 12-bp direct repeats of the par centromere-like 

site (nt 1689–1900 of pSK1, GenBank Accession Number GU565967, Figure 1.6) 

(LeBard 2005, Figgett 2007, Lai 2008). To compare the DNA-binding activity of the 

CTD mutants with RGSH6-Par, the same 212 bp DNA fragment was PCR-amplified 
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(Section 2.4.4) from pSK4829 (Table 2.2) using primers SJ37 and SJ38 (Table 2.6). 

The resulting fragment was purified (Section 2.4.7) and then end-labelled with 32P 

from [γ-32P]-ATP using T4 PNK (Section 2.8.1). EMSAs were performed as 

described in Section 2.8.2, using approximately 500 cpm of purified, labelled DNA 

probe in each EMSA reaction, and increasing amounts of purified RGSH6-tagged 

protein (Section 3.3.4). Figure 3.6A reveals that RGSH6-Par bound the radiolabelled 

DNA probe efficiently, as DNA-binding was evident with 16 nM of RGSH6-Par, and 

a complete retardation of DNA probe migration was observed with protein 

concentrations greater than 96 nM. The competition EMSA shown in Figure 3.6B 

reveals that RGSH6-Par-DNA complexes could be titrated with unlabelled 

centromere competitor DNA (specific DNA), but not with non-specific DNA (181 

bp region downstream of pSK1 rep, nt 2950–3130 of pSK1, GenBank Accession 

Number GU565967), which confirms previous findings that Par binds specifically to 

the centromere-like site (LeBard 2005, Figgett 2007, Lai 2008). RGSH6-ParW239A 

and RGSH6-ParR241A bound the probe as efficiently as RGSH6-Par, with no visible 

distinction between the DNA-binding profiles of the full-length proteins (Figures 

3.6D–E). Similar concentrations of RGSH6-ParΔCTD and RGSH6-Par were required 

to completely shift the mobility of the labelled probe (approximately 96 nM), 

however, the binding of RGSH6-ParΔCTD to the DNA probe produced additional 

bands between the unbound probe and the completely shifted probe (Figure 3.6C). 

This was not observed from the DNA-binding of RGSH6-Par, RGSH6-ParW239A or 

RGSH6-ParR241A (compare Figure 3.6C with A, D and E). It should be noted that 

protein-DNA complexes involving full-length Par and Par mutants appeared unable 

to migrate into the gel and remained in the wells (Figure 3.6A, D and E), which 



 
 

Figure 3.6 DNA-binding activity of Par CTD mutant proteins 

Electrophoretic mobility shift assays (EMSAs) of Par proteins binding to the pSK1 

par-rep intergenic region. A 212 bp par-rep intergenic DNA probe (nt 1689–1900 of 

pSK1, GenBank Accession Number GU565967, Figure 1.5) was incubated with 

increasing concentrations of purified RGSH6-tagged Par proteins as described in 

Section 3.4. A–E. EMSAs performed using 500 cpm of radiolabelled DNA probe and 

electrophoresed on 5% (w/v) polyacrylamide gels. Radiolabelled DNA probes were 

detected by phosphor imaging. B. Competition EMSA performed as described in 

Section 3.4 using a fixed concentration of RGSH6-Par (556 nM) and increasing 

amounts of unlabelled competitor DNA, either specific (same as labelled probe) or 

non-specific (181 bp DNA fragment downstream of pSK1 rep, nt 2950–3130 of pSK1, 

GenBank Accession Number GU565967). F–I. EMSAs performed using 135 ng of 

unlabelled DNA probe and electrophoresed on polyacrylamide/agarose hybrid gels. 

DNA probes were detected using SYBR Safe DNA gel stain and UV 

transillumination. The bottom of the wells is indicated by a dashed line. The 

concentration of protein (nM) or amount of unlabelled competitor DNA (ng) is shown 

above each lane. The positions of unbound DNA are indicated by black arrowheads. 

Par-DNA complexes are bracketed on the right. 
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made it difficult to determine whether intermediate protein-DNA species were 

formed.  

3.4.1. Resolution of Par-DNA complexes formed in EMSAs 

Electrophoresis of the above EMSAs on 5% (w/v) polyacrylamide gels appeared to 

restrict the migration of full-length Par-DNA complexes into the gel, which 

prevented the identification of potential protein-DNA complexes of different sizes 

(Section 3.4). Therefore, in order to facilitate the migration of large Par-DNA 

complexes into the gel, EMSAs were electrophoresed on polyacrylamide/agarose 

hybrid gels (Table 2.5), which have a larger pore matrix. As depicted in Figure 3.6F, 

RGSH6-Par-DNA complexes migrated completely into the hybrid gels, with 1.7 M 

RGSH6-Par required to bind the total amount of DNA probe. This was comparable to 

the concentrations of RGSH6-Par∆CTD, RGSH6-ParW239A and RGSH6-ParR241A 

protein required to observe a loss of unbound probe (approximately 1.2–1.7 M of 

protein) (Figures 3.6G–I). The hybrid gels also revealed that DNA-binding by 

RGSH6-Par∆CTD, RGSH6-ParW239A and RGSH6-ParR241A caused a step-wise 

retardation of the DNA probe, with intermediate protein-DNA species observed 

(Figures 3.6G–I). This was in contrast to RGSH6-Par DNA-binding, which produced 

a rapid shift of the DNA probe between 0.7 M and 1.4 M of protein, with no 

intermediate protein-DNA species observed (Figure 3.6F). 
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3.5. Multimerisation activity of Par CTD mutants 

3.5.1. in vitro cross-linking of Par mutants using glutaraldehyde 

Previous studies on Par established that Par multimerisation was primarily driven by 

the central CC domain (Lai 2008). To determine whether the CTD also has a role in 

multimerisation, in vitro multimerisation studies were carried out on purified Par 

proteins using glutaraldehyde as a chemical cross-linker. Glutaraldehyde is a non-

cleavable, homobifunctional amine-reactive cross-linker that forms covalent bonds 

between closely associated proteins, such as interacting proteins or protein 

multimers. Electrophoresis under reducing conditions separates the cross-linked 

proteins according to size, allowing for multimeric forms of Par to be identified. 

To determine the optimum amount of cross-linker for use in the in vitro cross-linking 

reactions, purified Par proteins were incubated in PBS with increasing 

concentrations of glutaraldehyde (Section 2.9.1) and then resolved by SDS-PAGE 

(Section 2.5.6). As shown in Figure 3.7A, increasing glutaraldehyde concentrations 

increased the proportion of high-molecular weight cross-linked complexes. RGSH6-

Par formed dimers, trimers, hexamers and higher-order complexes when cross-linked 

with 0.01% (v/v) glutaraldehyde, with dimers and trimers in apparently similar 

proportions (Figure 3.7A). To minimise artefactual cross-linking, subsequent cross-

linking studies were performed using 0.01% (v/v) glutaraldehyde. All proteins 

remained as monomers when untreated with glutaraldehyde (Figure 3.7B), which 

indicates that the observed protein bands in the treated samples were a result of 

cross-linking. There was no observable difference in multimerisation profiles 

between RGSH6-Par and the full-length CTD point mutants when cross-linked with 



 
 

Figure 3.7 in vitro cross-linking of purified Par proteins using glutaraldehyde 

10% (w/v) SDS polyacrylamide gels of cross-linked RGSH6-Par proteins. Purified 

RGSH6-Par proteins were cross-linked with the indicated concentrations of 

glutaraldehyde, as described in Section 2.9.1. Cross-linking reactions were analysed 

by SDS-PAGE and Coomassie Brilliant Blue staining (Section 2.5.6). A. Titration of 

RGSH6-Par with glutaraldehyde cross-linker. B. RGSH6-Par proteins incubated with 

(+) or without (–) 0.01% (v/v) glutaraldehyde. C. Titration of RGSH6-Par∆CTD with 

glutaraldehyde cross-linker. Lane M contains prestained protein markers, with marker 

sizes indicated in kDa on the left of each gel. Where appropriate, the positions of 

monomers (P1) and potential dimers (P2), trimers (P3), tetramers (P4) and hexamers 

(P6) are indicated by solid arrowheads for full-length RGSH6-Par proteins, and by 

open arrowheads for RGSH6-Par∆CTD proteins. The positions of higher-order 

multimers are bracketed. The position of a contaminant protein from the purification 

process is indicated with an asterisk.  
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0.01% (v/v) glutaraldehyde (Figure 3.7B). Cross-linking of RGSH6-ParΔCTD 

resulted in a higher observed proportion of dimers compared to trimers and higher-

order multimers (Figure 3.7B). This was also observed at a lower glutaraldehyde 

concentration of 0.005% (v/v) (Figure 3.7C). Additionally, possible tetramers were 

present upon cross-linking of RGSH6-ParΔCTD, which were not observed for 

RGSH6-Par (compare Figures 3.7B–C). The contaminant protein from the 

purification process (Section 3.3.4) did not appear to interfere with the cross-linking 

assay, since it remained in the form of a monomer even in the presence of 0.02% 

(v/v) glutaraldehyde (Figures 3.7A–C). 

3.5.2. in vivo cross-linking of Par mutants using dithiobis(succinimidyl 

propionate) 

To determine whether the multimeric forms of Par observed in the above in vitro 

cross-linking experiments (Section 3.5.1) are also formed in vivo, cross-linking 

experiments were also performed in vivo using the homobifunctional, thiol-

cleavable, amine-reactive cross-linker dithiobis(succinimidyl propionate) (DSP). 

Unlike glutaraldehyde, DSP is membrane-permeable, allowing it to enter cells and 

covalently cross-link proteins intracellularly. S. aureus SK8250 cells (Table 2.1) 

carrying pSK4829 (Table 2.2), and expressing Par in the presence of the pSK1 par 

centromere-like site, were treated with increasing concentrations of DSP as 

described in Section 2.9.2. Cells were then lysed, and the cleared lysates (Section 

2.5.8) were fractionated by SDS-PAGE under non-reducing conditions (Section 

2.5.7) to ensure that the cross-links remained intact. Subsequent Western blotting 

(Section 2.5.9) using affinity-purified (Section 2.6.1) and preadsorbed (Section 
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2.6.2) anti-Par antibodies facilitated the detection of Par multimers that had been 

cross-linked in vivo.  

As shown in Figure 3.8A, DSP treatment of S. aureus SK8250 cells carrying 

pSK4829 (Table 2.2) resulted in the cross-linking of Par complexes corresponding to 

the estimated sizes of Par trimers, and, at elevated DSP levels, higher-order 

multimers, which could be cleaved upon treatment with the reducing agent, 

dithiothreitol (DTT) prior to electrophoresis (Section 2.9.2). A proportion of Par 

multimers was unable to migrate into the gel under non-reducing conditions and 

remained in the wells (Figure 3.8A). No Par proteins were detected in S. aureus 

SK8250 cells carrying pSK4833 (Table 2.2), which lacks the Par coding sequence 

(Figure 3.8A), suggesting that the detected bands corresponded specifically to Par 

and Par complexes. Note that the absence of the non-specific band in the cross-

linked samples may indicate cross-linking of this protein with itself or with Par 

protein. However, the relatively low amounts of the non-specific protein are unlikely 

to affect interpretation of the most intense Par protein bands. 

To minimise artefactual cross-linking of proteins, a concentration of 0.1 mM DSP 

was chosen for subsequent cross-linking experiments on S. aureus cells expressing 

mutant derivatives of Par in the presence of pSK1 par centromere DNA. Cross-

linking experiments were repeated at least three times, however, due to considerable 

amounts of background signals, it was difficult to detect Par proteins and their 

complexes amongst the non-specific staphylococcal protein bands. In Figure 3.8B, 

which shows the most presentable of the blots, it was possible to discern protein 

bands corresponding to the sizes of Par trimers and higher-order complexes from the 



 
 

Figure 3.8 in vivo cross-linking of Par proteins in S. aureus using DSP 

Western blots of cross-linked Par proteins in S. aureus. S. aureus SK8250 cells were 

treated with the indicated concentrations of DSP and lysates were electrophoresed on 

10% (w/v) SDS polyacrylamide gels under non-reducing conditions (Section 3.5.2). 

Par proteins were transferred to a PVDF membrane and detected by Western blotting 

(Section 2.5.9) using affinity-purified rabbit anti-Par antiserum (Section 2.6.1) 

preadsorbed with S. aureus SK8250 whole-cell lysates (Section 2.6.2). A. DSP 

titration of S. aureus SK8250 cells carrying pSK4829 (Par) or pSK4833 (No Par). 

Lanes marked DTT contain samples treated with 1 mM DSP and subsequently reduced 

with 100 mM DTT prior to electrophoresis (Section 2.9.2). B. S. aureus SK8250 cells 

carrying pSK4833 (No Par), pSK4829 (Par), pSK7764 (ParK15A), pSK7721 

(Par∆CC), pSK7726 (ParL132A), pSK9069 (Par∆CTD) or pSK9070 (ParW239A) 

incubated with (+) or without (–) 0.1 mM DSP. Lane M contains prestained protein 

markers, with marker sizes indicated in kDa on the left of each blot. Where 

appropriate, arrowheads indicate the positions of Par monomers (P1) and potential 

dimers (P2) and trimers (P3). For clarity, arrowheads are also positioned adjacent to 

protein bands corresponding to Par monomers in (A) and to potential Par multimers 

in (B). The positions of higher-order multimers are bracketed. In (A), the position of 

a non-specific protein band detected by Western blotting is indicated by an asterisk, 

and the bottom of the wells is indicated by a dashed line. 
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in vivo cross-linking of Par (pSK4829), ParK15A (pSK7764), ParL132A (pSK7726) 

and ParW239A (pSK9070) (Table 2.2). Potential dimers were also detected from 

DSP treatment of S. aureus cells producing ParK15A (Figure 3.8B). Signals from 

ParΔCC (pSK7721) and ParΔCTD (pSK9069) (Table 2.2) in S. aureus were too 

weak for detection by Western blotting (Figure 3.8B).  

In an attempt to improve the sensitivity of detection of Par multimers in vivo, DSP 

cross-linking was also performed in E. coli, since anti-Par antibodies were shown to 

have less cross-reactivity with E. coli whole cell lysates (for example, see Figure 

3.3). Since ParK15A is overproduced in vivo, and hence more easily detected by 

Western blotting (Figure 3.8B), pSK7764 (Table 2.2), which contains parK15A 

expressed from Ppar in the presence of centromere DNA, was used in preliminary 

DSP cross-linking experiments in E. coli. E. coli DH5α cells carrying pSK7764 were 

titrated with DSP cross-linker as described in Section 2.9.2, subsequent to which 

whole cell extracts (Section 2.5.8) were fractionated by SDS-PAGE under non-

reducing conditions (Section 2.5.7). Figure 3.9A shows that in the absence of cross-

linker, only ParK15A monomers were present, however, treatment with DSP 

resulted in the detection of protein bands corresponding to the approximate sizes of 

ParK15A dimers, trimers and tetramers, as well as higher-order complexes at 

elevated DSP concentrations. No Par protein bands were detected from E. coli cells 

carrying pSK4833 (∆par) (Figure 3.9A). 

A DSP concentration of 0.5 mM was used for further cross-linking experiments to 

determine the effect of CTD mutations on Par multimerisation in E. coli. Cross-

linking had been performed previously for E. coli cells independently producing 



 
 

Figure 3.9 in vivo cross-linking of Par proteins in E. coli using DSP 

Western blots of cross-linked Par proteins in E. coli. E. coli DH5α cells were treated 

with the indicated concentrations of DSP and lysates were electrophoresed on 10% 

(w/v) SDS polyacrylamide gels under non-reducing conditions (Section 3.5.2). Par 

proteins were transferred to a PVDF membrane and detected by Western blotting 

(Section 2.5.9) using rabbit anti-Par antiserum. A. DSP titration of E. coli DH5α cells 

carrying pSK7764 (ParK15A) or pSK4833 (No Par). B. E. coli DH5α cells carrying 

pSK4829 (Par), pSK9069 (Par∆CTD), pSK9059 (ParR241A), pSK9070 (ParW239A) 

or pSK4833 (No Par) incubated with (+) or without (–) 0.5 mM DSP. C. DSP titration 

of E. coli DH5α cells carrying pSK9069 (Par∆CTD). Lane M contains prestained 

protein markers, with marker sizes indicated in kDa on the left of each blot. Where 

appropriate, the positions of monomers (P1) and potential dimers (P2), trimers (P3) 

and tetramers (P4) are indicated by solid arrowheads for full-length Par proteins, and 

by open arrowheads for Par∆CTD proteins. For clarity, arrowheads are also positioned 

adjacent to protein bands corresponding to the sizes of Par multimers in (B). The 

positions of higher-order multimers are bracketed. The bottom of the wells is indicated 

by a dashed line. 
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ParK15A and ParΔCC (Supplementary Figure S2B) (Jensen, S. O. and Firth, N., 

unpublished data), and hence the cross-linking experiments described here were 

performed only for the CTD mutants. The Western blot in Figure 3.9B shows little 

variation between the banding profiles of DSP-treated E. coli cells producing Par 

(pSK4829), ParR241A (pSK9059) or ParW239A (pSK9070). When cross-linked 

with 0.5 mM DSP, a clear band of the expected size of a trimer was visible, as well 

as bands of higher molecular weight (Figure 3.9B). It is unclear from the Western 

blot whether dimers were present for these full-length Par proteins, however, in vivo 

cross-linking of ParΔCTD (pSK9069) revealed a 46 kDa band corresponding to the 

approximate size of ParΔCTD dimers, which appeared at a higher proportion than 

bands predicted to be ParΔCTD trimers or tetramers (Figure 3.9B). Probable 

Par∆CTD dimers were also readily detected at lower cross-linker concentrations 

when E. coli cells carrying pSK9069 (par∆CTD) were titrated with DSP (Figure 

3.9C). No bands were detected by Western blotting using anti-Par antibodies on an 

E. coli strain lacking Par (Figure 3.9B), which indicates that the bands detected from 

the in vivo cross-linking experiments corresponded specifically to Par and Par 

multimers, either homo-multimers or hetero-multimers of Par in complex with other 

E. coli proteins.  

3.6. Self-interaction of Par proteins 

Whilst the cross-linking studies described in Section 3.5 provided insights into Par 

multimerisation, further insight into the interactions between two individual Par 

proteins could be gained by performing yeast two-hybrid (Y2H) assays (Fields and 

Song 1989). In Y2H assays, yeast cells carry two plasmids: 1) a bait plasmid (for 
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example pGBKT7; Table 2.2) that encodes GAL4 DNA-binding domain (BD) fused 

to a protein of interest, and 2) a prey plasmid (for example pGADT7; Table 2.2) that 

encodes GAL4 activation domain (AD) fused to a potential protein interaction 

partner. GAL4 is a yeast transcription factor that binds to the regulatory and 

promoter regions upstream of GAL4-responsive genes. In Saccharomyces cerevisiae 

AH109 (Table 2.1), the yeast strain used in this study, the GAL4-responsive reporter 

genes are HIS3, ADE2, lacZ and MEL1, which encode enzymes involved in histidine 

biosynthesis, adenine biosynthesis, β-galactosidase and α-galactosidase, respectively. 

Since S. cerevisiae AH109 lacks the GAL4 transcription factor, activation of GAL4-

responsive reporter genes occurs when the GAL4 BD and AD regions are brought 

into close proximity by interaction between the plasmid-encoded bait and prey 

fusion proteins. Activation of these reporter genes is indicated by growth on minimal 

media (lacking histidine and/or adenine), or by detection of β-galactosidase and/or α-

galactosidase activity, either qualitatively or quantitatively. In the following studies, 

Y2H assays were performed to determine the contribution of the predicted Par 

domains to interactions between Par proteins, i.e. Par self-interaction. 

3.6.1. Construction of Par bait and prey fusion proteins for yeast two-hybrid 

assays 

To facilitate Y2H assays for examining Par self-interaction, Par bait and prey fusion 

proteins were constructed in pGBKT7 and pGADT7 vectors, respectively (Table 

2.2). pGBKT7 is an E. coli-S. cerevisiae shuttle vector that encodes GAL4 BD 

upstream of a multiple cloning site, such that a N-terminal GAL4 BD-bait fusion 

protein is generated when a protein-coding sequence is cloned in-frame. The vector 
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also incorporates a c-Myc epitope tag between GAL4 BD and the bait protein to 

facilitate immunodetection and purification. Similarly, pGADT7 encodes GAL4 AD, 

such that a N-terminal GAL4 AD-prey fusion protein is generated when a protein-

coding sequence is cloned in-frame. A SV40 nuclear localisation signal is fused to 

the N-terminus of GAL4 AD in order to target the prey fusion protein to the yeast 

nucleus. A haemagglutinin (HA) epitope tag is also incorporated between the GAL4 

AD and the prey protein. Constitutive expression of both BD- and AD- fusion 

proteins in yeast is driven by the PADH1 promoter.  

The Par coding region was amplified from pSK4829 template DNA (Table 2.2) by 

PCR (Section 2.4.4) using primers HC24 and HC25 (Table 2.6). PCR reactions were 

electrophoresed on an agarose gel (Section 2.4.3), after which the 0.7 kb band of 

interest was excised and purified (Section 2.4.7). A double digestion with EcoRI and 

BamHI (Section 2.4.6) was performed on the purified amplicon, as well as on the 

bait (pGBKT7) and prey (pGADT7) vectors (Table 2.2). Following purification of 

the restricted insert and vectors, the par insert was ligated to the dephosphorylated 

(Section 2.4.10) ends of each of the restricted bait and prey vectors. The par 

pGBKT7 and pGADT7 ligation reactions were then used to transform E. coli DH5α 

cells to kanamycin and ampicillin resistance (Section 2.3.2), respectively. 

Recombinant clones were identified by agarose gel electrophoresis (Section 2.4.3) of 

isolated plasmid DNA (Section 2.4.1) that had been restricted with EcoRI and 

BamHI (Section 2.4.6). Recombinant plasmids displaying the anticipated restriction 

profiles were sequenced (Section 2.4.14) using primers HC24 and HC25 (Table 2.6). 

Plasmids containing the correct coding sequence for full-length Par (ParFL) in 
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pGBKT7 and pGADT7 were named pSK9107 and pSK9110 (Table 2.2), encoding 

GAL4 BD-ParFL bait and GAL4 AD-ParFL prey protein fusions, respectively. 

Bait and prey fusion proteins for ParK15A, ParΔCC, ParL132A, ParΔCTD, 

ParR241A and ParW239A were generated as described above for the generation of 

pSK9107 and pSK9110 (Table 2.2), using pSK7764, pSK7721, pSK7726, pSK9069, 

pSK9059 and pSK9070 template DNA (Table 2.2), respectively. The resultant 

plasmids encoding mutant Par bait and prey fusion proteins are listed in Table 2.2. 

3.6.2. Yeast two-hybrid assay of Par self-interaction 

As a means to verify the results obtained from cross-linking studies of Par and Par 

mutants (Section 3.5), Y2H assays were performed, as described in Section 2.10.3, 

to determine the self-interaction abilities of Par proteins. S. cerevisiae AH109 cells 

(Table 2.1) were simultaneously transformed (Section 2.10.2) with pairs of bait and 

prey plasmids constructed in Section 3.6.1, such that yeast cells contained bait and 

prey fusion proteins encoding either ParFL, ParK15A, Par∆CC, ParL132A, 

Par∆CTD, ParR241A or ParW239A. Par bait and prey fusion proteins were also 

tested for self-activation of the reporter genes and interaction with GAL4 BD or 

GAL4 AD by performing Y2H assays with empty pGBKT7 bait and pGADT7 prey 

plasmids (Table 2.2). Co-transformants from low-stringency selection medium (SD/-

Leu/-Trp) (Table 2.3) were patched in triplicate onto low-, medium- (SD/-Leu/-Trp/-

His) and high- (SD/-Leu/-Trp/-His/-Ade/X-α-Gal) stringency selection media (Table 

2.3) in order to identify clones that activated the GAL4-responsive reporter genes, 

HIS3, ADE2 and MEL1. A positive indication of interaction between the GAL4 BD-

bait and GAL4 AD-prey fusion proteins was provided by growth on medium- and 
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high- stringency selection media, as well as detection of α-galactosidase activity, as 

indicated by the production of a blue pigment on media containing 5-bromo-4-

chloro-3-indolyl α-D-galactopyranoside (X-α-Gal). 

The results of the Y2H assays of Par self-interaction are shown in Figure 3.10A. The 

Y2H assays indicated that ParFL interacts with itself, as determined by growth on 

high-stringency selection medium (Figure 3.10A). Additionally, all Par mutants 

tested (ParK15A, ParΔCC, ParL132A, ParΔCTD, ParR241A and ParW239A) 

showed evidence of self-interaction, since growth was detected on high-stringency 

selection medium for all strains (Figure 3.10A). No growth was detected on high-

stringency selection medium when bait and prey fusion proteins were tested for 

interaction with empty Y2H vectors (Figure 3.10A). This demonstrated that 

activation of the reporter genes was not due to non-specific interaction with GAL4 

BD or GAL4 AD, nor due to self-activation of the reporter genes by the protein 

fusions. 

Notably, self-interaction of ParΔCTD and ParW239A appeared to result in higher α-

galactosidase activities, as suggested by the darker blue pigment produced on media 

containing X-α-Gal (Figure 3.10A). The relative strengths of the self-interactions 

were quantified using α-galactosidase assays as described in Section 2.10.5, and 

expressed as fold-change relative to the negative control strain, which encodes 

GAL4 BD-Lam and GAL4 AD-T (Table 2.2). Overall, the findings supported the 

results from the Y2H assays, and showed that ParΔCTD and ParW239A self-

interactions generated a 969±285-fold and 200±79-fold increase in α-galactosidase 

activities, respectively, compared to the negative control strain (Figure 3.10B). These 



 
 

Figure 3.10 Self-interaction of Par proteins 

A. Yeast two-hybrid (Y2H) assays of Par self-interaction. Y2H assays were performed 

between pairs of Par bait and prey fusion proteins according to the methods described 

in Section 3.6.2. Growth of S. cerevisiae AH109 cells containing bait and prey 

plasmids is shown on high-stringency selection medium (SD/-Leu/-Trp/-His/-Ade/X-

α-Gal) (Table 2.3). Growth indicates activation of the HIS3 and ADE2 reporter genes. 

Blue pigmentation indicates α-galactosidase activity from yeast cells. S. cerevisiae 

AH109 cells expressing the prey protein fusion, simian virus T antigen (GAL4 AD-

T), and the bait protein fusions, murine p53 (GAL4 BD-53) or human lamin protein 

(GAL4 BD-Lam), were included as positive and negative controls, respectively. 

B. α-galactosidase assays of Par self-interaction. α-galactosidase assays were 

performed between pairs of Par bait and prey fusion proteins according to the methods 

described in Section 3.6.2. For comparison of relative interaction strengths, α-

galactosidase activity was calculated (Section 2.10.5) and expressed as fold-change 

relative to the negative control strain containing GAL4 BD-Lam and GAL4 AD-T. 

Each data point represents the mean of at least three independent assays, each 

performed in triplicate. Error bars represent standard error of the mean. 
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interactions caused greater induction of α-galactosidase activity compared to ParFL 

self-interaction, which produced an 8±2-fold increase in α-galactosidase activity 

compared to the negative control strain (Figure 3.10B). ParR241A self-interaction 

resulted in a calculated α-galactosidase activity that was 69±48-fold higher than the 

negative control, while the self-interaction of all other Par mutants (ParK15A, 

ParΔCC and ParL132A) produced similar levels of α-galactosidase activity to ParFL 

self-interaction (Figure 3.10B).  

3.6.3. Contribution of Par domains to self-interaction 

The Y2H assays performed in Section 3.6.2 demonstrated that self-interaction occurs 

between Par proteins and that self-interactions are maintained between Par mutants. 

To further delineate Par self-interaction, the three putative Par domains were 

individually expressed and assessed for their ability to interact with each other. In 

this way, Y2H assays might provide insight into the contribution of the Par domains 

to intermolecular Par self-interaction, and/or interactions that take place 

intramolecularly, between Par domains of the same protein.  

3.6.3.1. Construction of yeast two-hybrid bait and prey fusion proteins 

containing individual Par domains 

The full-length Par coding sequence was divided into three parts, corresponding to 

each of the three putative Par domains: the N-terminal domain (NTD; aa 1–82), CC 

domain (aa 83–155) and CTD (aa 156–245). pSK4829 template DNA (Table 2.2) 

was PCR-amplified (Section 2.4.4) using the primer pairs HC24/HC56, HC57/HC58, 

and HC59/HC25 (Table 2.6) to generate protein-coding sequences corresponding to 

the Par NTD, CC domain, and CTD, respectively. The three protein-coding regions 
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were each individually cloned into the pGBKT7 bait and pGADT7 prey plasmids 

(Table 2.2), essentially as described in Section 3.6.1 for the construction of pSK9107 

and pSK9110 (Table 2.2). The resultant plasmids encoding Par NTD, CC domain 

and CTD bait and prey fusion proteins are listed in Table 2.2.  

3.6.3.2. Yeast two-hybrid assay of interactions between Par domains 

In order to localise inter- and/or intra-molecular Par self-interactions to specific Par 

domains, pairwise Y2H assays (Section 2.10.3) were performed between full-length 

Par fusion proteins and each of the Par domain fusions. As shown in Figure 3.11A, 

full-length Par (ParFL) bait protein interacted with ParFL prey protein (Figure 

3.11A, panel A), but did not show an interaction with the Par NTD, CC domain or 

CTD prey fusions (Figure 3.11A, panels B–D). ParFL, only when fused to GAL4-

AD as the prey protein, appeared to interact with ParCC and ParCTD bait proteins 

(Figure 3.11A, panels K and P). When the interactions were examined further, it was 

revealed that the ParCC bait protein interacted with the ParCC prey fusion (Figure 

3.11A, panel M), and that the ParCTD bait protein interacted with the ParCTD prey 

fusion (Figure 3.11A, panel S). Note that although the yeast strain containing both 

the ParCC bait and prey plasmids did not grow on high-stringency selection medium, 

there was evidence of α-galactosidase activity on the medium (Figure 3.11A, panel 

M), and this was interpreted as a positive interaction that resulted in activation of the 

MEL1 reporter gene. There were no indications of interactions involving ParNTD 

with any other fragment tested, nor were interactions observed between ParCC and 

ParCTD, in either pairing (Figure 3.11A). This was despite the growth of all yeast 

strains on low-stringency selection medium (Figure 3.11B), which confirmed the 



 
 

Figure 3.11 Interactions between Par domains 

A–B. Yeast two-hybrid (Y2H) assays of interactions between Par domains. Pairwise 

Y2H assays were performed between GAL4 BD (bait) and GAL4 AD (prey) protein 

fusions to full-length Par (ParFL, residues 1–245), ParNTD (residues 1–82), ParCC 

(residues 83–155) and ParCTD (residues 156–245), according to the methods 

described in Section 3.6.3.2. A. Growth of S. cerevisiae AH109 cells containing bait 

and prey plasmids on high-stringency selection medium (SD/-Leu/-Trp/-His/-Ade/X-

α-Gal) (Table 2.3). Growth indicates activation of the HIS3 and ADE2 reporter genes. 

Blue pigmentation indicates α-galactosidase activity from yeast cells. B. Growth of S. 

cerevisiae AH109 cells containing bait and prey plasmids on low-stringency selection 

medium (SD/-Leu/-Trp) (Table 2.3). Growth indicates the presence of both bait 

(pGBKT7) and prey (pGADT7) plasmids or plasmid derivatives. S. cerevisiae AH109 

cells expressing the prey protein fusion, simian virus T antigen (GAL4 AD-T), and 

the bait protein fusions, murine p53 (GAL4 BD-53) or human lamin protein (GAL4 

BD-Lam), were included as positive and negative controls, respectively. 

C–D. Immunodetection of Par bait and prey fusion proteins in S. cerevisiae. S. 

cerevisiae AH109 whole cell lysates (Section 2.5.8) were fractionated on 10% (w/v) 

SDS polyacrylamide gels (Section 2.5.6) and proteins were detected by Western 

blotting (Section 2.5.9). C. Western blot of GAL4-BD fusions to Par protein domains 

using affinity-purified anti-Par antibodies (Section 2.6.1). S. cerevisiae cells contained 

pSK9107 (GAL4 BD-ParFL), pSK9172 (GAL4 BD-ParNTD), pSK9173 (GAL4 BD-

ParCC) or pSK9174 (GAL4 BD-ParCTD). D. Western blot of GAL4-AD fusions to 

Par protein domains using anti-HA antibodies. S. cerevisiae cells contained pSK9110 

(GAL4 AD-ParFL), pSK9175 (GAL4 AD-ParNTD), pSK9176 (GAL4 AD-ParCC) or 

pSK9177 (GAL4 AD-ParCTD). Lane M contains prestained protein markers, with 



 
 

marker sizes indicated in kDa on the left of each blot. Positions of fusion proteins and 

their approximate measured sizes are indicated by black arrowheads. 

E. Relative interaction strengths between Par domain fusions. α-galactosidase assays 

were performed for S. cerevisiae AH109 cells containing interacting Par domains 

according to the protocol described in Section 2.10.5. S. cerevisiae AH109 cells 

expressing the prey protein fusion, simian virus T antigen (GAL4 AD-T), and the bait 

protein fusions, murine p53 (GAL4 BD-53) or human lamin protein (GAL4 BD-Lam), 

were included as positive and negative controls, respectively. For comparison of 

relative interaction strengths, α-galactosidase activity was calculated (Section 2.10.5) 

and expressed as fold-change relative to the negative control strain containing GAL4 

BD-Lam and GAL4 AD-T. Each data point represents the mean of at least three 

independent assays, each performed in triplicate. Error bars represent standard error 

of the mean.  
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presence of both bait and prey plasmids in each strain. No bait or prey fusion 

proteins showed self-activation of the reporter genes, or interactions with the empty 

Y2H plasmids (Figure 3.11A), which indicates that any interaction detected was the 

result of specific interactions between the bait and prey fusion proteins. 

To eliminate the possibility that a lack of growth on high-stringency selection 

medium was due to problems with protein production, a Western blot analysis 

(Section 2.5.9) was performed to detect the presence of Par bait and prey fusion 

proteins in yeast whole cell extracts, prepared as described in Section 2.5.9. Figure 

3.11C shows the immunodetection of all GAL4 BD fusions to Par, NTD, CC and 

CTD bait proteins using affinity-purified rabbit anti-Par antiserum (Section 2.6.1). 

GAL4 BD-ParNTD and GAL4 BD-ParCC proteins were not readily detected, and 

visualisation of these proteins required darkening of the imaged blot (Figure 3.11C). 

GAL4 BD-ParNTD and GAL4 BD-ParCC were subsequently detected at their 

expected sizes of 30.4 kDa and 29.5 kDa, respectively (Figure 3.11C). The apparent 

sizes of GAL4 BD-ParFL and GAL4 BD-ParCTD were approximately 65 kDa and 

48 kDa, which differed from their calculated sizes of 49.9 kDa and 31.3 kDa, 

respectively. This aberrant electrophoretic mobility is consistent with the aberrant 

mobility of Par proteins observed previously (for example, see Figures 3.2B and 3.3–

3.5), and is addressed further in Section 3.7.5. 

GAL4 AD fusions to Par and Par domains could not be detected using anti-Par 

antiserum (data not shown), however, all protein fusions could be detected using 

anti-HA antibodies against the HA tag (Figure 3.11D). The apparent sizes of GAL4 

AD-ParNTD and GAL4 AD-ParCC were approximately 30–32 kDa (Figure 3.11D), 
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which were similar to their expected sizes of 28.1 kDa and 27.3 kDa, respectively. In 

contrast, GAL4 AD-ParFL and GAL4 AD-ParCTD had apparent sizes of 70 kDa and 

45 kDa (Figure 3.11D), which were larger than their expected sizes of 47.4 kDa and 

29.1 kDa, respectively. The immunodetection of all Par, NTD, CC and CTD bait and 

prey fusion proteins confirmed their production in yeast, and hence any lack of 

growth on high-stringency selection media was not due to a complete absence of 

protein.  

To provide further insight into the contribution of Par domains to Par self-

interaction, α-galactosidase assays (Section 2.10.5) were conducted on yeast cells 

containing bait and prey fusions to Par domains that showed positive interactions, as 

indicated by growth and α-galactosidase activity on high-stringency selection 

medium (Figure 3.11A). The results from the assays, shown in Figure 3.11E, 

revealed that ParFL self-interaction had a relative α-galactosidase activity 5±3-fold 

greater than that of the negative control strain (containing GAL4 BD-Lam and GAL4 

AD-T). This was comparable to results obtained in Section 3.6.2, which showed an 

8±2-fold increase in α-galactosidase activity from ParFL self-interaction (Figure 

3.10B). A similar level of α-galactosidase activity was observed from the interaction 

between GAL4 BD-ParCTD and GAL4 AD-ParCTD (Figure 3.11E). The highest 

levels of α-galactosidase activities were observed from interactions involving the CC 

domain fusions, with a 39±14-fold increase in α-galactosidase activity from the 

interaction between GAL4 BD-ParCC and GAL4 AD-ParFL compared to the 

negative control, and a 31±13-fold increase in α-galactosidase activity from the 

interaction between GAL4 BD-ParCC and GAL4 AD-ParCC (Figure 3.11E). The 

interaction between GAL4 BD-ParCTD and GAL4 AD-ParFL also produced a 
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similar level of α-galactosidase activity (18±12-fold increase relative to negative 

control; Figure 3.11E). 

3.6.4. Interactions involving Par N-terminal domain residues 

3.6.4.1. Indications from preliminary Par structural data 

Preliminary structural data shared by a collaborator, Prof. Maria Schumacher (Duke 

University, USA), suggested that Par binds centromere DNA as a dimer, and that 

residues in the NTD of Par might be involved in interactions between pairs of DNA-

bound dimers (Schumacher, M. A. and Firth, N., unpublished data). Potential 

interactions were predicted to involve the K2, E10 and/or Y43 residues of the NTDs 

of neighbouring Par dimers. This structural data provided reason to further examine 

the functionality of the NTD. To this end, the functional significance of each of the 

three NTD residues identified from the structural data above was investigated by 

determining the effect of NTD mutations on Par function. 

3.6.4.2. Construction of pSK1 minireplicons expressing Par NTD mutants 

In order to determine their functional significance, site-directed mutagenesis (Section 

2.4.5) was performed on pSK4829 plasmid DNA (Table 2.2) using primer pairs 

HC60/HC61, HC62/HC63 and HC64/HC65 (Table 2.6) to generate individual 

alanine substitutions at residues K2, E10 and Y43 of the Par NTD, respectively. 

DNA from mutagenesis reactions were used to transform E. coli DH5α cells, and 

transformants were selected for ampicillin resistance (Section 2.3.2). Plasmid DNA 

was isolated (Section 2.4.1) from selected transformants to identify mutated 

plasmids. For the generation of E10A and Y43A mutations, the mutagenic primers 
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contained a silent NsiI restriction site that was used to facilitate the identification of 

successfully mutated plasmids by NsiI restriction digestion (Section 2.4.6) and 

agarose gel electrophoresis (Section 2.4.3). No silent restriction sites were suitable 

for incorporation into the primers for generating the K2A mutation, and hence 

screening for mutant plasmids by restriction digestion could not be performed. 

Plasmid DNA was sequenced (Section 2.4.14) using primers SJ37 and HC11 (Table 

2.6) to ensure that the correct mutations were introduced. Successfully mutated 

plasmids were designated pSK9169 (parK2A), pSK9170 (parE10A) and pSK9171 

(parY43A) (Table 2.2). An overview of the Par NTD mutants generated in this study 

is shown in Figure 3.1. 

3.6.4.3. Functionality of Par NTD mutants 

To determine the functionality of the Par NTD mutants generated in Section 3.6.4.2 

above, S. aureus SK8250 cells were electroporated (Section 2.3.4) with pSK9169, 

pSK9170 or pSK9171 plasmid DNA (Table 2.2), which encode ParK2A, ParE10A 

and ParY43A, respectively. To ensure that the Par NTD mutants were produced in 

vivo, whole cell lysates from exponentially growing S. aureus SK8250 cells (Section 

2.5.8) were subjected to SDS-PAGE (Section 2.5.6) and Western blot analysis 

(Section 2.5.9) using anti-Par anti-peptide antibodies (Section 2.6.3). The 

immunoblot shown in Figure 3.12A revealed the detection of protein bands of 

approximately 42 kDa for Par, ParE10A and ParY43A. However, a similar band was 

not detected for ParK2A (Figure 3.12A), which suggests that this protein was not 

produced at detectable levels in S. aureus. To verify these findings, a Western blot 

analysis (Section 2.5.9) was also performed on the cell lysates of E. coli DH5α cells 



 
 

Figure 3.12 Effect of Par NTD mutations on plasmid segregational stability 

A–B. Immunodetection of Par NTD mutants by Western blotting. A. Western blot of 

Par NTD mutants in S. aureus. Immunodetection was performed on S. aureus SK8250 

cell lysates (Section 2.5.8) containing pSK4829 (Par), pSK4833 (No Par), pSK9169 

(ParK2A), pSK9170 (ParE10A) or pSK9171 (ParY43A). Proteins were detected using 

anti-Par peptide antibodies (Section 2.6.3) as described in Section 2.5.9. B. Western 

blot of Par NTD mutants in E. coli. Immunodetection was performed on E. coli DH5α 

cell lysates (Section 2.5.8) containing pSK9170 (ParE10A), pSK9171 (ParY43A) or 

pSK9169 obtained from two independent clones (ParK2A #1 and ParK2A #2). 

Proteins were detected using rabbit anti-Par antiserum as described in Section 2.5.9. 

Lane M contains prestained protein markers, with marker sizes indicated in kDa on 

the left of each blot. Positions of relevant proteins and their approximate measured 

sizes are indicated by black arrowheads. 

C. Plasmid segregational stability assay of pSK1 minireplicons encoding Par NTD 

mutants. The retention of pSK1 minireplicons pSK9169 (parK2A) ( ), pSK9170 

(parE10A) ( ), pSK9171 (ParY43A) ( ), pSK4829 (par) ( ) and pSK4833 (∆par)    

( ) in S. aureus SK8250 cells was determined as described in Section 2.7. Five days 

of serial subculture represents approximately 75 generations. Data are normalised to 

100 % plasmid retention on Day 0. The averages of at least three independent assays 

are shown. Error bars represent standard error of the mean. 
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carrying either pSK9169 (parK2A), pSK9170 (parE10A) or pSK9171 (parY43A) 

(Table 2.2) (Section 2.5.8). Two E. coli clones that carried the parK2A mutation 

(pSK9169 #1 and pSK9169 #2), isolated from two independent cloning experiments, 

were included in the Western blot analysis to minimise the possibility that the 

absence of detection of ParK2A was specific to the plasmid generated from a single 

clone. The Western blot analysis on E. coli cell lysates, shown in Figure 3.12B, 

corroborated the findings from the Western blot analysis of S. aureus lysates, 

namely, that ParE10A and ParY43A were readily detected in E. coli, but ParK2A 

could not be detected from either of the two independent clones.  

To determine the functionality of the Par NTD mutants, S. aureus SK8250 cells 

carrying pSK9169 (parK2A), pSK9170 (parE10A) or pSK9171 (parY43A) (Table 

2.2) were subjected to plasmid segregational stability assays as described in Section 

2.7. The assays showed that after five days of subculture in the absence of antibiotic 

selection, the segregational stability of pSK9169 (parK2A) was similar to the 

stability of the par-deficient plasmid, pSK4833 (Figure 3.12C), which was expected, 

given the undetectable levels of ParK2A in S. aureus (Figure 3.12A). There was also 

little difference in plasmid stability between plasmids encoding Par, ParE10A or 

ParY43A (Figure 3.12C), which suggests that there was minimal, if any, effect of the 

E10A or Y43A mutations on plasmid stability, and hence on Par function.  

3.7. Discussion 

The objective of this chapter is to establish the functional significance and role of the 

three predicted domains of the pSK1 Par protein. Since the N-terminal HTH domain 

and central CC domains had previously been implicated in Par DNA-binding and 
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multimerisation activities, respectively (LeBard 2005, Figgett 2007, Lai 2008), many 

of the experiments described in this chapter were dedicated to establishing the 

significance of the predicted C-terminal disordered domain, for which a role had not 

previously been demonstrated. Table 3.1 summarises the properties of Par and Par 

CTD mutants as determined by experiments described in this chapter. 

3.7.1. Functional studies of the Par CTD 

Three separate mutations were generated in the CTD of Par, including a deletion of 

residues 171–245 (Par∆CTD), and two individual alanine substitutions at conserved 

residues of the CTD, R241A and W239A (Section 3.2.1). Plasmid segregational 

stability assays revealed that the CTD is required for Par function, since Par∆CTD 

was unable to maintain the segregational stability of a pSK1 minireplicon (Figure 

3.2A). Although this might have been expected from a gross deletion of part of the 

protein, the stability assays also highlighted the importance of residues R241 and 

W239 (Figure 3.2A). The partial loss of function imparted by the R241A mutation 

suggests that R241 contributes to plasmid stability, while the complete loss of 

function caused by the W239A mutation suggests that W239 is critical for Par 

function.  

It is unclear what role W239 might play in Par function. Tryptophan residues are 

generally associated with anchoring membrane proteins to the lipid bilayer (Yau et 

al. 1998, Hong et al. 2007), however, as yet, there is no data to suggest that Par is a 

membrane-bound protein. It is possible that, being an aromatic amino acid, W239 

might be involved in maintaining proper protein folding or interactions involving the 

CTD (Ridder et al. 2005, Moreira et al. 2013). Protein structural studies, such as X-



	
	

Table 3.1 Summary of properties of Par and Par CTD mutants 

Protein Plasmid 
stabilisationa DNA-bindingb Multimerisationd Self-interactione 

Par Yes Yes, cooperative Yes Yes 

Par∆CTD 
(aa 1–170)  No Yes, lower cooperativityc Yes, high proportion of potential dimers Yes 

ParW239A No Yes, lower cooperativityc Yes, multimeric profile same as Par Yes 

ParR241A Partial Yes, lower cooperativityc Yes, multimeric profile same as Par Yes 
aPlasmid stabilisation ability assessed by plasmid segregational stability assays (Section 3.2.2). 
bDNA-binding activity assessed by electrophoretic mobility shift assays (EMSAs) (Section 3.4).  
cLower cooperativity based on observation of intermediate protein-DNA species in EMSAs (Section 3.4). 
dMultimeristaion activity assessed by cross-linking assays using glutaraldehyde and DSP (Section 3.5). 
eSelf-interaction ability assessed by yeast two-hybrid (Y2H) assays (Section 3.6.2). 
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ray crystallography (Ilari and Savino 2008), circular dichroism (Pelton and McLean 

2000), and nuclear magnetic resonance (Montelione et al. 2000), could be used to 

compare the structures or folding of Par and ParW239A, which might reveal a role 

of W239 in Par function. 

Western blotting confirmed the production of all Par CTD mutants in S. aureus, 

however, only a faint signal was detected for Par∆CTD (Figure 3.2B). It is unclear 

whether this was the result of a reduction in the number of epitopes following the 

removal of 75 amino acids from the C-terminal end of Par, or the result of low 

Par∆CTD levels. Therefore, the possibility cannot be excluded that low protein 

levels may have led to the observed inability of Par∆CTD to stabilise a pSK1 

minireplicon in S. aureus. However, the similar band intensities between Par, 

ParR241A and ParW239A (Figure 3.2B) suggests that the Par CTD point mutants 

were present at similar levels to Par in S. aureus. The reduced functionality of 

ParR241A and ParW239A can, therefore, be directly attributed to the introduced 

mutations, which in turn implicates these residues in Par functionality. 

It is also worth noting that from the Western blot in Figure 3.2B, the electrophoretic 

migrations of Par, ParR241A and ParW239A reflected apparent protein sizes that 

were larger than expected. Full-length Par proteins migrated with an apparent size of 

45 kDa, which is approximately 50% larger than their calculated size of 29 kDa. This 

phenomenon has been observed previously with other Par mutants, including a CC 

deletion mutant (Par∆CC) (Supplementary Figures S2A– B) (Lai 2008, Jensen, S. O. 

and Firth, N., unpublished data). Since only Par∆CTD migrated close to its expected 

size of 20 kDa (Figure 3.2B), the aberrant migration was most likely a consequence 
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of the highly acidic nature of the CTD. Aberrant migration of proteins in SDS-PAGE 

gels is not unprecedented. Shirai et al. (2008) analysed the proteome of the yeast 

Schizosaccharomyces pombe and found that 40% of proteins did not migrate 

according to their calculated molecular weights when electrophoresed on SDS-

PAGE gels. Furthermore, they observed that acidic proteins, with isoelectric points 

less than 6, tended to have reduced mobility through gels, possibly due to repulsion 

with negatively charged SDS (Shirai et al. 2008). In general, the difference between 

apparent and calculated molecular weights increased as isoelectric points decreased 

(Shirai et al. 2008). The calculated isoelectric points of Par, Par∆CC and Par∆CTD 

are 4.97, 4.90 and 5.70, respectively. Based on these figures, the difference between 

apparent and calculated molecular weights would be greater for Par and Par∆CC 

than for Par∆CTD, which is consistent with observations in this study (for example, 

see Figures 3.2B and 3.3–3.5). 

