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ABSTRACT 

PURPOSE: This paper offers insights into the ways two computer-aided qualitative data 

analysis software (CAQDAS) applications (QSR NVivo and Leximancer) can be used to 

analyse big, text-based data taken from consumer-to-consumer (C2C) social media 

communication. 

DESIGN/ METHODOLOGY/ APPROACH: This study used QSR NVivo and Leximancer, to 

explore 200 discussion threads containing 1,796 posts from forums on an Online Open 

Community and an Online Brand Community that involved Online Brand Advocacy. The 

functionality, in particular, the strengths and weaknesses of both programs are discussed. 

Examples of the types of analyses each program can undertake and the visual output available 

are also presented. 

FINDINGS: This research found that, while both programs had strengths and weaknesses 

when working with big, text-based, online data, they complemented each other. Each 

contributed a different visual and evidence-based perspective; providing a more 

comprehensive and insightful view of the characteristics unique to online consumer brand 

advocacy. 

RESEARCH IMPLICATIONS: Qualitative market researchers are offered insights into the 

advantages and disadvantages of using two different software packages for research projects 

involving big social media data. The ‘visual-first’ analysis, obtained from both programs can 

help researchers make sense of such data, particularly in exploratory research. 
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PRACTICAL IMPLICATIONS: The paper provides practical recommendations for analysts 

considering which programs to use when exploring big, text-based, online data. 

ORIGINALITY/VALUE: This paper answered a call to action for further research and 

demonstration of analytical programs of big, online data from social media C2C 

communication and makes strong suggestions about the need to examine such data in a 

number of ways. 

 

KEYWORDS 

Big data, Online Brand Advocacy (OBA), CAQDAS, Leximancer, QSR NVivo, online 

community, online communication, online branding, qualitative method. 
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Introduction 

Fuelled by a rise in consumer-to-consumer (C2C) online participation, consumer networks are 

becoming increasingly important to marketers as influencers of consumer behaviour (Chu and 

Kim, 2011; Adjei et al., 2010; McAlexander et al., 2002; Muniz and O’Guinn, 2001). As a result, 

marketing researchers are interested in investigating and understanding such online C2C 

interactions, especially those found in social media. However, these interactions create big 

text-based data that is characterised by high volume, velocity, and variety, thus presenting 

analytical challenges (McAfee and Brynjolfsson, 2012). Computer-aided qualitative discourse 

analysis software (CAQDAS) applications enable semi-automated analysis to be undertaken 

on such data, providing more visual results than was possible previously. When working with 

such big datasets, researchers need to decide which approach is most suitable for ‘visual text 

analytics’ or ‘visual data mining’ and which provides better insights into the data’s ‘patterns of 

relevance’ (Angus et al., 2013; Risch et al., 2008).  

The QSR NVivo and Leximancer programs are well-known options for such analysis (Crofts 

and Bisman, 2010; Hutchison et al., 2010). However, their strengths and weaknesses are not 

well researched (Jones and Diment, 2010; Sotiriadou et al., 2014). Clearly, there is a need to 

better understand which programs and approaches can be used to gain greater insight from 

the ‘unstructured data’ obtained from data-rich online environments such as social media 

platforms. Indeed, the Marketing Science Institute (2016) recently suggested determining how 

to integrate and synthesise insights from big data is a research priority. Here, QSR NVivo’s 

and Leximancer’s usefulness in analysing big data is discussed through an examination of 

their use in an exploratory study investigating Online Brand Advocacy (OBA). 

Despite increasing interest in OBA (Leventhal et al., 2014; Parrott et al., 2015, Wallace et al., 

2012), which can be defined as the active promotion, support for or defence of a brand by a 

consumer to other consumers (Jillapalli and Wilcox, 2010; Keller, 2007), its conceptualisation, 

dimensionality and measurement are unclear. Some have argued OBA is unique and differs 
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from offline brand advocacy and have pushed for further investigation (Graham and Havlena, 

2007), while others have suggested there is a need to improve our understanding of how 

consumers advocate for brands online (Divol et al., 2012; Urban, 2005).  

This manuscript is based on a study designed to provide initial insights into OBA’s 

characteristics by looking at OBA posts in two different online communities. It suggests how 

QSR NVivo and Leximancer can be used in an exploratory study in which a ‘visual-first’ 

analysis is used to assist researchers make visual sense of the data and guide subsequent 

enquiry (Angus et al., 2013). Both programs were used to explore 200 discussion threads 

containing 1,796 posts in an Online Open Community (OOC) and in an Online Brand 

Community (OBC). The strengths and weaknesses of both programs are outlined through their 

application in this exploratory study. Examples of some of the types of analyses each program 

can undertake, the visual output available and an insight into how each program contributed 

to the exploration of a new construct are provided. The paper provides practical 

recommendations to guide researchers and practitioners. Before discussing the study and the 

applicability of the programs, the next section briefly outlines the literature that informed the 

research. 

Background  

Brand advocacy is seen by some as the extent to which consumers are willing to spend time 

and effort to actively recommend, and to support a brand because of a connection to the brand 

(Jillapalli and Wilcox, 2010; Anderson, 1998). Brand advocacy is also defined as social 

advocacy, by way of a recommendation of a brand to others, the defence of a brand when it 

is attacked or as the recruitment of potential customers (Bhattacharya and Sen, 2003; 

Stokburger-Sauer et al., 2012). To date, little attention has been devoted to understanding 

brand advocacy in different communication platforms, especially online; although a recent 

study highlighted the need for a further exploration of the message characteristics in posts 

advocating brands (Parrott et al., 2015).   
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The online space has created prosuming users or ‘prosumers’ who are active online, who 

produce and consume content at the same time, and who are noticeable in online discussion 

forums (O’Reilly, 2005). Research has shown such discussions influence sales, regardless of 

whether the community is company-owned or independently-owned (McAlexander et al., 

2002; Muniz and O’Guinn, 2001). Porter (2004), for example, differentiated commercial and 

non-commercial online communities, while Yahia (2005) distinguished between non-

commercial brand-based and product-based communities, and those based on brand-related 

themes or topics. Here, we differentiated between two types of communities, namely:  

• Online Brand Communities that are owned, managed and sponsored by a brand; although 

discussion forum interactions are driven by members. The community’s aim is to engage 

customers with the owner’s brand without restricting the discussions, which can be brand 

or non-brand related, and which focus on topics of common interest.  

• Online Open Communities that are independent of any brand affiliation, and which are 

owned and managed by consumers; although they may be financially supported by 

advertising revenue. Such online communities bring together consumers with a common 

product interest, and provide forums for information and support on topics of common 

interest, including brand-related discussion.  

OBA can be found in various online platforms, such as social networking sites (SNS) (e.g. 

Facebook or Twitter), online opinion platforms (e.g. tripadvisor.com) and discussion forums in 

online communities (e.g. epicski.com). OBA has been described as viral or connected 

marketing activities, and is sometimes defined as WOM arising from Facebook ‘Likes’ and 

online recommendation to ‘friends’ (Wallace et al., 2012), customer brand engagement on 

Facebook (Hausman et al., 2014), ‘following’ a brand on Twitter (Bulearca and Bulearca, 

2010), discussing brands on their blogs (Chu and Kamal, 2008) or online reviews (Karakaya 

and Barnes, 2010). Online conversations about brands can be proxies for offline conversations 
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and seem to influence offline and online purchasing decisions (Godes and Mayzlin, 2004; 

Fagerstrøm and Ghinea, 2011).  

Consumers advocate for brands online through brand-related User-Generated Content (UGC) 

(Smith et al., 2012) that permeates social media channels. Online UGC is different to content 

found in offline communication (e.g. communicators can be anonymous, as givers and 

receivers of information may be identified only by usernames) and information can be acted 

on quickly, is easily accessible for an indefinite period of time and has global reach. OBA is 

undertaken in a unique setting and, just as eWOM has been differentiated from offline WOM 

(Chu and Kim, 2011; Hennig-Thurau et al., 2004), OBA deserves to be explored and assessed 

in its own right. However, which approach (QSR NVivo or Leximancer) is most useful in such 

an exploration? 

The study 

Sample 

Two hundred active C2C discussion threads (1,796 posts) in two different online communities 

were examined. One hundred discussion threads (1,060 posts from 437 unique usernames) 

were from an OOC, while 100 discussion threads (736 posts from 430 unique usernames) 

were from an OBC. Both communities were Australian-based and designed to provide online 

support for parents with young children. Data were collected between November 2014 and 

February 2015. Brand advocacy in the threads included discussions about local and 

international brands, and ranged from high-involvement products, such as prams and family 

car brands, to low-involvement products, such as baby formula and hygiene products.  

The number of discussion threads (100 discussion threads from each of the two online 

community forums) was deemed sufficient, as this was the point at which no new insights were 

being generated. This decision was based on the ‘thematic, data saturation’ principle that 

underpins qualitative research (Corbin and Strauss 2007, Green and Thorogood 2004, 
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Gaskell 2000) and adheres to the general netnographic rule that “data collection should 

continue as long as new insights on important topical areas are still being generated” 

(Kozinets, 2002, p. 64). 

Procedure 

The netnography procedure suggested by Kozinets (2010) was undertaken here, with the 

QSR NVivo and Leximancer programs being used to examine the 1,796 online posts (Jones 

and Diment, 2010; Sotiriadou et al., 2014). Their combined use enabled an elaborate 

exploration of the data and showcased how each program contributed towards understanding 

OBA, as is outlined in subsequent sections. 