Western blotting was performed on cell lysates from S. aureus SK8250 cells (Table 

2.1), a spa– strain that was used for the purpose of eliminating non-specific binding 

of immunoglobulins by the staphylococcal immunoglobulin-binding protein, Protein 

A (Forsgren and Sjöquist 1966). As expected, Protein A (42 kDa) was not detected, 

however, despite using affinity-purified and preadsorbed anti-Par antibodies for the 

immunodetection of Par proteins (Section 3.2.2), the Western blot showed non-

specific binding and cross-reactivity of the antibodies with staphylococcal proteins, 

including an approximately 50 kDa protein that appeared as an intense band on the 

blot (Figure 3.2B). This band most likely corresponds to a second staphylococcal 

immunoglobulin-binding protein, Sbi, which has also demonstrated non-specific 

binding to antibodies (Zhang et al. 1998).  
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3.7.2. Protein purification 

For in vitro analysis of Par DNA-binding and multimerisation activities, purification 

of overproduced Par proteins was performed under denaturing conditions (Section 

3.3.4). Although it would have been preferable to purify proteins under native, or 

non-denaturing, conditions to minimise protein denaturation, it was demonstrated 

that RGSH6-Par could not be purified under these conditions (Section 3.3.3 and 

LeBard 2005), possibly due to inaccessibility of the RGSH6 tag to the Ni2+-NTA 

purification resin. It is interesting to note that the ability of the Par CTD mutants to 

be purified under non-denaturing conditions (Section 3.3.3) suggests that the 

conformation of these mutants possibly differs from that of RGSH6-Par, in such a 

way that allows the RGSH6 tag to be exposed and accessible to the purification resin. 

Because RGSH6-Par could not be purified under non-denaturing conditions, and to 

maintain consistency between all protein preparations, denaturing conditions were 

employed for the purification of all Par protein variants. In this regard, it was 

assumed that buffer exchange facilitated the refolding of purified proteins from their 

denatured states (Section 3.3.4), since DNA-binding and multimerisation activities 

were detected for Par (Sections 3.4 and 3.5). Further detailed analysis of protein 

conformation and structure, using techniques such as circular dichroism (Pelton and 

McLean 2000), X-ray crystallography (Ilari and Savino 2008) or nuclear magnetic 

resonance (Montelione et al. 2000), would be needed to confirm these propositions.  

It should also be noted that the purified protein preparations contained a contaminant 

protein of approximately 30 kDa (Figures 3.5A–D), which was unlikely to have been 

the product of Par degradation, since it was not detected by Western blotting with 
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anti-Par antibodies (Figure 3.5E). Rather, the contaminant protein is possibly SlyD, a 

30 kDa histidine-rich protein that has been reported to co-purify with His-tagged 

proteins (Andersen et al. 2013). This contaminant did not appear to pose any 

problems for downstream experiments, as the protein preparations remained 

consistent, and proper experimental controls were in place.  

3.7.3. DNA-binding studies 

Due to the propensity of disordered domains to interact with proteins (Dunker et al. 

2002), it was reasoned that the CTD might be involved in interactions intra- or inter-

molecularly with the HTH or CC domains of Par, and in turn affect DNA-binding or 

multimerisation activities. It has been shown previously that Par binds specifically to 

seven 12-bp direct repeats of the centromere-like site encompassed by the 212 bp 

DNA probe used in the EMSAs described in Section 3.4 (LeBard 2005, Figgett 

2007, Lai 2008). The EMSAs on Par CTD mutants showed that RGSH6-ParΔCTD, 

RGSH6-ParW239A and RGSH6-ParR241A bound the DNA probe containing the 

centromere-like site as efficiently as RGSH6-Par (Section 3.4), suggesting that the 

CTD is not essential for DNA-binding. This is unsurprising, since Par DNA-binding 

activity is most likely restricted to the N-terminal HTH domain, as a K15A mutation 

completely abolished DNA-binding (Supplementary Figure S3A) (Lai 2008).  

However, it appears that the CTD contributes in some capacity to Par DNA-binding, 

since the binding of RGSH6-ParΔCTD resulted in the production of intermediate 

Par-DNA complexes that had not completely shifted the electrophoretic mobility of 

the DNA probe (Figure 3.6C). This might have been due in part to the smaller size of 

ParΔCTD-DNA complexes, which might have enabled their complete migration into 
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the gel. This was in contrast to the full-length Par-DNA complexes that remained in 

the wells of the polyacrylamide gel (Figures 3.6A–B and D–E). However, when the 

EMSAs were electrophoresed on polyacrylamide/agarose hybrid gels, which have 

larger pores in the gel matrix, the complete migration of protein-DNA complexes 

into the hybrid gels allowed for better separation of the complexes (Figures 3.6F–I). 

This led to the revelation of intermediate protein-DNA species that were observed 

upon binding of the DNA probe by RGSH6-Par∆CTD, RGSH6-ParW239A and 

RGSH6-ParR241A, but not by RGSH6-Par (Figures 3.6F–I). In order to better 

resolve the intermediate protein-DNA complexes, and to possibly allow for 

quantification of binding parameters, EMSAs could be performed using a finer 

concentration range within that observed for intermediate shifting. 

Note that poly(dI-dC) was not included in the EMSAs performed using the 

polyacrylamide/agarose hybrid gels, since SYBR-Safe staining of DNA would have 

likely stained both poly(dI-dC) and the DNA probe, obscuring interpretation of 

results. Therefore, it would not be accurate to derive quantitative data from these 

results, since non-specific DNA-binding cannot be excluded. The EMSAs on hybrid 

gels are only useful for qualitative analysis of the protein-DNA complexes formed in 

stepwise DNA-binding.  

Taken together, these results suggest that the CTD plays a non-essential role in 

DNA-binding; it would appear that the CTD is not directly involved in DNA-

binding, but rather, that the CTD might have a role in enhancing the cooperativity of 

DNA-binding, or enhancing the binding of Par to the second highest affinity site. 

Quantitative biophysical techniques such as surface plasmon resonance (Szabo et al. 
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1995, Nguyen et al. 2007), isothermal titration calorimetry (Liang 2008) or 

fluorescence polarisation assays (Lundblad et al. 1996) would be required to 

determine the effects of mutations to the CTD on DNA-binding kinetics and 

cooperativity. It might also be useful to determine the affinity of Par, and Par 

mutants, for individual binding sites in isolation, in order determine the effect of 

mutations to cooperativity, and to derive a possible DNA-binding order. Implications 

of the perceived reduction in the cooperativity of DNA-binding by Par CTD mutants 

are discussed further in Chapter 6.  

3.7.4. Multimerisation studies 

When studying the multimerisation activity of Par using cross-linking methods, it 

was important to use a cross-linker concentration that would minimise artefactual 

cross-linking. A glutaraldehyde concentration of 0.01% (v/v) was used for in vitro 

cross-linking of purified proteins (Section 3.5.1), and a DSP concentration of 0.1 

mM and 0.5 mM was used for in vivo cross-linking in S. aureus and E. coli, 

respectively (Section 3.5.2). These concentrations produced cross-linked multimers 

of a range of sizes, whereas higher cross-linker concentrations resulted in high 

molecular weight complexes, presumably corresponding to protein aggregates 

formed as a result of excessive cross-linking.  

From both in vitro and in vivo cross-linking experiments, conducted in Sections 3.5.1 

and 3.5.2, respectively, ParR241A and ParW239A produced similar multimeric 

profiles to that of cross-linked Par, whereby the proportion of dimers and trimers 

appeared equal in in vitro assays (Figure 3.7B), and trimers were prominent in in 

vivo assays (Figure 3.9B). However, cross-linking of ParΔCTD produced a higher 
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proportion of dimers compared to trimers or higher-order multimers in both in vitro 

and in vivo cross-linking assays (Figures 3.7B and 3.9B). These dimers were present 

even at lower cross-linker concentrations (Figures 3.7C and 3.9C), which suggests 

that they were unlikely to be the product of artefactual cross-linking. Although it 

would have been preferable to gain insights into Par∆CTD multimerisation in its 

native S. aureus host, Western blots using affinity-purified (Section 2.6.1) and 

preadsorbed (Section 2.6.2) anti-Par antiserum could not readily detect Par∆CTD in 

S. aureus cell lysates (Figure 3.8B), which, combined with non-specific background 

signals from anti-Par antibodies, was problematic for meaningful interpretation of 

results. Nevertheless, considering the above multimerisation results alone, it would 

appear that the R241A and W239A mutations did not have a visible effect on Par 

multimerisation, whereas a gross deletion of the CTD favoured dimer formation and 

reduced the formation of trimers and higher-order complexes. The dimers formed by 

ParΔCTD were likely mediated by the CC domain, since previous cross-linking 

studies showed that a ParΔCC mutant, which lacks the CC domain from residues 83–

155, was unable to multimerise to any significant extent and remained largely as 

monomers in the presence of cross-linker (Supplementary Figures S2A–B) (Lai 

2008, Jensen, S. O. and Firth, N., unpublished data). This, therefore, implicated the 

CC domain, and not the CTD, in Par multimerisation. However, the multimerisation 

behaviour of ParΔCTD demonstrated in cross-linking studies (Section 3.5) suggests 

that, although the CTD might not contribute directly to Par dimerisation, it might 

contribute to the formation or stabilisation of trimers and higher-order complexes, 

perhaps by mediating interactions between existing Par multimers. This supports the 

EMSA results, which suggest that CTD mutations affect the ability of Par to bind 
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cooperatively to DNA (Section 3.4). The impaired ability of Par∆CTD to form 

higher-order complexes might, therefore, explain the presence of intermediate 

protein-DNA species that were observed in the EMSAs (Figures 3.6C and G). The 

potential role of the Par CTD in DNA-binding and multimerisation is explored 

further in Chapter 6. 

Interestingly, in contrast to the in vitro cross-linking results, cross-linked dimers 

were not readily detected for Par, ParR41A or ParW239A in S. aureus nor in E. coli, 

but rather, distinct bands of approximately 130 kDa, the predicted size of trimers, 

were observed (Figures 3.8B and 3.9B). It is unclear why a discrepancy in the 

presence of dimers was observed between in vitro and in vivo cross-linking results. 

The electrophoresis of lysates from DSP-treated cells under non-reducing conditions 

may have caused some proteins to retain their quaternary structures, especially those 

involving disulphide bonds, and this may have resulted in aberrant migration and 

miscalculation of protein size. However, it seems unlikely that the 130 kDa band 

represents Par dimers that have migrated aberrantly under non-reducing conditions, 

because Par does not contain any cysteine residues that might participate in 

disulphide bonding. Furthermore, cross-linking studies performed on the Par DNA-

binding mutant, ParK15A, in E. coli and S. aureus, revealed protein bands of 

approximately 90 kDa and 130 kDa, corresponding to the sizes of dimers and 

trimers, respectively (Figures 3.8B and 3.9A). Note that the high levels of ParK15A 

detected in S. aureus is presumably due to its inability to bind centromere DNA and 

thus mediate autoregulation (LeBard 2005, Lai 2008). The absence of the 90 kDa 

band from cells producing Par, ParR241A or ParW239A suggests that these protein 

variants do not form dimers (or the 90 kDa protein complex) in vivo, and that the 130 
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kDa band most likely corresponds to Par trimers, or to protein complexes involving 

Par and other S. aureus or E. coli proteins. However, the complete absence of Par 

dimers in vivo seems unlikely, and the Western blotting results shown in Figures 

3.8B and 3.9B possibly reflects the cross-linking of closely-interacting Par proteins 

that might have been bound as multimers to the centromere-like site present on the 

plasmid DNA. The dimers detected for ParK15A might, therefore, have been the 

result of Par dimerisation combined with an inability to bind DNA. This has 

implications for the mechanism of Par-DNA binding, which is addressed in Chapter 

6. A more accurate gauge on Par multimerisation states might be gained through size 

exclusion chromatography (Wen et al. 1996), which would provide better resolution 

of high molecular weight multimers, whilst also reducing the ambiguities associated 

with calculating multimeric states based on electrophoretic migration. 

3.7.5. Self-interaction studies 

The multimerisation activity of Par revealed in the cross-linking assays (Section 3.5) 

is supported by Y2H assays, which provided evidence of self-interaction between 

Par bait and prey fusion proteins (Figures 3.10A–B). Self-interaction was also 

detected for all Par mutants, including ParΔCC (Figures 3.10A–B), which 

contradicts previous cross-linking results that showed little or no multimerisation of 

Par CC mutants (Supplementary Figures S2A–B) (Lai 2008, Jensen, S. O. and Firth, 

N., unpublished data). It should be noted that the interpretation of a positive 

interaction from Y2H assays only requires interaction between two proteins (the bait 

and prey fusion proteins), and does not directly provide evidence of multimerisation.  
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Although both in vitro and in vivo cross-linking studies indicate that the CTD has a 

role in Par multimerisation, particularly in the formation of higher-order multimers, 

the studies revealed similar multimerisation patterns between Par, ParW239A and 

ParR241A (Figures 3.7B and 3.9B), which suggests that these mutations did not 

significantly affect Par multimerisation. However, the cross-linking assays are 

qualitative rather than quantitative assays, and so the possibility cannot be excluded 

that the point mutations in the CTD might result in changes to multimerisation 

activity at the molecular level. Indeed, the α-galactosidase assays performed in 

Section 3.6.2 revealed that the highest levels of α-galactosidase activity were 

generated by the self-interaction of Par CTD mutants – Par∆CTD, ParR241A and 

ParW239A (Figure 3.10B). The increased α-galactosidase activities suggest that the 

absence of, or alterations to, the CTD promotes stronger self-interaction, presumably 

due to an increase in the accessibility of multimerisation domains. Taking into 

account previous findings that identified the CC domain as the domain responsible 

for Par multimerisation (Figgett 2007, Lai 2008), this would lead one to speculate 

that the CTD might have a role in modulating interactions between Par proteins, 

possibly by obstructing interactions between CC domains. In this regard, the CTD 

might be important for preventing strong, inappropriate Par self-interactions that 

could otherwise be detrimental to Par function. It should also be noted, however, that 

differences in α-galactosidase activities might also be due to differences in the 

expression levels of bait and prey proteins, or the effect of fusion proteins on GAL4-

dependent activation of the MEL1 reporter gene. Therefore, α-galactosidase assays in 

yeast might not provide an absolute indication of protein-protein interaction strength. 

Techniques such as surface plasmon resonance (Szabo et al. 1995), isothermal 
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titration calorimetry (Liang 2008) or fluorescence polarisation (Lundblad et al. 

1996), which can be used to quantitatively measure protein interaction kinetics, 

might be able to substantiate the results from α-galactosidase assays. 

A potential role for the CTD in modulating Par self-interactions gave reason for 

further investigations into the interactions between individual Par domains, which 

might provide insights into the intermolecular interactions between Par domains in 

Par multimers, or into the intramolecular contacts made between Par domains within 

a single Par protein. Despite interaction between GAL4 BD-ParFL and GAL4 AD-

ParFL, no apparent interactions were detected between GAL4 BD-ParFL and the Par 

domain prey fusions (Figure 3.11A). These conflicting results highlight the caution 

that must be taken with the interpretation of negative Y2H results, as negative results 

are not necessarily indicative of the absence of protein interaction. The activation of 

reporter genes in the Y2H assay relies on interaction between bait and prey proteins 

that are fused to GAL4 BD and GAL4 AD proteins, respectively, the fusion of which 

may interfere with, or hinder, interactions that might otherwise take place. 

Furthermore, identification of positive interactions is dependent on activation of the 

HIS3, ADE2, lacZ and/or MEL1 reporter genes in S. cerevisiae AH109. Activation of 

transcription is driven by a functional GAL4 transcription factor, and thus the 

transcription factor assembled by the interacting bait and prey fusion proteins must 

be able to recognise and bind to the promoter region of reporter genes in order to 

activate their transcription. Another consideration in the interpretation of negative 

Y2H results is the use of a heterologous, eukaryotic host to produce bacterial S. 

aureus proteins. Yeast cells might introduce protein modifications or changes to 

protein folding which differ from the natural host, and hence a bacterial two-hybrid 
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system (Karimova et al. 1998) might be more suitable for performing interaction 

studies with Par proteins. 

With the above considerations in mind, the Y2H assays did, however, show that 

GAL4 AD-ParFL interacted with both GAL4 BD-ParCC and GAL4 BD-ParCTD 

(Figure 3.11A, panels K and P), thus implicating the CC domain and CTD in Par 

interactions. Further assays to delimit the interacting domains suggested that the CC 

domain interacts only with itself, and that the CTD interacts only with itself (Figure 

3.11A, panels M and S). Notably, strains expressing ParCTD and ParCC fusions 

consistently showed weaker growth on low-stringency selection medium (results 

from four biological replicates) (Figure 3.11B, panels M, R and S), possibly as a 

result of impaired cell growth due to the production of these two specific fusion 

proteins.  Furthermore, yeast cells containing Par CC bait and prey fusion proteins 

did not show growth on high-stringency selection media, but did show α-

galactosidase activity on the media and in α-galactosidase assays (Figures 3.11A and 

3.11E). The lack of growth was possibly due to a failure of the interacting protein 

pair to activate the HIS3 or ADE2 reporter genes, with MEL1 activation and α-

galactosidase activity driven by cells that were initially patched but failed to 

multiply. Four biological replicates were patched, and this phenomenon was 

observed in all replicates. The conformation of the interacting fusion proteins and the 

assembled GAL4 transcription factor, combined with differences in the upstream 

activation sequence and promoters of the reporter genes, may have led to differences 

in the outcomes of reporter gene activation. Nevertheless, the positive interaction 

between CC domains corroborates previous cross-linking results, which implicated 

the CC domain as the multimerisation domain (Lai 2008). Note that α-galactosidase 
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activities resulting from interactions between CC domains alone were higher than 

those from interactions between full-length Par (31±13-fold and 6±3-fold increase in 

α-galactosidase activity, respectively, compared to GAL4 BD-Lam and GAL4 AD-T 

interaction; Figure 3.11E), which again suggests that the CTD might interfere with 

interactions between CC domains.  

The α-galactosidase activity generated from interactions between Par CTDs alone 

was not substantially higher than the activity from the interaction between full-length 

Par proteins, presumably due to the absence of the CC domains, which have been 

demonstrated to promote high levels of α-galactosidase activity (Figure 3.11E). The 

positive interaction between Par CTD bait and prey fusion proteins is consistent with 

data obtained from DNA-binding and cross-linking experiments (Sections 3.4 and 

3.5), which suggest that the CTDs of Par might interact with each other to stabilise 

Par complexes (for example, multimers) to facilitate DNA-binding and the formation 

of higher-order multimers.  

It was anticipated that, given the possible role of the CTD in modulating Par self-

interaction (Section 3.6.2 and 3.6.3.2), the CTD might interact with either the NTD 

or CC domain to fulfil this function. However, Y2H assays did not show a direct 

interaction between the CTD and either the NTD or CC domains (Figure 3.11A). 

This may have been due to weak or transient interactions between the CTD and other 

Par domains that were not detected by the Y2H assays, or problems with protein 

conformation or reporter gene activation as described above. It is also possible that 

the Par CTD modulates Par self-interaction by steric means, rather than by direct 
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interactions with Par domains. Mechanistic insights gained from Y2H experiments 

between Par domains will be revisited in Chapter 6. 

For positive Y2H interactions between Par domains, it was assumed that the yeast 

cells produced both bait and prey fusion proteins, since all fusion proteins did not 

exhibit self-activation of the reporter genes or non-specific interaction with the 

GAL4 BD or GAL4 AD proteins (Figure 3.11A). However, for negative Y2H 

results, it was important to verify the production of both bait and prey fusion proteins 

in yeast to ensure that both proteins were available for potential interactions. All bait 

fusions to Par domains could be detected by Western blotting using anti-Par 

antibodies, however, GAL4 BD-ParNTD and GAL4 BD-ParCC were not as readily 

detected as GAL4 BD-ParFL and GAL4 BD-ParCTD (Figure 3.11C). This may have 

been due to lower protein levels or fewer epitopes, which would result in less 

efficient immunodetection. For reasons unknown, GAL4 AD fusions to the Par 

domains could not be detected using anti-Par antibodies, but were detected using 

anti-HA antibodies against the HA epitope (Figure 3.11D). The apparent sizes of 

ParFL and ParCTD bait and prey fusion proteins, as determined by Western blotting 

(Figures 3.11C–D), were different to their expected sizes (Section 3.6.3.2). This 

aberrant migration was consistent with previous gel electrophoresis observations 

(Sections 3.2.2, 3.3.2 – 3.3.4 and 3.5), and is most likely a result of the acidic nature 

of the CTD, since migration of ParNTD and ParCC fusion proteins, both of which 

lack the CTD, was consistent with their expected sizes (Section 3.6.3.2). The 

immunodetection of all GAL4 BD and GAL4 AD fusions to Par and the three Par 

domains, therefore, confirmed their production in yeast and suggests that any lack of 
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growth on high-stringency selection media was not due to the absence of either the 

bait or prey protein. 

3.7.6. Functional studies of the Par NTD 

Preliminary structural data obtained by a collaborator, Prof. Maria Schumacher 

(Duke University, USA), identified three residues in the Par NTD (K2, E10 and 

Y43) that might be involved in interactions between pairs of Par dimers when bound 

to pSK1 par centromere DNA (Section 3.6.4.1). Although the Y2H assays 

performed in Section 3.6.3.2 did not indicate any interaction between Par NTDs 

(Figure 3.11A), the assays did not contain the pSK1 par centromere-like site to 

which Par binds. For this reason, potential interactions between Par NTDs, that 

might be dependent on Par DNA-binding, would have been overlooked. Therefore, 

to explore the involvement of K2, E10 and Y43 in interactions of the NTD, Par 

mutants were generated using alanine substitution (Section 3.6.4.2). However, 

Western blotting failed to detect the presence of ParK2A in S. aureus and from two 

independent clones in E. coli (Figures 3.12A–B). Since the protein-coding sequence 

and promoter region of parK2A from both clones were correct, it is possible that the 

substitution of a lysine codon (AAA) at the second codon for an alanine codon 

(GCA) may have altered the translational efficiency of the parK2A transcript. 

Indeed, several studies have reported on the importance of the second codon in 

translation initiation efficiency and gene expression levels (Looman et al. 1987, 

Stenström et al. 2001, Tang et al. 2010). It is also possible that substituting K2 with 

an alanine residue resulted in targeting of the protein for degradation, based on the 

N-end rule (Dougan et al. 2012). Therefore, substitution of the K2 residue of Par 
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may have resulted in degradation or poor protein expression, which was reflected in 

undetectable protein levels in Western blots (Figures 3.12A–B). Perhaps substituting 

the K2 residue with another residue, for example, glutamic acid, might produce a 

more stable protein. 

Of the two NTD mutants that were expressed, ParE10A and ParY43A, neither 

showed any drastic effect on plasmid segregational stability (Figure 3.12C). It is 

possible, therefore, that these residues are not functionally significant, and that the 

contacts inferred from the structural data were crystal contacts and not true 

interaction between residues. However, it is also possible that the effect of a single 

ParE10A or ParY43A mutation, in isolation, might have only had a subtle effect on 

plasmid stability. Hence, it might be useful to generate a ParE10A/Y43A double 

mutant to determine whether a more severe effect might be observed. 
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CHAPTER 4 

Interactions between pSK1 Par and S. aureus host 

factors 

4.1. Introduction 

Par was shown to exhibit both DNA-binding and multimerisation activities in vitro 

(Sections 3.4 and 3.5), however, details of the mechanism of plasmid segregation 

remain elusive. Investigating the mechanism of plasmid maintenance by pSK1 par is 

of particular significance, since the pSK1 par system is unique, largely because it 

encodes a single protein, as opposed to a separate DNA-binding protein and NTPase 

that are encoded by most characterised plasmid partitioning systems (Gerdes et al. 

2010, Schumacher 2012, Baxter and Funnell 2014). It is, therefore, conceivable that 

Par might act in concert with one or more host factors to facilitate efficient plasmid 

segregation. In this regard, it is envisaged that Par might serve as a bridging protein 

between plasmid DNA and a host element, such as a host-encoded protein or 

nucleoid DNA. This chapter, therefore, describes experiments that were performed 

to determine whether host-encoded proteins or nucleoid DNA might interact with 

pSK1 Par to contribute to Par function. 

4.2. Plasmid stabilisation by a distant pSK1 Par homologue 

Because the pSK1 par locus encodes only a single protein, this partitioning system 

represents a potentially novel mechanism of plasmid stability. However, many of the 
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studies performed to date on the effect of this system on plasmid maintenance have 

focussed on the par system from pSK1. Therefore, to determine whether plasmid 

segregational stability is a function of Par homologues, or whether this function is 

unique to pSK1 Par, the contribution of a distant Par homologue to plasmid stability 

was assessed. 

A BLASTP search (Altschul et al. 1990) using the Par amino acid sequence 

(GenBank Accession Number AAF63251) identified a distant Par homologue that is 

encoded by the S. epidermidis multiresistance plasmid, pSERP (GenBank Accession 

Number NC_006663). This protein, annotated as replication-associated protein 

(GenBank Accession Number WP_011251343), and hereafter referred to as Par-

pSERP, showed 40% sequence identity to Par, as shown by the Clustal Omega 

alignment (Sievers et al. 2011) of pSK1 Par with Par-pSERP (Figure 4.1A). For 

comparison, the sequence of a Par homologue identified by Firth et al. (2000), 

RepB287 (GenBank Accession Number CAA53279), encoded on the 

Tetragenococcus halophilus plasmid pUCL287, is included in the sequence 

alignment. Similar to pSK1 Par, RepB287 has also been implicated in plasmid 

maintenance (Benachour et al. 1997), however, the sequence alignment in Figure 

4.1A shows that pSK1 Par is more closely related to Par-pSERP than to RepB287.  

The genes encoding pSK1 Par and Par-pSERP also share the same genetic 

organisation relative to the replication initiation gene, rep, of their cognate plasmids 

(Figure 4.1B). Namely, the par-like gene is located upstream of, and transcribed 

divergently from, the associated rep gene (Figure 4.1B). In contrast, repB287 is 

located downstream of, overlapping with, and transcribed in the same direction as, 



 
 

Figure 4.1 Sequence analysis of pSK1 Par homologues 

A. Multiple sequence alignment of selected pSK1 Par homologues. Amino acid 

sequences of pSK1 Par (GenBank Accession Number AAF63251) and homologues 

encoded by pSERP (GenBank Accession Number WP_011251343) and pUCL287 

(GenBank Accession Number CAA53279) were aligned using Clustal Omega as 

described in Section 4.2. Names of the plasmids on which Par-like proteins are 

encoded are shown on the left. Amino acid positions for individual sequences are 

shown on the right; positions for the alignment are shown above the alignment. Amino 

acid residues common to all three aligned sequences are shaded in orange and denoted 

in uppercase below the alignment. Amino acid residues common to two of the three 

aligned sequences are shaded in yellow and denoted in lower case below the 

alignment. Insertions and deletions are indicated by dashes.  

B. Illustrative representation of the genetic organisation of pSK1 par-like genes (blue 

arrows) relative to the respective replication initiation genes (yellow arrows) on pSK1 

(GenBank Accession Number GU565967), pSERP (GenBank Accession Number 

NC_006663) and pUCL287 (GenBank Accession Number X75607). Names of the 

plasmids are shown on the left. The directionality of the arrows indicates the direction 

of transcription. 

C. Intergenic sequence between the genes encoding Par-pSERP and Rep on pSERP. 

Nucleotides in the pSERP plasmid sequence are numbered on the left. The sequences 

of eight potential repeats are underlined and numbered below the sequence. Coding 

sequences for the start of Par-pSERP and Rep are shown in blue and yellow, 

respectively. Amino acids at the start of replication-associated protein and Rep are 

shown above the nucleotide sequence. 
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the repA287 replication gene on pUCL287 (Figure 4.1B) (Benachour et al. 1997). 

Furthermore, the region between pSERP rep and par-pSERP contains a number of 

almost identical 8-bp sequences with the consensus sequence ‘TTTATAAA’ (Figure 

4.1C), which might represent a potential centromere-like site. With these factors in 

consideration, Par-pSERP could potentially be functionally homologous to pSK1 Par 

and be involved in plasmid maintenance. 

4.2.1. Construction of pSERP minireplicons to assess the functionality of a 

distant Par homologue 

To determine whether Par-pSERP is involved in plasmid segregational stability, the 

ability of Par-pSERP to enhance the segregational stability of a pSERP minireplicon 

was assessed. For the construction of a pSERP minireplicon, a 1.4 kb DNA fragment 

encompassing the rep coding region and upstream intergenic region was PCR-

amplified (Section 2.4.4) from pSERP plasmid DNA (Table 2.2) using primers 

HC35 and HC37 (Table 2.6). The resulting amplicon was purified (Section 2.4.7) 

and then restriction digested with BamHI and HindIII (Section 2.4.6). The pUC18 

plasmid derivative, pWE180 (Table 2.2), which carries the ermC erythromycin 

resistance gene for antibiotic selection in staphylococci, was concurrently restricted 

with BamHI and HindIII, after which the digestion reaction was electrophoresed on 

an agarose gel (Section 2.4.3). The 4.7 kb restricted vector DNA band was gel-

purified (Section 2.4.7) and then dephosphorylated using Antarctic phosphatase 

(Section 2.4.10). The restricted and dephosphorylated vector DNA was ligated 

(Section 2.4.11) to the restricted insert DNA containing pSERP rep. The ligation 

reaction was used to transform competent E. coli DH5α cells (Section 2.3.2), and 
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plasmid DNA was isolated from selected ampicillin-resistant transformants (Section 

2.4.1) to screen for recombinant plasmids. Isolated plasmid DNA was restricted with 

BamHI and HindIII (Section 2.4.6), and restriction digestion reactions were 

electrophoresed on an agarose gel (Section 2.4.3). Restricted plasmids displaying the 

restriction profile of recombinant plasmid DNA were sequenced (Section 2.4.14) 

using primers HC35 and HC37 (Table 2.6). The E. coli–Staphylococcus shuttle 

plasmid containing the correct sequence of pSERP rep was named pSK9137 (Table 

2.2). 

A pSERP minireplicon encoding Par-pSERP was constructed essentially as 

described above, using primers HC35 and HC36 (Table 2.6) to PCR-amplify 

(Section 2.4.4) a 2.3 kb DNA fragment encompassing pSERP rep and par-pSERP. 

Recombinant plasmids were sequenced (Section 2.4.14) using primers HC35, HC36 

and HC37, and the pSERP minireplicon encoding Par-pSERP was named pSK9136 

(Table 2.2). 

4.2.2. Effect of a distant Par homologue on plasmid segregational stability 

In order to determine whether a distant pSK1 Par homologue identified on the S. 

epidermidis multiresistance plasmid, pSERP, is involved in plasmid maintenance, 

plasmid segregational stability assays were performed on pSERP minireplicons in 

the presence and absence of Par-pSERP. S. aureus RN4220 cells were electroporated 

(Section 2.3.4) with either pSK9137 (par-pSERP) or pSK9136 (par-pSERP) (Table 

2.2) and subjected to plasmid segregational stability assays as described in Section 

2.7. The graph in Figure 4.2 shows that in the absence of Par-pSERP, pSK9137 was 

rapidly lost from the population, with only a small proportion of the population 



 
 

Figure 4.2 Effect of a distant Par homologue on plasmid segregational stability 

Plasmid segregational stability assay of pSERP minireplicons in the presence and 

absence of par-pSERP. The retention of the pSERP minireplicons pSK9137 (Dpar-

pSERP) ( ) and pSK9136 (par-pSERP) ( ) in S. aureus RN4220 cells was determined 

as described in Section 2.7. Five days of serial subculture represents approximately 75 

generations. Data are normalised to 100% plasmid retention on Day 0. The averages 

of three independent assays are shown. Error bars represent standard error of the mean. 
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(<1%) retaining the plasmid after two days of subculture. In comparison, when Par-

pSERP was present, approximately 25±4% of the population retained the pSERP 

minireplicon on Day 2 of the assay, and 5±1% of the population retained the plasmid 

at the end of the assay (Figure 4.2). The stability assays, therefore, showed that Par-

pSERP enhanced the segregational stability of pSERP minireplicons in S. aureus, 

which suggests that Par-like proteins may have plasmid maintenance functions. 

4.3. Functionality of pSK1 par in a heterologous host 

The involvement of Par-pSERP in the segregational stability of a pSERP 

minireplicon in S. aureus (Section 4.2.2) gives rise to the possibility that Par and 

other Par-like proteins that have been identified in different bacterial species (Firth et 

al. 2000), might function in plasmid maintenance. However, given that a single 

plasmid-encoded Par-like protein appears to be sufficient for enhanced plasmid 

segregational stability (Section 4.2.2, Benachour et al. 1997, Simpson et al. 2003), 

and that most characterised plasmid partitioning systems encode a DNA-binding 

protein and a NTPase (Gerdes et al. 2010, Schumacher 2012, Baxter and Funnell 

2014), the involvement of host-specific factors in pSK1 par functionality cannot be 

excluded. Therefore, to investigate whether pSK1 par relies on S. aureus host factors 

for the mediation of plasmid segregational stability, the effect of par on plasmid 

maintenance was assessed in a heterologous host, Enterococcus faecalis.  

Plasmid segregational stability assays were performed in E. faecalis using the E. 

coli–E. faecalis shuttle plasmid pAM401 (Table 2.2), which carries the Gram-

positive broad host-range replicon of pIP501 (Thompson and Collins 2003). pIP501 

minireplicons carrying either the pSK1 par gene (pSK5378) or only the pSK1 par 
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centromere-like site (pSK6110) (Table 2.2) were constructed from pAM401 by 

Simpson et al. (2003). The study showed that pSK1 par was able to stabilise the 

pIP501 minireplicon, pSK5378, in S. aureus (Simpson et al. 2003). For this reason, 

pSK5378 was used for plasmid segregational stability assays in E. faecalis to 

determine whether pSK1 par enhances plasmid segregational stability in the absence 

of S. aureus-specific factors.  

E. faecalis JH2-2 (Table 2.1) cells were separately electroporated with pAM401 

(empty vector), pSK5378 (par) or pSK6110 (∆par) (Table 2.2) (Section 2.3.6), and 

plasmid segregational stability assays were performed as described in Section 2.7. 

The stability assays revealed that continuous subculture in the absence of antibiotic 

selection resulted in a decline in the proportion of the population retaining the par-

deficient plasmids pAM401 and pSK6110, with <59±21% of the population 

retaining pSK6110 at the completion of the assay (Figure 4.3). However, in the 

presence of pSK1 par, pSK5378 was stably retained over nine days by close to 

100% of the population, even in the absence of antibiotic selection (Figure 4.3). 

These results, therefore, demonstrate functionality of pSK1 par in the heterologous 

E. faecalis host, which suggests that either pSK1 par may be functional as a discrete 

unit, independent of S. aureus host factors, or that Par is able to utilise E. faecalis 

host factors to enhance plasmid segregation (see Section 4.6).  



 
 

Figure 4.3 Effect of pSK1 par on plasmid segregational stability in Enterococcus 

faecalis 

Plasmid segregational stability assay of pIP501 minireplicons in the presence and 

absence of pSK1 par. The retention of the pIP501 minireplicons pAM401 (empty 

vector) (   ), pSK5378 (par) (  ) and pSK6110 (∆par) (   ) in E. faecalis JH2-2 cells 

was determined as described in Section 2.7. Nine days of serial subculture represents 

approximately 255 generations. Data are normalised to 100% plasmid retention at 

Generation 0. The averages of three independent assays are shown. Error bars 

represent standard error of the mean. 
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4.4. Interactions between Par and S. aureus proteins 

4.4.1. Yeast two-hybrid screening of S. aureus genomic DNA prey libraries 

with full-length Par bait 

The ability of pSK1 par to enhance the segregational stability of a pIP501 

minireplicon in E. faecalis (Section 4.3) suggests that the mechanism of par-

mediated plasmid stability might not involve S. aureus host factors. However, this 

does not exclude the possibility that factors in common to S. aureus and E. faecalis 

might contribute to Par function. Therefore, to further investigate whether host-

encoded factors, in particular S. aureus proteins, contribute to the mechanism of 

pSK1 par, yeast two-hybrid (Y2H) studies were undertaken using a Par bait fusion 

protein. Screening of S. aureus genomic DNA prey libraries was performed as 

described in Section 2.10.4. Briefly, S. cerevisiae AH109 cells were first transformed 

with pSK9107 plasmid DNA (Table 2.2), which encodes the full-length Par (ParFL) 

bait fusion, GAL4 BD-ParFL, constructed in Section 3.6.1. Yeast cells containing 

pSK9107 were then made competent and transformed with 6 µg of an equal mixture 

of twelve existing S. aureus genomic DNA prey libraries (Schumacher et al. 2014). 

The prey libraries were constructed from S. aureus genomic DNA that had been 

separately partially-digested with four frequent-cutting enzymes (HinPI, TaqαI, AciI 

and AclI), and then ligated to pGADT7 vector derivatives in all three reading frames, 

such that twelve separate libraries were generated (Schumacher et al. 2014). These 

prey libraries have previously been used to identify an interaction between the 

replication initiator protein, RepA, of the staphylococcal conjugative multiresistance 

plasmid pSK41, and the staphylococcal protein, DnaG (Schumacher et al. 2014).  
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Yeast transformation reactions were spread on medium-stringency selection medium 

(SD/-Leu/-Trp/-His) (Table 2.3) to identify clones that potentially contained 

interacting pairs of GAL4 BD-ParFL bait and S. aureus prey protein fusions to 

GAL4 AD. Serial dilutions of the transformation mixture were also spread on low-

stringency selection medium (SD/-Leu/-Trp) (Table 2.3) to calculate the 

transformation efficiency. A total of approximately 5.7×105 library clones were 

screened. From the medium-stringency selection medium, 280 individual 

transformants were patched onto low-, medium- and high-stringency (SD/-Leu/-

Trp/-His/-Ade/X-α-Gal) selection media (Table 2.3). Following incubation at 30°C 

for 3–5 days, 17 patches showed growth on high-stringency selection medium. These 

potential interactions were re-tested and the prey proteins were investigated for self-

activation of the reporter genes. Prey plasmids encoding candidate Par interaction 

partners were isolated from prey clones (Section 2.4.1), and S. cerevisiae AH109 

cells were co-transformed (Section 2.10.2) with the isolated prey plasmids and either 

pSK9107 (GAL4 BD-ParFL) or empty pGBKT7 bait plasmid (Table 2.2). 

Subsequent Y2H assays (Section 2.10.3) revealed that, of the 17 prey plasmids 

tested, five prey clones activated the reporter genes only in the presence of GAL4 

BD-ParFL and not the empty pGBKT7 bait plasmid. The remaining interactions 

were false-positives, most likely due to interaction between the S. aureus prey 

protein and GAL4 BD, or self-activation of the reporter genes by the prey protein. 

The S. aureus genomic DNA inserts in the five prey plasmids were sequenced 

(Section 2.4.14) using the T7 sequencing primer (Table 2.6), and open reading 

frames (ORFs) in each sequence were identified using ORF Finder (Wheeler et al. 

2003).  
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The ORF in-frame with GAL4 AD in each of the sequenced prey inserts was used in 

a BLASTP search (Altschul et al. 1990) to identify the Par interaction partner 

encoded by the prey plasmid. BLASTP searches revealed that four of the five 

plasmids encoded regions of a staphylococcal cell-surface anchored protein, 

fibronectin-binding protein (FnBP) (for example, GenBank Accession Number 

WP_000841432). S. aureus expresses two FnBPs, FnBPA and FnBPB, which are 

involved in adhesion to host matrix proteins, such as fibrinogen and fibronectin, 

during S. aureus infection (Signäs et al. 1989). Although the sequences of the S. 

aureus genomic DNA contained in the four prey plasmids were of various lengths, a 

761 bp sequence was mostly common to all of the four prey inserts (Figure 4.4). This 

sequence contains the coding region for the last 177 amino acids of the C-terminal 

end of FnBP (Figure 4.5), which is common to both FnBPA and FnBPB, and 

encompasses a LPXTG motif that is a feature of Gram-positive cell wall anchored 

proteins (Schneewind et al. 1992). Importantly, cleavage of the LPXTG motif 

between the threonine and glycine residues leaves the hydrophobic domain attached 

to the cell membrane, and the C-terminal end exposed on the cytosolic side of the 

membrane (Ton-That et al. 1997). Therefore, it might be envisaged that interaction 

of Par with the membrane-bound cleavage product of FnBPs could facilitate 

anchoring of plasmid DNA to the cell periphery to prevent mis-segregation of 

plasmids. As a result, the interaction between Par and FnBP was investigated further, 

as described in Sections 4.4.1.1 and 4.4.2. 

The prey plasmid harboured by the fifth prey clone was found to contain a sequence 

encoding part of S. aureus ribonuclease Y (GenBank Accession Number 

WP_064288115). Staphylococcal ribonuclease Y is involved in RNA degradation 



 
 

Figure 4.4 Graphical overview of DNA inserts contained in yeast two-hybrid prey 

plasmids encoding fibronectin-binding protein 

Fibronectin-binding protein (FnBP) was identified as a potential Par interaction 

partner by yeast two-hybrid (Y2H) screening of S. aureus genomic DNA libraries 

using a Par bait protein (Section 4.4.1). The fnbA/B gene is shown as a black box. 

Chromosomal DNA downstream of the fnbA/B gene is shown as a black line. 

Graphical representations of the fnbA/B sequence contained in each of the four prey 

plasmids (FnBP prey 1–4) are shown as coloured boxes. The region of DNA common 

to all four prey inserts is shaded in yellow.  

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 



 
 

Figure 4.5 Amino acid sequence of FnBP identified by yeast two-hybrid screening 

of S. aureus genomic DNA library using a Par bait 

S. aureus genomic DNA prey libraries were screened by yeast two-hybrid (Y2H) 

analysis using GAL4 BD-ParFL bait as described in Section 4.4.1. Subsequent 

BLASTP searches using open reading frames from the insert DNA of prey plasmids 

encoding potential Par interaction partners revealed matches to S. aureus fibronectin-

binding protein A (FnBPA) and fibronectin-binding protein B (FnBPB). The amino 

acid sequence of S. aureus FnBPA (GenBank Accession Number WP_000841432) is 

shown. Amino acid residues are numbered on the left. Sequences common to all prey 

clones that contained sequences encoding fragments of FnBP are shown in red. The 

sequence of an LPXTG motif is boxed and shown in bold. The site of cleavage 

between the threonine and glycine residues by sortase is indicated by a purple arrow 

and dashed lines. Residues comprising the hydrophobic domain are boxed and shaded 

blue. Positively-charged residues at the C-terminal end of the FnBPA sequence are 

denoted by green “+” symbols below the sequence. 
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and regulation of virulence genes (Marincola et al. 2012, Bonnin and Bouloc 2015). 

Because of these roles, it was considered that the interaction between Par and 

ribonuclease Y was unlikely to be biologically relevant, and hence this interaction 

was not examined further. 

4.4.1.1. Interaction between Par and FnBP 

In order to delimit the region of the Par bait protein that might be involved in the 

interaction with FnBP, Y2H assays were performed between the C-terminal 

fragment of FnBP and mutant Par proteins (Section 2.10.3). Prey plasmid DNA that 

was isolated from one of the FnBP preys, FnBP prey 3 (Section 4.4.1), was used to 

simultaneously transform S. cerevisiae AH109 cells (Section 2.10.2) with a bait 

plasmid encoding either ParFL (pSK9107), ParK15A (pSK9121), Par∆CC 

(pSK9122), ParL132A (pSK9123), Par∆CTD (pSK9124), ParR241A (pSK9130) or 

ParW239A (pSK9131) (Table 2.2). Co-transformants from low-stringency selection 

medium were patched onto low-, medium- and high- stringency selection media 

(Table 2.3) in order to identify clones that activated the GAL4-responsive reporter 

genes, HIS3, ADE2 and MEL1. A positive indication of interaction between the 

GAL4 BD-bait and GAL4 AD-prey fusion proteins was provided by growth on 

medium- and high-stringency selection media, and the detection of α-galactosidase 

activity, as indicated by the production of a blue pigment on media containing X-α-

Gal. 

The Y2H assays, shown in Figure 4.6, revealed growth on high-stringency selection 

medium for S. cerevisiae strains carrying the prey plasmid encoding the C-terminal 

end of FnBP and the bait plasmid encoding either ParFL, ParK15A, Par∆CC, 



 
 

Figure 4.6 Interaction between Par and FnBP 

Yeast two-hybrid (Y2H) assays of interactions between FnBP prey and mutant Par 

bait fusion proteins. A prey fusion protein of GAL4 AD to a fragment of FnBP that 

was identified from Y2H screening of a S. aureus genomic DNA library using Par bait 

(Section 4.4.1), was used in pairwise Y2H assays to detect interactions with GAL4 

BD bait protein fusions to full-length Par (ParFL), ParK15A, Par∆CC, ParL132A, 

Par∆CTD, ParR241A and ParW239A. Y2H assays were performed as described in 

Section 4.4.1.1. Growth of S. cerevisiae AH109 cells containing bait and prey 

plasmids is shown on high-stringency selection medium (SD/-Leu/-Trp/-His/-Ade/X-

α-Gal) (Table 2.3). Growth indicates activation of the HIS3 and ADE2 reporter genes. 

Blue pigmentation indicates α-galactosidase activity from yeast cells. S. cerevisiae 

AH109 cells expressing the prey protein fusion, simian virus T antigen (GAL4 AD-

T), and the bait protein fusions, murine p53 (GAL4 BD-53) or human lamin protein 

(GAL4 BD-Lam), were included as positive and negative controls, respectively. 
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ParL132A or ParR241A. Conversely, no growth was observed for yeast strains 

carrying the FnBP prey plasmid and the bait plasmids encoding Par∆CTD or 

ParW239A (Figure 4.6). Therefore, interaction between the C-terminal end of FnBP 

and Par was abolished when the CTD of Par was removed or altered with a W239A 

mutation, which suggests that interaction with FnBP occurred via the CTD of Par.  

4.4.2. Contribution of S. aureus FnBP to Par function 

Y2H screening of S. aureus genomic DNA prey libraries using Par bait protein 

identified an interaction between Par and S. aureus FnBP that was subsequently 

confirmed using Y2H assays (Section 4.4.1.1). In order to determine the biological 

significance of this interaction, and the relevance of FnBP to par-mediated plasmid 

segregation, par functionality was assessed in a S. aureus FnBP mutant, DU5883 

(Table 2.1). S. aureus DU5883, obtained from Prof. Timothy Foster (Trinity College, 

Dublin), is a derivative of S. aureus 8325-4 that is deficient in both FnBPA and 

FnBPB. This strain was generated by Greene et al. (1995) by insertion mutations of 

the fnbA and fnbB genes with tetracycline and erythromycin resistance genes, 

respectively, which abolished production of FnBPA and FnBPB proteins in S. 

aureus, as determined by Western blotting. The functionality of pSK1 par in S. 

aureus 8325-4 and the FnBP mutant, S. aureus DU5883, was assessed by performing 

plasmid segregational stability assays on pSK5630 and pSK6195, which are pSK1 

minireplicons with and without par, respectively (Table 2.2). Unlike previous assays 

that were used to assess par functionality in S. aureus, these assays were not 

performed using the erythromycin resistance-encoding plasmids, pSK4829 and 

pSK4833 (Table 2.2), due to the chromosomally-encoded erythromycin resistance of 
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S. aureus DU5883. Hence, stability assays in S. aureus 8325-4 and DU5883 (fnbA-, 

fnbB-) were performed using pSK5630 (par) and pSK6195 (∆par), since the 

chloramphenicol resistance conferred by these plasmids could be used for strain 

generation and monitoring of plasmid retention.  

Unlike S. aureus RN4220 and its spa- derivative used in most other studies described 

in this thesis, strains 8325-4 and DU5883 possess normal restriction modification 

systems. As a result, electroporation of these cells with pSK5630 or pSK6195 did 

not yield any transformants. This was likely due to the presence of S. aureus 

restriction modification systems, which recognise the methylation state of foreign 

DNA and inhibit its uptake, thereby preventing the ability of S. aureus cells to be 

transformed (Waldron and Lindsay 2006, Corvaglia et al. 2010, Monk et al. 2012). 

To circumvent this problem, plasmids were first passaged through a dcm- E. coli 

strain, DC10B (Table 2.1), to prevent cytosine methylation of plasmid DNA (Monk 

et al. 2012), so as to bypass the S. aureus restriction barrier. Chemically-competent 

E. coli DC10B cells (Section 2.3.1) were transformed with pSK5630 (par) or 

pSK6195 (∆par) (Table 2.2) then selected for ampicillin resistance (Section 2.3.2), 

and un-methylated plasmid DNA was subsequently isolated from transformants 

(Section 2.4.1). Isolated plasmids were then introduced into electrocompetent S. 

aureus 8325-4 and DU5883 cells (Table 2.1) using a sucrose-enriched 

electroporation buffer, as described in Section 2.3.4. 

Plasmid segregational stability assays on pSK5630 and pSK6195 were performed in 

S. aureus 8325-4 and in the FnBP mutant derivative, DU5883, according to the 

method described in Section 2.7. In both S. aureus 8325-4 and DU5883, pSK6195 
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(∆par) was lost rapidly from the population, with <8±1% of the population retaining 

the plasmid on Day 5 of the assay (Figure 4.7). In the presence of par, pSK5360 was 

retained by a much larger proportion of the population at all stages of the assay, with 

>71±11% of the population retaining the plasmid at the conclusion of the assay 

(Figure 4.7). The stability assays revealed no difference in the retention of pSK5630 

(par) or pSK6195 (∆par) between the S. aureus FnBP wild-type and mutant strains. 

Since the absence of FnBP did not result in a noticeable reduction in plasmid 

stability, it is likely that FnBP is not required for plasmid segregation, and that an 

interaction between FnBP and Par, detected in Section 4.4.1, is not essential for Par 

function. 

4.4.3. Yeast two-hybrid assay to determine interaction between Par and 

DivIVA 

Plasmid segregational stability assays in a S. aureus FnBP mutant indicated that the 

interaction between Par and FnBP, which was identified by Y2H screening of S. 

aureus genomic DNA prey libraries (Section 4.4.1), was not likely to be biologically 

significant (Section 4.4.2). However, BLASTP searches using the pSK1 Par amino 

acid sequence (GenBank Accession Number AAF63251) resulted in the detection of 

a putative conserved domain, from residues 2–171, that matched to the RacA 

superfamily in the NCBI conserved domains database (CDD) (Figure 4.8). The 

region of Par containing the putative conserved RacA domain encompasses the 

predicted HTH and CC domains of Par (Figure 4.8), which are also predicted 

structural features of the Bacillus polar chromosome division protein, RacA (Ben-

Yehuda et al. 2003). In B. subtilis, RacA interacts with chromosomal DNA and the 



 
 

Figure 4.7 Plasmid segregational stability of pSK1 minireplicons in a S. aureus 

FnBP mutant 

Plasmid segregational stability assay of pSK1 minireplicons in S. aureus 8325-4 and 

a FnBP mutant derivative, DU5883. The retention of the pSK1 minireplicons 

pSK5630 (par) (squares) and pSK6195 (∆par) (circles) in S. aureus 8325-4 (solid 

lines) and DU5883 cells (dashed lines) was determined as described in Section 2.7. 

Five days of serial subculture represents approximately 75 generations. Data are 

normalised to 100% plasmid retention on Day 0. The averages of three independent 

assays are shown. Error bars represent standard error of the mean. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 4.8 Putative RacA conserved domain of Par 

Amino acid sequence of pSK1 Par (GenBank Accession Number AAF63251) showing 

the residues of Par that represent a putative conserved domain of the RacA superfamily 

in the NCBI Conserved Domains Database (highlighted in blue). Amino acid residues 

are numbered on the left. For reference, the Par sequence is divided by red dashed 

lines into amino acids that form the predicted helix-turn-helix (HTH) (aa 1–53), 

coiled-coil (CC) (aa 54–155) and disordered C-terminal domains (CTD) (aa 156–245). 
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membrane-bound protein, DivIVA, to anchor chromosomes to the cell poles during 

sporulation (Ben-Yehuda et al. 2003, Wu and Errington 2003). In S. aureus, DivIVA 

is localised at the division septum, and does not appear to be involved in 

chromosome segregation (Pinho and Errington 2004). Notably, a TBLASTN search 

(Altschul et al. 1997) of the translated S. aureus nucleotide database using the B. 

subtilis RacA nucleotide sequence (GenBank Accession Number NP_391584) did 

not identify any RacA homologues in S. aureus (data not shown). Thus, due to the 

putative conserved domain between Par and B. subtilis RacA, and the interaction 

between RacA and DivIVA in B. subtilis, it was hypothesised that Par might interact 

with S. aureus DivIVA in a manner similar to the RacA-DivIVA interaction in B. 

subtilis. In this way, Par might act as a bridging protein to tether plasmid DNA to 

DivIVA during plasmid segregation. Therefore, because no other potentially relevant 

Par interaction partners were identified from the Y2H library screen, except for a 

ribonuclease that was not investigated further (Section 4.4.1), pairwise Y2H assays 

were performed between Par and a candidate interaction partner of interest, DivIVA. 

4.4.3.1. Construction of DivIVA bait and prey plasmids for yeast two-hybrid 

assays 

S. aureus genomic DNA was isolated (Section 2.4.2) from stationary phase cultures 

of S. aureus RN4220 cells, and a 0.6 kb DNA fragment containing the DivIVA 

coding region was PCR-amplified (Section 2.4.4) using primers HC27 and HC28 

(Table 2.6). The amplified DNA was inserted into the pGBKT7 bait and pGADT7 

prey vectors (Table 2.2), essentially as described in Section 3.6.1 for the construction 

of the Par bait and prey Y2H plasmids, pSK9107 and pSK9110, respectively (Table 
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2.2). Following the identification of recombinant bait and prey plasmids by 

screening with EcoRI and BamHI restriction digestion (Section 2.4.6) and agarose 

gel electrophoresis (Section 2.4.3), plasmids were sequenced (Section 2.4.14) using 

T7 sequencing and 3’ DNA-BD sequencing primers (Table 2.6) for recombinant 

pGBKT7 bait plasmids, and T7 sequencing and 3’AD sequencing primers (Table 

2.6) for recombinant pGADT7 prey plasmids. The plasmid containing the correct 

divIVA sequence in pGBKT7 was named pSK9109, and pSK9112 for divIVA in 

pGADT7 (Table 2.2). 

4.4.3.2. Yeast two-hybrid assay of Par and DivIVA interaction 

To investigate whether Par and DivIVA interact, pairwise Y2H assays were 

performed between Par and DivIVA bait and prey fusion proteins, according to the 

methods described in Section 2.10.3. As expected, yeast cells containing ParFL bait 

(pSK9107) and prey (pSK9110) plasmids (Table 2.2) grew on high-stringency 

selection medium, as did cells carrying DivIVA bait (pSK9109) and prey (pSK9112) 

plasmids (Table 2.2) (Figure 4.9). However, no growth was observed for cells 

containing ParFL bait (pSK9107) and DivIVA prey (pSK9112) plasmids, or DivIVA 

bait (pSK9109) and ParFL prey (pSK9110) plasmids (Figure 4.9). There were also 

no indications of interactions between empty Y2H vectors and DivIVA (Figure 4.9) 

or Par (Figure 3.11). The Y2H assays, therefore, did not provide any evidence of an 

interaction between Par and DivIVA. 



 
 

Figure 4.9 Interaction between Par and DivIVA 

Yeast two-hybrid (Y2H) assays of interactions between Par and DivIVA bait and prey 

fusion proteins. Pairwise Y2H assays were performed between GAL4 BD (bait) and 

GAL4 AD (prey) protein fusions to full-length Par (ParFL) and DivIVA, according to 

the methods described in Section 4.4.3.2. S. cerevisiae AH109 cells containing bait 

and prey plasmids were patched on high-stringency selection medium (SD/-Leu/-Trp/-

His/-Ade/X-α-Gal) (Table 2.3). Growth indicates activation of the HIS3 and ADE2 

reporter genes. Blue pigmentation indicates α-galactosidase activity from yeast cells. 

Y2H assays of the prey fusion protein encoding simian virus T antigen (GAL4 AD-T) 

and the bait fusion proteins encoding murine p53 (GAL4 BD-53) and human lamin 

protein (GAL4 BD-Lam) were included as positive and negative controls, 

respectively. 
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4.4.4. Yeast two-hybrid screening of S. aureus genomic DNA prey libraries 

with the C-terminal domain of Par 

The above Y2H assays did not detect any interaction between Par and a candidate 

interaction partner, DivIVA (Section 4.4.3.2). Furthermore, the interaction between 

Par and FnBP, that was detected from Y2H screening of S. aureus genomic DNA 

prey libraries, was shown not to be biologically significant (Section 4.4.2). It is 

possible that by performing Y2H assays, the fusion of Par to GAL4 BD or GAL4 

AD to generate bait and prey fusion proteins, respectively, may have interfered with 

Par protein structure and possibly impeded potential protein-protein interactions. 

Therefore, since it was anticipated that potential protein-protein interactions would 

most likely involve the predicted disordered CTD of Par (Dunker et al. 2002), Y2H 

screening of S. aureus genomic DNA prey libraries was repeated using the Par CTD 

(aa 156–245) as the bait protein. In this way, potential steric hindrances that might 

have prevented protein interactions with the Par CTD might be overcome by 

removing the NTD and CC domains to potentially increase the accessibility of the 

CTD to protein interactions.  

S. aureus genomic DNA prey libraries were screened for interactions with the GAL4 

BD-ParCTD bait fusion protein encoded by pSK9174 (Table 2.2) essentially as 

described above for the Y2H library screen using full-length Par bait (Section 4.4.1). 

From the Y2H screening of S. aureus genomic DNA prey libraries using ParCTD 

bait, approximately 3×107 library clones were screened, and 220 individual 

transformants that indicated an interaction between ParCTD and a library prey 

protein were patched onto high-stringency selection medium (Table 2.3). Prey 
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plasmids were isolated (Section 2.4.1) from 27 yeast colonies that grew on high-

stringency selection medium, and the interactions with ParCTD bait were re-tested 

and examined for self-activation of the reporter genes. Y2H assays performed using 

the prey plasmids and pGBKT7 bait plasmids with and without the ParCTD coding 

region (Section 2.10.3), identified 10 prey clones that showed activation of the 

reporter genes only in the presence of ParCTD bait. The S. aureus genomic DNA 

fragments contained in these prey plasmids were sequenced (Section 2.4.14) using 

the T7 sequencing primer (Table 2.6), and subsequent BLASTP searches revealed 

that all 10 prey plasmids contained sequences that matched the coding region of the 

C-terminal end of FnBP. Since FnBP was found to be non-essential to Par function 

(Section 4.4.2), the interaction between ParCTD and FnBP was not investigated 

further.  

4.5. Interactions between Par and non-specific DNA 

Y2H screening of S. aureus genomic DNA prey libraries using Par or ParCTD bait 

protein did not reveal any biologically relevant interactions involving Par and S. 

aureus proteins (Sections 4.4.1 and 4.4.4). Although this may appear to suggest that 

pSK1 par functions independently of host-encoded proteins, there remains the 

possibility that the bacterial nucleoid might play a role in plasmid segregation, in a 

manner similar to the role of the nucleoid as a scaffold for plasmid segregation in the 

proposed diffusion-ratchet mechanism of Type Ia plasmid partitioning systems 

(Vecchiarelli et al. 2010) and in the pilot-fish mechanism of R388 plasmid 

partitioning (Guynet and de la Cruz 2011). Therefore, to investigate whether Par 



 

140 

 

might interact with the bacterial nucleoid, in vitro DNA-binding studies were 

performed using non-specific DNA, as described in Section 4.5.1 below. 

4.5.1. Binding of Par to non-specific DNA 

To determine whether Par binds to non-specific DNA, electrophoretic mobility shift 

assays (EMSAs) were performed using a non-specific DNA probe. A 181 bp DNA 

region located downstream of pSK1 rep (nt 2950–3130 of pSK1, GenBank 

Accession Number GU565967) was PCR-amplified (Section 2.4.4) from pSK4829 

template DNA (Table 2.2) using primers NFRepDwn4829 and HC3 (Table 2.6). The 

resulting amplicon was electrophoresed on an agarose gel (Section 2.4.3) and then 

gel-purified as described in Section 2.4.7. The purified DNA fragment was 

subsequently end-labelled with 32P from [γ-32P]-ATP using T4 PNK (Section 2.8.1). 

EMSAs were performed as described in Section 2.8.2, with each EMSA reaction 

consisting of approximately 500 cpm of purified, radiolabelled non-specific DNA 

probe and increasing amounts of purified RGSH6-tagged Par proteins (Section 

3.3.4). EMSAs were electrophoresed on polyacrylamide gels, rather than 

polyacrylamide/agarose hybrid gels, since the main purpose was to determine 

whether Par could bind non-specific DNA, and hence, the need to resolve Par-DNA 

complexes was not relevant.  

As shown in Figure 4.10A, the electrophoretic migration of a small amount of 

labelled non-specific DNA probe was shifted with 64–127 nM of RGSH6-Par, and a 

complete shift of the DNA probe was observed at protein concentrations >1 µM. 

Competition EMSAs performed using labelled non-specific DNA with 1.8 µM of 

RGSH6-Par protein showed that unlabelled specific competitor DNA (212 bp DNA 



 
 

Figure 4.10 DNA-binding of Par proteins to non-specific DNA 

Electrophoretic mobility shift assays (EMSAs) of Par binding to non-specific DNA. 

A 181 bp DNA probe corresponding to a region downstream of pSK1 rep (nt 2950–

3130 of pSK1, GenBank Accession Number GU565967) was incubated with 

increasing concentrations of purified RGSH6-Par (A) or RGSH6-ParK15A (C) as 

described in Section 4.5.1. B. Competition EMSA performed as described in Section 

4.5.1 using a fixed concentration of RGSH6-Par (1.8 µM) and increasing amounts of 

unlabelled competitor DNA, either specific (212 bp fragment from pSK1 par-rep 

intergenic DNA, nt 1689–1900 of pSK1, GenBank Accession Number GU565967) or 

non-specific (same as labelled probe). EMSAs were performed using 500 cpm of 

radiolabelled non-specific DNA probe and electrophoresed on 5% (w/v) 

polyacrylamide gels. Radiolabelled DNA probes were detected by phosphor imaging. 

The concentration of protein (nM) or amount of unlabelled competitor DNA (ng) is 

shown above each lane. The positions of unbound DNA are indicated by black 

arrowheads. Par-DNA complexes are bracketed on the right. 
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probe containing pSK1 par–rep intergenic region, nt 1689–1900 of pSK1, GenBank 

Accession Number GU565967) could compete with labelled non-specific DNA for 

Par DNA-binding sites, since titration with unlabelled specific competitor DNA 

resulted in a loss of RGSH6-Par binding to labelled non-specific DNA (Figure 

4.10B). Titration with unlabelled non-specific competitor DNA had a less 

pronounced effect on the binding of RGSH6-Par to labelled non-specific DNA 

(Figure 4.10B), which suggests that Par showed greater DNA-binding affinity for 

specific, rather than non-specific, DNA. Interestingly, the Par DNA-binding mutant, 

RGSH6-ParK15A, did not bind to the non-specific DNA probe at the protein 

concentrations tested (Figure 4.10C), which suggests that Par DNA-binding, to both 

specific (Supplementary Figure S3) and non-specific DNA, is dependent on the K15 

residue. Therefore, the above EMSA results show that RGSH6-Par could bind to 

non-specific DNA, and hence potentially to nucleoid DNA, although whether the 

DNA-binding was a product of excess protein relative to DNA is unclear and is 

discussed further in Section 4.6. 

4.5.2. Potential Par binding sites on S. aureus chromosomal DNA 

In addition to the possible non-specific binding of Par to nucleoid DNA, it is also 

possible that Par binds specifically to sequences on the S. aureus chromosome. To 

investigate this possibility, the S. aureus NCTC 8325 genome sequence (GenBank 

Accession Number CP000253) was searched using the Sequence Searcher program 

(Marass and Upton 2009) in both the sense and antisense directions to identify 

potential Par DNA-binding sites. DNaseI footprinting showed that Par binds to seven 

12-bp repeats in the pSK1 par–rep intergenic region, with a consensus sequence of 
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TTAGGTAGTAAA (Figure 1.6) (LeBard 2005). Three of the seven Par binding 

sites have the same sequence as the consensus (Figure 1.6). Assuming that Par might 

bind to similar sequences on the chromosome, the search was performed against the 

consensus sequence of the Par centromere-binding site.  

A search using the Sequence Searcher program, allowing for a maximum of two 

mismatches from the consensus sequence, revealed that the consensus sequence of 

the Par centromere-binding site is present at two locations on the S. aureus NCTC 

8325 chromosome (Supplementary Table S1). It was also found that the consensus 

sequence differed from 49 sites on the chromosome by one nucleotide, and differed 

from 592 sites by two nucleotides (Supplementary Table S1). Furthermore, the 

resulting matches appeared to be dispersed throughout the sequence of the S. aureus 

genome, and did not appear to cluster around particular positions (Figure 4.11 and 

Supplementary Table S1). The closest pairs of sites were located 11 bp apart – one 

pair at position 589,634 and another at position 1,013,864 on the chromosome 

(Supplementary Table S1). Other pairs of sites were located 37, 58 and 74 bp apart, 

however these were not clustered either, located at positions 2,111,228, 1,110,195 

and 579,065, respectively (Supplementary Table S1). Distances between all other 

pairs of potential binding sites were greater than 100 bp. No matches were found in 

the S. aureus genome sequence for the four remaining Par centromere-binding sites. 

4.6. Discussion 

A summary of the properties of Par derivatives described in this chapter is presented 

in Table 4.1. Par-pSERP, encoded on the S. epidermidis multiresistance plasmid, 

pSERP, was identified as a distant homologue of pSK1 Par, sharing 40% amino acid 



 
 

Figure 4.11 Map of potential pSK1 Par binding sites on S. aureus chromosome 

The genomic DNA sequence of S. aureus NCTC 8325 (GenBank Accession Number 

NC_007795) was searched for potential pSK1 Par binding sites using Sequence 

Searcher software (Section 4.5.2). A circular map of S. aureus NCTC 8325 

chromosomal DNA is shown, with marks inside the map representing the location of 

potential Par binding sites. Blue, red and black marks denote potential Par binding 

sites that differ by no, one and two nucleotides from the consensus Par binding 

sequence of the pSK1 par centromere-like site, respectively.  

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

Table 4.1 Summary of properties of Par derivatives (Chapter 4) 

a,bProtein interactions assessed by yeast two-hybrid (Y2H) assays (Section 4.4.1, 4.4.3.2, 4.4.4). 
cInteraction with non-specific DNA assessed by electrophoretic mobility shift assays (EMSAs) (Section 4.5.1). 
dPlasmid stabilisation ability assessed by plasmid segregational stability assays (Section 4.2.2). 
ePlasmid stabilisation ability assessed by plasmid segregational stability assays (Section 4.3). 
fPlasmid stabilisation ability assessed by plasmid segregational stability assays (Section 4.4.2). 
N. D. Not determined in experiments described in Chapter 4. 

Protein Plasmid 
stabilisation Protein interactionsa No interactionb Interaction with non-

specific DNAc 

Par-pSERP Yesd N. D. N. D. N. D. 

pSK1 Par (in E. faecalis) Yese N. D. N. D. N. D. 

pSK1 Par (in S. aureus 
DU5883 fnbA-, fnbB-) Yesf N. D. N. D. N. D. 

GAL4 BD-ParFL N. D. GAL4 AD -ParFL, -FnBP GAL4 AD-DivIVA N. D. 

GAL4 BD-FnBP fragment N. D. 
GAL4 AD -ParFL,               

-ParK15A, -∆CC, -L132A, -
ParR241A 

GAL4 AD -Par∆CTD,         
-ParW239A N. D. 

GAL4 BD-DivIVA N. D. GAL4 AD-DivIVA GAL4 AD-ParFL N. D. 

GAL4 BD-ParCTD N. D. GAL4 AD-FnBP N. D. N. D. 

RGSH6-Par N. D. N. D. N. D. Yes 

RGSH6-ParK15A N. D.  N. D.  N. D.  No 
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sequence identity (Figure 4.1A). Prior to this study, the function of this protein had 

yet to be demonstrated. Despite being a distant pSK1 Par homologue, the location of 

the gene encoding Par-pSERP, relative to pSERP rep, is similar to the genetic 

organisation of par and rep on pSK1, i.e. par is located upstream of, and transcribed 

divergently from, rep (Figure 4.1B). Furthermore, the sequence between the genes 

encoding Rep and Par-pSERP appears to contain several 8-bp repeats (Figure 4.1C), 

possibly indicative of a centromere-like site. These factors gave reason to suspect a 

potential role of Par-pSERP in plasmid maintenance.  

Indeed, plasmid segregational stability assays described in Section 4.2.2 showed that 

the segregational stability of pSERP minireplicons was enhanced in the presence of 

Par-pSERP, thus implicating Par-pSERP in plasmid maintenance. It should be noted 

that the relatively low segregational stability of the pSERP minireplicons, even in the 

presence of par-pSERP (Figure 4.2), might be due to the absence of other putative 

plasmid stabilisation factors, such as a resolvase and several hypothetical proteins 

annotated on the pSERP sequence (GenBank Accession Number NC_006663), that 

might also contribute to the overall plasmid stability of pSERP. 

Whereas plasmid stabilisation function might have been expected for Par-pSERP, 

based on the similarities with pSK1 par outlined above, the more distantly-related 

Par homologue, RepB287, encoded by the T. halophilus plasmid pUCL287, was also 

shown to demonstrate plasmid maintenance functionality (Benachour et al. 1997). 

However, unlike the Par homologue encoded by pSERP, repB287 is located 

downstream of, overlapping with, and transcribed in the same direction of, the 

plasmid replication gene, repA287, on pUCL287 (Figure 4.1B) (Benachour et al. 
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1997). Therefore, the ability of at least two distantly-related Par homologues to 

enhance plasmid segregational stability strongly suggests that plasmid maintenance 

is a function shared by Par-like proteins, and is not exclusive to pSK1 Par. 

It is worth noting that the sequence alignment shown in Figure 4.1A demonstrates 

the conserved nature of the acidic Par CTD between the distant homologues, which 

implies a role of the CTD in Par function, as investigated in Chapter 3. Furthermore, 

the Par K2 and E10 residues appear highly conserved, whereas Y43 does not. This 

stresses the potential importance of K2 and E10 to Par function, possibly in Par NTD 

interactions (Section 3.6.4). Although little effect of K2A and E10A mutations were 

found in isolation (Figure 3.12C), the highly conserved nature of these residues 

warrants further investigation into their significance, as discussed in Section 3.7.6. 

The single protein encoded by pSK1 par is intriguing, as it differs from most 

characterised plasmid partitioning systems that encode two separate proteins (Gerdes 

et al. 2010, Schumacher 2012, Baxter and Funnell 2014). Furthermore, Par 

homologues have been identified in several other bacterial species, such as 

Tetragenococcus, Streptococcus, Lactococcus, Lactobacillus, Clostridium and 

Enterococcus (Supplementary Figure S1, Firth et al. 2000), which raises the question 

of whether par functions as a discrete unit, or whether host factors might be involved 

in Par function. Plasmid segregational stability assays performed to assess the 

functionality of pSK1 par in the heterologous E. faecalis host, appeared to support 

the former proposition, that pSK1 par is a discrete functional unit, since a pIP501 

minireplicon containing pSK1 par was remarkably more stable than its par-deficient 

counterpart (Figure 4.3). The enhanced plasmid segregational stability observed in 
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both S. aureus (Simpson et al. 2003) and E. faecalis (Figure 4.3), therefore, suggests 

that par might function independently of S. aureus-specific factors. A similar 

situation is observed in the Types II and III plasmid partitioning systems, whereby 

the partitioning systems appear to be self-contained units consisting of a centromere-

like site, DNA-binding protein and NTPase, that are sufficient for plasmid 

segregational stability (Schumacher 2012, Baxter and Funnell 2014). However, 

unlike characterised partitioning systems, the functionality of pSK1 par in E. 

faecalis has great significance due to the potential for plasmid segregation by a 

single partitioning protein, instead of two separate DNA-binding and NTPase 

proteins. This suggests a novel mechanism of plasmid maintenance using a single 

protein without interaction with host-specific factors. 

It should be noted that since enterococci and staphylococci are both low G+C, Gram-

positive cocci belonging to the Firmicutes phylum, the possibility cannot be 

excluded that factors in common, or similar, between E. faecalis and S. aureus may 

have played a role in the functionality of pSK1 par in both species. Indeed, a Par 

homologue with 72% sequence identity has been identified in E. faecalis 

(Supplementary Figure S4), and therefore, it is not inconceivable that pSK1 Par may 

have utilised enterococcal host factors to impart plasmid segregational stability in 

this heterologous host. Interestingly, the sequence alignment shows that most of the 

sequence differences are located in the NTD, which is likely due to differences in the 

recognition of their cognate centromere-like sites. The CC and CTD sequences share 

a higher degree of identity, and hence these domains of pSK1 Par may have been 

involved in interactions with E. faecalis host factors, if such interactions exist. A 

more comprehensive investigation of the functionality of pSK1 par in a range of 
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bacterial hosts, such as Bacillus or the Gram-negative E. coli, could be performed to 

provide further insight into the dependence on host-encoded factors in the 

mechanism of par-mediated plasmid segregation.  

4.6.1. Interaction of Par with S. aureus proteins 

S. aureus genomic DNA prey libraries were screened by Y2H using ParFL bait to 

identify potential host-encoded proteins that might interact with Par to mediate 

plasmid segregational stability (Section 4.4.1). Interestingly, of the five library 

clones that contained potential Par interaction partners, four prey inserts contained 

sequences of varying lengths that encoded fragments of the C-terminal end of S. 

aureus FnBPA and FnBPB (Figure 4.4). These proteins are S. aureus cell-surface 

proteins that are involved in adhesion to host matrix proteins during infection 

(Signäs et al. 1989). This result was surprising, because the relevance of FnBP to 

plasmid segregation was not immediately obvious. Rather, it was expected that 

potential Par interaction partners would be involved in processes that might be 

associated with plasmid activities, such as chromosome segregation or cell division.  

The interaction between FnBP and the ParFL bait protein involved the 177 most C-

terminal residues of FnBP (Figure 4.5). This region includes the LPXTG cell-wall 

anchoring motif that is cleaved by the sortase enzyme to anchor FnBP to the 

peptidoglycan cell wall, leaving the hydrophobic region lodged in the cell 

membrane, and the positively-charged C-terminal amino acids exposed to the 

cytoplasmic side of the cell membrane (Ton-That et al. 1997). Therefore, it was 

conceivable that Par might interact with the cytoplasmic end of the membrane-bound 
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cleavage product to anchor plasmids to the cell wall to ensure plasmid segregation 

into daughter cells.  

Further characterisation of the Par-FnBP interaction using Par mutants revealed that 

the interaction specifically involved the CTD of Par (Figure 4.6), which was 

confirmed by the detection of an interaction between FnBP and ParCTD from Y2H 

library screening of S. aureus genomic DNA prey libraries using ParCTD bait 

protein (Section 4.4.4). This was not unexpected, since the Par CTD is predicted to 

be disordered (Simpson et al. 2003), which would result in a high propensity for 

involvement in protein-protein interactions (Dunker et al. 2002). Nonetheless, 

despite showing a specific interaction between Par and FnBP via Y2H assays (Figure 

4.6), plasmid segregational stability assays in a S. aureus FnBP mutant, DU5883, 

revealed that disruption of the FnBP genes had no effect on par functionality (Figure 

4.7).  

It should be noted that the intracellular localisation of GAL4 AD-FnBP fragment and 

the absence of sortase in S. cerevisiae means that the FnBP prey protein was unlikely 

to have been cleaved at the LPXTG motif and anchored to the cell surface. It is, 

therefore, possible that the interaction between Par and the FnBP fragment in Y2H 

assays may have involved the surface-exposed regions of FnBP, which would not 

otherwise be accessible to intracellular Par proteins in its natural host, S. aureus. In 

light of the plasmid stability results, the Par-FnBP interaction is unlikely to be 

biologically relevant, and is, therefore, most likely a technical artefact of the Y2H 

assay. 
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The other potential Par interaction partner, ribonuclease Y, that was identified from 

Y2H screening of S. aureus genomic DNA libraries (Section 4.4.1), was not 

investigated further because its role in RNA processing and virulence (Marincola et 

al. 2012, Bonnin and Bouloc 2015) implied that ribonuclease Y is unlikely to 

interact with Par in plasmid segregation. With time permitting, this potential 

interaction could be pursued by examining the functionality of pSK1 par in a S. 

aureus ribonuclease Y mutant to determine the biological significance of this 

interaction. 

It was anticipated that Y2H screening of S. aureus genomic DNA prey libraries 

using the ParCTD bait, instead of the full-length Par bait, could result in the 

identification of a greater number and wider variety of library clones that contain 

potential interaction partners. This was based on the assumption that removal of the 

Par NTD and CC domains might increase accessibility of the CTD to protein-protein 

interactions, even if interactions are technical artefacts and not biologically relevant. 

However, this was not the case, and FnBP-encoding prey clones were again 

identified from the S. aureus library screen (Section 4.4.4).  

Although the Y2H library screens using Par or ParCTD bait did not detect any 

meaningful interactions between Par and S. aureus proteins, it is possible that the 

fusion of Par and potential interaction partners to the GAL4 BD and AD proteins, 

respectively, may have disrupted protein structure and hindered potential protein-

protein interactions. It is also possible that potential interactions between Par and 

host proteins might be dependent on Par binding to centromere DNA, which was 

absent in the Y2H system. In this case, a change in the structure of Par upon binding 
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to DNA might be required to facilitate subsequent protein-protein interactions, which 

would not have been detected using Y2H assays. To overcome the absence of the 

pSK1 par centromere in Y2H assays, the yeast strains could be modified so as to 

replace the upstream activation sequence of the yeast reporter genes with the par 

centromere-like site. In this way, GAL4 BD-Par fusions bind to the centromere-like 

site, such that interactions with GAL4 AD fusions result in activation of the GAL4-

responsive reporter genes. This could potentially capture Par protein interactions that 

are dependent on DNA-binding. 

These factors could also explain why the Y2H assays did not reveal any interaction 

between Par and a candidate interaction partner, DivIVA (Figure 4.9). To eliminate 

this possibility, and to examine whether Par interacts with DivIVA, plasmid 

segregational stability assays could be performed to assess par functionality in a S. 

aureus DivIVA mutant. Pinho and Errington (2004) showed that a S. aureus DivIVA 

null mutant is viable, and hence assessing plasmid segregational stability in a 

DivIVA mutant would be a strong indicator of the requirement of DivIVA for Par 

function.  

It should also be noted that although a BLASTP search of the non-redundant protein 

database using the pSK1 Par amino acid sequence identified a match to the RacA 

superfamily in the conserved domain database (Section 4.4.3), the search did not 

detect RacA as a protein that showed significant sequence identity to the Par 

sequence. The identification of a RacA conserved domain was, therefore, most likely 

based on the structures of the predicted Par HTH and CC domains, which are also 

present in RacA (Schumacher et al. 2016). Implications of the structural similarity 
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between Par and RacA for the mechanism of plasmid segregational stability is 

discussed in Chapter 6. 

To overcome some of the limitations of the Y2H method for identifying Par 

interaction partners, such as false positive interactions, potential structural 

hindrances resulting from fusions to GAL4 BD and AD proteins, and the absence of 

pSK1 par centromere DNA, alternative techniques such as co-immunoprecipitation 

and mass spectrometry (Free et al. 2001) could be used. Bacterial two-hybrid studies 

could also be performed to more closely resemble the natural bacterial host of Par 

and its potential interaction partners. In such screens, pSK1 plasmid genes could be 

included to account for interactions that might involve plasmid-encoded proteins. 

The functional significance of interactions between Par and proteins identified by 

these studies can then be confirmed by performing plasmid segregational stability 

assays in S. aureus mutants. Note that the possibility remains that the mechanism of 

Par in plasmid segregational stability might not involve interactions with other 

proteins. Additional protein interaction studies, such as those mentioned above, 

should be performed to confirm this. 

4.6.2. Interaction of Par with non-specific DNA 

EMSAs using a radiolabelled non-specific DNA probe, which corresponded to a 181 

bp sequence downstream of pSK1 rep, showed that RGSH6-Par was capable of 

binding to non-specific DNA (Figure 4.10A). However, binding to non-specific 

DNA occurred at much higher protein concentrations (approximately 10-fold higher) 

than those observed for a complete mobility shift of radiolabelled specific DNA 

probe (compare Figures 4.10A and 3.6A). This suggests that RGSH6-Par has greater 
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DNA-binding affinity to specific, compared to non-specific, DNA. This is supported 

by the competition EMSAs in Figure 4.10B, which show the release of RGSH6-Par 

from radiolabelled non-specific DNA probe using 200 ng of specific competitor 

DNA, compared to 400 ng of non-specific competitor DNA that could not entirely 

compete with the labelled probe for Par binding sites. Similar observations have 

been made for other DNA-binding proteins, such as the ParB proteins that are 

involved in spreading and binding to non-specific DNA during chromosome and 

plasmid segregation. For example, EMSAs have shown that the ParB-like proteins, 

Spo0J and SopB, both bind specifically to their cognate DNA sequences, but also 

bind non-specifically to DNA, albeit with lower affinities (Sanchez et al. 2013, 

Taylor et al. 2015). Interestingly, whereas approximately 10 times more Par protein 

was required to bind non-specific compared to specific DNA, the binding of non-

specific DNA by SopB required more than 20-fold more protein than the 

concentration required to shift the mobility of specific DNA, while greater than 60 

times was required to observe a complete mobility shift (Sanchez et al. 2013). This 

suggests that Par exhibits non-specific DNA-binding activity, however, further 

biophysical experiments such as surface plasmon resonance (Szabo et al. 1995, 

Nguyen et al. 2007), isothermal titration calorimetry (Liang 2008) or fluorescence 

polarisation assays (Lundblad et al. 1996) would be required to more accurately 

quantitate the DNA-binding parameters of Par to specific and non-specific DNA. 

Unlike the R219 residue of SopB, which is essential for binding to its cognate 

centromere-like site, sopC, but not for binding to non-specific DNA (Sanchez et al. 

2013), the inability of the RGSH6-ParK15A DNA-binding mutant to bind to the non-

specific probe (Figure 4.10C), suggests that K15 is essential for both specific 
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(Supplementary Figure S3) (Lai 2008), and potentially non-specific, DNA-binding. 

However, although RGSH6-Par demonstrated non-specific DNA-binding in vitro, it 

is unclear whether these observations are artefacts of an excess of protein compared 

to DNA, or whether they are representative of true non-specific DNA-binding 

activity of Par. Being a DNA-binding protein, it was predicted that Par might exhibit 

some degree of non-specific DNA-binding, as would be expected given an excess of 

any DNA-binding protein in the presence of DNA. However, since the ParK15A 

DNA-binding mutant did not bind non-specific DNA, this suggests that, under the 

conditions tested in vitro, Par exhibited genuine binding to non-specific DNA. 

Further studies (see below) should, therefore, be performed to determine whether 

binding to non-specific DNA is biologically relevant.  

The binding of purified RGSH6-Par to non-specific DNA (Figure 4.10A), gives rise 

to a potential mechanism of plasmid segregation that involves interactions between 

Par and chromosomal DNA. A search of the S. aureus genome sequence identified 

two sites on the chromosome that matched the consensus sequence of the Par 

centromere binding site, and another 49 sites that differed from the consensus 

sequence by one nucleotide (Supplementary Table S1). These sites might represent 

potential chromosome binding sites of Par, assuming that Par binds to sequences on 

the chromosome that are similar to the sequences bound by Par at the pSK1 par 

centromere-like site. However, the matching sites were located throughout the 

chromosome, with no obvious co-location of potential binding sites (Figure 4.11 and 

Supplementary Table S1). This is unlike the chromosomal binding sites of 

chromosome segregation proteins such, as RacA or Spo0J, which are located near 

the chromosomal origins (Lin and Grossman 1998, Ben-Yehuda et al. 2003, Ben-



 

153 

 

Yehuda et al. 2005). Of course, it is possible that Par binds specifically to sequences 

on the chromosome that are different to the DNA-binding sites on pSK1 par, or that 

Par binds non-specifically to the nucleoid, as is the case with Type I ParA proteins 

(Castaing et al. 2008, Vecchiarelli et al. 2013b). Regardless, more insight could be 

gained into the potential interactions of Par with nucleoid DNA, in particular with 

specific sites on the chromosome, by performing protein-DNA binding experiments, 

such as chromatin immunoprecipitation (ChIP), followed by sequencing of the ChIP 

products (ChIP-Seq) (Collas 2010) to identify possible Par binding sites on the S. 

aureus chromosome. The potential for interactions between Par and nucleoid DNA is 

explored further using epifluorescence microscopy, and is addressed in Chapter 5 

(Sections 5.4.4.4.1 and 5.8.6). 

 

 

 

 

 

 



 

154 

 

CHAPTER 5 

Cell biology of pSK1 par-mediated plasmid 

segregation 

5.1. Introduction 

The results from Chapter 3, combined with previous findings (LeBard 2005, Figgett 

2007, Lai 2008), have contributed to the understanding of Par DNA-binding and 

multimerisation activities. However, it remains unclear how these activities 

contribute to the mechanism of pSK1 par-mediated plasmid segregation. 

Epifluorescence microscopy studies have provided invaluable understanding of the 

dynamics and potential mechanisms utilised by characterised plasmid partitioning 

systems (Gordon et al. 1997, Jensen and Gerdes 1999, Li and Austin 2002, Møller-

Jensen et al. 2003, Ebersbach and Gerdes 2004, Gordon et al. 2004, Lim et al. 2005, 

Adachi et al. 2006, Hatano et al. 2007, Derman et al. 2008, Ringgaard et al. 2009, 

Guynet et al. 2011). For example, fluorescence microscopy studies to simultaneously 

visualise ParM and plasmid DNA have led to the insertional polymerisation model 

of the Type II plasmid partitioning system (Møller-Jensen et al. 2003), while studies 

by Guynet et al. (2011) have led to the proposal of a pilot-fish mechanism for the 

partitioning of R388. Therefore, in order to gain insight into the possible mechanism 

of plasmid segregational stability by pSK1 par, fluorescence microscopy was 

performed to localise Par and pSK1 minireplicons in S. aureus. Fluorescence 
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microscopy was also performed in E. coli cells to observe the structural 

characteristics of Par. 

5.2. Generation of anti-Par peptide antibodies 

Immunofluorescence microscopy (IFM) was employed to determine the localisation 

of Par in S. aureus cells. This method relies on the detection of proteins in fixed and 

permeabilised cells using a primary antibody specific to the protein of interest, 

followed by a fluorophore-conjugated secondary antibody to facilitate protein 

localisation by fluorescence microscopy. However, because of problems encountered 

with the sensitivity and cross-reactivity of rabbit anti-Par antiserum with S. aureus 

proteins, even after affinity purification and preadsorption of the antiserum with S. 

aureus cell lysates (Sections 3.2.2), these antibodies were not suitable for IFM of Par 

in S. aureus. Hence, in an attempt to improve the sensitivity and reduce the cross-

reactivity of anti-Par antibodies in IFM, antibodies were generated against predicted 

antigenic Par peptides, as described below.  

Rabbit polyclonal antibodies raised against predicted antigenic Par peptides were 

generated by Mimotopes Pty Ltd (Victoria, Australia). Prediction of antigenic Par 

peptides was performed by Mimotopes using the Par amino acid sequence (GenBank 

Accession Number AAF63251) and the epitope prediction programs PREDITOP 

(Pellequer and Westhof 1993) and ElliPro (Ponomarenko et al. 2008). Figure 5.1 

shows the results of the epitope predictions, with potentially antigenic peptides 

highlighted. Following discussions with Mimotopes consultants, two Par peptides, 

with the sequences SYSFDKSTNDRENFD (residues 160–174) and 

SQQQDDSFNQNDKDI (residues 213–227), were predicted as potentially antigenic 



 
 

Figure 5.1 Prediction of Par antigenic peptides 

Antigenic peptides were predicted using PREDITOP (Pellequer and Westhof 1993) 

and ElliPro (Ponomarenko et al. 2008) software for the Par protein sequence 

(GenBank Accession Number AAF63251). The Par protein sequence is shown with 

amino acid positions indicated on the left. Predicted antigenic peptides are highlighted. 

The position, antigenicity score and peptide length, in amino acids (aa), of predicted 

antigenic peptides are provided in separate tables for results generated by PREDITOP 

and ElliPro. In each table, peptides are listed in order of decreasing antigenicity. For 

PREDITOP, higher scores indicate higher antigenicity, and for ElliPro, higher scores 

indicate lower antigenicity. The sequences of the two peptides used for the generation 

of anti-Par peptide antibodies are outlined by boxes. 

 

 

 

 

 

 

 

 

 



 
 

 

PREDITOP 
 
  1 MKTIKMVADE LNVTKQTVVN NAKNLNISFE KENGVNYIDD NDYLKIVEKI TKKERTTQNK  
 61 ENKKSEITYE NTEKNRYNNS DGFETLKTKV NELEKQVEIF ETRAKNDEKY IENLTKQLDQ  
121 QNSNVNTLNK LLENQQILAL ESNKKIQKLE HQLEEERQLS YSFDKSTNDR ENFDVQEASY  
181 TSDSVNTDQY QKEEKKPEVQ PKDISESQQD EKSQQQDDSF NQNDKDIAIE ETQTKKGFWS  
241 RLFGG 

 
 
 
 
 
 
 
 
 

ElliPro 
 
  1 MKTIKMVADE LNVTKQTVVN NAKNLNISFE KENGVNYIDD NDYLKIVEKI TKKERTTQNK  
 61 ENKKSEITYE NTEKNRYNNS DGFETLKTKV NELEKQVEIF ETRAKNDEKY IENLTKQLDQ  
121 QNSNVNTLNK LLENQQILAL ESNKKIQKLE HQLEEERQLS YSFDKSTNDR ENFDVQEASY  
181 TSDSVNTDQY QKEEKKPEVQ PKDISESQQD EKSQQQDDSF NQNDKDIAIE ETQTKKGFWS  
241 RLFGG 
 

 

Amino acid position Score Peptide length (aa) 
155 – 173  0.626 19 
194 – 217  0.670 24 
179 – 188  0.733 10 
236 – 245  0.782 10 

 

 

 

 

 

Amino acid position Score Peptide length (aa) 
213 – 227 3.0000 15 
160 – 174 2.6433 15 
116 – 130 2.2126 15 
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by both programs (shown in boxes in Figure 5.1) and were selected for the 

production of anti-peptide antibodies. The two peptides were individually conjugated 

to the keyhole limpet hemocyanin carrier protein, and each conjugated peptide was 

used to inject two rabbits for the production of anti-peptide antisera. Polyclonal 

antisera isolated from the rabbits were affinity-purified against the peptides before 

being dispatched from Mimotopes. 

5.2.1 Reactivity of anti-Par peptide antibodies in S. aureus 

Upon receipt of the anti-Par peptide antibodies from Mimotopes (Section 5.2), the 

antibodies were tested for their ability to recognise the full-length Par protein. Cell 

lysates from mid-exponential phase cultures of S. aureus SK8250 cells (Table 2.1) 

harbouring pSK4829 (par) or pSK4833 (∆par) (Table 2.2) were prepared as 

described in Section 2.5.8 and fractionated by SDS-PAGE (Section 2.5.6). 

Approximately 300 ng of purified RGSH6-Par, prepared as described in Section 

3.3.4, was loaded in one lane to serve as a positive control for Par immunodetection. 

Since Par signals from S. aureus lysates were generally weak (see Figures 3.8 and 

3.12), Western blotting (Section 2.5.9) was performed using an equal mixture of the 

affinity-purified antisera obtained from the four rabbits (two rabbits for each of the 

two peptides) (Section 5.2), in order to increase the number of antibodies that can 

potentially bind each Par protein. In this way, it was anticipated that the strength of 

specific signals might be increased. The blot was divided into strips, which were 

incubated with 1:100 or 1:50 dilutions of either affinity-purified and preadsorbed 

rabbit anti-Par antiserum (Section 2.6.1 and 2.6.2), or anti-Par peptide antibodies 

(Section 5.2), diluted in 5% (w/v) skim milk powder in TBS (Table 2.5). Detection 



 

157 

 

was facilitated by a 1:2,000 dilution of goat anti-rabbit IgG HRP-conjugated 

secondary antibodies, followed by enhanced chemiluminescence detection, as 

described in Section 2.5.9.2. 

As shown in Figure 5.2A, the anti-peptide antibodies performed similarly to the 

affinity-purified and preadsorbed anti-Par antiserum raised against full-length Par 

protein, with the detection of an approximately 42 kDa band in cell lysates 

containing pSK4829 (par) but not pSK4833 (∆par). This protein band was 

consistent with the size of purified RGSH6-Par, which was detected with a 1:100 

dilution of the affinity-purified and preadsorbed anti-Par antibodies (Figure 5.2A). 

Therefore, the reactivity of the anti-Par peptide antibodies against full-length Par 

protein was confirmed. However, significant non-specific binding and cross-

reactivity with S. aureus proteins remained, which contributed to background signals 

that would be problematic for downstream IFM experiments. 

Although higher dilutions of the anti-Par peptide antibodies reduced background 

bands in Western blotting experiments, the relatively low specificity of the anti-

peptide antibodies compromised the detection of Par (data not shown). Hence, in 

order to increase specificity while decreasing cross-reactivity, normal goat serum 

was added to the blocking buffer, with the anticipation that immunoglobulin-binding 

S. aureus proteins might bind initially to the antibodies in the goat serum, and thus 

be blocked from binding non-specifically to anti-Par peptide antibodies. Importantly, 

goat serum should not interfere with immunodetection using anti-rabbit IgG 

secondary antibodies. Western blotting was subsequently performed on S. aureus 



 
 

Figure 5.2 Immunodetection of Par in S. aureus using anti-Par peptide antibodies 

Cleared lysates from S. aureus SK8250 cells carrying pSK4829 (par) (+) or pSK4833 

(∆par) (–), were fractionated by SDS-PAGE (Section 2.5.6) and subjected to Western 

blotting (Section 2.5.9) using either 1:100 or 1:50 dilutions of affinity-purified and 

preadsorbed anti-Par antibodies (Sections 2.6.1 and 2.6.2), or anti-Par peptide 

antibodies (Section 2.6.3). As a positive control, approximately 300 ng of purified 

RGSH6-Par was loaded into one lane of each gel. A. Western blot of Par in S. aureus 

using either 1:100 or 1:50 dilutions of affinity- purified and preadsorbed anti-Par 

antibodies (Sections 2.6.1 and 2.6.2), or anti-Par peptide antibodies (Section 2.6.3) in 

the absence of normal goat serum. B. Western blot of Par in S. aureus using 1:100 

dilution of anti-Par peptide antibodies, in the presence of 5% (v/v), 10% (v/v) or 20% 

(v/v) normal goat serum in the blocking buffer. C. Western blot of Par in S. aureus 

using anti-Par peptide antibodies diluted 1:100–1:5,000 in blocking buffer containing 

5% (v/v) normal goat serum. Lane M contains prestained protein markers, with marker 

sizes indicated in kDa on the left of each blot. The position and approximate measured 

size of Par is indicated by a black arrowhead. 
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cell lysates as described above, with the addition of 5% (v/v), 10% (v/v) or 20% 

(v/v) normal goat serum to the blocking buffer.  

Figure 5.2B reveals a significant reduction in non-specific background bands when 

blots were detected using a 1:100 dilution of anti-Par peptide antibodies in the 

presence of normal goat serum. Par (and RGSH6-Par) was detected as a clear band of 

approximately 42 kDa, with only two non-specific bands detected at approximately 

48 kDa and 58 kDa (Figure 5.2B). There appeared to be no visible difference in the 

signal:noise ratios between blots treated with 5% (v/v), 10% (v/v) or 20% (v/v) 

normal goat serum, and hence a concentration of 5% (v/v) normal goat serum was 

added to subsequent blocking buffers.  

In order to determine the minimum concentration that could be used for the 

immunodetection of Par with anti-Par peptide antibodies whilst minimising non-

specific background bands, blots containing lysates and purified RGSH6-Par, 

prepared as described above, were titrated with anti-Par peptide antibodies (1:100–

1:5,000 dilutions) in the presence of 5% (v/v) normal goat serum in the blocking 

buffer. The results, shown in Figure 5.2C, revealed that the Par protein band of 

approximately 42 kDa could be detected using anti-Par peptide antibodies diluted up 

to 1:1,000 in blocking buffer (albeit very weakly). However, the blots also 

demonstrated the relatively low specificity of the anti-Par peptide antibodies for Par, 

as both the Par protein band and the non-specific protein bands showed a reduction 

in signal intensity as the dilution of primary antibodies increased. Since Par could be 

readily detected using a 1:100 dilution of anti-Par peptide antibodies, and since the 

signal:noise ratio was independent of the primary antibody concentration, subsequent 
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Western blotting experiments using anti-Par peptide antibodies for the 

immunodetection of Par in S. aureus were performed using the optimised conditions 

of anti-Par peptide antibodies diluted 1:100 in blocking buffer containing 5% (v/v) 

normal goat serum, as described in Section 2.5.9.2. 

5.3. Immunofluorescence microscopy of Par in S. aureus 

5.3.1 Immunofluorescence microscopy of Par using anti-Par peptide 

antibodies 

Using the optimised conditions established by Western blotting for the detection of 

Par in S. aureus (Section 5.2.1), immunofluorescence microscopy (IFM) was 

performed on fixed S. aureus cells to determine the cellular localisation of Par. Mid-

exponential phase S. aureus SK8250 cells harbouring either pSK4829 (par) or 

pSK4833 (∆par) (Table 2.2) were fixed and prepared for IFM on multitest slides as 

described in Section 2.11.1. A number of parameters were varied, such as 

lysostaphin concentration (0.1–300 µg/ml), lysis time (1 min–30 min), lysis 

temperature (25°C–42°C), dilution of anti-Par peptide antibodies (1:100–1:10,000), 

incubation time with primary antibodies (1 h–overnight) and incubation temperature 

with primary antibodies (4°C–25°C). For each of the conditions tested, fluorescent 

foci were observed regardless of whether the cells produced Par or not (for 

representative images, see Figures 5.3A–B). No fluorescence was detected when 

anti-Par peptide antibodies were omitted from the procedure (Figure 5.3C), which 

indicates that the fluorescent foci were not caused by the secondary antibody alone. 