QSR NVivo 

The online discussion threads were imported into QSR NVivo as MS Word documents and 

classified according to the type of online community from which they originated. In the concept 

identification stage, distinct events in the data were identified, intensively scrutinised and 

meaning labels were attached to the identified segments (Hutchison et al., 2010). By creating 

nodes (codes) and storing relevant text relating to the concept represented by each node, a 

researcher-driven coding was obtained that provided an understanding of what consumers 

were saying about brands and, more specifically, how consumers were advocating for brands 

in online discussions. While time consuming, the researcher-driven coding process enabled 

the inclusion of researcher’s insight and an interpretation of meanings to occur at the coding 

stage, rather than at the analysis stage, as was the case with Leximancer.  

To obtain an initial impression of the data, a Word Frequency Query was used to identify the 

most frequently occurring words across all posts. This approach gave a good indication as to 

which codes should be considered. The Coding Stripes Analysis (Figure 1) helped in the 

study’s conceptual development by comparing nodes (emergent concepts) and by visually 

depicting how they related to one another. This enabled a search for intersecting codes to 
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identify text coded to more than one node; suggesting connections between emerging 

concepts. For example, the most commonly referenced node and one of specific interest, was 

‘positive brand mentions’, which included all positive mentions of a brand name in the posts. 

The Coding Stripes Analysis enabled the ‘positive brand mentions’ node to be depicted 

alongside nodes with which it most frequently co-occurred; highlighting important OBA 

characteristics.  

A Matrix Coding Query enabled an examination of the data at a community level (i.e. the OBC 

and OOC datasets), and identified some community-specific OBA characteristics. The 

resulting Coding Stripes Analysis provided a visual representation of associations and 

connections between nodes, according to the type of online community. Although the QSR 

NVivo analysis is influenced and, to some degree, limited by researchers’ analytical decisions 

and epistemological positions, it helped the iterative concept exploration process by 

suggesting subsequent lines of enquiry.  

FIGURE 1 HERE 

Leximancer 

Leximancer analysis is program-driven, and uses blocks of text to identify concepts and 

themes that are identified through an iterative process of seeding word definitions from 

frequencies and co-occurrences (Sotiriadou et al., 2014; Angus et al., 2013). Leximancer does 

not automatically present a definition for each ‘concept’. Words are ‘concepts’ that form 

clusters called ‘themes’. Concept grouping identifies concepts that have contextual similarity 

and appear close to each other in a Concept Map, as such related concepts represent a 

theme.  

The most frequently co-occurring concepts are clustered together and grouped by theme 

circles that represent the main ideas (Cretchley et al., 2010). Leximancer-driven themes are 

named after the most prominent concept in the cluster (i.e. the concept with the largest dot in 
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that theme). Here, the theme names were revised so as to better reflect the concepts within 

them. The size of the themes is not representative of the importance of the themes; rather it 

is indicative of the concepts’ co-occurrence with other concepts. The theme colours represent 

the importance of each theme, with themes heat-mapped from hottest to coolest (i.e. red is 

the ‘hottest’ or most prominent theme and purple is the ‘coolest’ or least connected 

theme). The Concept Map further illustrates how the concepts (keywords) are connected by 

lines between those concepts which share the strongest conceptual similarity. A Two-in-One 

Analysis was obtained in the Concept Map (Figure 2) in which tags identify common themes 

in each of the two communities.  

The Leximancer-produced Insight Dashboard Report provides a quantitative overview of the 

Concept Map, and is designed to provide an understanding of project results (Leximancer, 

2017). The Dashboard is best used for comparison, or difference analysis, and researchers 

must create tags as part of this process (e.g. source document, speaker or folder). Here, two 

separate Insight Dashboard Reports were created:  

1. Where there was only the one category for comparing the emergent concepts, 

namely ‘Brand Mention’, our key theme; and 

2. Where the categories of comparison were our tags for each of the two online 

communities studied (OBC and OOC).  

The first report illustrated how consumers mentioned brands in online posts advocating for a 

brand, whereas the second report allowed us to determine the way in which consumers 

advocated for brands in the two online communities. All of the concepts were assessed for 

their ‘prominence’ (represented by their respective Prominence Scores) in relation to a ‘Brand 

Mention’ and in relation to the two different community types being studied. This report can be 

used to investigate the concepts or attributes associated with relevant tags or categories in 

the data (Leximancer, 2017). Further, the report showcases the relative frequencies for 

concept combinations evident in the Concept Map, and, using Bayesian algebra, calculates a 
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Prominence Score (PS) for each concept and for each compound concept (pairs of concepts 

co-occurring together). A score greater than 1.0 suggests the co-occurrence between a 

concept or compound concept and a category or tag, happens more often than by chance 

(Leximancer, 2017). Here, such a score was considered sufficient to identify unique OBA 

characteristics and, for compound concepts, a score of 3 or more was deemed satisfactory. 

FIGURE 2 HERE 

Key differences highlighted through this analysis were explored further in a One-in-One 

Analysis for each online community separately, with the results shown in Figure 3 and Figure 

4. This approach provided an overview of OBA across both communities and enabled a 

comparison of OBA in each of the online communities. With a connectivity of 100%, ‘Brand 

Mention’ emerged as the key theme linking the other themes in the concept maps. The 

‘Positive Communication’ theme was most closely related (i.e. had the highest connectivity) to 

the ‘Brand Mention’ theme in the three concept maps produced, suggesting that, whenever a 

brand name was mentioned, it was usually mentioned positively. Two compound concepts 

(‘Positive brand mentions’ and ‘Negative brand mentions’) were seeded to explore emerging 

relationships of interest. This manual seeding process is akin to setting up of two queries 

(‘Brand mention’ AND ‘Positive communication’ as ‘Positive brand mention’; and ‘Brand 

mention’ AND ‘Negative communication’ as ‘Negative brand mention’), which enabled us to 

pinpoint instances of positive and negative brand mentions.  

FIGURE 3 HERE 

FIGURE 4 HERE 

Findings 

Both programs contributed to our understanding of the OBA concept being explored. Their 

strengths and weaknesses are outlined in Table 2, and although these are self-explanatory, 

some deserve further discussion.  
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TABLE 2 HERE 

Some key strengths of QSR NVivo and Leximancer 

A key QSR NVivo strength is its ability to allow researchers to assign meaning to the data 

during the coding stage rather than after lexical analysis, as is the case in Leximancer. This 

ensured: 

1. Key concepts of interest were identified. 

2. There was congruity between the researcher-identified nodes (codes) and the data 

classified to those nodes. 

3. Nodes (codes/concepts/themes) were identified that could not have been identified by 

Leximancer. 

4. Meaning was assigned from a human-perspective that required human intellect, and 

judgement, rather than by an automated, computer-driven perspective.  

QSR NVivo, enabled us to recognise “Reactive OBA” and “Proactive OBA” as two different 

types of OBA. Reactive OBA included all OBA posts that were responses to specific questions 

or queries about an advocated brand, while proactive OBA included all OBA posts and 

discussion thread starters that initiated or re-ignited discussion about an advocated brand. 

The identification of such concepts of interest requires foresight and human intellect at the 

data coding stage, which is facilitated by QSR NVivo. OBA posts could only be classified as 

reactive or proactive through a researcher deducing meaning based on the totality of the 

message (the post’s whole wording) and the post’s position in the overall discussion thread. 

This process allowed us to see that OBA can be unprompted or prompted, improving our 

understanding of the nature of OBA.  

QSR NVivo also enabled a mapping onto existing theory, as parent and child nodes were 

created to better reflect categories that were indicative of prior brand advocacy definitions (e.g. 

recommendation, defence, promotion, positive word of mouth). We then visually represented 
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how these categories included some aspects of OBA. By assessing the node structure, and 

through the coding stripes analysis, it was evident new aspects of OBA had emerged (e.g. 

positivity, knowledge sharing, virtual positive expression). In Leximancer, attempts were also 

made to manually seed concepts of interest that were automatically mapped onto the Concept 

Map (e.g. to identify brand defence, a concept was seeded for words inclusive of “‘talk up’ and 

‘brand’”, and “‘stand up’ and ‘brand’”). However, due to aspects of linguistics underpinning 

online communication (i.e. the ways in which consumers advocated for brands online varied 

and deviated from the standard brand advocacy definitions), this process did not identify 

existing concepts of interest in the online posts. For example, consumers did not use words 

such as “I am talking up brand X here”; rather they defended a brand by using various 

expressions such as “I have never had problems with brand X” or “Brand X is better than other 

brands I have tried”. As a result, we were not able to produce a Concept Map that mapped 

existing brand advocacy definitions accurately. It is possible, however, to feed manuscripts 

which a researcher is considering as part of a literature review informing a study, to uncover 

themes in prior research and to compare these to results obtained in a study itself. 

Leximancer’s strength is its expedient identification of emergent ‘concepts’ and ‘themes’ 

without a researcher’s active intervention. Its results are neatly displayed in a Concept Map, 

which is supported by information about the strengths of the relationships between the 

‘concepts’ and the ‘themes’ that is provided in an Insight Dashboard Report. The Leximancer-

labelled ‘concepts’ are words that most frequently and strongly co-occur with other words in 

the dataset. ‘Themes’ are the clusters of these key words, and each ‘theme’ is assigned a 

name based on the most prominent concept in that cluster. We found the ‘themes’ to be key 

to understanding OBA. The impartiality of the Leximancer process is very useful in an 

exploratory study in which key concepts may not be clear, which is likely to be an issue when 

using big data. For example, without Leximancer, we would not have found differences in OBA 

posts in the OBC and OOC communities (Figure 2).  
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A key difference in the OBA posts was in the types of products more prominently (although 

not exclusively) advocated on each of the two online communities studied. For example, the 

Leximancer-discovered ‘High Involvement Products (HIP)’ theme was clearly ‘pulled’ by the 

OOC tag, suggesting OBA posts on the OOC site were advocating for products in this category 

more than they did on the OBC site. On the other hand, the ‘Low Involvement Products (LIP): 

Feeding’ and ‘Low Involvement Products: Hygiene’ themes were more closely associated with 

the OBC tag. This suggested LIP were advocated on the OBC more than on the OOC, further 

highlighting that OBA posts on the OBC were mostly about the community owner’s brand, its 

immediate competitors and closely related but non-competing product categories. However, 

on the OOC forum, OBA was provided for a wider variety of products and significantly more 

OBA posts seem to be about HIP. This Leximancer finding presented insights into the nature 

of OBA posts and how OBA differed on the two online community forums. Such insights would 

be difficult to obtain when using QSR NVivo, where the groupings of the different products 

forming the HIP and LIP product categories would not have been as obvious.  