Since there were no distinguishable differences in the outcomes of IFM performed 

on S. aureus cells harbouring pSK4829 or pSK4833, it appeared that the low 



 
 

Figure 5.3 Immunofluorescence microscopy in S. aureus 

A–C. Immunofluorescence microscopy (IFM) of Par in S. aureus. Mid-exponential 

phase S. aureus SK8250 cells harbouring pSK4829 (par) (A) or pSK4833 (∆par) (B) 

were prepared for IFM using anti-Par peptide antibodies and goat anti-rabbit IgG 

Alexa Fluor 488-conjugated antibodies, as described in Section 5.3.1. C. 

Immunofluorescence detection of Par in S. aureus cells carrying pSK4829, as 

described in (A), with the omission of anti-Par peptide antibodies. Images shown are 

overlays of bright-field and fluorescence micrographs. Scale bar = 1 µm. 

D. IFM of FtsZ and FtsZ-mRFPmars in S. aureus. S. aureus SK8250 cells harbouring 

pSK9075 (Pxyl/tet::ftsZ-mRFPmars) were grown to early-exponential phase and ftsZ-

mRFPmars was induced with 2.5 ng/µl anhydrous tetracycline for 1 h. Cells were 

prepared for IFM using anti-FtsZ antibodies and goat anti-rabbit IgG Alexa Fluor 488-

conjugated antibodies, as described in Section 2.11.1. From top left to bottom right: 

FtsZ and FtsZ-mRFPmars detected by IFM; FtsZ-mRFPmars detected by fluorescence 

microscopy; bright-field (BF); overlay of fluorescence images; overlay of bright-field 

(BF) and fluorescence images. Scale bar = 1 µm. 
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sensitivity and cross-reactivity of anti-Par peptide antibodies remained problematic 

for the generation of meaningful IFM results, despite showing significant 

improvement with the addition of normal goat serum (as demonstrated by Western 

blots in Section 5.2.1). 

5.3.2 Validation of S. aureus immunofluorescence microscopy protocol 

To verify that the difficulties experienced with the detection of Par in S. aureus by 

IFM were not due to technical problems with the IFM protocol, IFM was performed 

on the staphylococcal cell division protein, FtsZ. The localisation of FtsZ in S. 

aureus is well-documented (Pinho and Errington 2005, Liew et al. 2011, Veiga et al. 

2011, Strauss et al. 2012, Brzoska and Firth 2013, Bottomley et al. 2014) and anti-

FtsZ antibodies from Prof. Elizabeth Harry (University of Technology, Sydney, 

Australia) have successfully localised FtsZ in S. aureus using IFM (Liew et al. 

2011). As a further validation of the IFM protocol, S. aureus SK8250 cells were 

electroporated (Section 2.3.4) with pSK9075 (Table 2.2), which expresses ftsZ-

mRFPmars from the inducible Pxyl/tet promoter. The fluorescence localisation of 

FtsZ-mRFPmars in S. aureus has been published by Brzoska and Firth (2013). IFM 

using anti-FtsZ primary antibodies and Alexa Fluor 488-conjugated secondary 

antibodies (GFP) should, therefore, detect endogenous FtsZ as well as FtsZ-

mRFPmars, while FtsZ-mRFPmars fluorescence would be detected using 

epifluorescence microscopy (RFP) (Section 2.11.2). In this way, colocalisation of 

GFP and RFP fluorescence should verify the IFM protocol used.  

S. aureus SK8250 cells carrying pSK9075 (Pxyl/tet::ftsZ-mRFPmars) (Table 2.2) were 

grown at 37°C in LB-broth (Table 2.3) containing antibiotic selection (Table 2.4) 



 

161 

 

until early-exponential phase (approximately 2 h) (Section 2.1), before expression of 

ftsZ-mRFPmars was induced from pSK9075 for 1 h with 2.5 ng/ml 

anhydrotetracycline. Cells were prepared for IFM as described in Section 2.11.1, and 

FtsZ was immunodetected using 60 µg/ml lysostaphin and a 1:20,000 dilution of 

anti-FtsZ antibodies, followed by a 1:2,000 dilution of goat anti-rabbit IgG Alexa 

Fluor 488-conjugated secondary antibodies. Figure 5.3D shows the fluorescence 

localisation of FtsZ-mRFPmars and FtsZ as detected by epifluorescence microscopy 

and IFM using anti-FtsZ antibodies. Consistent with published images, FtsZ 

appeared as arcs, rings or lines (Pinho and Errington 2005, Liew et al. 2011, Veiga et 

al. 2011, Strauss et al. 2012, Brzoska and Firth 2013, Bottomley et al. 2014). 

Furthermore, the localisation pattern of FtsZ corresponded well with the localisation 

of FtsZ-mRFPmars, which confirms that the fluorescence pattern resulting from IFM 

with anti-FtsZ antibodies was specific and reflective of FtsZ localisation. The 

specific detection of FtsZ in S. aureus by IFM, therefore, verified the IFM protocol, 

and suggests that the inability to specifically detect Par in S. aureus was not the 

result of methodological limitations, but rather, the result of factors related to Par 

IFM (discussed further in Section 5.9.1).  

5.3.3 Construction of a pSK1 minireplicon encoding RGSH6-Par 

Because Par localisation could not be detected specifically by IFM using anti-Par 

peptide antibodies (Section 5.3.1), an alternative strategy for protein localisation was 

considered, whereby monoclonal antibodies would be used to perform IFM on an 

epitope-tagged derivative of Par. It was anticipated that monoclonal antibodies might 

have higher specificity and greater affinity for the epitope and hence reduce 
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background signals, which have proven to be problematic with the anti-Par peptide 

antibodies (Section 5.3.1). To this end, an N-terminal RGSH6 tag was fused in-frame 

of the Par coding sequence on the pSK1 minireplicon, pSK4829 (Table 2.2), using 

overlap extension PCR. Fusion of the epitope to the N-terminus of Par was favoured 

because a C-terminally-tagged Par-RGSH6 protein could not be purified using Ni2+-

NTA affinity chromatography (Simpson et al. 2003). This suggests that the tag 

might have been inaccessible to the purification resin, and as such, a C-terminal 

RGSH6 tag might also be inaccessible to anti-His antibodies in IFM.  

For overlap extension PCR, primers NFRepDwn4829 and HC33 (Table 2.6) were 

used to PCR-amplify (Section 2.4.4) a 1.4 kb DNA fragment containing pSK1 rep 

and the region upstream of par from pSK4829 template DNA (Table 2.2). A separate 

reaction was used to amplify the Par coding sequence using primers HC34 and HC21 

(Table 2.6) from pSK4829 template DNA. Primers HC33 and HC34 contain 

complementary sequences that encode RGSH6 followed by three glycine residues, 

such that subsequent fusion of NFRepDwn4829/HC33 and HC34/HC21 PCR 

products by overlap extension PCR, using primers NFRepDwn4829 and HC21, 

incorporates the RGSH6 tag and three glycine residues upstream and in-frame of the 

Par coding sequence. In this way, Ppar drives expression of an N-terminal RGSH6-

tagged Par fusion protein. The amplicon from the overlap extension PCR was 

digested with BamHI and HindIII (Section 2.4.6) and ligated (Section 2.4.11) to the 

dephosphorylated (Section 2.4.10) sites of the similarly-digested pWE180 plasmid 

(Table 2.2). Ligation reactions were used to transform E. coli DH5α cells to 

ampicillin resistance (Section 2.3.2), after which plasmid DNA was isolated from 

selected transformants (Section 2.4.1) and screened for recombination by restriction 
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digestion using BamHI and HindIII (Section 2.4.6). Following agarose gel 

electrophoresis (Section 2.4.3) of the digestion reactions, plasmids displaying the 

anticipated restriction profile were sequenced (Section 2.4.14) using primers HC2, 

HC3, HC21, NFRepDwn4829, SJ37 and SJ38 (Table 2.6). The pSK1 minireplicon 

encoding an in-frame N-terminal fusion of RGSH6 and three glycine residues to the 

Par coding sequence was named pSK9135 (Table 2.2). 

5.3.4 Functionality of RGSH6-Par in S. aureus 

In order for the localisation of RGSH6-Par to be representative of Par localisation in 

S. aureus, it was necessary to demonstrate the functionality of the tagged Par 

derivative. S. aureus SK8250 cells were separately electroporated (Section 2.3.4) 

with pSK4829 (par), pSK4833 (∆par) and pSK9135 (Ppar::RGSH6-par) (Table 2.2) 

and selected for erythromycin resistance (Table 2.4). Plasmid segregational stability 

assays were performed on individual transformants, as described in Section 2.7. The 

results shown in Figure 5.4 reveal that during five days of serial subculture in the 

absence of antibiotic selection, the segregational stability of pSK9135 (Ppar::RGSH6-

par) was similar to that of pSK4833 (∆par), with the plasmid completely lost from 

the population after three days. This was compared to approximately 51±5% of the 

population that retained pSK4829 (par) at the completion of the assay (Figure 5.4). 

The stability assays, therefore, suggested that RGSH6-Par was non-functional, and 

hence would not be suitable as a substitute for Par in IFM studies. Because IFM 

using anti-Par peptide antibodies could not specifically detect Par in S. aureus 

(Section 5.3.1), and because a functional epitope-tagged Par derivative could not be 

obtained, further attempts to localise Par in S. aureus by IFM were suspended.  



 
 

Figure 5.4 Effect of RGSH6-Par on plasmid segregational stability 

Plasmid segregational stability assay of pSK1 minireplicons encoding an RGSH6-

tagged derivative of Par. The retention of the pSK1 minireplicon pSK9135 

(Ppar::RGSH6-par) ( ) in S. aureus SK8250 cells was determined as described in 

Section 2.7. For reference, segregational stability data for pSK4829 (par) ( ) and 

pSK4833 (∆par) ( ) from Figure 3.2A is also shown. Five days of serial subculture 

represents approximately 75 generations. Data are normalised to 100% plasmid 

retention on Day 0. The averages of three independent assays are shown. Error bars 

represent standard error of the mean. 
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5.4. Live cell epifluorescence microscopy of fluorescently-tagged 

Par in S. aureus 

Since IFM localisation of Par in fixed S. aureus cells proved challenging (Section 

5.3.1), epifluorescence microscopy of green fluorescent protein (GFP)-tagged Par 

fusion proteins was performed on live S. aureus cells. The functionality of GFP-

tagged Par derivatives was evaluated using plasmid segregational stability assays to 

ensure that fluorescence localisation would be representative of Par localisation. As 

detailed in Sections 5.4.1–5.4.5 below, a number of par-gfp systems were developed 

in an attempt to obtain a system that demonstrated functionality of Par GFP fusions 

in the stabilisation of pSK1 minireplicons.  

5.4.1 Construction of pSK1 minireplicons encoding Par GFP fusions 

In order to maintain wild-type protein levels, N- and C- terminal fusions of Par to a 

GFP variant, GFPmut1 (Cormack et al. 1996), were generated by overlap extension 

PCR such that expression of the Par GFP fusions was under the control of the Ppar 

promoter. The construction of DNA fragments encoding Par GFP fusions using 

overlap extension PCR is shown diagrammatically in Figure 5.5 and is described in 

detail below.  

For the construction of a DNA fragment encoding an N-terminal GFP-Par fusion, 

pSK4829 (Table 2.2) was used as the template DNA in two separate PCRs (Section 

2.4.4), using primer set NFRepDwn4829/HC19 (Table 2.6) to amplify a 1.4 kb 

fragment encompassing pSK1 rep and the region upstream of par including the par 

RBS, and primer set HC20/HC21 (Table 2.6) to amplify a 0.7 kb fragment 



 
 

Figure 5.5 Fusion of gfp to pSK1 par using overlap extension PCR 

Diagrammatic overview of the construction of gfp-par (A) and par-gfp (B) fusion 

products using overlap extension PCR. A detailed description is provided in Section 

5.4.1.  

A. For the construction of gfp-par, primers NFRepDwn4829 and HC19 were used to 

PCR-amplify a DNA fragment containing pSK1 rep (yellow) and the par-rep 

intergenic region (orange), and primers HC20 and HC21 were used to amplify the par 

coding sequence (purple) from pSK4829 template DNA. pLOW-GFP was used as the 

template for PCR-amplification of gfpmut-1 (green) using primers HC22 and HC23. 

To enable fusion of PCR products, complementary sequences were appended to the 5’ 

ends of primers. Blue boxes represent the sequence of the SCGAS linker between gfp 

and par. Black boxes represent sequences downstream of rep on pSK4829. The 2.9 

kb gfp-par fusion product was generated by overlap extension PCR of the three 

amplicons using oligonucleotides NFRepDwn4829 and HC21. 

B. For the construction of par-gfp, primers NFRepDwn4829 and HC16 were used to 

PCR-amplify a DNA fragment containing pSK1 rep, the par-rep intergenic region and 

the par coding sequence from pSK4829 template DNA. pLOW-GFP was used as the 

template for PCR-amplification of gfpmut-1 using primers HC17 and HC18. To enable 

fusion of PCR products, complementary sequences were appended to the 5’ ends of 

primers. Blue boxes represent the sequence of the SCGAS linker between par and gfp. 

Black boxes represent sequences downstream of rep on pSK4829. The 2.9 kb gfp-par 

fusion product was generated by overlap extension PCR of the two amplicons using 

oligonucleotides NFRepDwn4829 and HC18. 

 



 
 

 

A. 

 

B. 

 



 

165 

 

containing the par gene. A third PCR was performed using primer set HC22/HC23 

(Table 2.6) to amplify a 0.7 kb fragment encoding gfpmut-1 from pLOW-GFP 

template DNA (Table 2.2). Complementary sequences encoding a five-residue 

linker, SCGAS (Veiga et al. 2011), to be located between GFP and Par, were 

incorporated into primers HC20 and HC23 to minimise potential interference of Par 

structure and function by GFP (Chen et al. 2013). The SCGAS linker has previously 

been used for successful localisation of S. aureus fluorescent protein fusions, such as 

FtsZ, EzrA, Spo0J, Noc and ParM, as described in Veiga et al. (2011) and Brzoska 

and Firth (2013). HC19 and HC22 contain complementary sequences encompassing 

the start of the GFP coding sequence as well as the sequence upstream of par, such 

that subsequent overlap extension PCR using primers NFRepDwn4829 and HC21 

fused the gfp-containing amplicon to the rep-containing amplicon. The resulting 2.9 

kb fusion product, therefore, contained pSK1 rep and the coding sequence for GFP-

Par, arranged in the same genetic organisation as rep and par on pSK1 (Figure 

5.5A).  

The generation of a DNA fragment encoding a C-terminal Par-GFP fusion was also 

performed by overlap extension PCR. Primer set NFRepDwn4829/HC16 (Table 2.6) 

was used to PCR-amplify (Section 2.4.4) a 2.1 kb fragment encompassing pSK1 rep 

and par from pSK4829 template DNA (Table 2.2). A separate reaction was used to 

amplify (Section 2.4.4) gfpmut-1 from pLOW-GFP template DNA (Table 2.2) using 

primer set HC17/HC18 (Table 2.6). Primers HC16 and HC17 contain 

complementary sequences encoding an SCGAS linker (Veiga et al. 2011) to be 

introduced between Par and GFP such that overlap extension PCR using primers 

NFRepDwn4829 and HC18 fused the GFP coding region downstream of the rep-par 
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fragment, producing a 2.9 kb fusion product containing pSK1 rep and par-gfp in the 

same genetic organisation as rep and par on pSK1 (Figure 5.5B).  

The 2.9 kb overlap extension PCR products, encoding GFP-Par and Par-GFP, were 

individually ligated to the restricted (Section 2.4.6) and dephosphorylated (Section 

2.4.10) BamHI and HindIII sites of pWE180 (Table 2.2), essentially as described 

above for the construction of pSK9135 (Ppar::RGSH6-par) (Section 5.3.3). Ligation 

reactions were used to transform E. coli DH5α cells to ampicillin resistance (Section 

2.3.2), and plasmid DNA was isolated from selected transformants (Section 2.4.1) to 

screen for recombinants by restriction digestion with BamHI and HindIII (Section 

2.4.6). Restricted plasmids were fractionated by agarose gel electrophoresis (Section 

2.4.3), and plasmids showing the expected banding pattern were sequenced (Section 

2.4.14) using primers NFRepDwn4829, HC2, HC11, HC20 and SJ37 (Table 2.6) for 

the gfp-par fusion, and using primers NFRepDwn4829, HC2, HC11, HC16 and SJ37 

(Table 2.6) for the par-gfp fusion. Plasmids containing pSK1 rep and encoding GFP-

Par or Par-GFP fusions of the correct sequence were designated pSK9087 and 

pSK9088, respectively (Table 2.2). 

A Western blot analysis (Section 2.5.9) was performed to confirm the production of 

GFP-Par and Par-GFP in S. aureus. The pSK9087 (Ppar::gfp-par) and pSK9088 

(Ppar::par-gfp) plasmids generated above, as well as the pSK1 minireplicons 

pSK4829 (par) and pSK4833 (∆par) (Table 2.2), were each separately introduced 

into S. aureus SK8250 cells by electroporation (Section 2.3.4). Single transformants 

were cultured to mid-exponential phase (Section 2.1) and whole cell lysates were 

prepared as described in Section 2.5.8. Lysates were fractionated by SDS-PAGE 
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(Section 2.5.6), and immunodetection of Par and Par GFP fusion proteins was 

carried out by Western blotting (Section 2.5.9) using anti-Par peptide antibodies 

(Section 2.6.3).  

The Western blot shown in Figure 5.6A reveals the presence of an approximately 42 

kDa band that is consistent with the apparent size of Par (for example, see Figure 

3.2B). Note that the apparent size of Par differs from its expected size of 29 kDa, as 

discussed in Section 3.7.1. The fusion of GFP to Par adds another 27 kDa, resulting 

in a theoretical size of 56 kDa for Par GFP fusion proteins. Consistent with this, 

GFP-Par was detected as a band of approximately 63 kDa, while Par-GFP appeared 

as a band of approximately 60 kDa (Figure 5.6A). The detection of both GFP-Par 

and Par-GFP by Western blotting, therefore, confirmed their production in S. aureus. 

5.4.2 Segregational stability of pSK1 minireplicons encoding Par GFP 

fusions 

To evaluate the impact of the fused GFP domains on Par activity, the functionality of 

the GFP-Par and Par-GFP fusion proteins, generated above (Section 5.4.1), was 

assessed using plasmid segregational stability assays. pSK1 minireplicons pSK4829 

(par), pSK4833 (∆par), pSK9087 (Ppar::gfp-par) and pSK9088 (Ppar::par-gfp) 

(Table 2.2) were used to separately electroporate S. aureus SK8250 cells to 

erythromycin resistance, as described in Section 2.3.4. Transformants were subjected 

to plasmid segregational stability assays (Section 2.7) to determine the segregational 

stability of each of the pSK1 minireplicons during five days (approximately 75 

generations) of serial subculture in the absence of antibiotic selection. As shown in 

Figure 5.6B, pSK4829 (par) was retained by approximately 50±9% of the cell 



 
 

Figure 5.6 Effect of GFP fusions on plasmid segregational stability 

A. Immunodetection of Par GFP protein fusions in S. aureus by Western blotting. 

Cleared lysates from S. aureus SK8250 cells carrying pSK4829 (Par), pSK4833 (No 

Par), pSK9087 (GFP-Par) or pSK9088 (Par-GFP) were fractionated by SDS-PAGE 

(Section 2.5.6) and subjected to Western blotting (Section 2.5.9) using anti-Par peptide 

antibodies (Section 2.6.3). Lane M contains prestained protein markers, with marker 

sizes indicated in kDa on the left of the blot. Positions of relevant proteins and their 

approximate measured sizes are indicated by black arrowheads. 

B. Plasmid segregational stability assay of pSK1 minireplicons encoding Par GFP 

protein fusions. The retention of pSK1 minireplicons pSK4829 (par) ( ), pSK4833 

(∆par) ( ), pSK9087 (Ppar::gfp-par) ( ) and pSK9088 (Ppar::par-gfp) ( ) in S. aureus 

SK8250 cells was determined as described in Section 2.7. Five days of serial 

subculture represents approximately 75 generations. Data are normalised to 100% 

plasmid retention on Day 0. The averages of three independent assays are shown. Error 

bars represent standard error of the mean. 

 

 

 

 

 

 

 



 

 

 

A. 

 

 

B.  

 



 

168 

 

population after five days, whereas pSK4833 (∆par) was lost from the population by 

Day 4, which is consistent with previous findings (Sections 3.2.2 and 5.3.4). GFP-

Par was unable to stabilise the pSK1 minireplicon, with the segregational stability of 

pSK9087 similar to that of pSK4833 (Figure 5.6B). However, there was a slight 

improvement in the segregational stability of pSK9088 (Ppar::par-gfp) compared to 

pSK4833, with a slower observed rate of plasmid loss, which eventuated in 5±1% of 

the population retaining the pSK9088 plasmid on Day 4 and 2±1% retaining the 

plasmid on Day 5 of the assay (Figure 5.6B). Differences in plasmid stability 

between pSK4833 and pSK9088 were more pronounced at earlier stages of the 

assay, with 30±4% retention of pSK9088 compared to 8±2% retention of pSK4833 

on Day 2, and 14±2% compared to 2±1% retention of pSK9088 and pSK4833, 

respectively, on Day 3 of the assay (Figure 5.6B). Taken together, the results from 

the stability assays suggest that GFP-Par was non-functional, and that Par-GFP 

might have partial functionality.  

The severe reduction in the functionality of Par GFP fusion proteins when expressed 

in cis to the pSK1 par centromere-like site from Ppar, compromised the utility of 

these fusion proteins for fluorescence localisation studies of Par in S. aureus, since 

the localisation of Par GFP fusions might not accurately reflect Par localisation. 

However, since Par-GFP is at least partially functional and the nature of the partial 

loss of function is unknown, it is possible that the localisation of Par-GFP in S. 

aureus might be unaffected by the loss of functionality. Therefore, epifluorescence 

microscopy was performed in S. aureus to determine whether Par-GFP might 

localise differently to non-functional GFP-Par. 
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5.4.3 Epifluorescence microscopy of Par GFP fusions in S. aureus 

S. aureus SK8250 cells carrying either pSK9087 (Ppar::gfp-par) or pSK9088 

(Ppar::par-gfp) (Table 2.2) were grown to mid-exponential phase and prepared for 

epifluorescence microscopy as described in Section 2.11.2. As shown in Figures 

5.7A–B, there did not appear to be a dramatic difference between the localisation of 

GFP-Par and Par-GFP in S. aureus. Both fusion proteins appeared to produce one to 

four fluorescent foci that were located around the cell periphery (Figures 5.7A–B). 

Since no obvious differences in localisation were observed, and considering that Par-

GFP is only partially functional, alternative Par GFP expression systems were 

developed in an attempt to obtain a more reliable representation of Par localisation.  

5.4.4 Development of a pSK1 par system with inducible, in trans expression of 

Par 

In order to determine whether the segregational stability of pSK9088 (Ppar::par-gfp) 

(Table 2.2) could be improved such that Par-GFP might be more representative of 

Par localisation, the par-gfp partitioning system on pSK9088 was titrated in trans 

with wild-type Par from a compatible, co-resident plasmid. In this way, functional, 

wild-type Par might be able to complement the partial functionality of par-gfp and 

increase the stability of pSK9088, for example by interacting with the centromere-

like site or with Par-GFP to improve its partitioning function. Co-expression of 

untagged and fluorescently-tagged proteins has been widely used as a strategy to 

overcome the partial functionality of tagged proteins. Specifically, in S. aureus, 

fluorescent protein fusions to the cell division proteins FtsZ, Spo0J, EzrA, PBP4 and 

Noc, have all been expressed and localised in the presence of their untagged 



 
 

Figure 5.7 Fluorescence localisation of Par GFP fusion proteins in S. aureus cells 

The localisation of Par GFP fusion proteins was visualised by epifluorescence 

microscopy on S. aureus SK8250 cells harbouring pSK9087 (Ppar::gfp-par) (Ai–iii) 

or pSK9088 (Ppar::par-gfp) (Bi–ii). Cells were grown to mid-exponential phase and 

prepared for epifluorescence microscopy as described in Section 2.11.2. Nucleoid 

DNA was stained with DAPI. Cells in each of (A) and (B) are biological replicates. 

From top left to bottom right: Par GFP fusion protein; DNA; bright-field (BF); overlay 

of GFP and DNA; overlay of bright-field (BF) and GFP; overlay of bright-field (BF), 

GFP and DNA. Scale bar = 1 µm. 
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counterparts (Pereira et al. 2010, Veiga et al. 2011, Strauss et al. 2012). The 

interplay between Par and Par-GFP in the stabilisation of pSK9088 would result in a 

more accurate reflection of Par localisation by Par-GFP. 

5.4.4.1 Construction of an IPTG-inducible par expression plasmid 

An inducible par expression plasmid for the supply of Par in trans to pSK9088 

(Ppar::par-gfp) (Table 2.2) was constructed from pJEG015 (Table 2.2). pJEG015 is a 

derivative of pLOW-GFP (Table 2.2) (Liew et al. 2011) and contains the tetA(K) 

tetracycline resistance gene in place of the ermC erythromycin resistance gene on 

pLOW-GFP. As such, the selection for pJEG015 is compatible with the 

erythromycin selection used for pSK9088 in S. aureus. Furthermore, pJEG015 

contains the pSK41 staphylococcal replicon, which is compatible with the pSK1 

replicon on pSK9088. Importantly, pJEG015 features an IPTG-inducible Pspac 

promoter that is controlled by the Lac repressor, encoded by lacI on the same 

plasmid. Titratable protein production has been demonstrated by Liew et al. (2011), 

and hence Par induction levels can be optimised for the stabilisation of pSK1 

minireplicons in trans.  

A 0.8 kb DNA fragment containing the par ribosome binding site (RBS) and Par 

coding region, including the stop codon, was amplified by PCR (Section 2.4.4) from 

pSK4829 template DNA (Table 2.2) using primers SJ69 and HC21 (Table 2.6). The 

PCR was electrophoresed on a 2% (w/v) agarose gel (Section 2.4.3), gel-purified 

(Section 2.4.7) and digested with SalI and HindIII (Section 2.4.6). The digests were 

then purified (Section 2.4.7) and ligated (Section 2.4.11) to the dephosphorylated 

ends (Section 2.4.10) of the SalI and HindIII digested (Section 2.4.6) pJEG015 
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plasmid (Table 2.2), such that the stop codon was located between the par and gfp 

sequences. The ligation reaction was used to transform E. coli DH5α cells to 

ampicillin resistance (Section 2.3.2), and selected transformants were screened by 

restriction digestion (Section 2.4.6) of isolated plasmid DNA (Section 2.4.1) with 

SalI and HindIII. Plasmids containing the correct restriction profile were identified 

by agarose gel electrophoresis (Section 2.4.3) of the digests, and were sequenced 

(Section 2.4.14) using primers SJ69 and HC21 (Table 2.6). The IPTG-inducible 

expression construct containing the par RBS and par coding region of the correct 

sequence was named pSK9104 (Table 2.2). 

5.4.4.2 Effect of Par on plasmid segregational stability in trans 

The ability of Par to stabilise an unstable pSK1 minireplicon in trans was assessed 

using plasmid segregational stability assays. S. aureus SK8250 cells were 

electroporated (Section 2.3.4) simultaneously with pSK9104 (Pspac::par) (Table 2.2) 

and one of the following pSK1 minireplicons containing the pSK1 par centromere-

like site: pSK4833 (∆par), pSK9087 (Ppar::gfp-par) or pSK9088 (Ppar::par-gfp) 

(Table 2.2). The segregational stability of the pSK1 minireplicon carried in each 

strain was determined by performing plasmid segregational stability assays (Section 

2.7) in the presence of various levels of par induction (0, 0.05, 0.1, 0.5 and 1 mM 

IPTG; Liew et al. 2011), and with constant tetracycline selection for pSK9104.  

The stability assay results in Figure 5.8A show that titration with Par in trans was 

capable of increasing the segregational stability a pSK1 minireplicon containing only 

the par centromere-like site (pSK4833). However, at the induction levels tested, Par 

was unable to fully complement the par deletion in trans, since the segregational 



 
 

Figure 5.8 Effect of Par on plasmid segregational stability, in trans 

Plasmid segregational stability assays of pSK1 minireplicons in the presence of Par, 

supplied in trans. The retention of pSK4833 (∆par) (A), pSK9087 (Ppar::gfp-par) (B) 

and pSK9088 (Ppar::par-gfp) (C) in S. aureus SK8250 cells was determined as 

described in Section 2.7. Par was supplied in trans from a co-resident plasmid, 

pSK9104 (Pspac::par), by induction with 0 (   ), 0.05 ( ), 0.1 ( ) , 0.5 (  ) or 1 mM (×) 

IPTG. Assays were performed with continuous tetracycline selection for pSK9104. 

For reference, segregational stability data for pSK4829 (par) ( ) from Figure 3.2A is 

shown with a dashed line. Five days of serial subculture represents approximately 75 

generations. Data are normalised to 100% plasmid retention on Day 0. The averages 

of three independent assays are shown. Error bars represent standard error of the mean. 

Illustrative maps of the plasmids contained in the assayed S. aureus strains are shown 

above the graphs. 
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stability of pSK4833 did not reach the level of stability observed for pSK4829, 

which contains the wild-type pSK1 par system (Figure 5.8A). A similar outcome 

was observed for the titration of pSK9087 (Ppar::gfp-par) with Par, as increased par 

induction levels resulted in a noticeable increase in plasmid stability, especially 

during the first three days of the assay (Figure 5.8B). However, as was the case for 

pSK4833 (∆par), the segregational stability of pSK9087 did not approach that of 

pSK4829 (par), even with maximum induction of par expression (Figure 5.8B). 

Conversely, when pSK9088 (Ppar::par-gfp) was titrated with Par in trans from 

pSK9104 (Pspac::par), segregational stability increased from being partially stable in 

the absence of par induction, to displaying a similar level of stability to pSK4829 

when par expression was induced with 0.5 mM or 1 mM IPTG (Figure 5.8C). This 

suggests that maximum induction of par in trans to pSK9088 was sufficient to fully 

complement the partial functionality of the par-gfp system.  

Taken together, the stability assay data presented in Figures 5.8A–C reveal a 

stabilisation effect on pSK4833, pSK9087 and pSK9088 when Par was provided in 

trans. Since plasmid stability generally increased with increasing IPTG levels, it 

appeared that the stability of the pSK1 minireplicons could be titrated with Par, 

which suggests some degree of Par functionality in trans. Furthermore, because 

maximum induction of par was unable to increase the stability of pSK4833 (∆par) to 

pSK4829 (par) levels in trans (Figure 5.8A), the restored stability of pSK9088 

(Ppar::par-gfp) was, therefore, most likely a combination of the partial functionality 

of Par-GFP in cis, and the partial complementation provided by Par in trans. 
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To correlate the observed increases in plasmid segregational stability with increased 

Par protein levels, rather than increased concentrations of IPTG, Western blot 

analyses were performed for each of the assayed S. aureus strains at each of the 

IPTG levels tested. S. aureus SK8250 cells carrying pSK9104 (Pspac::par) and either 

pSK4833 (∆par), pSK9087 (Ppar::gfp-par) or pSK9088 (Ppar::par-gfp) (Table 2.2) 

were grown to mid-exponential phase (Section 2.1) with selection for both co-

resident plasmids (Table 2.4), and in the presence either 0, 0.05, 0.1, 0.5 or 1 mM 

IPTG. S. aureus SK8250 cells carrying either pSK4829 (par) or pSK4833 (Table 

2.2) were included as positive and negative controls for Par immunodetection, 

respectively. S. aureus whole cell lysates, prepared as described in Section 2.5.8, 

were fractionated by SDS-PAGE (Section 2.5.6) and proteins were transferred to 

PVDF membranes for Western blotting (Section 2.5.9) using anti-Par peptide 

antibodies (Section 2.6.3). The Western blots in Figures 5.9A–C show the detection 

of Par as an approximately 42 kDa band from S. aureus cells carrying pSK4829 

(par), but not from cells carrying pSK4833 (∆par). In cells carrying pSK4833 and 

pSK9104 (Pspac::par), Par was not detected in the absence of IPTG induction, 

however, a 42 kDa band appeared in the lysates of all cells where par expression was 

induced (Figure 5.9A). This confirms that IPTG induction resulted in the specific 

production of Par from pSK9104. Notably, a band corresponding to the size of Par-

GFP (approximately 60 kDa) did not appear from IPTG induction of the Pspac 

promoter on pSK9104, which suggests that the stop codon incorporated between par 

and gfp on pSK9104 was adequate in preventing translational read-through of the gfp 

coding sequence. 



 
 

Figure 5.9 Immunodetection of Par, supplied in trans to pSK1 minireplicons 

S. aureus SK8250 cells carrying pSK9104 (Pspac::par) and either pSK4833 (∆par) (A), 

pSK9087 (Ppar::gfp-par) (B) or pSK9088 (Ppar::par-gfp) (C) were grown to mid-

exponential phase in the presence of 0, 0.05, 0.1, 0.25, 0.5 or 1 mM IPTG induction 

of par expression from pSK9104 (Section 5.4.4.2). Cleared cell lysates were 

fractionated by SDS-PAGE (Section 2.5.6) and subjected to Western blotting (Section 

2.5.9) using affinity-purified and preadsorbed anti-Par antibodies (Sections 2.6.1 and 

2.6.2) (A and C) or anti-Par peptide antibodies (Section 2.6.3) (B). Samples were co-

electrophoresed with cleared lysates from mid-exponential phase S. aureus SK8250 

cells carrying pSK4829 (par) or pSK4833 (∆par), for positive and negative controls, 

respectively. Lane M contains prestained protein markers, with marker sizes indicated 

in kDa on the left of each blot. Positions of relevant proteins and their approximate 

measured sizes are indicated by black arrowheads. 
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Figure 5.9B shows the Western blot of S. aureus lysates containing pSK9087 

(Ppar::gfp-par) and pSK9104 (Pspac::par). GFP-Par, produced from pSK9087, 

appeared as a band of approximately 63 kDa, with the production of Par evident 

from the appearance of a 42 kDa protein band in cells treated with IPTG (Figure 

5.9B). Similarly, cells carrying pSK9088 (Ppar::par-gfp) and pSK9104 (Pspac::par) 

showed an approximately 60 kDa band corresponding to Par-GFP produced from 

pSK9088, and a 42 kDa Par protein band that was present in cells induced with 

IPTG (Figure 5.9C). These results, therefore, confirm that titration of pSK1 

minireplicons with IPTG led to detectable levels of Par produced from pSK9104, 

which correlated with an increase in the segregational stability of pSK1 

minireplicons in S. aureus (Figures 5.8A–C).  

5.4.4.3 Interaction between Par and Par-GFP 

The stability assays described in Section 5.4.4.2 demonstrated that the segregational 

stability of pSK9088 (Ppar::par-gfp) (Table 2.2) could be improved by providing Par 

in trans from pSK9104 (Pspac::par) (Table 2.2). In order for this result to be 

meaningful for fluorescence localisation studies, which are based on the premise that 

Par-GFP localisation is indicative of Par localisation, it was necessary to show 

interaction between Par and Par-GFP. To achieve this, Y2H assays were performed 

between Par and Par-GFP bait and prey fusion proteins. Par-GFP fusions to GAL4 

BD and GAL4 AD were generated using pGBKT7 and pGADT7 plasmids, 

respectively (Table 2.2), using primers HC24 and HC26 (Table 2.6) for the PCR-

amplification (Section 2.4.4) of the Par-GFP coding region from pSK9088 template 

DNA (Table 2.2). All other steps in the construction of bait and prey plasmids 
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encoding Par-GFP were performed essentially as described in Section 3.6.1 for the 

construction of Y2H plasmids encoding Par bait and prey fusion proteins. Plasmids 

of the correct sequence were named pSK9108, encoding GAL4 BD-Par-GFP, and 

pSK9111, encoding GAL4 AD-Par-GFP (Table 2.2). 

S. cerevisiae AH109 cells were transformed simultaneously with plasmid pairs 

pSK9107/pSK9111 (GAL4 BD-Par/GAL4 AD-Par-GFP) or pSK9108/pSK9110 

(GAL4 BD-Par-GFP/GAL4 AD-Par) (Table 2.2) using the small-scale LiAc yeast 

transformation procedure (Section 2.10.2). Y2H assays were performed as described 

in Section 2.10.3 to determine whether Par and Par-GFP bait and prey fusion 

proteins interact. As shown in Figure 5.10A, yeast cells grew on high-stringency 

selection medium when both full-length Par (ParFL) and Par-GFP were present, 

regardless of whether the proteins were fused to GAL4 BD or GAL AD. Neither the 

Par-GFP bait nor prey proteins showed self-activation of the reporter genes or 

interaction with the empty plasmids (Figure 5.10A), which indicates that growth of 

yeast cells containing Par and Par-GFP was the result of specific interactions and 

activation of the reporter genes. (It has already been shown that Par bait and prey 

fusion proteins do not interact with empty Y2H plasmids; see Figures 3.10A and 

3.11A). The interaction between Par and Par-GFP was supported by α-galactosidase 

assays (Section 2.10.5), which revealed similar levels of α-galactosidase activity 

regardless of whether Par or Par-GFP was fused to GAL4 BD or GAL4 AD (Figure 

5.10B). The α-galactosidase activities resulting from the interaction between Par and 

Par-GFP were comparable to the level of activity resulting from Par self-interaction 

(Figure 5.10B). The indications provided by the Y2H and α-galactosidase assays, 

therefore, suggest that Par and Par-GFP have the capacity to interact with each other, 



 
 

Figure 5.10 Interaction between Par and Par-GFP 

A. Y2H assays of interactions between Par and Par-GFP. Pairwise Y2H assays were 

performed between GAL4 BD (bait) and GAL4 AD (prey) protein fusions to full-

length Par (ParFL) and Par-GFP, according to the methods described in Section 

5.4.4.3. S. cerevisiae AH109 cells containing bait and prey plasmids were patched on 

high-stringency selection medium (SD/-Leu/-Trp/-His/-Ade/X-α-Gal) (Table 2.3). 

Growth indicates activation of the HIS3 and ADE2 reporter genes. Blue pigmentation 

indicates α-galactosidase activity from yeast cells. S. cerevisiae AH109 cells 

expressing the prey protein fusion, simian virus T antigen (GAL4 AD-T), and the bait 

protein fusions, murine p53 (GAL4 BD-53) or human lamin protein (GAL4 BD-Lam), 

were included as positive and negative controls, respectively. 

B. Relative interaction strengths between Par and Par-GFP. α-galactosidase assays 

were performed on S. cerevisiae AH109 cells containing Par and Par-GFP bait and 

prey fusion proteins, according to the protocol described in Section 2.10.5. For 

comparison of relative interaction strengths, α-galactosidase activity was calculated as 

described in Section 2.10.5 and expressed as fold-change relative to the negative 

control strain containing GAL4 BD-Lam and GAL4 AD-T. The interaction between 

the GAL4 BD-53 and GAL4 AD-T was included as a positive control. Each data point 

represents the mean of at least three independent assays, each performed in triplicate. 

Error bars represent standard error of the mean.  
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which, combined with the stability assay data that showed a stabilising effect of Par 

on pSK9088 (Ppar::par-gfp) (Section 5.4.4.2), provides support for the interpretation 

of Par-GFP localisation as being reflective of Par localisation.  

5.4.4.4 Epifluorescence microscopy of Par-GFP in S. aureus, supplied in trans 

with Par 

The results from plasmid stability assays (Section 5.4.4.2) and Y2H assays (Section 

5.4.4.3) suggested that the production of Par in trans to the par-gfp partitioning 

system on pSK9088 (Table 2.2) led to an increase in plasmid stability, probably as a 

result of interaction between Par and the partially functional Par-GFP. 

Epifluorescence microscopy was, therefore, performed on S. aureus cells harbouring 

pSK9088 (Ppar::par-gfp) in the presence and absence of Par in trans, on the premise 

that Par-GFP localisation would be representative of Par localisation.  

S. aureus SK8250 cells were co-electroporated (Section 2.3.4) with pSK9088 and 

pSK9104 (Pspac::par) (Table 2.2), and single colonies were cultured to mid-

exponential phase in the presence of antibiotic selection for each plasmid (Section 

2.11.2). In order for the localisation of Par-GFP to be assessed in the presence and 

absence of Par in trans, cells carrying both pSK9088 and pSK9104 were treated with 

or without 1 mM IPTG, which was the level of par induction shown to complement 

the segregational stability of pSK9088 in trans (Figure 5.8C). Exponentially-

growing cells were prepared for live cell epifluorescence microscopy as described in 

Section 2.11.2, and nucleoid DNA was stained with DAPI.  

Due to the role of Par in plasmid segregation, the localisation of Par-GFP relative to 

the cell poles and/or division septum might provide useful information on the 
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mechanism of par-mediated plasmid segregation. However, it was difficult to 

determine the localisation of the cell poles, which was due in part to the spherical 

shape of S. aureus cells, in addition to the staphylococcal mode of cell division in 

three orthogonal planes (Tzagoloff and Novick 1977). Fluorescent protein fusions to 

the Spo0J protein, which binds to the chromosomal origin of replication, oriC, in B. 

subtilis (Lin and Grossman 1998, Breier and Grossman 2007), were shown to 

localise near the cell poles in S. aureus (Pinho and Errington 2004, Veiga et al. 

2011). Hence, to compare Par-GFP localisation relative to the staphylococcal cell 

poles, epifluorescence microscopy was performed on a Spo0J-GFP fusion protein. S. 

aureus RN4220 cells were electroporated (Section 2.3.4) with pSK9086 (Table 2.2), 

which expresses spo0J-gfp from the IPTG-inducible Pspac promoter. Cells were 

grown to early-exponential phase, before Spo0J-GFP production was induced with 1 

mM IPTG for 1 h. Cells were then prepared for microscopy as described above. As 

shown in Figures 5.11i–ii, and consistent with published results (Pinho and Errington 

2004, Veiga et al. 2011), the staphylococcal cell poles were clearly marked by 

Spo0J-GFP foci, and were particularly evident in cells that were orientated to show 

the bilobed nucleoid. In these cells, highlighted by white arrowheads in Figures 

5.11i–ii, Spo0J-GFP foci, usually two or four visible in this orientation, were evenly 

distributed on either side of the division septum located between the two nucleoid 

lobes.  

A comparison of representative micrographs obtained of Par-GFP in S. aureus, 

shown in Figures 5.12A–B, revealed no obvious differences in fluorescence 

localisation patterns, whether Par-GFP was produced in the presence (Figures 

5.12Bi–ii) or absence (Figures 5.12Ai–iii) of Par in trans. Par-GFP was detected as 



 
 

Figure 5.11 Fluorescence localisation of the cell division marker, Spo0J-GFP, in 

S. aureus cells 

i–ii. S. aureus SK8250 cells harbouring pSK9086 (Pspac::spo0J-gfp) were grown to 

early-exponential phase, before spo0J-GFP expression was induced with 1 mM IPTG 

from pSK9086 (Section 5.4.4.4). Nucleoid DNA was stained with DAPI, and cells 

were prepared for epifluorescence microscopy as described in Section 2.11.2. Cells 

shown are biological replicates. From top left to bottom right: Spo0J-GFP; DNA; 

bright-field (BF); overlay of Spo0J-GFP and DNA; overlay of bright-field (BF) and 

Spo0J-GFP; overlay of bright-field (BF), Spo0J-GFP and DNA. Arrowheads indicate 

cells containing Spo0J-GFP foci located in opposite cell hemispheres. Scale bar = 1 

µm. 
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Figure 5.12 Fluorescence localisation of Par-GFP in S. aureus cells, in the 

presence and absence of Par supplied in trans 

The localisation of Par-GFP was visualised by epifluorescence microscopy on S. 

aureus SK8250 cells harbouring pSK9088 and pSK9104 (Pspac::par) in the absence 

(Ai–iii) and presence (Bi–ii) of 1 mM IPTG induction of par expression from 

pSK9104. Cells were grown to mid-exponential phase (in the presence of IPTG where 

applicable), and prepared for epifluorescence microscopy as described in Section 

2.11.2. Nucleoid DNA was stained with DAPI. Cells in each of (A) and (B) are 

biological replicates. From top left to bottom right: Par-GFP; DNA; bright-field (BF); 

overlay of Par-GFP and DNA; overlay of bright-field (BF) and Par-GFP; overlay of 

bright-field (BF), Par-GFP and DNA. Arrowheads indicate cells containing Par-GFP 

foci located in opposite cell hemispheres. Asterisks indicate cells containing Par-GFP 

foci positioned between nucleoid lobes. Scale bar = 1 µm. 
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foci, primarily located towards the cell periphery, with typically 1–4 foci observed 

per cell, regardless of whether Par was present (Figures 5.12A–B). The localisation 

pattern of Par-GFP foci in some, but not all, cells (depending on cell orientation) 

resembled the localisation of Spo0J-GFP (compare Figures 5.11 and 5.12), 

indicating that Par-GFP may have been localised to the cell poles at the time of 

image capture. 

Cells in late divisional stage appeared larger than pre-divisional stage cells, and 

when viewed at an appropriate orientation, nucleoids appeared bilobed with large 

separation between the lobes, in preparation for cell division (Figures 5.12A–B, 

arrowheads and asterisks). These cells typically contained two or more Par-GFP foci, 

each in separate hemispheres of the cell, presumably on either side of the division 

septum, and each appearing to be associated with a separate lobe of the nucleoid 

(Figures 5.12A–B, white arrowheads). In this configuration, it is envisaged that 

subsequent cell division would result in each daughter cell receiving at least one Par-

GFP focus. Examples were also observed whereby Par-GFP foci appeared between 

the lobes of the nucleoid, presumably at, or near, the division septum (Figures 

5.12A–B, asterisks). Note that the Par-GFP localisation patterns described here were 

found irrespective of whether Par-GFP was supplied in trans with Par. 

5.4.4.4.1 Association between Par-GFP and nucleoid DNA in S. aureus 

Non-specific interactions with nucleoid DNA have been demonstrated for ParA and 

SopA proteins from Type Ia plasmid partitioning systems (Bouet et al. 2007, 

Ringgaard et al. 2009, Vecchiarelli et al. 2010, Hwang et al. 2013, Vecchiarelli et al. 

2013b), and has been proposed for the pilot-fish mechanism of R388 plasmid 
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partitioning (Guynet et al. 2011). From the fluorescence micrographs in Figures 

5.12A–B, there appeared to be a close association between some Par-GFP foci and 

nucleoid DNA, particularly at the outer edges of the nucleoid. As a result of these 

observations, and due to the resemblance of Par-GFP with Spo0J localisation 

(Section 5.4.4.4), the potential association between Par-GFP and nucleoid DNA was 

investigated by treating S. aureus cells with chloramphenicol in order to condense 

nucleoids (Section 2.11.2). It has been hypothesised that chloramphenicol acts to 

condense nucleoid DNA by inhibiting protein synthesis and disrupting the nucleoid-

expanding force generated by this process, and that this in turn results in the 

compaction of nucleoids (Woldringh et al. 1995). Due to the large volume occupied 

by the nucleoid in S. aureus cells, condensation of nucleoid DNA has been 

particularly useful in staphylococcal microscopy studies (for example, see Veiga et 

al. 2011). As shown in Figures 5.13A–B, treatment of cells with chloramphenicol 

led to the compaction of nucleoid DNA, which resulted in a larger space between the 

nucleoid and the cell periphery. This allowed for clearer observation of Par-GFP 

localisation relative to the nucleoid and cell periphery. Whether or not Par-GFP foci 

were associated with nucleoid DNA was sometimes difficult to determine, and 

depended on the extent of nucleoid condensation and the orientation of the cells. 

Indeed, examples were seen in cells with and without Par production in trans, 

whereby Par-GFP foci were localised away from the cell periphery and appeared 

associated with the compacted nucleoid DNA (Figures 5.13A–B, arrowheads). 

However, there were also some examples, highlighted by asterisks in Figures 5.13A–

B, whereby Par-GFP foci were detected at the cell periphery, with an obvious 

separation from the condensed nucleoid. This was more commonly observed in cells 



 
 

Figure 5.13 Effect of nucleoid condensation on the fluorescence localisation of 

Par-GFP in S. aureus cells, in the presence and absence of Par supplied in trans 

The localisation of Par-GFP was visualised by epifluorescence microscopy on S. 

aureus SK8250 cells harbouring pSK9088 and pSK9104 (Pspac::par) in the absence 

(Ai–ii) and presence (Bi–iii) of 1 mM IPTG induction of par expression from 

pSK9104. Cells were grown to mid-exponential phase (in the presence of IPTG where 

applicable), and then treated with 25 µg/ml chloramphenicol for 1 h to condense 

nucleoids (Section 2.11.2). Nucleoid DNA was stained with DAPI and 

epifluorescence microscopy was performed as described in Section 2.11.2. Cells in 

each of (A) and (B) are biological replicates. From top left to bottom right: Par-GFP; 

DNA; bright-field (BF); overlay of Par-GFP and DNA; overlay of bright-field (BF) 

and Par-GFP; overlay of bright-field (BF), Par-GFP and DNA. Arrowheads indicate 

cells containing Par-GFP foci that appeared to associate with condensed nucleoids. 