Leximancer allows researchers to seed concepts of interest (actual words) in the form of a 

query that asks the program to map instances of the queried concept onto the Concept Map. 

Two compound concepts (‘Positive brand mentions’ and ‘Negative brand mentions’) were 

seeded to further explore emerging relationships of interest. This manual seeding process is 

similar to setting up of two queries (‘Brand mention’ AND ‘Positive communication’ as ‘Positive 

brand mention’; and ‘Brand mention’ AND ‘Negative communication’ as ‘Negative brand 

mention’), which enabled us to pinpoint instances of positive and negative brand mentions 

(Figures 2, 3 and 4).  

Instances of brand names being mentioned in a positive way (for example: ‘Brand name’ and 

‘great’; or ‘Brand name’ and ‘love’) and instances of brand names being mentioned in a 

negative way (for example: ‘Brand name’ and ‘bad’; or ‘Brand name’ and ‘awful’) were 

highlighted on the resulting Concept Maps. Figures 2, 3 and 4 show the close proximity of the 

seeded compound concepts of ‘Positive brand mention’ and ‘Negative brand mention’. A 



14 
 

closer inspection of the dataset, found that OBA posts frequently included positive and 

negative aspects of the advocated brand, or of brands to which the advocated brand was 

compared. This insight resulted in the identification of three different ways through which OBA 

is given:  

1. A positive-negative brand comparison within the advocated brand, where the good and 

not so good points of the advocated brand are discussed (we labelled this as ‘advocacy 

despite some shortcoming’). 

2. A positive-negative brand comparison between brands, where the positive points of 

the advocated brand and the negative aspects of the competing, compared to, non-

advocated brand were discussed. 

3. A positive-negative comparison within and between brands, where both (1) and (2) 

occurred within an OBA post. This finding would have been difficult to identify had we 

only used QSR NVivo.  

Leximancer also enables a quantitative analysis of the Prominence Scores calculated in the 

Insights Dashboard Report, as illustrated in Table 3 and Table 4. The scores represent the 

relationship between concepts and categories of interest visually depicted in the Concept Map. 

Table 3 highlights the most prominent or most important concepts used by consumers when 

referring to a brand (Brand Mention) in the online post advocating a brand and advocating a 

brand on the two different online communities. We were able to interpret these results to better 

understand the concept being studied (i.e. OBA). Thus, when a brand was being advocated 

online, consumers: 

• Had ‘tried’ (1.7) and used (1.6) the brand and so communicate online from their own 

experiences.  

• ‘Love’ (1.4) the brand and felt the brand was ‘better’ (1.4) than other brands.  

• Encouraged others to ‘buy’ (1.3) the brand. 
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Table 4 suggests the most prominent compound concepts used by consumers when referring 

to a brand (Brand Mention) in an online post advocating a brand and advocating a brand on 

the two online communities. These compound concepts offered additional insights into how 

consumers advocate for brands online, as these words paired most frequently. 

Key weaknesses of QSR NVivo and Leximancer 

The analysis highlighted some key weaknesses of both programs (Table 2). QSR NVivo’s key 

shortcomings stem from its key strength, which is the program’s reliance on the researcher 

driving key aspects of the analysis. In QSR NVivo, researcher(s) identify the nodes (codes) 

and, therefore, the key themes and concepts of interest; the researcher(s) drive the coding of 

the data to relevant researcher-judged nodes; and determine the type of analysis that is used. 

This can be a subjective, time-consuming and elaborate process, particularly when using big 

data. Such processes are automated in Leximancer. In QSR NVivo the identification of nodes 

(codes) can be primed and assisted through word frequency queries, which show the most 

frequently occurring words and provide insights into the key concepts that might be identified 

as nodes in the coding stage. The coding stage is usually followed by a decision as to which 

analysis to use. These steps may be limited by a researcher’s epistemological position and 

the time and resources available, which may impact on the reliability of the process and, 

hence, on the reliability of the results.  

Leximancer’s key weakness is its inability to capture the online posts’ communication style 

and implied tone of voice, which was important in understanding OBA. Some affective and 

virtual visual OBA characteristics identified in QSR NVivo would have been unnoticed in the 

Leximancer analysis. These included key aspects of online communication, such as acronyms 

particular to the online community, the implied tone of voice (often marked with exclamation 

marks (!!!), or with CAPITALS and/or bold lettering), which enabled advocates to better 

portray their intended feelings in their OBA posts. Manually coding this in QSR NVivo allowed 

the researchers to capture this important aspect of OBA posts.  
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Another observed Leximancer weakness that may be overcome with training and practice, is 

the way Leximancer names each ‘theme’ after its most prominent ‘concept’. A first Concept 

Map often produces unexpected or unusual themes, and a researcher’s first thought maybe 

“This does not tell me anything!”. By gradually adjusting the resolution of the Concept Map, its 

theme sizes, and by rotating and re-clustering, researchers can produce a Map with more 

meaningful themes.  

Leximancer’s user-friendly and intuitive interface (a “click and drag”, or just “one click” 

functionality) allows a researcher to easily and gradually adjust the Concept Map to produce 

visual outputs that represent meaningful themes. For example, a researcher can adjust the 

resolution of the Concept Map by sliding the “% Visible Concepts” bar; its theme sizes by 

sliding the “% Theme Size” bar; rotate the map by sliding the “Degree of Rotation” bar; and to 

re-cluster by selecting the “Recluster Map” button. The thematic and conceptual 

meaningfulness of the visual output can also be improved by manually renaming the themes 

in the Concept Map, enabling the Map to better reflect the themes’ composition and their 

overall thematic essence. This was the case here, as the themes in Figures 2, 3 and 4, were 

renamed to reflect their concepts; thus helping in the identification of key OBA characteristics 

and in seeing how OBA differed from other relevant constructs. This process was simpler than 

that offered in QSR NVivo. Programs such as Inkscape enable researchers to improve the 

visual appearance of a Leximancer-produced Map (e.g. by improving the spacing around 

concept names that may overlap on the original map). 

QSR NVivo and Leximancer programs are complements 

The analysis suggested QSR NVivo and Leximancer programs complement each other and 

that weaknesses in one program can be addressed by strengths in the other. We found each 

program contributed a different visual and evidence-based perspective and added to our 

understanding of OBA. Had we only used one program, we would have only had results from 

one side of the analysis. The QSR NVivo Coding Stripes Analysis (Figure 1) enabled us to 
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determine which of the nodes (characteristics of OBA) were common across both online 

communities, and which were particular to each. This allowed us to determine common OBA 

characteristics and, therefore, those that made OBA unique in an online C2C communication 

setting. This process also allowed us to pinpoint some OBA characteristics that were unique 

to each of the online communities. However, the QSR NVivo Coding Stripes Analysis was not 

sufficient to explain the magnitude of those differences and the reason why these differences 

occurred (i.e. why some characteristics of OBA were more prominent on the OOC and others 

were more prominent on the OBC). The Leximancer analysis (Figure 2, 3 and 4), provided 

further insights through the emergent ‘High Involvement Products’ and ‘Low Involvement 

Products’ themes.  

The themes which emerged in the Leximancer analysis helped us to explain why there were 

differences in the way people advocated for brands in each of the two communities. That is, 

the OBA posts on the OBC were about the brand that owned the OBC and about competing 

brands, as well as brands closely related to the product category of the brand that owned the 

OBC. We found these brands clearly in the ‘Low Involvement Products: Hygiene’ and ‘Low 

Involvement Products: Feeding’ themes (Figure 2), where both themes were ‘pulled’ by the 

OBC tag, meaning they were most prominent on the OBC. This is consistent with OBA evident 

in the OBC posts, which were mostly about the brands in these two product categories. On 

the other hand, the ‘High Involvement Products’ them was ‘pulled’ by the OOC tag, which 

suggests there were more OBA posts about these products in the OOC forum.  

These findings helped explain why some OBA characteristics occurred more on the OBC than 

on the OOC and vice versa. For example, on the OBC where OBA was mostly about low 

involvement products, advocates demonstrated ‘product category involvement’, explicitly 

stating their ‘brand commitment’, provided ‘brand advice or problem support’ and 

‘recommendations based on brand comparisons’ and elaborated on ‘brand distinctiveness’, 

as highlighted in the QSR NVivo analysis (Figure 1). Whereas, on the OOC, where the OBA 

posts were mostly about high involvement products (Figure 2), OBA post advocates provided 
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‘recommendations based on criteria or requirements’, displayed ‘brand warmth’, used ‘brand 

language which was technical’, and provided ‘extra brand information’ such as websites, 

photos, and prices (Figure 1). This further highlighted that both, QSR NVivo and Leximancer, 

complement each other, thus had we used only one program we would have understood only 

a certain aspect of the OBA characteristics displayed in C2C communication online.   

Discussion  

There seem to be benefits to using both QSR NVivo and Leximancer programs in exploratory 

social media research involving big, text-based data analysis. This study showed that the two 

programs complemented each other and that the weaknesses of one were addressed by the 

strengths of the other (Table 2). This finding addresses the need to further understand how 

the research issues and data analysis of one CAQDAS program (in this case, QSR NVivo) 

can be enriched by the use of another CAQDAS program (Leximancer) (Crofts and Bisman, 

2010; Davies et al., 2006). In this study, Leximancer was a useful interpretative tool that 

enabled a better understanding of the results obtained through the QSR NVivo analysis. Each 

program contributed a different visual and evidence-based perspective to the data analysis 

that, overall, provided a more comprehensive and insightful view of OBA.  