Asterisks indicate cells containing Par-GFP foci that did not appear to associate with 

condensed nucleoids. Scale bar = 1 µm. 
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that did not produce Par in trans, which suggests that the partial functionality of Par-

GFP in the absence of Par may have contributed to the observed loss in potential 

associations between Par-GFP and nucleoid DNA.  

5.4.5 Development of a pSK1 par system with inducible, in trans expression 

of par-gfp  

The segregational stability assays performed in Section 5.4.2 showed that the N- and 

C-terminal GFP fusions to Par were both impaired in functionality when produced in 

cis at wild-type levels from Ppar. Although segregational stability of pSK9088 

(Ppar::par-gfp) (Table 2.2) could be improved with the supply of Par in trans 

(Section 5.4.4.2), the localisation of Par-GFP in the presence and absence of Par 

could not be easily differentiated (Section 5.4.4.4). Hence, an alternative strategy 

was employed for the determination of Par localisation, and involved the titration of 

Par-GFP in trans to the wild-type par system on the pSK1 minireplicon, pSK4829 

(Table 2.2). In this way, Par would be produced at wild-type levels from pSK4829, 

and controlled expression of par-gfp from a co-resident plasmid would allow Par-

GFP to incorporate into the par system and decorate structures and components of 

the system, whilst minimising disruption to Par function. 

5.4.5.1 Construction of an IPTG-inducible par-gfp expression plasmid 

In order to titrate Par-GFP in trans to the wild-type par system on the pSK1 

minireplicon, pSK4829 (Table 2.2), an inducible par-gfp expression plasmid was 

generated using pJEG015 (Table 2.2). As described in Section 5.4.4.1, pJEG015 

contains features that are compatible with the pSK1 minireplicons used in this study. 

The par-gfp expression plasmid was constructed in the same way as described for 
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the construction of the par expression plasmid, pSK9104 (Table 2.2) (Section 

5.4.4.1), except that primers SJ69 and SJ70 were used for the amplification of the 

par RBS and coding sequence, such that the stop codon was excluded. Subsequent 

ligation of the amplicon to the restricted SalI and BamHI sites of pJEG015 resulted 

in an N-terminal fusion of par in-frame with the GFP coding sequence present on the 

vector. Recombinant plasmids were identified by agarose gel electrophoresis 

(Section 2.4.3) of isolated plasmid DNA (Section 2.4.1) that had been restriction 

digested (Section 2.4.6) with SalI and BamHI. Recombinant plasmids were 

sequenced (Section 2.4.14) using primers HC18, SJ69 and SJ70 (Table 2.6), and the 

plasmid of correct sequence encoding Par-GFP downstream of Pspac and the par RBS 

was named pSK9097 (Table 2.2).  

GFP fusions to the Par DNA-binding mutant, ParK15A, and the Par multimerisation 

mutant, Par∆CC (Figgett 2007, Lai 2008), were also generated in pJEG015, exactly 

as described for the generation of pSK9097, except using pSK7721 and pSK7764 

template DNA (Table 2.2) for the PCR-amplification of ParK15A and Par∆CC 

coding regions, respectively. The pJEG015-derived expression plasmids with IPTG-

inducible expression of parK15A-gfp and par∆CC-gfp from the Pspac promoter were 

named pSK9102 and pSK9103, respectively (Table 2.2).  

5.4.5.2 Effect of Par-GFP on plasmid segregational stability in trans 

In order to determine the functionality of Par-GFP in trans, plasmid segregational 

stability assays were performed on S. aureus cells producing Par-GFP in trans to the 

par centromere-like site on a pSK1 minireplicon. S. aureus SK8250 cells were 

simultaneously electroporated (Section 2.3.4) with the pSK1 minireplicon, pSK4833 
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(∆par), and the IPTG-inducible par-gfp expression plasmid, pSK9097 (Pspac::par-

gfp) (Table 2.2), and selected for erythromycin and tetracycline resistance (Table 

2.4). Stability assays were performed as described in Section 2.7, except with 

continuous tetracycline selection for pSK9097 (Pspac::par-gfp) and continuous IPTG 

induction of par-gfp expression with 0, 0.1, 0.5 or 1 mM IPTG. The proportion of 

the population retaining pSK4833 was determined using erythromycin selection, and 

was measured over three days, which was equivalent to approximately 50 

generations. As shown in Figure 5.14A, pSK4833 was rapidly lost from the 

population when par-gfp expression was uninduced from pSK9097, with only 8±2% 

of the population carrying the plasmid after one day of the assay, and complete loss 

of the plasmid by the end of three days. A similar trend was observed when par-gfp 

expression was induced with 0.1 mM IPTG (Figure 5.14A). At 0.5 mM and 1 mM 

IPTG induction, a slightly higher proportion of the population retained pSK4833 on 

Day 1 (29±8% and 33±7%, respectively) and approximately 6–8% retained the 

plasmid at the end of the assay. These results show that Par-GFP, even when induced 

with maximum IPTG levels, was unable to stabilise a pSK1 minireplicon in trans as 

effectively as wild-type Par (Figure 5.8A), which suggests that Par-GFP has reduced 

functionality in trans.  

To determine the effect of the supply of Par-GFP in trans to a pSK1 minireplicon 

carrying the wild-type par system, plasmid segregational stability assays were 

performed, as described above, on S. aureus cells harbouring pSK4829 (par) and 

pSK9097 (Pspac::par-gfp) (Table2.2). As shown in Figure 5.14B, titration of 

pSK4829 with Par-GFP resulted in little effect on the segregational stability of 

pSK4829, at all IPTG levels tested. Because the stability assays performed on S. 



 
 

Figure 5.14 Effect of Par-GFP on plasmid segregational stability, in trans 

Plasmid segregational stability assays of pSK1 minireplicons in the presence of Par-

GFP, supplied in trans. The retention of pSK4833 (∆par) (A) and pSK4829 (par) (B) 

in S. aureus SK8250 cells was determined as described in Section 2.7. Par-GFP was 

supplied in trans from a co-resident plasmid, pSK9097 (Pspac::par-gfp), by induction 

of par-gfp expression with 0 ( ), 0.1 ( ) , 0.5 (  ) or 1 mM (×) IPTG. Assays were 

performed with continuous tetracycline selection for pSK9097. Three days of serial 

subculture represents approximately 50 generations. Data are normalised to 100% 

plasmid retention on Day 0. The averages of three independent assays are shown. Error 

bars represent standard error of the mean. Illustrative maps of the plasmids contained 

in the assayed S. aureus strains are shown above the graphs. 
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aureus cells carrying pSK4833 (∆par) and pSK9097 indicated that Par-GFP had 

little functionality in trans (Figure 5.14A), it was expected that titration of pSK4829 

with Par-GFP might negatively affect the stability of pSK4829. However, this was 

not the case, since stability assays did not provide any indication of an adverse 

interaction between Par-GFP and the par system on pSK4829. Therefore, because 

the stability of pSK4829 was unaffected by Par-GFP, potential interactions between 

pSK1 par and Par-GFP could not be assumed with any certainty.  

To show that Par-GFP was indeed induced from pSK9097 (Pspac::par-gfp) during the 

stability assays, Western blot analyses were performed on the S. aureus strains 

assayed above. S. aureus SK8250 cells carrying pSK9097 and either pSK4833 

(∆par) or pSK4829 (par) were grown to mid-exponential phase in the presence of 

erythromycin and tetracycline selection, as well as 0, 0.1, 0.5 or 1 mM IPTG, which 

was added at the time of subculture (Section 2.1). Whole cell lysates, prepared as 

described in Section 2.5.8, were fractionated by SDS-PAGE (Section 2.5.6) and 

transferred to a PVDF membrane for Western blotting (Section 2.5.9) using anti-Par 

peptide antibodies (Section 2.6.3). The Western blots in Figure 5.15 show an 

approximately 57 kDa band corresponding to Par-GFP that is present only in lanes 

containing lysates from S. aureus cells carrying pSK9097 and treated with IPTG. An 

approximately 42 kDa band corresponding to Par was detected in the lysates of cells 

carrying pSK4829 and not pSK4833 (compare Figures 5.15A and B). For cells 

carrying pSK4829 as well as pSK9097, both Par and Par-GFP proteins were detected 

in the lysates of cells treated with IPTG (Figure 5.15B). These results confirm that 

IPTG induction resulted in the production of Par-GFP from pSK9097, which was 

supplied in trans to the pSK1 minireplicons, pSK4833 (∆par) and pSK4829 (par). 



 
 

Figure 5.15 Immunodetection of Par, supplied in trans to pSK1 minireplicons 

S. aureus SK8250 cells carrying pSK9097 (Pspac::par-gfp) and either pSK4833 (∆par) 

(A) or pSK4829 (par) (B) were grown to mid-exponential phase with 0, 0.05, 0.1, 

0.25, 0.5 or 1 mM IPTG induction of par-gfp expression from pSK9097 (Pspac::par-

gfp) (Section 5.4.5.2). Cleared cell lysates were fractionated by SDS-PAGE (Section 

2.5.6) and subjected to Western blotting (Section 2.5.9) using anti-Par peptide 

antibodies (Section 2.6.3). Samples were co-electrophoresed with cleared lysates from 

mid-exponential phase S. aureus SK8250 cells carrying pSK4829 (par) or pSK4833 

(∆par), for positive and negative controls, respectively. Lane M contains prestained 

protein markers, with marker sizes indicated in kDa on the left of each blot. Positions 

of relevant proteins and their approximate measured sizes are indicated by black 

arrowheads. 
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Whether Par-GFP interacted with components of the pSK1 par system on pSK4833 

or pSK4829 remains to be shown.  

5.4.5.3 Epifluorescence microscopy of Par-GFP in S. aureus, supplied in trans 

to Par 

Although in vivo evidence of interaction between Par-GFP and components of par 

on pSK4829 is inconclusive, epifluorescence microscopy was nonetheless performed 

to compare the localisation pattern of Par-GFP to that of C-terminal GFP fusions to 

the Par DNA-binding mutant, ParK15A, and to the multimerisation mutant, Par∆CC, 

in the presence of pSK1 par centromere DNA. In this way, the localisation patterns 

of ParK15A-GFP and Par∆CC-GFP might reveal a correlation between Par activity 

and the formation of Par-GFP foci. 

S. aureus RN4220 cells carrying the plasmid pairs pSK4829 (par) and pSK9097 

(Pspac::par-gfp); pSK4833 (∆par) and pSK9097 (Pspac::par-gfp); pSK7764 

(parK15A) and pSK9102 (Pspac::parK15A-gfp); or pSK7721 (par∆CC) and pSK9103 

(Pspac::par∆CC-gfp), were grown to mid-exponential phase in the presence of 

antibiotic selection and 0.1 mM IPTG, and cells were prepared for live-cell 

epifluorescence microscopy as described in Section 2.11.2. The micrographs showed 

that, despite being non-functional in trans, Par-GFP formed foci, both in the 

presence (Figure 5.16A) and absence (Figures 5.16Bi–ii) of Par, that resembled those 

observed for Par-GFP from pSK9088 (Ppar::par-gfp) (Section 5.4.4.4, Figures 

5.12A–B). Similarly, foci were observed for the DNA-binding mutant, ParK15A-

GFP (Figure 5.16C), which suggests that the formation of Par-GFP foci was 

independent of DNA-binding activity. Conversely, the multimerisation mutant, 



 
 

Figure 5.16 Fluorescence localisation of Par-GFP in S. aureus cells, supplied in 

trans to pSK1 minireplicons 

S. aureus RN4220 cells carrying pSK1 minireplicons, with and without par (or par 

mutants), were grown to mid-exponential phase with 0.1 mM IPTG induction of par-

gfp (or mutant derivatives) expression from a co-resident expression plasmid (Section 

5.4.5.2). A. Cells harbouring pSK4829 (par) and pSK9097 (Pspac::par-gfp). Bi–ii. 

Cells harbouring pSK4833 (∆par) and pSK9097 (Pspac::par-gfp). Cells shown are 

biological replicates. C. Cells harbouring pSK7764 (parK15A) and pSK9102 

(Pspac::parK15A-gfp). D. Cells harbouring pSK7721 (par∆CC) and pSK9103 

(Pspac::par∆CC-gfp). From left to right: Par-GFP (or mutant derivatives); bright-field 

(BF); overlay of bright-field (BF) and Par-GFP (or mutant derivatives). Scale bar = 1 

µm. 
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Par∆CC-GFP, did not form foci, but rather, exhibited diffuse fluorescence (Figure 

5.16D). Taken together, the fluorescence localisation patterns exhibited by the Par-

GFP mutants revealed that Par multimerisation, rather than DNA-binding activity, 

contributed to the formation of Par-GFP foci in S. aureus. The diffuse localisation of 

Par∆CC-GFP also excludes the possibility that the observed foci were artefacts of 

GFP aggregation, which has been observed in fluorescence microscopy studies of 

some GFP-tagged proteins (Landgraf et al. 2012). 

5.4.6 Epifluorescence microscopy of Par GFP fusions in S. aureus, in the 

absence of centromere DNA 

Unpublished data from electron microscopy of purified RGSH6-Par protein revealed 

filaments that formed in the absence of DNA and any nucleotide cofactor (Barton, D. 

A., Jensen, S. O. and Firth, N., unpublished data). As such, it was anticipated that 

filamentous Par-GFP structures might also be observed in vivo. However, the 

epifluorescence microscopy experiments performed in Sections 5.4.4.4 and 5.4.5.3 

showed that Par-GFP, expressed in cis or in trans to the par centromere-like site, 

was detected only as foci, with no other structures observed. Although the 

appearance of Par-GFP foci was found to be independent of DNA-binding (Section 

5.4.5.3), it is not inconceivable that some of the Par-GFP foci may have 

corresponded to the positions of pSK1 minireplicons that were bound by Par-GFP. 

Therefore, in order to eliminate any potential influence of the centromere-like site on 

Par-GFP structure formation, par-gfp expression was induced from the Pspac 

promoter on pSK9097 (Table 2.2), in the absence of centromere DNA, to determine 

whether Par-GFP might form structures other than foci. 
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S. aureus SK8250 cells were electroporated (Section 2.3.4) with pSK9097 

(Pspac::par-gfp) and selected for tetracycline resistance (Table 2.4). Individual 

colonies were cultured for epifluorescence microscopy as described in Section 

2.11.2, with the addition of low (0.1 mM) or high (1 mM) concentrations of IPTG to 

the growth media at the time of subculture. Figures 5.17Ai–ii show that induction of 

par-gfp expression with 0.1 mM IPTG resulted in the formation of Par-GFP foci, 

which generally localised towards the cell periphery, similar to previous 

observations in the presence of centromere DNA (see Figures 5.12A–B and 5.16A). 

No other Par-GFP localisation patterns were observed. Furthermore, when nucleoids 

were condensed with chloramphenicol treatment (Section 2.11.2), some Par-GFP 

foci appeared to be associated with the condensed nucleoids (Figure 5.17B, 

arrowheads), whereas others did not (Figure 5.17B, asterisks).  

With maximum induction using 1 mM IPTG, Par-GFP formed brighter foci, and 

cells typically contained at least two foci (Figures 5.17Ci–iii). In addition, potential 

bands or arcs were visualised around the cell periphery or in the nucleoid-free space, 

some of which may or may not have appeared to be associated with condensed 

nucleoids (Figures 5.17Cii–iii, arrowheads and asterisks, respectively). It is unclear 

whether these patterns represent true filaments or whether they are artefacts of Par-

GFP overproduction and/or bright foci that could not be resolved by the resolution 

limits of conventional light microscopy. Nevertheless, this localisation pattern was 

only observed when par-gfp expression was maximally induced in the absence of 

centromere DNA, and hence is not representative of the natural situation. However, 

if the observed patterns are indeed those of filamentous structures, this would hint at 

the potential of Par to form filaments in vivo, which would support the filament 



 
 

Figure 5.17 Fluorescence localisation of Par-GFP in S. aureus cells, in the absence 

of pSK1 par centromere-like site 

S. aureus SK8250 cells harbouring pSK9097 (Pspac::par-gfp) were grown to mid-

exponential phase with IPTG induction of par-gfp expression (Section 5.4.6). Where 

applicable, nucleoids were condensed with 25 µg/ml chloramphenicol for 1 h. 

Nucleoid DNA was stained with DAPI, and cells were prepared for epifluorescence 

microscopy as described in Section 2.11.2. Ai–ii. Cells producing Par-GFP induced 

with 0.1 mM IPTG. B. Cells producing Par-GFP induced with 0.1 mM IPTG, and 

treated with chloramphenicol. Ci–iii. Cells producing Par-GFP induced with 1 mM 

IPTG, and treated with chloramphenicol. Cells shown from each of (A) and (C) are 

biological replicates. From top left to bottom right: Par-GFP; DNA; bright-field (BF); 

overlay of Par-GFP and DNA; overlay of bright-field (BF) and Par-GFP; overlay of 

bright-field (BF), Par-GFP and DNA. Arrowheads indicate cells containing Par-GFP 

foci that appeared to associate with condensed nucleoids. Asterisks indicate cells 

containing Par-GFP foci that did not appear to associate with condensed nucleoids. 

Scale bar = 1 µm. 
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formation observed in vitro by electron microscopy (Barton, D. A., Jensen, S. O. and 

Firth, N., unpublished data). At the least, these observations confirm the conclusions 

drawn from Section 5.4.5.3, that the formation of foci by Par-GFP is independent of 

centromere DNA and DNA-binding activity, and is most likely the result of Par 

multimerisation. 

5.4.7 Distribution of Par-GFP focus numbers in S. aureus 

Because Par-GFP was found to produce foci irrespective of the functionality of the 

system or the presence of Par or centromere DNA (Sections 5.4.4.4, 5.4.5.3 and 

5.4.6), the number of Par-GFP foci per cell was counted to determine whether there 

were differences in the distribution of focus numbers between cells containing Par-

GFP in a functional plasmid stability system (pSK9088+pSK9104, Section 5.4.4) 

and cells producing Par-GFP in isolation (pSK9097, Section 5.4.6).  

Fluorescence micrographs were obtained of S. aureus SK8250 cells carrying 

pSK9088 (Ppar::par-gfp) and pSK9104 (Pspac::par) and producing Par in trans to 

par-gfp on pSK9088 (Section 5.4.4.4), and of S. aureus SK8250 cells carrying 

pSK9097 (Pspac::par-gfp) and producing Par-GFP in the absence of centromere DNA 

(Section 5.4.6). The number of Par-GFP foci present in each cell was counted using 

ImageJ software as described in Section 2.11.2, and the distribution of focus 

numbers per cell is presented in Figures 5.18A–B. Approximately 25±4% of cells 

carrying pSK9088 with 1 mM IPTG induction of Par from pSK9104 contained no 

Par-GFP focus (Figure 5.18A), possibly due to loss of the pSK9088 plasmid, even 

though antibiotic selection was applied. Another 30±4% of the population contained 

one focus, while 36±2% of cells contained two Par-GFP foci (Figure 5.18A). When 



 
 

Figure 5.18 Distribution of the number of fluorescent Par-GFP foci per cell 

The number of fluorescent Par-GFP foci per cell, detected by epifluorescence 

microscopy, was determined for S. aureus SK8250 cells producing Par-GFP. Grey 

bars represent S. aureus cells harbouring pSK9088 (Ppar::par-gfp) and pSK9104 

(Pspac::par), with 1 mM IPTG induction of par expression from pSK9104 (Section 

5.4.4.4). Par was supplied in trans to par-gfp on pSK9088 (total number of cells = 

462). White bars represent S. aureus cells harbouring pSK9097 (Pspac::par-gfp) with 

0.1 mM IPTG induction of par-gfp expression from pSK9097 (total number of cells = 

473) (Section 5.4.6). A. Histogram plotting the percentage of all cells against the 

number of Par-GFP foci per cell. B. Histogram plotting the percentage of foci-

containing cells against the number of fluorescent Par-GFP foci per cell. The averages 

of three independent microscopy experiments are shown. Error bars represent standard 

error of the mean. 
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only foci-containing cells were considered, the proportion of cells that contained one 

Par-GFP focus was approximately 40±5%, and approximately 48±2% for foci-

containing cells with two foci (Figure 5.18B).  

For cells that produced Par-GFP alone (from pSK9097), it appeared that the only 

notable difference from cells that produced Par in trans to par-gfp on pSK9088, was 

the proportion of cells that contained two Par-GFP foci. In the absence of centromere 

DNA on pSK9097, only 25±4% of cells had two Par-GFP foci (Figure 5.18A), 

which represented approximately 38±1% of foci-containing cells (Figure 5.18B). 

This suggests that, compared to cells producing Par-GFP alone, the presence of Par 

and the centromere-like site in a functional par-gfp partitioning system increased the 

proportion of cells containing two Par-GFP foci. It is anticipated that in cells 

containing pSK9088 and pSK9104, at least some of the Par-GFP foci might have 

corresponded to Par-GFP bound to plasmid DNA. The correlation between the 

number of Par-GFP foci and the number of plasmid foci per cell is examined in 

Section 5.8.5 below. 

5.5. Immunofluorescence microscopy of Par in E. coli 

Due to background signals and non-specific immunodetection of Par in S. aureus by 

IFM (Section 5.3.1), a heterologous host was considered for the visualisation of 

structures formed in vivo by non-tagged Par molecules. E. coli was chosen as an 

alternative host for the production of Par and Par-GFP, since the available pSK1 

minireplicons encoding Par or Par-GFP (Table 2.2) contain the high copy-number 

pUC18 ColE1 origin of replication that facilitates plasmid replication in E. coli 

(Yanisch-Perron et al. 1985). Even though Par is non-functional in E. coli (Davies, 
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D. and Firth, N., unpublished data), the high copy-number of these pSK1 

minireplicons in E. coli suggests that Par should be readily detected by IFM when 

expressed from these plasmids.  

IFM was performed on mid-exponential phase E. coli DH5α cells carrying pSK4829 

(par) or pSK4833 (∆par) (Table 2.2), as described in Section 2.11.1, using a 

1:10,000 dilution of anti-Par peptide antibodies and a 1:5,000 dilution of Alexa Fluor 

488-conjugated goat anti-rabbit IgG antibodies. Unlike IFM performed in S. aureus 

cells (Section 5.3.1), Par was readily detected in E. coli, as shown by the 

micrographs in Figures 5.19Ai-ii. Par was detected as foci that were localised 

towards the cell periphery, with some bands observed between foci, either along the 

perimeter of the cell or transversing the width of the cell (Figures 5.19Ai-ii). No 

fluorescence localisation patterns were observed in E. coli cells carrying pSK4833 

(∆par) (Figure 5.19B), which suggests that the fluorescence patterns observed from 

IFM of Par in E. coli cells carrying pSK4829 were specific to Par localisation. 

The relatively strong level of fluorescence exhibited by IFM of Par in E. coli enabled 

optical sections to be obtained along the z-axis of cells. In this way, a more complete 

image of 3-dimensional fluorescence structures could be obtained following 

deconvolution of image stacks. Fluorescence micrographs of E. coli cells producing 

Par from pSK4829, prepared as described above, were taken at eight 240 nm 

intervals along the z-axis of the cells, and images were deconvolved as maximum 

intensity projections using Zen software (Section 2.11.1). Deconvolved image stacks 

revealed transverse bands between Par foci that resembled possible helices or spirals 



 
 

Figure 5.19 Immunofluorescence microscopy of Par in E. coli cells 

Mid-exponential phase E. coli DH5α cells harbouring pSK4829 (par) (Ai–ii) or 

pSK4833 (∆par) (B) were prepared for immunofluorescence microscopy (IFM) using 

anti-Par peptide antibodies and goat anti-rabbit IgG Alexa Fluor 488-conjugated 

antibodies, as described in Section 5.5. Cells shown in (A) are biological replicates. 

From left to right: Par; bright-field (BF); overlay of bright-field (BF) and Par. Scale 

bar = 1 µm 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

A. E. coli (par) 

i. 

 

 

ii. 

 

 

B. E. coli (Dpar) 

 



 

190 

 

(Figures 5.20A–C), which suggests that, in E. coli, Par may be able to multimerise 

into filamentous structures.  

5.6. Live cell epifluorescence microscopy of fluorescently-tagged 

Par in E. coli 

In order to determine the localisation pattern of Par in live E. coli cells, 

epifluorescence microscopy was performed on cells producing Par protein fusions to 

GFP. E. coli DH5α cells were transformed with pSK9087 or pSK9088 (Table 2.2) 

(Section 2.3.2), which, as described in Section 5.4.1, are pSK1 minireplicons that 

contain the pSK1 par system encoding GFP-Par and Par-GFP, respectively, instead 

of Par. Cells were cultured to mid-exponential phase and prepared for 

epifluorescence microscopy according to the methods in Section 2.11.2.  

As shown in Figures 5.21Ai–ii, GFP-Par, when produced in E. coli cells carrying 

pSK9087, were visualised as fluorescent foci dispersed around the cell periphery, 

with potential arcs observed at some cell poles. Par-GFP, however, when expressed 

from pSK9088, showed a different localisation pattern, with foci generally located at 

mid-cell or polar positions (Figures 5.21Bi–ii). In filamentous E. coli cells, Par-GFP 

appeared at regular intervals along the cell filament, possibly at points marking the 

cell septa (Figure 5.21C).  

Remarkably, when cells were treated with 300 µg/ml chloramphenicol in order to 

condense nucleoid DNA (Section 2.11.2), a clear correlation was observed between 

the localisation of both N- and C- terminal Par GFP fusions and the condensed 

nucleoids (Figures 5.22A–B). For GFP-Par, each condensed nucleoid was typically 



 
 

Figure 5.20 Deconvolved immunofluorescence microscopy images of Par in E. 

coli cells 

A–C. Mid-exponential phase E. coli DH5α cells harbouring pSK4829 (par) were 

prepared for immunofluorescence microscopy (IFM) using anti-Par peptide antibodies 

and goat anti-rabbit IgG Alexa Fluor 488-conjugated antibodies, as described in 

Section 5.5. Fluorescence images were taken in 240 nm intervals along the z-axis of 

cells, and image stacks were deconvolved as maximum intensity projections (Section 

2.11.1). Top left to top right: deconvolved IFM image of Par; bright-field (BF); 

overlay of bright-field (BF) and deconvolved image of Par. Bottom: unprocessed 

fluorescence microscopy sections taken from low to high positions in the z-axis of 

cells. Scale bar = 1 µm. 
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Figure 5.21 Fluorescence localisation of Par GFP fusion proteins in E. coli cells 

The localisation of GFP-Par (Ai–ii) and Par-GFP (Bi–ii) was visualised by 

epifluorescence microscopy of mid-exponential phase E. coli cells harbouring 

pSK9087 (Ppar::gfp-par) or pSK9088 (Ppar::par-gfp), respectively (Section 2.11.2). C. 

Filamentous E. coli cell producing Par-GFP, encoded by pSK9088. Nucleoid DNA 

was stained with DAPI, and cells were prepared for epifluorescence microscopy as 

described in Section 2.11.2. Cells in each of (A) and (B) are biological replicates. From 

top left to bottom right: Par GFP fusion proteins; DNA; bright-field (BF); overlay of 

Par GFP fusion proteins and DNA; overlay of bright-field (BF) and Par GFP fusion 

proteins; overlay of bright-field (BF), Par GFP fusion proteins and DNA. Scale bar = 

1 µm. 
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Figure 5.22 Effect of nucleoid condensation on the fluorescence localisation of 

Par GFP fusion proteins in E. coli cells 

The localisation of GFP-Par (A) and Par-GFP (B) was visualised by epifluorescence 

microscopy of E. coli cells harbouring pSK9087 (Ppar::gfp-par) or pSK9088 

(Ppar::par-gfp), respectively (Section 2.11.2). Cells were grown to mid-exponential 

phase and then treated with 300 µg/ml chloramphenicol for 1.5 h to condense 

nucleoids (Section 2.11.2). Nucleoid DNA was stained with DAPI, and cells were 

prepared for epifluorescence microscopy as described in Section 2.11.2. From top left 

to bottom right: Par GFP fusion proteins; DNA; bright-field (BF); overlay of Par GFP 

fusion proteins and DNA; overlay of bright-field (BF) and Par GFP fusion proteins; 

overlay of bright-field (BF), Par GFP fusion proteins and DNA. Scale bar = 1 µm. 
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associated with two fluorescent GFP-Par foci, with foci located opposite each other 

across the width of the cell (Figure 5.22A). However, the localisation pattern of Par-

GFP upon nucleoid condensation appeared to be less well-defined (Figure 5.22B). 

Nonetheless, there remained a clear association of Par-GFP with nucleoid DNA, 

since Par-GFP generally occupied the same space as the condensed nucleoids 

(Figure 5.22B). The observations from the nucleoid condensation treatments, 

therefore, suggest that GFP-Par and Par-GFP interact, either directly or indirectly, 

with E. coli chromosomal DNA. 

5.6.1 Fluorescence localisation of GFP-Par mutants in E. coli 

Because the localisation pattern displayed by GFP-Par in live E. coli cells more 

closely resembled the patterns observed from IFM of Par in E. coli (compare Figures 

5.21A and 5.19–5.20), the fluorescence localisation of GFP-Par was interpreted as 

being more representative of the structures that might be formed by Par in vivo. For 

this reason, the N-terminal GFP Par fusion protein was used for subsequent live cell 

microscopy studies. The apparent association between GFP-Par and nucleoid DNA 

was intriguing (Section 5.6), and was further explored in order to determine the 

contribution of DNA-binding activity to this observed behaviour. To this end, an N-

terminal GFP fusion to the Par DNA-binding mutant, ParK15A, was constructed as 

described in Section 5.4.1, except using pSK7764 template DNA (Table 2.2) for the 

PCR-amplification (Section 2.4.4) of the ParK15A coding region. The pSK1 

minireplicon expressing gfp-parK15A from the Ppar promoter was named pSK9166 

(Table 2.2).  
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E. coli DH5α cells were transformed (Section 2.3.2) with pSK9166 (gfp-parK15A) 

(Table 2.2) and the fluorescence localisation of GFP-ParK15A in E. coli was 

determined by epifluorescence microscopy as described in Section 2.11.2. 

Fluorescence micrographs of GFP-ParK15A, shown in Figure 5.23A, revealed 

similar localisation patterns to GFP-Par in E. coli (see Figures 5.21Ai–ii), with foci 

and patches of GFP-ParK15A observed around the periphery of the cells. This 

suggests that the formation of foci is independent of DNA-binding activity, a 

conclusion also drawn for Par-GFP foci in S. aureus (Section 5.4.5.3 and Section 

5.4.6). However, in contrast to GFP-Par, condensation of nucleoids with 

chloramphenicol (Section 2.11.2) revealed that the DNA-binding mutant derivative, 

GFP-ParK15A, did not associate with condensed nucleoids, and instead remained as 

foci at the cell periphery (Figure 5.23B). Taken together, these results suggest that 

the DNA-binding of Par, either to E. coli chromosomal DNA or to centromere 

(plasmid) DNA, is required for its potential association with the nucleoid. 

5.6.2. Construction of an IPTG-inducible gfp-par expression plasmid 

In order to determine whether the apparent association of GFP-Par with the E. coli 

nucleoid is dependent on binding to the pSK1 par centromere-like site or to E. coli 

chromosomal DNA, GFP-Par was produced in the absence of centromere DNA. 

Regulated expression of gfp-par was facilitated by the IPTG-inducible Ptac promoter 

and lac operator element on the high copy-number E. coli expression plasmid, 

pTTQ18RGSH6 (Table 2.2). pTTQ18RGSH6 also encodes the Lac repressor, which 

controls the Ptac/lacO promoter-operator element to regulate gene expression. A 1.5 

kb DNA fragment encoding GFP-Par was PCR-amplified (Section 2.4.4) from 



 
 

Figure 5.23 Fluorescence localisation of GFP-ParK15A in E. coli cells 

A–B. Epifluorescence microscopy was performed on mid-exponential phase E. coli 

cells harbouring pSK9166 (gfp-parK15A) and producing GFP-ParK15A (Section 

2.11.2). In (B), mid-exponential phase cultures were treated with 300 µg/ml 

chloramphenicol for 1.5 h to condense nucleoids (Section 2.11.2). Nucleoid DNA was 

stained with DAPI, and cells were prepared for epifluorescence microscopy as 

described in Section 2.11.2. From top left to bottom right: GFP-ParK15A; DNA; 

bright-field (BF); overlay of GFP-ParK15A and DNA; overlay of bright-field (BF) 

and GFP-ParK15A; overlay of bright-field (BF), GFP-ParK15A and DNA. Scale bar 

= 1 µm. 
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pSK9087 template DNA (Table 2.2) using primers HC17 and HC21 (Table 2.6). 

HC21 contains a stop codon to prevent fusion of the vector-encoded RGSH6 tag to 

the C-terminal end of GFP-Par. The PCR product was subsequently electrophoresed 

on an agarose gel (Section 2.4.3) and gel-purified (Section 2.4.7), prior to restriction 

endonuclease digestion of the 3’ end with HindIII (Section 2.4.6). The 

pTTQ18RGSH6 vector was concurrently digested with HindIII and the blunt-end 

cutter, SmaI (Section 2.4.6), and then dephosphorylated with Antarctic phosphatase 

(Section 2.4.10). In order to facilitate the blunt-end ligation of the 5’ end of gfp-par 

with pTTQ18RGSH6, the HindIII-restricted amplicon was treated with T4 PNK 

(Section 2.4.9) to phosphorylate the undigested end of gfp, which contained the 

sequence of the HC17 oligonucleotide. Ligation of gfp-par to the restricted and 

dephosphorylated SmaI and HindIII sites of pTTQ18RGSH6 proceeded as described 

in Section 2.4.11, after which the reactions were used to transform chemically-

competent E. coli DH5α cells to ampicillin resistance (Section 2.3.2). Plasmid DNA 

was isolated (Section 2.4.1) from selected transformants and recombinants were 

screened by restriction digestion with EcoRI and HindIII (Section 2.4.6). Restricted 

plasmid DNA was fractionated by agarose gel electrophoresis (Section 2.4.3), and 

plasmids displaying the expected restriction profile of recombinants were sequenced 

using primers HC2, HC11, HC17 and HC20 (Table 2.6). The pTTQ18RGSH6 

plasmid containing the correct sequence of gfp-par was named pSK9178 (Table 2.2).  
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5.6.3. Fluorescence localisation of GFP-Par in E. coli, in the absence of 

centromere DNA 

The contribution of the pSK1 par centromere-like site to the apparent association 

between GFP-Par and E. coli nucleoid DNA was assessed by performing 

epifluorescence microscopy of live E. coli cells producing GFP-Par in the absence of 

centromere DNA. Cells carrying pSK9178 (Ptac::gfp-par) (Table 2.2) were grown to 

mid-exponential phase in the presence of 0.1 mM IPTG, and then treated with 

chloramphenicol as described in Section 2.11.2 to condense nucleoids. Subsequent 

epifluorescence microscopy showed that GFP-Par, when produced in isolation in E. 

coli, formed fluorescent foci that were located around the periphery of the cell, as 

well as potential arcs at some cell poles (Figure 5.24). This was similar to the 

fluorescence localisation pattern of GFP-Par produced from pSK9087 (Table 2.2) in 

the presence of the pSK1 par centromere-like site (see Figures 5.21Ai–ii). Notably, 

in the absence of centromere DNA, GFP-Par did not associate with condensed 

nucleoids (Figure 5.24). This observation is consistent with those from 

epifluorescence microscopy of GFP-ParK15A, which also showed an apparent loss 

of association between the DNA-binding mutant and nucleoid DNA (see Figure 

5.23B). These results, therefore, imply that the observed association of GFP-Par with 

the E. coli nucleoid was dependent on the binding of GFP-Par to the pSK1 par 

centromere-like site. 



 
 

Figure 5.24 Fluorescence localisation of GFP-Par in E. coli cells, in the absence 

of pSK1 par centromere-like site 

E. coli cells harbouring pSK9178 (Ptac::gfp-par) were grown to mid-exponential phase 

with 0.1 mM IPTG induction of gfp-par expression. Cells were then treated with 300 

µg/ml chloramphenicol for 1.5 h to condense nucleoids (Section 2.11.2). Nucleoid 

DNA was stained with DAPI, and cells were prepared for epifluorescence microscopy 

as described in Section 2.11.2. From top left to bottom right: GFP-Par; DNA; bright-

field (BF); overlay of GFP-Par and DNA; overlay of bright-field (BF) and GFP-Par; 

overlay of bright-field (BF), GFP-Par and DNA. Scale bar = 1 µm. 
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5.7. Fluorescence in situ hybridisation of pSK1 minireplicons in 

S. aureus 

In order to compare the observations of Par-GFP localisation in S. aureus (Section 

5.4.4.4) with plasmid localisation, fluorescence in situ hybridisation (FISH) was 

performed on fixed S. aureus cells to localise pSK1 minireplicons with and without 

par. Cy3-labelled DNA probes were prepared by restriction digestion of pSK4833 

DNA (Table 2.2) with the frequent-cutting enzymes HaeIII, FokI, DpnI and RsaI 

(Section 2.4.6). Reactions were electrophoresed on a 3% (w/v) agarose gel (Section 

2.4.3), and DNA fragments smaller than 500 bp were gel-excised and purified 

(Section 2.4.7). The 3’-termini of DNA fragments were subsequently end-labelled 

with 5-Propargylamino-dCTP-Cy3 (Cy3-dCTP) using terminal deoxynucleotidyl 

transferase, as described in Section 2.11.3.1.  

 S. aureus SK8250 cells carrying either pSK4829 (par), pSK4833 (∆par) (Table 2.2) 

or no plasmid DNA, were grown to mid-exponential phase and FISH was performed 

largely as described in Section 2.11.3.2. Only very faint fluorescence was detected, 

with no visible difference between the fluorescence from cells carrying pSK4829, 

pSK4833 or cells without any plasmid (data not shown). Despite altering various 

parameters such as the fixative used (methanol, paraformaldehyde), lysostaphin 

concentration (10–300 µg/ml), cell lysis time (1–30 min), cell lysis temperature (RT, 

37°C, 42°C), wash time (1–10 min), wash temperature (RT, 37°C), incubation time 

(1 h–overnight) and temperature (RT, 37°C, 42°C) with labelled probe, and the 

concentration of labelled probe added to the cells (5–50 ng/µl), non-specific 

fluorescence was detected regardless of whether the cells contained plasmid DNA. 
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Due to the problems encountered with the detection of plasmid DNA in fixed S. 

aureus cells using FISH, this method for plasmid localisation was not pursued 

further, and an alternative strategy was used for plasmid localisation in live S. aureus 

cells (see Section 5.8 below). 

5.8. Fluorescence localisation of pSK1 minireplicons in live S. 

aureus cells 

As described in Section 5.7, FISH could not specifically localise pSK1 minireplicons 

in fixed S. aureus cells. Therefore, an alternative method, based on a fluorescent 

repressor-operator system (FROS) (Robinett et al. 1996), was used for plasmid 

localisation in live S. aureus cells. FROS utilises a fluorescently-tagged repressor 

protein that binds to an array of operator elements present on the plasmid to be 

localised. In this way, epifluorescence microscopy can be performed to detect the 

fluorescence emitted from the fluorescent repressor protein such that localisation of 

the repressor is representative of the localisation of the plasmid to which it is bound. 

This system, therefore, enables plasmid localisation in live cells and allows plasmid 

movement to be tracked over time. Tagging of plasmids using FROS has been useful 

for studying the localisation of plasmids such as F plasmid (Gordon et al. 1997, 

Gordon et al. 2004, Hatano et al. 2007), P1 (Gordon et al. 1997, Gordon et al. 2004), 

pB171 (Ringgaard et al. 2009), R1 (Jensen and Gerdes 1999, Møller-Jensen et al. 

2003) and RK2 (Pogliano et al. 2001, Ho et al. 2002), as well as high copy-number 

ColE1-type E. coli plasmids (Pogliano et al. 2001, Reyes-Lamothe et al. 2014). To 

facilitate the localisation of plasmid DNA in S. aureus, the FROS used in this study 
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consisted of tetO operator arrays located on pSK1 minireplicons, which provided 

binding sites for TetR-GFP repressor proteins.  

5.8.1 Construction of pSK1 minireplicons carrying tetO arrays 

In order to localise pSK1 minireplicons in S. aureus using FROS, tetO operator 

arrays were inserted into pSK4829 (par) and pSK4833 (∆par) (Table 2.2). The tetO 

operator array used in this study was generated by Lau et al. (2003) on the plasmid 

pLAU44 (Table 2.2), which was provided by Dr. Ian Grainge (University of 

Newcastle, Australia). pLAU44 contains two arrays of 120 Tn10 tetO operators, 

located either side of a gentamycin resistance gene (Lau et al. 2003). Each array is 

comprised of three tandemly repeating tetO operators, repeated to form an array of 

120 tetO operators. Each operator is separated by 10 bp of random sequence, as 

described in (Lau et al. 2003). 

An overview of the molecular cloning processes used for the construction of pSK1 

minireplicons containing the tetO array is shown in Figure 5.25. In order to minimise 

the size of the DNA fragment introduced into the pSK1 minireplicons, primers HC43 

and HC45 (Table 2.6) were used to PCR-amplify (Section 2.4.4) a 4.5 kb region 

from pLAU44 template DNA (Table 2.2) containing an array of 120 tetO operators 

located downstream of the gentamycin resistance gene. The amplicon was 

electrophoresed on an agarose gel (Section 2.4.3), gel-purified (Section 2.4.7) and 

then restriction digested with KasI (Section 2.4.6) to further reduce the tetO array to 

a size of 2.2 kb. Following agarose gel electrophoresis of the digest (Section 2.4.3), 

the 2.2 kb fragment was gel-purified (Section 2.4.7) and then separately ligated to 

the KasI-restricted (Section 2.4.6) and dephosphorylated (Section 2.4.10) ends of 



 
 

Figure 5.25 Construction of pSK1 minireplicons carrying tetO arrays 

The insertion of tetO arrays in the pSK1 minireplicons, pSK4829 (par) (A) and 

pSK4833 (∆par) (B) is described in detail in Section 5.8.1. Briefly, a tetO array was 

amplified from pLAU44 (Lau et al. 2003) using primers HC43 and HC45 (Table 2.6). 

The amplicon was then restriction digested with KasI (Section 2.4.6), resulting in a 

2.2 kb fragment consisting of approximately 60 copies of tetO. The restricted tetO 

array was ligated to KasI-digested pSK4829 (par) or pSK4833 (∆par) (Section 

2.4.11), generating pSK9144 and pSK9145, respectively (Table 2.2).  

Genes: bla, gene conferring ampicillin resistance in E. coli; ermC, gene conferring 

erythromycin resistance in S. aureus; ColE1 ori, high-copy-number E. coli	origin of 

replication; pSK1 ori, origin of replication from S. aureus	multiresistance plasmid 

pSK1; tetO array, array of approximately 60 copies of Tn10 Tet operators, amplified 

from pLAU44 (Lau et al. 2003); pSK1 par, gene encoding the plasmid maintenance 

protein, Par, from S. aureus multiresistance plasmid pSK1.  
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pSK4829 (par) and pSK4833 (∆par) (Table 2.2). Ligation reactions were 

subsequently used to transform E. coli DH5α cells to ampicillin resistance (Section 

2.3.2). To identify recombinant plasmids containing the tetO array, plasmid DNA 

was isolated (Section 2.4.1) from selected transformants, digested with KasI (Section 

2.4.6), and then electrophoresed on an agarose gel (Section 2.4.3). However, it was 

found that the isolated plasmids contained either no insert or carried an insert that 

was smaller than the expected size. This might have been due to instability of the 

tetO array in E. coli DH5, a RecA- rather than RecA+ strain (Lau et al. 2003), 

which might have caused deletions of parts of the array. Therefore, to reduce 

potential instability, E. coli cells were transformed with the ligation mixtures and 

were incubated at a reduced temperature of 30°C instead of 37°C. Plasmid DNA was 

isolated from transformants grown at 30°C, and recombinant plasmids were 

identified by restriction digestion with KasI and agarose gel electrophoresis, as 

described above. Recombinant pSK4829 (par) and pSK4833 (∆par) plasmids, 

carrying a 2.2 kb tetO array containing approximately 60 copies of the tetO operator, 

were named pSK9144 and pSK9145, respectively (Table 2.2). 

5.8.2 Construction of an IPTG-inducible tetR-gfp expression plasmid 

To provide the fluorescent repressor to bind the tetO arrays located on the pSK1 

minireplicons constructed in Section 5.8.1, an IPTG-inducible tetR-gfp expression 

plasmid was generated. An S. aureus expression plasmid, pSK9067 (Table 2.2), that 

allows titratable expression of GFP protein fusions from the Pspac promoter, was 

constructed by Brzoska and Firth (2013). pSK9067 is an E. coli-S. aureus shuttle 

plasmid that utilises a pSK41 origin of replication in S. aureus, which makes it 
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compatible with the pSK1 minireplicons to be used in FROS. A MCS is located 

upstream of the GFP coding sequence, which enables the generation of C-terminal 

GFP fusions to protein coding regions cloned in-frame of gfp. Expression of GFP 

protein fusions is regulated by the IPTG-inducible Pspac promoter and vector-encoded 

Lac repressor.  

However, selection for pSK9067 in S. aureus is provided by the ermC gene 

(Horinouchi and Weisblum 1982), which encodes erythromycin resistance and is 

also used to select for the FROS pSK1 minireplicons, pSK9144 and pSK9145 (Table 

2.2). Therefore, to ensure plasmid compatibility and the independent selection of 

both plasmids in FROS, pSK9067 was modified by replacing the ermC gene with the 

aadD gene (McKenzie et al. 1986), which confers neomycin resistance in S. aureus. 

Modification of pSK9067, depicted graphically in Figure 5.26A, was performed by 

restriction digestion of the plasmid with KpnI and ClaI (Section 2.4.6) to release a 

1.2 kb fragment containing ermC. Agarose gel electrophoresis (Section 2.4.3) of the 

restriction digestion reaction allowed for recovery of the remaining 6.7 kb of vector 

DNA via gel-purification (Section 2.4.7). A DNA fragment containing the aadD 

gene was excised from pSK9065 (Table 2.2) by restriction digestion of the plasmid 

DNA with NcoI and SphI (Section 2.4.6). The 1 kb DNA band containing aadD was 

subsequently gel-purified (Section 2.4.7) after agarose gel electrophoresis of the 

digests (Section 2.4.3). Overhangs on the digested 6.7 kb pSK9067 vector DNA and 

the 1 kb aadD fragment were filled-in using the Klenow fragment of DNA 

polymerase I (Section 2.4.8), and the blunted fragments were ligated using T4 DNA 

ligase (Section 2.4.11). E. coli DH5α cells were transformed with the ligation 

reaction and selected for ampicillin resistance (Section 2.3.2), after which plasmid 



 
 

Figure 5.26 Construction of an inducible tetR-gfp expression plasmid 

A. Modification of an S. aureus expression plasmid for gfp fusions to confer neomycin 

resistance in S. aureus. The ermC erythromycin resistance gene on the S. aureus 

expression plasmid pSK9067 (Brzoska and Firth 2013) was replaced with the aadD 

neomycin resistance gene, as detailed in Section 5.8.2. Briefly, a 1.2 kb DNA fragment 

containing ermC was removed from pSK9067 by restriction digestion with KpnI and 

ClaI (Section 2.4.6), and the remaining 6.7 kb DNA fragment was gel-purified 

(Section 2.4.7). The aadD gene was obtained from pSK9065 by restriction digestion 

with NcoI and SphI (Section 2.4.6) and subsequent gel-purification of the 1 kb DNA 

fragment containing aadD (Section 2.4.7). Overhangs on purified DNA fragments 

were removed using the Klenow fragment of DNA polymerase I (Section 2.4.8), and 

fragments were ligated using T4 DNA polymerase (Section 2.4.11), resulting in 

pSK9140 (Table 2.2). B. Overview of the molecular cloning of Tn10 tetR to generate 

an inducible TetR-GFP fusion protein in S. aureus. Details of the construction of 

pSK9142 (Table 2.2) are described in Section 5.8.2. Briefly, Tn10 tetR was amplified 

from pSK9065 (Table 2.2) using primers HC38 and HC39 (Table 2.6) (Section 2.4.4), 

which contain the strong S. aureus superoxide dismutase (SOD) ribosome binding site 

(RBS) and a five-codon linker. The tetR amplicon was then restricted with SalI and 

BamHI (Section 2.4.6) and ligated to the similarly restricted and dephosphorylated 

SalI and BamHI sites of pSK9140 (Table 2.2) (Section 2.4.11) to generate pSK9142 

(Table 2.2). 