Leximancer analysed a very large amount of data (1,796 online posts) in an expedient way, 

providing an automated, impartial analysis that highlighted the key concepts, themes and their 

connectivity (Figures 2, 3 and 4). This study showed that when applied to large quantities of 

text, such as big data, Leximancer enables efficient ‘text mining’ by transforming lexical co-

occurrence information from natural language into semantic patterns (Smith and Humphreys, 

2006). Here, Leximancer identified themes that would have been missed or overlooked had 

we only used QSR NVivo. This is consistent with other researchers noting that the Leximancer 

program “(makes) the analyst aware of the global context and significance of concepts and 

(helps) to avoid fixation on particular anecdotal evidence, which may be atypical or erroneous” 

(Smith and Humphreys, 2006, p. 262). QSR NVivo, on the other hand, enabled this research 
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to precisely and rigorously identify concepts and themes of interest, with the researchers’ 

insights driving the processes (Figure 1), and to identify OBA types that would not have been 

found in a Leximancer analysis. 

This study found both programs to be flexible and both assisted the researchers to work with 

unstructured qualitative data, to generate textual relationships, identify key areas that 

emerged from the data and to visually represent this output. However, the task of interpreting 

such visual output remained with the researchers. After undertaking QSR NVivo and 

Leximancer analysis, the researchers went back to engaging directly with the data to further 

explore and interpret textual meanings, in line with the suggestion that “the application of 

CAQDAS should not operate as a substitute for the researcher’s immersion in, or interpretation 

of the data but rather as a means for enriching the research process” (Crofts and Bisman, 

2010, p. 197). This follow-through enabled the researchers to draw meaningful conclusions 

based on the ‘visual first’ approach provided by the two programs, and to guide future OBA 

studies.  

Conclusions and Implications  

This study contributed to our understanding of how qualitative text-based data analysis 

programs can be used to explore big data obtained from social media, answering a call for 

further insight into such programs’ functionality (Sotiriadou et al., 2014; Angus et al., 2013). 

This paper illustrates how such programs can be used as powerful tools when undertaking big 

data, exploratory analysis; presenting valuable visual analysis beyond just an ‘end-stage 

output’ for readers. The ‘visual-first’ analysis used, illustrates how such analysis can be 

integrated with critical reasoning and decision-making about the data, enabling researchers to 

use such integration to guide subsequent enquiry (Angus et al., 2013).  

Each of the two programs showcased in this paper has its strengths and limitations that should 

be assessed prior to their use. QSR NVivo analysis is researcher-driven and is, therefore, 

influenced by and, to some degree, limited by researchers’ analytical decisions and 
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epistemological positions. The coding process is manual and time consuming. However, QSR 

NVivo analysis facilitates an iterative concept exploration process at the time of coding 

(Hutchison et al., 2010). The Leximancer analysis is more automated and relies on the 

researchers assigning meaning, interpreting and working with the results obtained and 

represented in a Concept Map and Insight Dashboard Report. Leximancer requires a close 

analysis and refinement of the initial output, a process underpinned by the researchers’ 

understanding of the data. This study shows that Leximancer should not be expected to ‘do 

the work’ for you, rather, it should do the work with you (Penn-Edwards, 2010).  

CAQDAS applications provide new ways to develop visual output that can help researchers 

make visual sense of their big data. Such sense-making requires intellectual rigour and 

researchers’ full involvement; highlighting the importance of human intervention in analysing 

and interpreting big, qualitative data. These tools assist researchers, but they are not 

replacements for human analysts (Angus et al., 2013). It is imperative for researchers working 

with these tools to be intimately and comprehensively familiar with the data set and with the 

programs being used. Researchers must prepare the data according to the requirements of 

each program. In order words, the quality of the analysis reflects the quality of the data and of 

the researchers’ involvement with the tools, as well as their understanding of the data and of 

the prior research that guides their study. As illustrated in this paper, researchers should also 

consider using more than one CAQDAS program when analysing large text-based datasets, 

because such programs complement one another, providing a more comprehensive insight 

into the phenomenon being studied.  

We used the qualitative findings from both CAQDAS analyses to guide a subsequent OBA 

scale development process. The intricate qualitative insights achieved through the use of QSR 

NVivo and Leximancer suggested OBA has some unique characteristics that need to be 

included in any scale. The findings also suggested some potential OBA scale items that should 

be considered if any OBA scale is to reflect OBA’s true nature. 
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Table 1: OBA Characteristics and Analysis: An excerpt from the complete table. 
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Table 2: Strengths and Weaknesses of QSR NVivo and Leximancer. 