Genes: bla, gene conferring ampicillin resistance in E. coli; aadD, gene conferring 

neomycin resistance in S. aureus; ermC, gene conferring erythromycin resistance in 

S. aureus; ColE1 ori, high-copy-number E. coli	origin of replication; pSK41 ori, origin 

of replication from S. aureus	multiresistance plasmid pSK41; lacI, gene encoding the 



 
 

repressor of the Pspac	promoter; gfp, gfpmut-1	gene encoding the green fluorescent 

protein;	tetR, gene encoding the repressor that binds to Tn10 Tet operators. 
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DNA was isolated (Section 2.4.1) from selected transformants. Isolated plasmid 

DNA was screened for recombination by restriction digestion with PstI and EcoRV 

(Section 2.4.6), followed by agarose gel electrophoresis of the digests (Section 

2.4.3). Recombinant plasmids were identified by the presence of a 5.4 kb and 2.1 kb 

band. Neomycin resistance conferred by the modified pSK9067 plasmid was 

confirmed by electroporation of S. aureus RN4220 cells (Section 2.3.4) with 

recombinant plasmids and growth of transformants on NYE-agar (Table 2.3) 

containing 15 µg/ml neomycin. The pSK9067 plasmid derivative that conferred 

neomycin resistance in S. aureus was named pSK9140 (Table 2.2). 

To construct a tetR-gfp expression plasmid, the Tn10 tetR gene was PCR-amplified 

(Section 2.4.4) from pSK9065 plasmid DNA (Table 2.2) using primers HC38 and 

HC39 (Table 2.6). The sense primer, HC38, contains a SalI restriction site as well as 

the strong RBS from the S. aureus superoxide dismutase (SOD) gene (Clements et 

al. 1999) to promote efficient translation of the tetR-gfp transcript. In addition to a 

BamHI restriction site, the antisense primer, HC39, also encodes a linker, SCGAS 

(Veiga et al. 2011), to be incorporated between the TetR and GFP proteins to 

minimise interference of TetR structure and function by GFP (Chen et al. 2013). The 

0.7 kb PCR product was purified (Section 2.4.7) and digested with SalI and BamHI 

(Section 2.4.6), as was pSK9140 vector DNA (Table 2.2). The digested pSK9140 

DNA was dephosphorylated (Section 2.4.10) and used in a ligation reaction (Section 

2.4.11) with the digested tetR amplicon to insert the tetR coding region upstream and 

in-frame of gfp (Figure 5.26B). The ligation mixture was used to transform E. coli 

DH5α cells to ampicillin resistance (Section 2.3.2), after which plasmid DNA was 

isolated (Section 2.4.1) from selected transformants to screen for recombinants by 
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restriction digestion with SalI and BamHI (Section 2.4.6), followed by agarose gel 

electrophoresis (Section 2.4.3). Plasmids showing the expected restriction profile of 

recombinants were sequenced (Section 2.4.14) using primers HC38 and HC39 

(Table 2.6). The plasmid containing the correct sequence of the SOD RBS and tetR 

in-frame of gfp was named pSK9142 (Table 2.2) (Figure 5.26B). 

5.8.3 Effect of TetR-GFP on plasmid segregational stability 

To determine whether par enhances the segregational stability of pSK1 

minireplicons carrying the tetO array, and whether the production and binding of 

TetR-GFP to the tetO array affects Par function, plasmid segregational stability 

assays were performed on S. aureus cells carrying the two FROS plasmids. Because 

transformation efficiencies were low when S. aureus cells were simultaneously 

electroporated with pSK9142 (Pspac::tetR-gfp) and either pSK9144 (par, 60×tetO) or 

pSK9145 (∆par, 60×tetO) (Table 2.2) (data not shown), S. aureus SK8250 cells 

were first electroporated (Section 2.3.4) with pSK9142 only, and transformants were 

selected on NYE-agar (Table 2.3) containing neomycin (Table 2.4). 

Electrocompetent S. aureus SK8250 cells carrying pSK9142 were prepared as 

described in Section 2.3.3, and then electroporated with either pSK9144 or 

pSK9145. Transformants were grown at 30°C with selection on NYE-agar (Table 

2.3) containing both neomycin (to select for retention of pSK9142) and erythromycin 

(to select for transformants carrying pSK9144 or pSK9145) (Table 2.4). 

Plasmid segregational stability assays were performed on S. aureus cells carrying 

pSK9142 (Pspac::tetR-gfp) and either pSK9144 (par, 60×tetO) or pSK9145 (∆par, 

60×tetO) as described in Section 2.7. In order to minimise potential instability of the 
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tetO array, as experienced with E. coli cells when grown at 37°C (Section 5.8.1), 

serial subcultures for the stability assays were performed at 30°C. Throughout the 

assays, continuous selection for pSK9142 was applied using neomycin in the culture 

media. Serial subcultures and viable counts were performed in the absence of 

erythromycin, and retention of pSK1 minireplicons carrying the tetO array was 

assayed by growth of cells on media containing both erythromycin and neomycin. 

Expression of tetR-gfp was either uninduced or induced from pSK9142 using 0.1 

mM IPTG, which was added to the LB-broth used for subculture.  

Following five days of continuous subculture, approximately 56% of the cell 

population retained pSK9144 (par, 60×tetO) when expression of tetR-gfp was 

uninduced (Figure 5.27). This was compared to 8±4% of the population that retained 

pSK9145 (∆par, 60×tetO) after five days of the assay in the absence of TetR-GFP 

induction (Figure 5.27). These results, therefore, suggest that par enhances the 

segregational stability of a pSK1 minireplicon carrying the tetO array. When tetR-gfp 

expression was induced with 0.1 mM IPTG, no dramatic effects were observed on 

the segregational stability of pSK9144 or pSK9145; at the conclusion of the assay, 

pSK9144 was retained by a larger proportion of the population (49±6%) compared to 

pSK9145, which was completely lost from the population after three days of the 

assay (Figure 5.27). Therefore, induction of tetR-gfp expression from pSK9142 using 

0.1 mM IPTG did not appear to interfere with Par function or disrupt plasmid 

segregational stability. The enhanced segregational stability of pSK9144 compared 

to pSK9145, even in the presence of TetR-GFP, demonstrates the functionality of 

par and validates the suitability of these plasmid pairs for the study of plasmid 

localisation in S. aureus using FROS. 



 
 

Figure 5.27 Effect of TetR-GFP on the segregational stability of pSK1 

minireplicons containing tetO arrays 

Plasmid segregational stability assays of pSK1 minireplicons carrying tetO arrays. The 

retention of pSK1 minireplicons pSK9144 (par, 60×tetO) ( ) and pSK9145 (∆par, 

60×tetO) ( ) in S. aureus SK8250 cells was determined as described in Section 2.7. 

Expression of tetR-gfp was induced from a co-resident plasmid, pSK9142 (Pspac::tetR-

gfp), with 0 mM IPTG (solid lines) or 0.1 mM IPTG (dashed lines). Assays were 

performed with continuous neomycin selection for pSK9142. Five days of serial 

subculture represents approximately 75 generations. Data are normalised to 100% 

plasmid retention on Day 0. The averages of three independent assays are shown. Error 

bars represent standard error of the mean. Illustrative maps of the plasmids contained 

in the assayed S. aureus strains are shown above the graphs. 
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5.8.4 Fluorescence localisation of pSK1 minireplicons using a fluorescent 

repressor-operator system in live S. aureus cells 

The localisation of pSK1 minireplicons in S. aureus cells was determined by 

epifluorescence microscopy using FROS, which consisted of pSK9142 (Pspac::tetR-

gfp) and either pSK9144 (par, 60×tetO) or pSK9145 (∆par, 60×tetO) (Table 2.2). 

Stationary phase cultures of S. aureus SK8250 cells grown at 30°C and carrying the 

two pairs of FROS plasmids (with and without par), were used to inoculate fresh 

LB-broth (Table 2.3) containing antibiotic selection for both plasmids (Table 2.4) 

(Section 2.11.2). Cultures were grown at 30°C to mid-exponential phase, after which 

0.1 mM IPTG was added to induce tetR-gfp expression. Expression was induced at 

30°C for 2 h, and, when necessary, nucleoids were condensed with 25 µg/ml 

chloramphenicol for a further 1 h at 30°C (Section 2.11.2). S. aureus cells were 

prepared for epifluorescence microscopy and nucleoid DNA was stained with DAPI 

as described in Section 2.11.2.  

The fluorescence micrograph in Figure 5.28A shows that when tetR-gfp expression 

was uninduced in S. aureus cells carrying the FROS plasmids pSK9142 (Pspac::tetR-

gfp) and pSK9144 (par, 60×tetO), no fluorescence was detected. However, when 

tetR-gfp expression was induced with 0.1 mM IPTG, fluorescent foci were observed 

(Figures 5.28Bi–iv), which suggests that expression of tetR-gfp could be tightly 

regulated, and that the fluorescence detected was emitted specifically from TetR-

GFP. Furthermore, when S. aureus cells harboured pSK9142 and pSK4829 (Table 

2.2), which lacks the tetO array present on pSK9144, TetR-GFP produced only 

diffuse fluorescence when induced with 0.1 mM IPTG (Figure 5.28C). Therefore, 



 
 

Figure 5.28 Fluorescence localisation of pSK1 minireplicons in S. aureus cells by 

tagging with TetR-GFP  

The localisation of pSK1 minireplicons pSK9144 (par, 60×tetO) (A and Bi–iv), 

pSK4829 (C) and pSK9145 (∆par, 60×tetO) (Di–v) in mid-exponential phase S. 

aureus SK8250 cells was visualised by tagging with TetR-GFP using a fluorescent 

repressor-operator system. Expression of tetR-gfp from pSK9142 (Pspac::tetR-gfp) was 

uninduced (A) or induced with 0.1 mM IPTG (Section 5.8.4) (B–D). Nucleoid DNA 

was stained with DAPI (B and D), and cells were prepared for epifluorescence 

microscopy as described in Section 2.11.2. Cells in each of (B) and (D) are biological 

replicates. In (A), from left to right: TetR-GFP, bright-field (BF). In (B) and (D), from 

top left to bottom right: TetR-GFP; DNA; bright-field (BF); overlay of TetR-GFP and 

DNA; overlay of bright-field (BF) and TetR-GFP; overlay of bright-field (BF), TetR-

GFP and DNA. In (C), from left to right: TetR-GFP; bright-field (BF); overlay of 

bright-field (BF) and TetR-GFP. Scale bar = 1 µm. 

 

 

 

 

 

 

 

 



A. S. aureus (par, 60×tetO) + TetR-GFP + 0 mM IPTG 

 

B. S. aureus (par, 60×tetO) + TetR-GFP + 0.1 mM IPTG 

i.                     ii. 

                     

iii.       iv. 

               



C. S. aureus (par) + TetR-GFP + 0.1 mM IPTG 

 

D. S. aureus (Dpar, 60×tetO) + TetR-GFP + 0.1 mM IPTG 

i.       ii. 

                             

iii.      iv. 

                           

v. 
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fluorescent foci were only observed in S. aureus cells when both the tetO array and 

TetR-GFP were present in FROS. This strongly suggests that the observed foci 

resulted from TetR-GFP binding to the tetO array on the pSK1 minireplicons, and 

therefore, TetR-GFP localisation was interpreted as a strong indicator of plasmid 

localisation. 

Typically, one to four fluorescent foci were observed in each S. aureus cell carrying 

pSK9142 (Pspac::tetR-gfp) and pSK9144 (par, 60×tetO) (Figures 5.28Bi–iv). In cells 

displaying one plasmid focus (24±2% of all cells), the focus tended to localise at the 

division septum, between the two hemispheres of nucleoid DNA (Figure 5.28Bi, 

bottom cell). Where two foci were present (37±2%), each focus was generally 

associated with a separate hemisphere of nucleoid DNA, with the two foci either on 

the same or opposite sides of the cell (Figure 5.28Bii, right cell and Figure 5.28Biii, 

left cell). However, examples were also observed whereby the two foci were 

localised in the space between two nucleoids (Figure 5.28Biv, bottom cell). A third 

focus would sometimes be observed at the division septum (11±2%) (Figure 5.28Bi, 

top cell). In examples where four fluorescent foci were visualised (3±1%), foci 

typically assumed the positions of the cell poles (Figure 5.28Biv, top cell), similar to 

the polar localisation pattern observed for Spo0J-GFP shown in Figures 5.11i–ii. 

Furthermore, TetR-GFP foci appeared to be of similar intensities between cell 

hemispheres (Figures 5.28Bi–iv).  

When par was absent, in cells carrying pSK9142 (Pspac::tetR-gfp) and pSK9145 

(∆par, 60×tetO), the majority of cells (55±1%) had no fluorescent foci and only 

showed diffuse fluorescence (Figure 5.28Di, top three cells), which was probably 
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due to the unstable segregational stability of pSK9145, as demonstrated by stability 

assays performed in Section 5.8.3. Of the cells that did contain foci, a large 

proportion contained only one focus (23±1% of all cells; 50±2% of foci-containing 

cells), which was often of high fluorescence intensity and at times located between 

the two hemispheres of nucleoid DNA, potentially at the division septum (Figure 

5.28Dii; Figure 5.28Diii, top cell and Figure 5.28Div, top cell). When more than one 

focus was present, examples were observed whereby plasmid foci were located on 

the same side of the division septum, in the same hemisphere of the cell (Figure 

5.28Dv, bottom cell). In some cells lacking par, TetR-GFP foci displayed uneven 

fluorescence intensities between hemispheres, with extremely bright foci observed 

(Figure 5.28Div, bottom cell and Figure 5.28Dv). This could possibly be due to an 

uneven distribution of TetR-GFP, and hence pSK9145, between cell hemispheres. 

Overall, although par-deficient plasmid foci were localised towards the periphery of 

the cell, foci did not appear to assume the polar-like localisation pattern observed for 

plasmids containing par. 

5.8.5 Distribution of TetR-GFP focus numbers in S. aureus 

The distribution of the number of fluorescent TetR-GFP foci present in each cell, in 

the presence and absence of par, is presented in Figures 5.29A–B. Since it was 

established that TetR-GFP foci were formed as a result of TetR-GFP binding to tetO 

arrays (Section 5.8.4), the number of foci should, therefore, be reflective of the 

number of plasmids, or plasmid clusters, present in each S. aureus cell. The 

histograms in Figure 5.29A show that the mode for cells carrying pSK9144 (par, 

60×tetO) is 2 plasmid foci per cell (37±2%), and that the distribution of plasmid 



 
 

Figure 5.29 Distribution of the number of plasmid foci per cell 

The number of fluorescent plasmid foci per cell, detected by epifluorescence 

microscopy, was determined for S. aureus SK8250 cells harbouring pSK1 

minireplicons pSK9144 (par, 60×tetO) (grey bars; total number of cells = 1,362) or 

pSK9145 (∆par, 60×tetO) (white bars; total number of cells = 1,616). Plasmids were 

visualised by tagging with TetR-GFP using a fluorescent repressor-operator system. 

Expression of tetR-gfp from pSK9142 (Pspac::tetR-gfp) was induced with 0.1 mM 

IPTG (Section 5.8.4). A. Histogram plotting the percentage of all cells against the 

number of plasmid foci per cell. B. Histogram plotting the percentage of foci-

containing cells against the number of plasmid foci per cell. The averages of four 

independent microscopy experiments are shown. Error bars represent standard error 

of the mean. 

 

 

 

 

 

 

 

 



 

A. 

 

 

B. 

 

 



 

206 

 

focus numbers is centred around the mode. In the absence of par, the mode is 0 foci 

per cell (55±1%), with decreasing proportions of the population containing higher 

plasmid focus numbers. A Chi-squared test for homogeneity indicated that the 

distribution of plasmid focus numbers in cells with and without par was significantly 

different (p<2.2 x 10-16). Importantly, the proportion of the population without any 

plasmid focus was substantially higher in cell populations lacking par compared to 

cells containing par (24±2%) (Figure 5.29A). Therefore, the presence of par on 

pSK1 minireplicons affected the distribution of the number of plasmid foci per cell, 

and increased the likelihood of cells containing at least one plasmid focus.  

A more accurate reflection of the effect of pSK1 par on plasmid localisation might 

be obtained by analysing plasmid focus numbers in foci-containing cells only. 

Again, a Chi-squared test for homogeneity indicated that the distribution of plasmid 

focus numbers in foci-containing cells with and without par was significantly 

different (p<2.6 x 10-9). Specifically, when only foci-containing cells were 

considered, there appeared to be a difference in the proportion of cells containing 1 

or 2 foci (Figure 5.29B). In the absence of par, approximately half the foci-

containing cells contained 1 plasmid focus (50±2%), which is significantly higher 

than the proportion of cells that contained 1 focus when par was present (31±4%) 

(p<0.05; Figure 5.29B). Furthermore, compared to cells lacking par, a significantly 

higher proportion of cells carrying pSK9144 (par, 60×tetO) contained 2 plasmid foci 

(49±1% compared to 37±2% without par; p<0.05), which is also the mode for cells 

carrying pSK9144 (Figure 5.29B).  
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Overall, it appears that the absence of par significantly increased the likelihood of 

plasmid loss (no TetR-GFP foci) and the likelihood of cells containing 1 plasmid 

focus, and that the presence of par significantly increased the proportion of cells 

containing 2 plasmid foci. To ensure that the distributions of plasmid focus numbers 

per cell were not influenced by potential biases in the counting method, the number 

of plasmid foci per cell was calculated for a subset of both populations by an 

independent individual in a blind experiment, and were consistent with the results 

obtained. Interestingly, the number of TetR-GFP foci per cell, in both the presence 

and absence of par, was less than the expected copy-number for pSK1 minireplicons 

in S. aureus (estimated to be 3–10 copies per cell) (Grkovic et al. 2003, LeBard 

2005), which is perhaps suggestive of plasmid clustering. This is discussed further in 

Section 5.9.2. 

5.8.6 Association between TetR-GFP and nucleoid DNA in S. aureus 

Similar to observations with Par-GFP foci in S. aureus (Section 5.4.4.4), TetR-GFP 

foci appeared to be associated with nucleoid DNA, in both the presence and absence 

of par (see Figures 5.28Bi–iv and Di–v). Therefore, to determine whether TetR-

GFP, and hence plasmid DNA, was associated with S. aureus nucleoid DNA, S. 

aureus SK8250 cells carrying pSK9142 (Pspac::tetR-gfp) and either pSK9144 (par, 

60×tetO) or pSK9145 (∆par, 60×tetO) (Table 2.2) were prepared for epifluorescence 

microscopy as described in Section 5.8.4, and treated with chloramphenicol to 

induce nucleoid condensation (Section 2.11.2).  

As shown in Figures 5.30Ai–v, most examples of cells carrying the FROS plasmids 

containing par clearly showed an apparent association between TetR-GFP and 



 
 

Figure 5.30 Effect of nucleoid condensation on the fluorescence localisation of 

pSK1 minireplicons in S. aureus cells 

The localisation of pSK1 minireplicons pSK9144 (par, 60×tetO) (Ai–v) and pSK9145 

(∆par, 60×tetO) (Bi–iii) in S. aureus SK8250 cells was visualised by tagging with 

TetR-GFP using a fluorescent repressor-operator system. Expression of tetR-gfp from 

pSK9142 (Pspac::tetR-gfp) was induced with 0.1 mM IPTG (Section 5.8.4). Cells were 

grown to mid-exponential phase and then treated with 25 µg/ml chloramphenicol for 

1 h to condense nucleoids (Section 2.11.2). Nucleoid DNA was stained with DAPI, 

and cells were prepared for epifluorescence microscopy as described in Section 2.11.2. 

Cells in each of (A) and (B) are biological replicates. From top left to bottom right: 

TetR-GFP; DNA; bright-field (BF); overlay of TetR-GFP and DNA; overlay of bright-

field (BF) and TetR-GFP; overlay of bright-field (BF), TetR-GFP and DNA. 

Arrowheads indicate cells containing plasmid foci that appeared to associate with 

condensed nucleoids. Asterisks indicate cells containing plasmid foci that did not 

appear to associate with condensed nucleoids. Scale bar = 1 µm. 

 

 

 

 

 

 

 



 
 

 

A. S. aureus (par, 60×tetO) + TetR-GFP + 0.1 mM IPTG + Cm25 
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condensed nucleoids. This apparent association was highlighted by the displacement 

of TetR-GFP foci away from the cell periphery and towards the centre of the cell, 

where the nucleoids had condensed (Figures 5.30Ai–v, arrowheads). However, 

examples were also observed whereby an association of TetR-GFP with nucleoid 

DNA was less pronounced (Figure 5.30Av, asterisk). In the absence of par, a 

number of examples showed an obvious space between TetR-GFP foci and 

condensed nucleoid DNA (Figure 5.30Bi–ii, asterisks), however, an apparent 

association was also observed in some cells (Figure 5.30Biii, arrowhead). The results 

from the chloramphenicol treatment of S. aureus nucleoids are, therefore, 

inconclusive and do not provide strong evidence of an association between plasmid 

DNA and chromosomal DNA, in the presence or absence of par. 

5.8.7 Time-lapse epifluorescence microscopy of plasmid localisation in S. 

aureus 

One of the advantages of implementing FROS for the localisation of plasmid DNA 

in live S. aureus cells is the ability to track plasmid localisation over time. Time-

lapse epifluorescence microscopy was performed on S. aureus cells carrying the 

pairs of FROS plasmids, with and without par, to determine the localisation of pSK1 

minireplicons during the cell cycle. FROS experiments were performed as described 

above in Section 5.8.4, and fluorescence micrographs were captured at 1 min 

intervals for up to 6 min. 

The series of micrographs presented in Figures 5.31Ai–iv, and shown as movies in 

Supplementary Movies 1–4, depicts the localisation of pSK9144 (par, 60×tetO) 

(Table 2.2) in S. aureus SK8250 cells over time. In the presence of par, TetR-GFP 



 
 

Figure 5.31 Time-lapse microscopy of the fluorescence localisation of pSK1 

minireplicons in S. aureus cells by tagging with TetR-GFP  

The localisation of pSK1 minireplicons pSK9144 (par, 60×tetO) (Ai–iv) and 

pSK9145 (∆par, 60×tetO) (Bi–iii) in mid-exponential phase S. aureus SK8250 cells 

was visualised by tagging with TetR-GFP using a fluorescent repressor-operator 

system. Expression of tetR-gfp from pSK9142 (Pspac::tetR-gfp) was induced with 0.1 

mM IPTG (Section 5.8.4). Cells were prepared for epifluorescence microscopy as 

described in Section 2.11.2, and images were taken at 1 min intervals for up to six 

minutes (0’–6’). Cells in each of (A) and (B) are biological replicates. Images shown 

are overlays of bright-field (BF) and TetR-GFP micrographs. Scale bar = 1 µm. 

Movies of time-lapse micrographs are shown in Supplementary Movies 1–7. 
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i. 

 

ii. 

 

iii. 

 

 
 
 
 
 
 
 
 



 

209 

 

foci, and hence plasmid DNA, were either static or confined to a small area, and 

appeared to have a restricted trajectory predominantly along the cell periphery 

(Figures 5.31Ai–ii; Supplementary Movies 1–2). Plasmid foci were observed to 

converge and separate during the time-lapse experiments, and thus the number of 

plasmid foci varied during the cell cycle (Figures 5.31Ai–ii and Biii; Supplementary 

Movies 1–2 and 7). In predivisional cells, which appeared larger than non-dividing 

cells, plasmid foci were located near the division site (and presumably near the 

division septum) and appeared as one larger, more intense focus, possibly 

representing a pair or cluster of replicated plasmids (Figures 5.31Aiii–iv, panel 0’; 

Supplementary Movies 3–4). The large focus then appeared to separate into two or 

more foci, which were segregated into individual daughter cells prior to cell division 

(Figures 5.31Aiii, panels 2’–4’ and 5.31Aiv, panels 1’–3’; Supplementary Movies 3–

4). 

In contrast to the restricted movement of pSK1 minireplicons in the presence of par, 

the mobility of pSK9145 (∆par, 60×tetO) (Table 2.2) seemed more unrestricted, and 

foci often appeared to traverse the cell diameter (Figure 5.31Bi; Supplementary 

Movie 5). The cumulative distance travelled by TetR-GFP foci during the 

observation period also seemed greater in the absence of par compared to when par 

was present, possibly suggesting that plasmid DNA moved more quickly and/or 

more freely in the absence of par. However, foci movement was not quantitated 

because the path of movement between time points was unknown, and hence, 

distance and velocity could not be determined with confidence. 
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Because many cells carrying pSK9142 (Pspac::tetR-gfp) and pSK9145 (∆par, 

60×tetO) contained no or only one TetR-GFP focus (Figures 5.29A–B), it was 

expected that plasmid segregation would be inefficient. Indeed, when predivisional 

cells contained a single focus, the pSK9145 plasmid focus did not separate into 

more foci, unlike what was observed for pSK9144 (above). Upon cell division, the 

single focus remained within the mother cell and was not inherited by the daughter 

cell (Figure 5.31Bii; Supplementary Movie 6). Even when two plasmid foci were 

observed, one daughter cell did not appear to inherit any plasmid focus (Figure 

5.31Biii; Supplementary Movie 7), which demonstrates the reduced plasmid 

segregational stability of par-deficient pSK1 minireplicons. Photobleaching of 

TetR-GFP fluorescence signals prevented fluorescence localisation of plasmid DNA 

over more than one cell cycle. 

5.9. Discussion 

A summary of the results described in this chapter is presented in Table 5.1. 

5.9.1 Fluorescence localisation of Par 

Anti-Par peptide antibodies that were generated against two predicted antigenic Par 

peptides were shown to be reactive against the full-length Par protein (Figure 5.2A). 

Although the antibodies were affinity-purified against the peptides by the supplier 

(Mimotopes Pty Ltd), a number of non-specific protein bands were detected in 

Western blots of Par in S. aureus cell lysates (Figure 5.2A). The extraneous protein 

bands may have been caused by non-specific binding of S. aureus proteins to the 

anti-Par peptide antibodies. The S. aureus strain used for Western blot analyses, S. 



 
 
 
 
 
Table 5.1 Summary of properties of Par derivatives (Chapter 5) 
 

Protein Plasmid      
stabilisationa Localisationb Association with    

nucleoid DNAc 
Protein 

interactionsd 

RGSH6-Par No N. D. N. D. N. D. 

Par N. D.  E. coli: Foci around cell periphery, 
possible filaments/helices/spirals N. D. N. D.  

GFP-Par (Ppar) No 
S. aureus: Foci around cell periphery 
E. coli: Foci and patches around cell 
periphery; potential arcs at cell poles 

E. coli: Yes, centromere-
dependent N. D.  

Par-GFP (Ppar) Partial 
S. aureus: Foci around cell periphery 
E. coli: Foci at mid-cell or cell poles 

E. coli: Yes, centromere-
dependent N. D.  

GFP-ParK15A (Ppar) N. D. E. coli: Foci and patches around cell 
periphery E. coli: No N. D.  

Dpar + Par (Pspac) in trans Titratable N. D.  N. D.  N. D. 

GFP-Par (Ppar) + Par (Pspac) 
in trans Titratable N. D. N. D. N. D.  

Par-GFP (Ppar) + Par (Pspac) 
in trans 

Titratable to wild-type 
levels with 0.5–1.0 mM 

IPTG 

S. aureus: Foci around cell periphery 
in the presence and absence of Par S. aureus: Possible N. D.  

Dpar + Par-GFP (Pspac)      
in trans Titratable S. aureus: Foci around cell periphery N. D.  N. D.  



 
 
 
 
Table 5.1 Summary of properties of Par derivatives (Chapter 5) (continued) 
 

 
 

Protein Plasmid      
stabilisationa Localisationb Association with    

nucleoid DNAc 
Protein 

interactionsd 

Par (Ppar) + Par-GFP (Pspac) 
in trans Yes S. aureus: Foci around cell periphery  N. D.  N. D. 

ParK15A (Ppar) + ParK15A-
GFP (Pspac) in trans N. D. S. aureus: Foci around cell periphery  N. D. N. D.  

Par∆CC (Ppar) + Par∆CC-
GFP (Pspac) in trans N. D. S. aureus: Disperse, cytoplasmic N. D. N. D. 

Par-GFP (Pspac)                
(no centromere) N. D. 

S. aureus: Foci around cell periphery 
(0.1 mM IPTG); bright foci, possible 

bands/arcs (1.0 mM IPTG) 
S. aureus: Possible N. D.  

GFP-Par (Ptac)                   
(no centromere) N. D.  E. coli: Foci around cell periphery, 

possible arcs at cell poles  E. coli: No N. D. 

GAL4 BD-ParFL N. D.  N. D.  N. D. 
GAL4 AD    

-ParFL,         
-ParGFP 

GAL4 BD-ParGFP N. D. N. D. N. D. GAL4 AD    
-ParFL 

aPlasmid stabilisation ability assessed by plasmid segregational stability assays (Sections 5.3.4, 5.4.2, 5.4.4.2 and 5.4.5.2). 
bLocalisation assessed using epifluorescence microscopy (Sections 5.3–5.6). 
cAssociation with nucleoid DNA assessed by nucleoid condensation using chloramphenicol (25 µg/ml S. aureus; 300 µg/ml E. coli) (Sections 5.4 and 5.6). 
dProtein interactions assessed by yeast two-hybrid (Y2H) assays (Section 5.4.4.3). 
N. D. Not determined in experiments described in Chapter 5. 
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aureus SK8250 (Table 2.1), is deficient in the expression of the immunoglobulin-

binding protein, Protein A (Liu 2012), and indeed, bands of approximately 50 kDa 

and higher, corresponding to the sizes of Protein A and Protein A complexes, were 

not observed on the blots (Figures 5.2A–C). There remains, however, at least one 

other known immunoglobulin-binding protein in S. aureus – the 50 kDa protein, Sbi, 

which has been shown to interact with the Fc part of immunoglobulins (Zhang et al. 

1998). Hence, the presence of at least one of the non-specific protein bands on Par 

Western blots might be explained by the binding of Sbi to anti-Par antibodies. 

Indeed, incubation of the blots with normal goat serum prior to incubation with the 

primary antibodies reduced background bands (Figures 5.2B–C), presumably due to 

the blocking of immunoglobulin-binding proteins with antibodies present in the goat 

serum. However, non-specific protein bands, at approximately 48 kDa and 58 kDa, 

were detected even in the presence of normal goat serum (Figures 5.2B–C). The 

detection of these bands may have been the product of cross-reactivity of anti-Par 

antibodies with S. aureus proteins.  

The titration of anti-Par peptide antibodies shown in Figure 5.2C revealed that the 

detection of Par required relatively low antibody dilutions (1:100–1:1,000), which 

might have contributed to the potential cross-reactivity with S. aureus proteins. 

Whereas higher antibody dilutions might have minimized cross-reactivity, higher 

dilutions of the antibody resulted in reduced signal intensities for both Par and non-

specific protein bands (Figure 5.2C), and hence the specificity of Par 

immunodetection using anti-Par peptide antibodies could not be improved without a 

loss in sensitivity. This could be due to a number of factors, such as low Par 
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expression levels, poor antigenicity of the Par peptides used for antibody production, 

or weak interaction between anti-Par peptide antibodies and Par epitopes. 

When the anti-Par antibodies were applied in IFM of Par in fixed S. aureus cells, the 

antibodies were unable to specifically detect Par (Section 5.3.1). This was despite 

successful localisation of FtsZ by IFM (Figure 5.3D), which indicates that the IFM 

protocol was suitable for detection of proteins in S. aureus. Note that a considerably 

higher dilution of anti-FtsZ antibodies was used (1:20,000 compared to 1:100–

1:10,000 tested for IFM of Par), probably due to higher levels of FtsZ in S. aureus 

and/or higher specificity of the antibodies for FtsZ, which would have minimised 

cross-reactivity with S. aureus proteins. Therefore, the inability to specifically detect 

Par in S. aureus using IFM was most likely due to a combination of low levels of Par 

protein in cells (as described in Section 3.2.2), low sensitivity of the anti-Par peptide 

antibodies, and cross-reactivity of the antibodies with non-specific S. aureus proteins 

(as shown on the Western blots in Figure 5.2C).  

An epitope-tagged derivative of Par, RGSH6-Par, was generated for its potential use 

in IFM using monoclonal anti-His antibodies against the epitope (Section 5.3.3). It 

was anticipated that monoclonal antibodies would provide greater sensitivity and 

potentially reduce the cross-reactivity experienced with polyclonal anti-Par peptide 

antibodies. Plasmid segregational stability assays revealed a lack of functionality of 

RGSH6-tagged Par (Figure 5.4), which made it unsuitable for use in IFM as a 

substitute for Par. Given additional time, monoclonal antibodies could be generated 

against Par or predicted antigenic Par peptides, on the premise that monoclonal 

antibodies might be more specific to the target antigen, and that the absence of serum 
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components might reduce cross-reactivity with non-specific S. aureus proteins. 

However, it is anticipated that low Par expression levels in S. aureus would remain a 

major challenge in future IFM attempts.  

It was unexpected that the relatively small-sized RGSH6 tag would interfere with Par 

functionality, especially since DNA-binding and multimerisation activities had been 

demonstrated in vitro for purified RGSH6-Par proteins (Sections 3.4 and 3.5.1). In 

light of this, it should be stressed that the results described in Chapter 3 are still valid 

for characterising the functional activities of Par. The observed loss of functionality 

of RGSH6-Par might have resulted from an alteration of DNA-binding, 

autoregulation or multimerisation activity. Nonetheless, these remain undeniably 

functional properties of Par.  

The difficulties encountered with IFM of Par in S. aureus were not experienced 

when IFM of Par was performed in E. coli. This may have been due to the higher 

copy-number of pSK4829 (par) (Table 2.2) in E. coli compared to S. aureus, which 

allowed Par to be detected using relatively high dilutions (1:10,000) of the anti-Par 

peptide antibodies in IFM (Figures 5.19A and 5.20). The high antibody dilution may 

have reduced non-specific binding of the antibodies to E. coli proteins, which, in 

addition to the larger cell size, allowed for clear visualisation of Par foci as well as 

potential arcs, helices or spirals that were present only in cells producing Par 

(Figures 5.19Ai–ii). Although Par has not demonstrated functionality in E. coli 

(Davies, D. and Firth, N., unpublished data), the localisation of Par in this 

heterologous host may provide insights into the structural properties of Par in vivo, 

particularly with respect to filament formation, as suggested by data obtained from 
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electron microscopy of purified RGSH6-Par (Barton, D. A., Jensen, S. O. and Firth, 

N., unpublished data).  

Deconvolution of IFM images of Par in E. coli revealed potential 3-dimensional 

structures, such as helices or spirals (Figures 5.20A–C), that were reminiscent of 

those observed for ParA and SopA of the Type Ia plasmid partitioning system 

(Ebersbach and Gerdes 2004, Adachi et al. 2006, Ringgaard et al. 2009). No helical 

or spiral patterns were detected for Par-GFP in S. aureus, except perhaps when Par-

GFP was maximally induced from pSK9097 in the absence of centromere DNA 

(Figures 5.17Ci–iii). The inability to readily detect Par-GFP filaments in S. aureus 

may have been due to the significantly fainter levels of fluorescence detected, which 

may have resulted in the detection of foci and not fainter structures. Furthermore, 

fluorescence detection of structures in spherical S. aureus cells could have been 

improved by obtaining images along the z-axis of the cells, followed by 

deconvolution of the image stacks to visualise fluorescence from multiple planes, as 

performed for IFM of Par in E. coli. However, the faint fluorescence of Par-GFP 

resulted in rapid photobleaching, which prevented the acquisition of z-stacks. Of 

course, it is also possible that the helical or spiral structures observed in E. coli do 

not exist in S. aureus, and were instead the product of Par overproduction in a 

heterologous host.  

It should also be noted that, although filamentous structures appear to have been 

observed in E. coli (Figures 5.19Ai–ii and 5.20A–C), and also potentially in S. 

aureus when Par-GFP was overproduced from pSK9097 in the absence of 

centromere DNA (Figure 5.17Ci–iii), it is unclear whether these patterns represent 
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true Par filaments or unresolved Par foci that were proximally located. Indeed, there 

is uncertainty about whether ParA forms filaments, or only short polymers or 

multimers, in vivo (Vecchiarelli et al. 2012). Interpretation of Par localisation 

patterns is limited by the spatial resolution of conventional wide-field 

epifluorescence microscopy, which has an optical resolution of 180–700 nm 

(Schermelleh et al. 2010). Since the width of E. coli cells and the diameter of S. 

aureus cells is only approximately 1 µm, resolution of the spatial localisation of 

subcellular proteins is undoubtedly limited. Super-resolution microscopy methods, 

such as 3-dimensional structured illumination microscopy (3D-SIM) or cryo-electron 

tomography (cryo-ET), provide optical resolutions of approximately 100–300 nm 

and 5 nm, respectively (Murphy and Jensen 2007, Gustafsson et al. 2008). 3D-SIM 

has been useful for the visualisation of the ring structure formed by FtsZ-GFP in S. 

aureus (Strauss et al. 2012, Turnbull et al. 2014), while cryo-ET has been used to 

visualise R1 ParM bundles in E. coli (Bharat et al. 2015). Both methods have 

provided more detailed images than can be achieved by conventional fluorescence 

microscopy. Super-resolution microscopy techniques could, therefore, provide 

increased resolution and sharper images to confirm the presence or absence of 

filamentous Par structures in E. coli and, more importantly, in S. aureus.  

The fusion of GFP to Par enabled a representative visualisation of Par localisation in 

live S. aureus cells. Ideally, the localisation of Par GFP fusions would correlate to 

the localisation of Par as determined by IFM. However, because the cellular 

localisation of Par in fixed S. aureus cells could not be specifically detected using 

IFM (Section 5.3.1), it cannot be assumed with absolute confidence that the 

localisation patterns of Par GFP fusions in live S. aureus cells are accurate 
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representations of Par localisation. It should also be emphasised that Par-GFP was 

shown to exhibit reduced functionality (Figure 5.6B), and that even though the 

impaired functionality of the par-gfp partitioning system on pSK9088 (Table 2.2) 

could be complemented with the supply of Par in trans from pSK9104 (Table 2.2) 

(Figure 5.8C), the components of this system were produced in a non-natural 

arrangement that differs from the wild-type genetic organisation pSK1 par. 

Therefore, without IFM data to verify the localisation of Par-GFP in S. aureus, it is 

imperative that the above considerations are noted and that subsequent analyses of 

Par-GFP localisation patterns are interpreted cautiously.  

Plasmid segregational stability assays showed that GFP-Par was non-functional, 

whereas Par-GFP was partially functional (Figure 5.6B). The expression of both 

proteins was confirmed by Western blotting of S. aureus cell lysates (Figure 5.6A), 

which indicates that the lack of plasmid segregational stability was a result of 

impaired protein function and not the complete absence of protein. The reduced 

functionality of Par GFP fusions was not unexpected, as the addition of GFP (27 

kDa) to Par (29 kDa) probably caused disruptions to Par protein folding or protein 

interactions, which may have resulted in the observed reduction in partitioning 

function. It is interesting to note that N-terminal fusions to Par, for example with 

RGSH6 or GFP, both resulted in a loss of Par function (see Figures 5.4 and 5.6B), 

which is perhaps suggestive of a disruption to the N-terminal HTH domain and 

DNA-binding activity. Alternative fusions of tags to Par could be generated, using 

different linker compositions, lengths and insert positions, to try to minimise 

disruption to Par function, such that a functional Par GFP fusion protein can be used 

for localisation studies. 
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The pSK1 minireplicons pSK9088 (Ppar::par-gfp) (Table 2.2) and pSK9087 

(Ppar::gfp-par) (Table 2.2) displayed dose-dependent increases in segregational 

stability with IPTG induction of Par expression from a co-resident plasmid, 

pSK9104 (Pspac::par) (Table 2.2) (Figures 5.8B–C). The segregational stability of 

pSK9088 (Ppar::par-gfp), but not pSK9087 (Ppar::gfp-par), could be improved to the 

stability level of pSK4829 (par) (Table 2.2) with maximum induction of Par 

expression (0.5 mM and 1 mM IPTG) (Figures 5.8B–C). Western blot analyses 

verified the inducible production of Par from pSK9104 (Figures 5.9B–C), indicating 

that the increase in plasmid stability was the result of an increase in Par protein 

levels. Although increasing IPTG concentrations should have corresponded to 

increasing amounts of Par, uneven sample loading might not have clearly 

demonstrated Par titration in the Western blots (Figures 5.9B–C). The blots 

nonetheless show that Par was induced in the presence of IPTG, and the effect of 

increasing levels of Par induction was reflected in the stability assays in Figures 

5.8B–C.  

Because a loading control was not used for quantifying relative protein amounts 

from the Western blots in Figures 5.9B–C, it is unclear whether increasing IPTG 

concentrations also resulted in an increase in GFP-Par levels. The apparent 

overexpression of GFP-Par compared to WT Par, at all Par induction levels, may 

have contributed to the lower stability of pSK9087 (Ppar::gfp-par) compared to 

pSK9088 (Ppar::par-gfp), since overexpression of partitioning proteins have been 

shown to result in plasmid instability (Funnell 1988a).  
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With regard to the improved segregational stability of pSK9088, the nature of the 

contribution of Par to the observed increase is unclear. However, it may be the result 

of direct interaction between Par and the centromere-like site on pSK9088, and/or 

interaction of Par with partially functional Par-GFP to improve DNA-binding, 

autoregulation or multimerisation activities. Previous studies have shown that Par, 

when expressed from the chromosome, is functional in trans as an autorepressor of 

Ppar (LeBard 2005). Therefore, it is conceivable that the potential in trans 

autoregulation of par-gfp on pSK9088 by Par from pSK9104 (Pspac::par), may have 

contributed to the increased plasmid stability. Although interestingly, no obvious in 

trans repression of GFP-Par (Figure 5.9B) or Par-GFP (Figure 5.9C) expression was 

observed by Western blotting of lysates from S. aureus cells producing Par in trans 

to pSK9087 or pSK9088, respectively. At the least, since Par alone was unable to 

fully complement the unstable, par-deficient plasmid, pSK4833 (Figure 5.8A), in 

trans, it appears that a cis-acting protein, in this case Par-GFP of pSK9088, or 

alternatively, higher overall protein levels, is required for complete complementation 

of the partial functionality of a trans-acting Par protein.  

Since the fluorescence localisation of Par-GFP should be representative of Par 

localisation in this artificial, yet seemingly functional, plasmid stability system, it 

was important to demonstrate interaction of Par from pSK9104 (Pspac::par) with 

components of the par-gfp partitioning system on pSK9088. To this end, the Y2H 

and α-galactosidase assays performed in Section 5.4.4.3 showed interaction between 

Par and Par-GFP bait and prey fusion proteins (Figures 5.10A–B), which suggests 

that the increased segregational stability of pSK9088 might have involved interaction 

of Par with Par-GFP. Except for the apparent stabilising effect of Par on pSK9088 
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(Figure 5.8C), no direct evidence has been obtained for the interaction of Par with 

Par-GFP in vivo under the conditions used for fluorescence localisation studies. in 

vivo cross-linking experiments using DSP on S. aureus cells expressing Par and Par-

GFP were attempted (data not shown), however, as demonstrated by Figure 3.8B, in 

vivo cross-linking in S. aureus, and the subsequent detection of cross-linked Par 

complexes, was difficult to interpret due to non-specific background bands. 

Problems were compounded by the potential sizes of Par:Par-GFP complexes, which 

would depend on the ratio of Par and Par-GFP in cross-linked complexes. As an 

alternative, to elucidate whether Par and Par-GFP interact in S. aureus, 

immunoprecipitation experiments (Bonifacino et al. 2001) could be performed on S. 

aureus cells harbouring pSK9088 (Ppar::par-gfp) and pSK9104 (Pspac::par) using 

either anti-Par or anti-GFP antibodies to isolate and precipitate potential Par:Par-

GFP complexes that may have formed in vivo. 

When Par-GFP, produced from pSK9088, was supplied in trans with Par to increase 

plasmid stability, fluorescent foci were observed around the periphery of S. aureus 

cells (Figures 5.12Bi–ii). The localisation pattern of some Par-GFP foci appeared 

reminiscent of Spo0J-GFP localisation, which marked the cell poles at the tips of 

elongated nucleoid lobes (Figures 5.11i–ii). Although this localisation pattern was 

not observed for all Par-GFP foci, it is possible that Par-GFP may have localised to 

the cell poles at specific stages of plasmid partitioning. Nonetheless, it was difficult 

to discern the spatial organisation of these foci with respect to subcellular structures. 

This was largely due to the small, coccoid shape and orthogonal mode of 

staphylococcal cell division (Tzagoloff and Novick 1977), which presented 

challenges for the identification of cell orientation without co-visualisation of other 
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subcellular components. Although staining of the nucleoid with DAPI aided in the 

identification of cell orientation, it would be useful to perform simultaneous 

fluorescence localisation of Par-GFP and fluorescently-tagged cell division proteins, 

such as FtsZ or EzrA, which have previously been localised in S. aureus (Pereira et 

al. 2010, Veiga et al. 2011). Cell structures such as the cell membrane or cell wall, 

could also be stained using fluorescent dyes such as Nile Red and the fluorescent 

vancomycin derivative, Van-FL, respectively. The dual visualisation of Par-GFP and 

other fluorescently-tagged proteins in S. aureus might present challenges due to the 

presence of two existing plasmids (pSK9088 and pSK9104) in the S. aureus strain 

used for Par-GFP localisation. Coordination of dual visualisation would require 

consideration of the compatibilities of origins of replication, antibiotic selection, 

promoters, inducers and inducer levels. A balance of protein induction levels would 

need to be achieved for optimal visualisation of both proteins, whilst minimising 

potential interference with the par-gfp plasmid segregational stability system. 

It was expected that the increased segregational stability of pSK9088 (Ppar::par-gfp) 

in the presence of Par might result in different Par-GFP localisation patterns 

compared to patterns observed in the absence of Par. However, no obvious 

differences were detected (Figures 5.7A–B and 5.12A–B). It may be that the 

localisation of Par-GFP was not affected by differences in the stability of pSK9088 

in the presence and absence of Par, and that other factors, such as DNA-binding, 

autoregulation or multimerisation, might have been affected by the partially-

functional par-gfp system. It is also important to note that the fluorescence 

localisation of Par-GFP was only captured at a single point in time, and hence further 

insight into the potential effects of Par on the localisation of Par-GFP might be 
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achieved by performing time-lapse fluorescence microscopy to track Par-GFP 

localisation over the course of the cell cycle. Unfortunately, due to faint fluorescence 

signals from Par-GFP, time-lapse experiments caused significant photobleaching of 

GFP fluorescence, which made interpretation of localisation difficult. 

Furthermore, the localisation of Par-GFP from pSK9088 (Ppar::par-gfp), in the 

presence or absence of Par (Figures 5.7A–B and 5.12A–B), did not appear to differ 

dramatically from that of Par-GFP when produced in the absence of the pSK1 par 

centromere-like site (pSK9097) (Figures 5.17Ai–ii), or when Par-GFP was produced 

in trans to the centromere-like site on pSK4829 (par) or pSK4833 (∆par) (Figures 

5.16A–B). The localisation of the DNA-binding mutant derivative, ParK15A-GFP, 

was also similar to that of Par-GFP (Figure 5.16C). In all cases, Par-GFP and 

ParK15A-GFP appeared as foci, which were most likely formed as the result of Par 

multimerisation via the CC domain, since Par∆CC-GFP did not form foci and 

showed only diffuse fluorescence (Figure 5.16D). This confirmed that Par-GFP foci 

were not artefacts of GFP aggregation, a problem that has resulted in mis-

interpretation of the localisation of some proteins (Landgraf et al. 2012). The 

absence of Par∆CC-GFP foci is consistent with in vitro cross-linking data, which 

suggests that the CC domain is crucial for Par multimerisation (Lai 2008). The 

epifluorescence microscopy observations presented here, therefore, provide in vivo 

evidence of the role of the CC domain in Par multimerisation. Furthermore, the 

observation of fluorescent foci for ParK15A-GFP (Figure 5.16C), and for Par-GFP 

when produced in the absence of the centromere-like site (Figures 5.17Ai–ii), 

implies that focus formation is independent of the presence of centromere DNA and 

DNA-binding activity. The implications of these observations for the mechanism of 
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par-mediated plasmid partitioning are discussed further in Chapter 6. Note that it 

remains to be shown that Par-GFP binds directly to centromere DNA on pSK1 

minireplicons. To investigate this, EMSAs should be performed to assess the DNA-

binding of Par-GFP to radiolabelled probes containing the pSK1 par centromere-like 

site, as described for the EMSAs performed on purified RGSH6-Par proteins in 

Section 3.4. Ultimately, dual localisation of plasmid DNA and Par would be required 

to verify whether Par-GFP binds to plasmid DNA. However, dual localisation would 

require re-consideration of the experimental designs used to individually localise Par 

and plasmid DNA in this study. 

The potential association of Par-GFP and TetR-GFP plasmid foci with S. aureus 

nucleoid DNA was explored by observing the localisation of these fluorescent foci 

following condensation of nucleoids using chloramphenicol. The results from the 

nucleoid condensation experiments were inconclusive (Figures 5.13A–B, 5.17B–C 

and 5.30A–B), although it is important to note that the observed localisation of Par-

GFP or TetR-GFP foci relative to nucleoid DNA was likely influenced by the stage 

of cell division and plasmid partitioning at the time of image capture, as well as the 

orientation at which the cells were viewed. While there appeared to be some clear 

examples of a close association between condensed nucleoids and Par-GFP or TetR-

GFP, this was not the case for all condensed nucleoids, regardless of whether Par 

was present (Figures 5.13A–B, 5.17B–C and 5.30A–B). If indeed an association did 

exist, it would not be unreasonable to suggest that the foci would not remain 

associated with the nucleoid at all times during the cell cycle.  
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Sometimes, it was unclear whether fluorescent Par-GFP or TetR-GFP foci were 

associated with condensed S. aureus nucleoids. This was in contrast to the nucleoid 

condensations performed in E. coli, which clearly showed an association of GFP-Par 

and Par-GFP with nucleoid DNA, and that the association was dependent on the 

presence of the centromere-like site and DNA-binding activity (Figures 5.23B and 

5.24). As described above, the small size of S. aureus cells is a major limitation to 

the spatial resolution of subcellular objects using conventional light microscopy 

techniques. Therefore, super-resolution microscopy might be better suited for the 

visualisation of Par-GFP and TetR-GFP localisation with respect to the edges of S. 

aureus nucleoids. In this regard, 3D-SIM might be able to resolve fluorescent foci 

and edges of the nucleoid to determine whether the foci colocalise with parts of the 

nucleoid.  

Another method that could be used for the detection of associations between 

fluorescent foci and nucleoid DNA is fluorescence resonance energy transfer (FRET) 

(Förster 1948). FRET has been used to detect protein-DNA (Cremazy et al. 2005) 

and protein-RNA (Lorenz 2009) interactions by fluorescence microscopy. Cremazy 

et al. (2005) used the SytoxOrange nucleic acid stain as the FRET energy acceptor, 

which was excited by the emission energy transferred from nearby DNA-binding 

proteins fused to GFP and YFP energy donors. It is, therefore, conceivable that 

FRET could be used to determine whether Par-GFP or TetR-GFP is located within 

close proximity of the nucleoid. Potential associations of Par-GFP (and Par) with 

nucleoid DNA could also be investigated using in vitro methods, such as chromatin 

immunoprecipitation, for the identification of potential chromosome binding sites 

(Collas 2010).  
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5.9.2 Fluorescence localisation of plasmid DNA 

In cells carrying the functional par-gfp system, with Par provided in trans, the 

number of Par-GFP foci per cell (Figures 5.18A–B) could be expected to correlate 

with the number of TetR-GFP plasmid foci observed for pSK9144 (par, 60×tetO) 

(Table 2.2) in FROS experiments (Figures 5.29A–B). This assumes that all Par-GFP 

foci represented plasmids bound by Par-GFP. However, it cannot be verified that all 

Par-GFP proteins were bound to the centromere DNA, and since it was shown that 

the centromere DNA and DNA-binding activity were not required for the formation 

of Par-GFP foci (Figures 5.16C and 5.17Ai–ii), the observed foci might, therefore, 

represent a mix of Par-GFP proteins that were bound to plasmids, and Par-GFP 

multimers that were not engaged in DNA-binding. In contrast, TetR-GFP foci were 

only observed in the presence of tetO arrays (Section 5.8.4), and hence it is almost 

certain that all TetR-GFP foci represented TetR-GFP proteins bound to plasmid 

DNA. Furthermore, the functionality of par in enhancing the segregational stability 

of pSK1 minireplicons containing the tetO array was demonstrated by plasmid 

segregational stability assays of pSK9144 (par, 60×tetO) and pSK9145 (∆par, 

60×tetO) (Table 2.2) in S. aureus, which also showed that the production of TetR-

GFP from pSK9142 (Table 2.2) did not affect plasmid stability (Figure 5.27). 

Overall, the distribution of the number of Par-GFP and TetR-GFP foci per cell 

appears consistent between the populations, and both data sets showed a significantly 

higher proportion of cells containing two foci when Par was present (Figures 5.18A–

B and 5.29A–B). However, for the reasons mentioned above, plasmid localisation 

would most accurately be represented by the localisation of TetR-GFP rather than 
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Par-GFP, and therefore subsequent analyses of plasmid localisation were carried out 

using data obtained from the FROS experiments performed in Section 5.8.4.  

The issues raised previously regarding the challenges of determining the spatial 

organisation of Par-GFP foci with respect to subcellular components also apply to 

the localisation of TetR-GFP foci. Namely, that the localisation of TetR-GFP foci 

and analysis of focus numbers may be influenced by the small size of S. aureus cells, 

which imposes limitations on the resolution of TetR-GFP foci using conventional 

microscopy techniques. With respect to the analysis of TetR-GFP focus numbers, it 

should be taken into consideration that due to the spherical shape and random 

orientation of S. aureus cells, the single focal plane imaged may have excluded foci 

located at other points along the z-axis of the cells. To ensure that foci in all planes 

can be visualised, images could be taken at various points on the z-axis to obtain a z-

stack, which can then be deconvolved, as performed for IFM of Par in E. coli 

(Section 5.5). However, the fluorescence intensity of foci in S. aureus cells was 

relatively low compared to the fluorescence detected from E. coli cells, and thus 

problems with photobleaching would need to be overcome. Furthermore, counts of 

TetR-GFP foci were performed on images captured at a single point in time, and 

time-lapse microscopy showed that the number of plasmid foci varied during the cell 

cycle (Figures 5.31Ai–ii and Biii). However, it was anticipated that the scoring of 

TetR-GFP focus numbers from a large sample of cells (n>1,300) would account for 

variations in cell orientation and stages of the cell cycle. 

Since TetR-GFP binds to the tetO arrays located on pSK1 minireplicons, it was 

expected that the number of TetR-GFP foci per cell would correspond to the 
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approximate copy-number of pSK1 minireplicons, which is estimated to be 3–10 

copies per cell (Grkovic et al. 2003, LeBard 2005). However, the majority of cells 

contained fewer than 3 plasmid foci per cell (Figures 5.29A–B), which suggests that 

each plasmid focus represented multiple plasmids. The discrepancy between 

observed focus numbers and expected plasmid copy-numbers has also been noted for 

other plasmids, for example P1 (Li and Austin 2002, Gordon et al. 2004), F (Gordon 

et al. 2004), RK2 (Pogliano et al. 2001) and pUC19 (Pogliano et al. 2001). It is 

possible that the plasmid foci represented plasmid clustering, either by physical 

linking of plasmid molecules, or the colocalisation of multiple plasmids at a specific 

site in the cell. Intriguingly, it would appear that the supposed plasmid clusters form 

independently of par, since bright plasmid foci were also observed for pSK1 

minireplicons lacking par (Figures 5.28Di–v).  

In S. aureus cells harbouring pSK1 minireplicons containing the full par system 

(pSK9144) (Table 2.2), most cells (37±2%) showed two plasmid foci that were 

evenly distributed between cell hemispheres (Figure 5.28Bii, right cell and Figure 

5.28Biii, left cell). When only one focus was present (24±3% of cells), the focus was 

usually of bright intensity and located in the septal region (Figure 5.28Bi, bottom 

cell). The plasmid localisation described here is supported by data obtained from 

time-lapse microscopy, which showed that par+ plasmids were clustered as one 

plasmid focus located near the site of cell division (Figures 5.31Aiii–iv, panel 0’). 

The single focus then separated into two or more new foci, which were segregated 

into daughter cells prior to cell division, resulting in the inheritance of at least one 

plasmid focus by each daughter cell (Figure 5.31Aiii, panels 2’–4’ and Figure 

5.31Aiv, panels 1’–3’). A similar sequence of events has been described for the Type 
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Ia parABS system of P1 and for the par2 system of pB171 in E. coli cells, whereby a 

single plasmid focus is positioned at midcell, before the focus is fragmented into two 

new foci, which are segregated into the daughter cells immediately before cell 

division (Li and Austin 2002, Ebersbach and Gerdes 2004).  

Due to the spherical shape and random orientation of S. aureus cells, the localisation 

of par+ plasmid foci at mid-cell was not easily recognisable. For example, the 

plasmid foci in cells shown in Figure 5.31Aiv, appear to have been located at mid-

cell prior to plasmid segregation, whereas plasmid foci in Figure 5.31Aiii may or 

may not have been positioned at mid-cell. Covisualisation of plasmid DNA with 

markers of cell orientation, such as FtsZ or EzrA (Pereira et al. 2010, Veiga et al. 

2011), may aid in the localisation of plasmid foci relative to division septa. 

Nevertheless, based on the direction of cell division, it is conceivable that par+ 

plasmid foci were located in the vicinity of the division septum, which is consistent 

with observations described for Type Ia partitioning systems (Li and Austin 2002, 

Ebersbach and Gerdes 2004).  

The majority of cells carrying pSK1 minireplicons that lacked par (pSK9145) (Table 

2.2), did not contain any plasmid foci (Figure 5.29A). However, of the cells that did 

contain plasmid foci, a larger proportion of cells contained one focus compared to 

any other number of foci (Figure 5.29B). The proportion of cells containing one 

plasmid focus was also significantly higher for cells carrying pSK9145 (∆par, 

60×tetO) compared to pSK9144 (par, 60×tetO) (Figure 5.29B). The prevalence of 

cells containing only one plasmid focus for partition-deficient plasmids could be the 

result of plasmid loss due to segregational instability (Figure 5.27), and/or reduced 
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copy-number of par- compared to par+ plasmids. The copy-number of the tetO-

containing pSK1 minireplicons, pSK9144 and pSK9145, have yet to be determined, 

and could be calculated using gel electrophoresis and densitometric analysis of 

plasmid DNA bands (Projan et al. 1983, Pushnova et al. 2000), or using quantitative 

PCR methods (Lee et al. 2006) to establish whether pSK9144 and pSK9145 copy-

numbers differ. Although, as described above, the number of fluorescent plasmid 

foci did not appear to reflect plasmid copy-number, and hence the high proportion of 

cells carrying one pSK9145 plasmid focus could be independent of plasmid copy-

number.  

Time-lapse microscopy showed that, unlike par+ plasmids, partition-deficient 

plasmid foci (pSK9145) failed to separate into new foci prior to cell division, and 

consequently, one daughter cell was left without any plasmid focus (Figures 

5.31Bii–iii). This was similar to observations of plasmid mis-segregation in the 

absence of functional P1 parABS or pB171 par2 partitioning systems in E. coli (Li 

and Austin 2002, Ebersbach and Gerdes 2004). In these studies, E. coli cells carrying 

partition-deficient plasmids contained a single plasmid focus, which was inherited by 

only one daughter cell following cell division (Li and Austin 2002, Ebersbach and 

Gerdes 2004). The time-lapse microscopy of cells carrying pSK9145 (∆par, 

60×tetO), therefore, demonstrated the inability of a single plasmid focus to separate 

into new foci in the absence of par. This might explain the absence of plasmid foci 

in most cells and the prevalence of cells carrying one pSK9145 focus (Figures 

5.29A–B). Similarly, the effect of par on plasmid segregation is likely reflected in 

the significantly higher proportion of cells containing two pSK9144 (par, 60×tetO) 

plasmid foci (Figure 5.29A–B), which were conceivably derived from the separation 
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of a single plasmid focus into two new foci, in preparation for segregation into 

daughter cells. 

It is also interesting to note that pSK9145 (∆par, 60×tetO) plasmid foci appeared to 

move more quickly and in a more unrestricted fashion compared to pSK9144 (par, 

60×tetO) plasmid foci, which appeared to have restricted movement (compare 

Figures 5.31Bi and 5.31Ai–ii). This phenomenon was also observed in studies of the 

partitioning systems of F, P1 and RK2 plasmids, which showed that partition-

deficient plasmids were more mobile than par+ plasmids (Gordon et al. 2004, 

Derman et al. 2008). Analysis of the localisation of pSK1 minireplicons using 

particle-tracking software may be able to provide quantitative information about 

plasmid displacement, such as the total distance travelled by plasmid foci, and the 

rate of plasmid movement. However, tracking plasmid foci in S. aureus may be 

challenging using conventional fluorescence microscopy, for reasons mentioned 

previously, and hence the use of super-resolution microscopy might be more suitable 

for this purpose. As discussed further in Chapter 6, a restriction in the movement of 

par+ plasmid foci might suggest anchoring of plasmid DNA to subcellular structures.  

In light of the data obtained from FROS experiments, the correlation between Par-

GFP localisation and Par functionality remains ambiguous. This is partly due to the 

indistinguishable localisation patterns of Par-GFP foci in S. aureus cells, regardless 

of whether the par-gfp partitioning system on pSK9088 (Table 2.2) was 

complemented in trans with Par (Section 5.4.4.4). Furthermore, as explained earlier, 

it is possible that not all Par-GFP foci were bound to plasmid DNA. It would, 

therefore, be interesting to simultaneously localise Par and plasmid DNA to illustrate 
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the role of DNA-binding in plasmid partitioning, in vivo. However, given that the 

setup used for the localisation of Par-GFP and plasmid DNA in S. aureus each 

involves two plasmids, it would be unfeasible to introduce both pairs of plasmids 

into S. aureus cells for dual localisation studies. Similarly, localisation of Par-GFP 

from pSK9088 required titration with WT Par from pSK9104 (see Section 5.4.4). 

Hence, dual localization of Par-GFP with fluorescently-labelled staphylococcal cell 

division markers, such as DivIVA or Spo0J, although desirable, would be difficult 

using the present plasmid configurations. One alternative could involve the 

expression of one or more components of the Par or plasmid localisation systems 

from the chromosome. In any instance, careful consideration would be required for 

the generation of an S. aureus strain that enables visualisation of stable pSK1 

minireplicons carrying par, in the presence of functional, fluorescently-tagged Par 

protein.  

Unfortunately, the fluorescence localisation of pSK1 minireplicons using FROS 

could not be independently verified using FISH. Despite varying many parameters, 

FISH was unsuccessful in the detection of pSK1 minireplicons in fixed S. aureus 

cells (Section 5.7). The use of FISH for the localisation of low copy-number 

plasmids in S. aureus is not widely reported in the literature, and most FISH 

protocols for S. aureus describe the detection of high-copy 16S rRNA for the 

identification or localisation of whole S. aureus cells (Kempf et al. 2000, Poppert et 

al. 2010, Lawson et al. 2011a, Lawson et al. 2011b). The low copy-number of the 

pSK1 minireplicons used in this study (approximately 3 copies per cell for 

pSK4829) (LeBard 2005) might have been a significant factor in the inability to 

detect the plasmids using FISH. Furthermore, the labelling and/or specificity of the 
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probes might not have been sufficient for the hybridisation and subsequent detection 

of low copy-number plasmid DNA. Instead of generating probes from restriction 

digestion of pSK4833 DNA (Section 5.7), probes could be generated against 

multiple specific target sequences on the plasmid DNA, and alternative probe 

labelling methods could be trialled, such as the incorporation of fluorochrome-

labelled dNTPs by PCR, nick translation or random primed labelling (Wiegant and 

Raap 2001). It might also be useful to verify the FISH protocol in S. aureus by using 

the Sau 16S69 probe specific for S. aureus 16S rRNA (Kempf et al. 2000). 

Although the localisation of plasmids using FROS could not be verified by FISH, the 

observation of fluorescent foci only in the presence of tetO-containing plasmids 

(Figures 5.28B–D) indicates that the fluorescent foci were not non-specific 

aggregates of TetR-GFP, but rather, were formed as a result of TetR-GFP binding to 

the tetO array. Importantly, segregational stability assays confirmed the stabilising 

effect of par on tetO-containing plasmids, even in the presence of TetR-GFP binding 

(Figure 5.27). As such, the observed effect of par on the segregation of TetR-GFP 

foci into daughter cells strongly suggests that TetR-GFP foci were representative of 

plasmid clusters that could be influenced by par. It should be noted that although the 

time-lapse microscopy images presented in this study are representative and were 

reproducible in replicate experiments, the possibility cannot be excluded that 

plasmid segregation in other cells of the population may have exhibited a different 

sequence of events to those described here. Nonetheless, time-lapse microscopy has 

demonstrated the functionality of pSK1 par in the segregation of plasmid copies into 

daughter cells, and the mis-segregation of plasmids in the absence of par. However, 

the mechanism driving plasmid segregation remains unclear, and hence the 
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microscopy data will require supplementation with in vitro data on Par activity, such 

as those presented in Chapters 3 and 4, in order for the mechanism of par-mediated 

plasmid segregational stability to be understood. This will be discussed in detail in 

Chapter 6.  
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CHAPTER 6 

General discussion 

Low copy-number plasmids usually encode plasmid segregational stability 

determinants to ensure their accurate inheritance by daughter cells during bacterial 

cell division. A number of active plasmid partitioning systems have been described 

to date, and are generally classified under three different types, types I–III, according 

to the type of NTPase that they encode. In these systems, the partitioning locus 

consists of three components: a centromere-like site, and a bicistronic operon that 

encodes a centromere-binding protein (CBP) and a force-generating NTPase motor 

protein (Ebersbach and Gerdes 2005, Hayes and Barilla 2006, Schumacher 2008, 

Salje 2010, Baxter and Funnell 2014). A fourth potential type of plasmid partitioning 

system, stbABC, has also been described for the E. coli low copy-number plasmid, 

R388, which comprises a putative centromere-like site and the plasmid stability 

determinant, StbA (Guynet et al. 2011, Guynet and de la Cruz 2011).  

In contrast to the separate CBPs and force-generating NTPases encoded by the types 

I–III partitioning systems, the par plasmid segregational stability determinant on the 

low copy-number staphylococcal multiresistance plasmid, pSK1, encodes only a 

single protein, Par (Simpson et al. 2003). Interestingly, previous work shows that the 

predicted HTH and CC domains of Par are critical to DNA-binding and Par 

multimerisation activity, respectively (Lai 2008). Both activities, which are central to 

the types I–III active plasmid partitioning systems (Ebersbach and Gerdes 2005, 

Hayes and Barilla 2006, Schumacher 2008, Salje 2010, Baxter and Funnell 2014), 
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are also essential for Par function in plasmid maintenance. However, the 

extraordinary feature distinguishing pSK1 par from typical plasmid partitioning 

systems is the demonstration of both DNA-binding and multimerisation activity by a 

single protein, instead of separate CBP and NTPase proteins. Therefore, the 

mechanism of plasmid segregation by pSK1 par clearly does not conform to the 

mechanisms used by conventional tripartite active plasmid partitioning systems.  

In this chapter, the results presented in this thesis will be discussed in the context of 

deciphering the potential mechanisms employed by pSK1 par to mediate plasmid 

segregational stability. Understanding the mechanistic details of pSK1 par is 

paramount for the identification of suitable targets for the development of strategies 

to interfere with Par function and plasmid inheritance. 

6.1. Functional significance of Par C-terminal domain in the 

partition complex  

With regard to the role of Par domains in plasmid maintenance, the work conducted 

as part of this study focussed on determining the functional significance of the third 

putative domain of Par – the acidic and predicted disordered C-terminal domain 

(CTD). The predicted disordered nature of the Par CTD was implied by Simpson et 

al. (2003), and indeed, analysis of the Par amino acid sequence (GenBank Accession 

Number AAF63251) using the protein disorder prediction server, PrDOS (Ishida and 

Kinoshita 2007), indicates a high probability of disorder in the CTD (residues 156–

245) (Supplementary Figure S5). Although the predicted disorder of the Par CTD 

has yet to be confirmed, the failure to obtain well-diffracting crystals of the full-

length Par protein for X-ray crystallography (Schumacher, M. A. and Firth, N., 
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unpublished data), supports the probability of Par at least containing a flexible CTD, 

since flexible segments are often not amenable to crystallisation (Oldfield et al. 

2005, Slabinski et al. 2007).  

Disordered domains are defined as protein domains that lack secondary structure, or 

at least, are highly flexible or structurally unstable (Wright and Dyson 1999, Dunker 

et al. 2002). It is estimated that around 6–33% of bacterial proteins contain extended 

regions of disorder (>40 residues), with approximately 4.5% of S. aureus proteins 

predicted to contain contiguous regions of disorder greater than 30 residues in length 

(Ward et al. 2004). The plasticity afforded by intrinsically disordered protein regions 

often imparts roles in molecular interactions, such as protein-protein or protein-DNA 

interactions, to execute functions in protein signalling, regulation and DNA-binding 

(Dunker et al. 2002, Tompa 2002, Dyson and Wright 2005, Tompa 2012). 

Intrinsically disordered proteins also commonly function as modulators of these 

binding interactions (Dunker et al. 2002, Dyson and Wright 2005). As such, it was 

anticipated that the Par CTD might interact with other predicted domains of Par, 

either intra- or inter- molecularly, or with host-encoded proteins. 

Since potential interactions of the CTD with the N-terminal HTH or central CC 

domains might influence the DNA-binding and multimerisation activities of Par, 

respectively, the contribution of the CTD to these activities was investigated in 

Chapter 3 of this study. Results confirmed that the CTD is essential for Par function, 

as shown by plasmid segregational stability assays in Figure 3.2A. Furthermore, the 

combined results from several in vitro experiments suggested that the CTD 

influences Par DNA-binding, self-interaction and multimerisation activities (Sections 



 

236 

 

3.7.3–3.7.5). Specifically, in vitro cross-linking of purified RGSH6-Par∆CTD 

revealed a predominance of RGSH6-Par∆CTD dimers compared to multimers of 

higher molecular weight (Figure 3.7B), which suggests an impairment of Par to form 

larger multimers in the absence of the CTD. This most likely resulted in the reduced 

cooperativity of Par∆CTD DNA-binding activity, as reflected by the formation of 

intermediate RGSH6-Par∆CTD-DNA species in EMSAs, which caused a more 

gradual shift in DNA probe mobility compared to DNA bound by RGSH6-Par 

(compare Figures 3.6C and G to Figures 3.6A and F).  

Taken together, the results presented in Chapter 3 suggest a role of the Par CTD in 

partition complex formation. In most characterised active plasmid partitioning 

systems, formation of the partition complex requires the recruitment and assembly of 

multiple CBPs at the centromere-like site (Bouet et al. 2000, Møller-Jensen et al. 

2003, Schumacher and Funnell 2005, Schumacher et al. 2007a, Aylett and Löwe 

2012). Intermolecular interactions between DNA-bound CBPs stabilise the 

nucleoprotein complex, which often causes a conformational change in the DNA. X-

ray crystallography studies revealed that the type II pB171 ParR/parC partition 

complex forms a super-helical structure, with centromere DNA wrapped around 12 

ParR dimers per helical turn (Møller-Jensen et al. 2007). The disordered C-terminal 

ends of ParR molecules are oriented towards the centre of the helix and are thought 

to play a role in interdimer contacts to stabilise the partition complex (Møller-Jensen 

et al. 2007). Wrapping of DNA around the partition complex has also been described 

for P1 ParB/parS (Funnell and Gagnier 1993), pSK41 ParR/parC (Schumacher et al. 

2007a), and pBtoxis TubR/tubC binding (Aylett and Löwe 2012). Consistent with 

this, DNaseI footprinting suggests that the binding of pSK1 Par to centromere DNA 
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probably causes a topological change in the DNA, since a number of nucleotides in 

the centromeric region appeared to be hypersensitive to DNaseI digestion upon Par 

binding (LeBard 2005). It can, therefore, be envisaged that assembly of the Par 

partition complex is a cooperative process that might involve intermolecular 

interactions between the CTDs of neighbouring Par proteins in the segrosome. 

Consequently, truncation of, or mutations to, the CTD would result in inefficient 

partition complex formation and/or destabilisation of the partition complex, causing 

reduced cooperativity of centromere-binding, as observed in Figures 3.6C and G–I. 

Furthermore, yeast two-hybrid (Y2H) and α-galactosidase assays showed that 

removal of, or deleterious mutations to, the Par CTD resulted in self-interactions that 

induced expression of the α-galactosidase reporter gene to a greater extent compared 

to activation by self-interacting wild-type Par fusion proteins (Figures 3.10A–B). 

This suggests that interaction between Par CTD mutants, presumably via their CC 

domains, is stronger than interactions between wild-type Par. It seems, therefore, that 

in addition to its role in stabilising the partition complex, the predicted disordered 

Par CTD may also have a role in negatively modulating Par self-interactions, 

possibly by sterically hindering strong interactions between Par CC domains. 

Consistent with the function of disordered regions as flexible linkers (Dunker et al. 

2002, Tompa 2002), the disordered CTD might achieve modulation of Par self-

interaction by acting as a molecular spacer to regulate distances between Par protein 

domains.  

Therefore, in light of the role of disordered protein domains in molecular interactions 

(Dunker et al. 2002, Tompa 2002, Dyson and Wright 2005, Tompa 2012), the results 
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generated in this study give rise to the proposal that the predicted disordered CTD of 

Par might function as a modulator of Par interactions by promoting, or stabilising, 

the formation of higher-order Par multimers, whilst also modulating self-interaction 

of Par proteins, particularly the formation of Par dimers. A similar such modulation 

domain has been described for the N-terminal disordered domain of the type Ia 

partitioning protein KorB, which modulates DNA-binding activity and cellular 

localisation (Rajasekar et al. 2010). KorB also contains a region of disorder located 

between the central DNA-binding domain and the C-terminal multimerisation 

domain (Rajasekar et al. 2010). This disordered region is predicted to be involved in 

transcriptional repression and protein-protein interactions (Rajasekar et al. 2010).  

Besides KorB, it seems that disordered, or at least flexible, regions are relatively 

common among other centromere-binding partitioning proteins. As described above, 

the C-terminal end of ParR from the type II partitioning system on pB171 is believed 

to be disordered (Møller-Jensen et al. 2007), whereas the type Ib TP228 ParG 

protein exhibits a highly disordered N-terminal tail (Golovanov et al. 2003), and the 

P1 ParB protein has a flexible linker between its DNA-binding and dimerisation 

domains (Schumacher and Funnell 2005). The prevalence of flexible and disordered 

regions amongst CBPs, therefore, highlights their importance in plasmid 

partitioning, particularly in the modulation of protein-protein and protein-DNA 

interactions. 

The exact nature by which the CTD might contribute to the modulation of Par 

activity remains unclear, since Y2H assays only indicated direct interactions between 

two C-terminal domains, and did not indicate direct interactions of the CTD with the 
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NTD or CC domains (Figure 3.11A). However, as described in Section 4.6.1, it 

should be noted that centromere-DNA, and thus DNA-binding activity, was absent in 

the Y2H system, and hence CTD interactions that might be triggered subsequent to 

specific DNA-binding would not have been accounted for. Nonetheless, it could be 

speculated that the CTD modulates interactions, perhaps sterically, between Par 

domains to regulate Par self-interaction, multimerisation and complex formation.  

6.2. Potential mechanisms of pSK1 par-mediated plasmid 

segregational stability 

The mechanism of Par function in plasmid segregational stability is of immense 

interest due to the notable genetic difference between the pSK1 par system and 

characterised active plasmid partitioning systems. Namely, that only a single protein, 

Par, is encoded by pSK1 par, and that Par lacks any NTPase activity that might 

provide a mechanism for plasmid segregation, as observed in other partitioning 

systems. Although the plasmid partitioning systems studied thus far differ in their 

modes of plasmid segregation, especially with regard to the NTPase involved, the 

sequence of events is similar. Broadly, CBPs recognise and bind to repetitive DNA 

sequences at the centromere-like site, usually as a dimer or dimer-of-dimers (Bouet 

et al. 2000, Schumacher and Funnell 2005, Schumacher et al. 2007a, Aylett and 

Löwe 2012). The cooperative binding of multiple CBP multimers to the centromere-

like site results in the formation of the segrosome, or partition complex, to which 

cognate NTPase proteins are recruited in an NTP-dependent conformation (Bouet 

and Funnell 1999, Møller-Jensen et al. 2003, Ni et al. 2010). Interaction between the 

partition complex and NTPase is integral to plasmid segregation (Davis et al. 1992, 
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Davey and Funnell 1997, Jensen and Gerdes 1997, Møller-Jensen et al. 2003, Ah-

Seng et al. 2009). 

Considering the knowledge gained from the molecular characterisation of pSK1 par 

from this and previous studies, potential mechanisms of Par action can be put 

forward, and are discussed in detail below. 

6.2.1. Centromere-binding 

The first stage, as is the case for all plasmid partitioning systems, is the sequence-

specific binding of Par to the pSK1 par centromere-like site. DNaseI footprinting 

shows that Par binds specifically to seven 12-bp repeats found in the par centromere-

like site (LeBard 2005), and that binding occurs via the N-terminal HTH domain, to 

which the K15 residue is critical (Lai 2008).  

Consistent with the behaviour of other CBPs, preliminary X-ray crystallography data 

of pSK1 Par DNA-binding revealed Par dimers bound to DNA consisting of a 

palindromic sequence of the consensus binding site, TTAGGTAGTAAA 

(Schumacher, M. A. and Firth, N., unpublished data). However, with regard to the 

mechanistic order of events, it is unclear whether these dimeric interactions form 

subsequent to DNA-binding, or whether Par binds centromere DNA as dimers. The 

collective results from several experiments in this study provide support for the latter 

proposition, that Par forms dimers, or multimers, prior to DNA-binding. In 

particular, Par multimerisation studies, such as Y2H assays and in vitro cross-linking 

of purified RGSH6-Par (Sections 3.6.2 and 3.5.1, respectively), showed that Par self-

interacts and forms multimers (dimers, trimers, hexamers and higher-order 

multimers) in vitro and in the absence of DNA, which suggests that Par 
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multimerisation is not dependent on DNA-binding. Furthermore, in vivo cross-

linking data showed that ParK15A, which lacks DNA-binding activity, forms cross-

linked dimers in S. aureus cell lysates (Figure 3.8B), while epifluorescence 

microscopy showed the formation of fluorescent Par-GFP foci in the absence of the 

centromere-like site (Figure 5.17Ai–ii) and DNA-binding activity (ParK15A-GFP, 

Figure 5.16C). These results provide further support for the ability of Par to 

multimerise in the absence of DNA-binding.  

Perhaps the strongest indicator of Par binding centromere DNA as a multimer is 

derived from the lack of DNA-binding activity exhibited by Par∆CC mutants in 

EMSAs (Supplementary Figure S3B) (Lai 2008). Par∆CC, which contains a deletion 

of the central CC domain from residues 83–155, is incapable of dimerisation 

(Supplementary Figures S2A–B) (Lai 2008, Jensen, S. O. and Firth, N., unpublished 

data). Since Par∆CC retains the wild-type HTH DNA-binding domain, the severe 

impairment of Par∆CC DNA-binding activity strongly indicates that the formation of 

Par multimers, or at least dimers, is required for centromere-binding, and that Par 

most likely binds centromere DNA as a multimer. 

Specifically, the possibility of Par binding centromere DNA as a dimer is suggested 

by cross-linking experiments that showed a higher proportion of RGSH6-Par∆CTD 

dimers compared to higher-order multimers (Figures 3.7B–C). Since RGSH6-

Par∆CTD readily bound centromere DNA in EMSAs (Figures 3.6C and G), it is 

conceivable that Par binds DNA as a dimer, after which a larger partition complex is 

assembled following the cooperative recruitment of additional Par dimers, analogous 

to partition complex assembly described for other plasmid partitioning systems 
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(Bouet et al. 2000, Møller-Jensen et al. 2003, Schumacher and Funnell 2005, 

Schumacher et al. 2007a, Aylett and Löwe 2012). Finally, as detailed in Section 6.1, 

interactions between the CTDs of Par proteins could contribute to stabilisation of the 

higher-order pSK1 par partition complex.  

6.2.2. Plasmid pairing 

For many plasmid partitioning systems, replicated plasmids are paired, or clustered, 

prior to active segregation. The pairing of plasmids is essential to efficient plasmid 

inheritance, and both the type I ParB and type II ParR proteins have been implicated 

in plasmid pairing via their cognate centromere-like sites (Jensen et al. 1998, Edgar 

et al. 2001, Schumacher and Funnell 2005, Ringgaard et al. 2007, Schumacher et al. 

2007b). Preliminary structural data of Par DNA-binding reveals potential 

interactions between the NTDs of dimer pairs that are bound to separate DNA 

duplexes (Schumacher, M. A. and Firth, N., unpublished data). Furthermore, the 

number of fluorescent plasmid foci observed in S. aureus cells was generally less 

than the expected copy-number of pSK1 minireplicons (Figures 5.29A–B) (Grkovic 

et al. 2003, LeBard 2005). Interpretation of the combined data suggests DNA 

bridging and the potential of Par interactions to mediate plasmid pairing, or 

clustering. However, alanine substitution of the residues predicted to be involved in 

these interdimer NTD interactions, E10 and Y43, had little effect on Par function 

(Figure 3.13C). Since only residues 2–53 were visible in the crystal structure, it 

cannot be excluded that potential DNA pairing might be mediated by interactions 

involving other regions of Par, such as the CC or C-terminal domains. 
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6.2.3. Plasmid segregation 

From a mechanistic perspective, the sequence of events that occurs subsequent to Par 

centromere-binding, in particular, how plasmids are physically segregated to 

daughter cells, remains to be revealed. However, perhaps one of the most notable 

findings from this study revealed a significant difference in the distribution of 

plasmid focus numbers between cell populations carrying plasmids with and without 

par. Specifically, cells carrying par+ plasmids were significantly more likely to 

contain two plasmid foci, whereas a significantly higher proportion of cells carrying 

par‒ plasmids had only one focus (Figure 5.29 B). From time-lapse fluorescence 

imaging of plasmid localisation, described in Section 5.8.7, it appears that replicated 

par+ pSK1 minireplicons converge, or cluster, to form a single fluorescent focus near 

the division septum. The focus then separates into two or more foci, at least one of 

which is inherited by each daughter cell (Figures 5.31Aiii–iv). Plasmids lacking par 

failed to separate and segregate into daughter cells (Figure 5.31Bii–iii). This 

sequence of events reflects those described for type I plasmid partitioning systems 

observed in E. coli (Li and Austin 2002, Ebersbach and Gerdes 2004).  

In most systems, the energy for plasmid segregation is derived from NTP hydrolysis 

by the motor proteins, which is stimulated by interaction of the NTPases with CBPs 

in the partition complex (Davis et al. 1992, Davey and Funnell 1997, Jensen and 

Gerdes 1997, Møller-Jensen et al. 2003, Ah-Seng et al. 2009). Plasmids are then 

actively driven apart using mechanisms such as the proposed diffusion-ratchet model 

for type Ia partitioning systems (Vecchiarelli et al. 2010, Vecchiarelli et al. 2013b), 

pushing by dynamically unstable actin-like filaments in type II systems (Møller-
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Jensen et al. 2003, Garner et al. 2007), and treadmilling of tubulin-like filaments in 

type III systems (Ni et al. 2010). Importantly, motor proteins with reduced NTPase 

activity have detrimental effects on plasmid segregational stability, and are 

associated with an inability to separate plasmid clusters (Davis et al. 1996, Jensen 

and Gerdes 1997, Fung et al. 2001, Larsen et al. 2007, Ah-Seng et al. 2013). NTPase 

activity is, therefore, central to most plasmid partitioning systems described to date, 

and plays a key role in plasmid segregation dynamics.  

However, with no NTPase activity apparent for Par, the force-generating component 

of plasmid segregation is unclear. Furthermore, the lack of evidence for Par filament 

formation in vivo (Sections 5.4.3, 5.4.4.4, 5.4.5.3 and 5.4.6) suggests that filament 

formation and NTPase activity might not be involved in Par mechanism. Although, 

as discussed in Section 5.9.1, this needs further validation using methods such as 

super-resolution microscopy or cryo-electron tomography. Therefore, based on data 

obtained in this study, a number of mechanisms are plausible, and are discussed 

below. 

6.2.3.1. Molecular switches 

In the absence of NTP hydrolysis, it could be hypothesised that certain biological 

events, for example post-translational modification or binding to DNA or proteins, 

could stimulate changes in protein conformation, particularly in the predicted 

disordered CTD (Dunker et al. 2002, Dyson and Wright 2005, Tompa 2012). For 

example, in the Phd/Doc toxin-antitoxin system of bacteriophage P1, interaction of 

the toxin, Doc, with binding sites in the disordered C-terminal domain of the 

antitoxin, Phd, results in a shift to the folded state of Phd, which in turn changes the 
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disordered N-terminal DNA-binding domain from to a low- to a high- DNA affinity 

state (Garcia-Pino et al. 2008, Garcia-Pino et al. 2010). Phd/Doc complexes bound 

to the operator of the phd/doc operon are disrupted by the binding of high amounts 

of Doc toxin, which results in de-repression of phd expression, and increased Phd 

production to counter the effects of Doc. This allosteric coupling, which is 

commonly observed for regulatory proteins containing disordered regions (Hilser 

and Thompson 2007), enables Phd to switch between its role as both a repressor and 

an antitoxin.  

Similarly, particular stimuli, such as post-translational modification or Par DNA-

binding, might trigger a disorder-to-order transition in the Par CTD. Such a shift 

could then cause Par to switch between its DNA-binding and multimerisation states, 

or promote subsequent protein-protein or force-generating interactions that might 

facilitate plasmid segregation. Mass spectrometry (Silva et al. 2013) could be used to 

determine whether such post-translational modifications are made to Par. 

6.2.3.2. Pilot-fish or hitch-hiking 

Although NTP hydrolysis plays a major role in many plasmid partitioning systems, 

there is, however, a possible exception to the need for NTPase activity. The recently-

described StbA plasmid stabilisation protein encoded by the stbABC locus on the E. 

coli plasmid R388, is thought to attach to the host chromosome in a pilot-fish 

mechanism of plasmid segregation, such that plasmids are segregated in concert with 

chromosome segregation (Guynet et al. 2011, Guynet and de la Cruz 2011). In this 

way, the partitioning function of the stbABC operon does not require a motor protein 

to be encoded.  
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The pilot-fish mechanism of plasmid partitioning for R388 in E. coli is analogous to 

the hitch-hiking mechanism proposed for the segregation of plasmids from other 

kingdoms of life, such as the yeast 2 µm plasmid (Velmurugan et al. 2000, Mehta et 

al. 2002, Jayaram et al. 2004, Sau et al. 2015) and viral plasmid DNA (Lehman and 

Botchan 1998, Ilves et al. 1999). These types of models describe the physical 

attachment of plasmid DNA to host chromosomal DNA, such that plasmids are 

efficiently partitioned by coupling plasmid segregation with chromosome 

segregation. It is, therefore, conceivable that a similar mechanism could be utilised 

by pSK1 Par, especially considering that no other protein is encoded by the par 

locus, and that no nucleotide-binding or NTPase activities have been detected. 

6.2.3.3. Host factors 

The reliance of pSK1 par-mediated plasmid segregation on host factors, such as 

chromosomal DNA or host-encoded proteins, is highly possible. Plasmid partitioning 

systems are typically self-contained functional units and usually do not require a 

host-factor. However, for the type Ia plasmid partitioning system, the host-encoded 

protein, integration host factor (IHF), although dispensable for plasmid segregational 

stability, significantly increases the cooperativity of ParB binding to parS (Funnell 

1988b, Funnell 1991).  

Although results from this study do not provide any direct evidence of interaction 

with host factors, time-lapse fluorescence localisation studies of plasmid DNA in S. 

aureus cells revealed restricted plasmid movement in the presence of par, compared 

to quicker, stochastic movement without par (Figures 5.31A–B, Supplementary 

Movies 1–7). A restriction in the movement of par+ plasmid foci might suggest 
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tethering or anchoring of plasmid DNA to host structures or receptors, a conclusion 

that was also drawn from similar observations of P1, F and RK2 plasmid segregation 

dynamics (Pogliano et al. 2001, Gordon et al. 2004, Derman et al. 2008).  

6.2.3.3.1. Host factors: nucleoid DNA 

Binding of pSK1 Par to the bacterial nucleoid, either directly or indirectly, may have 

a role in plasmid segregation. Indeed, EMSAs showed that Par binds to non-specific 

DNA in the absence of other proteins (Figure 4.10A). However, nucleoid 

condensation experiments were inconclusive for identifying associations between 

Par-GFP and S. aureus nucleoid DNA (Figures 5.13A–B). Nevertheless, it is 

unlikely that Par binds non-specifically to the nucleoid, since Par-GFP did not co-

localise with the bacterial nucleoid in a manner that was observed for the localisation 

of nucleoid-binding partitioning proteins such as ParA and SopA (Hatano et al. 

2007, Castaing et al. 2008, Hatano and Niki 2010). Rather, Par-GFP formed foci in 

S. aureus cells, regardless of whether DNA-binding activity or the pSK1 par 

centromere were present (Figures 5.16C and 5.17Ai–ii). Therefore, if Par does bind 

directly to chromosomal DNA, it would likely be via sequence-specific interactions.  

As discussed in Sections 4.6.2 and 5.9.1, a search for Par binding sites using 

chromatin immunoprecipitation (ChIP) (Collas 2010) might identify binding sites on 

the chromosome, which may or may not be similar to sequences found at the pSK1 

par centromere-like site. Indeed, the centromere-like repeats of pSK1 par and the 

homologous stability determinant identified on the S. epidermidis pSERP plasmid 

are quite dissimilar (compare Figures 1.5 and 4.1C), which suggests that the 

functionality of Par homologues in S. aureus might rely on binding to nucleoid DNA 
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either non-specifically, or to sequences conserved in the staphylococcal genome. 

ChIP experiments for both pSK1 Par and Par-pSERP, performed in S. aureus and the 

pSERP native host, S. epidermidis, and performed in the presence of their respective 

centromere-like sites, would provide validation on whether potential interactions 

between Par and the nucleoid are specific or non-specific. It would not be 

unreasonable to anticipate similar or identical binding sites for both Par and Par-

pSERP if the interaction involves specific binding to conserved chromosomal 

sequences. The identification of chromosomal binding sites, whether specific or non-

specific, would favour a pilot-fish or hitch-hiking mechanism, whereby Par exploits 

chromosome segregation to mediate stable plasmid inheritance (Section 6.2.3.2) 

(Figure 6.1A). Chromatin conformation capture techniques, such as 3C (Marbouty et 

al. 2014) and Hi-C (Beitel et al. 2014) could be used to determine whether plasmids 

and nucleoids are linked.  

Although ambiguous in S. aureus, nucleoid condensation experiments in E. coli 

showed strong, presumably non-specific, association of GFP-Par with nucleoid 

DNA, but only in the presence of the pSK1 par centromere-like site and DNA-

binding activity (compare Figures 5.22A to Figures 5.23B and 5.24). This suggests 

that the association between GFP-Par and nucleoid DNA depends on the binding of 

GFP-Par to the centromere-like site on plasmid DNA. From these observations, 

although made from a heterologous host, it can be hypothesised that either Par 

interacts with chromosomal DNA subsequent to centromere-binding (Figure 6.1A), 

or that a host protein (which may have a homologue in E. coli) interacts with the 

partition complex to tether plasmids to the nucleoid (Figure 6.1B). In either case, it 



Figure 6.1 Proposed models for pSK1 par plasmid segregation 

A–B. Par exploits chromosome segregation by hitch-hiking on the bacterial nucleoid 

DNA (yellow). A. Par binds to the plasmid centromere-like site and directly to specific 

sequences on chromosomal DNA. B. Par acts as an adapter between plasmid DNA 

and nucleoid-associated proteins. Par-bound plasmid DNA is therefore tethered to the 

nucleoid, such that plasmids are segregated (red arrows) together with chromosomes. 

C. Par-bound plasmid DNA is anchored to specifically-localised host-encoded 

proteins or components of the host cell architecture, such as the division septum or 

cell poles. Correct subcellular localisation of plasmid DNA at predetermined positions 

ensures accurate plasmid segregation upon cell division (D).  

S. aureus cells are represented by black circles, and the division site is represented by 

dotted lines. For clarity, only one pair of plasmids is shown for each dividing cell. 
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can be argued that a pilot-fish or hitch-hiking model (Section 6.2.3.2) could be used 

to mediate plasmid segregation. 

6.2.3.3.2. Host factors: host-encoded proteins 

In most active plasmid partitioning systems, CBPs act as adapter proteins between 

plasmid DNA and the NTPases that drive plasmid segregation (Bouet and Funnell 

1999, Møller-Jensen et al. 2003, Ni et al. 2010). Since pSK1 Par is a CBP, it is 

possible that it too acts as an adapter to bridge plasmid DNA with host-encoded 

proteins that might provide the energy or spatio-temporal cues for plasmid 

segregation (Figure 6.1C). Since epifluorescence microscopy showed that Par-GFP 

and plasmid DNA are localised towards the cell periphery (Figures 5.12A–B and 

5.28Bi–iv), Par might bridge plasmid DNA to membrane-bound or peripherally-

located proteins, possibly via its C-terminal domain.  

The potential interaction of Par with a candidate membrane-bound protein, DivIVA, 

was explored using Y2H assays (Section 4.4.3), since it was thought that the similar 

HTH and CC structures between Par and B. subtilis RacA (Figure 4.8) might reflect 

an interaction dynamic analogous to the RacA-DivIVA interaction during Bacillus 

chromosome segregation (Ben-Yehuda et al. 2003, Schumacher et al. 2016). 

Importantly, and as described in Section 4.4.3, S. aureus appears to lack a RacA 

homologue. However, in Bacillus, RacA binds specifically and non-specifically to 

DNA sequences on the bacterial chromosome, and interacts with the polarly-

localised and membrane-bound protein, DivIVA, to anchor sister chromosomes to 

the cell poles (Ben-Yehuda et al. 2003, Wu and Errington 2003, Ben-Yehuda et al. 

2005). In doing so, the RacA-DivIVA interaction ensures accurate segregation of 
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chromosomal DNA during cell division. Although no interaction was detected 

between Par and S. aureus DivIVA using Y2H assays (Figure 4.9), and although 

Y2H screening did not identify relevant protein interaction partners (Sections 4.4.1–

4.4.2), there remains the possibility of the involvement of other host proteins in 

pSK1 par mechanism. As described in Section 4.6.1, co-immunoprecipitation 

experiments (Free et al. 2001) in the presence of the pSK1 par centromere-like site 

and DNA-binding activity, might provide an alternative means of identifying 

potential Par interaction partners. In this method, lysates from S. aureus SK8250 

cells (spa–) (Table 2.1) containing Par and pSK1 minireplicons carrying the par 

centromere-like site, could be incubated with anti-Par peptide antibodies that are 

coupled to a resin, such as Protein A agarose beads. Subsequent precipitation and 

purification of Par-protein complexes using the anti-Par-coupled resin would enable 

the identification of potential Par interaction partners via mass spectroscopy. 

6.2.4. Autoregulation 

Finally, another unresolved mechanistic feature of pSK1 par action is the separation, 

or otherwise, of the autoregulation and partitioning functions of Par. Our studies 

have shown that binding of Par to the centromere-like site, which overlaps the par 

promoter (Figure 1.4), contributes to repression of par expression, as indicated by 

transcriptional reporter gene assays conducted in S. aureus (LeBard 2005). For P1 

ParA, the ADP- and ATP- bound states exhibit different protein conformations, 

which determine the specificity of ParA binding to the par operator and to the 

ParB/parC partition complex, respectively (Davey and Funnell 1997, Bouet and 

Funnell 1999). Likewise, as mentioned in Section 6.2.3.1, interaction of Doc with 
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Phd dictates the role of Phd as a repressor or as an antitoxin (Garcia-Pino et al. 

2010). However, unlike type Ia partitioning systems, whereby the centromere-like 

site and operator regions are spatially separated (Figure 1.2), the pSK1 par promoter 

is located within the centromere-like site (Figure 1.6). This is similar to the genetic 

organisation of types Ib, II and III systems (Figure 1.2), however, in these systems, 

autoregulation and plasmid segregation activities are carried out by two separate 

proteins (Section 1.5). pSK1 par only encodes a single protein that exhibits both 

autoregulation and plasmid maintenance functions, and little is known about how 

these roles are regulated. It would, therefore, be interesting to further investigate the 

structural and mechanistic properties of pSK1 Par to understand the interplay 

between its autoregulation and partitioning activities. For example, the 

autoregulation activity of Par could be further examined by performing reporter gene 

assays, such as chloramphenicol acetyl transferase (CAT) assays (Kwong et al. 2004, 

LeBard 2005), on Par mutants, particularly the Par CTD mutants (described in 

Section 3.2.1), to determine whether inefficiencies in DNA-binding, self-interaction 

or multimerisation, have an effect on autoregulation activity. This might provide 

some insight into potential differences in the conformation or multimerisation states 

of Par during centromere-binding and operator-binding, which may contribute to 

regulation of the partitioning and autoregulation roles of Par, respectively. 

6.3. Concluding remarks 

The efficiency with which low copy-number plasmids are maintained and accurately 

inherited in bacterial populations, even in the absence of antibiotic selection, is 

significantly enhanced by plasmid-encoded partitioning systems. The plasmid 



 

252 

 

segregational stability determinant, par, on the staphylococcal multiresistance 

plasmid, pSK1, is believed to enhance plasmid maintenance using a plasmid 

partitioning mechanism (Simpson et al. 2003). Homologues of Par are widely 

distributed amongst large staphylococcal multiresistance and pathogenicity plasmids, 

with approximately 80% encoding a Par-like protein (Shearer et al. 2011). However, 

distinct from typical bicistronic par operons, which encode a DNA-binding protein 

as well as a separate NTPase, only a single Par is protein encoded by this partitioning 

locus. pSK1 par, therefore, represents a potentially novel mechanism of plasmid 

partitioning. 