QSR NVIVO LEXIMANCER 

Strengths 

• Researcher-driven, at researcher's discretion which nodes to identify for 

data classification. This may be perceived as specific and efficient, in 

identifying only those concepts, themes or keywords, which the study is 

interested in exploring. 

• Program-driven, automated analysis which may be perceived as more 

objective. 

• Code and analyse data to specific concepts. As above. • Automatic identification of key words (concepts) and clusters (themes). 

• Suitable for interpretative approach, in studies where a specific 

conceptual model is of interest to be investigated and the concepts/ 

constructs are known. 

• Seeding based on frequencies and co-occurrences of words (concepts). 

• Researcher assigns meaning to the data at coding stage. • Suitable for exploratory study as "themes" emerge via automated lexical 

analysis. 

• Akin to manual handling of data. A manual way of coding with the aide of 

a computer program. 

• Content analysis, data linking and data display based on emergent 

themes and concepts. 

• Content analysis, data linking and data display based on nodes (codes). • Efficient for large volumes of data. Quick, automated analysis. 

• Various analyses and visual output produced (e.g. Word Frequency 

Query, Coding Stripes Analysis, Matrix Coding Query). 

• Linking function allowing access from nodes to the original data. 

• Researcher able to manually seed (define) concepts required for the 

program to identify. Akin to setting up queries. 

 • Program develops Concept Map and Insight Dashboard with Prominence 

Scores, to highlight key "themes" and "concepts" within them. 

• Linking function allowing access from the Concept Map to the original 

data. 

Weaknesses 

• Subjective and researcher bias possible. Limited by researcher's 

epistemological position. 

• Lack of human insight during lexical analysis which is driven solely by the 

program. 

• Time consuming in identifying what the concepts could be, thus what the 

nodes should be, and in the coding of data. 

• Questionable reliability. Due to the researcher's heavy involvement 

through the whole process, it is arguable to what extent the results are 

reliable. 

• Auto-Coding, should be used with caution. Albeit efficient, did not prove to 

be effective at capturing the correct information required for the purposes 

of this study, resulting in manual coding of data. 

• Input data needs specific formatting and spelling checking prior to input 

into the program, which may be time consuming for large quantities of 

data. The program will only recognise correctly spelt words, and in the 

right format. 

• Lexical analysis occurs in 2 sentence blocks, which may be adjusted up 

or down. This is problematic in particular for data sourced online, where, 

unlike any other written form, the form of online expression can be short 

or long winded. 

 • Researcher assigns meaning after program-analysis (i.e. at Concept Map 

configuration stage). 

 • Sentiment lens is only suitable for at best compound concept (two 

‘affective’ words) type analysis but it is not suitable for in-depth affective-

type analysis. 

 • Unable to capture the online communication style (e.g. acronyms) or 

implied tone of voice (e.g.!!!), common to online written form. 

 • "Theme" names after the most prominent concept but do not necessarily 

represent the essence of the other "concepts" within the theme. 

 • Unexpected or unexplained emergent concepts and relationships. 

 • Misleading terminology, i.e. “concepts” = keywords and “themes” = 

concepts. 

• Somewhat awkward and problematic researcher-driven identification of 

the themes’ size, the number of clustering attempts and rotation of the 

Concept Map. 
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Table 3: Top ranking concepts and their Prominence Scores (PS) against three 
categories of interest: 1. Brand Mention; 2. Online Brand Community; and 3. Online 
Open Community. 

Brand Mention Online Brand Community Online Open Community 

Concept PS Concept PS Concept PS 
Tried 1.7 OBC Brand Name 1.7 Love 1.4 

Use 1.6 Read 1.7 Price 1.3 

Love 1.4 Tried 1.7 Looking 1.3 

Better 1.4 Problem 1.6 Bought 1.1 

Buy 1.3 Best 1.4 Great 1.1 

 

 

Table 4: Top ranking compound concepts and their Prominence Scores (PS) against 
three categories of interest: 1. Brand Mention; 2. Online Brand Community; and 3. 
Online Open Community. 

Brand Mention Online Brand Community Online Open Community 

Compound 
Concept 

PS Compound 
Concept 

PS Compound 
Concept 

PS 

Tried & brands 17.4 Read & understand 22.0 Easy & fold 
(product 

functionality) 

39.3 

Positive brand 
mention & 

negative brand 
mention 

16.8 Tried & brands 12.1 Price & range 11.5 

Better & cheaper 11.6 Best & brands 8.4 Looking & reviews 8.5 
Positive brand 

mention & reviews 
10.0 OBC Brand Name & 

brands 
8.1 Issues & pay 8.2 

Problem & never 9.3 Positive brand 
mention & negative 

brand mention 

7.9 Recommend & 
compact (product 

feature) 

7.6 
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Figure 1: QSR NVivo Coding Stripes Analysis. 
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Figure 2: Leximancer Two-in-One OBA Concept Map. 
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Figure 3: Leximancer OBC OBA Concept Map. 

  



31 
 

 

Figure 4: Leximancer OOC OBA Concept Map. 
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