Results from this and previous studies (LeBard 2005, Figgett 2007, Lai 2008) have 

provided molecular and functional characterisations of pSK1 Par activity, including 

autoregulation, centromere-binding, self-interaction and multimerisation. In 

conjunction with results from interaction and localisation studies presented in this 

thesis, these studies offer insight into the mechanistic details of pSK1 par-mediated 

plasmid segregation. Still, there remain unanswered questions about the pSK1 par 

mechanism of plasmid partitioning, and further research needs to be undertaken in 

order to increase our understanding of this process. Of particular interest are 

questions surrounding the force that drives the physical separation of plasmid DNA 

into daughter cells – is segregation an active process, and does it involve a host-

encoded factor? Also, does Par exhibit different conformational states to execute 

autoregulatory, centromere-binding and multimerisation functions?  

Deciphering the mechanism of pSK1 par will aid in the identification of novel 

targets for therapies, or eco-evo drugs, aimed to interfere with Par function. In this 
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way, disrupting the inheritance of multiresistance plasmids could help address the 

serious threat of antimicrobial resistance in S. aureus and in other bacteria that might 

utilise a similar mode of plasmid segregation. 
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APPENDIX A 

Abbreviations 

% percent 

< less than 

> greater than 

∆ deletion 

°C degrees Celsius 

µF microfarads 

µg microgram(s) 

µl microlitre(s) 

µm micrometre(s) 

µM micromolar 

aa amino acid(s) 

AD  activation domain 

Ade adenine 

ADP adenosine diphosphate 

Ap  ampicillin 

APS ammonium persulfate 

ATP adenosine triphosphate 

BD DNA-binding domain 

BHI brain heart infusion 

ble bleomycin 

bp base pair(s) 

BSA bovine serum albumin 

CA-MRSA community-acquired MRSA 
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CAT chloramphenicol acetyl transferase 

CBP centromere-binding protein 

CC coiled-coil 

ChIP chromatin immunoprecipitation 

cm centimetre(s) 

Cm chloramphenicol   

cpm counts per minute 

CTD C-terminal domain 

C-terminal carboxy-terminal 

Cy3 5-propargylamino-dCTP-Cy3 

Da Dalton(s) 

DAPI 4',6-diamidino-2-phenylindole 

dATP 2'-deoxyadenosine 5'-triphosphate 

dCTP 2'-deoxycytodine 5'-triphosphate 

dGTP 2'deoxyguanosine 5'-triphosphate 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

DNase deoxyribonuclease 

dNTP 2'-deoxynucleotide 5'-triphosphate 

DSP dithiobis(succinimidyl propionate) 

DTT dithiothrietol 

dTTP 2'-deoxythymidine 5'-triphosphate 

ECL enhanced chemiluminescence 

EDTA ethylenediaminetetra-acetic acid 

Em  erythromycin 

EMSA electrophoretic mobility shift assay 

FISH fluorescence in situ hybridisation 
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FL full-length 

FnBP fibronectin-binding protein 

FROS fluorescent reporter-operator system 

GFP green fluorescent protein 

Gm gentamicin 

GTE glucose-tris-EDTA 

h hour(s) 

HA haemagglutinin 

His histidine 

HRP horseradish peroxidase 

HTH helix-turn-helix 

IFM immunofluorescence microscopy 

IgG immunoglobulin G 

IHF integration host factor 

IPTG isopropyl-β-D-thiogalactopyranoside 

IR inverted repeat 

IS insertion sequence 

kb kilobase(s) 

kDa kilodalton(s) 

Km kanamycin 

kV kilovolt(s) 

LB Luria broth 

Leu  leucine   

LEU+ leucine autotrophy 

M molar 

MCS multiple cloning site 

mg milligram(s) 
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min minute(s) 

ml millilitre(s) 

mM millimolar 

mRNA messenger RNA 

MRSA methicillin-resistant Staphylococcus aureus 

ng nanogram(s) 

Ni2+-NTA nickel-nitrilotriacetic acid 

nm nanometre(s) 

nM nanomolar 

Nm neomycin 

nt nucleotide(s) 

N-terminal amino-terminal 

NYE nutrient yeast 

OD optical density 

ORF open reading frame 

oriC chromosomal origin of replication 

oriT origin of transfer 

PAGE polyacrylamide gel electrophoresis 

par– in the absence of par 

par+ in the presence of par 

PBP penicillin binding protein 

PBS phosphate-buffered saline 

PCR polymerase chain reaction 

PEG polyethylene glycol 

PFU plaque-forming units 

Pn  penicillin 

PNK polynucleotide kinase 
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poly(dI-dC) poly(deoxyinosinic-deoxycytidylic) 

psk post-segregational killing 

PVDF polyvinylidene difluoride 

R resistance/resistant 

RBS ribosome binding site 

RC rolling circle 

RFP red fluorescent protein 

RHH ribbon-helix-helix 

Rif rifampicin 

RNA ribonucleic acid 

rpm revolutions per minute 

RT room temperature 

s  second(s) 

SAPI Staphylococcus aureus pathogenicity island 

SCC staphylococcal cassette chromosome 

SD synthetic dropout 

SDS sodium dodecyl sulfate 

spc spectinomycin 

SSC saline sodium citrate 

SSCT saline sodium citrate Tween-20 

TA toxin-antitoxin 

TAE tris-acetate EDTA 

TBE tris-borate EDTA 

TBS tris-buffered saline 

Tc tetracycline 

TE  tris-EDTA 

TEMED N, N, N', N'-tetramethyl-ethylene-diamine 
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Tn transposon 

Tp trimethoprim 

tra conjugative transfer 

Trp  tryptophan   

TRP+ tryptophan autotrophy 

TSP transcription start point 

UV ultraviolet 

V volt(s) 

v/v volume per volume 

VISA vancomycin-intermediate Staphylococcus aureus 

w/v weight per volume 

WL wash and lysis 

X-α-Gal 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

Y2H  yeast two-hybrid 

YPD yeast peptone dextrose 

Ω ohms 
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APPENDIX B 

Supplementary 

Supplementary Methods S1. Bioinformatics techniques 

Identification of conserved residues in the C-terminal domain (CTD) of pSK1 Par 

was achieved using BLASTP (Altschul et al. 1990) to search the non-redundant 

protein sequences database. The amino acid sequence of the Par CTD (residues 156–

245 of pSK1 Par; GenBank Accession Number AAF63251) was used as the query 

sequence. Selected sequences showing sequence identity were chosen and a multiple 

sequence alignment was generated using the ClustalW2 (Fast) program (Thompson 

et al. 1994, Larkin et al. 2007). Conservation of residues within the sequence 

alignment was visualised by levels of shading, created using the Gene Doc multiple 

sequence alignment editor and shading utility (Nicholas and Nicholas 1997)



Supplementary Figure S1 Identification of conserved residues in the Par CTD 

Multiple sequence alignment of selected pSK1 Par CTD homologues. Selected amino acid 

sequences, identified as sharing homology with the pSK1 Par CTD sequence (residues 156–

245; GenBank Accession Number AAF63251), were aligned using ClustalW2 (Supplementary 

Methods S1). For clarity, only residues 141–269 of the multiple sequence alignment are shown. 

Sources of the sequences (strain or plasmid) are listed on the left. Sources are shaded according 

to the bacterial species from which they were derived: S. aureus (blue); S. epidermidis (pink), 

S. saprophyticus (green); S. hominis (red); S. warneri (purple); S. capitis (black); S. 

haemolyticus (brown); Enterococcus faecalis (grey). Two sequences from Lactococcus lactis, 

which were not detected by searching using the CTD sequence but were identified as 

homologous to the full-length Par sequence by Figgett (2007), are included in the alignment to 

highlight sequence conservation across bacterial genera. These two sources are unshaded. 

Amino acid positions for individual sequences are shown on the right; positions for the 

alignment are shown at the top. Amino acid residues showing 100% conservation amongst the 

aligned sequences are shaded in orange, and those with greater than 90% conservation are 

shaded in yellow. Insertions and deletions are indicated by dashes. Residues 128–155 of Par, 

encompassing the coiled-coil (CC) domain, is indicated above the alignment. 

GenBank Accession Numbers for the aligned sequences are given as follows: pSK1 

(AAF63251); SAP062C (ACZ69356); pWBG755 (ACZ66059); pWBG746 (ACZ58711); 

pMS97 (BAD86531); SAP102A (ADA80779); pMW2 (AP004832); VSRAp (AP003367); 

SAP105B (ADA80166); M23864_W1 (ZP_04818772); pSSP2 (YP_302584); C80 

(ZP_07844536); L37603 (ZP_04678483); SK14 (ZP_03614476); pNVH97A (CAB94810); 

HH22 (ZP_03986057); pCI305 (AAF86680); pAH33 (AAF17613).  

 



 

 



Supplementary Figure S2 Cross-linking of Par proteins  

A. 10% (w/v) SDS polyacrylamide gel of RGSH6-Par proteins cross-linked with 

glutaraldehyde. Purified RGSH6-Par proteins were incubated with (+) or without (–) 0.01% 

(v/v) glutaraldehyde, as described in Section 2.9.1. Cross-linking reactions were analysed by 

SDS-PAGE and Coomassie Brilliant Blue staining (Section 2.5.6). Data obtained from Jensen, 

S. O. and Firth, N., unpublished data.  

B. Western blot of cross-linked Par proteins in E. coli. E. coli DH5a cells containing pSK4829 

(Par), pSK7764 (ParK15A) or pSK7721 (ParDCC) were incubated with (+) or without (–) 1 

mM DSP, according to Section 2.9.2. Cell lysates were electrophoresed on 10% (w/v) SDS 

polyacrylamide gels under non-reducing conditions, and Par proteins were detected by Western 

blotting using rabbit anti-Par antiserum (Section 2.5.9). Data obtained from Jensen, S. O. and 

Firth, N., unpublished data.  

Sizes of prestained protein markers are indicated in kDa on the left of each gel or blot. Where 

appropriate, the positions of monomers (P1) and potential dimers (P2), trimers (P3) and 

hexamers (P6) are indicated by solid arrowheads for full-length RGSH6-Par proteins, and by 

an open arrowhead for RGSH6-Par∆CC. The positions of higher-order multimers are bracketed.  
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Supplementary Figure S3 DNA-binding activity of Par mutants 

Electrophoretic mobility shift assays (EMSAs) of RGSH6-ParK15A (A) and RGSH6-Par∆CC 

(B) binding to the pSK1 par-rep intergenic region. Approximately 500 cpm of a radiolabelled 

par-rep intergenic DNA probe (nt 1689–1900, GenBank Accession Number GU565967; 

Figure 1.5) was incubated with increasing concentrations of purified RGSH6-ParK15A or 

RGSH6-Par∆CC, as described in Section 2.8. EMSAs were electrophoresed on 5% (w/v) 

polyacrylamide gels, and radiolabelled DNA probes were detected by phosphor imaging. 

Protein concentrations (nM) are shown above each lane. The positions of unbound DNA are 

indicated by black arrowheads. 
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Supplementary Figure S4 Sequence alignment of pSK1 Par with an enterococcal Par 

homologue 

Pairwise sequence alignment of pSK1 Par and a Par homologue identified in Enterococcus 

faecalis. Amino acid sequences of pSK1 Par (GenBank Accession Number AAF63251) and an 

E. faecalis Par homologue (GenBank Accession Number EOI28424), which was identified 

from a BLASTP search (Altschul et al. 1990) using the Par amino acid sequence, were aligned 

using Clustal Omega (Sievers et al. 2011). Amino acid positions for individual sequences are 

shown on the right; positions for the alignment are shown above the alignment. Amino acid 

residues common to both aligned sequences are shaded in orange and denoted in uppercase 

below the alignment. Insertions and deletions are indicated by dashes.  

 

 

 

 

 

 

 

 

 

 

 



 



Supplementary Figure S5 Prediction of disordered Par protein regions 

Residues of disorder were predicted for the pSK1 Par amino acid sequence (GenBank 

Accession Number AAF63251) using the protein disorder prediction server, PrDOS (Ishida 

and Kinoshita 2007), with a prediction false positive (FP) rate of 5%. The disorder probability 

is shown for each Par residue, with the disorder probability threshold set to 0.5 (red line). 

Residues with disorder probabilities above the red line are predicted to be disordered. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



Supplementary Movies S1–S7 Time-lapse microscopy of the fluorescence localisation of 

pSK1 minireplicons in S. aureus cells by tagging with TetR-GFP 

The localisation of pSK1 minireplicons pSK9144 (par, 60×tetO) (S1–S4) and pSK9145 (∆par, 

60×tetO) (S5–S7) in mid-exponential phase S. aureus SK8250 cells was visualised by tagging 

with TetR-GFP using a fluorescent repressor-operator system. Expression of tetR-gfp from 

pSK9142 (Pspac::tetR-gfp) was induced with 0.1 mM IPTG (Section 5.8.4). Cells were prepared 

for epifluorescence microscopy as described in Section 2.11.2, and images were taken at 1 min 

intervals for up to six minutes (0’–6’). Cells in each of S1–S4 and S5–S7 are biological 

replicates. Images shown are overlays of bright-field and TetR-GFP micrographs.  

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S1. pSK1 par  centromere-like sites on S. aureus  chromosomal DNA

Strand Match Start (nt) Stop (nt) Mismatches
+ TTAATTAGTAAA 34853 34864 2
+ TTAGATAGTAAT 46686 46697 2
+ TCAGGAAGTAAA 75119 75130 2
+ ATAGGTAGTAAG 80964 80975 2
+ TTAGGTAGAAAA 91977 91988 1
+ TTAGCTGGTAAA 93163 93174 2
+ TTTGGTTGTAAA 102607 102618 2
+ TTAGATAGTAAT 109841 109852 2
+ TTAGGTACGAAA 122804 122815 2
+ TTAGGTAGCAAG 127539 127550 2
+ TTAGGTAATATA 130601 130612 2
+ TTAGTTGGTAAA 141035 141046 2
+ TTAGGTAGTATA 167582 167593 1
+ TTTGATAGTAAA 176086 176097 2
+ TTTAGTAGTAAA 178285 178296 2
+ TTAGATATTAAA 178883 178894 2
+ TTACGTAGTGAA 183400 183411 2
+ TCAGTTAGTAAA 189918 189929 2
+ TTCGGTATTAAA 204404 204415 2
+ TTAGGTCGTACA 206721 206732 2
+ TTAGGCAGAAAA 235943 235954 2
+ TTATGTAGTCAA 237758 237769 2
+ TTAAGTAGTGAA 240476 240487 2
+ TTTGATAGTAAA 240849 240860 2
+ TTTGGTATTAAA 248044 248055 2
+ TGAGGTAGTAGA 251040 251051 2
+ CTAGGTAATAAA 255056 255067 2
+ TAAGGTAGTAAA 274308 274319 1
+ TTAGATGGTAAA 280862 280873 2
+ TTTTGTAGTAAA 302302 302313 2
+ TTCGGTATTAAA 302550 302561 2
+ TTAATTAGTAAA 304212 304223 2
+ TTAGGTGTTAAA 304563 304574 2
+ TTTGCTAGTAAA 312842 312853 2
+ TTTGGTAGTAAC 315388 315399 2
+ TTACGTAATAAA 332571 332582 2
+ TTAGGAAGTCAA 333861 333872 2
+ TTATCTAGTAAA 339181 339192 2
+ TTAGGTAGTAAT 339847 339858 1
+ TTGGCTAGTAAA 340289 340300 2
+ TTACGTGGTAAA 350475 350486 2
+ TTACGTAGTAAA 358540 358551 1
+ TTAGGTAATAAA 359267 359278 1
+ TTAGCTAGTAAC 363637 363648 2
+ TTTGGAAGTAAA 369925 369936 2
+ TTAGGTGGTAAA 381989 382000 1
+ TCAGGTACTAAA 382706 382717 2
+ TTACGTAATAAA 389214 389225 2
+ TTAGTTGGTAAA 392170 392181 2
+ TTAGGTGATAAA 395843 395854 2
+ TTACGTAATAAA 396229 396240 2

Position on pSK1



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

+ TTAGCTAGTATA 408951 408962 2
+ TTTGGTGGTAAA 420190 420201 2
+ TCAGGTAGTACA 435648 435659 2
+ TTAGCTAGTAAA 439289 439300 1
+ TTAAGAAGTAAA 445200 445211 2
+ TTAAGCAGTAAA 451387 451398 2
+ TTAAGTAGAAAA 465087 465098 2
+ CTAGGCAGTAAA 467155 467166 2
+ TTAGTAAGTAAA 468831 468842 2
+ TTAGTGAGTAAA 472978 472989 2
+ TTACTTAGTAAA 475915 475926 2
+ TTAGGTAGAACA 477094 477105 2
+ TTAGGTGGGAAA 479095 479106 2
+ TTATGAAGTAAA 485662 485673 2
+ TTAGGTAGTAAT 489086 489097 1
+ TTAAGCAGTAAA 495666 495677 2
+ TTACGTACTAAA 500576 500587 2
+ TTAGATATTAAA 501371 501382 2
+ TTAGGTAGAAAC 524419 524430 2
+ TTAGTTGGTAAA 524680 524691 2
+ TTAGGTCTTAAA 529334 529345 2
+ TTAGATGGTAAA 530532 530543 2
+ TTAGGTACTGAA 531599 531610 2
+ TTATGTTGTAAA 552289 552300 2
+ TTAGAAAGTAAA 555297 555308 2
+ TTAGGTAGTGGA 564599 564610 2
+ TTAGGATGTAAA 565751 565762 2
+ TTAGGTAGTAAA 570512 570523 0
+ TTACATAGTAAA 573766 573777 2
+ TTAGCGAGTAAA 578068 578079 2
+ TTACGTATTAAA 579065 579076 2
+ TTTAGTAGTAAA 579150 579161 2
+ TTAGGAAGTAAT 586575 586586 2
+ TTAAGTAATAAA 587497 587508 2
+ ATAAGTAGTAAA 589634 589645 2
+ TTAGGTAGTATC 589656 589667 2
+ ATAGGTAATAAA 591861 591872 2
+ TTAGGTAATACA 629836 629847 2
+ TTTGGTAGTAAT 635001 635012 2
+ TTAAATAGTAAA 639982 639993 2
+ TTAGGTATTAAC 643320 643331 2
+ TTAGGAATTAAA 655101 655112 2
+ TTAGGTATTACA 656238 656249 2
+ TTATGTAATAAA 656911 656922 2
+ TTAGTTTGTAAA 657219 657230 2
+ TTATATAGTAAA 660384 660395 2
+ TTAGCTAATAAA 669663 669674 2
+ TTAGGTAGAGAA 671962 671973 2
+ TTAGGTAGTCAT 685472 685483 2
+ TGAGTTAGTAAA 692006 692017 2
+ ATTGGTAGTAAA 692994 693005 2
+ TTAGCTAATAAA 695369 695380 2
+ TTTGATAGTAAA 700808 700819 2



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

+ TTTGGTATTAAA 702438 702449 2
+ TTAGGTGTTAAA 710255 710266 2
+ TTAGGTGGTACA 714415 714426 2
+ TTAGGTATTAAA 720485 720496 1
+ TCAGCTAGTAAA 727430 727441 2
+ TTAGATACTAAA 727928 727939 2
+ TCAGGTAGCAAA 740774 740785 2
+ TTAGGAAGTATA 749746 749757 2
+ AAAGGTAGTAAA 754655 754666 2
+ TTTGGTAATAAA 767242 767253 2
+ TTAGGTATTACA 767701 767712 2
+ TTATGTAGTAGA 769497 769508 2
+ TTTGGTAGTGAA 771854 771865 2
+ TTAGTTATTAAA 774629 774640 2
+ TTAGGTAGACAA 776497 776508 2
+ TTACCTAGTAAA 791836 791847 2
+ TTTGTTAGTAAA 792832 792843 2
+ ATAGGTAGTACA 794051 794062 2
+ TTAAGTAATAAA 800962 800973 2
+ TTAGTTGGTAAA 816544 816555 2
+ TTCGGTATTAAA 836533 836544 2
+ TTACGAAGTAAA 841019 841030 2
+ TTATGTAGCAAA 842349 842360 2
+ ATTGGTAGTAAA 843286 843297 2
+ TTAGTTGGTAAA 843904 843915 2
+ ATAGGTATTAAA 860211 860222 2
+ TTAGTTACTAAA 862182 862193 2
+ TTAGCTGGTAAA 865901 865912 2
+ TTAAGTCGTAAA 883212 883223 2
+ TTAGGAAATAAA 890205 890216 2
+ TTAGGTATCAAA 898515 898526 2
+ TTAGGTTATAAA 901093 901104 2
+ TTAGATAATAAA 907117 907128 2
+ TTAGGTACTAAA 909676 909687 1
+ TTAAGTAATAAA 919460 919471 2
+ TTAGGTGCTAAA 920121 920132 2
+ TTAGTTAATAAA 947784 947795 2
+ GTAGGTGGTAAA 949008 949019 2
+ TTAGATAATAAA 982975 982986 2
+ TCAGGTAATAAA 984978 984989 2
+ TTAGATAGTATA 1007368 1007379 2
+ TTAGGTGTTAAA 1012742 1012753 2
+ TTAGGTGGAAAA 1013864 1013875 2
+ ATAGGTAATAAA 1013886 1013897 2
+ TCAGTTAGTAAA 1014456 1014467 2
+ TTAGGTATTACA 1014981 1014992 2
+ TTAGTTAGAAAA 1028770 1028781 2
+ TTAGCTATTAAA 1034341 1034352 2
+ TTAAGTAATAAA 1039927 1039938 2
+ TTAGGTAAAAAA 1051985 1051996 2
+ TTATGTAGTCAA 1054761 1054772 2
+ TTTGGTGGTAAA 1068744 1068755 2
+ TTAGTTAATAAA 1070446 1070457 2



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

+ TTAGGTGGTAAT 1082668 1082679 2
+ TTATTTAGTAAA 1085669 1085680 2
+ TTAGTTATTAAA 1086108 1086119 2
+ TTAGGTGGTATA 1097102 1097113 2
+ TTAGGTGTTAAA 1099380 1099391 2
+ TTAGGTGGTAAA 1106209 1106220 1
+ TTAGGTATCAAA 1113707 1113718 2
+ TTAGATAGTGAA 1117718 1117729 2
+ TTAGGTGGTCAA 1119217 1119228 2
+ TCAGGTATTAAA 1123003 1123014 2
+ TTTGTTAGTAAA 1138083 1138094 2
+ TTTGGTAATAAA 1139316 1139327 2
+ TTAGGTCTTAAA 1139595 1139606 2
+ TTAGATATTAAA 1141290 1141301 2
+ CTAGGTACTAAA 1148079 1148090 2
+ TTAGGTAATGAA 1161172 1161183 2
+ TTACGTGGTAAA 1161853 1161864 2
+ TTATGTTGTAAA 1167011 1167022 2
+ TTAGGTAAAAAA 1167951 1167962 2
+ TCAGGTGGTAAA 1168830 1168841 2
+ TTAGGTAAGAAA 1172884 1172895 2
+ TTACGTAGTAAA 1201659 1201670 1
+ TTATGTAGTAGA 1208436 1208447 2
+ TTAGCTAGAAAA 1214288 1214299 2
+ TTACATAGTAAA 1220732 1220743 2
+ TGAGGTAGTAAG 1226986 1226997 2
+ ATAGATAGTAAA 1248813 1248824 2
+ ATAGATAGTAAA 1250487 1250498 2
+ TTAGGGAGTATA 1257169 1257180 2
+ TTAAGTAGTAAA 1258776 1258787 1
+ TGATGTAGTAAA 1261519 1261530 2
+ ATATGTAGTAAA 1273242 1273253 2
+ TTAGCTAGAAAA 1278888 1278899 2
+ TTAGGTAGTAAG 1282345 1282356 1
+ TTAGGTGATAAA 1285166 1285177 2
+ TTAGGTGTTAAA 1289549 1289560 2
+ TTATGTAATAAA 1307276 1307287 2
+ TTAGGTAGAAAA 1313030 1313041 1
+ TTAGGTATTAAA 1318486 1318497 1
+ TTAGGTGTTAAA 1323442 1323453 2
+ TTAGTTAATAAA 1340650 1340661 2
+ TTTGGTATTAAA 1344525 1344536 2
+ TGAGGTGGTAAA 1346746 1346757 2
+ TTAAGTAGTAAT 1351434 1351445 2
+ TTAAGTAGTCAA 1355765 1355776 2
+ TTCTGTAGTAAA 1358810 1358821 2
+ TTAGGAAGTATA 1375459 1375470 2
+ CTAGCTAGTAAA 1376632 1376643 2
+ TTAGCTAGTTAA 1434794 1434805 2
+ TTAGGTAATACA 1464572 1464583 2
+ TTAGAAAGTAAA 1503709 1503720 2
+ TTGGGTAGTAGA 1517062 1517073 2
+ TTAGGTACCAAA 1521596 1521607 2



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

+ TTAGTTAATAAA 1542595 1542606 2
+ TTGGATAGTAAA 1564160 1564171 2
+ TTAGGTAATAAG 1567231 1567242 2
+ GTAGGTATTAAA 1571800 1571811 2
+ GAAGGTAGTAAA 1580531 1580542 2
+ TTATATAGTAAA 1588202 1588213 2
+ CTAGGTAGTCAA 1593815 1593826 2
+ TTAGTTATTAAA 1597888 1597899 2
+ TTTAGTAGTAAA 1601713 1601724 2
+ TTAGCTACTAAA 1616244 1616255 2
+ TTAGGTAGTGGA 1619965 1619976 2
+ ATAGGTATTAAA 1663875 1663886 2
+ TTTGGTACTAAA 1668724 1668735 2
+ TTATGTATTAAA 1687901 1687912 2
+ TTAGGTAGCATA 1700932 1700943 2
+ TTAGGTGGCAAA 1705468 1705479 2
+ TTAGTTGGTAAA 1743794 1743805 2
+ TTATGTATTAAA 1747108 1747119 2
+ TTATGAAGTAAA 1761567 1761578 2
+ TTATATAGTAAA 1764030 1764041 2
+ TTAGTAAGTAAA 1775282 1775293 2
+ TCAGGTATTAAA 1777867 1777878 2
+ CTAGGTCGTAAA 1780302 1780313 2
+ TTAGCTACTAAA 1798888 1798899 2
+ TTATGTAGTAAA 1826653 1826664 1
+ TTAGTTACTAAA 1836468 1836479 2
+ TTTGGTAGTAAG 1840439 1840450 2
+ TTAGGTAGTATA 1850193 1850204 1
+ TTAAATAGTAAA 1850652 1850663 2
+ CGAGGTAGTAAA 1861701 1861712 2
+ TTCGGTATTAAA 1883547 1883558 2
+ ATACGTAGTAAA 1892365 1892376 2
+ ATAGGTACTAAA 1896403 1896414 2
+ TCAGTTAGTAAA 1898379 1898390 2
+ ATAGGTATTAAA 1904749 1904760 2
+ TTAGGTAGTAAA 1946310 1946321 0
+ TTAGGTTGTAAT 1954407 1954418 2
+ TTAGCTAGTATA 1965092 1965103 2
+ ATATGTAGTAAA 1975244 1975255 2
+ TTAGGTAGTAGA 2003296 2003307 1
+ TTAGGTTGGAAA 2008083 2008094 2
+ TTAGGTTATAAA 2013405 2013416 2
+ TTAGGTGTTAAA 2019372 2019383 2
+ TTTGGTAGTAAT 2026550 2026561 2
+ TTAGGTGTTAAA 2043766 2043777 2
+ TTAGGTCATAAA 2074467 2074478 2
+ TTAGCTACTAAA 2091573 2091584 2
+ TTAGGCAGTGAA 2096126 2096137 2
+ GTAGGTACTAAA 2132431 2132442 2
+ CTAGGTATTAAA 2138002 2138013 2
+ TTAAGTAGTCAA 2144866 2144877 2
+ TTCGTTAGTAAA 2160970 2160981 2
+ TTAGTTAGTAAG 2184317 2184328 2



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

+ TTAGGCACTAAA 2185099 2185110 2
+ TTACGTAATAAA 2220861 2220872 2
+ TTAGTTACTAAA 2230764 2230775 2
+ TCAGTTAGTAAA 2238334 2238345 2
+ TTATGTAATAAA 2249838 2249849 2
+ ATGGGTAGTAAA 2275070 2275081 2
+ TTAGATTGTAAA 2282790 2282801 2
+ TTTGGTAGTAAC 2313930 2313941 2
+ TTTGGTAGTAAT 2330196 2330207 2
+ TTAGGGAGTAAG 2335982 2335993 2
+ TTATATAGTAAA 2356617 2356628 2
+ GTAGGTGGTAAA 2362532 2362543 2
+ TTATATAGTAAA 2376348 2376359 2
+ TTAGGTAGAAAC 2379331 2379342 2
+ TCAGGTGGTAAA 2385607 2385618 2
+ TTAGGTGGCAAA 2410711 2410722 2
+ TTACATAGTAAA 2411071 2411082 2
+ TTAGATAGTAAA 2435882 2435893 1
+ TTAGCTAGTAAC 2447256 2447267 2
+ TTAGGTAAGAAA 2455955 2455966 2
+ TTAGGTTATAAA 2479614 2479625 2
+ ATAGCTAGTAAA 2492649 2492660 2
+ TTAGGTCCTAAA 2510222 2510233 2
+ TTAGCTAGTAAA 2544217 2544228 1
+ TTAGGTAGTACA 2550493 2550504 1
+ ATACGTAGTAAA 2558617 2558628 2
+ TTAGGTGTTAAA 2584000 2584011 2
+ ATAGTTAGTAAA 2589304 2589315 2
+ TAAGGCAGTAAA 2592773 2592784 2
+ ATGGGTAGTAAA 2602857 2602868 2
+ TTAGGTATTCAA 2631853 2631864 2
+ TCAGGTAGCAAA 2634467 2634478 2
+ TTAAGAAGTAAA 2635085 2635096 2
+ TTTGGTAATAAA 2635256 2635267 2
+ TCAGGTAGTAAT 2649982 2649993 2
+ TAAGGTAGAAAA 2653757 2653768 2
+ TTAAGTAGAAAA 2659534 2659545 2
+ TTAGGAACTAAA 2662957 2662968 2
+ TTAGGTAGTGAA 2663443 2663454 1
+ TTAGGTCTTAAA 2672429 2672440 2
+ TCAGGTTGTAAA 2694020 2694031 2
+ TTTGGTAATAAA 2707706 2707717 2
+ CTAGTTAGTAAA 2708378 2708389 2
+ TTAGCTAGTAAA 2712403 2712414 1
+ TCAGGTACTAAA 2731414 2731425 2
+ CTCGGTAGTAAA 2732811 2732822 2
+ TTTGATAGTAAA 2734722 2734733 2
+ ATAGGTAGTAAC 2781842 2781853 2
+ TTTAGTAGTAAA 2809974 2809985 2
+ TTAGGTCGTAAG 2811059 2811070 2
+ TTACGTAATAAA 2812933 2812944 2
- TTAGGTGGTAAT 2816506 2816495 2
- TTAAGTAATAAA 2814628 2814617 2



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

- TTAGGTAGCAAG 2812068 2812057 2
- TTTGGTAGGAAA 2810941 2810930 2
- TAAGGTTGTAAA 2808848 2808837 2
- TTAGGAAGTTAA 2799362 2799351 2
- TTAGGTGGTATA 2793264 2793253 2
- TTTGGTAATAAA 2779619 2779608 2
- TTAGGTTGTAAG 2775149 2775138 2
- TTAGGTAACAAA 2765792 2765781 2
- TCAGCTAGTAAA 2764220 2764209 2
- TCAGGTAGTACA 2763626 2763615 2
- ATAGGTATTAAA 2718436 2718425 2
- TTAGATGGTAAA 2704294 2704283 2
- ATAGATAGTAAA 2691367 2691356 2
- TTAGGTGATAAA 2669344 2669333 2
- TTATGTAGTAAA 2659607 2659596 1
- GCAGGTAGTAAA 2657664 2657653 2
- TTATCTAGTAAA 2654757 2654746 2
- CTAGGTATTAAA 2648961 2648950 2
- TTAGCTTGTAAA 2646063 2646052 2
- TTAATTAGTAAA 2616872 2616861 2
- TTAGCTAATAAA 2610549 2610538 2
- GTAGGTAGTATA 2609301 2609290 2
- TCAGGTAGTAAT 2601065 2601054 2
- ATAGGTAGTACA 2595410 2595399 2
- TTATATAGTAAA 2592153 2592142 2
- TTATGTAATAAA 2579429 2579418 2
- TTATTTAGTAAA 2574159 2574148 2
- TCACGTAGTAAA 2561258 2561247 2
- TCACGTAGTAAA 2560373 2560362 2
- TGAGGTATTAAA 2533112 2533101 2
- TTAGGTGGTATA 2529741 2529730 2
- CTAGGTAGTAAG 2522282 2522271 2
- TTAGGTAATAAT 2511247 2511236 2
- GTAGGTATTAAA 2507315 2507304 2
- TTAAGTACTAAA 2491912 2491901 2
- TTAGAAAGTAAA 2474244 2474233 2
- TTATGGAGTAAA 2471603 2471592 2
- TTATGTAGTAAG 2468101 2468090 2
- TTGGGTACTAAA 2463706 2463695 2
- TCAGGTAATAAA 2460942 2460931 2
- TTAGGTGATAAA 2455853 2455842 2
- ATAGATAGTAAA 2454042 2454031 2
- TTTGGTAGTAAT 2436917 2436906 2
- TTTTGTAGTAAA 2436074 2436063 2
- TTAGGTAGCATA 2435519 2435508 2
- TTAAGTACTAAA 2422907 2422896 2
- TTAGGTATTAAA 2403243 2403232 1
- TTAGATAGTGAA 2401101 2401090 2
- TTATGTAGTAAA 2389434 2389423 1
- TTATGTAGCAAA 2384319 2384308 2
- TTATGTAATAAA 2380124 2380113 2
- ATAGGTATTAAA 2363271 2363260 2
- TAAGTTAGTAAA 2356401 2356390 2



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

- TTAGGTGGTAAT 2351359 2351348 2
- TTAGGACGTAAA 2346990 2346979 2
- TAAGATAGTAAA 2346569 2346558 2
- TCAGATAGTAAA 2343783 2343772 2
- TTAAGAAGTAAA 2334862 2334851 2
- TTAGGTGTTAAA 2333539 2333528 2
- ATAAGTAGTAAA 2330124 2330113 2
- TTAGGTAAGAAA 2325644 2325633 2
- TTAGATAATAAA 2322385 2322374 2
- TTAGGTTTTAAA 2321389 2321378 2
- TTAGGAAGAAAA 2317787 2317776 2
- TTAGGTGTTAAA 2311855 2311844 2
- TTTGGTAATAAA 2311072 2311061 2
- TTAGGTCTTAAA 2309501 2309490 2
- TTAGGTCGTAAA 2304682 2304671 1
- TTAGGTAAAAAA 2304444 2304433 2
- TTAGGTAGAAAT 2296339 2296328 2
- TTAGGTATTTAA 2295537 2295526 2
- ATAGGTACTAAA 2295290 2295279 2
- TTAGTTATTAAA 2287799 2287788 2
- TTAGGTATTAAA 2274685 2274674 1
- TTAGTAAGTAAA 2269498 2269487 2
- GTAGGTATTAAA 2253357 2253346 2
- TTTGGTATTAAA 2248688 2248677 2
- TTAAGCAGTAAA 2241691 2241680 2
- TTAGTTATTAAA 2231655 2231644 2
- TTAGATACTAAA 2230719 2230708 2
- TTAGATACTAAA 2229708 2229697 2
- TTAGGTAGTCCA 2221758 2221747 2
- TTAGGTCATAAA 2217776 2217765 2
- TTAGCAAGTAAA 2210686 2210675 2
- TTAGGTAGAGAA 2191176 2191165 2
- TTAGGTATTCAA 2191065 2191054 2
- TTAGATGGTAAA 2190807 2190796 2
- TTAGGTGGTACA 2190387 2190376 2
- TTAGGTCGTGAA 2184610 2184599 2
- TTAGATCGTAAA 2183230 2183219 2
- TTAGCTGGTAAA 2176087 2176076 2
- TTTGGTACTAAA 2175670 2175659 2
- TTAGGTAGTCAT 2174882 2174871 2
- TTAGATGGTAAA 2167963 2167952 2
- ATTGGTAGTAAA 2161049 2161038 2
- TGATGTAGTAAA 2154634 2154623 2
- TAAGGTAGCAAA 2152686 2152675 2
- TTAGGCATTAAA 2140495 2140484 2
- TTAGGTATTAAA 2136286 2136275 1
- TTAGGTAGTGAT 2129760 2129749 2
- TTAAGCAGTAAA 2125204 2125193 2
- TTAGGTAAAAAA 2104306 2104295 2
- CTAGGTATTAAA 2098034 2098023 2
- TTATGTAGTAAT 2096810 2096799 2
- TCAGGTGGTAAA 2077266 2077255 2
- TTTGCTAGTAAA 2074434 2074423 2



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

- CTAGGTACTAAA 2073473 2073462 2
- TTAGTTAGTGAA 2073350 2073339 2
- GTAGGTAATAAA 2072353 2072342 2
- TTAGGTTTTAAA 2068526 2068515 2
- TTAGGTATTAAG 2066250 2066239 2
- TTTGGCAGTAAA 2064106 2064095 2
- TTAGGTATTAAC 2058268 2058257 2
- TTAGATAATAAA 2054510 2054499 2
- TTAGGTGGGAAA 2047344 2047333 2
- TTAGGTGGTAAG 2043364 2043353 2
- GTAGGTAATAAA 2042977 2042966 2
- TTAGGTGGTATA 2041234 2041223 2
- TTAGGTCATAAA 2025550 2025539 2
- TTAGGTGGTAAT 2025238 2025227 2
- TTAGGTCTTAAA 2021870 2021859 2
- TTAGGCACTAAA 1995379 1995368 2
- TTAGGTGTTAAA 1995181 1995170 2
- TTAGGTATTGAA 1994773 1994762 2
- TTTGGTACTAAA 1989119 1989108 2
- TTAGATACTAAA 1988654 1988643 2
- CTAGGTACTAAA 1965815 1965804 2
- TTAGCTAGGAAA 1960886 1960875 2
- TTAGGAATTAAA 1958387 1958376 2
- TTAGATAGCAAA 1957090 1957079 2
- GTAAGTAGTAAA 1952394 1952383 2
- ATAGGTAATAAA 1925308 1925297 2
- TTAGCTAGTAAA 1921326 1921315 1
- TTAAGTAGTAAA 1914799 1914788 1
- TTAGATATTAAA 1914370 1914359 2
- TTAGGTGGTAGA 1911282 1911271 2
- TCCGGTAGTAAA 1910916 1910905 2
- TTAAGCAGTAAA 1903808 1903797 2
- TTAGGTAATGAA 1894271 1894260 2
- TTAGGTAGAAAA 1867622 1867611 1
- TTAGGTGGTAGA 1859335 1859324 2
- TTTGGTAGTAAA 1852260 1852249 1
- TTAGGTATGAAA 1851122 1851111 2
- TTTTGTAGTAAA 1848760 1848749 2
- TTAAATAGTAAA 1842576 1842565 2
- TTCGATAGTAAA 1838094 1838083 2
- TTGGGTAGAAAA 1833549 1833538 2
- TTAGTTAGTATA 1821151 1821140 2
- TTAGGTAGTAAG 1817360 1817349 1
- TTAGATGGTAAA 1801508 1801497 2
- TTAGGAAGTATA 1788110 1788099 2
- TTAGGTCGTATA 1787214 1787203 2
- TTAGGTACAAAA 1784598 1784587 2
- TGATGTAGTAAA 1784335 1784324 2
- TTAGTTACTAAA 1760096 1760085 2
- TTAGCTAGTAAA 1757172 1757161 1
- TTAGGTAATAAT 1756129 1756118 2
- TTCGGTATTAAA 1730316 1730305 2
- TTAGGTATTAAT 1716299 1716288 2



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

- TTAGGTATTATA 1711166 1711155 2
- TTAGCTATTAAA 1711097 1711086 2
- TTCGGTATTAAA 1709185 1709174 2
- TTATGTAGAAAA 1708160 1708149 2
- ATAGGTATTAAA 1698944 1698933 2
- TTTGGTGGTAAA 1671215 1671204 2
- TTAGGTGCTAAA 1658770 1658759 2
- TTAGTTATTAAA 1652892 1652881 2
- TTAGAAAGTAAA 1649476 1649465 2
- TGAGGTAATAAA 1636981 1636970 2
- TTAGGTGGTCAA 1622193 1622182 2
- TGAGGTATTAAA 1611450 1611439 2
- TTAGTTAGTGAA 1608666 1608655 2
- TCAGGTGGTAAA 1608546 1608535 2
- TTTGGAAGTAAA 1604238 1604227 2
- TTAGCTAGTAGA 1598907 1598896 2
- TTAGGTATTGAA 1593340 1593329 2
- GTTGGTAGTAAA 1590291 1590280 2
- TTAGGTTGTAAA 1589610 1589599 1
- TTAGGTAATAAT 1584665 1584654 2
- TTTGGTTGTAAA 1577449 1577438 2
- TTAGGTGGTATA 1569129 1569118 2
- TTAAGTAATAAA 1547308 1547297 2
- TTAGGTAAAAAA 1542259 1542248 2
- TTAGGTAAAAAA 1539257 1539246 2
- TTAGGTAGAAAA 1537832 1537821 1
- TTATGTATTAAA 1533705 1533694 2
- TTAGGTGGGAAA 1531457 1531446 2
- TTAATTAGTAAA 1509414 1509403 2
- TTAGGAAGAAAA 1508988 1508977 2
- CTAGGTACTAAA 1507210 1507199 2
- TTAGTTAGTGAA 1507087 1507076 2
- TTATTTAGTAAA 1506384 1506373 2
- GTAGGTAATAAA 1506088 1506077 2
- TTAGGTAATGAA 1503667 1503656 2
- TTAGGTTTTAAA 1497878 1497867 2
- TCAGGTAATAAA 1496306 1496295 2
- GTAAGTAGTAAA 1494687 1494676 2
- TTAGGGAGTAAA 1490790 1490779 1
- TTAGGTAATAAA 1472008 1471997 1
- TTAGGAAGTCAA 1467282 1467271 2
- TTAGGAAATAAA 1460437 1460426 2
- TTATGAAGTAAA 1452599 1452588 2
- TTAGGTAGTCCA 1441374 1441363 2
- TTAGGTATTGAA 1438988 1438977 2
- TTAGGAATTAAA 1433887 1433876 2
- TTAAGTACTAAA 1433734 1433723 2
- TTAGGTATTAAT 1424861 1424850 2
- TTTGGTAGTAAA 1420910 1420899 1
- TTAGGCAGTAAT 1404037 1404026 2
- TTAGGTACTCAA 1400746 1400735 2
- TTAGTTATTAAA 1397962 1397951 2
- TTAAGAAGTAAA 1369165 1369154 2



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

- TCAGGTAGAAAA 1368586 1368575 2
- TTAGGTTATAAA 1365900 1365889 2
- TTAGGAAGTAAA 1364191 1364180 1
- TTAAATAGTAAA 1363081 1363070 2
- AAAGGTAGTAAA 1322841 1322830 2
- TTAGTTAATAAA 1308124 1308113 2
- TTAAGAAGTAAA 1301364 1301353 2
- TTATGTAGTAGA 1284588 1284577 2
- TTAGGTATTAAT 1272702 1272691 2
- TTAGCTACTAAA 1260588 1260577 2
- CTAGGTAATAAA 1240109 1240098 2
- TTAGATACTAAA 1236108 1236097 2
- TTAGGTGTTAAA 1216673 1216662 2
- TAAGATAGTAAA 1214628 1214617 2
- TTAGGGAATAAA 1202403 1202392 2
- GTAGGTAGTCAA 1181892 1181881 2
- TTACGTAATAAA 1171937 1171926 2
- TTAAGGAGTAAA 1171680 1171669 2
- TTAAGTAGTTAA 1131873 1131862 2
- TTAAGTAGTCAA 1109235 1109224 2
- TTACGTAGTAAT 1100177 1100166 2
- GTAGGTATTAAA 1096466 1096455 2
- TTACCTAGTAAA 1088751 1088740 2
- TTAGGTTGCAAA 1087270 1087259 2
- TTTGGTAGTGAA 1040840 1040829 2
- TTAGATAATAAA 1028768 1028757 2
- TTTTGTAGTAAA 1015670 1015659 2
- TTTGGTGGTAAA 1014651 1014640 2
- TTAGATGGTAAA 979105 979094 2
- TTAGGTGGTCAA 976055 976044 2
- TTAGATAGTAAT 967736 967725 2
- TTAGGTAATCAA 966404 966393 2
- CTAGGTGGTAAA 961714 961703 2
- TTAGGAATTAAA 956623 956612 2
- TTTGATAGTAAA 954728 954717 2
- TAAGGTATTAAA 915849 915838 2
- ATATGTAGTAAA 909472 909461 2
- TTAGATAGTAAG 898734 898723 2
- TTAGCTAGTGAA 886115 886104 2
- TTAAGTGGTAAA 880723 880712 2
- TTAGGTTCTAAA 871509 871498 2
- TTAGCTAGTAAC 866339 866328 2
- TTAAGTAGTAAT 860770 860759 2
- TTAGGAGGTAAA 849314 849303 2
- TTAAGTACTAAA 847244 847233 2
- TTAGTTAGTACA 840619 840608 2
- TTATGTAGTAAT 827495 827484 2
- TTAGGTTTTAAA 825786 825775 2
- TTAAATAGTAAA 819660 819649 2
- TTAAGTAGTAAG 801617 801606 2
- TTAGGTTCTAAA 770274 770263 2
- TTAGGTAGTTAA 757165 757154 1
- TTAGCTTGTAAA 744915 744904 2



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

- TTAACTAGTAAA 734507 734496 2
- TTAGTTAGTAAT 723478 723467 2
- TTAGATAATAAA 710133 710122 2
- TTATGTAGTTAA 710085 710074 2
- TTAGCTAGTAAT 679163 679152 2
- TTAGATAGTACA 666268 666257 2
- TTAGATAGTAAA 664062 664051 1
- TTAGTTTGTAAA 649738 649727 2
- TTAAGTAATAAA 649591 649580 2
- TTAAGTATTAAA 646929 646918 2
- TTAGCTAGTAAC 638707 638696 2
- TTAGGTAATAAG 627049 627038 2
- TTAATTAGTAAA 625706 625695 2
- TCAGGTACTAAA 621986 621975 2
- TTAGGTATGAAA 621179 621168 2
- TTCAGTAGTAAA 601632 601621 2
- GTAGGTATTAAA 595082 595071 2
- ATAGGTAATAAA 591062 591051 2
- TTAGGTAGTAAG 583830 583819 1
- TTAACTAGTAAA 583344 583333 2
- TTAGCTGGTAAA 576565 576554 2
- TTAACTAGTAAA 573112 573101 2
- TGAGGTACTAAA 556596 556585 2
- TTAGTTTGTAAA 539838 539827 2
- TTAGTTAATAAA 538327 538316 2
- TTAGCTTGTAAA 531503 531492 2
- TTAGTAAGTAAA 529887 529876 2
- TTAGGAAGAAAA 483787 483776 2
- TTAGGTTGTAAT 400765 400754 2
- TTAGAAAGTAAA 370345 370334 2
- TTAGGTAGAAAA 352113 352102 1
- CAAGGTAGTAAA 336383 336372 2
- TTTGGTAGTAAA 326861 326850 1
- GAAGGTAGTAAA 311056 311045 2
- TTAGGAAGGAAA 298731 298720 2
- TTTGGTGGTAAA 262074 262063 2
- TTTGGTAATAAA 259993 259982 2
- TTACGTAATAAA 246511 246500 2
- TTACGTAGCAAA 241188 241177 2
- ATAGGTACTAAA 236800 236789 2
- TTAGATACTAAA 228629 228618 2
- TTAAATAGTAAA 209406 209395 2
- TTATGTACTAAA 200188 200177 2
- TTAGGTAATATA 195790 195779 2
- TTAGCTAATAAA 176431 176420 2
- TTGGGTAGGAAA 166260 166249 2
- TTTGGTGGTAAA 164927 164916 2
- TTATGTACTAAA 158324 158313 2
- TTAGGCAGTATA 156927 156916 2
- TTAGATACTAAA 139557 139546 2
- TTTGGTATTAAA 128914 128903 2
- TTTGGTATTAAA 109076 109065 2
- TTAGGTGTTAAA 79311 79300 2



Strand Match Start (nt) Stop (nt) Mismatches
Position on pSK1

- TTTTGTAGTAAA 78754 78743 2
- TTAGGCATTAAA 73214 73203 2
- GTAGGAAGTAAA 71217 71206 2
- ATAGGTAATAAA 48964 48953 2
- TTAGGTAATAAA 41976 41965 1
- ATATGTAGTAAA 32655 32644 2
- TTAAGTAATAAA 31023 31012 2
- TTTGTTAGTAAA 8695 8684 2
- TGAGGTAATAAA 2540 2529 2
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